
POLITECNICO DI TORINO
Department of Control and Computer Engineering

Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

Envoy: a simplified approach for the
integration of hardware devices into

software applications

Supervisor:

Prof. Massimo VIOLANTE

Co-supervisor:

Teodoro PICCINNI

Candidate:

Cristian MENALDO

Academic Year 2020/2021

Abstract

The context of this thesis is the development of the Envoy middleware software,
a solution minded to simplify the integration of hardware peripherals for the
automation of cash handling.

This thesis has been developed within the innovation department of ARCA
Technologies S.r.l., the producer of these devices. The company, based in Bollengo
(TO), is the Italian branch of a wider company based in Mebane, North Carolina,
USA.

This project has successfully integrated, into the Envoy platform, the most
successful cash automation device sold by ARCA, the CM18.

Envoy is a middleware software, written in C++, that exposes an API (Ap-
plication Programming Interface) that simplifies the integration of this kind of
hardware devices into software applications. The software houses that choose
Envoy to integrate cash handling devices, won’t care about the kind of protocol
(hexadecimal, string, . . .) a machine uses, because Envoy parses the protocols
and manages the low level communication. On this basis, Envoy receives JSON
(JavaScript Object Notation) requests over a RESTful protocol, translates them
into the device protocol and returns the replies to the application in the same
simple and clean JSON format.

In order to be able to integrate this machine, it has been necessary to study
how it works, with all its components, the path that is followed by the banknotes
inside of it, but most importantly its protocol, so that it has been possible to build
the parser of the commands.

Before starting to develop the code, an extensive study has been carried out,
about all the tools needed in a software development flow. This flow has been
based on the Agile and DevOps methodologies and has gone through three phases:
development, testing and release. The development phase has taken advantage
of tools like Jira, used for planning the work; Jenkins, which is a tool for CI/CD
(Continuous Integration and Continuous Delivery) of software products; and Git,
a VCS (Version Control System) that facilitates the collaboration between pro-
grammers and allows to keep track of the software product history. The tool that
has been used in the code testing phase is a tool to implement unit testing, the
Boost.Test library, which is part of the Boost C++ framework.

After this phase of study, the code for the integration of the machine into Envoy
has been developed, using the tools mentioned previously and implementing the
commands to open and close the communication with the machine, the ones to
retrieve the status of the cassettes and the status of the various components, the
commands to set and read the date and the time, the command to deposit the
banknotes and lastly, the one to only count them.

Finally, as conclusion of the project, a collaboration with the customer support
team has been done, in order to understand how the issues with the customers are
addressed, once the software has been delivered.

ii

Table of Contents

List of Figures v

Acronyms vii

1 Introduction 1
1.1 The company: ARCA story . 1
1.2 Cash automation devices . 3
1.3 The project: Envoy overview . 5

2 Development flow 9
2.1 Agile software development . 10

2.1.1 Jira . 13
2.2 DevOps . 16

2.2.1 Jenkins . 18
2.3 Version Control Systems . 21

2.3.1 Git . 22
2.4 Code development . 29

2.4.1 Object-oriented programming concepts 29
2.4.2 CMake . 31

2.5 Code testing . 34
2.5.1 Unit testing . 36
2.5.2 Boost.Test . 38

3 Environment analysis 41
3.1 Envoy framework . 41

3.1.1 The Apache HTTP server and the web interface 41
3.1.2 CGI applications . 43
3.1.3 JSON templates . 44

3.2 Communication protocols . 48
3.2.1 Protocol types . 48
3.2.2 ARCA machine protocol . 49

iii

3.2.3 SIS commands . 51

4 Development experience 65

5 Customer support 69

6 Conclusions 71

Bibliography 73

Acknowledgements 75

iv

List of Figures

1.1 ARCA Headquarters in Mebane, North Carolina [1] 1
1.2 CM18 [2] . 3
1.3 Envoy structure . 5

2.1 Agile process phases [4] . 10
2.2 Jira hierarchy example . 13
2.3 Kanban board . 15
2.4 CI/CD flow [5] . 17
2.5 DevOps phases [6] . 17
2.6 Jenkins pipeline . 18
2.7 GitFlow branching model [8] . 23
2.8 Git structure [9] . 24
2.9 New branch creation . 25
2.10 Git status after coding . 26
2.11 Git status after add command . 26
2.12 Git commit . 26
2.13 Git push . 27
2.14 Git pull on branch develop . 27
2.15 Branch deletion . 28
2.16 V-model in software development 34

3.1 Envoy browser interface . 42
3.2 Envoy flow . 43

v

Acronyms

RPC
Remote Procedure Call

API
Application Programming Interface

JSON
JavaScript Object Notation

HTTP
HyperText Transfer Protocol

CGI
Common Gateway Interface

RLM
Reprise Lincense Manager

IDL
Interface Definition Language

QA
Quality Assurance

CI/CD
Continuous Integration and Continuous Delivery

VCS
Version Control System

vii

GUI
Graphical User Interface

OOP
Object-Oriented Programming

IDE
Integrated Development Environment

DLL
Dynamic-Link Library

XML
Extensible Markup Language

REST
REpresentational State Transfer

HTML
HyperText Markup Language

LDN
Logical Device Name

RTC
Real Time Controller

viii

Chapter 1

Introduction

1.1 The company: ARCA story

"ARCA is a company leader in the cash automation industry with worldwide offices:
US, where there is the global headquarters in North Carolina (Fig. 1.1), UK, Italy,
in Bollengo (TO), where I currently work, and France.
It all started in 1998, when Mort O’Sullivan, the founder and current CEO, while he
was studying at University in Edinburgh, Scotland, he collaborated with Compuflex,
a company that develops software to control cash automation hardware and where
he had already worked before. The project was about the creation of a new cash
dispensing system for the oldest bank in Ireland, belonging to the Bank of Ireland.

Figure 1.1: ARCA Headquarters in Mebane, North Carolina [1]

1

Introduction

After that experience, he returned to New York City, where he founded Arca.Tech
Systems in his apartment, thinking that there was a great potential in cash
automation in the US. His first customers were businesses that needed equipment
for use in self-service checkouts, kiosks and ATMs. Those products were cash
dispensing devices produced by third-party OEM manufacturers. In 2000, the
company released its first branded product, the ARCA 2000, that was sold at
a much lower price with respect to the competition, since their customers were
looking for a cheaper cash dispenser than the ones that were available on the
market.

In 2001, ARCA moved to the RTP (Research Triangle Park) area of North
Carolina, where it started its growth; the partnership with the Italian manufacturer
CTS Group began and thanks to this ARCA started to launch more innovative
products, such as the evolution of the cash dispenser, the cash recycler: this device
allows also to accept and store notes as a deposit. One of the first cash recyclers
introduced in the US was the CM24, in 2004.

Seven years after the foundation in the United States, ARCA expanded into
Scotland, England and Ireland. Moreover, in 2007, it won a spot on the Inc 5000
list, a prestigious award that recognizes the fastest growing companies in the US.

In 2008, it launched the device that would become its flagship product with
more than 26,000 units sold all over the world, the CM18 cash recycler. The
CM18 had so much success that ARCA replicated its platform over many other
models. After this period of great success, the company purchased the CTS Group
in 2014.

Nowadays, among the ARCA’s customers there are financial institutions, retail
businesses, OEM self-service checkout and kiosk manufacturers. They offer multiple
systems that increase efficiency and revenue and reduce costs. ARCA’s successful
performance has been recognized and honored by many of the industry’s most
prestigious award organizations." [1]

2

1.2 – Cash automation devices

1.2 Cash automation devices
The cash automation devices are machines that mainly execute some simple but
important tasks: accepting, validating, depositing, counting and dispensing cash,
thus automating the cash cycle. They can be found in banks, credit unions and
back-office retail cash rooms.

The banknotes are placed into a specific slot, called feeder, then they pass
through a bill validator that recognizes their denomination (i.e. their value and
currency type) and their validity: if a banknote is valid, then the machine stores it
in the proper cassette, based on its denomination; otherwise it is rejected and put
in the reject slot. When, afterwards, a withdrawal is needed, the machine takes the
banknotes from the cassettes and puts them into the output slot. Here it can be
perfectly seen why these machines are also called cash recyclers: the money that is
deposited it’s the same that is dispensed.

"Cash recycling has a huge impact on every process and every person in financial
institutions, improving the operational efficiency and the productivity of the staff,
and reducing the labor costs and the other costs associated with the manual cash
handling. Moreover, it increases the amount of cash that can be stored and enhances
the quality of cash controls." [2]

Figure 1.2: CM18 [2]

As said before, the cash recycler which ARCA
had a great success with is the CM18, it can be
seen here on the side and it has the following
specifications:

• 3.5” operator touch screen interface

• Modular note storage allows for multiple
configurations based on capacity needs

• Simultaneous processing of up to four cur-
rencies

• ARCA Care remote service plan

• Lighting system on input/output bins for
customer usability

• Lockable upper track for customer applica-
tions

3

Introduction

• Capacity of $85,000 to $200,000+ depend-
ing on configuration

• Deposit/dispense in batches of up to 200
notes without limits per transaction

• Full image sensors for visible, UV and IR
light plus magnetic and ultrasound sensors

• RS232, USB 2.0 and TCP/IP connectivity

• CM18 Tall (CM18T):

– 6/8/10/12 cassettes
– Dimensions (h × w × d): 37.01 x 17.32 x 36.10 in / 940 x 440 x 917 mm
– Weight: 945.78 lb / 429 kg

• CM18 Short:

– 6/8 cassettes
– Dimensions (h × w × d): 26.42 x 17.32 x 36.10 in / 671 x 440 x 917 mm
– Weight: 714.30 lb / 324 kg

4

1.3 – The project: Envoy overview

1.3 The project: Envoy overview

Envoy, also called EnvoyRPC, is an application written in C++, that allows
customer applications to communicate with cash handling devices via Remote
Procedure Calls (RPC). The project goal is to produce a lightweight, language-
agnostic API (Application Programming Interface) for customer applications, as
long as they can send JSON commands and receive JSON responses through a
dedicated Apache HTTP server supplied by EnvoyRPC, so that they may more
easily communicate with the automated cash handling machines sold by ARCA.

The general installer of Envoy contains Apache HTTP server, CGI applications,
other software modules, licensing system, configuration files and driver for devices.
The Apache HTTP server acts as intermediary between the customer application
(the client) and EnvoyRPC itself, exchanging JSON commands (from the application
to the machine) and JSON responses (from the machine to the application). Further
details will be explained in Sec. 3.1.1.
CGI applications are mainly involved in the validation and translation of the JSON
commands and responses.
The other software modules manage physical communication (USB, LAN, RS232,
etc.) with devices and the creation of the commands and responses according to
the specific protocol of a machine.
This general structure is represented in Fig. 1.3.

Figure 1.3: Envoy structure

5

Introduction

In particular, the module responsible for the translation of the JSON objects
translates the command to be sent to the machine from the JSON format to the
specific protocol of that machine and vice versa, i.e. it creates the JSON response
starting from the response received from the machine.
Moreover, among all the modules, there is also the module for the logging, used to
print to a log file all the calls to the different functions, including all commands
coming into the system and all the responses going out, in order to understand,
in case of failure, where something went wrong; the module dedicated to the
errors/exceptions handling and the one that manages the licenses that belong to
the Reprise Lincense Manager (RLM).
Another one is the unit and functional test module, that run the tests to verify if
all the pieces of code behave as expected, either taken individually (unit testing)
or interacting together (functional testing).

Third party libraries are also needed: such as "libusb", used to manage the USB
communication with the devices; "rapidjson", for the creation of the JSON objects
and their handling; and "INI", for manipulating and parsing .ini configuration files.

Everything is compiled with the usage of the CMake build system either for
Linux or for Windows and installers for Linux Debian and Windows are generated.

The API is a JSON API that uses Apache with a collection of EnvoyRPC
templates and executables. The application conducts all configuration, licensing
and device communication through specific JSON messages. JSON responses are
then returned. As long as the application can be made to execute GET and
POST, and send and receive JSON data, the particular language used to write the
application does not matter. The customer’s application is free to use utilities such
as cURL, Java packages such as java.net.http, Perl, Python or any custom-designed
HTTP communication modules.

The JSON templates are the basic format for all commands and responses. They
define the Interface Definition Language (IDL) of the API in terms of what the
customer application sends and receives. The application can either use copies of
the command templates and store them for use as needed or it can fetch them from
EnvoyRPC on the fly and fill out the variables. Like all JSON strings, they are
human-readable.

The Apache service used for EnvoyRPC runs just as any other Apache server.
In the case of EnvoyRPC, access is granted through port 8081 (localhost:8081).
It can be stopped, started and restarted. On installation, the service is started
immediately and is already configured. For example, it will start upon host reboot.

6

1.3 – The project: Envoy overview

On uninstallation, it is entirely removed from the host. EnvoyRPC does not run as
a service itself, when a command is completed by sending a response, the executable
stops completely and exits.

Moreover, EnvoyRPC provides a browser interface that can be used to run all
commands and display their responses. It can be used to configure the system or the
devices, test commands, read the documentation and learn about the system. The
browser interface acts as another application with JavaScript converting to/from
JSON.

7

Chapter 2

Development flow

In the development of hardware and software products each company implements
its own workflow. Along the evolution of the IT systems, due to the demanding
needs for reliability and compliant release times, various schools of thought emerged,
helping developers in the organization of their work.
In the context of the Envoy project development, I have applied two of the most
popular methodologies widespread nowadays: Agile and DevOps.
In particular, the first one helped me to define features of the product that I
was developing and when to develop them; while the second one has driven the
management of the software development, defining steps to ensure the finding of
errors and to reduce the release time of the application.
I will go into the details of each single methodology in the coming paragraphs.

9

Development flow

2.1 Agile software development

The agile process is an iterative approach to software development, to deliver the
product incrementally, instead of all at once. Every software is a composition of
several functionalities, each of them having to pass through 6 steps: requirements,
design, develop, test, deploy and review. Then if the review is satisfactory
the functionality is added to a release, otherwise it’s necessary to go back to the
requirements and redo the other steps.

Figure 2.1: Agile process phases [4]

Before seeing in detail what is done in each step of the cycle, let’s spend few
words explaining what is the Scrum Team and which are the roles within it.
The Scrum Team is defined as a hierarchy of employees working on a software
development project, interacting to achieve agile development.
There are essentially three roles: the Product Owner, who is the responsible for
the entire project, someone that deals with the customers and understands what
they want to create; the Scrum Master, who is the middleman that connects and
manages the flow of information between the Product Owner and theDevelopment
Team, that is composed of the employees that write code, developing the software.

10

2.1 – Agile software development

Now the explanation of the various steps:

• Step 1: Requirements
In this initial phase the Product Owner writes the first documentation, listing
all the initial requirements, such as the end result of the project, the features
that will be implemented and the ones that will not be initially supported,
because in this phase it is recommended to consider only the strictly necessary
features, while the other ones will be added once the product is deployed and
the core features work well.

• Step 2: Design
After having written the requirements, the Product Owner gathers the De-
velopment Team, which meets and decides which are the best tools to deal
with the project, in order to reach the best possible result; these tools are the
programming language, the frameworks and the libraries the project will use.

• Step 3: Develop
This is the longest and most important phase, since it consists in writing code
and so realizing the actual software product.

• Step 4: Test
In this step the code written in the previous phase is tested to verify that
there are no bugs and that it is compatible with every piece of code which has
been written before by the developers. Moreover, the QA (Quality Assurance)
team makes sure that the code behaviour meets the requirements.

• Step 5: Deploy
This is the phase in which the product, i.e. the application, is deployed on the
servers and so made available to the customer either for a demo or for a real
use. In the future cycles new features will be added to the already installed
software and if any bugs are present they will be fixed, thus providing updates.

• Step 6: Review
In this last step the Product Owner meets the Development Team again
to review the progress made towards the completion of the project and the
fulfillment of the requirements. In addition, the developers can suggest how
to solve the problems that have arisen during the previous phases and the
Product Owner takes their ideas into consideration.

11

Development flow

In order to explain better the Agile methodology let’s suppose we have to build
an application: the software development team takes time to break the application
down into User Stories, that are functional requirements of a desired feature
which must be implemented, described in a narrative form, indicating who wants
what and why, with some acceptance criteria that must be satisfied.
Then those user stories are broken down into tasks, all of which is located in
the backlog of whatever project management software that has been chosen, for
example Jira (see Sec. 2.1.1).
After that, a sprint is created, that usually lasts two weeks, in which those tasks
composing the user stories are taken, based on what is needed to get done in this
sprint, according to the prioritization set by the project manager or the customer.
Each day during the sprint a task is picked and once it has been fully completed,
that means coded, tested, successfully built and submitted for peer review, it is
the turn of the next task.
All this stuff is repeated every day until the sprint is over and then all the code is
examined by the QA team. Afterwards, the development team, the product owner
and maybe the customer meet to determine what is needed to get done in the next
sprint.
The next sprint is basically the same, but it may happen that is necessary to add
more tasks to the backlog, because maybe the information coming from the QA
testers tells that some other tasks must be accomplished either by the end of this
sprint or the next one.
And this cycle is repeated, with minor variations, for each sprint till the completion
of the application.

12

2.1 – Agile software development

2.1.1 Jira
Among all the available software products for project management, for the Envoy
project I have used Jira.
Jira is a software suite developed by Atlassian company in 2002, used to plan and
manage software development projects based on Agile methodologies.
It is mostly used for the Scrum Agile methodology, the methodology, as explained
before, employed by teams that are working on new features with a tight schedule
for finishing their work as they try to align with a projected launch target or the
coordination with delivery from other teams.

Like in all the Agile project management softwares, also in Jira there is a
Backlog, that is the list of all the tasks and features in which the whole software
product has been broken down near the beginning of the project, after having set
the user stories.

In Jira the word Issue can represent whatever bit of work, for example a task,
a bug or a story, within the workflow towards the completion of the project.
Moreover, there is a specific hierarchy in the pieces composing the project: the
Project is split into Epics/Components, then each Epic is divided in more Stories,
each of which divided in Tasks, that, in turn, can be subdivided in Sub-tasks.
An example of this hierarchy is shown in Fig. 2.2.

Figure 2.2: Jira hierarchy example

13

Development flow

The first issue that must be created in a project is an Epic, which represents
a large amount of work that needs to be broken down into a number of smaller
stories and tasks and it may take several sprints to complete it.

In order to complete an epic, it’s necessary to create several stories. Stories are
usually used by Product Managers to describe planned work for a specific feature
of a product.
Some points are assigned to each story depending on its complexity: in Agile,
Story Points are used to estimate work, thus planning the right amount of work
to be done in a sprint. Story points help to overcome the uncertainty of estimating,
while still creating a useful quantifier for the items in the backlog, they are just a
relative measure of complexity.
To each issue can be assigned a story point of 1, 2, 3, 5, 8, or 13, these are numbers
in the Fibonacci sequence, they are typically used because, when tasks are small,
the ability to imagine exactly what it will be done is fairly accurate: when the
estimates are 1 or 2 these are actually usually somewhere around proportionately
reliable, the 2 really is twice as hard as the 1. But as tasks get bigger the ability
to estimate exactly gets worse and worse, the error in estimation becomes greater
and greater and at that scale the difference between a 12 or 13 is mostly irrelevant.
Fibonacci numbers map nicely to this error in estimation and that makes it a good
sequence to use for story pointing.
Each story is assigned to a team member, who becomes the responsible for that
story.

Tasks are typically used by any team member to describe other planned, non-
story work. A single task should take at least a few hours to complete, this helps
to minimize the amount of energy spent tracking things that are done very quickly
and it ensures that the critical and high priority items are not lost in a sea of items
that do not require as much visibility.
However, a single task should not take more than three days to complete, with this
as a guideline it is ensured that the team can reprioritize at least twice per week, if
needed. This also helps to make sure that every team member is always less than
72 hours from getting the next thing done.

Moreover, Bugs are another type of issue that can be created, they are used to
explicitly call out unplanned work and this is helpful when the team is trying to
improve the overall quality of the software product.

14

2.1 – Agile software development

As said before, in the Scrum style of Agile, teams break their work up into
iterative batches called Sprints, in this way they are able to set clear and iterative
milestones for their work.
A sprint has a start date and an end date and they are often two weeks long; while
the sprint is active no new work should be added to the active sprint, instead, it is
put in one of the upcoming sprints.
Every task or sub-task present in the sprint has to pass through 3 steps during the
workflow: to do, in progress and done. At the beginning of the sprint all the tasks
are in the to do state, then during the sprint they are picked up one by one, put in
the in progress sate and once completed in done. When all the tasks have reached
the done state, the sprint can be considered completed and it can be closed.
These steps are represented through a, so called, Kanban board (Fig. 2.3).

Figure 2.3: Kanban board

15

Development flow

2.2 DevOps
DevOps is a software development approach which involves continuous development,
testing, integration, deployment and monitoring of the software throughout its
development lifecycle.
Whereas the Agile process is between the customer and the development team,
DevOps is between the development team (Dev) and the IT operations team (Ops).

DevOps allows software development teams to implement the so called Contin-
uous Integration and Continuous Delivery (CI/CD) through the automation
of all the relative phases of the entire process, since automation is the concept
that underlies this approach, thus helping to decrease the time to market of their
products.

"In the CI/CD acronym CI always refers to the Continuous Integration, an
automated process, applied by the developers, in which the new modifications
made to the code of the application are regularly compiled, tested and merged to a
shared repository. In this way it is possible to solve the problem of conflicts among
the several branches of an application, in the development phase.

Instead, CD can stands either for Continuous Delivery or Continuous Deploy-
ment, related concepts frequently used interchangeably. Both are involved in
the automation of the next phases of the workflow, but sometimes they are used
separately in order to illustrate the level of automation that has been applied.

Continuous Delivery means the process through which the changes made to
the application by a developer are automatically tested, searching for bugs and
then uploaded to a repository, from which the operations teams deliver them to a
production environment. This is a solution to the problem of poor communication
between the development and operations teams. To that end, Continuous Delivery
has the purpose to guarantee minimal effort to deliver new code.

The other possible acronym for CD, Continuous Deployment, refers to the auto-
matic deployment of the modifications made by the developer from the repository
to the production, where they become available for the customers. In this way it is
possible to avoid manual procedures from operations teams, that otherwise would
slow down the deployment of the applications. This phase exploits the advantages
of the Continuous Delivery, automating the next phase of the workflow." [5]

16

2.2 – DevOps

Figure 2.4: CI/CD flow [5]

In the DevOps approach we can distinguish the following phases:

• Development: in this phase, composed of planning, coding and building,
the software is developed continuously, but the entire development process is
divided into smaller cycles, in order to speed up the software development
itself and the delivery process.

• Testing: then, in the testing phase, the QA team tests the new piece of code,
that implements a new functionality, using tools to identify and fix bugs and
verifying that all the specific requirements are satisfied.

• Integration: the next stage is the integration, where the new functionality
is integrated with the other previously tested functionalities, and integration
testing is performed to check if the new feature interacts properly with the
other ones, not introducing any bug.

• Deployment: once the code has been tested and it was found that there
are no bugs, it can be deployed and with DevOps approach the deployment
process takes place continuously.

• Monitoring: the monitoring phase consists in the job of the operations team
that deals with a potential unwanted behaviour of the application or eventual
bugs found in production.

Figure 2.5: DevOps phases [6]

17

Development flow

Among the tools used by DevOps for automation there is Jenkins, which is a
tool that provides continuous integration and testing and helps to integrate new
features into a software product by quickly finding eventual issues as soon as a
build is deployed.

2.2.1 Jenkins
Jenkins is an open-source CI/CD tool and automation server written in Java,
developed by Kohsuke Kawaguchi in 2011, that allows continuous development,
test and deployment of newly created codes.

Before Jenkins, developers had to wait until the entire software code was built
and tested before checking for errors, in this way fixing bugs was very difficult,
since they had to scan the whole code. There was no iterative improvement of the
code and the software delivery process was slow. Before, all the codes were pulled
from the repository only after a defined deadline and build together, whereas with
Jenkins the code is pulled whenever a change in the code is committed and so the
source code is built continuously.

Jenkins pipeline

Jenkins workflow is based on pipelines, that are series of stages through which
every new piece of code of an application has to pass, from the initial development
environment to the final production environment.

Figure 2.6: Jenkins pipeline

18

2.2 – DevOps

The first stage consists in committing the new piece of code, written in the
development environment, to a repository, such as a Git (see Sec. 2.3.1) server,
so in this instance Jenkins is used to commit the code automatically.

Jenkins will then create a build of the code and part of that build process
is actually going through and running through tests. Developers are already
comfortable with running and writing unit tests to validate their code but there
may be additional tests that Jenkins is running. So for instance, as a team they
may have a standard set of tests for how they actually write out their code, so that
each team member can understand the code that has been written and those tests
can also be included in the testing process within the Jenkins environment.

Assuming everything passed the tests, the development team can then get
everything placed in a release ready environment within Jenkins.

And finally the code is ready to be deployed or delivered to a production
environment. Jenkins, with its server environment, is the tool that helps the
developer to be able to deploy its code to the production environment and the
result is the quick passage from a developer to a production code.

Jenkins provides 2 ways of developing a pipeline code: scripted and declara-
tive.
The scripted pipeline is based on Groovy script and one or more node blocks does
all the work throughout the entire pipeline.
Instead, the declarative one provides a simple syntax to define a pipeline without
the need of a Groovy script and here a pipeline block defines the work to be done
throughout the pipeline. The script is divided in stage blocks, within which it’s
defined the agent, which is the host that runs that block, and the steps, that are
the actions to be executed.
It’s good practice to put the pipeline script on a Git repository.

19

Development flow

p i p e l i n e {
agent none
s t ag e s {

s tage (’ Example Build ’) {
agent { docker ’maven :3 .8 .1 − adoptopenjdk −11’ }
s t ep s {

echo ’ Hel lo , Maven ’
sh ’mvn −−vers ion ’

}
}
s tage (’ Example Test ’) {

agent { docker ’ openjdk :8− j r e ’ }
s t ep s {

echo ’ Hel lo , JDK’
sh ’ java −vers ion ’

}
}

}
}

Listing 2.1: Declarative pipeline example [7]

Jenkins architecture

Jenkins has a master-slave architecture: a server, the master, pulls the code from
the repository every time a commit is detected and then it distributes its workload
to all the slaves, which carry out builds and tests and produce test reports. The
slaves can be run on different operating systems.

Moreover, Jenkins is composed of different kind of servers: a continuous
integration server, that checks the repository at regular intervals and pulls any
newly available code; a build server, such as Maven, which builds the code
generating an executable file and in case the build fails it sends a feedback to the
developers; a test server, that executes specific test scripts, which are written, for
example, in Selenium, and also in this case, if something goes wrong, a feedback is
sent to the developers; and finally, if there are no errors, the tested application is
then deployed to the production server.
Maven and Selenium are just two of the hundreds of plugins available for Jenkins.

20

2.3 – Version Control Systems

2.3 Version Control Systems
Before version control systems, programmers would share code through emails or
USB pen drives and keeping backups was essential to the development process,
in order to not lose all the work done. A VCS (Version Control System) helps
programmers to keep track of revisions to a code base and there are three types of
VCS:

1. the first one is local, each time you make changes to the files they are kept
locally as patches and you can revert to previous change by adding together
all the patches, but this does not help when you are trying to collaborate with
someone else

2. so, the second generation of VCSs are centralized, it means that all the
revisions are kept on a server and multiple clients can access these files, but if
something were to happen to the central server, then all your revision history
would be lost

3. now the third generation is the distributed VCS, where there is a central server
with all the history, but differently from the previous generation, every local
collaborator has its own history kept as well

Among all the distributed VCSs, the most famous is Git.

21

Development flow

2.3.1 Git
Git belongs to the third generation of VCSs, in fact it is an open-source distributed
version control system, originally developed by Linus Torvalds (the developer of
Linux) in 2005, to handle efficiently either small or large projects.
Every project has its own Git repository, which is essentially a public shared folder
that holds the project itself, with all the folders, source codes, etc. and each
repository is located on a server and can be cloned to many different clients, so
that it is possible to have as many collaborators as needed working on a project.
Each cloned copy also has all the necessary information to revert any past changes
with the full history at the programmer’s disposal.

So, Git allows files in the local repository to be in three different states: un-
modified, meaning that the file is the same locally as it is on the server; modified,
that is your local copy is ahead of the server; or staged, which means that your
changed copy is ready to be committed to the server, so that the server can have
the same copy as the one in local.

Since more programmers can work on the same files, it can happen that some
conflicts arise and Git, with its structure, simplifies the way in which these conflicts
are solved, sometimes automatically merging the different versions of a file, otherwise
it highlights the differences between the two versions of the same file.

GitFlow

GitFlow, created by Vincent Driessen, is the Git workflow “branching model”, it’s
a set of guidelines the software development teams can follow to manage their
projects. Once a programmer clones the central remote repository, he works locally
maybe creating new branches. When he has finished, he pushes his branches to the
central repository, that is he publishes his modifications and makes them available
on the remote repository.
There are different kinds of branch:

• master: it’s the main branch that stores the official release history

• develop: it is used as an integration branch for features, there is one for each
repository and it diverges from master branch

• feature: it diverges from develop branch, it is used to develop new features
and the "sprint" work, that is the workload usually assigned in two weeks, is
committed/pushed here; at the end it merges back into develop

• release: it diverges from develop and it is created to fix bugs once the develop
has acquired enough features for a release. It must be tested by a QA team to

22

2.3 – Version Control Systems

make sure that all the changes are 100% stable; any bug picked up by the QA
team will need to be addressed and this can be done on this branch. Once
completed, it will be merged back into develop but also into master, adding a
version number/tag, which is a way of tracking releases

• hotfix: it diverges from master, hot fixes are defined as minor fixes to a
project, they could be spelling errors, or maybe a label that needs to be
changed or something so small that it does not require a team of people to
test the changes. At the end, it is merged back into master, creating a new
version tag, and into develop

Fig. 2.7 is useful for a better understanding of the GitFlow branching model,
it shows how the different types of branch are used.

Figure 2.7: GitFlow branching model [8]

23

Development flow

Git on command line

There are a lot of different ways to use Git, for example the original command
line tools or several GUIs (Graphical User Interfaces) with different potentialities,
but the most important aspect is that from the command line you can run all Git
commands, whereas with the GUIs you are able to execute only a subset of them.
Moreover, using the command line leads to a better and deeper comprehension
of the way Git works, in fact who runs the command line version he most likely
comprehends how to run the GUI version, but the opposite is not necessarily true.

For all these reasons I have used Git from the command line and among all the
available commands, the ones that I have needed are: clone, checkout, status,
add, commit, push, pull, branch.
Before seeing them in detail and how I have used them, it is necessary to show Git
structure, that is the areas where it virtually places the files.

Figure 2.8: Git structure [9]

The Working Directory, also called Working Tree is the area where the files
are actually present, i.e. where you are currently working; if there are some changes
in the files, but you don’t save them to Git, you will lose all the modifications.
This is due to the fact that Git only recognizes the files or changes in the working
directory, but it does not save them automatically. If you run the status command
you will be able to see all the files present in the working directory and that Git
labels as "untracked" files.

24

2.3 – Version Control Systems

The Staging Area or Index is the area where Git tracks and saves the changes
that occur in the files and these files are ready for the next commit, i.e. when the
modifications are made available on the local copy of the repository.

The Repository or HEAD is the local copy of the remote repository and it’s
the area that saves everything; the files are moved here after the commit command,
and after committing the staging area will be empty. Then the push command is
needed in order to publish all the changes and to update the remote repository.

And finally, Remote is the remote repository itself, the shared folder on a
server, accessible by all the programmers that collaborate to that project.

Git commands

Clone: I have used this command to make a local copy on my PC of the remote
Git repository containing the Envoy project.

Now I am going to present the other Git commands in the exact order that I
have run them, in order to show the code development flow that I have followed
for the implementation of each machine command; practical examples, referred to
the development of the SetClock command of the CM18 machine, will be provided.

Checkout: without options this command is used to move from one branch to
another one, but adding the "-b" option it creates a new branch with the name
specified after "-b".

Figure 2.9: New branch creation

The "RPC code" that can be noted in the branch name is a reference code
automatically assigned by Jira.

25

Development flow

Status: it shows the status of the files within the current branch, it tells if there
are modified, new or deleted files, and if they are already in the staging area ready
to be committed, or still in the working directory.

Figure 2.10: Git status after coding

Fig. 2.10 shows the status after I have written the code to implement the
SetClock command.

Add: it moves the specified files with changes from the working directory to
the staging area, ready for the next commit; with the “-A” option or the "*" it
adds all the modified or new files.

Figure 2.11: Git status after add command

Commit: this command adds the modified or new files, that are in the staging
area, to the local copy of the remote repository, with the “-m” option it is possible
to add a comment; moreover, every commit has its own hash code to identify it.

Figure 2.12: Git commit

26

2.3 – Version Control Systems

Push: used to upload all the committed files to the remote repository, in order
to make all the modifications available for the other programmers collaborating to
the project.

Figure 2.13: Git push

Pull: this command is used to update the local copy of the repository to the
last version of the remote repository and if there are conflicts Git highlights them,
so that they can be fixed merging the two versions of the same file, or it can happen
that Git fixes them automatically.

Figure 2.14: Git pull on branch develop

After having merged the feature/RPC-179_SisSetClock_Command_Builder
branch, i.e. the one that I created for the implementation of the SetClock command,
to the develop branch, I have moved to this branch (with the checkout command)
and then I have run the pull command to update my local branch to the remote
branch. (Fig. 2.14)

27

Development flow

Branch: if this command is run without options it shows the list of the local
branches only, but adding the “-a” option it shows also the remote branches;
whereas adding a name it creates a new local branch; in addition, the “-d” option,
followed by the branch name, is used to delete that branch locally.

Figure 2.15: Branch deletion

Once verified that the new command worked fine and with its addition every-
thing compiled and built without errors, I have deleted the branch created for its
implementation, since having merged it into the main branch (develop) there was
no more need to keep it. (Fig. 2.15)

28

2.4 – Code development

2.4 Code development
Envoy is an application developed in C++, one of the first OOP (Object-Oriented
Programming) languages, whose purpose was to add the concepts of object orienta-
tion to the C programming language.
In fact, like all the OOP languages, C++ provides the concepts of class, object,
method, attribute, inheritance, polymorphism etc., but we will see them in detail
in Sec. 2.4.1.

Whereas, in order to compile the source code of Envoy and to link all the needed
libraries I have used CMake, which is a cross-platform open-source software for
the development automation (Sec. 2.4.2).

2.4.1 Object-oriented programming concepts
Before object-oriented programming there was procedural programming, that
divided a program into a set of functions, so data were stored in a bunch of
variables and functions operated on the data. This style of programming is very
simple and straightforward, but it is suitable only for simple programs, because as
the programs grow, it will end up with a group of functions that are all over the
place and the programmer might find himself copying and pasting lines of code over
and over, or he makes a change to one function and then several other functions
break: this is what is called "spaghetti code", there is so much interdependency
between all these functions and it becomes problematic.

OOP came to solve this problem, in this programming paradigm a group of
related variables and functions that operate on them is combined into a unit called
object, the variables are referred to as attributes and the functions as methods;
an object is the instantiation of a class, and more objects belonging to the same
class can be instantiated.
While in procedural code functions have so many parameters, in OOP methods
end up having fewer and fewer parameters, the fewer the number of parameters
the easier it is to use and maintain that method.
This way of combining related variables and functions into objects is called encap-
sulation and it is one of the OOP basic concepts.

Another concept of the OOP is abstraction: some of the attributes and methods
can be hidden from the outside and this gives a couple of benefits.
The first one is that the interface of those objects is made simpler, in fact using
and understanding an object with a few attributes and methods is easier than an
object with several of them.

29

Development flow

The second benefit is that it helps to reduce the impact of change, it means that
if the programmer changes these inner or private methods, none of these changes
will leak to the outside, because there isn’t any code that touches these methods
outside of their containing object. The programmer can delete a method or change
its parameters but none of these actions will impact the rest of the application
code.

The third core concept in OOP is inheritance. Inheritance is a mechanism that
allows to eliminate redundant code, for example if there are objects having some
attributes and methods in common, instead of redefining them for every object,
they can be defined once in a generic object, the so called "parent" object, and
then let the other objects, the "child" objects, inherit them, specifying it in their
definition.

Finally, the concept of polymorphism. "Poly" means "many" and "morph"
means "form", so polymorphism means "many forms" and in OOP is a technique
that allows to get rid of long "if/else" or "switch/case" statements, determining
what kind of function to run while the program is running.
For example, if more objects inherit a method from their parent class, but the
implementation of this method is different for each object, i.e. this method is
overridden, thanks to the power of polymorphism, the right implementation among
all the possible ones is figured out during runtime.

So, summing up, the benefits of object-oriented programming are the following
ones:

• Using encapsulation it is possible to group related variables and functions
together and in this way the code complexity is reduced, moreover an object
can be reused in different parts of a program or in different programs.

• With abstraction the details and the complexity can be hidden and only the
essentials are shown. This technique reduces complexity and also isolates the
impact of changes in the code.

• Inheritance, instead, allows to eliminate redundant code.

• With polymorphism it is possible to refactor ugly switch/case statements.

30

2.4 – Code development

2.4.2 CMake

"CMake was developed by Bill Hoffman between 2000 and 2001, with the aim of
creating a powerful cross-platform build environment. He took inspiration from
pcmaker, an open-source 3D graphics and visualization system, adding many more
features and implementing some of the functionalities of the Unix configure tool.
Then, with the years, it has been improved thanks to other developers integrating
it into their own build systems." [12]

In particular, this software is a build file generator, meaning it generates files, so
it doesn’t really build, which is something not necessarily easy to understand about
it. The build files are written in a compiler-independent configuration language,
platform-independent, using what is called CMake language, which is not the nicest
thing but it is quite flexible.
CMake allows to do multiple things: first it allows to build the software by
generating all the files; then, it allows to test this software and also to package it.

CMake itself is a cross-platform software, so it can run on Windows, MacOS,
Linux and a lot of different platforms, because it is a very flexible software. It is
open-source, anyone can always contribute, they can build it from source themselves
if they want to use it on some unusual platforms.
It puts a lot of emphasis on backwards compatibility, so if someone has some old
scripts, they will still work today probably, provided that they have no bugs, and
this makes things really easy to upgrade to newer versions of CMake and to reuse
old code.

Since CMake is a build file generator, it builds files for lots of different IDEs
(Integrated Development Environments), such as CodeLite, which is the one that
I have used to write the source code, and build tools, like Make, that I have used
to build the code. It supports many platform targets, like Windows, MacOS, iOS,
Linux, Android and many others.

"The configuration files are called "CMakeLists.txt" and are placed in each
source directory and sub-directory that compose a project. Each CMakeLists.txt
file contains a set of commands, whose form is COMMAND(arg1 arg2 ...), where
COMMAND is the command name and then, between brackets, there is a list of
arguments separated by a blank space.
Starting from these files, CMake generates standard build files, e.g. makefiles on
Unix and workspaces or projects on Windows, which can be used in the compiler
environment that has been chosen.
So, CMake can generate native build environments that compile source code, create

31

Development flow

libraries, generate wrappers and build executables or also static and dynamic
libraries.
With CMake it is possible to manage complex directory hierarchies and applications
that depends on multiple libraries, in fact CMake supports projects composed
of several libraries, where each of them may contain multiple directories and the
application may depend on the libraries plus additional code." [12]
This is precisely the case of Envoy.

In order to generate the CodeLite workspace, starting from the CMakeLists.txt
file, I have run the following command from the command line:
cmake -G "CodeLite - MinGW Makefiles" -S . -B .\codelite

Whereas here below, the section of the CMakeLists.txt file that I have written
to build the DLL (Dynamic-Link Library) corresponding to the SIS protocol (see
Sec. 3.2.2), which is the protocol that I have implemented and integrated in the
Envoy project.

1 p r o j e c t (S i s P r o t o c o l)
2

3 # Set t ing source f i l e s
4 s e t (SOURCE_FILES
5 ${CMAKE_CURRENT_LIST_DIR}/ pro to co l / s i s /
6 S i sP r o to c o l . cpp
7 ${CMAKE_CURRENT_LIST_DIR}/ pro to co l / s i s /command/

Si sExtendedStatusBui lder . cpp
8 ${CMAKE_CURRENT_LIST_DIR}/ pro to co l / s i s / re sponse /

SisExtendedStatusResponseBui lder . cpp
9 ${CMAKE_CURRENT_LIST_DIR}/ pro to co l / s i s /command/

10 SisOpenBui lder . cpp
11 ${CMAKE_CURRENT_LIST_DIR}/ pro to co l / s i s / re sponse /

SisOpenResponseBuilder . cpp
12 ${CMAKE_CURRENT_LIST_DIR}/ pro to co l / s i s /command/
13 S i sC l o s eBu i l d e r . cpp
14 ${CMAKE_CURRENT_LIST_DIR}/ pro to co l / s i s / re sponse /

S i sCloseResponseBui lder . cpp
15 ${CMAKE_CURRENT_LIST_DIR}/ pro to co l / s i s /command/
16 S i sDepos i tBu i ld e r . cpp
17 ${CMAKE_CURRENT_LIST_DIR}/ pro to co l / s i s / re sponse /

S i sDepos i tResponseBui lder . cpp
18 ${CMAKE_CURRENT_LIST_DIR}/ pro to co l / s i s /command/

S i sAcceptDepos i tBu i lder . cpp
19 ${CMAKE_CURRENT_LIST_DIR}/ pro to co l / s i s / re sponse /

Si sAcceptDepos i tResponseBui lder . cpp
20 ${CMAKE_CURRENT_LIST_DIR}/ pro to co l / s i s /command/

SisReadDateTimeBuilder . cpp

32

2.4 – Code development

21 ${CMAKE_CURRENT_LIST_DIR}/ pro to co l / s i s / re sponse /
SisReadDateTimeResponseBuilder . cpp

22 ${CMAKE_CURRENT_LIST_DIR}/ pro to co l / s i s /command/
SisGetUnitCoverButtonStateBui lder . cpp

23 ${CMAKE_CURRENT_LIST_DIR}/ pro to co l / s i s / re sponse /
SisGetUnitCoverButtonStateResponseBui lder . cpp

24 ${CMAKE_CURRENT_LIST_DIR}/ pro to co l / s i s /command/
25 SisCountBui lder . cpp
26 ${CMAKE_CURRENT_LIST_DIR}/ pro to co l / s i s / re sponse /

SisCountResponseBui lder . cpp
27 ${CMAKE_CURRENT_LIST_DIR}/ pro to co l / s i s /command/
28 S i sSe tC lockBu i lde r . cpp
29 ${CMAKE_CURRENT_LIST_DIR}/ pro to co l / s i s / re sponse /

S i sSetClockResponseBui lder . cpp)
30

31 # Creat ing d l l
32 add_library (S i s P r o t o c o l SHARED ${SOURCE_FILES})
33

34 # Linking l i b r a r i e s
35 t a r g e t _ l i n k _ l i b r a r i e s (S i s P r o t o c o l U t i l i t y)
36

37 # Inc lud ing d i r e c t o r i e s
38 t a r g e t _ i n c l u d e _ d i r e c t o r i e s (S i sP r o to c o l PUBLIC
39 ${CMAKE_CURRENT_LIST_DIR}/ pro to co l / s i s / dependenc ies / in c lude /ac
40 ${CMAKE_CURRENT_LIST_DIR}/ pro to co l / s i s /command/ dependenc ies /

in c lude /ac
41 ${CMAKE_CURRENT_LIST_DIR}/ pro to co l / s i s / re sponse / dependenc ies /

in c lude /ac)

Listing 2.2: SisProtocol section in CMakeLists.txt

In List. 2.2 it is possible to see how the CMake commands are used:
in particular, at line 4, the set command is used to set the source files;
at line 32, the add_library command, with the SHARED option, indicates that
this will be a DLL, i.e. a dynamic library; with the STATIC option, instead, this
would have been a static library, or using the add_executable command, this would
have been an executable;
then, at line 35, the target_link_libraries command sets the libraries that this
project will link;
and lastly, at line 38, the target_include_directories command includes the direc-
tories where the header files are located.

33

Development flow

2.5 Code testing

Code testing is one of the most important phases in the development of a software
product. It is the last phase in the software development lifecycle, before deployment,
so this step consists in verifying that the code has no bugs, that every piece of
code works fine with all the other pieces of code, not generating any unwanted
behaviour, and that all the requirements set in the initial design phase are met.

In other words, it is necessary to make sure that we developed the product right
and also that we developed the right product, these concepts refer respectively
to the more technical words verification and validation of the famous V-model
(Fig. 2.16) that represents the software development phases. In fact, verification
checks that the code works perfectly without any bugs, whereas validation makes
sure that the software product matches all the client requirements. So, not only
the software must work but it should also work efficiently.

Figure 2.16: V-model in software development

There are two different types of testing, they are functional testing and non-
functional testing: the first one consists in testing the code, i.e. the classes and
the methods, so the actual working of the software; while, the second one tests the
performance and the scalability of the software, for example a software for editing
purpose should work smoothly and should not give any lags, or an application
deployed on cloud should scale properly.

34

2.5 – Code testing

We can distinguish four different levels of testing:

1. Unit testing: in this first level, the smallest part of the software is tested,
which is a class with all its methods. The classes are called units, from here
the name "unit testing". Every single method is tested, giving in input all
the possible meaningful values and checking if the real output matches the
expected one.

2. Integration testing: once each component has been tested, they are all
combined together to test this as a software, all the different classes are
combined in order to verify that their interaction works well and does not
produce any error.

3. System testing: this is the overall testing of the system, to test how it works
with other software and with the actual data.

4. Acceptance testing: this is the last level, where it is verified that the
software product meets the customer requirements.

Every level is responsibility of a different role, in particular the developer focuses
on the unit testing and since I have dealt with it in my thesis project, I will go
into more detail in the next section.

35

Development flow

2.5.1 Unit testing
"The aim of unit testing is to check individual units of a source code separately,
where for unit is intended the smallest part of a code that can be tested alone, like
a function or a class method.
Unit testing helps to modularize the code, because breaking the code into several
specialized pieces makes it easier to be tested; moreover, having a suite of unit
tests that can be run iteratively ensures that everything keeps working every time
a new functionality is added or something has been changed in the code." [13]

A unit test is a method that checks a specific functionality, it has clear pass/fail
criteria and has this form:

Test (TestGroupName , TestName) {
1 − setup block
2 − running the under−t e s t f u n c t i o n a l i t y
3 − check ing the r e s u l t s (a s s e r t i o n s block)

}

Where the setup block is used to initialize all the variables needed to execute
the test, then there is the section in which the test is effectively run, and lastly the
last section contains the assertions, that are functions that check if the real output
matches the expected one.

There are some guidelines that can be followed in order to write good unit tests:

• assuring the independence of each unit test, so that there are no tests blocking
the execution of other tests;

• testing all the public methods, as well as class constructors and operators;

• making sure that the results are not affected by the order in which the tests
are run.

• checking invalid input data, covering all the possible branches of the code and
checking also the edge cases;

36

2.5 – Code testing

"In the scope of unit testing we can find the concepts of suite, fixture, and
mock object: the first one refers to a group of tests that are logically connected
or have common functionality, for example when the same function is tested in
different cases; the fixture is a class that is used with groups of tests sharing the
same data, to set up before and to clean up after the environment for each test in
the group, thus avoiding code duplication; and the mock objects are objects that
simulate the behaviour of those real objects that are difficult to be tested because
of their complex dependencies.

Some frameworks were developed with the purpose of making it easier to carry
out unit testing. Unit testing frameworks, in fact, are used for the automation of the
operations involved in the creation of the tests, such as preparing the environment,
writing the test code, printing the output messages etc...
Moreover, in addition to the usual assert macro, they also provide the expec-
t/check macros that don’t interrupt the test program after a single check failure:
checkers compare the actual and expected results, including tolerances for floating
point comparisons, and provide pre-implemented exception handlers.
Frameworks also allow to customize tests output messages: they can be simple
pass/fail results (usually used for regression testing), user-defined messages, or
more descriptive and verbose outputs.
With some of these frameworks it is also possible to create a report exporting
the results in XML (Extensible Markup Language) format and this report can be
passed to a continuous integration system like Jenkins." [13]

One of the most popular unit testing library for C++ is provided by the Boost
framework and I am referring to Boost.Test, which is the one that I have used to
implement my tests.

37

Development flow

2.5.2 Boost.Test
Boost.Test is a unit testing library and it’s part of the Boost C++ framework, it
has a lot of interesting features, for example it provides several assertion macros
and generates the output in XML format.

Checkers

"Checkers are macros with the format BOOST_[level]_[checkname], where level is
the severity level (optional) and checkname is the type of check, and they can take
one or several arguments:

• BOOST_WARN: it produces a warning message if the check failed, but
the error counter is not increased and the test case continues.

• BOOST_CHECK: it reports an error and increases the error counter when
the check failed, but the test case continues.

• BOOST_REQUIRE: it is used for reporting fatal errors, when the execution
of the test case should be aborted, for example to check whether an object
that will be used later was created successfully." [13]

Suites

As previously stated, suites are groups of tests and in the case of Boost tests can
be organized in suites using the pair of macros
BOOST_AUTO_TEST_SUITE(suite_name) and
BOOST_AUTO_TEST_SUITE_END().
Here below an example:

BOOST_AUTO_TEST_SUITE(ThreeThree_suite)
BOOST_AUTO_TEST_CASE(t e s t P l u s) {

BOOST_CHECK_EQUAL(3+3 , 6) ;
}
BOOST_AUTO_TEST_CASE(testMult) {

BOOST_CHECK_EQUAL(3∗3 , 9) ;
}

BOOST_AUTO_TEST_SUITE_END()

38

2.5 – Code testing

Fixtures

In Boost fixtures are created using the macro BOOST_FIXTURE_TEST_CASE():

s t r u c t SampleF {
SampleF () : i (3) { }
~SampleF () { }
i n t i ;

} ;

BOOST_FIXTURE_TEST_CASE(SampleF_test , SampleF) {
// a c c e s s i n g i from SampleF d i r e c t l y
BOOST_CHECK_EQUAL(i , 3) ;
BOOST_CHECK_EQUAL(i , 4) ;
BOOST_CHECK_EQUAL(i , 5) ;

}

In List. 2.3 one of the tests that I have written to test my code, in particular
the one that checks the correct format of the JSON corresponding to the machine
response to the Open command.

BOOST_AUTO_TEST_CASE(SisOpenRspBuilderTestCase_1) {

unsigned char openResp [] = "Open ,num, s ide , repcode " ;
s t r i n g method = " open " ;
s t r i n g LDN = "CM18_Test " ;
s t r i n g id = " 1 " ;

s t r i n g rspTemplate (R" ({ " j s onrpc " : " 2 . 0 " , " method " : " open " ,
" d e s c r i p t i o n " : " Opens a t r a n s a c t i o n s e s s i o n with a CM18/OM61

machine " , " r e s u l t " : { "LDN" : nu l l , " s i d e " : nu l l , " replyCode " : nu l l ,
" d e s c r i p t i o n " : n u l l } , " id " : n u l l }) ") ;

unsigned char ∗ rspPtr = openResp ;
S i sP r o to c o l s i s P r o t o c o l ;
S i sP r o to c o l ∗ s i s P r o t o c o l P t r ;
s i s P r o t o c o l P t r = &s i s P r o t o c o l ;
s t r i n g re sponse = s i sPro to co lPt r −>getResponse (LDN, method ,

rspTemplate , rspPtr , s i z e o f (openResp) , id) ;
Document doc ;
doc . Parse (re sponse . c_str ()) ;
S t r i ngBu f f e r b u f f e r ;
Writer<Str ingBuf f e r > wr i t e r (b u f f e r) ;
doc . Accept (w r i t e r) ;
s t r i n g ac tua l = b u f f e r . GetStr ing () ;

39

Development flow

s t r i n g expected = R" ({ " j sonrpc " : " 2 . 0 " , " method " : " open " ,
" d e s c r i p t i o n " : " Opens a t r a n s a c t i o n s e s s i o n with a CM18/OM61

machine " , " r e s u l t " : { "LDN" : " CM18_Test " , " s i d e " : " s i d e " , " replyCode
" : " 1 " ,
" d e s c r i p t i o n " : "OK" } , " id " : " 1 " }) " ;

BOOST_CHECK_EQUAL(expected , a c tua l) ;
}

Listing 2.3: Open response test

40

Chapter 3

Environment analysis

3.1 Envoy framework

3.1.1 The Apache HTTP server and the web interface

As previously said in Sec. 1.3, Envoy supplies an Apache HTTP server accessible
through port 8081 on localhost (localhost:8081), in fact to an application, Envoy is
essentially an HTTP service with a JSON API, which is accessible to any application
that can perform HTTP GET, POST, PUT or DELETE. The integrator customers
run their cash automation devices from a single computer host and the Envoy API
is intended to facilitate the issuing of commands and return of responses from those
devices.

It can be considered a RESTful API. REST is the acronym of REpresentational
State Transfer and it is a set of architectural constraints for a client-server architec-
ture where a resource representational state is transferred. An API is considered
RESTful if it is compliant with the following criteria:

• a client-server architecture composed of client, server and resources, with the
requests managed by HTTP;

• a stateless client-server connection, so that the client information are not
stored with the GET requests;

• data must be saved in cache, in order to optimize the client-server interactions;

• a uniform interface for the components, to transfer all the information in a
standard form (the JSON format for example).

41

Environment analysis

The EnvoyRPC web interface (Fig. 3.1), available by typing "localhost:8081"
into the browser address field, is an application with a JavaScript library creating
the JSON messages that get sent to the CGI back-end.
Configuration commands, device commands and links to documentation are included
on the home page. In certain cases, forms are filled out to assign values to variables
such as bill length and thickness, denominations etc. These are the same variables
that correspond to the JSON API, and the same variables that should be filled out
for a POST with data from the application.
All the commands available in the web interface are implemented as API endpoints
in the Apache CGI directory and therefore can be run via methods that can send
POST with JSON data.

Figure 3.1: Envoy browser interface

42

3.1 – Envoy framework

3.1.2 CGI applications
The CGI (Common Gateway Interface) calls are the application’s entry point
to Envoy device command processing. POSTed JSON data result in the CGI
executable, passing command request parameters to a JSON parser (such as a class
method in a library), then to the protocol synthesizer module and finally to the
low-level communication modules communicating with "libusb" library.
The response from the device is then translated by Envoy, converted into a JSON
representation and sent back out through the CGI script as a JSON response.
Each CGI executable is the entry point for a separate device command. Thus,
some modularity is achieved by separation of device-specific functionality.
These executables have been generated running a script, that, starting from the
JSON templates located in localhost:8081/json, has created the corresponding .cgi
files.
Then, every command is represented by an HTML file, inside which a javascript is
run, creating the link to the CGI file.
In Fig. 3.2 the representation of the flow.

Figure 3.2: Envoy flow

43

Environment analysis

3.1.3 JSON templates
JSON format

JSON stands for JavaScript Object Notation and it is a lightweight data-interchange
format and also an open standard file format; it was originally specified by Douglas
Crockford in 2000 and it is based on a subset of the JavaScript Programming
Language Standard.
It is very easy both for humans to read and write, in fact it uses human-readable
text to store and transmit data objects, and for machines to parse and generate.
JSON is a text format that does not depend on the programming language used,
but it has conventions for the C family languages, such as C, C++, C#, Python,
Perl, Java, JavaScript, etc.

"Thanks to these properties JSON is an ideal data-interchange language, with a
wide range of functionality, for example the communication of web applications
with servers. Many modern programming languages include libraries to generate
and parse JSON-format data, like "rapidjson" in C++. The extension for the JSON
filenames is .json." [14]

"Since JSON is a data format interchangeable with programming languages, it
is essentially based on two structures: a collection of name/value pairs, that can
be realized through an object, record, struct, dictionary, hash table, keyed list, or
associative array; and an ordered list of values, which can be realized as an array,
vector, list, or sequence.
In this way, since these are universal data structures, practically all modern
programming languages support them in one form or another.

The following ones are the elements that can be present in a JSON:

• object, it is an unordered set of name/value pairs, it begins with a left brace
({) and it ends with a right one(}). Each name is followed by a colon (:) and
the name/value pairs are separated by a comma (,).

• array, it is an ordered collection of values. An array begins with a left bracket
([)and ends with a right one (]). The values are separated by a comma.

• value, it can be a lot of things, like a string in double quotes, a number, true,
false, null, an object or an array. In addition, these structures can be nested.

• string, it is a sequence of zero or more Unicode characters, wrapped in double
quotes." [15]

44

3.1 – Envoy framework

{
" f i rstName " : " James " ,
" lastName " : " Cork " ,
" i s A l i v e " : true ,
" age " : 33 ,
" address " : {

" s t r e e tAddre s s " : "25 3 rd S t r e e t " ,
" c i t y " : " Los Angeles " ,
" s t a t e " : "CA" ,
" postalCode " : "10066 −3122"

} ,
" phoneNumbers " : [{

" type " : "home " ,
" number " : "313 555−456"

} ,
{

" type " : " o f f i c e " ,
" number " : "728 555−333"

}
] ,
" c h i l d r e n " : [] ,
" spouse " : n u l l

}

Listing 3.1: JSON example

In the example in List. 3.1 the different elements constituting a JSON can
be spotted: e.g. "firstName":"James" is a name/value pair, "address" is an object,
while "phoneNumbers" represents an array.

45

Environment analysis

JSON-RPC

"In the Envoy project, a particular protocol built on JSON is used, we are talking
about JSON-RPC, which is a simple remote procedure call protocol that defines only
a few data types and commands and lets a system send notifications (information
to the server that does not require a response) and multiple calls to the server that
can be answered out of order.

In JSON-RPC protocol there is a server that implements the protocol itself and
a client that is generally a software that calls only one method of a remote system.
The input parameters in the request can be multiple and they can be passed as an
array or an object, whereas also the method can return multiple output data.

The request to the specific method contains three fields:

• method, a string with the name of the method to be invoked.

• parameters, an object or array of values to be passed as parameters to the
defined method.

• id, a string used for identification, to match the request with its corresponding
response.

Also the response is composed of three elements:

• result, it contains the data returned by the invoked method. This element is
formatted as a JSON object.

• error, an error object if there was an error invoking the method, otherwise
this member must not exist.

• id, used to understand what response corresponds to what request, since the
responses are given out of order." [16]

46

3.1 – Envoy framework

Here below an example of the request and response templates in JSON-RPC
format used in Envoy (in particular the ones for the CM18 Open command).
{

" j sonrpc " : " 2 . 0 " ,
" method " : " open " ,
" d e s c r i p t i o n " : " Opens a t r a n s a c t i o n s e s s i o n with a CM18/OM61

machine " ,
" params " : {

"LDN" : nu l l ,
" s i d e " : nu l l ,
" password " : n u l l

} ,
" id " : n u l l

}

Listing 3.2: CM18 Open request template

{
" j sonrpc " : " 2 . 0 " ,
" method " : " open " ,
" d e s c r i p t i o n " : " Opens a t r a n s a c t i o n s e s s i o n with a CM18/OM61

machine " ,
" r e s u l t " : {

"LDN" : nu l l ,
" s i d e " : nu l l ,
" replyCode " : nu l l ,
" d e s c r i p t i o n " : n u l l

} ,
" id " : n u l l

}

Listing 3.3: CM18 Open response template

47

Environment analysis

3.2 Communication protocols

3.2.1 Protocol types
A communication protocol is a set of rules that define the syntax, the semantics
and also the synchronization, allowing the communication between two or more
entities, so that they are able to send and receive information through the variation
of a physical quantity.

"In communicating systems, protocols have well-defined formats that specify the
exact format and meaning that each command to be sent has to have, in order to
obtain a certain response among all the possible predetermined responses for that
specific situation.

Communication protocols represent an agreement between the entities involved
into the communication, so that they are able to understand each other. To reach
this agreement, a protocol has to become a technical standard. A programming
language describes the same for computations, so there is a close analogy between
protocols and programming languages: protocols are to communications what
programming languages are to computations." [17]

Depending on how the information is represented, there are two types of com-
munication protocols: binary and text-based.

In a binary protocol the information is represented by bytes, in fact this kind
of protocol is suited to be read by a machine rather than a human being.
The advantages of binary protocols are fast transmissions and easy interpretation,
since they facilitate the mechanical parsing.
Sometimes every byte is translated into its corresponding hexadecimal represen-
tation, dividing into two parts the byte and assigning to each group of four bits
its hexadecimal value, thus reducing the size of the information. In this way, it
becomes a hexadecimal protocol and this is the type of protocol used by some cash
automation devices.

The other type of communication protocol is the text-based protocol or plain
text protocol, where the information is represented by a human-readable format,
usually in plain text. Commands and responses are strings of ASCII characters,
terminated by a newline character and usually a carriage return character.
This kind of protocol is suited for human parsing and interpretation, in fact it is
usually used when a human intervention to scan protocol contents is needed.
The ARCA machine protocol is a text-based protocol.

48

3.2 – Communication protocols

3.2.2 ARCA machine protocol
In order to communicate with the machines it is necessary to validate and parse
the JSONs and then translate the commands from the JSON format to the specific
protocol of the device.
In particular, I have studied the SIS protocol, which is the protocol used by ARCA
machines, such as CM18, CM18T, CM18b, OM61, to name a few and now I’m
going to explain it.

First of all, they use a master-slave communication, where the host connected
to the machine is the master, whereas the slave is the machine controller; so the
controller cannot generate commands but it can only reply to the external ones.
The interfaces are standard RS232C serial interfaces with the following parameters:

baud-rate: 9600 baud
mode: full-duplex

data-bit: 8 bit
stop-bit: 1 bit
parity: none
number: 2 (one for each operator)
protocol: DIN66348 data link protocol

In case two serial interfaces are used, if an host command arrives from both
connectors the response will be sent on the same interface the command came in.
If a communication problem happens during a procedure, the controller restarts on
the same serial channel.
The protocol control procedure DIN 66348 is used to provide a secure communication
between host and controller. This procedure is bi-directional, which means that
the host can act as sender or receiver, but the unit will act as a sender only when
replying to the host.

The communication in a DIN protocol is divided in three different phases: 1)
the request, 2) the transmission and 3) the termination.

1) It is the procedure to start the communication between host and unit, it can
be used by either of them and the other one can reply in different ways: the sender
sends an ENQ (enquire) and the receiver can reply either NAK (not acknowledge),
if it is busy, or DLE (data link escape) 0, if it is ready, or ENQ, if there is a conflict
due to the fact that the target is still trying to send back some reply or info related
to a previous command, in this case the host must go back to the receive mode and

49

Environment analysis

link by sending DLE ’0’, or also a timeout can occur, so the unit retries connection
twice or sends EOT (end of transmission) and returns to idle mode.

2) The host sends the command formatted in this way: "STX ’n’ ‘Text’ ET-
B/ETX BCC", where STX (start of text) identifies the beginning of the message;
"n" is equal to 1 for the first message block and then for the following blocks it
alternates 0 and 1; "Text" is the real command for the machine (we will see later
how it looks like); ETB (end of transmission block)/ETX (end of text) identifies
the end of the block/message; and finally BCC (block check character) is the binary
sum (module 2) of bit 0 to bit 6 of all chars in the block, excluding STX up and
including ETB (or ETX), BCC parity-bit is always even and it is used for the
checking of the transmitted data.
The reply can be a NAK, that means the block must be repeated, or a DLE n, the
next block can be sent and "n" is equal to 1 or 0 according to the one received, or
a timeout.

3) It represents the confirmation of the message transmission, in this last phase
the host sends the end of transmission (EOT).

As said before, the "Text" block of the message represents the real command for
the machine, it is essentially a string composed of a variable number, depending on
the command, of fields separated by commas.
The first field identifies the kind of command, the second one is a sequential number,
that goes from 1 to 9 and it is used in the communication to relate the host request
to the device reply in case of missing synchronism, and then the other fields are
the parameters needed by the machine to execute the command.

In particular, I have implemented these commands: Open, Close, Extended-
status, Deposit, Count, Accept Deposit, Set Clock, Read Date&Time,
Get Unit Cover Button State.

In the next section I will show both their format in the machine protocol and
the templates that I have created to represent them in JSON format.

50

3.2 – Communication protocols

3.2.3 SIS commands
Open

The Open command is used to establish a link between the host and the machine.
The operator (Left/Right) and the relative password are specified in order to define
the side to be used for ejecting the banknotes and which cassettes can be used by
the operator; at least one cassette should match the password.

Command syntax: Open,num,side,code
Where side is the operator side and code is the password.

In List. 3.2 the JSON template for the Open command.

Reply syntax: Open,num,side,repcode
Where repcode is the reply code, it can be represented on 2 (CM18) or 3 (CM18T)
digits and it indicates if everything is ok or if there are some errors or jams in the
machine.
{

" j sonrpc " : " 2 . 0 " ,
" method " : " open " ,
" d e s c r i p t i o n " : " Opens a t r a n s a c t i o n s e s s i o n with a CM18/OM61

machine " ,
" r e s u l t " : {

"LDN" : "CM18_01" ,
" s i d e " : "R" ,
" replyCode " : " 1 " ,
" d e s c r i p t i o n " : "OK"

} ,
" id " : " 1 "

}

Listing 3.4: Open response example

It can be noted that the "LDN" field is always present, it stands for Logical
Device Name and it is the name automatically assigned to the machine during the
registration through the USB to identify it.

51

Environment analysis

Close

The Close command closes the operator work session and removes the other serial
channel from the busy status.

Command syntax: Close,num,side
Where side is always the operator side and it must coincide with the currently
active side.
{

" j sonrpc " : " 2 . 0 " ,
" method " : " c l o s e " ,
" d e s c r i p t i o n " : " Closes a t r a n s a c t i o n s e s s i o n with a CM18/OM61

machine " ,
" params " : {

"LDN" : nu l l ,
" s i d e " : n u l l

} ,
" id " : n u l l

}

Listing 3.5: Close command template

Reply syntax: Close,num,side,repcode
The command is executed only when the reply code is OK.
{

" j sonrpc " : " 2 . 0 " ,
" method " : " c l o s e " ,
" d e s c r i p t i o n " : " Closes a t r a n s a c t i o n s e s s i o n with a CM18/OM61

machine " ,
" r e s u l t " : {

"LDN" : "CM18_01" ,
" s i d e " : "R" ,
" replyCode " : " 1 " ,
" d e s c r i p t i o n " : "OK"

} ,
" id " : " 1 "

}

Listing 3.6: Close response example

52

3.2 – Communication protocols

Extended-status

This command is sent to get a detailed information about the status of every
module of the machine, it can be sent without having sent the Open command
before and even if the machine is in error condition.
The modules whose status is retrieved with this command are: the feeder, which is
the input slot; the controller, which is the RTC (Real Time Controller), i.e. the
module that guarantees the proper functioning of the machine, according to the
commands received by the host; the reader, that is substantially the bill validator;
the safe, that is the lower module of the machine, where there are the cassettes
containing the cash; and finally the cassettes themselves.

Command syntax: ExtStat,num
{

" j sonrpc " : " 2 . 0 " ,
" method " : " getExtendedStatus " ,
" d e s c r i p t i o n " : " Gets the Extended Status o f a CM18/OM61 machine " ,
" params " : {

"LDN" : n u l l
} ,
" id " : n u l l

}

Listing 3.7: Extended-status command template

Reply syntax: ExtStat,num,repcode[,1stat,2stat,3stat,4stat,Astat,Bstat,Cstat,
. . . ,num_proto_cas_stat]
Where all the fields after the repcode are composed of 3 digits, the first digit
identifies the module (1 = feeder; 2 = controller; 3 = reader; 4 = safe; A,B,C,... =
cassette A, cassette B, cassette C,...), whereas the other two show its status.
{

" j sonrpc " : " 2 . 0 " ,
" method " : " getExtendedStatus " ,
" d e s c r i p t i o n " : " Gets the Extended Status o f a CM18/OM61 machine " ,
" r e s u l t " : {

"LDN" : "CM18_01" ,
" replyCode " : " 1 " ,
" d e s c r i p t i o n " : "OK" ,
" Feeder " : {

" statusCode " : " 40 " ,
" d e s c r i p t i o n " : " Status OK"

} ,
"RTC" : {

" statusCode " : " 40 " ,
" d e s c r i p t i o n " : " Status OK"

53

Environment analysis

} ,
" Reader " : {

" statusCode " : " 40 " ,
" d e s c r i p t i o n " : " Status OK"

} ,
" cas se t teA " : {

" casset teCode " : "A" ,
" statusCode " : " 40 " ,
" d e s c r i p t i o n " : " Status OK"

} ,
" ca s s e t t eB " : {

" casset teCode " : "B" ,
" statusCode " : " 40 " ,
" d e s c r i p t i o n " : " Status OK"

} ,
" cas se t t eC " : {

" casset teCode " : "C" ,
" statusCode " : " 40 " ,
" d e s c r i p t i o n " : " Status OK"

} ,
" cas se t teD " : {

" casset teCode " : "D" ,
" statusCode " : " 40 " ,
" d e s c r i p t i o n " : " Status OK"

} ,
" ca s s e t t eE " : {

" casset teCode " : " I " ,
" statusCode " : " 00 " ,
" d e s c r i p t i o n " : " Casse t te pre sent but switched OFF and the

l o g i c a l address matches the ph y s i c a l p o s i t i o n "
} ,
" ca s s e t t eF " : {

" casset teCode " : " I " ,
" statusCode " : " 00 " ,
" d e s c r i p t i o n " : " Casse t te pre sent but switched OFF and the

l o g i c a l address matches the ph y s i c a l p o s i t i o n "
} ,
" casset teG " : {

" casset teCode " : "X" ,
" statusCode " : " 00 " ,
" d e s c r i p t i o n " : " Casse t te not pre sent "

} ,
" cas se t teH " : {

" casset teCode " : "X" ,
" statusCode " : " 00 " ,
" d e s c r i p t i o n " : " Casse t te not pre sent "

}
} ,
" id " : " 1 "

54

3.2 – Communication protocols

}

Listing 3.8: Extended-status response example

Deposit

With this command it is possible to deposit the banknotes in safe, each banknote
is deposited (if not rejected) in the cassette configured with the corresponding
denomination.

Command syntax: Dep,num,side
{

" j sonrpc " : " 2 . 0 " ,
" method " : " depo s i t " ,
" d e s c r i p t i o n " : " Deposit cash in to a CM18/OM61 machine " ,
" params " : {

"LDN" : nu l l ,
" s i d e " : n u l l

} ,
" id " : n u l l

}

Listing 3.9: Deposit command template

Reply syntax: Dep,num,side,repcode,acc,rej,unk,[n.id,nnn], . . . ,[n.id,nnn]
Where acc is the number of accepted and so deposited notes; rej the number of
rejected notes, because they are not valid or there isn’t a cassette configured with
that denomination; unk the number of unknown notes, because the reader was
not able to identify them; and then there is the list of the cassettes with their
denomination and the number of deposited notes.
{

" j sonrpc " : " 2 . 0 " ,
" method " : " depo s i t " ,
" d e s c r i p t i o n " : " Deposit cash in to a CM18/OM61 machine " ,
" r e s u l t " : {

"LDN" : "CM18_01" ,
" s i d e " : "R" ,
" replyCode " : " 1 " ,
" d e s c r i p t i o n " : "OK" ,
" depos i tReport " : {

" accepted " : " 1 6 " ,
" r e j e c t e d " : " 0 " ,
" unknown " : " 0 "

} ,
" sa feReport " : {

55

Environment analysis

" cas se t teA " : {
" denomination " : "CPC∗" ,
" depos i t ed " : " 7 "

} ,
" ca s s e t t eB " : {

" denomination " : "CPD∗" ,
" depos i t ed " : " 7 "

} ,
" cas se t t eC " : {

" denomination " : "CPE∗" ,
" depos i t ed " : " 0 "

} ,
" cas se t teD " : {

" denomination " : "CPG∗" ,
" depos i t ed " : " 2 "

} ,
" ca s s e t t eE " : {

" denomination " : "CPH∗" ,
" depos i t ed " : " 0 "

} ,
" ca s s e t t eF " : {

" denomination " : "CP∗∗" ,
" depos i t ed " : " 0 "

} ,
" casset teG " : {

" denomination " : " 0000 " ,
" depos i t ed " : " 0 "

} ,
" cas se t teH " : {

" denomination " : " 0000 " ,
" depos i t ed " : " 0 "

}
}

} ,
" id " : " 1 "

}

Listing 3.10: Deposit response example

56

3.2 – Communication protocols

Count

This command is used to only count the banknotes without depositing them. The
notes are all directed either to the output slot (FIT and UNFIT) or to the reject
slot (Not Recognized, Suspect, Not Authenticated).

Command syntax: Count,num,side
{

" j sonrpc " : " 2 . 0 " ,
" method " : " count " ,
" d e s c r i p t i o n " : " Counts cash f o r a CM18/OM61 machine " ,
" params " : {

"LDN" : nu l l ,
" s i d e " : n u l l

} ,
" id " : n u l l

}

Listing 3.11: Count command template

Reply syntax: Count,num,side,repcode,acc,rej,unk,[n.id,nnn], . . . ,[n.id,nnn]
Where acc is the number of accepted (FIT and UNFIT) notes; rej the number
of rejected notes, because they are not valid; unk the number of suspect and
not authenticated notes; and then there is the number of counted notes for each
denomination.

With this command I have encountered a bit more difficulties due to the fact
that not knowing a priori how many different denominations are present in the
bundle of notes to be counted, a JSON template with all the possible denominations
can’t be created, so I have built a template only with the fields that are always
present (List. 3.12) and then in the code I have written a section that fills in the
JSON and adds on the fly as many fields as needed depending on the number of
different denominations of the current bundle. An example of response is shown in
List. 3.13.

57

Environment analysis

{
" j sonrpc " : " 2 . 0 " ,
" method " : " count " ,
" d e s c r i p t i o n " : " Counts cash f o r a CM18/OM61 machine " ,
" r e s u l t " : {

"LDN" : nu l l ,
" s i d e " : nu l l ,
" replyCode " : nu l l ,
" d e s c r i p t i o n " : nu l l ,
" countReport " : {

" accepted " : nu l l ,
" r e j e c t e d " : nu l l ,
" suspec t " : n u l l

}
} ,
" id " : n u l l

}

Listing 3.12: Count response template

{
" j sonrpc " : " 2 . 0 " ,
" method " : " count " ,
" d e s c r i p t i o n " : " Counts cash f o r a CM18/OM61 machine " ,
" r e s u l t " : {

"LDN" : "CM18_01" ,
" s i d e " : "R" ,
" replyCode " : " 1 " ,
" d e s c r i p t i o n " : "OK" ,
" countReport " : {

" accepted " : " 2 3 " ,
" r e j e c t e d " : " 0 " ,
" suspec t " : " 0 "

} ,
" notesReport " : {

"CPCA" : " 1 " ,
"CPDA" : " 3 " ,
"CPGA" : " 8 " ,
"CPIA " : "11 "

}
} ,
" id " : " 1 "

}

Listing 3.13: Count response example

58

3.2 – Communication protocols

Accept Deposit

The Accept Deposit command allows to accept all the deposit operations done until
that moment, so that it is not possible anymore to execute undo deposit and all
the deposited banknotes are kept in safe until a withdrawal operation is performed.

Command syntax: AccDep,num,side
{

" j sonrpc " : " 2 . 0 " ,
" method " : " acceptDepos i t " ,
" d e s c r i p t i o n " : " Accept Deposit f o r a CM18/OM61 machine " ,
" params " : {

"LDN" : nu l l ,
" s i d e " : n u l l

} ,
" id " : n u l l

}

Listing 3.14: Accept Deposit command template

Reply syntax: AccDep,num,side,repcode,[n.id,nnn],. . . ,[num_proto_cas.id,nnn]
Where after the reply code (repcode), as for the Deposit reply, there is the list
of the cassettes with their denomination, but this time with the total number of
deposited notes until that moment.
{

" j sonrpc " : " 2 . 0 " ,
" method " : " acceptDepos i t " ,
" d e s c r i p t i o n " : " Accept Deposit f o r a CM18/OM61 machine " ,
" r e s u l t " : {

"LDN" : "CM18_01" ,
" s i d e " : "L" ,
" replyCode " : " 1 " ,
" d e s c r i p t i o n " : "OK" ,
" sa feReportTota l " : {

" cas se t teA " : {
" denomination " : "CPC∗" ,
" depos i t ed " : " 2 "

} ,
" ca s s e t t eB " : {

" denomination " : "CPD∗" ,
" depos i t ed " : " 2 "

} ,
" cas se t t eC " : {

" denomination " : "CPE∗" ,
" depos i t ed " : " 0 "

} ,

59

Environment analysis

" cas se t teD " : {
" denomination " : "CPG∗" ,
" depos i t ed " : " 2 "

} ,
" ca s s e t t eE " : {

" denomination " : "CPH∗" ,
" depos i t ed " : " 0 "

} ,
" ca s s e t t eF " : {

" denomination " : "CP∗∗" ,
" depos i t ed " : " 0 "

} ,
" casset teG " : {

" denomination " : " 0000 " ,
" depos i t ed " : " 0 "

} ,
" cas se t teH " : {

" denomination " : " 0000 " ,
" depos i t ed " : " 0 "

}
}

} ,
" id " : " 1 "

}

Listing 3.15: Accept Deposit response example

60

3.2 – Communication protocols

Set Clock

This command is used to initialize the time keeper components of the RTC of the
machine, setting date and time.

Command syntax: SetClock,num,[reg],sec,min,hour,dow,dom,mon,year
Where reg is an optional parameter and corresponds to the control register; sec
are the seconds; min the minutes; hour the hours; dow the day of the week (01 =
Monday,...,07 = Sunday); dom the day of the month; mon the month; and year
the year.
{

" j sonrpc " : " 2 . 0 " ,
" method " : " se tClock " ,
" d e s c r i p t i o n " : " Set c l o ck with seconds , minutes , hours (24) , day

o f week (Monday=1) , day o f month , month , year " ,
" params " : {

"LDN" : nu l l ,
" seconds " : nu l l ,
" minutes " : nu l l ,
" hours " : nu l l ,
"dow " : nu l l ,
"dom " : nu l l ,
" month " : nu l l ,
" year " : n u l l

} ,
" id " : n u l l

}

Listing 3.16: Set Clock command template

Reply syntax: SetClock,num,repcode

The response is not very interesting to show since it only returns the reply code
with the corresponding description.

61

Environment analysis

Read Date&Time

With this command it is possible to read the date and time of the internal time
keeper of the machine.

Command syntax: ReadDT,num
In this case there are only fixed parameters, except for the sequential number, so
the command template will only have the "LDN" and the "id" fields.

Reply syntax: ReadDT,num,repcode,reg,sec,min,hour,dow,dom,mon,year
Where, after the reply code, all the fields are exactly the same parameters set in
the Set Clock command.
{

" j sonrpc " : " 2 . 0 " ,
" method " : " readDateTime " ,
" d e s c r i p t i o n " : " Reads the date and time o f a CM18/OM61 machine " ,
" r e s u l t " : {

"LDN" : "CM18_01" ,
" replyCode " : " 1 " ,
" d e s c r i p t i o n " : "OK" ,
" c o n t r o l R e g i s t e r " : " 00 " ,
" hour " : " 13 " ,
" minute " : " 59 " ,
" seconds " : " 4 8 " ,
" dayOfWeek " : "Monday " ,
" day " : " 06 " ,
" month " : " 09 " ,
" year " : " 21 "

} ,
" id " : " 1 "

}

Listing 3.17: Read DateTime response example

62

3.2 – Communication protocols

Get Unit Cover Button State

This command is used to check the status of all the unit covers/doors/buttons/in-
put/output slots.

Command syntax: GUCBS,num
Like in the Read Date&Time command there are only fixed parameters.

Reply syntax: GUCBS,num,repcode,
Safe,Book,Cov,Feed,Inp,Rej,Lslt,Rslt,Lext,Rext,Cage,Esc,Bag,Fkp,Fks
Where Safe represents the status of the safe door (open/closed); Book (only for the
CM18b) is the book status (open/closed); Cov the upper cover status (open/closed);
Feed the feeder status (open/closed); Inp the input slot status (empty/full); Rej the
reject slot status (empty/full); Lslt the left slot status (empty/full); Rslt the right
slot status (empty/full); Lext the left external book button status (on/off); Rext
the right external book button status (on/off); Cage (only for the CM18b) the cage
status (open/closed); Esc (only for the CM18b) the escrow status (open/closed);
Bag (only for the CM18b) the bag status (open/closed), because the peculiarity of
the CM18b is the presence of a bag, where the banknotes are deposited, once full,
this bag is sealed securely inside the unit and is ready for the CIT (Cash in Transit)
pickup; Fkp indicates if the Cat. 2 Box is present or not (present/not present), the
Cat. 2 Box is the box where the machine stores the suspect banknotes; Fks is the
Cat. 2 Box status (empty/full).
{

" j sonrpc " : " 2 . 0 " ,
" method " : " getUnitCoverButtonState " ,
" d e s c r i p t i o n " : " Gets the Unit Cover Button State o f a CM18/OM61

machine " ,
" r e s u l t " : {

"LDN" : "CM18_01" ,
" replyCode " : " 1 " ,
" d e s c r i p t i o n " : "OK" ,
" safeDoor " : " c l o s e d " ,
" book " : " c l o s ed " ,
" cover " : " c l o s ed " ,
" f e e d e r " : " c l o s e d " ,
" i nputS l o t " : " empty " ,
" r e j e c t S l o t " : " f u l l " ,
" l e f t S l o t " : " empty " ,
" r i g h t S l o t " : " empty " ,
" l e f tExterna lBookButton " : " o f f " ,
" r ightExternalBookButton " : " o f f " ,
" cage " : " c l o s e d " ,
" escrow " : " c l o s e d " ,
" bag " : " c l o s ed " ,

63

Environment analysis

" cat . 2 Box " : " pre sent " ,
" cat . 2 BoxStatus " : " empty "

} ,
" id " : " 1 "

}

Listing 3.18: Get Unit Cover Button State response example

64

Chapter 4

Development experience

In this chapter I will explain what I have carried out as my own contributions to
the Envoy project. I will recap all what I have actually done from the very initial
phases to the final obtained results, with the implementation of the code to manage
the SIS protocol, thus integrating the CM18 into Envoy.

First of all, I have cloned locally on my PC the Git repository containing the
source codes and all the files needed for the development of the Envoy project.
Then, since I have chosen CodeLite as IDE to write code, it has been necessary to
create the proper workspace for CodeLite, starting from the CMakeLists.txt file
and to do this I have run the following command from the command line:
cmake -G "CodeLite - MinGW Makefiles" -S . -B .\codelite
This command executes CMake generating a CodeLite workspace in the folder
"codelite", starting from the Makefiles that are present in the current folder and
setting MinGW as software development environment to use GCC as compiler.

Once created the CodeLite workspace, I have started to have a look at the
already existing code that was developed to integrate two machines produced by
Fujitsu and Hitachi, in order to understand the structure of the application and
in particular how the classes for the management of the Fujitsu protocol and the
Hitachi protocol were built.
Moreover, I have run the application communicating with this two machines while
looking at the log file, so that I have been able to see the order in which the
methods are called, thus reconstructing the flow of the application.

During this "reconnaissance" phase I have noticed that a few methods to commu-
nicate with the CM18 were already implemented, but they were part of the general
class that handles all the different types of protocols. So, I have implemented a, so

65

Development experience

called, code refactoring, which is a technique, belonging to the Agile method-
ologies, applied to improve some non-functional features of the software, like the
readability, maintainability, reusability, extendibility of the code and the reduction
of its complexity.
With this code refactoring I have created a specific class for the SIS protocol, the
SisProtocol class, moving those already existing methods into this new class and
creating some methods for the protocol translation, because, while the Fujitsu and
the Hitachi protocols are hexadecimal protocols, the SIS protocol is a text-based
protocol, as seen in Sec. 3.2.2.

Then, once developed the class to handle the SIS protocol, I have implemented
the SisCommandBuilder and SisResponseBuilder classes, which expose respectively
the interface used by every class responsible for the builder of a command and the
interface used by every class responsible for the builder of a response.

At this point, I have started to develop one by one the classes for each command
and the ones for each response. The classes for the commands build the command
to be sent to the machine, according to the machine protocol, starting from the
JSON format; while the classes for the responses generate the JSON file, translating
the response received from the machine.
Each of these classes was represented by a ticket on Jira and for each of them I
have followed the same development flow showed in Sec. 2.3.1 and that I am going
to synthesize here below:

1. creation of a new branch for the new feature (git checkout -b)

2. code writing to implement the command/response

3. addition to the Stage Area of the modified/new files (git add)

4. commit creation for the new code (git commit)

5. publication of the changes to the remote repository (git push)

6. creation of a "pull request" on BitBucket to merge the new branch to the main
branch, called develop

7. checking of the building executed by Jenkins to make sure that there are no
errors

8. moving to the main branch locally (git checkout develop)

9. update of the main branch locally (git pull)

10. deletion of the branch created for the new feature (git branch -d)

66

Development experience

The point 2 includes also the creation of the JSON templates. In Sec. 3.2.3 it
is possible to see all the JSON templates that I have built for the commands, with
their relative responses, which I have implemented.

After having developed all the code necessary for the integration of the CM18
into Envoy, I have updated the CMakeLists.txt file, as shown in Sec. 2.4.2, to
build the code, creating the DLL that manages the SIS protocol.
Then, in order to be able to run the application, I have written a script that copies
the executables and all the DLLs, created with the build phase, into the installation
path of Envoy:

@echo o f f
echo .
echo "Copy over l ibUsbLink . d l l . . . "
copy /B /Y libUsbLink . d l l C: \EnvoyRPC\ api \ l i b \
echo .
echo "Copy over libCommLink . d l l . . . "
copy /B /Y libCommLink . d l l C: \EnvoyRPC\ api \ l i b \
echo .
echo "Copy over l i b F u j i t s u P r o t o c o l . d l l . . . "
copy /B /Y l i b F u j i t s u P r o t o c o l . d l l C: \EnvoyRPC\ api \ l i b \
echo .
echo "Copy over l i b H i t a c h i P r o t o c o l . d l l . . . "
copy /B /Y l i b H i t a c h i P r o t o c o l . d l l C: \EnvoyRPC\ api \ l i b \
echo .
echo "Copy over l i b S i s P r o t o c o l . d l l . . . "
copy /B /Y l i b S i s P r o t o c o l . d l l C: \EnvoyRPC\ api \ l i b \
echo .
echo "Copy over l i b P r o t o c o l . d l l . . . "
copy /B /Y l i b P r o t o c o l . d l l C: \EnvoyRPC\ api \ l i b \
echo .
echo "Copy over l ibJSONTranslator . d l l . . . "
copy /B /Y libJSONTranslator . d l l C: \EnvoyRPC\ api \ l i b \
echo .
echo "Copy over l i b u t i l i t y . d l l . . . "
copy /B /Y l i b u t i l i t y . d l l C: \EnvoyRPC\ api \ l i b \
echo .
echo "Copy over c g i executab l e . . . "
copy /B /Y api . exe C: \EnvoyRPC\ api \ api . c g i
echo .
echo "Copy over stub . exe . . . "
copy /B /Y stub . exe C: \EnvoyRPC\ api \ac\ g e n e r i c \ stub . c g i

I have set this script as a post-build action within CodeLite, so that every
time I built the code, this script was run automatically and I was able to run the
application immediately, testing the new piece of code.

67

Development experience

Regarding the unit testing phase, I have written the tests for all the commands
and the responses using the Boost.Test library and then I have created a script
that runs all the tests and generates a file, in XML format, with all the results:

@echo o f f

SET TEST_DIR=%cd%

echo "Copy over libUsb_1 . 0 . d l l . . . "
cd
copy /B /Y . . \ . . \ . . \ communications\usb\ dependenc ies \ l i b \windows\x86\

l ibusb −1.0 . d l l .
echo .
echo "Copy over rlm1402 . d l l . . . "
copy /B /Y . . \ . . \ . . \ u t i l i t y \ dependenc ies \ l i b \windows\x86\ rlm1402 . d l l

.
echo .

echo .
REM ######################################
REM # Run t e s t s
REM ######################################
i f e x i s t t e s t _ a l l . exe (
echo " Running t e s t s . . . "
%TEST_DIR%\t e s t _ a l l . exe −−log_format=JUNIT −−log_sink=

unit_test_results_windows . xml
echo " After t e s t , f o l d e r l i s t i n g f o r %cd %:"
d i r
) e l s e (
echo " Bui ld f a i l e d − e x i t i n g "
cd %TEST_DIR%
e x i t /B 1
)

i f e x i s t unit_test_results_windows . xml (
echo " Resu l t s wr i t t en to %TEST_DIR%\unit_test_results_windows . xml "
) e l s e (
echo "ERROR: Did not c r e a t e Windows t e s t r e s u l t f i l e . Check f o r

runtime e r ro r s , such as miss ing l i b r a r i e s "
)

cd %TEST_DIR%

e x i t /B 0

68

Chapter 5

Customer support

During the development phase for the integration of the CM18 into the Envoy
project, we have started the delivery of the software, to drive the other already
integrated devices, to a couple of customers in the USA.

In this occasion, I have had the opportunity to collaborate with the customer
support team of ARCA, experiencing an integration support with the final customer.

In particular, we have received an e-mail from a customer saying that he was
experiencing an issue while sending the Dispense command to a Fujitsu machine
through cURL, which is a command-line tool.

He was trying to send the following cURL script to communicate with the
machine:

c u r l −X POST −d ’{ " j sonrpc " : " 2 . 0 " , " method " : " d i spense " , " d e s c r i p t i o n " : "
foo " , " params " : "LDN" : " Fujitsu_01 " , " r e t r i e s " : " 1 " , " r e j e c t s " : " 1 " , "
countnotes " : [{ " c a s s e t t e p o s i t i o n " : " 1 " , " quant i ty " : " 1 " }] } , " id " : " 1 " } ’
−H ’ Content−Type : a p p l i c a t i o n / json ’ http :// l o c a l h o s t :8081/ api /ac/

f u j i t s u / d i spense . c g i

And he was getting the following error:

<!DOCTYPE HTML PUBLIC "−//IETF//DTD HTML 2.0//EN">
<html><head>
<t i t l e >500 I n t e r n a l Server Error </ t i t l e >
</head><body>
<h1>I n t e r n a l Server Error </h1>

69

Customer support

<p>The s e r v e r encountered an i n t e r n a l e r r o r or
m i s con f i gu ra t i on and was unable to complete
your r eque s t .</p>
<p>Please contact the s e r v e r admin i s t ra to r at

you@example . com to inform them of the time t h i s e r r o r occurred ,
and the a c t i o n s you performed j u s t be f o r e t h i s e r r o r .</p>

<p>More in fo rmat ion about t h i s e r r o r may be a v a i l a b l e
in the s e r v e r e r r o r l og .</p>
</body></html>

To find the source of the error we have analysed the log file of Envoy, following
the flow of the application. We were looking for the point in which the application
stopped, i.e. during the execution of what method.
Thanks to this accurate study phase, we have discovered that the problem was
in the creation of the JSON. And using JSONLint, an online JSON validator, we
have found out that the error was being caused simply by a missing curly bracket
in the JSON sent through the cURL script.

This brief experience has been the occasion for me to prove the actual simplicity
of the integration of this software product.

70

Chapter 6

Conclusions

With this thesis project I have had the opportunity to discover, learn and make use
of all the most popular tools belonging to the Agile and DevOps methodologies.
Methodologies that are becoming more and more widespread, especially in the
context of the development of software products.

These tools have helped me to manage the whole workflow, from the initial
planning phase, to the subsequent development phase, to the testing phase, till the
final software release.
Jira has been very useful for planning the entire work, subdividing it in smaller
tasks and week by week choosing which tasks to implement in order to complete
the work.
Instead, in the development phase, I have made an intense use of Git, understanding
how it works, thanks to the fact that I have run its commands from the command
line, and realizing how it really simplifies the collaboration between programmers
working on the same project.
Along with Git, I have experienced the power of Jenkins, in fact every time that
I committed and pushed a new piece of code to the remote Git repository of the
project, it built the entire project and ran the tests. In this way, Jenkins allows
the continuous integration, automating the whole process and thus reducing the
release time of the software product.
Moreover, since I have programmed in C++, I have had the chance to deepen
my knowledge in object-oriented programming and to put in practice most of its
concepts. I have also figured out a new way of building the code through CMake
and Make: these tools, in fact, help to automate the build phase, optimizing times.
The testing phase is another important aspect of the software development flow
that I have had the occasion to study, in particular creating the tests to perform
unit testing with the Boost.Test library.

71

Conclusions

I have also had the opportunity to discover the cash automation devices, un-
derstanding how they actually improve the operational efficiency, the productivity
and also the security in the cash handling within the financial institutions.
At the same time, studying how these machines work, I have run into the complexity
of the various machine protocols, realizing the real advantages that an approach,
like the one used in the Envoy project, can bring into the integration of these
devices into software applications, with the communication performed through
commands and responses in JSON format, a simple and human-readable format.

Furthermore, thanks to the collaboration done with the customer support team,
in consequence of the first release of Envoy, I have been able to understand how
the issues with the customers are addressed, once the software has been delivered.

In conclusion, thanks to the work done, starting from the development up to
the delivery to the customer, I have really experienced how this approach allows
the customer to reduce the integration times of these machines.
And for this reason, the future developments for the Envoy project, besides the
completion of the CM18 integration with the implementation of the remaining
commands, will certainly be the integration of other machines.
In fact, I am already working on the integration of a new machine, that differently
from the CM18, which communicates over USB, it communicates via Ethernet.

72

Bibliography

[1] https://arca.com/company/arca-story
[2] https://arca.com/solutions/cash-recycling
[3] https://relevant.software/blog/agile-software-development-life

cycle-phases-explained/
[4] https://vintank.com/agile-software-development-life-cycle-expl

ained/
[5] https://www.redhat.com/en/topics/devops/what-is-ci-cd
[6] https://italiancoders.it/wp-content/uploads/2018/01/devops-pro

cess.png
[7] https://www.jenkins.io/doc/book/pipeline/syntax/
[8] https://www.alibabacloud.com/blog/how-to-select-a-git-branch-m

ode_597255
[9] https://www.claudiobattaglino.it/2020/01/07/git-schema-di-funz

ionamento/
[10] https://www.atlassian.com/git/tutorials/comparing-workflows/gi

tflow-workflow
[11] https://www.indeed.com/career-advice/career-development/what-is-

object-oriented-programming
[12] https://cmake.org/overview/
[13] https://www.jetbrains.com/help/clion/unit-testing-tutorial.htm

l#basics
[14] https://en.wikipedia.org/wiki/JSON
[15] https://www.json.org/json-en.html
[16] https://en.wikipedia.org/wiki/JSON-RPC
[17] https://en.wikipedia.org/wiki/Communication_protocol

73

https://arca.com/company/arca-story
https://arca.com/solutions/cash-recycling
https://relevant.software/blog/agile-software-development-lifecycle-phases-explained/
https://relevant.software/blog/agile-software-development-lifecycle-phases-explained/
https://vintank.com/agile-software-development-life-cycle-explained/
https://vintank.com/agile-software-development-life-cycle-explained/
https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://italiancoders.it/wp-content/uploads/2018/01/devops-process.png
https://italiancoders.it/wp-content/uploads/2018/01/devops-process.png
https://www.jenkins.io/doc/book/pipeline/syntax/
https://www.alibabacloud.com/blog/how-to-select-a-git-branch-mode_597255
https://www.alibabacloud.com/blog/how-to-select-a-git-branch-mode_597255
https://www.claudiobattaglino.it/2020/01/07/git-schema-di-funzionamento/
https://www.claudiobattaglino.it/2020/01/07/git-schema-di-funzionamento/
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.indeed.com/career-advice/career-development/what-is-object-oriented-programming
https://www.indeed.com/career-advice/career-development/what-is-object-oriented-programming
https://cmake.org/overview/
https://www.jetbrains.com/help/clion/unit-testing-tutorial.html#basics
https://www.jetbrains.com/help/clion/unit-testing-tutorial.html#basics
https://en.wikipedia.org/wiki/JSON
https://www.json.org/json-en.html
https://en.wikipedia.org/wiki/JSON-RPC
https://en.wikipedia.org/wiki/Communication_protocol

Acknowledgements

I would like to thank my supervisor, Professor Massimo Violante, for giving me
the chance to carry out this thesis project, putting me through to ARCA. I take
this opportunity to thank all my colleagues, who made me feel very welcome and
were always on hand to answer questions and offer help with any problems, since
the first days.

I would like to express my sincere gratitude to my co-supervisor, Teodoro, who
assisted and guided me throughout this project. He was always available to clear
out any of my doubts from the study phase to the implementation phase, till the
finalization of the project. Moreover, he gave me lots of valuable advice that will
definitely be useful to me in my career.

I would like to offer my special thanks to my family, in particular I appreciate
all the support I received from my mother in all these years of study. And I am
deeply grateful to my maternal grandparents, who have always believed in me
investing in my studies, thus allowing me to achieve this important goal in my life.
A special thought goes to my father, who protects me from up there and gives me
the strength to reach all my objectives.

I wish to show my appreciation to all the friends that I met at the university
residence in Turin, especially to my roommate Nicolò, with whom I shared two
years and a half of my life in Turin, and Daniele, with whom I shared a lot of fun
moments and interesting experiences.

I wish also to extend my thanks to Ludovico, Massimo, Alessandro, Francesca
and Giuseppe, friends and colleagues of the Bachelor’s Degree, who shared with me
all the moments at Politecnico, including afternoons of intensive study, but also
funnier moments, like dinners and parties.

75

Acknowledgements

I would also like to thank all my friends since the days of the high school, in
particular Davide, Federico, Simone, Samuele, Giulio, Francesco, Alberto and Nicolò,
who, to a greater or lesser extent, contributed to making these five demanding
years of university less tough.

And, finally, last but not least, I would like to offer my sweet thanks to Elisa,
a special friend who, despite the distance that separates us, stood by me and
supported me during these months of thesis.

76

	List of Figures
	Acronyms
	Introduction
	The company: ARCA story
	Cash automation devices
	The project: Envoy overview

	Development flow
	Agile software development
	Jira

	DevOps
	Jenkins

	Version Control Systems
	Git

	Code development
	Object-oriented programming concepts
	CMake

	Code testing
	Unit testing
	Boost.Test

	Environment analysis
	Envoy framework
	The Apache HTTP server and the web interface
	CGI applications
	JSON templates

	Communication protocols
	Protocol types
	ARCA machine protocol
	SIS commands

	Development experience
	Customer support
	Conclusions
	Bibliography
	Acknowledgements

