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Abstract

In this thesis, we introduce the problem of facial recognition, which is an active research
field in computer vision; many real-life applications like identification, access control,
and human-machine interactions require an accurate, fast, and stable face recognition
algorithm. With the rise of Deep convolutional neural networks (CNNs), and the massive
advancement in relevant technologies (e.g.,smartphones, digital cameras, GPU,...), this
task has gained a significant performance improvement.

The first stage in the face recognition pipeline is to identify a model capable of de-
tecting and locating a face, if present, in an image or video frame, and then locate the
face landmarks (left eye, right eye, nose, upper lip, and lower lip). One of the best tools
for face detection is Dlib, an open-source library that provides the best environment for
developing software based on machine learning in C++. After face detection, we crop the
face, normalize the image, and then feed it to the second stage.

In the second stage, we extract features from the detected face in the form of a vector
called the embedded vector, which contains enough information to distinguish between
different identities. After studying the state-of-the-art models and algorithms, we decided
to adopt ArcFace (Additive Angular Margin Loss for Deep Face Recognition). The key
feature in this model is the design of appropriate loss functions that enhance discriminative
power for the extracted features. This model is trained using CASIA, VGGFace2, and
MS1MV2 datasets and achieved a verification performance of 99.83% when tested on the
LFW dataset.

In the last stage, we use the embedded vectors extracted from all the images in our
local dataset to carry out the classification and identification. When a new image is to
be identified, we extract its embedded vector and calculate its distance from the other
vectors in the dataset. Based on the distance value, the system can identify it. Moreover,
to distinguish between a real face and an image of a face in front of the camera, we utilize
the depth map information extracted from the Intel RealSense depth camera.

Finally, a user-friendly GUI (Graphical User Interface) is developed to allow users to
add and remove IDs from the Dataset, and to launch the application to do real-time face
recognition.

This thesis is developed in collaboration with PoliTO Interdepartmental Centre for
Service Robotics (PIC4SeR). It is a lightweight application that can run locally and with-
out an internet connection. The application is developed and deployed on the Nvidia
Jetson AGX Xavier developer kit, and can be beneficial for many service robotics appli-
cations.
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Chapter 1

Introduction
1.1 Problem identification and motivation

Face recognition is a task that humans perform routinely and effortlessly on a daily
basis. The wide availability of robust and low-cost desktop and embedded computing sys-
tems has created a massive interest and tremendous attention in the automatic processing
of digital images in various applications, including biometric authentication, surveillance,
human-machine interface, and multimedia management. Research and development in
automatic face recognition follow naturally.

Face recognition is a biometric procedure that uses automated systems to verify or
identify a living person based on his/her physiological features. In general, a biometric
identification system makes use of either physiological features (such as a fingerprint, iris
pattern, or face) or behavior patterns (such as hand-writing, voice, or key-stroke pattern)
to identify a person. Compered to other biometric approaches, Face recognition has
several advantages over them, it is more natural and non-intrusive, and the most essential
advantage that is capturing a face can be done from a distance and in a covert manner.

A face recognition system, as a biometric system, can function in one of two modes:

1. Face verification or authentication: it is a one-to-one model that is validating a
claimed identity through an image of a face, and either accepting or rejecting the
identity claim.

2. Face identification: it is a one-to-many model that compares a query face image to
multiple faces stored in a local dataset and outputs the identity of the query image
if it belongs to one in the dataset.

Considering constrained environments, hand-crafted features such as Local Binary
Patterns (LBP) [1] and Local Phase Quantisation (LPQ) [2, 4] have achieved acceptable
face recognition performance. However, the performance dropped dramatically in uncon-
strained environments where the face image can be affected by several factors such as
illumination, facial pose, expression, age span, hair, facial wear.

It remains an open problem to find a robust face recognition system in unconstrained
environments, however, in the last years, convolutional neural networks (CNN) have
achieved outstanding performance results.
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Chapter 1 Introduction

According to a report by the analytical company Mordor-Intelligence [8], the face
recognition market was estimated at 4.4 billion dollars worldwide in 2019, and it is ex-
pected to exceed 10.9 billion in 2025.

1.2 Face Recognition History

This section reviews the history of face recognition algorithms and reports the most
critical stages that have contributed to the state-of-the-art performance of today’s algo-
rithms.

• 1964: A semi-automatic system was developed by the American researchers Bledsoe
et al.[1] where they input to the system 20 values such as the size of the mouth or
the eyes.

• 1977: The system was enhanced by adding 21 further inputs (e.g., the width of the
lips, the color of the hair).

• 1988: Artificial intelligence and linear algebra was used to translate images and
manipulate them in simple way and independently of the human features.

• 1991: Eigenfaces [2] was introduced by Alex Pentland and Matthew Turk of MIT,
using the statistical Principal component analysis method. It is considered the first
acceptable face recognition algorithm.

• 1998: the Defense Advanced Research Projects Agency introduced face recognition
technology (FERET) [3] trained on a dataset of 2400 images of 850 identities.

• 2005: The Face Recognition Grand Challenge competition (FRGC) [4] was launched
to encourage developing face recognition algorithms.

• 2011: With the coming of deep learning, face recognition got a massive boost in
terms of results and performance. Many deep learning algorithms achieved accuracy
close to the human eye.

Today face recognition algorithms play a crucial part in multiple investments in dif-
ferent domains such as commercial, industrial, legal, and governmental applications.

1.3 Automated Face Recognition Systems Pipeline

The problem of automated face recognition system can be divided into three main
stages, as shown in figure(1.1):

8



Chapter 1 Introduction

1. Face detection: To determine whether or not an image includes a face or multiple
faces and return the location in the image of each detected face.

2. Feature extraction: To extract from the detected face a feature vector that contains
enough information to represent the face and distinguish between different faces of
different identities.

3. Classification: To identify or verify the faces using appropriate classification algo-
rithms.

Figure 1.1: Automated Face Recognition System Pipline
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Chapter 2

Face recognition technology:
Fundamental rights and ethical issues

Face recognition technology automatically allows the recognition and identification of
individuals by processing their facial images. It is extensively used in private sectors in
different domains such as advertisement and marketing, here are some examples of the
usage of face recognition technology in the private sector:

• In marketing, customers preferences can be predicted by studying their facial ex-
pressions [25].

• Social media companies like Faceboob, are using face recognition technology in their
tagging images systems [28].

• Face recognition technology is used by some companies to analyze the facial expres-
sion of candidates during job interviews [27].

• Some football clubs use face recognition technology in their stadium during matches
to track people who are banned from attending due to violation of the club’s rules
[26].

Although there are many implementations for face recognition technology in the pri-
vate sector, only recently, with the evolution of deep neural networks and their tremendous
impact on face recognition performance accuracy, it has managed to attract public ad-
ministration attention. However, this has led to a serious debate on its possible impact
on fundamental rights. one example is the intense use of facial recognition technology
with surveillance cameras in China which led to many concerns about potential human
rights violations.

EU General Data Protection Regulation (GDPR) calls for increased attention to com-
pliance among both governmental and private organizations when using this technology.
According to GDPR, the data collected for any face recognition system is classified as
biometric data, which is a special category of personal data because it makes it pos-
sible to uniquely identify a person and it is particularly connected to the protection of
individual privacy.

10



Chapter 2 Fundamental rights and ethical issues

Generally, the processing of biometric data are prohibited, and can be processed only
under the following conditions:

• An explicit legal consent must be granted by the data subjects before the process
of personal data.

• The data processing has to be considered as necessary for reasons of significant
public interest.

Case Study:

In 2019, a Swedish school decided to run a pilot program that uses face recognition
to automatically carry out the attendance of 22 students to save the numerous hours
that teachers spent on attendance reporting. Local media reports drew the attention
of Swedish authorities and pressure them to take action, at the end the Swedish Data
Protection Authority (DPA) decided to impose a $20,700 fine on the school although
consent from the student’s parents was obtained.

According to Swedish Data Protection Authority the main issues are:

• satisfaction of the principles of data protection. Swedish Data Protection
Authority claimed that principles governing the processing of personal data were
violated and personal data was processed more extensively than was needed, us-
ing automated face recognition system was deemed disproportionate for tracking
attendance and less intrusive alternative approaches were available.

• The nature of consent. As mentioned before, the collected data for the case
of the Swedish school is classified as a special category of personal data and it
is prohibited to process such data without consent, which was given in this case,
however, the Data Protection Authority claimed that due to the imbalance of power
dynamics between the school (the controller) and its students (study subjects) and
the one sided nature of the collecting of attendance data, the consent could not be
acknowledged as freely given in the way meant by GDPR, and thus this considered
as a non-valid exception to the prohibition of processing personal biometric data.

• Data protection impact assessment. The school claims that they have done
a risk analysis, and they consider it enough and it is not necessary to carry out a
specific analysis on personal data, however, local DPA stated that an actual data
protection analysis had to be done, and the risk assessment carried out by the school
did not consider the risks to the data subject’s rights and freedoms.

11
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• Prior consultation. According to Article 36 of the GDPA a prior consultation had
to be requested, and a prior consultation can only be requested after the impact
assessment has been carried out.

All these points and others must be taken into consideration when developing, testing,
and deploying an automated face recognition system regardless of its scale to stay GDPR
compliant.

However, some human rights activists argue that when it comes to face recognition
systems, the problem is not only limited to being a GDPR compliant or not, the use
of this technology is also related to the right to human dignity. Human dignity is the
foundation of all fundamental rights guaranteed by the EU Charter of Fundamental Rights
[29]. Article 1 of the Charter states that human dignity is inviolable and that it must be
respected and protected. The Court of Justice of the EU (CJEU) has confirmed in its
case law that the fundamental right to dignity is part of EU law [30].

In 2015 a survey was conducted including 1,227 third-country nationals at seven border
crossing points in Europe where a face recognition technology is used, see figure (2.1), 12%
of all participants replied that they felt very uncomfortable when their face image was used
for crossing the border, 18% considered providing face images at a border very intrusive
to their privacy, and 26% said that doing so was humiliating. This study presents how
face recognition is perceived and the fundamental rights implications of such technology.

Figure 2.1: A survey results about how comfortable people are you with using their face
images when crossing the border
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Chapter 2 Fundamental rights and ethical issues

To summarize, face recognition technology has introduced a range of exciting possi-
bilities to enhance human lives, such as preventing crimes, increasing safety and security,
reducing avoidable human interaction and labor, and even in some cases, it can help in
supporting medical efforts. Nevertheless, the development of any face recognition system
has to be compliant with all the rules and regulations regarding collecting such private
data and must be done with grace and respect to people feeling to preserve their dignity,
for human dignity is the foundation of all fundamental rights.

13



Chapter 3

Machine Learning and Deep Learning
3.1 What is Machine Learning?

According to Arthur Samuel, an American pioneer in the field of computer gaming
and artificial intelligence, Machine Learning is: “the field of study that gives computers
the ability to learn without being explicitly programmed.” This can be considered as an
old, informal definition.

Tom Mitchell, on the other hand, provided a more modern definition: “A computer
program is said to learn from experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T, as measured by P, improves with
experience E.”

Machine Learning is a subset of Artificial Intelligence. Machine Learning is the study
of making machines more human-like in their behavior and decisions by giving them the
ability to learn and develop their own programs. This is done with minimum human
intervention, i.e., no explicit programming. And that is the different between machine
learning and conventional programming, as can be seen in figure 3.1, in conventional
programming, we would feed the input data and a well written and tested program into
a machine to generate results. while with machine learning, input data along with the
results is fed into the machine during the learning phase, and it works out a program for
itself.

Figure 3.1: Machine Learning Vs Conventional Programming
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Chapter 3 Machine Learning and Deep Learning

The performance of the machine learning algorithms depends heavily on the amount
and quality of the input data; a simple ML algorithm can achieve outstanding results if
the model is fed with enough data. However, gathering enough data is not always that
easy, this process can be expansive, costly, and even sometimes have legal issues related.

Machine learning algorithms, depending to the task to be performed, can be broadly
devided into two main catogeries:

• Supervised learning: In supervised learning, we have prior knowledge of what the
output values for our samples should be. Therefore, supervised learning aims to
learn a function that, given a sample of data and desired outputs, best approximates
the relationship between input and output observable in the data. The training
process continues until the model achieves the desired level of accuracy on the
training data. Examples of supervised learning: SVM, KNN, Neural Networks,
Logistic Regression etc.

• Unsupervised learning: Is to learn a useful structure without labeled data. In this
algorithm, we do not have any target variable to estimate means here we do not
have any label associated with data points. This type of algorithms is used for
organizing the data into groups of clusters to describe its structure, i.e., cluster the
data to reveal meaningful partitions and hierarchies. It makes data look simple
and organized for analysis. Examples of unsupervised learning: K-means, Fuzzy
clustering, Hierarchical clustering.

In this thesis, and considering our underlying problem of face recognition, we will
focus on the supervised algorithms, and in the following sections, we will briefly describe
some of those algorithms.

3.2 Support Vector Machine

SVM or Support Vector Machine is a linear model used for classification and regression
problems, but mostly for classification. It can solve linear and non-linear problems and
work well for many practical problems. The idea of SVM is simple: The algorithm creates
a line or a hyperplane which separates the data into classes.

According to the SVM algorithm, we find the closest point (in each class) to the line
that separates the classes. These points are called support vectors. Now, we compute the
distance between the line and the support vectors. This distance is called the margin.
The goal is to maximize the margin. The hyperplane for which the margin is maximum
is the optimal hyperplane.

This algorithm is very powerful and effective because it only uses the support vector
points and not all points, which reduces the amount of computation needed.

15



Chapter 3 Machine Learning and Deep Learning

Figure 3.2: Support Vector Machine Algorithm

However, if the complete separation of the classes is not possible, an approach called
soft margin classification can be used. using soft margin allows some outliers to be
wrongly classified (stay on the wrong side of the separation line), and the algorithm tries
to minimize this number of outliers.

Furthermore, if We cannot draw a straight line that can classify this data (not linearly
separable), we can use another trick called the kernel trick.

The idea behind the kernel trick is that if the data is not linearly separable, we can
project this data into a higher dimension where it is linearly separable and obtain a
hyperplane that can classify the data.

Figure 3.3: Support Vector Machine kernel Trick
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Chapter 3 Machine Learning and Deep Learning

3.3 K-Nearest Neighbors

KNN or K-Nearest Neighbors is a non-parametric, lazy learning algorithm. Non-
parametric means the algorithm does not make any assumptions on the data being studied,
i.e., the model is distributed from the data. And lazy learning term comes from the fact
that it does not learn from the training set immediately; instead, it stores the dataset,
and at the time of classification, it performs an action on the dataset.

KNN is a supervised learning algorithm that can be used for both classification and
regression.

In k-NN classification, the output is a class membership. An object is classified by
a majority class of its neighbors, meaning the object being assigned to the class most
common among its k nearest neighbors (k is a positive integer number, input to the
algorithm).

(a) Classification (b) Regression

Figure 3.4: K-Nearest Neighbors

As we can see in figure(2.4), the new object will be classified differently based on the
value of K. If K is three or eleven, the new object will be classified as Blue, while if k is
seven, it will be classified as Red.

In k-NN regression, the output value is the average of the values of the k nearest
neighbors.

3.4 Neural networks

The neural networks is an algorithm modeled relatively after the human brain de-
veloped to recognize patterns. They interpret distinct data through a kind of machine
perception, labeling, or clustering raw input. The recognized patterns are numerical, in-
cluded in vectors. The input data can be of different kinds, images, sound, text, or time
series.
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The neural networks consist of multiple layers, the input layer, which contain the input
data, the output layer, and one or more hidden layer.

Figure 3.5: Neural network Layers

Each layer consist of multiple nodes. A node is just a place where computation is
carried out, roughly trying to mimic the brain’s neurons, which are activated when it
receives enough stimuli. A node multiply inputs with a set of coefficients or weights that
magnify or dampen that input value, thereby assigning a weight to the inputs concerning
the task the algorithm is trying to learn and deciding which input is the most significant
to do the task without errors.

Figure 3.6: Neuron Unit in Neural networks
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The inputs-weights product values are summed, and then the final value is passed
through a node called the activation function to determine whether and to what extent
that signal should progress further through the network to affect the eventual output.
The output of the activation function is rescaled between 0 and 1, or between -1 and 1.
Computational efficiency is fundamentally essential, as activation functions must be run
for each neuron; for this reason, many different functions have been proposed to obtain
the best trade-off between performance and simplicity. Some examples can be found in
figure(2.7).

Figure 3.7: Some of the most used activation functions

3.4.1 Neural networks training

The neutral networks training is a relatively long and complicated process; however,
in this section, we are going to have a general overview of this process and how the neural
networks actually learn from the input data.

The training process consists of two main parts, the forward pass and the backward
pass.

The forward pass: is to move forward through the network, starting from the input
layer, calculating the output of each layer as we mentioned before by multiplying the
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input value by the value of the weights and then through the activation function.

𝑎 (𝑙) = 𝜎(𝜔 ∗ 𝑎 (𝑙−1) + 𝑏) (3.1)

Moving forward through the layers until we reach the output layer and get an output.
Then using the cost function, we calculate how accurate our output is.

There are many representations of the cost function; the most common one is the mean
square error (MSE), which is the mean square of the difference between the predicted
output and the actual output (the ground truth).

𝑀𝑆𝐸 =
1
𝑚

𝑚∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2 (3.2)

The backward pass: after getting the final output of the network (which surely will
not be accurate after the first forward pass) we go back and adjust the weights and biases
to optimize the cost function.

To update weights and biases, we calculate so-called gradients, which is small nudges
(updates) to individual weights and biases in each layer.

𝜕𝐶

𝜕𝜔(𝑙) =
𝜕𝐶

𝜕𝑎 (𝑙)
𝜕𝑎 (𝑙)

𝜕𝑧(𝑙)
𝜕𝑧(𝑙)

𝜕𝜔(𝑙) (3.3)

We get the updated weight value by subtracting the value of the learning rate (a
hyperparameter that can be tunned) times the cost of a particular weight from the original
value that particular weight initially had.

𝜔(𝑙) = 𝜔(𝑙) − 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒 ∗ 𝜕𝐶

𝜕𝜔(𝑙) (3.4)

We keep doing the forward pass and the backward pass and adjusting the weights until
we reach optimum values for the weights and the biases.

3.5 Convolutional Neural Networks

A convolutional neural networks (CNN) is a neural network that has one or more
convolutional layers in its structure. CNNs are mainly used in image processing, classifi-
cation, and segmentation, but we will focus on image processing application type here in
this thesis.

In image processing, the input is usually is RGB image (three color channels matrix
Red, Green, and Blue). However, here, for simplicity, we consider grayscale images (two-
dimensional matrix, one color channel).

In 2012, AlexNet network 13 achieved fantastic results and won the ILSVRC-2012
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image classification competition; since then, many researches have focused on improving
the architecture of CNN and increasing network depth and width. VGG, GoogLeNet,
and ResNets are some famous CNN architecture with fantastic results and performance.

3.5.1 CNN architecture building blocks

The main building blocks of CNN are the convolution layer, pooling layers, and fully
connected layers.

Convolutional layers:
In the convolutional layer, we have a matrix of integers known as filter or convolution

kernel. The filter is placed over a subset of the input pixels matrix; each pixel value is
multiplied by the corresponding value in the filter matrix, then the results are summed
up in a single value that represents the grid cell value in the output feature map.

Figure 3.8: CNN Convolutional Layers

Pooling layers:
The pooling layer is usually placed between the convolution layers. Its task is to

gradually reduce the size of the input data and, therefore, reduce the number of parameters
in the network. The most used pooling layers are average pooling and max pooling.

We select the size of the filter, and then in the case of average pooling, we calculate
the average value of the input, while in max-pooling, we select the max value.
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Figure 3.9: CNN Pooling Layers

Fully Connected Layer:
The feature map of the input image is extracted using a series of convolution and

pooling layers; after that, the feature map can be are transformed into a fully connected
layer.

In fully connected layers (FC), we connect each neuron in one layer to each neuron
in the next layer. FC creates 2 to the power of n connections, where n is the number of
neurons of the layer.

Figure 3.10: CNN Fully Connected Layer
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3.6 AlexNet

Alex Krizhevsky introduced AlexNet in 2012 in the ImageNet Large Scale Visual
Recognition Challenge (ILSVRV). AlexNet architecture consists of five convolution layers;
the first and second convolution layers are connected to max-pooling layers to extract a
maximum number of features. The remaining convolution layers are connected directly
to three fully connected layers (FC). The output of both convolution layers and fully
connected layers are connected ReLu activation function. The final layer is then connected
to a softmax layer that produces a distribution of 1000 classes.

The input image size is (256 × 256 × 3), that is an image in RGB of (256 × 256) pixel
size. The architecture contains 60 million parameters and over 650,000 neurons.

Figure 3.11: AlexNet Architecture

3.7 VGG

Karen Simonyan and Andrew Zisserman from the University of Oxford introduced the
VGG in 2014. Unlike AlexNet, VGG uses large filter sizes (11 x 11 and 5 x 5 in the first
and second convolutional layers, respectively).

The input image is passed to a stack of convolutional layers, the stride operation of
the convolution layers is fixed to 1, pooling is imposed using five max-pooling layers of
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size (2 x 2) with a stride of 2. Finally, there are three fully connected layers.

Figure 3.12: VGG Architecture

3.8 GoogleNet

The GoogleNet, or as famously known as the Inception network, is considered a signif-
icant breakthrough in Neural Networks and CNN. GoogleNet, as the name implies, was
developed by a team at Google.

The main idea behind this architecture is to have filters with multiple sizes that can
operate on the same level to solve the problem of overfitting when having many deep
layers.

The building blocks of GoogleNet consist of a set of filters of different sizes: (1 × 1),
(3 × 3), and (5 × 5) and max-pooling of size (3 x 3).
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Figure 3.13: GoogleNet Architecture Building Block

Figure 3.14: inception v3 Architecture

3.9 ResNet

Residual Network (ResNet) was first introduced in 2015 by Kaiming He, Xiangyu
Zhang, Shaoqing Ren, and Jian Sun. The ResNet was remarkably successful and won the
ILSVRC 2015 classification competition with a top-5 error rate of 3.57

As a result of the residual block structure, the main building block of the residual
network, network architecture can go very deep.
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The need for adding more layers and going deeper into the network architecture comes
from the fact that these layers can progressively learn more complex features. But it has
been found that going deeper after a certain threshold with the traditional Convolutional
neural network model can lead to many problems that will affect the model accuracy.

Figure 3.15: Training and Testing errors

We can observe that in both the training and testing, the error percentage is higher
for the 56-layer than the 20-layer.

ResNet was able to solve the problem of training a very deep network by using the
Residual Blocks.

Figure 3.16: ResNet Residual Block

As we can see in figure(2.16) there is a direct connection that skips some layers; this
connection is called the skip connection. The skip connections solve the vanishing gradient
problem in deep neural networks by allowing this shortcut path for the gradient to flow
through. Moreover, the skip connection enables the model to learn the identity functions
ensuring that the higher layer will perform at least as well as the lower layer.

ResNet architecture uses a 34-layer plain network architecture inspired by VGG-19,
then adds the shortcut connection. These added connections convert the architecture into
the residual network.

There are other ResNet implementations with varying depths of 50, 101, and 152
layers.
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Figure 3.17: ResNet Architecture
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Chapter 4

Face Detection
4.1 Overview

As described previously, face detection is the first stage in our automated face recog-
nition system, and it is considered an essential part of any facial analysis system.

Face detection is a computer vision technology that aims to detect the frontal faces of
the human from digital images or videos frames and localize the detected face and some
facial landmarks. As we can see in figure 4.1, the input is an image, and the output is
the image with a bounding box around the face and some of the face landmarks (left eye,
right eye, nose, upper lib, and lower lib).

(a) Input Image (b) Output Image

Figure 4.1: Face Detection

Due to the expanding interest in face recognition systems, face detection algorithms
are used in many real-life applications. To date, many face detection algorithms have
been evolved and studied for years to get better performance.

Detecting faces in images is simply solved by humans. However, it has historically
been challenging for machines to do, given the dynamic nature of faces. For example,
faces must be detected regardless of orientation or angle they are facing, light levels,
facial clothing and accessories, hair color, facial hair, makeup, age, and so on.

Face detection models and algorithms performance have progressed from rudimentary
computer vision techniques to advanced machine learning (ML) to sophisticated deep neu-
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ral networks and related technologies. Nowadays, there are a lot of models and algorithms
that have achieved tremendous performance for the face detection problem.

In the next section, we will review some of the state-of-the-art algorithms for face
detection.

4.2 State-Of-The-Art Algorithms

4.2.1 Viola-Jones Face Detector

In 2001, Paul Viola and Michael Jones presented the Viola-Jones Object detector [9],
a fast and accurate object detector model that can perform well with human faces. The
Viola-Jones model combines four main concepts: Haar-like Features, Integral Images, the
AdaBoost Algorithm, and the Cascade Classifier to develop a model for object detection.
Haar-like Features:

A Haar-like feature is a set of dark cells and light cells. By summing the pixel values
of the light cells and subtracting the values of the dark cells, the output is a single value
that can be used to know some useful information from the input image such as edges,
straight lines, and diagonal lines.

There are many different haar-like features; however, Viola-Jones adopted only the
four features shown in figure(3.2).

Figure 4.2: Haar-like Features

Integral Images: For each computation in Haar-feature, we may need to obtain
every single pixel in the features areas. This step can be bypassed by applying integral
images that the value of each pixel is equal to the summation of gray values above and
left in the image. Therefore, it only calculates the pixel value for four pixels lookups from
the integral image.

AdaBoost Algorithm:
The AdaBoost algorithm is a machine learning algorithm that, given a set of features,

it selects the best subset of those available features.
The algorithm output is a classifier called Strong Classifier; the strong classifier is a

combination of Weak classifiers. In each iteration, the algorithm calculates the error rate
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of the features and then chooses the feature with the lowest error value.
A Cascade Classifier is a multi-stage classifier that allows for the development of a

classifier that can be used to reject most negative inputs (not face images) quickly and
focus more on positive inputs (face images).

Figure 4.3: Cascade Classifier

4.2.2 MTCNN

MTCNN stands for Multitask Convolutional Neural Network. It is based on a cascade
framework. Kaipeng Zhang et al. proposed this algorithm in their paper ’Joint Face
Detection and Alignment using Multi-task Cascaded Convolutional Networks’ [10].

The overall pipeline of this approach is shown in Fig. 1. Given an input image, the
model initially resize it to different scales to build an image pyramid, which is the input
of the following three-stage cascaded framework.

1. P-Net: The Proposal Network (P-Net), is a fully convolutional network, aims to
produce candidates for face windows and their bounding box regression vectors.
Then, based on the predicted bounding box regression vector values, the candidates
are calibrated. After that, a layer of non-maximum suppression is implemented to
suppress the overlapped candidates.

2. R-Net: The Refine Network (R-Net) receives the output of the P-Net stage as
input, performs additional refine and reject more false candidate predictions, and
finally performs a non-maximum suppression.

3. O-Net: The Output Network (O-Net) is similar to the R-Net stage. However, this
stage aims to identify face regions with more supervision. Mainly, the network will
output the bounding box plus five facial landmarks’ locations.
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Figure 4.4: MTCNN Stages Architecture

4.2.3 Dlib CNN

Dlib is an open-source library that provides a stable environment for developing soft-
ware based on machine learning and deep learning in C++ to solve complex problems.
The algorithm uses a Convolution Neural network that allows it to detect faces, locate
some facial landmarks, and overcome several limitations of other face detection algorithms
as the CNN features give the algorithm an edge.

Dlib library is based on linear algebra with Basic Linear Algebra Subprograms (BLAS).
It uses the Bayesian networks and Kernel-based algorithms for classification, clustering,
detection, and regression. The machine learning toolkit is used to provide a high and
straightforward modular architecture for kernel-based algorithms.

Dlib face detection algorithm is easy to implement and provides high accuracy results
for frontal faces in various orientations and angles.

31



Chapter 5

Feature Extraction
5.1 Overview

The feature extraction stage is the most critical in the automated face recognition
system; it extracts a feature vector we call the embedded vector from the detected face.
The embedded vector must contain information that is enough to represent each face
and must have a discriminative feature to distinguish between different faces of different
identities.

In many face recognition models, image database massive scale led the feature to be
spread, and that caused the boundary between the classes to be blended at the edges.

The goal is to design appropriate loss functions that enhance discrimination power. In
the Ideal case, as we can see in 5.1, the extracted face feature should have the maximal
intra-class distance smaller than the minimal inter-class distance under a suitably chosen
metric space.

Figure 5.1: Inter-Class and Intra-Class Distances
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With the rise of deep learning in recent years, we have witnessed great success in face
recognition systems. Thanks to advanced network architectures [12],[13],[16],[11] and dis-
criminative learning approaches [15],[14],[17], deep CNNs have promoted face recognition
performance to an unprecedented level.

In table 5.1 we mention some of the state-of-the-art algorithms based on deep learning
and their accuracy when tested on the Labeled Face in the Wild (LFW) dataset.

Method Authors Year Architecture Verif. Metric Accuracy (%)
DeepFace Taigman et al. 2014 CNN-9 Softmax 97.35 ± 0.25
DeepID3 Sun et al. 2015 VGGNet Contrastive Softmax 99.53 ± 0.10
FaceNet Taigman et al. 2015 GoogleNet Triplet Loss 99.63 ± 0.09

Center Loss Wen et al. 2016 LeNet Center Loss 99.28
SphereFace Liu et al. 2018 ResNet-64 A-Softmax 99.42

Cosface Wang et al. 2018 ResNet-64 LMCL 99.73
ArcFace Deng et al. 2019 ResNet-100 ArcFace 99.83

Table 5.1: Stae-Of-The-Art Face Recognition Algorithms Performance

5.2 Available Datasets for Face Recognition

For training and testing the performance of object recognition systems in general and
face recognition systems in particular, image benchmark datasets must be available and
accessible to the public. In this section, we will mention some of the datasets for testing
the performance of face recognition systems.

5.2.1 FRGC Dataset

The Face Recognition Grand Challenge (FRGC) [1] was produced at the University
of Notre Dame from 2004 to 2006 to improve the performance of the face recognition
system. The dataset contains 50,000 images divided into a training set and validation
set. A subject session contains four controlled still images, two uncontrolled images, and
a 3D image, as can be seen in figure 5.2.

Figure 5.2: FRGC Dataset samples: controlled stills, uncontrolled stills, and 3D shape.
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5.2.2 LFW Dataset

Huang et al. created the Labeled Faces in the Wild dataset (LFW) [2] in 2007 to
study the problem of unconstrained facial recognition, that is the variation in posture,
expression, skin color, lighting, facial clothing, hair color and style, image quality, and
other parameters. The dataset contains 13,233 images of 5749 different identities. each
image is (250x250).

5.2.3 CASIA-WebFace Dataset

Yi et al. created this dataset at the Institute of Automation, Chinese Academy of
Sciences (CASIA) [3]. It is a large-scale dataset containing 494,414 face images of 10,575
different identities collected from the IMDB website.

5.2.4 MegaFace Dataset

In 2016, Shlizerman et al. created the MegaFace database [4]. This dataset contains
1,027,060 face images of 690,572 different identities. MegaFace challenge uses a gallery to
test face recognition systems (identification and verification) performance.

5.2.5 Ms-Celeb-M1 Dataset

Ms-Celeb-M1 [5] dataset was developed by Microsoft in 2016, it contains around 10
million facial images of 100,000 celebrities collected from the web with the intention of
improving the face recognition systems.

5.2.6 VGGFACE2 Dataset

In 2016, the Visual Geometry Group (VGG) created the VGGFACE [6] dataset at
the University of Oxford, which contains around 2.6 million face images of 2.6 thousand
identities. Then, in 2017, Cao et al. created VGGFACE2 dataset [7], a large-scale face
dataset. It was collected from Google Images with a wide range of poses, ages, and
ethnicity. It contains 3.31 million facial images of 9131 different identities. VGGFACE2
has two categories: a training set containing 8631 classes and a testing set containing 500
classes. VGGFACE2 has two template annotations that are used to allow evaluation over
pose and age:

• Pose template: including five faces per representing a consistent pose (frontal, pro-
file, or three-quarter view) for 9 K facial images of 1.8 K templates.

• age template: 400 templates (five faces per template with either an apparent age
below34, 34, or above) with 2 k facial images.
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Figure 5.3: Example Images from the VGGFACE2 dataset.

5.2.7 LFR Dataset

Left-Front-Right (LFR) dataset [8] was developed by Elharrouss et al. from Qatar
University in 2020. this dataset was developed to deal with the problem of pose variation.
A CNN model for pose estimation is created and trained with a local dataset assembled
from three standard datasets: LFW, CFP, and CASIA-WebFace. LFR dataset contains
542 identities; each identity have images of left (1-100 images), front (50-260 images), and
right (1-100 images).

5.3 State-Of-The-Art Algorithms

5.3.1 FaceNet

FaceNet [14] is a unified system for face verification, recognition, and clustering. it
wa introduced by F. Schroff, D. Kalenichenko, and J. Philbin In 2015. This method
aims to extract an embedding vector for each input image using a trained CNN network.
The network is trained so that the square L2 distance of all embedding vectors in the
embedding space simulates the similarity between the inputs; that is, faces of the same
identity have a small distance while faces of different identities have a large distance.

To achieve this kind of discriminative feature, this approach employs the triplet loss
function. The term Triplet in triplet loss function comes from the fact that the network
is trained using three sets of images, an anchor image, a positive image, and a negative
image.

The Positive image is an image that has the same identity as the anchor image, while
the negative image is an image of a different identity. The Triplet Loss, as can be seen in
figure 5.4 aims to minimize the distance between the anchor image and a positive image
and maximizes the distance between the anchor image and a negative image.

𝑁∑︁
𝑖
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∥ 𝑓 (𝑥𝑎𝑖 ) − 𝑓 (𝑥𝑝
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2 − ∥ 𝑓 (𝑥𝑎𝑖 ) − 𝑓 (𝑥𝑛𝑖 )∥2
2 + 𝛼

#
+

(5.1)
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Figure 5.4: FaceNet Triplet Loss Function

The downside with this model is that when selecting the three image set for training,
there is a combinational explosion in the number of face triples that cause a significant
increase in the number of iterations in each step.

Moreover, we want to select the three images so that the positive and negative distances
are similar, that is, the maximum distance between positive and anchor close to the
minimum distance between the negative and the anchor. This process is quite a tricky
problem for effective model training.

The FaceNet model is trained using 200M training faces of 8M different identities, and
when tested on the Labeled Faces in the Wild (LFW) dataset, it achieved a performance
accuracy of 99.63±0.09 %.

5.3.2 Center Loss

In 2014, Facebook introduced its model DeepFace [18]. DeepFace model was based on
the softmax loss function.

Softmax based models calculate the distance between what the distribution of the
output should be (ground truth) and what the original distribution really are. and then
normalize a vector of logits (output of last FC layer) to be a probability distribution.

𝐿𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 = − 1
𝑁

𝑁∑︁
𝑖=1

log 𝑒
𝑊𝑇

𝑦𝑖
𝑥𝑖+𝑏𝑦𝑖˝𝑁

𝑗=1 𝑒
𝑊𝑇

𝑦 𝑗
𝑥𝑖+𝑏𝑦 𝑗

(5.2)

The problem with these models is that they do not enforce separation between classes,
as we can see in figure 5.5 the classes are closely clustered.

To solve this issue, Wen et al. introduced a discriminative feature learning approach
for deep face recognition in 2016 [19], this approach was based on a new loss function
based on softmax loss function called the center loss.
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Figure 5.5: Softmax Loss Function and the distance between classes

The center loss aims to calculate the center of each class and penalizes the distance
between the feature and its corresponding class center. This can achieve intra-class com-
pactness and inter-class disparity.

𝐿𝑐 =
1
2

𝑚∑︁
𝑖=1

∥𝑥𝑖 − 𝐶𝑦𝑖∥2
2 (5.3)

Figure 5.6: Center Loss

However, measuring the center point for each class is computationally expensive be-
cause we need to calculate the distance between all features to find the center. Further-
more, it is not possible to carry out this computation ahead of time; we need to do all
that during the training and recalculate and redefine for each batch.
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5.3.3 SphereFace

In 2018, Liu et al. introduced SphereFace [20], a deep Hypersphere Embedding for Face
Recognition; this model is based on the softmax loss function with some modifications.

The author of SphereFace claims that features learned by softmax loss have an in-
trinsic angular distribution. SphereFace utilizes this angular distribution by imposing
a discriminative constrain in a hypersphere manifold, allowing the intra-class and inter-
class feature to be controlled by a parameter m. This method is called Angular Softmax
"A-softmax".
Starting from the sofmax equation (equation 5.14) We can say:

𝑊𝑇
𝑖 𝑥 + 𝑏𝑖 = ∥𝑊𝑇

𝑖 ∥∥𝑥∥cos (\𝑖) + 𝑏𝑖 (5.4)

By normalize the weights and zero the biases:

∥𝑊𝑖∥= 1 , 𝑏𝑖 = 0 (5.5)

The modified loss function can be represented as:

𝐿𝑚𝑜𝑑𝑖 𝑓 𝑖𝑒𝑑 =
1
𝑁

∑︁
𝑖

− log 𝑒∥𝑥𝑖 ∥cos (\𝑦𝑖)˝
𝑗 𝑒

∥𝑥𝑖 ∥cos (\𝑦 𝑗 )
(5.6)

The decision boundaries can significantly affect the feature distribution, so the basic
idea is to manipulate decision boundaries to produce an angular margin.

In the case of binary classification, assume a learned feature x from class 1 is given
and (i) is the angle between x and 𝑊𝑖, it is known that the modified softmax loss requires
cos(1) > cos(2) to correctly classify x.

But what if we instead require cos(m*1) > cos(2) where (m is an integer 2 ) in order
to correctly classify x, this will essentially make the decision boundary more stringent
than previously.
By directly formulating this idea into the modified softmax loss Equation, we have:

𝐿𝑎𝑛𝑔 =
1
𝑁

∑︁
𝑖

− log 𝑒∥𝑥𝑖 ∥cos (𝑚∗\𝑦𝑖)

𝑒∥𝑥𝑖 ∥cos (𝑚∗\𝑦𝑖) +˝
𝑗≠𝑖 𝑒

∥𝑥𝑖 ∥cos (\𝑦 𝑗 )
(5.7)
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Figure 5.7: SpereFace 3D features projection and angle distribution

Figure 5.7 illustrates the learned feature and its 3D projection in the unit sphere for
different values of m. we can see that as the value of m goes higher, the discriminative
power of the leaned features gets better. The figure also shows the angle distribution for
different values of m.

5.3.4 CosFace

CosFase [21] was introduced in 2018, and like SphereFace, CosFace adopted the idea
of utilizing softmax natural angular distribution but introduced another angular margin
technique called Large Margin Cosine Loss "LMCL" that can better maximize inter-class
variance and minimize intra-class variance.
If we consider sofmax loss function (equation 5.14) we can say that:

𝑊𝑇
𝑖 𝑥 + 𝑏𝑖 = ∥𝑊𝑇

𝑖 ∥ ∥𝑥∥ cos (\𝑖) + 𝑏𝑖 (5.8)

By L2 normalization and zeroing the bias term:

∥𝑊𝑖∥= 1 , ∥𝑥∥= 1 , 𝑏𝑖 = 0 (5.9)

The modified loss function can be represented as:

𝐿𝑛𝑠 =
1
𝑁

∑︁
𝑖

− log 𝑒𝑠 cos (\𝑦𝑖)˝
𝑗 𝑒

𝑠 cos (\𝑦 𝑗 )
(5.10)
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This model only emphasizes correct classification but does not enforce discriminative
features. To introduce the margin, CosFace implements the same idea of manipulating
decision boundaries to produce angular margin.

𝐶1 : cos (\1) ≥ cos (\2) + 𝑚 (5.11)

𝐶2 : cos (\2) ≥ cos (\1) + 𝑚 (5.12)

By directly formulating this idea into the LMCL loss Equation, we have:

𝐿𝑙𝑚𝑐 =
1
𝑁

∑︁
𝑖

− log 𝑒𝑠(cos (\𝑦𝑖)−𝑚)

𝑒𝑠(cos (\𝑦𝑖)−𝑚) +˝
𝑗≠𝑖 𝑒

𝑠 cos (\𝑦 𝑗 )
(5.13)

Figure 5.8 illustrates the extracted features of 8 identities using the softmax loss and
Large Margin Cosine Los (LMCL) using different values of m (m = 0.0, m = 0.1, m =
0.2), the features are represented in the euclidean space and the angular space.

Figure 5.8: Softmax Loss Vs LMCL with different m value
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5.3.5 ArcFace

In 2019, Deng et al. Introduced ArcFace [22], an Additive Angular Margin Loss for
Deep Face Recognition. Similar to SphereFace and CosFase, ArcFace utilizes softmax
natural angular distribution but introduces another angular margin technique. The au-
thors of ArcFace proposed an Additive Angular Margin Loss function further to improve
the face recognition model’s discriminative power and stabilize the training process.

Authors claims that ArcFace consistently outperforms the state-of-the-art models and
can be easily implemented with negligible computational overhead.

Same As CosFace and SphereFace, ArcFace starts from the softmax loss function:

𝐿1 = − 1
𝑁

𝑁∑︁
𝑖=1

log 𝑒
𝑊𝑇

𝑦𝑖
𝑥𝑖+𝑏𝑦𝑖˝𝑁

𝑗=1 𝑒
𝑊𝑇

𝑦 𝑗
𝑥𝑖+𝑏 𝑗

(5.14)

For simplicity:
𝑏 𝑗 = 0 (5.15)

𝑊𝑇
𝑗 𝑥𝑖 = ∥𝑊𝑇

𝑗 ∥ ∥𝑥𝑖∥ cos (\ 𝑗 ) (5.16)

Where \ 𝑗 is the angle between the weight 𝑊 𝑗 and the feature 𝑥𝑖 . then the individual
weights are fixed by L2 normalization.

∥𝑊 𝑗 ∥= 1 (5.17)

Also embedding feature is fixed by L2 normalization and rescaled to s.

∥𝑥𝑖∥= 𝑠 (5.18)

Now the prediction depends only on the angle between the weight and the feature. Hence,
the learned embedding features are distributed on a hypersphere of a radius s.

𝐿2 = − 1
𝑁

𝑁∑︁
𝑖=1

log 𝑒𝑠 cos (\𝑦𝑖)

𝑒𝑠 cos (\𝑦𝑖) +˝𝑛
𝑗=1, 𝑗≠𝑦𝑖 𝑒

𝑠 cos (\ 𝑗) (5.19)

Now, to intensify the intra-class compactness and inter-class disparity, an angular mar-
gin penalty ’m’ is added between 𝑥𝑖 and 𝑊𝑦𝑖 Since the proposed additive angular margin
penalty is equal to the geodesic distance margin penalty in the normalized hypersphere,
this method is called ArcFace [22].

𝐿3 = − 1
𝑁

𝑁∑︁
𝑖=1

log 𝑒𝑠 cos (\𝑦𝑖 + 𝑚)

𝑒𝑠 cos (\𝑦𝑖 + 𝑚) +˝𝑛
𝑗=1, 𝑗≠𝑦𝑖 𝑒

𝑠 cos (\ 𝑗) (5.20)
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Figure 5.9: ArcFace Loss

Figure 5.9 illustrate the ArcFace Loss. Starting from the normalized feature and the
normalized weights, the angle between the feature 𝑥𝑖 and the ground truth weight 𝑊𝑦𝑖 is
calculated using the arccos function, then the angular margin m is added, and 𝑐𝑜𝑠(\𝑦𝑖+𝑚)
is calculated and multiplied by the feature scale s. Finally, the logits then go through the
softmax function and contribute to the cross-entropy loss.

In figure5.10 we represent the classification of 8 different identities containing enough
information (around 1500 images per class) trained on two different networks with softmax
and ArcFace loss.

We can see the in case of softmax loss, the boundries between classes are blended at
the edges, while in the case of ArcFace the classes are compact.

Figure 5.10: ArcFace Vs Softmax

The advantages of the proposed ArcFace can be summarised as follows:

• Effective: ArcFace achieves state-of-the-art performance on ten face recognition
benchmarks, including large-scale image and video datasets.

• Easy: ArcFace only needs several lines of code and is extremely easy to implement
in all frameworks, like MxNet, Pytorch, and Tensorflow . Furthermore, ArcFace
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does not need to be combined with other loss functions to have stable performance
and can easily converge on any training datasets.

• Efficient: ArcFace only adds negligible computational complexity during training.
Current GPUs can easily support millions of identities for training, and the model
parallel strategy can easily support many more identities.

In SoherFace, CosFace, and ArcFace, three different kinds of margin penalties are
proposed. Multiplicative angular margin m1 , additive angular margin m2 , and additive
cosine margin m3, all enforce the intra-class compactness and inter-class diversity by
penalising the target logit.

Comparing the decision boundaries under the binary classification case. The proposed
ArcFace has a constant linear angular margin throughout the whole interval. By contrast,
SphereFace and CosFace only have nonlinear angular margins as in figure 5.11.

Figure 5.11: Comparesion between Softmax, SphereFace, CosFace, and ArcFace
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Methodology

As mentioned before, the automated face recognition system pipeline consists of three
main stages: face detection, feature extraction, and classification. In this chapter, we
will go through these stages and our full implementation from receiving the video frame
from the camera feed until we output the final label of the person in front of the camera,
describing along the way the important functions and the deep neural networks used and
its architectures.

However, before that, we will have an overview of the entire development environment,
the hardware used and its specifications, and the software tools and packages.

6.1 Hardware Specifications

6.1.1 ROScube-X

As main developing kit, we used ROScube-x RQX-580, it is an Embedded Robotic
Controller Powered by NVIDIA Jetson AGX Xavier, the board is running Ubuntu 18.04
LTS, all the system was developed, tested, and deployed on this board.

ADLINK’s ROScube-X, a ROS2-enabled robotic controller, powered by the NVIDIA
Jetson AGX Xavier module, features an integrated NVIDIA Volta GPU and dual deep
learning accelerators, with a wide variety of interfaces including GMSL2 camera connec-
tors for advanced robotic system integration. ROScube-X supports the full complement
of resources developed with the NVIDIA JetPack SDK and ADLINK’s Neuron SDK, and
is specifically suited for robotic applications demanding high-AI computing with minimal
power consumption [23].
ROScube-x main features:

• Powerful AI computing for intelligent robotics development

• Excellent performance per watt with power consumption as low as 20 W

• Comprehensive I/O for connecting a wide range of devices

• Ruggedized, secure connectivity with locking USB ports
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Figure 6.1: ROScube-x Controller

6.1.2 Intel Realsense Depth Camera D435i

The Intel RealSense D435i is a stereo vision depth camera system. It contains, as can
bee seen if figure (6.2) two stereo depth module, RGB module, and Infrared projector.it
also have a vision processor with USB 2.0/USB 3.1 Gen 1 or MIPI connection to host
processor [24].

Figure 6.2: Intel Realsense Depth Camera D435i
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6.2 Sofware

All the system development was done on the ROScube-X board. The board is running
Ubuntu 18.04LTS as an operating system. The main platform used for development is
TensorFlow, it is an end-to-end open-source platform for machine learning. The software
programming language is Python.

In order to manage Python packages probably, we used a virtual environment and
then installed all Python needed packages inside the virtual environment. Below is a list
of some of the main Python packages used in the development of our automated face
recognition system.

• Tensorflow

• dlib

• opencv-python

• numpy

• os-sys

• scipy

• sklearn

• tkinter

• threaded

• pyrealsense2

6.3 System Development

6.3.1 Camera Input

As we mentioned before, we are using the Intel Realsense Depth Camera D435i module;
this module as can be seen in figure (6.2) contains both RGB frame and depth frame.
We will use the RGB fame to capture the face image and pass it through our two face
detection and feature extraction networks. While the depth frame will be used to calculate
the depth distance of the face landmarks detected by the face detection network, based
on those distance values, the system will be able to distinguish between a live person or
an image placed in front of the camera. We can access most camera functionality by the
realsense-viewer, as we can see in figure(6.3) we can access both the RGB and the Depth
frames.
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Figure 6.3: Intel realsense-viewer showing both RGB and Depth frames

However, to read these frames into our python code we need the pyrealsense2, it is
a python wrapper for Intel RealSense SDK 2.0 provides the Python binding required to
access the SDK. The pyrealsense2 was build from the source code using CMAKE and
installed in the project virtual environment. After installing the pyrealsense2 package, to
read the RGB and Depth frames, we need to configure the pipeline and config parameters,
enable the stream, and wait for the frames to be ready to read it in our code, below a
piece of code describing this procedure.

import pyrealsense2 as rs

pipeline = rs.pipeline()

config = rs.config()

config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)

config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)

pipeline.start(config)

frames = pipeline.wait_for_frames()

depth_frame = frames.get_depth_frame()

color_frame = frames.get_color_frame()

depth_image = np.asanyarray(depth_frame.get_data())

color_image = np.asanyarray(color_frame.get_data())

Now both our RGB frame and Depth frames are ready to be processed.
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6.3.2 Dlib face detection

Our choice for the face detection module is Dlib. Dlib contains a wide range of machine
learning algorithms designed to be highly modular, quick to execute, and simple to use via
a clean and modern C++ API. It is used in a wide range of applications, including robotics,
embedded devices, mobile phones, and large high-performance computing environments.

Dlib face detection module is trained to detect faces in images and return the location
of the bounding box containing the face and 68 landmarks in the face, such as nose,
eyes, upper lip, lower lip, chin, and other lam]ndmarks. Figure(6.4) illustrates the facial
landmarks that the Dlib face detection module uses.

Figure 6.4: Dlib Facial Landmarks

To get the bounding box and the landmarks, three function are used:

• getLargestFaceBoundingBox: Receiving the image or video frame containing
the face image as input, returns a rectangle object (the bounding box) described by
two points, the (top,left) corner and the (bottom,right) corner.

• getAllFaceBoundingBoxes: Receiving the image or video frame containing the
face image as input, returns an array of rectangle objects.

• findLandmarks: Receiving the image or video frame containing the face image
and the bounding box as inputs and returns a list of 68 points.

6.3.3 Feature Extraction using ArcFace

As mentioned before, ArcFace achieved a state-of-the-art performance and can be
easily implemented with negligible computational overhead. Our choice for the ArcFace
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network architecture is ResNet-34. ResNet-34 architecture can be seen in figure(3.17)
After the implementation of ResNet architecture, pre-trained weights are loaded into the
model. we can see that the number of parameters in this architecture is:
Total params: 34,165,184
Trainable params: 34,139,328
Non-trainable params: 25,856

The ArcFace model requires the input image to have a size of (112x112x3), so the input
image is first cropped using the bounding box points and then resized into the target size.
Moreover, sincethe image alignment significantly affects the model performance, the image
is aligned using some of the facial landmarks, specifically, the left eye, the right eye, and
nose locations is used to to rotate the image left or right so the two points (left eye and the
right eye) should be at the same horizontal line before feeding it to the ArcFace model.

After alignment, cropping and resizing the input image, we need to normalize the
image by dividing each pixel value by 255 so all the pixel values will be in the 0-1 range.
All these steps are implemented in a function called creat_emp that receives the image,
the Dlib model, and the ArcFace model, and returns the embedded vector which has a
size of 512 representing the face in that image.

def creat_emp(image, alignment, model):

target_size = (112, 112)

if not (image is None):

bb = alignment.getLargestFaceBoundingBox(image)

if not (bb is None):

left = bb.left()

top = bb.top()

right = bb.right()

bottom = bb.bottom()

land_marks = alignment.findLandmarks(image, bb)

left_eye = land_marks[36]

right_eye = land_marks[45]

nose = land_marks[30]

image = image[top:bottom, left:right] #Cropping

image = alignment_procedure(image, left_eye, right_eye, ...

nose) #Alignment

image = cv2.resize(image, target_size) #Resizing

image = (image/255).astype(np.float32) #Normalizing

if not (image is None):

embeddings = model.predict(np.expand_dims(image, axis=0))[0]

return embeddings
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6.3.4 Selecting Threshold Value

Until now, the system is able to receive the input image from the camera feed, detect
if a face is present in the input image, return the bounding box of the detected face, and
extract features in the form of an embedded vector of size 512.

As we mentioned before, the extracted features represent the detected face and have
a discriminative power to distinguish between different identities based on the distance
between the embedded vectors. If this distance is more than a threshold, these will be
considered different identities; otherwise, they will be considered the same identity.

To implement this concept, we need to define a metric system for calculating the dis-
tance between two vectors and find a way to select the optimal threshold value. For the
metric system, we can use either the euclidian distance or the cosine distance.

The euclidian distance can be measured as:

𝑑𝑒𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛 =

vt
𝑛∑︁
𝑖=1

(𝑝𝑖 − 𝑞𝑖)2 (6.1)

While the The cosine distance can be measured as:

𝑑𝑐𝑜𝑠𝑖𝑛𝑒 =
𝑝𝑖 .𝑞𝑖

∥𝑝𝑖∥∥𝑞𝑖∥
(6.2)

Where 𝑝𝑖 .𝑞𝑖 is the dot product between the two vectors. Since we are using the ArcFace
model, and the ArcFace loss function is based on the Softmax loss function, which has an
intrinsic angular distribution. So we decided to adopt the cosine distance as our metric
system for calculating the distance between vectors. Below is our implementation of a
function called findCosineDistance.

import numpy as np

def findCosineDistance(source_representation, test_representation):

a = np.matmul(np.transpose(source_representation), test_representation)

b = np.sum(np.multiply(source_representation, source_representation))

c = np.sum(np.multiply(test_representation, test_representation))

return 1 - (a / (np.sqrt(b) * np.sqrt(c)))

After implementing the findCosineDistance function, we prepared a subset of the LFW
dataset containing 1021 images. Then we created two numpy array distances and identical,
going through all the images in the dataset we calculate the cosine distance and append
this value to the distances array, we also check if the two images we calculated the distance
between them are of the same person we append the value 1 to the identical array, and
0 otherwise. Now, we select a range for the threshold (from 0.4 to 1 with a step of 0.01)
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and we calculate the accuracy based on the values of distances and identical arrays for
each threshold in the chosen range. then we select the max value of the accuracy and the
corresponding threshold as our optimal value.

from sklearn.metrics import accuracy_score

distances = [] # cosine distance between pairs

identical = [] # 1 if same identity, 0 otherwise

for i in range(len(metadata) - 1):

for j in range(i + 1, len(metadata)):

distances.append(findCosineDistance(embeddings[i], embeddings[j]))

identical.append(1 if metadata[i].name == metadata[j].name else 0)

distances = np.array(distances)

identical = np.array(identical)

thresholds = np.arange(0.4, 1.0, 0.01)

acc_scores = [accuracy_score(identical, distances < t) for t in thresholds]

opt_idx = np.argmax(acc_scores)

threshold_opt = thresholds[opt_idx]

In figure(6.5) we plotted the accuracy for all thresholds in the range (0.4 to 1 with a step
of 0.01)

Figure 6.5: Max accuracy and the corresponding threshold
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6.3.5 Head Pose Estimation

At this point, we collect images of faces of different identities and store them in a local
folder on the board, inside the local dataset folder each identity has a folder of its own
with the name of the person and inside it there are the person images. the system will
extract the embedded vector for each image in the local dataset and combine all of them
in a matrix, we call it the embedded matrix.

However, we want the automated face recognition system to have the ability to collect
images of new identities and add them to the local dataset. Although it might be enough
to collect a few images of the new face, it is very important that these images are different
from each other, that is the pose of the face with respect to the camera is different in each
image. The goal here is to have images in different poses, such as looking forward, left,
right, up, and down. To be able to do that, the system must understand the head pose
in the image, which is known as the head pose estimation problem.

In computer vision, the pose of an object refers to its relative orientation and position
with respect to a camera. This problem is often referred to as the Perspective-n-Point
(PNP). To calculate the pose of a head in an image we need the following information:

• 2D coordinates of a few points: We need the 2D coordinates (x,y) of some of
the landmark points in the face, in our implementation, we decided to select six
points: tip of the nose, chin, left corner of the left eye, right corner of the right
eye, left corner of the mouth, and right corner of the mouth. All these point can be
taken from the landmark points list returned by our Dlib face detection model as
can be seen in figure(6.4).

• 3D coordinates of the same points: We also need to know the 3D coordinates
(x,y,z) of the six 2D points mentioned before. to get these 3D coordinates, ideally,
we need a 3D model of the person’s face, however, practically a generic 3D model
will be sufficient. So we just need to know the 3D locations of our six points in some
arbitrary reference frame, in our implementation these points are:

1. Tip of the nose : ( 0.0, 0.0, 0.0)

2. Chin : ( 0.0, -330.0, -65.0)

3. Left corner of the left eye : (-225.0f, 170.0f, -135.0)

4. Right corner of the right eye : ( 225.0, 170.0, -135.0)

5. Left corner of the mouth : (-150.0, -150.0, -125.0)

6. Right corner of the mouth : (150.0, -150.0, -125.0)

these points are in some arbitrary reference frame. This is called the World Coor-
dinates (The Model Coordinates as per the OpenCV documentation).
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• Camera intrinsic parameters: here we need to know the focal length of the
camera, the optical center in the image, and the radial distortion parameters.

We can transform the 3D points in world coordinates to 3D points in camera coordinates.
The 3D points in camera coordinates can be projected onto the image plane (i.e. image
coordinate system) using the intrinsic parameters of the camera (focal length, optical
center, and radial distortion).

Figure 6.6: Coordinates system in head pose estimation

In Open-CV there is an implementation for the perspective-n-Point problem called
solvePnP, it takes as input the 3D points coordinates, the 2D points coordinates, and the
camera matrix (a matrix containing the te focal length and the center coordinates), and
it returns a success flag, the rotation vector, and the translation vector. Then we will
use these vectors along with the camera parameters to project a point that represents the
location on the screen the person is looking at.

Then we will connect this point to the tip of the nose point, and we will calculate the
length of this line and the angle it makes with the horizontal line, based on the length
and the angle we can estimate the head pose.

• Regardless of the angle, if the length is small (less than the distance between the
nose and the chin) the pose will be forward.

• If the angle is around zero (0<angle<30 or 330<angle<360) the pose will be right.
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• If the angle is around 90 (60<angle<120) the pose will be up.

• If the angle is around 180 (150<angle<210) the pose will be left.

• If the angle is around 270 (240<angle<300) the pose will be down.

This approach is implemented in our automated face recognition system and used when
collecting images for new identities, the collected images will be in all five different poses
forward, left, right, up, and down.

6.3.6 Graphical User Interface

The purpose of creating a Graphical User Interface (GUI) is to create a friendly user
experience with our automated face recognition system and to give the user the ability to
easily lunch the camera to detect the faces and check the identity and be able to manage
the local dataset and add new personnel.

The implementation of the GUI was done using a Python package library dedicated
to GUI development called Tkinter. There are two main functionalities in the GUI, The
Recognize, and the Add personnel.

Figure 6.7: Automated Face Recognition GUI

Pressing the Recognize button will lunch the camera, each frame will go through the
Dlib face detection, which will return the bounding box and the facial landmarks, then
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the detected face will go through the feature extraction and output the embedded vector,
the cosine distance between this vector and all the vectors stored in the embedded matrix
will be calculated, and if the minimum distance is less than the optimal threshold, the
corresponding label will be returned and displayed on the bottom of the screen, otherwise,
the identity will be considered unknown.

On the other hand, when pressing the Add personnel button, a pop-up screen will ask
for login credentials, the login screen figure(6.8 (a)) was developed to guarantee that only
an authorized person can carry out the task of adding new personnel.

After entering the correct credentials, another pop-up screen will ask the user to enter
the name of the new person to be added figure(6.8 (b)). At this point, a folder under the
new person’s name will be created inside the local dataset folder.

Then a pop-up screen figure(6.8 (c)) will notify the user that the system is going to
collect images of their face. if the user presses the collect image button the system will
lunch the camera and using the pose estimation function we mentioned before, the system
will collect images in five different poses (forward, left, right, up, and down) and store
these images in the newly created folder.

Finally, when the user presses the Train the model button, the system will create
embedded vectors for all the newly collected images and append these vectors to the
embedded matrix.

(a) (b)

(c)

Figure 6.8: GUI, Add personnel
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6.3.7 Depth Information

The Intel RealSense depth frame contains the depth distance of each pixel. we want
to use this information to make the system able to distinguish between a real person’s
face and an image of the person’s face. To do that we extracted from the depth frame the
distance value of our 68 facial landmarks and store them into an array (land_marks_dis).
Then we calculated two values, the difference between the maximum distance and the
minimum distance, and the variance of all the distance values. Then we collected some
data of real faces and others for still images, and a simple SVM model is used to find
values for the variance and the maximum and minimum difference to act as separators
between the two classes.

When the system captures a new frame to be recognized, first it calculates the array
land_marks_dis and these two values. If these values belong to the class of the still
image, the system will not continue and it will return that this is not a live person in
front of the camera.
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Results and Discussion

7.1 Evaluation Results

First we will represent the evaluation results of our pre-trained feature extraction
model (ArcFace) when tested on LFW, YTF, CALFW, and CPLFW datasets.

LFW and YTF are the most used benchmark data sets for the unconstrained face
images. ArcFace achieved a 99.83% when tested on the LFW dataset, while on the YTF
dataset the performance was 98.02%.

We also present the performance of ArcFace on the recent CALFW and CPLFW
dataset, which are datasets with higher pose and age variations for the same set of iden-
tities of LFW dataset.

Dataset Accuracy (%)
LFW 99.83
YTF 98.02

CALFW 95.45
CPLFW 92.08

Table 7.1: ArcFace performance on LFW, YTF, CALFW, and CPLFW datasets.

7.1.1 Results on local dataset

For further testing, a local dataset is created, it consists of 743 images of 15 members
from PIC4SeR research group. All images were collected using the GUI of our automated
face recognition system and as a result of our pose estimation model, the collected images
are in different poses (looking forward, left, right, up, and down).

only five images (one in each pose) were used to train the model, while the remaining
images were used for testing the model.

During the testing stage, the recorded measures are essentially focused on the differ-
ence between the actual output (ground truth of identity labels) and the model output
(predicted labels) on the test set, and the following measures are recorded:

• True positive (TP): The cases in which the model’s predicted label is the same label
in the ground truth.
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• True negative (TN): The cases in which the model’s predicted label is unknown,
and the identity is actually not in the training data.

• False positive (FP): The cases in which the model’s predicted label is different from
the label in the ground truth.

• False negative (FN): The cases in which the model’s predicted label is unknown,
and the identity is actually present in the training data.

Then the Accuracy can be measured as the percentage or number of samples classified
correctly out of the total samples as shown in equation (7.4).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(7.1)

then we calculate the accuracy fro a range of threshold values range from 0.3 to 1.2
with step of 0.01, we can see from figure(7.3), the maximum accuracy is 0.9656, and this
value is at threshold of 0.58

Figure 7.1: model Accuracy
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The Precision is the ability of the classifier not to label positive sample as negative,
and can be calculated as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(7.2)

The Recall, also called sensitivity, is a measurement of the ability of the classifier to find
all the positive samples.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(7.3)

Figure 7.2: model Accuracy

The F1 score can be interpreted as a harmonic mean of the precision and recall, where
an F1 score reaches its best value at 1 and worst score at 0. The relative contribution of
precision and recall to the F1 score are equal. The formula for the F1 score is:

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(7.4)
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Figure 7.3: F1 score

We can see that, under different measures, the model is better to perform when the
threshold is around its optimum value (0.58).

7.2 Discussion

In this thesis, we represent an end-to-end face recognition system. the system is able
to collect face images from the camera feed, detect faces, extract an embedded vector,
and based on the extracted embedded vector the system can identify the person in front
of the camera.

The system is based on ArcFace model, which utilizes the Additive Angular Margin
Loss function that improved the face recognition model’s discriminative power. When
ArcFace was tested on the LFW and YTF datasets it achieved an accuracy of 99.83% and
98.02% respectively. However, when tested on the CALFW and CPLFW datasets, there
was a drop in the accuracy because these datasets have higher pose and age variations.
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The Local dataset does not have an age variation since all the images were collected
in the same time frame, but it contains a considerable pose variation. the calculated
accuracy was 96.55% which is less than the LFW and YTF datasets accuracy and higher
than the CALFW and CPLFW datasets accuracy.

This system is a lightweight application that runs locally on the ROS-cube board
without any need for an internet connection. The application and can be beneficial for
many service robotics applications.

As future work, the system can be expanded to not only predict the identity of the
person but also to detect the age of the person and the facial expressions.

61



Bibliography
[1] Phillips, P.J.; Flynn, P.J.; Scruggs, T.; Bowyer, K.W.; Chang, J.; Homan, K.; Mar-

ques, J.; Min, J.;Worek,W. Overview of the face recognition grand challenge. In
Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–26 June 2005; pp.
947–954. 5.2.1

[2] Huang et al. created the Labeled Faces in the Wild dataset (LFW) in 2007 to study
the problem of unconstrained facial recognition, that is the variation in posture,
expression, skin color, lighting, facial clothing, hair color and style, image quality,
and other parameters. The dataset contains 13,233 images of 5749 different identities.
each image is (250x250). 5.2.2

[3] CASIA Web Face. Available online: http://www.cbsr.ia.ac.cn/english/CASIA-
WebFace-Database.html (accessed on 21 July 2019). 5.2.3

[4] Shlizerman, I.K.; Seitz, S.M.; Miller, D.; Brossard, E. The MegaFace benchmark: 1
million faces for recognition at scale. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1
July 2016; pp. 4873–4882. 5.2.4

[5] Guo, Y.; Zhang, L.; Hu, Y.; He, X.; Gao, J. Ms-Celeb-1m: A dataset and benchmark
for large-scale face recognition. In Proceedings of the 14th European Conference on
Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016. 5.2.5

[6] Parkhi, O.M.; Vedaldi, A.; Zisserman, A. Deep Face Recognition. In Proceedings of
the 2015 British Machine Vision Conference, Swansea, UK, 7–10 September 2015;
pp. 41.1–41.12. 5.2.6

[7] Cao, Q.; Shen, L.; Xie, W.; Parkhi, O.M.; Zisserman, A. VGGFace2: A dataset for
recognizing faces across pose and age. In Proceedings of the 2018 13th IEEE Inter-
national Conference on Automatic Face Gesture Recognition (FG), Xi’an, China,
15–19 May 2018; pp. 67–74. 5.2.6

[8] Elharrouss, O.; Almaadeed, N.; Al-Maadeed, S. LFR face dataset: Left-Front-
Right dataset for pose-invariant face recognition in the wild. In Proceedings of the
2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies
(ICIoT), Doha, Qatar, 2–5 February 2020; pp. 124–130. 5.2.7

[9] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple
features. In Proc. of CVPR, 2001. 4.2.1

62



[10] K. Zhang, Z. Zhang, Z. Li and Y. Qiao, "Joint Face Detection and Alignment Using
Multitask Cascaded Convolutional Networks," in IEEE Signal Processing Letters,
vol. 23, no. 10, pp. 1499-1503, Oct. 2016, doi: 10.1109/LSP.2016.2603342. 4.2.2

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In CVPR, 2016. 5.1

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In NIPS, 2012. 5.1

[13] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint:1409.1556, 2014. 5.1

[14] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face
recognition and clustering. In CVPR, 2015. 5.1, 5.3.1

[15] Y. Sun, Y. Chen, X. Wang, and X. Tang. Deep learning face representation by joint
identification-verification. In NIPS, 2014. 5.1

[16] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. In CVPR, 2015. 5.1

[17] Y. Wen, K. Zhang, Z. Li, and Y. Qiao. A discriminative feature learning approach
for deep face recognition. In ECCV, 2016. 5.1

[18] Taigman, Yaniv and Yang, Ming and Ranzato, Marc’Aurelio and Wolf, Lior. Deep-
Face: Closing the Gap to Human-Level Performance in Face Verification. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2014. 5.3.2

[19] Wen, Yandong and Zhang, Kaipeng and Li, Zhifeng and Qiao, Yu. A Discriminative
Feature Learning Approach for Deep Face Recognition. In Computer Vision – ECCV
2016 5.3.2

[20] Liu, Weiyang and Wen, Yandong and Yu, Zhiding and Li, Ming and Raj, Bhiksha
and Song, Le. SphereFace: Deep Hypersphere Embedding for Face Recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018 5.3.3

[21] Wang, Hao and Wang, Yitong and Zhou, Zheng and Ji, Xing and Gong, Dihong and
Zhou, Jingchao and Li, Zhifeng and Liu, Wei. CosFace: Large Margin Cosine Loss for
Deep Face Recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018 5.3.4

63



[22] Deng, Jiankang and Guo, Jia and Xue, Niannan and Zafeiriou, Stefanos. Arc-
Face: Additive Angular Margin Loss for Deep Face Recognition. Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019
5.3.5, 5.3.5

[23] ROScube-x Hardware datasheet available at:
https://www.module-store.de/media/pdf/c1/71/a2/ROScube-X𝑠𝑒𝑟𝑖𝑒𝑠𝑣2.𝑝𝑑𝑓 6.1.1

[24] Intel RealSense Product Family D400 Series Datasheet available at:
https://www.intelrealsense.com/wp-content/uploads/2020/06/Intel-RealSense-
D400-Series-Datasheet-June-2020.pdf 6.1.2

[25] Italy, Garante per la protezione dei dati personali, Installazione di apparati pro-
mozionali del tipo “digital signage” (definiti anche Totem) presso una stazione fer-
roviaria, 21 December 2017. 2

[26] EDRi, “Danish DPA approves Automated Facial Recognition”, 19 June 2019. 2

[27] The Telegraph, “AI used for first time in job interviews in UK to find best applicants”,
27 September 2019. 2

[28] Wired, “Facebook can now find your face, even when it’s not tagged”, 19 December
2017. 2

[29] Barak, A. (2019), ‘Human dignity as a framework right (mother-right)’, in Barak, A.,
Human Dignity: The Constitutional Value and the Constitutional Right, Cambridge,
Cambridge University Press, 2015, Chapter 9 (pp. 156-169). 2

[30] CJEU, C-377/98, Netherlands v. European Parliament and Council, 9 October 2001,
paras. 70-77. 2

64


	1 Introduction
	1.1 Problem identification and motivation
	1.2 Face Recognition History
	1.3 Automated Face Recognition Systems Pipeline

	2 Face recognition technology: Fundamental rights and ethical issues 
	3 Machine Learning and Deep Learning
	3.1 What is Machine Learning?
	3.2 Support Vector Machine
	3.3 K-Nearest Neighbors
	3.4 Neural networks
	3.4.1 Neural networks training

	3.5 Convolutional Neural Networks
	3.5.1 CNN architecture building blocks

	3.6 AlexNet
	3.7 VGG
	3.8 GoogleNet
	3.9 ResNet

	4 Face Detection
	4.1 Overview
	4.2 State-Of-The-Art Algorithms
	4.2.1 Viola-Jones Face Detector
	4.2.2 MTCNN
	4.2.3 Dlib CNN


	5 Feature Extraction
	5.1 Overview
	5.2 Available Datasets for Face Recognition
	5.2.1 FRGC Dataset
	5.2.2 LFW Dataset
	5.2.3 CASIA-WebFace Dataset
	5.2.4 MegaFace Dataset
	5.2.5 Ms-Celeb-M1 Dataset
	5.2.6 VGGFACE2 Dataset
	5.2.7 LFR Dataset

	5.3 State-Of-The-Art Algorithms
	5.3.1 FaceNet
	5.3.2 Center Loss
	5.3.3 SphereFace
	5.3.4 CosFace
	5.3.5 ArcFace


	6 Methodology
	6.1 Hardware Specifications
	6.1.1 ROScube-X
	6.1.2 Intel Realsense Depth Camera D435i

	6.2 Sofware
	6.3 System Development
	6.3.1 Camera Input
	6.3.2 Dlib face detection
	6.3.3 Feature Extraction using ArcFace
	6.3.4 Selecting Threshold Value
	6.3.5 Head Pose Estimation
	6.3.6 Graphical User Interface
	6.3.7 Depth Information


	7 Results and Discussion
	7.1 Evaluation Results
	7.1.1 Results on local dataset

	7.2 Discussion

	Bibliography

