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Abstract

The theory behind the implementation of a numerical solver for the general-
ized multimode nonlinear Schrödinger equation (GMMNLSE), which models the
propagation of a modulated electromagnetic field in a fiber, is presented. Both
linear and nonlinear coupling effects have been considered, with a focus on the
former for which a solver has been implemented. Particular attention is devoted
to birefringence and mode coupling in the two polarization mode case, within the
framework of polarization mode dispersion (PMD). For the multimode case, spatial
mode coupling is generated through both a statistical approach and a physical one
modeling some realistic impairments, like core ellipticity, bends and axis rotation.

Concerning the nonlinear effects, the derivation of the GMMNLSE, accounting
for linear coupling, Kerr and Raman nonlinear effects, is reviewed. A possible
implementation design for a numerical mode solver including the nonlinear phe-
nomena is proposed, based on a Split-Step Fourier method (SSFM) combined with
a Runge-Kutta solver for ordinary differential equations of order four (RK4).

Simulations have been carried out throughout the whole study to qualitatively
support the theoretical knowledge, drive the intuition and provide feedback about
the impact of the various distorting effects on the transmitted pulse shapes.

The present work can be helpful for the development of space division multiplex-
ing (SDM) coherent systems where different independent signals excite different
modes of a multimode structure, with the aim of increasing the data rates of the
current optical networks.
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Notation

Symbol Meaning

:= defined as
l.h.s. left-hand side
r.h.s. right-hand side
i.i.d. independent and identically distributed
f or ω := 2πf frequency
x, y transversal coordinates of the fiber
z longitudinal coordinate along fiber axis

Φ′ ≡ ∂Φ

∂ω
differentiation for scalar functions Φ(ω)

Tω :=
∂T

∂ω
differentiation for a matrix T

T ′ generic matrix different from T . Note that (T ′ ̸= T ω).
E generic vector
Ê generic unit vector
|E⟩ Jones vector
E Stokes vector˜︁a(ω) or F

[︃
a(t)

]︃
Fourier transform of a(t)

F−1

[︃˜︁a(ω)]︃ inverse Fourier transform of ˜︁a(ω)
I identity matrix of suitable dimensions

The Fourier transform pair is

˜︁E(f) =

∫︂ +∞

−∞
E(t)e−j2πftdt

E(t) =

∫︂ +∞

−∞

˜︁E(f)e+j2πtfdf

Several quantities depend on both time t (or frequency ω) and position z, but
sometimes one or both dependencies have been suppressed for conciseness.



Chapter 1

Introduction

Optical networks are the backbone of today’s telecommunication infrastructure,
consume the least energy per data unit over the other wireless and wired competitors
[MS20] and, above all, are the only medium capable of sustaining the current demand
for extremely high bit rates. Yet, quite some optical network capacity crunches
have been predicted in recent years due to the steadily increasing world network
traffic [Chr09; Wal18]. The technique called Space-Division Multiplexing (SDM) is
considered to be one of the most promising solutions to keep the pace in the future
[ASM16; WN17; Wal18]

SDM consists in transmitting M parallel independent data streams over the
same fiber structure, while today’s optical fibers support at most two streams. SDM
can rely on different types of fibers, but the two main groups are the multimode
fibers (MMFs) and the multicore fibers (MCFs) [ASM16; Wri+17] [Agr19, Ch.14].
The former are not an innovative structure per se, but independently modulating a
set of M guided modes of a MMF is a recent use case. The latter are of more recent
invention and consist in a dielectric cladding where multiple cores are present, each
one usually supporting two modes. The vicinity of the cores is usually such that
the modal profiles in the various cores interact with each other, giving rise to new
modal profiles called supermodes [Agr19, Ch.14.1.3].

In both structures, the modes are not independent, but are coupled due to
linear and nonlinear perturbing effects. The former arise both from geometrical
imperfections and stresses, the latter from the nonlinear properties of the medium.
The description of these phenomena is still a broad and active area of research.

In order to do research in the field of SDM, the design of a numerical simulator
is an essential first step to qualitatively support the theoretical knowledge, drive
the intuition and provide feedback about the impact of the various impairments
affecting the transmitted signals. Furthermore, the availability of a numerical solver
for the exact propagation equations helps the derivation of simplified propagation
models and the development of distortion compensation strategies.

1



CHAPTER 1. INTRODUCTION 2

Hence, the thesis aims at presenting the theory behind the implementation of
a numerical solver for the generalized multimode nonlinear Schrödinger equation
(GMMNLSE), which models the propagation of a modulated electromagnetic field
in a fiber [KM04; PH08; ASM16; Wri+17]. Both linear and nonlinear coupling
effects have been considered, with a focus on the former. A common approach in
literature is to either neglect or consider in a purely statistical way the presence of
linear coupling in the GMMNLSE [PH08; ASM16; Wri+17]. On the opposite, both
a statistical approach and a physical one modeling some realistic impairments are
proposed for the linear mode coupling in the GMMNLSE in this thesis. Since linear
and nonlinear phenomena are normally treated separately in literature, an effort
has been made to keep the notation consistent throughout the present work and
to link the different normalizations and conventions, when relevant. A solver for
the linear regime has been implemented and a possible design to include nonlinear
effects is presented.

A thorough discussion about all linear and nonlinear phenomena is far beyond
the scopes of the thesis. However, a desired property of this work is to supply the
theory necessary to understand the presented models and the main aspects related
to the numerical solver design, from polazation-mode dispersion (PMD) to the
GMMNLSE. Toward this target, the derivations of the relevant equations have been
reported and graphical examples, produced through the developed simulator, are
offered throughout the digression to support the theoretical knowledge. Ultimately,
this work can also serve as a foundation for the study and implementation of more
advanced models, like the Manakov equations, whose computational burden is
much lower than the GMMNLSE presented here [Ryf+12; ASM16].

1.1 Thesis Structure
The thesis is organized as follows.

Ch.2 recalls some basic concepts of optical transmission about modes and fiber
geometries, and derives the Helmoltz wave equation exploited in the next chapters.

Ch.3 focuses on the phenomenon of polarization-mode dispersion (PMD) for
a fiber supporting two polarization modes. The concepts are introduced in a
hierarchical way, starting from the origins of birefringence, then considering the
four combinations of frequency independent and frequency dependent, uniform
and nonuniform birefringence. The model of the Principal States of Polarization
(PSPs) is presented and a few concepts of statistical analysis within the framework
of PMD are reviewed. The formalism of both Jones and Stokes spaces is considered
to strengthen the understanding.

Ch.4 is about mode coupling among modes with different spatial profiles,
based on the classical coupled-mode theory. A physical approach to model linear
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perturbations, like axis rotations, bends and core ellipticity is compared against a
statistical one.

Ch.5 repeats in a detailed manner the derivation of the GMMNLSE starting
from Maxwell’s equations. The ideas behind the choice of different normalizations
and some simplifications are clarified.

Ch.6 sketches the GMNNLSE numerical solver design, based on a split-step
Fourier method combined with a Runge-Kutta method of forth order. Few basic
ideas on the less complex Manakov equations are conveyed.

Ch.7 concludes the thesis and provides an outlook on possible directions for
improvement and research.



Chapter 2

Basics

In this chapter we recap some basic knowledge about optical fiber transmission
necessary for the next chapters. Before starting, we mention the notation followed
in the thesis.

In fiber communications a sequence of waveforms which modulate an optical
electromagnetic carrier at frequency ω are transmitted over the channel. The field
propagation in the optical fiber is modeled through Maxwell’s equations, with some
boundary conditions based on the system geometry. A relevant concept for fiber
transmission is a mode, which, restricting the view to the electric field, is defined as

Ek(r, t) := F k(x, y, ω)e
−jβk(ω)ze+jωt (2.1)

where F k(x, y, ω) is the called modal profile or transversal field pattern of the k-th
mode, βk(ω) is the propagation constant of the mode and ω is the frequency (or
wavelength) at which the mode is computed. By definition, the modal profiles are
z-independent, which means that they maintain their shapes F k along the fiber
length, only the phases change with z. The index k refers to the k-th mode of the
modal set, which in general is composed of M = 2N elements. The reason for the
2N is going to be clear later on.

Both the modal profiles and the propagation constants change with frequency
[Mar74] [Kei11, Ch.2], even though F k(x, y, ω) is often approximated as frequency
independent for ω ∈ [−∆ω + ω0, ω0 +∆ω], with ∆ω ≪ ω0 (narrowband approxi-
mation). The dependence of βk(ω) on frequency is never negligible and gives rise
to various dispersion phenomena. The propagation constant can be expanded in a
Taylor series as

βk(ω0 +∆ω) = β
(0)
k + β

(1)
k ∆ω +

1

2
β
(2)
k (∆ω)2 + . . . (2.2)

where β
(0)
k := βk(ω0) and β

(a)
k :=

(︃
daβk

dωa

)︃
ω0

are the so-called dispersion coefficients.

We do not review the mode-independent dispersion phenomena, but just recall

4



CHAPTER 2. BASICS 5

that β(1)
k = 1/vg,m is the inverse group-velocity of the m-th mode, τk = β

(1)
k z is the

propagation delay, and β
(2)
k is the group-velocity dispersion (GVD).

It might feel confusing at first mixing frequency and time variables in an
expression like (2.1). However, the frequency has to be considered only a parameter
in (2.1), since the field is a continuous wave (CW) field at a fixed frequency
frequency ω.

Up to now, the mode is just a definition. However, it can be proven that
(2.1) solves Maxwell’s equations and also that the modal set is a complete set of
orthogonal modes, that is, all the solutions of Maxwell’s equations can be expressed
as a superposition of orthogonal modes with proper coefficients Ak[Mar74, p. 83],
like

E(r, t) =
M∑︂
k=1

AkEk(r, t) =
M∑︂
k=1

AkF k(x, y, ω)e
−jβk(ω)ze+jωt (2.3)

Hence, the modal set forms a basis, the modal basis.
We consider F k to be adimensional and Ak in units of electric field, i.e., V/m.

Given that the fiber is ideal and the field is CW, the modal amplitudes Ak are z-
and t-independent.

We now perform some steps towards the computation of the ideal modes in a
generic fiber structure. We do not derive explicit expressions for the modal profiles
(since we would not really need them), but we stop to an equation in F k from
which the modal profiles could be computed, and show some important relations
which are going to be useful later on.

Let us start by remembering Maxwell’s equations in time domain [Agr19,
p. 27][Coe10, p. 16][Mid03]:

∇×E(r, t) = −∂B(r, t)

∂t
(2.4a)

∇×H(r, t) = +
∂D(r, t)

∂t
+ J(r, t) (2.4b)

∇ ·D(r, t) = ϱc; (2.4c)
∇ ·B(r, t) = 0; (2.4d)

where E is the electric field vector, H is the magnetic field vector, D is the electric
displacement or electric induction vector, B is the magnetic induction or magnetic
flux density vector, J is the current density, ϱc is the volumetric charge density.

∇ is the nabla operator, through which are expressed in a symbolic form the
curl as ∇×, the divergence as ∇·, the gradient as ∇ and the Laplacian as ∇2.

Given that in optical fibers there are no free charges [Agr19]

J = 0 (2.5a)
ϱc = 0 (2.5b)
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A modes is, by definition (2.1), a complex harmonic at a specific frequency
ω, concerning the time dependence. Hence, all the time-dependent quantities
appearing in Maxwell’s equations are complex harmonics at the frequency ω. If we
indicate with “E

⋀︁

(r, t)” the r dependent amplitude of a complex harmonic, which
we call phasor, so that

E(r, t) = E

⋀︁

ejω0t (2.6)

then Maxwell’s equations become

∇×E

⋀︁

(r) = −jωB

⋀︁

(r) (2.7a)

∇×H

⋀︁

(r) = +jωD

⋀︁

(r) (2.7b)

∇ ·D

⋀︁

(r) = 0; (2.7c)

∇ ·B

⋀︁

(r) = 0; (2.7d)

The constitutive relations of the material, written for phasors, are

D

⋀︁

(r) = ε0E

⋀︁

(r) + P

⋀︁

(2.8a)

B

⋀︁

(r) = µ0H

⋀︁

(r) + µ0M

⋀︁

(2.8b)

where P

⋀︁

is the induced electric material polarization vector, M

⋀︁

is the induced
magnetic polarization, ε0 is the vacuum dielectric permettivity, µ0 is the vacuum
magnetic permeability. For a nonmagnetic material, like those of which fibers are
made of, [Agr19, p. 27][Coe10, p. 16]

M

⋀︁

= 0 (2.9)

The electric material polarization vector P (r, t) can be expanded as [Coe10,
p. 2.27]:

P (r, t) :=

ε0

∫︂ +∞

−∞
χ(1)(t− t1) ·E(t1) dt1

+ε0

∫︂ +∞

−∞

∫︂ +∞

−∞
χ(2)(t1 − t, t2 − t) ..E(t1)E(t2) dt1 dt2

+ε0

∫︂ +∞

−∞

∫︂ +∞

−∞

∫︂ +∞

−∞
χ(3)(t1 − t, t2 − t, t3 − t)

... E(t1)E(t2)E(t3) dt1 dt2 dt3

+ . . .

(2.10)

It can also be written as

P (r, t) := P L(r, t) + PNL(r, t) (2.11)
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where [Agr19, p. 28]

P L(r, t) := ε0

∫︂ +∞

−∞
χ(1)(r, t− t′) ·E(r, t′)dt′ (2.12)

is the linear part of the polarization vector and χ(1) is the first-order nonlinear sus-
ceptability tensor, related to the refractive index of the medium, which characterizes
the fiber material and geometry.

For the computation of the modes, we consider the fiber to be ideal, which
means that the nonlinear effects are not considered, i.e., PNL(r, t) = 0. Moreover,
it also means that the fiber material and geometry are not even perturbed linearly,
which is going to be clarified and exploited soon. In this thesis, with the expression
“perturbation” we mean an external or internal stress, or a geometrical or material
imperfection of the fiber introducing linear coupling [Mar74; Pal13], as detailed in
later chapters. The fact that the modes are computed for an ideal structure does
not mean that our whole study is restricted to the ideal case; this procedure is just
needed for the computation of the modes.

Since, again, we are interested in the case of complex harmonics, the phasor of
the material polarization vector becomes

P

⋀︁

(r) = P

⋀︁

L(r) = ε0˜︁χ(1)(r, ω) ·E

⋀︁

(r) (2.13)

Let us insert (2.13) in (2.8a),

D

⋀︁

= ε0E

⋀︁

+ PL

⋀︁

= ε0E

⋀︁

+ ε0˜︁χ(1)(r, ω) ·E

⋀︁

= ε0(I + ˜︁χ(1)(r, ω))E

⋀︁

(2.14)

We define [Agr19, p. 2.1.13] [Han21, p. 3.18]

εr(r, ω) + δεr(r, ω) := I + ˜︁χ(1)(ω) (2.15)

where εr is the material relative dielectric permittivity tensor and δεr is its pertur-
bation induced by the linear perturbations. However, as said, we exclude them for
the computation of the ideal fiber, so that

εr(r, ω) := I + ˜︁χ(1)(ω) (2.16)

We also define [Agr19, p. 2.1.14] [Coe10]

εr(r, ω) :=
(︂
n(r, ω)I + j

αc

2ω

)︂2
(2.17)
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where n is the material refractive index and α is the fiber loss. Notice this is also
the definition of refractive index. Again, we do not consider fiber loss in an ideal
fiber. Hence, (2.17) reduces to

εr(r, ω) ≈ n(r, ω)2I (2.18)

(2.17) and (2.18) could have been written because an ideal fiber is isotropic, which
means that its mechanical and optical properties do not depend on the direction
(polarization, formally) of the applied field vector. Hence εr is diagonal, with
diagonal terms approximately equal to each other [Coe10, p. 18].

Inserting firstly (2.16) and then (2.18) in (2.14), we get

D

⋀︁

(r) = ε0n(r, ω)
2I E

⋀︁

(r) (2.19)

which shows that in an isotropic medium D

⋀︁

is parallel to E

⋀︁

, since, by definition, in
an isotropic medium the action and the response of the medium have to be parallel
[Mid03, pp. 28, 30].

Up to now we have not started manipulating Maxwell’s equations, but just
paved down the preliminaries. The next target is to retrieve an equation where
only the electric field, and in particular a mode, is present. To do so, we have to
eliminate D

⋀︁

and B

⋀︁

. Thus, let us insert (2.8a) in (2.7b) and cancel J

⋀︁

thanks to
(2.5), obtaining

∇×H

⋀︁

= ε0jω(E

⋀︁

+ P

⋀︁

L) (2.20)

Similarly to (2.20), inserting (2.8b) in (2.7b), canceling M
⋀︁

thanks to (2.9), we
retrieve

∇×E

⋀︁

= −µ0jωH

⋀︁

(2.21)

Applying the curl to (2.21)

∇×∇×E

⋀︁

= −µ0jω∇×H

⋀︁

(2.22)

and inserting (2.20) in (2.22), we obtain

∇×∇×E

⋀︁

= −µ0ε0 (jω)2E

⋀︁

− µ0(jω)
2P

⋀︁

L = − 1

c2
(jω)2E

⋀︁

− µ0(jω)
2P

⋀︁

L (2.23)

where the relation of the speed light c in vacuum has been exploited

c =
1

√
µ0ε0

(2.24)

Eq.(2.23) presents a double curl of E

⋀︁

which is undesired to us since we intend to
retrieve an expression directly relating the space derivatives to the time derivative
of the field. Hence, we exploit the identity

∇×∇×≡ ∇ (∇·)−∇2 (2.25)



CHAPTER 2. BASICS 9

to write the l.h.s. of (2.23) as

∇×∇×E

⋀︁

= ∇ (∇ ·E

⋀︁

)−∇2E

⋀︁

(2.26)

Neglecting the term ∇ (∇ · E

⋀︁

) in the previous expression would simplify our
calculations. This is surely satisfied if ∇ ·E

⋀︁

= 0. To see when this happens, let us
apply the divergence to the constitutive relation (2.8a):

∇ ·D

⋀︁

= ∇ · (ε0E

⋀︁

+ P

⋀︁

L) = ε0∇ ·E

⋀︁

+∇ · P

⋀︁

L (2.27)

Since ∇ ·D

⋀︁

= 0, we have

ε0∇ ·E

⋀︁

= −∇ · P

⋀︁

L (2.28)

⇒ ∇ ·E

⋀︁

= 0 ⇔ ∇ · P

⋀︁

L = 0 (2.29)

Thus, to nullify ∇ ·E

⋀︁

is necessary to set

∇ · P

⋀︁

L = 0 (2.30)

That is, the linear material polarization has to be nonvarying in space, or at least
approximately. The connection of P

⋀︁

L with the refractive index has been shown
through (2.14), (2.15) and (2.17). Hence, condition (2.30) corresponds to assuming
the refractive index variation over the fiber cross-section to be negligible. This
is exact in case of step-index fibers (see Sec.2.1) because the refractive index is
constant within the core and within the cladding and (2.23) is solved separately
for the two parts. Then, the boundary conditions are exploited to match the
field at the core-cladding interface. On the opposite, condition (2.30) is only an
approximation for, e.g., graded-index fibers (see Sec.2.1). Depending on the desired
level of accuracy, this approximation is not always assumed in literature. Yet,
for our scopes it is sufficient and, as shown in Ch.5, it allows to reach the same
nonlinear propagation equation as common references in literature [PH08; ASM16;
Agr19].

Keeping in mind these considerations, we approximate (2.26) as [Agr19, p. 625]
[Coe10, p. 17]

∇×∇×E

⋀︁

≈ −∇2E

⋀︁

(2.31)

and then insert (2.31) in (2.23), obtaining

∇2E

⋀︁

=
1

c2
(jω)2E

⋀︁

+ µ0(jω)
2P

⋀︁

L = −ω2

c2
E

⋀︁

− ω2µ0P

⋀︁

L = −k2
0E

⋀︁

− ω2µ0P

⋀︁

L (2.32)

where the free-space propagation constant k0 has been defined as

k0 := ω/c = 2π/λvacuum (2.33)
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Inserting (2.13) and (2.16) in (2.32) yields the Helmoltz equation

∇2E

⋀︁

= −ω2

c2
E

⋀︁

− ω2µ0P

⋀︁

L = −k2
0E

⋀︁

− ω2µ0ε0˜︁χ(1)E

⋀︁

(r)

= −ω2

c2
(I + ˜︁χ(1))E

⋀︁

= −ω2

c2
εrE

⋀︁

= −k2
0εrE

⋀︁

(2.34)

We specialize (2.34) for a mode, i.e., E

⋀︁

= E

⋀︁

k = AkF k(x, y, ω)e
−jβk(ω)z, where

in the last passage we exploited the mode definition (2.1). Moreover, we recall that
the Laplacian operator can be written, in a symbolic form, as

∇2 = ∇2
T +

∂2

∂z2
(2.35)

Hence, exploiting these last two facts, we write (2.34) as(︃
∇2

T +
∂2

∂z2

)︃(︃
Fk(x, y, ω0)e

−jβk(ω)z

)︃
= −ω2

c2
εrFk(x, y, ω0)e

−jβk(ω)z (2.36)

⇒ ∇2
TFk(x, y, ω0)− β2

k(ω)Fk(x, y, ω0) = −ω2

c2
εrFk(x, y, ω0) (2.37)

(2.37) is our last equation. Solving it, together with the boundary conditions
of the fiber, provides the fiber modal profiles. Moreover, from (2.37) descends
the eigenvalue equation which yields the propagation constants of the various
modes. Notice that in general the modes are divided in guided modes and radiation
modes. The former are confined within the core and propagate without attenuation
(neglecting the small fiber losses). The latter transfer power away from the core and,
hence, get attenuated due to unavoidable losses of the cladding and the boundary
[Mar74, p. 96]. The mentioned completeness of the modal set requires considering
also the radiated modes [Mar74, p. 83].

2.1 Examples of MMFs and Modes
In this thesis we perform simulations with two common types of multimode fibers:
step-index (SI) and graded-index (GRIN) fibers, also abbreviated as GIMMF
(graded-index multimode fiber). Both structures have a single core with a refractive
index profile n(x, y) that changes from core to cladding. However, in SI fibers the
refractive index is position independent within core and cladding. In GRIN fibers
the refractive index varies over the core, with maximum value at the center of it
and decreasing usually in a quasi-parabolic fashion toward the cladding [Agr19,
p. 625], as depicted in Fig.2.1.
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Figure 2.1: Refractive index profile of the GRIN fiber detailed in Sec.2.1.

For the sake of comparison with other papers in the literature (e.g., [SKP21]),
the GRIN fiber exploited in this work has been chosen to resemble the one fabricated
by Sillard et al. [Sil+16] with diameter of 50µm, cladding of 90µm, a refractive
index difference between core and cladding of 15 · 10−3 at 1550 nm and a parameter
α tuning the refractive index profile of α = 1.94.

This GRIN supports 55 guided modes, out of which we chose at most the first
30 in the various simulations presented in the thesis. The modal profiles of the 15
x-polarized modes are depicted in Fig.2.2, the y-polarized modes have not been
shown since differing only for the polarization. The propagation constant values at
λ0 = 1550nm relative to the one of the fundamental mode, i.e., βk(ω0)− β1(ω0),
for the first 30 modes are also shown in Fig.2.3.

For the computation of the modal profiles and the propagation constants it has
been exploited a numerical solver developed at the research group.

We consider LP modes, which, as known, are not the exact modes in a fiber, but
are an approximation valid in the limit of weakly-guidance [Mar74, Ch.2] [Som06,
p. 363]. Every LP mode with a specific spatial pattern supports two orthogonal
linear polarizations, say, vertical and horizontal. Notice that, besides the ambiguous
language, both polarizations are legitimate modes by themselves, which we call
polarization modes when we want to emphasize that they differ for the polarization,
but have same spatial profile. Hence, we indicate the number of guided modes
as M = 2N , where N is the number of modes with a different spatial pattern,
which we call spatial modes when we want to emphasize that they have in general
different spatial profiles.
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(a) LP01x (b) LP11ax (c) LP11bx (d) LP02x

(e) LP21ax (f) LP21bx (g) LP12ax (h) LP12bx

(i) LP31ax (j) LP31bx (k) LP03x (l) LP22ax

(m) LP22bx (n) LP41ax (o) LP41bx

Figure 2.2: Spatial profiles of the first 15 x-polarized guided modes of the GRIN fiber
detailed in Sec.2.1. The black circumference represents the core boundary. The color
is proportional to the mode field intensity ∥F k(x, y, ω0)∥2. The arrows indicate the
polarization of the field, i.e., all shown examples are x-polarized.
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With polarization mode coupling we refer to the coupling between two polariza-
tions of the same spatial mode. With spatial mode coupling it is referred to the
coupling occurring among modes with different spatial patterns. These concepts
are addressed in the next chapters.

We define (quasi) degenerate group of modes a set of modes having nearly same
value of propagation constants [Som06, pp. 361, 363]. A (quasi) degenerate group
of modes is sometimes also referred to as manifold [Pal14; SKP21]. For the LP
approximation, the modes of a manifold are not just quasi degenerate, but exactly
degenerate since having the same propagation constant [Som06, p. 363]. Each LP
manifold is formed by either two or four modes [Pal14]. In a manifold with two
modes, the two modes have same modal pattern but different polarization (x̂ or ŷ),
and have azimuth order 0. They are the “LP0k” modes, where k = 1, 2, 3, . . . .

In a manifold with four modes, there are two pairs of modes. A pair is charac-
terized for having two modes with same spatial profile, but different polarization
(x̂ or ŷ). One pair is said to have “even” pattern, while the other to have “odd”
pattern, which are related one another by a rotation. This last property comes from
the modal solution of Maxwell’s equation, which provides either a term cos (nφ) or
sin (nφ) for the transverse profiles, where φ is the azimuth angle and n = 0, 1, 2, . . .
. The modes containing cos (nφ) are called even, the others odd [Pal14].

Depending on the particular fiber composition and geometry, there exist LP
modes of different manifolds with close values of propagation constants, as evident
looking at Fig.2.3. These manifolds are also sometimes considered together [Sil+16;
SKP21] and simply referred to as a modal group, being quasi-degenerate. For
example, observe the LP02 and LP21 manifolds of Fig.2.3 which have distinct but
very close propagation constants.
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Figure 2.3: Propagation constants βk(ω0) (relative to the fundamental one) for the first
15 x-polarized guided modes of the GRIN fiber detailed in Sec.2.1.



Chapter 3

Polarization Mode Coupling

In this chapter we are going to analyze polarization mode coupling, that is, the
coupling between the two polarizations of the fundamental modes. In the next
chapter we extend the reasoning to a generic multimode structure. We start with
a qualitative discussion to give the idea of what mode coupling is.

Prerequisites for this chapter are the concept of Jones and Stokes vectors, whose
theory can be found in, e.g., [NJ05; SM05; GK00; Stu18].

We indicate a generic Jones vector as |s⟩ and its Hermitian conjugate as ⟨s|, a
Stokes vector as s; if we want to emphasize they are unit we use the hat, like ŝ and
|ŝ⟩. Given the isomorphism between the two spaces, we adopt for every situation
the most suitable representation of a vector, either in Jones or Stokes space. The
relation between the modal amplitudes Ak presented in Ch.2 and used in later
chapters, and the Jones vector for the 2-polarization case is |E⟩ = [A1, A2]

T .
From an intuitive perspective, mode coupling consists in having modes which

do not propagate independently from each other, even though the meaning of the
term “mode” is going to be clarified later on. The signal in one mode at a certain
position z depends on both signals launched originally in both modes at the fiber
input. Mathematically, this phenomenon can be modeled considering non-zero
off-diagonal entries in the channel transfer matrix T (z, ω). How to choose them is
explained in the next sections.

Let us assume that the envelope Ex(z = 0, t) is being transmitted on the
x-polarization and the envelope Ey(z = 0, t) on y-polarization. Then, in presence
of mode coupling, since the channel is assumed to be linear in this section, the

15
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input-output relation is expressed as

| ˜︁E(z, ω)⟩ = T (z, ω) | ˜︁E(z = 0, ω)⟩ = T (z, ω)

[︄ ˜︁Ex(z = 0, ω)˜︁Ey(z = 0, ω)

]︄

⇒ | ˜︁E(z, ω)⟩ =

[︄
T11(z, ω) ˜︁Ex(z = 0, ω) + T12(z, ω) ˜︁Ey(z = 0, ω)

T21(z, ω) ˜︁Ey(z = 0, ω) + T22(z, ω) ˜︁Ex(z = 0, ω)

]︄
,

T (z, ω) =

[︃
T11(z, ω) T12(z, ω)
T21(z, ω) T22(z, ω)

]︃
(3.1)

where the expression on the second line emphasizes the dependence on both
transmitted envelopes of the two received envelopes over x- and y-polarizations,
conversely to the case of absence of coupling where each transmitted signal evolves
independently on the other(s).

Graphically, if we assume to be transmitting Gaussian pulses with different
delays along the x- and y-polarizations, the envelopes detected over x- and y-
polarizations at a certain distance z present two peaks, as visible in Fig.3.1. The
two received peaks over each polarization correspond to the two transmitted signals,
meaning that the two polarization modes did not propagate independently, but,
indeed, coupled into each other.

3.1 Origins of Birefringence
An ideal single mode fiber is characterized by a refractive index n(x, y, z) inde-
pendent of the position z along the fiber, i.e., n(x, y, z) = n(x, y), and circular
symmetry. Under this assumption, a single mode fiber is known to support two
degenerate modes, which differ only by the field polarizations.

As soon as some perturbations are present, the circular symmetry of the fiber
is broken and birefringence arises. The perturbations of the ideal structure are
due to a non-circular waveguide geometry or due to non-symmetric stresses of
the fiber structure [PN97; NJ05; SM05; Kei11]. Both families of phenomena can
arise either during the manufacturing process (intrinsic perturbations) or during
the cabling phase (extrinsic perturbations) due to externally applied stresses like
bending or torsion. The result is that, as experimentally observed, the two modes
assume a particular pair of polarizations (called eigenpolarizations) and are no
more degenerate. That is, they have different propagation constants and, also,
group velocities.

In a real fiber, perturbations and, therefore, birefringence orientation and
intensity (whose meaning is going to be detailed below) change with continuity
over the fiber position z and over the frequency f .
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Figure 3.1: Coupling between two different signals (with Gaussian shaping) transmitted at
symbol rate RS = 1GBaud over the two polarizations of a SMF, due to mode coupling and
non-uniform frequency-dependent birefringence over a fiber 100 km long, with birefringence
sections 1 km long and ∆n = 10−6.
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For what concerns the dependence on position, it is common to model the
fiber as a series of segments each having uniform birefringence inside, but different
orientation of the polarization states and intensity of the birefringence itself, as
illustrated in Fig.3.2 ([GK00; NJ05; SM05; PN97; Kei11]). The length of every
segment has to be chosen according to the so-called coupling length or correlation
length, which quantifies the length over which the birefringence is approximately
constant. A more rigorous definition is provided later on.

...

Figure 3.2: A fiber with nonuniform birefringence is modeled as a concatenation of
segments with uniform birefringence.

With regards to the dependence of birefringence on frequency, some simpli-
fications are usually assumed as well, in particular the orientation is assumed
independent on frequency.

It is the case to observe that it is not the presence of birefringence itself to
induce coupling, but the variation of birefringence along the fiber. Furthermore,
the mentioned fact that the two eigenpolarizations have different group velocities
is responsible for the so-called polarization-mode dispersion (PMD). All these
concepts are going to be better explained later on.

3.2 Segment of Uniform Birefringence

3.2.1 Modelling Birefringence and Intrinsic DGD

It has been found that in presence of birefringence, even if it loses the circular
symmetry, the fiber still supports two polarization modes with same spatial profile.
They are referred to as eigenpolarizations or local (eigen)modes and are indicated
as |êχ⟩ and |êΨ⟩ (or simply, without hat, |eχ⟩ and |eΨ⟩). When a piece (or segment
or section) of fiber has uniform birefringence, like in Fig.3.3, its eigenpolarizations
are z-independent.

Figure 3.3: Fiber segment with uniform birefringence.
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We always assume their direction is also frequency independent, even though in
reality there is some dependence on frequency even within a uniform birefringence
segment. Furthermore, the eigenmodes are always orthogonal and specific for every
kind of perturbation ([Han21, p. 24.12]). For example, an external radial pressure
on the waveguide determines the presence of two linear orthogonal states (linear
birefringence), one parallel and one orthogonal to the direction of the external force;
in case of torsion, the two states are circularly polarized (circular birefringence); in
the most general case of perturbation they are elliptical. Hence, the modes of a
fiber subject to birefringence are no more the linear, but have other polarizations,
even though the Jones vector components always refer to the two linearly polarized
ideal modes.

To the eigenpolarization states |eχ⟩ and |eΨ⟩ are associated the propagation
constants βχ(ω) and βΨ(ω), respectively. The difference between the propagation
constants is commonly referred to as birefringence, because it indeed provides a
quantitative measure of the birefringence phenomenon. In symbols, birefringence
is defined as

∆β := βχ(ω)− βΨ(ω) = nχk0 − nΨk0 = ∆nk0 = ∆n
ω

c
, k0 =

ω

c
(3.2)

where ∆n = nχ − nΨ is the difference between the refractive indices of the two
eigenpolarizations and it commonly lies in [10−7; 10−5] ([PN97, p. 118], [NJ05,
p. 6]), even though other sources (e.g., [Agr19, pp. 14, 190]) indicates its value in
[10−6; 10−4]. Notice that the knowledge of ∆n allows to compute ∆β for simulation
purposes. Observe that the birefringence intensity is in general frequency dependent
due to the explicit dependence on ω and due to material/chromatic dispersion, i.e.,
the implicit dependence of the refractive index difference ∆n on frequency. This
second contribution is neglected in our analysis.

The other common way to compute ∆β is through the beat length LB defined
as the length after which an input polarization returns to its initial state. Indeed,
the effect of birefringence on an input polarization is to rotate it with z due to the
accumulation of a phase difference between the two eigenpolarizations over which
the input polarization can be decomposed (see (3.16)). Then, we are looking for a
phase difference ∆Φ = ∆β z = 2π after a length z = LB. So,

∆β = 2π/LB (3.3)

which is the other common way of computing ∆β in simulations once LB is known
(or assumed to be), without the need for estimating ∆n. Usually, LB is assumed
to be in the range of few meters ([Han21; NJ05]), even though other sources (e.g.,
[Agr19, p. 190]) indicates it to be as small as 1 cm in fibers with high-birefringence
(∆n ≈ 10−4).
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To complete the digression, combining Eq.3.3 and ∆β = ∆nω
c
= ∆n2π

λ
(from

Eq.3.2), we get the common definition of beat length as [NJ05, p. 4]:

LB = 2π/∆β = λ/∆n (3.4)

Since birefringence is characterized both by a vectorial quantity, the eigenpo-
larization states {|êΨ⟩ , |êχ⟩}, and by a scalar quantity, the birefringence ∆β, the
birefringence Stokes vector β is defined summarizing both contributions:

β := ∆ββ̂, β̂ := êχ (3.5)

The definition 3.5 associates to the birefringence vector the direction of the
slow principal axis (or slow birefringence axis or slow eigenpolarization state or
extraordinary axis), that is the direction of the eigenpolarization in Stokes space
with higher propagation constant and lower group velocity (which is the reason for
the term “slow”). We have arbitrary chosen êχ, letter χ as subscript, to indicate
the slow axis and êΨ, letter Ψ as subscript, to indicate the fast (or ordinary) axis.

The two polarizations also have different group velocities

vg,Ψ := 1/
(︂dβΨ

dω

)︂
vg,χ := 1/

(︂dβχ

dω

)︂ (3.6)

and, thus, propagation delays

τΨ :=
dβΨ

dω
z

τχ :=
dβχ

dω
z

(3.7)

Hence, two replicas of the same transmitted signal over the two eigenmodes
accumulate a Differential Group Delay (DGD) ∆τ after a distance z (neglecting
higher-order effects in frequency, i.e., the refractive index difference ∆n(ω) = ∆n
is considered frequency independent)

∆τ := τχ − τΨ =
dβΨ

dω
z − dβχ

dω
z =

(︂d∆β

dω

)︂
z =

∆n

c
z (3.8)

The different group delays (GDs) between the two eigenpolarizations are the source
of the Polarization Mode Dispersion (PMD) phenomenon, which broadens and
distorts the transmitted signals, as it will be clear later on.

Since it is going to be useful later on, we also define the average or common
propagation constant βc(ω) and the average or common group delay τc between
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the two eigenpolarizations as

βc(ω) := (βΨ(ω) + βχ(ω))/2

τc :=
dβc

dω
z = (τΨ + τχ)/2

(3.9)

The two group delays can then be written as

τΨ =
dβΨ

dω
z = τc −

∆τ

2

τχ =
dβχ

dω
z = τc +

∆τ

2

(3.10)

which, again, justifies the term “slow” associated to the mode with the higher
refractive index, |êχ⟩ in our conventions. Notice that all the quantities, in particular
the DGD in Eq.(3.8) between the two eigenpolarizations, have been defined relative
relative to the case of uniform birefringence, which happens only for small lengths
in real fibers. The quantity

d∆β

dω
(3.11)

which is related to the DGD between the two eigenpolarizations in Eq.3.8, is usually
referred to as intrinsic or short-length PMD ([PWN91, p. 372], [PN97, p. 120]
[NJ05, p. 5]) to distinguish it from the DGD and the PMD defined for fibers with
non-uniform birefringence.

Given that the fiber perturbations are random, every fiber (i.e., every channel
transfer matrix) is a realization of an ensemble. Therefore, the DGD is also a
random variable fixed a certain fiber length z and, if we let z vary, the DGD is a
stochastic process over z. It can be shown that the mean DGD increases linearly
with z for the case of uniform birefringence, or, more precisely, for the case when
the fiber length z is smaller or comparable to the correlation length. In Sec.3.3 the
quantities presented above are generalized to the case of non-uniform birefringence
and it will be mentioned that the mean DGD increases with the square-root of
distance in that case.

3.2.2 Channel Transfer Matrix for Uniform Birefringence

The two orthogonal states |eχ⟩ and |eΨ⟩ characterizing a uniform birefringence
segment form an orthogonal basis which allows to express the modal amplitude
|E⟩ at any coordinate z. They are called eigenpolarizations or local (eigen)modes
because an input field parallel to one of them keeps the same polarization all over
the fiber segment. We indicate with T the propagation operator in Jones space
of the fiber segment with uniform birefringence. Since the system is considered
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linear in this chapter, its propagation operator T in the frequency domain is a
transfer matrix. Then, the eigenpolarizations |eχ⟩ and |eΨ⟩, based on the empirical
observations as mentioned in Sec.3.1, are the eigenvectors of T . However, it is
important to stress that the eigenpolarizations are no more the eigenvectors of the
propagation operator T when the birefringence is not uniform.

Given that the eingepolarizations are the modes for a fiber of uniform birefrin-
gence as said in Sec.3.1, their phases change over length as e−jβΨ/χ(ω)z.

Hence, the input-output relation for the fiber segment with uniform birefringence
is

| ˜︁E(z, ω)⟩ = T (z, ω) | ˜︁E(z = 0, ω)⟩ = C−1T ′C | ˜︁E(z = 0, ω)⟩ ,
T = C−1T ′C

C =

[︃
⟨eΨ|
⟨eχ|

]︃
T ′ =

[︃
e−jβΨz 0

0 e−jβχz

]︃ (3.12)

where T ′ is not the derivative of T , but a different matrix.
Notice that T = C−1T ′C provides a diagonalization of the transfer matrix T ,

where C is a the change-of-coordinate matrix from the Cartesian {x, y} coordinate
system to the eigenpolarization coordinate system. As such, |eχ⟩ and |eΨ⟩ have to
be the eigenvectors of the propagation operator T , consistently with our definitions,
and e−jβΨz and e−jβχz are the corresponding eigenvalues.

Besides the T matrix, there are two other matrices commonly used to represent
the propagation operator. One is the Jones matrix U defined as

T (z, ω) = e−jβc(ω)zU(z, ω) (3.13)

where βc(ω), defined by Eq.3.9, is the average value of propagation constant and so
βc(ω)z is the common phase term which is factored out from T . Indeed, the role
of the common phase term is to account for a common constant phase rotation
and a common propagation delay (beside higher-order effects like CD), while here
we are interested in the mode-dependent effect modeled by U which are due to the
difference between the phases of the eigenpolarizations.

From U , it is possible to define the Stokes rotation matrix R, that is the
propagation operator in Stokes space, as ([GK00, p. 4.2]):

Rσ = UHσU (3.14)

where σ = (σ1,σ2,σ3) is the Pauli spin vector and its components σi are the
Pauli spin matrix, that can be seen as basis elements of the linear space of 2× 2
Hermitian matrices [Ant+12].

s(z, ω) = R(z, ω) s(z = 0, ω) (3.15)
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Relation 3.14 is not just important per se, but it reveals that the R matrix does
not account for the absolute phase evolution, only for the relative phase difference
between the two eigenpolarization components, since it is directly related to U
instead of T . This is consistent with the fact that a Stokes vector is invariant to
a phase offset in the components of the corresponding Jones vector [NJ05, p. 2],
which boils down from having only three real parameters/degrees of freedom in
Stokes space, while a Jones vector is defined through four real values (two for the
amplitudes, two for the phases).

We exploit the propagation matrices T ,U ,R interchangeably, as long as the
proper space is selected to represent the input and output polarization vectors. All
three matrices are unitary assuming no loss, which we remember it means their
inverse equals their Hermitian transpose, i.e., T−1 = TH ⇔ TTH = I. Extending
the role of orthogonal matrices as rotation operators for Euclidean spaces∗ , unitary
matrices can be interpreted as responsible for generalized rotations. Unfortunately,
it is harder to visualize such a rotation in Jones space since they work with complex
quantities. Yet, the rotation of an input polarization due to the channel matrix R
is immediately visible in Stokes space through the use of a Poincaré sphere. Then,
the relation between U and R (through, e.g., Eq.3.14) allows to extend the terms
“rotation”, “orientation” and “direction” of a polarization vector to the Jones space
as well.

As a side remark, to fulfill the unitarity of the propagation matrices T ,UandR,
B of Eq.3.1 has to be Hermitian ([Ant+12, p. 9]) because in this way −jBz is
skew-Hermitian, that is, (−jBz)H = +jBz, and then the exponential T = e−jBz

of a skew-Hermitian matrix is unitary [wik].

3.2.3 Propagation in a Segment with Uniform Birefringence

In the framework of PMD, to study the effect of birefringence on the propagating
electric field, the evolution with distance and frequency of the input polarization
is usually considered over the Poincaré sphere. Indeed, it provides a clear and
intuitive picture of the phenomena.

Let us assume to be working with a single modulating signal ˜︁a(ω), transmitted
over the arbitrary input polarization |s(z = 0)⟩ /∈ {|eΨ⟩ , |eχ⟩}, such that the
input field is | ˜︁E(z = 0, ω)⟩ = ˜︁a(ω) |s(z = 0)⟩. The output field can be easily
computed through Eq.3.12, firstly by decomposing the input field over the two
eigenpolarizations, which are the eigenvectors of T , as

| ˜︁E(z = 0, ω)⟩ = ˜︁a(ω) |s(z = 0)⟩ = cΨ˜︁a(ω) |eΨ⟩+ cχ˜︁a(ω) |eχ⟩ (3.16)
∗Actually; orthogonal matrices account for both rotations and reflections.
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where cχ = ⟨eχ|s⟩ and cΨ = ⟨eΨ|s⟩ are the projection of |s⟩ over the eigenpolar-
izations. Then, the propagation of the electric field is eased by considering the
propagation of the eigenpolarizations

| ˜︁E(z, ω)⟩ = ˜︁a(ω)cΨe−jβΨ(ω)z |eΨ⟩+ ˜︁a(ω)cχe−jβχ(ω)z |eχ⟩

= ˜︁a(ω)(︂cΨe−jβΨ(ω)z |eΨ⟩+ cχe
−jβχ(ω)z |eχ⟩

)︂
= ˜︁a(ω)e−jβcz

(︂
cΨe

−j
∆β(ω)

2
z |eΨ⟩+ cχe

+j
∆β(ω)

2
z |eχ⟩

)︂
= ˜︁a(ω)e−jβcz |s(z, ω)⟩ ,

|s(z, ω)⟩ = cΨe
−j

∆β(ω)
2

z |eΨ⟩+ cχe
+j

∆β(ω)
2

z |eχ⟩

(3.17)

Hence, due to birefringence, the two eigenpolarization components accumulate a
phase difference ∆βz with varying z such that the output polarization changes
continuously. On the Poincaré sphere, this evolution is a precession of the input
polarization around the birefringence axis β ∥ êχ, as shown in Fig.3.4a. Notice
from the figure that the full circle is run over a length equal to the beat length,
z = LB, as foreseen by its definition.

(a) (b)

Figure 3.4: Output polarization evolution over the Poincaré sphere for a fiber with
frequency-independent uniform birefringence: in 3.4a varying z ∈ [0, LB ], fixed f = ω0, in
3.4b varying f = [−B/2, B/2] (B is the signal bandwidth), fixed z.

The precession is modeled with the following differential equation in Stokes
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space:
ds

dz
= β × s (3.18)

where β is the local birefringence vector defined in Def.3.5. Eg.3.18 is called the law
of infinitesimal rotation and its integration provides an expression for the Stokes
rotation matrix R ([GK00]).

In the next section we analyze in more detail the distortions due to uniform
birefringence distinguishing the case of frequency independence from the one of
frequency dependence, already noticing that Eq.3.17 indicates that the received
polarization |s(z, ω)⟩ is in general frequency dependent due to ∆β(ω) = ∆nω/c
being frequency dependent.

3.2.4 Frequency Independent Birefringence

If the propagation constants of the two eigenmodes are frequency independent, we
can write their average value βc and their difference from Eq.3.9 and Eq.3.2 as

βc(ω) = βc(ω0) = (βχ(ω0) + βΨ(ω0))/2

∆β(ω) = ∆β(ω0) = ∆n(ω0)ω0/c
(3.19)

In this way, we are neglecting all higher-order effects, in particular the different
group velocity between the two eigenpolarizations. Then, Eq.3.17 allows to easily
retrieve the time-domain expression of the received field as

|E(z, t)⟩ = a(t)e−βc(ω0)z |s(z)⟩ ,

|s(z)⟩ = cΨe
−j

∆β(ω0)
2

z |eΨ⟩+ cχe
+j

∆β(ω0)
2

z |eχ⟩
(3.20)

The simulation of Fig.3.4 considered this assumption and, indeed, Fig.3.4b shows
that the output polarization is frequency independent.

Considering the time evolution of the signals, the rotation of the polarization
vector determines a reduced detection power when the receiver detects the signal
⟨sD|E(z, t)⟩ along a specific polarization |sD⟩ different from the received polarization
|s(z)⟩. Fig.3.5a shows a situation where the fiber segment has principal axes aligned
with the x- and y-axis, while the transmitted and detected polarizations are linear
at 45◦. This is the case of a coherent detection receiver, where the receiver detects
a polarizations which is not, in general, one of the eigenpolarizations. It is visible
that the signal detected on the same transmit polarization (yellow curve) has
lower amplitude than the actual transmitted signal, due to the phase difference
accumulated between the two eigenpolarizations with respect to the input. The
phase difference is evident also from the plot in the complex plane, Fig.3.5b, which
compares the envelopes of the transmitted signal with the envelopes of the x-
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and y- components, that are the eigenpolarization in this case. Besides phase
rotation leading to a reduced detection power, there is no envelope distortion in
this situation, as foreseen by Eq.3.20.

On the opposite, no distortion is observed if the detected polarization is exactly
the one which is received, or, equivalently, if the received signal is rotated back, as a
simple form of phase distortion compensation. This is the case of direct-detection, as
visible in Fig.3.5b where the blue curve of the transmitted envelope is hidden behind
the red curve of the output polarization. The reason is that the squaring operation
performed by the receiver photodiode coincides with a projection over the actual
received polarization. That is, ∥E(z, t)∥2 = ⟨E|E⟩ = |a(t)|2 ⟨s(z)|s(z)⟩ = |a(t)|2.
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Figure 3.5: Envelope (3.5a) and phase distortion (3.5b) due to frequency-independent
uniform birefringence. In Fig.3.5a the blue curve of the transmitted envelope is hidden
behind the red curve of the output polarization for the reasons explained in the text.

3.2.5 Frequency Dependent Birefringence

We now take into account the first-order frequency dependence of birefringence
which implies a differential group delay between the two eigenmodes, as mentioned
in Sec.3.2.1. For simulation purposes and for graphical representation, it is possible
to neglect the common propagation delay τc (Def.3.9), as tacitly done in the previous
sections.
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The electric field at any position z is computed from Eq.3.17 as

| ˜︁E(z, ω)⟩ = ˜︁a(ω)e−jβc(ω)z |s(z, ω)⟩ ,

|s(z, ω)⟩ = cΨe
−j

∆β(ω)
2

z |eΨ⟩+ cχe
+j

∆β(ω)
2

z |eχ⟩ = (cΨe
−j

∆β(ω0)
2

z |eΨ⟩+ cχe
+j

∆β(ω0)
2

z |eχ⟩)

+ (cΨe
−j

∆β′(ω0)
2

∆ωz |eΨ⟩+ cχe
+j

∆β′(ω0)
2

∆ωz |eχ⟩)
(3.21)

where, within our first-order approximations,

βc(ω) ≈ βc(ω0) +

(︃
dβc

dω

)︃
ω0

∆ω

∆β(ω) ≈ ∆β(ω0) +

(︃
d∆β

dω

)︃
ω0

∆ω

(3.22)

and ∆ω = ω − ω0 is the discrepancy with respect to the central frequency ω0.
Hence, the time-expression is

|E(z, t)⟩ = cΨa(t− τΨ)e
−jβΨ(ω0)z |eΨ⟩+ cχa(t− τχ)e

−jβχ(ω0)z |eχ⟩ (3.23)

which emphasizes that the received signal is a superposition of two differently
delayed replicas, with the two eigenpolarizations as basis vectors.

Figure 3.6b shows an example of this situation, where, similarly to the example
detailed in the previous section, the signal has been transmitted with equal power
on both x- and y-components, that is, with a linear 45◦ polarization. Hence,
cΨ = cχ = 1/

√
2. If the field is detected on the same linear 45◦ polarization (as

it happens for a coherent-receiver), the envelope along that polarization appears
evidently to be the superposition of the two differently delayed replicas. Yet, notice
that the modulus of the sum is lower than the sum of the moduli, hence, one would
observe a power reduction. If, instead, direct-detection is performed, the resulting
signal is given by the summation of the square moduli of the envelopes. Note that
since the channel transfer matrix is unitary, the instantaneous power of the Fourier
transform of the signal (along input and output polarizations) is maintained and
the average power is conserved both in time and frequency domains thanks to
Parseval’s theorem. The instantaneous power is not conserved in time domain
because the transfer matrix is frequency dependent. Clearly, these properties of
power are not specific for the case of uniform birefringence, but are valid whenever
the channel transfer matrix is unitary.

The presence of DGD detailed in the above example is just one of two faces
of the frequency-dependent birefringence. The other is polarization change with
frequency of the electric field. Indeed, if we fix a position z over fiber length, the
output polarization changes with frequency, as modeled by Eq.3.21. The evolution
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of the output polarization with frequency can be seen on the Poincaré sphere,
as Fig.3.6a illustrates. Notice that for a segment of uniform birefringent fiber, a
frequency or a position variation of the same value produces the same polarization
rotation due to the same dependence of the phase difference ∆βz = ∆n

c
ωz on ω and

z. Indeed, Fig.3.4a and Fig.3.6a show qualitatively the same polarization rotation
effect on Poincaré sphere.

An analytic link between the DGD and the polarization rotation with frequency
is offered later in Ch.3.3.5 through Eq.3.55.

However, if the signal is transmitted over one of the two eigenpolarizations,
polarization variation with frequency and pulse broadening due to DGD do not
happen, because only one replica of the same signal is received. That is, the received
envelope is not distorted, besides a phase retardation e−jβΨ/χ(ω0)z. This is the idea
behind the Principal States of Polarization (PSP), that is, a pair of orthogonal
polarizations which are frequency-independent to first order in frequency and, thus,
a signal transmitted over one of them propagates without coupling to the other PSP
and it is received without distortion. This might be unclear at the moment since
we have been dealing with a fiber of uniform birefringence so far, but it is going
to be clear in the next section. For the time being it suffices to state that PSPs
coincide with the eigenpolarizations for a fiber with uniform birefringence where
the eigenpolarizations are frequency independent, as we have already explicitly
assumed.

3.3 Concatenation of Segments: Polarization Mode
Coupling

As mentioned in Sec.3.1, birefringence in practice varies with position z. Hence,
modeling a fiber as a single section of uniform birefringence is unrealistic (except for
Polarization Maintaining Fibers). On the opposite, a common modeling approach
consists in considering the fiber of length L as a concatenation of N segments
of length LS each one uniformly perturbed in a different way, i.e., each one
characterized by its own eigenpolarizations and birefringence intensity. Within each
segment of uniform birefringence, the evolution of the polarization in Stokes space
still consists in a rotation about the corresponding birefringence axis according to
the law of infinitesimal rotation 3.18, as shown in Fig.3.7a. Notice that if the beat
length is longer than the segment length, as in 3.7b, than the polarization does
not complete a full circle on the Poincaré sphere and, thus, the trajectory results
qualitatively harder to follow, even though the law of infinitesimal rotation 3.18
holds.

The input-output relation can be again described by a unitary transfer matrix
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Figure 3.6: Fiber with uniform birefringence, 150 km long, ∆n = 10−7, RB = 10Gbps,
linear 45◦ transmit polarization. In 3.6a polarization evolution with f over the Poincaré
sphere, fixed z = 150 km. In 3.6b envelope comparison.
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(a) Segment length LS = 10m,
LS > LB .

(b) Segment length LS = 5m,
LS ≤ LB .

Figure 3.7: Field polarization evolution with z over the Poincaré sphere (fixed ω = ω0),
within a fiber made of concatenated segments with different linear birefringence with beat
length LB = 7.75m.

T (z, ω) as

T (z ∈ [(n− 1)LS, nLS], ω) = e−jB(z−(n−1)LS)

n−1∏︂
i=1

T i ,

Ti = C−1T ′C

Ci =

[︃
⟨eχ,i|
⟨eΨ,i|

]︃
T ′
i =

[︃
e−jβχ,iLS 0

0 e−jβψ,iLS

]︃
(3.24)

where n = 1, 2, . . . is the index of current segment and LS is the segment length.
In analogy with Eq.3.9, the concepts of common phase and common group

delay are extended to the non-uniform fiber as

Φc(z ∈ [(n− 1)LS, nLS], ω) = βc,n(ω) · (z − (n− 1)LS)
n−1∑︂
i=1

Φc,i(ω) ,

Φc,i(ω) = βc,i(ω)LS

τc(z ∈ [(n− 1)LS, nLS], ω) =
dΦc

dω
=

∂βc,n

∂ω
· (z − (n− 1)LS)

n−1∑︂
i=1

τc,i(ω) ,

τc,i(ω) =
∂βc,i

∂ω
LS

(3.25)
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where Φc,i and τc,i are the common phases and delays accumulated from the start
of the i-th segment to its end (see Eq.3.9). If it is assumed ∆ni to be frequency-
independent, so is τc. Then, similarly to Eq.3.13, a common phase term Φc(z, ω)
can be factored out of the transfer matrix T to obtain the U matrix:

T (z, ω) = e−jΦc(z,ω)U(z, ω) (3.26)

The previous equation can be directly exploited for simulation purposes in the
linear regime, assuming some statistics for the birefringence vector βi modeled
as a stochastic process of the segment index i. E.g., Poole et al. [PWN91] and
Mecozzi et. al. [SM05] modeled βi as a random Gaussian noise with a certain
mean βM . We expect a real fiber to have some elasticity, that is, consecutive
segments are expected to have correlated birefringence. Therefore, we assumed
a random-walk process in Cartesian coordinates over Poincaré sphere for β̂ and
a random Gaussian noise process with a certain mean ∆β for the modulus. We
recall that a random-walk process means that the increment β̂i+1 − β̂i is a random
Gaussian noise. The mean value ∆β is generated through the mean refractive index
∆n. However, to relax the notation in the whole thesis we use ∆n instead of ∆n
to refer to the mean value of the refractive index difference.

A realization example of the birefringence vector direction is visible in the
Poincaré sphere of Fig.3.17a. Then, from the knowledge of β̂ it is easy to retrieve
the eigenpolarizations and so the change-of-basis matrices Ci to compute the
channel transfer matrix U of Eq.3.24.

The consequence of birefringence axis variation can be viewed in time-domain
as mode coupling, where with “mode” it is referred to the ideal modes exchanging
power [KHS12] and, thus, not propagation anymore independently, as explained
in the introduction of Ch.3. However, mode coupling can be viewed also as a
coupling between local eigenmodes / eigenpolarizations of consecutive segments if
one considers the signals along them as the ones which get coupled, and perhaps that
is the most intuitive perspective. Indeed, this way, it is clear that the signal over
one eigenpolarization at the input of a certain segment is the superposition (with
complex coefficients) of the differently delayed pulses over both eigenpolarizations of
the previous segment. In other words, mode coupling manifests itself as a “splitting”
or “bifurcation” ([KK97]) phenomenon at every interface between consecutive
segments which consists in distributing the signal power of every local mode to
both local modes of the successive segment. Fig.3.8 illustrates the phenomenon.

Now it is clear that it is not birefringence by itself producing mode coupling,
it is its variation over the fiber length, while the signal broadening, also called
polarization-mode dispersion in this case, is the result of the combination of
frequency-dependent birefringence and mode coupling.

We are now ready to give a more precise definition of correlation length than
the one offered in Sec.3.1. If we assume to be transmitting a pulse along a specific
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Figure 3.8: Single pulse sent over one input eigenmode of the first segment subject to
pulse dispersion and mode coupling (image from [PN97, p. 125]).

polarization, let it be one of the two eigenmodes of the first fiber section, due
to birefringence variation the polarization evolves with distance leaking power to
the non-excited eigenmode and, after a certain length, it is no more correlated
with the input polarization. After a sufficiently long distance, we can imagine the
power launched in one mode has spread over both modes. Let us call P∥(z) and
P⊥(z) the average (over time) power carried over the excited input polarization
and the orthogonal one which has not been initially excited. The average ⟨·⟩ is
considered among an ensemble of fibers with statistically equivalent perturbations,
that is, perturbations which act on average the same on every fiber at any time and
position [PN97, p. 123] [NJ05, p. 6]. This averaging is needed to be able to provide
a definition which does not depend on the specific perturbation profile realization.

If we transmit a power P∥(z = 0) = 1 over one polarization, the difference
between the power on the two polarizations is ⟨P∥(z = 0)⟩ − ⟨P⊥(z = 0)⟩ = 1. As
the distance increases, so does the coupling and ⟨P∥(z)⟩− ⟨P⊥(z)⟩ reduces, because
⟨P⊥(z)⟩ increases. We define correlation length or coupling length LC the distance
at which the power difference ⟨P∥(LC)⟩ − ⟨P⊥(LC)⟩ = 1

e2
, that is, the power on

the orthogonal polarization is within 1
e2

of the the power on the initially excited
eigenmode [PN97, p. 123], [NJ05, p. 5]. Another equivalent definition of correlation
length is derived directly from the analysis of the width of the correlation functions
relative to the birefringence vector [SM05; Ant+12].

The values of correlation length are reported to vary between the order of 100m
for spooled fibers and 1 km for grounded fibers ([PN97, p. 124], [NJ05, p. 6]), while
Ref.[SM05, p. 41] indicates around 100m for grounded fibers and Ref.[Agr19, p. 13]
generically claims the value to be in the order of 10m.

When a fiber segment of length comparable to the correlation length is consid-
ered, the birefringence can be treated as approximately constant, which is referred
to as short-distance [PN97] or weak-coupling regime [KHS12], and, thus, the analy-
sis of Sec.3.2.1 applies. Otherwise, we are in the long-distance or strong-coupling
regime discussed in Sec.3.3.
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3.3.1 Frequency Independent Birefringence for a Direct-Detection
System

If we consider to be transmitting a single modulated signal along a certain po-
larization, as in a direct detection system, then the effect frequency dependent
birefringence is similar to what has been observed already for the case of uniform
birefringence in Sec.3.2.4. That is, direct detection at the receiver allows to exactly
recover the transmitted pulse because the only effect of non-uniform frequency-
dependent birefringence is a frequency-independent phase term which disappears
after taking the square modulus, as it is proven here.

Let us assume to transmit the field

|E(z = 0, t)⟩ = a(t) |s(z = 0)⟩ (c1 |v1⟩+ c2 |v2⟩) (3.27)

where a(t) ∈ R is the transmit envelope and ci = ⟨vi|s(z = 0)⟩ ∈ C are the complex
projection coefficients. By definition ⟨s(z = 0)|s(z = 0)⟩ = ⟨v1|v1⟩ = ⟨v2|v2⟩ = 1,
that is, the polarizations have unit power. Hence, ∥c1∥2 + ∥c2∥2 = 1. We assume
|v1⟩ , |v2⟩ are the orthonormal eigenvectors of the propagation operator T . In the
case of non-uniform frequency-independent birefringence, they are the generalization
of the eigenpolarizations used in Sec.3.2.4. Indeed, they represent polarizations
which keep parallel to themselves from input to output and which do not varies
with frequency (because, clearly, we are assuming frequency-independence). Then,
the received signal after N sections at the fiber length L can be computed in
frequency-domain from Eq.3.24-3.26 as

| ˜︁E(z, ω)⟩ = T (z, ω)a(ω) |s(z = 0)⟩ = e−jΦc(z,ω)U(z)a(ω) |s(z = 0)⟩ =
= e−jΦc(z,ω)˜︁a(ω) |s(z)⟩ (3.28)

Neglecting chromatic-dispersion and mode-independent higher-order effects as

usual for this chapter, i.e.,
∂nΦc(z, ω)

∂ωn
= 0 for n ≥ 2, the common phase term

can be written as Φc(z, ω) = Φc(z, ω0) + ω
∂Φc(z, ω)

∂ω
. Then, (3.28) transforms to

time-domain as
|E(z, t)⟩ = e−jΦc(z,ω0)a(t− τg) |s(z)⟩ (3.29)

where τg = τc =
∂Φc(z, ω)

∂ω
is the propagation delay which coincides with the

common group delay 3.25. The received polarization can be expressed as

|s(z)⟩ = U(z) |s(z = 0)⟩ = c1e
−jφ1(z) |v1⟩+ c2e

−jφ2(z) |v2⟩ (3.30)

where e−jφ1(z), e−jφ2(z) are the eigenvalues of the propagation operator U corre-
sponding to |v1⟩ , |v2⟩ and are frequency-independent (because U is frequency-
independent) phase terms (because U is unitary).
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Finally, performing direct-detection at the receiver, one gets:

∥|E(z, t)⟩∥2 = ⟨E(z, t)|E(z, t)⟩ =
= |a(t− τg)|2e+jΦc(z,ω0)e−jΦc(z,ω0) ⟨s(z)|s(z)⟩ = |a(t− τg)|2 (3.31)

where the fact that the received polarization has unit norm has been exploited
thanks to the unitary transfer matrix U (it can also be checked by direct calculation
exploiting Eq.3.30 and the orthonormality properties of the eigenvectors). Eq.3.31
shows that after performing direct-detection, the received envelope in undistorted,
as it was for the case of uniform birefringence (Sec.3.2.4).

On the opposite, if detection is performed along a specific polarization |sD⟩
(which does not happen for a DD system, but which gives the idea of what happens
in a CS), as

⟨sD|E(z, t)⟩ = a(t− τg)e
−jΦc(z,ω0) ⟨sD|s(z = L)⟩ = k a(t− τg),

k = ⟨sD|s(z = L)⟩
(3.32)

then, even taking the absolute value does not avoid to have a scaling factor
|k| = |⟨sD|s(z = L)⟩| on the received envelope due to the misalignment between
the detection polarization sD and the received polarization.

No plots are shown in this case because they would be qualitatively the same
as for the case of uniform birefringence, Fig.3.5a and Fig.3.5b.

3.3.2 Frequency Independent Birefringence for a Coherent-
System

We consider a Polarization Multiplexed system with a coherent receiver and we
transmit two quadrature modulated signal with, say, 4-QAM modulation, over two
orthogonal input polarizations, say x and y, when only birefringence is considered,
without PMD. That is, ∆β(ω) = ∆β(ω0). This approximation is assumed firstly to
understand the role of pure birefringence for a CS, secondly not to have to design
a more complex coherent-receiver and thirdly because sometimes PMD can be
neglected in some real systems.

The effect of birefringence within a uniform segment is to rotate the two constel-
lations. The effect of birefringence variation (change in the eigenpolarizations) is
to couple the two constellations together yielding an unregular constellation made
of 16 complex points. The constellation plots below clarify the situation.

Firstly, the constellations at the fiber input are presented in Fig.3.9: in blue
in Cartesian coordinates, in red after the projection over the eigenpolarization
coordinates of the first segment. As it can be seen, the projection yields four
quartets of points being the result of combining every point of a constellation with
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Figure 3.9: Constellations at the beginning of the first segment over the two transmit x-
and y-polarizations and after the projection over the two eigenpolarizations.

every point of the other. Due to birefringence, the two constellations result to be
rotated at the end of the uniform fiber segment, as Fig.3.10 shows.

Then, a change of segment, which means a projection over the new eigenpolariza-
tions, has the effect of producing a different constellation over each eigenpolarization,
but still of 16 points. (The number is not exponentially increasing as 4n, where n
is the segment index, as one could suspect by seeing how the constellation evolves
from 4 points to 16 points after the first projection. The reason is that the pairs
of points which are combined together at any discontinuity are always the same.
So 16 unique pairs in total.) Hence, the final constellations received at the fiber
end over x- and y-polarizations are made of 16 points distributed over the complex
plane in a non-trivial way, as visible in Fig.3.11.

A possible technique for uncoupling the two transmitted modes is to exploit
the eigenvectors of the fiber transfer matrix T as transmit polarizations. We
are not interested in the discussion of distortion compensation techniques, but
this fact allows us to describe the signal propagation as a superposition of the
transmitted signals over the two eigenvector polarizations. However, this is possible
only when the birefringence is frequency-independent. When frequency-dependent
perturbations are considered, the eigenvectors of T (z, ω) are frequency-dependent
and so no more useful. In this scenario, the role of polarizations able to propagate
undistorted and independently on one another is assumed by the principal states
of polarization described in the next section.
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Figure 3.10: Constellations at the end of the first segment over the two eigenpolarizations.
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Figure 3.11: Constellations at the fiber end over x- and y-polarizations.
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3.3.3 Principal States of Polarization

For a fiber with non-uniform birefringence modeled as a concatenation of different
segments, the eigenpolarizations are no more the eigenvectors of the propagation
operator U , even though they are the eigenvectors of the individual propagation
operators Ui. Hence, a signal sent along one input eigenmode does not propagate
independently on the signal transmitted on the other mode (if present) or on the
delayed replica(s) present on the other eigenmode. Principal States of Polariza-
tion, discovered by Poole and Wagner in 1986 ([PW86]), solve the issue (to a
first-approximation) of having a polarization along which the signal is received
undistorted and are also a helpful theoretical tool in understanding the dispersion
phenomenon under discussion. They are defined as the pair of orthogonal input
polarizations {|p̂+(z = 0)⟩ , |p̂−(z = 0)⟩} whose corresponding output polarizations
{|p̂+(z, ω)⟩ , |p̂−(z, ω)⟩} are frequency-independent to first order in a narrow band-
width ([PW86]). Let us adopt the symbol |p̂(z, ω)⟩ to indicate one of the two PSPs
and the shorthand notation |p̂(z = 0)⟩ ≡ |p̂0⟩. Then, the definition of PSPs is

d |p̂D(z, ω)⟩
dω

= 0 (3.33)

where
|p̂(z, ω)⟩ := e−jΦPSP (ω) |p̂D(z, ω)⟩ (3.34)

Eq.(3.34) separates the frequency-varying phase ΦPSP of a PSP from its direction
|p̂D(z, ω)⟩ (D stands for “direction”), which, thanks to (3.33), is approximately
frequency independent for ω ∈ (−∆ω + ω0, ω0 +∆ω) with ∆ω ≪ ω0. Imagining
to expand |p̂D(z, ω)⟩ in a Taylor series, this last point clarifies the meaning of the
statement that the PSP approximation is valid for first-order in frequency. Note
that, on the opposite, the direction of a generic input polarization depends on
frequency.

To prove the existence of the PSPs, we assume to be transmitting a modulated
signal aIN(ω) over an input polarization coincident with a PSP: |ŝ(z, ω)⟩ ≡ |p̂0⟩.
Since the input polarization and its phase can be freely chosen at the transmitter
side, they are always assumed frequency-independent, regardless of the fact that
they are PSPs or not. The received field can be expressed as usual as

| ˜︁E(z, ω)⟩ = T (z, ω) | ˜︁E(z = 0, ω)⟩ ,
T (z, ω) = e−jΦc(z,ω)U (z, ω)

(3.35)

where Φc(z, ω), defined in Eq.3.25, is the common phase factored out from T .
Then,

| ˜︁E(z, ω)⟩ = T (z, ω) |E(z = 0, ω)⟩ ⇔
aOUT (ω) |p̂(z, ω)⟩ = e−jΦc(z,ω)U(z, ω)aIN(ω) |p̂0⟩

(3.36)
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where aOUT (ω) is the complex envelope at the output. Given that, as usual, we
are considering unitary transfer matrices T and U , the transmitted and received
envelopes aOUT and aIN are equal and so cancel out each other. Hence, from
Eq.3.36 we get

|p̂(z, ω)⟩ = e−jΦc(z,ω)U(z, ω) |p̂0⟩ (3.37)

Differentiating Eq.3.37 with respect to ω yields:

d |p̂(z, ω)⟩
dω

=
d(e−jΦc(z,ω)U(z, ω) |p̂0⟩)

dω

⇒d(e−jΦPSP (ω) |p̂D(z, ω)⟩)
dω

=
d(e−jΦc(z,ω)U(z, ω) |p̂0⟩)

dω

(3.38)

Exploiting the definition (3.33) of a PSP,

de−jΦPSP (ω)

dω
|p̂D(z, ω)⟩+ e−jΦPSP (ω)

d |p̂(z, ω)⟩
dω

=
de−jΦc(z,ω)

dω
U(z, ω) |p̂0⟩+

+ e−jΦc(z,ω)
dU(z, ω)

dω
|p̂0⟩

(3.39)

By definition of PSPs,
d |p̂D(z, ω)⟩

dω
= 0, hence:

− jΦ′
OUT (z, ω)e

−jΦPSP (z,ω) |p̂D(z, ω)⟩ = −jΦ′
c(z, ω)e

−jΦc(ω)U(z, ω) |p̂0⟩+
+ e−jΦc(z,ω)Uω(z, ω) |p̂0⟩ (3.40)

where Φ′
OUT (z, ω) ≡

dΦPSP (z, ω)

dω
.

Recalling that e−jΦPSP (z,ω) |p̂D(z, ω)⟩ = |p̂(z, ω)⟩ = e−jΦc(z,ω)U(z, ω) |p̂0⟩ we
have:

−jΦ′
OUT e

−jΦcU |p̂0⟩ = −jΦ′
ce

−jΦcU |p̂0⟩+ e−jΦcUω |p̂0⟩ (3.41)

where the dependencies on z and ω have been hidden for brevity. Now, simplifying
e−jΦc on both sides and moving the first term on the right-hand side to the left-hand
side:

(−jΦ′
OUT + jΦ′

c)U |p̂0⟩ = Uω |p̂0⟩ (3.42)

Setting k = −Φ′
OUT +Φ′

c and multiplying by U−1 = UH (unitarity) on both sides,
yields the final eigenvalue equation:

k |p̂0⟩ = −jUHUω |p̂0⟩ (3.43)
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Solving the eigenvalue equation 3.43 allows to determine the PSPs of the fiber,
which are the eigenvectors of

G = −jUHUω (3.44)

referred to as the group delay operator. The corresponding output PSPs can be
computed simply through the transfer matrix T , since the following relation has
been used in the proof above:

|p̂(z, ω)⟩ = T (z, ω) |p̂0⟩ (3.45)

In this way we have proven that there exist in any fiber subject to non-uniform
birefringence a pair of input polarizations, the PSPs, whose corresponding output
states are frequency-independent to first order. That is, the PSPs are the analogous
of the eigenpolarizations for the case of fiber with uniform birefringence. However,
it is important to remark that PSPs and eigenpolarizations coincide only for a fiber
with uniform birefrigence and for the first segment of a fiber characterized by a
cascade of segments. In general, PSPs are z-dependent since being the eigenvectors
of −jUHUω, which is z-dependent itself. This is consistent with the fact that the
PSPs are not the eigenvectors of the propagation operator U and, thus, do not
have the same polarization at both input and output. PSPs are also in general
frequency dependent, but in the so-called first-order PMD approximation, whose
validity is discussed in Sec.3.3.6, they are considered frequency-independent.

Furthermore, the PSPs at any z can be shown to form an orthonormal basis
which allows to represent any polarization as a combination of them [PW86]. As it
going to be clear later on, this makes the PSP a powerful tool to describe signal
evolution in a linearly perturbed fiber.

The matrix −jUHUω is referred to as the group delay operator because its
eingevalues are related to the GDs of the PSPs. Indeed, if we identify the first-
order derivative of a phase term with respect to frequency as a propagation delay
(cfr. Eq.3.9 and Eq.3.25), then, τ± := Φ′

OUT± (ΦOUT± defined in Eq.3.34) is
interpreted as the group delay of the two output principal states. Moreover,
k = −Φ′

OUT +Φ′
c = τ±− τc (k defined in (3.43)) is the difference between the group

delay of a pulse sent over one PSP (τ+ for the slow PSP, τ− for the fast PSP) and
the common delay Φ′

c defined in Eq.3.25.
In addition, it can be observed that k = ±∆τ/2 by directly computing k, as

done by Poole and Wagner [PW86], which results to be:

k± = ±
√︁
∥u′

1∥2 + ∥u′
2∥2 (3.46)

where u′
1, u

′
2 are the derivatives (w.r.t. ω) of the element of position (1, 1) and (1, 2)

of U(z, ω).
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Or, following the derivation of Gordon and Kogelnik [GK00], by first proving
that −jUHUω = +jUωU

H (a way is rearranging some passages above, another is
offered in [GK00]), which then implies that −jUHUω is Hermitian. Furthermore,
the GD operator has zero-trace and so the last two properties (hermitianity and
zero-trace) imply its eigenvalues are real and sum to zero [GK00]. Thus, they can
be indicated as k = ±∆τ/2 and, hence, the common group delay is also the average
of the PSP GDs Φ′

c = τc = (Φ′
OUT,+ + Φ′

OUT,−)/2, as expected from Eq.3.25.
The difference between the delays τ± = Φ′

OUT,± of the two output PSPs is
referred to as differential group delay (DGD), i.e.,

∆τ = τ+ − τ− (3.47)

Hence, we just proven that the DGD can be directly computed from the eigenvectors
of the GD operator as

∆τ = k+ − k− = 2
√︁

∥u′
1∥2 + ∥u′

2∥2 (3.48)

which provides the desired link between the GD operator and the (differential)
group delay of the PSPs and justifies the name of “Group Delay” operator. Notice
that, fixed the fiber length, the DGD is in general a time-varying random quantity
([Poo+88; NJ05]), since the fiber perturbations are assumed random along the fiber
and time-varying. But if the perturbations were exactly known to the point of
being able to compute the transfer matrix of the fiber, then the DGD could be
computed as 3.48.

The group delay operator can also be introduced in a form different to the
eigenvalue equation (see, e.g., [GK00; Pal14]). Such a form follows from the
derivative of a generic received polarization |ŝ(z, ω)⟩, first line of Eq.3.38, which
we repeat here for convenience:

d |ŝ(z, ω)⟩
dω

=
d(e−jΦc(z,ω)U(z, ω) |ŝ(z = 0)⟩)

dω

Working on the right-hand-side, we can write:

d |ŝ(z, ω)⟩
dω

=
d(e−jΦc(z,ω)U (z, ω) |ŝ(z = 0)⟩)

dω
= (−jΦ′

ce
−jΦcU + e−jΦcUω) |ŝ0⟩

= (−jΦ′
ce

−jΦc + e−jΦcUωU
−1)U |ŝ0⟩

= (−jΦ′
c +UωU

−1)e−jΦcU |ŝ0⟩
= −j(Φ′

c + jUωU
−1)T |ŝ0⟩

= −j(Φ′
c + jUωU

−1) |ŝ(z, ω)⟩

(3.49)
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with |ŝ0⟩ ≡ |ŝ(z = 0)⟩. Thus, we can conclude that the derivative of a generic Jones
polarization vector |ŝ(z, ω)⟩ is

d |ŝ(z, ω)⟩
dω

= −jG′ |ŝ(z, ω)⟩ (3.50)

where
G′ = (Φ′

c + jUωU
−1) (3.51)

is the group-delay operator. At first it might seem that G′ is different from the
group delay operator defined in Eq.3.44 due to the presence of Φ′

c and due to
jUωU

−1 instead of −jUHUω. The former is a scalar, so it does not modify the
direction of the output vector of jUωU

−1, whatever the input, in particular, in the
relevant case of the eigenvectors. However, it does modify the amplitude. jUωU

−1

is actually identical to −jUHUω thanks to the hermitianity of the matrix, as
explained above. So, the eigenvectors of G′ are parallel to the eigenvectors of G
while the eigenvalues of G′ are bigger than the eigenvectors of G by the average
delay τc = Φ′, which means that the eigenvalues of G′ represent the absolute delays
of the two PSPs (while the eigenvalues of G represent the delay deviations from
the mean value).

From another perspective, if the output polarization is one of the two PSPs,

|ŝ(z, ω)⟩ ≡ |p±̂(z, ω)⟩, we expect
d |p̂(z, ω)⟩

dω
to be parallel to |p̂(z, ω)⟩ in order to

satisfy the definition of PSP as frequency-independent to first order. This means

that the PSP
d |p̂(z, ω)⟩

dω
has to be an eigenvector of G′, which is identical to be an

eigenvector of jUωU
−1.

The orthonormality of the Principal States, together with the fact that a pulse
sent along one of them does not suffer from pulse broadening to first order, allows
to write the field transmitted along a generic input polarization:

|ŝ(z = 0)⟩ = c+ |p̂+(z = 0)⟩+ c− |p̂−(z = 0)⟩

as a superposition of the replicas over the two PSPs (neglecting the second- and
higher-order terms on the PSP output phase, so that ΦPSP (ω) = ΦPSP (ω0) +
ωΦ′

PSP (ω0)), i.e.,

|E(z, t)⟩ = c+e
−jΦPSP+ (z,ω0) |E(z = 0, t− τ+)⟩ |p̂D+(z)⟩+

c−e
−jΦPSP− (z,ω0) |E(z = 0, t− τ−)⟩ |p̂D−(z)⟩ (3.52)

where c± are the complex weighting/projection coefficients and Eq.3.34 has been
exploited. Eq. 3.52 also implies that the PSPs exhibit maximum and minimum
propagation delays among all possible transmit polarizations.
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3.3.4 Nonuniform Frequency Dependent Birefringence

An example of signal transmission through a fiber with nonuniform frequency-
varying birefringence is shown in Fig.3.12a, where a Gaussian pulse has been
transmitted over a 100 km fiber with segment length LS = 1 km. The envelope
detected along the same polarization employed at the transmitter side, that is,
linear 45◦, is qualitatively a superposition of the envelopes over the two PSPs,
yet it is not just a summation between the envelopes due to the phase mismatch
related to the terms c± of Eq.3.52. The envelope obtained by direct-detection
(which however can no more be considered to be detected along the “received
polarization” because, due to frequency-dependent birefringence, polarization is
frequency dependent and so there is no more a “received polarization”, conversely
to the case frequency-independent birefringence discussed in Sec.3.2.4) is shown as
well and it results to be less distorted.

Finally, Fig.3.12b plots the same case as Fig.3.12a, except that the birefringence
is set uniform for the whole fiber length. The comparison of the two figures confirms
that the presence of non-uniform birefringence, and thus of mode coupling, is bene-
ficial in reducing the DGD between the two PSPs, as was anticipated in Sec.3.2.1.
It can be shown that the DGD reduces by reducing the segment length (fixed the
fiber length) or increasing the birefringence vector variance ([Shemirani:2009;
Jua+14]) or changing the statistics of the birefringence stochastic process in order
to, loosely speaking, increase the birefringence “randomization” (e.g., choosing the
eigenpolarizations to be uniformly distribution on the Poincaré sphere rather then
following a random walk process as we did).

From another perspective, the mixing of pulses with different amplitudes and
delays at every interface between consecutive sections intuitively suggests that the
broadening of the signal is lower than it would be for a fiber with the same length
but uniform birefringence.

What has been stated about Fig.3.12b and Fig.3.12a is consistent with the
theoretical knowledge that the mean DGD increases linearly with distance when
the birefringence is uniform. Under this circumstance, the DGD can be computed
with (3.8). On the opposite, the mean DGD increases with the square-root of
distance when the fiber is nonuniform.

The effectiveness of the PSPs as polarizations along which the signal propagation
is undistorted to first-order can be qualitatively appreciated in the examples below.
We have considered a fiber of length L = 100 km, with sections of length LS = 1 km
and mean refractive index difference between the two eigenpolarizations ∆n = 10−6;
the symbol rate is RS = 1GBaud. These parameters are enough to consider the
polarization dispersion negligible, as can be observed by graphically inspecting
the received envelope corresponding to a single transmitted Gaussian pulse over a
linear 45◦ polarization, Fig.3.13.
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Figure 3.12: Envelope distortion comparison between the case of relatively high mode
coupling (3.12a) and no mode coupling (3.12b) for a fiber with average refractive index
difference ∆n = 3.5 · 10−6 and length L = 100 km; symbol rate RS = 1GBaud.
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Figure 3.13: Single transmitted Gaussian pulse over a fiber of length L = 100 km, with
sections of length LS = 1 km and mean refractive index difference between the two
eigenpolarizations ∆n = 10−6. Observe the low DGD.
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However, if one considers a PM multiplexed system with unipolar PAM and
transmits two different signals along two orthogonal polarizations x and y, as
depicted in Fig.3.14, then the received envelopes over x- and y-polarizations show
significant distortion due to mode coupling. In particular, because of the presence
of a pulse on the other mode, pulses appear in correspondence to symbol times
where a ′0′ has been transmitted. Moreover, when two pulses are contemporary
present on the two modes, some energy exchange is present producing overshoots
and undershoots, see Fig.3.14. Detection over the 2 PSPs does not help alone
because the transmission happened along x and y polarizations, not along the input
PSP. Hence, over the two input PSPs a combination of both signals is present and
so at the output PSPs show a combination of them as well.

−3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

Normalized Time t/TS (symbol time)

|⟨s
|E

⟩|
(A

.U
.)

Tx x-polarization Tx y-polarization
Output x-polarization Output y-polarization

Figure 3.14: PM system transmitting and receiving two independently modulated signals
at symbol rate RS = 1GBaud over the two orthogonal x- and y- polarizations. Fiber
of length L = 100 km, with sections of length LS = 1 km and mean refractive index
difference between the two eigenpolarizations ∆n = 10−6.

However, if the channel input PSPs are estimated in advance, chosen as pair of
transmit polarizations and detection performed along the output PSPs, then the
received signals show significantly less distortion, as visible in Fig.3.15. (Notice that
in case frequency-independent birefringence, as seen in Sec.3.3.2, the same analysis
could be done exploiting the eigenvectors of T instead of the PSPs, obtaining
perfect compensation.)
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This qualitative graphical analysis shows the effectiveness of PSPs as to limit
signal distortion due to frequency-varying birefringence and mode coupling, being
the PSPs independent on one another and not suffering from polarization dispersion
to first order. Clearly, two issues related to this method are the availability of a
channel estimate at the transmitter side and the rate at which the PSPs have to be
estimated again because of variations in the channel response. However, assessing
the feasibility of PSPs for distortion compensation is not the focus of the present
work. It is worth remarking that when the first-order approximation is not fulfilled,
that is, when the signal band is too large (strictly speaking, larger than the PSP
band, see Sec.3.3.6), the PSPs are not much effective since higher-order effects
become predominant.
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Figure 3.15: PM system transmitting and receiving two independently modulated signals
at symbol rate RS = 1GBaud over the two orthogonal PSPs. Fiber of length L = 100 km,
with sections of length LS = 1 km and mean refractive index difference between the two
eigenpolarizations ∆n = 10−6.

3.3.5 PMD Vector

The Polarization-Mode Dispersion (PMD) vector is a non-unit Stokes vector defined
as

τ (z, ω) := ∆τ(z, ω)p̂+(z, ω) (3.53)

where |p̂−(z, ω)⟩ is the slow PSP for the position z of interest. Notice that the
PMD vector is, in general, frequency-dependent, because both magnitude (DGD)
and direction (slow PSP) can vary with frequency. It is considered frequency-
independent when the first-order PMD is assumed. The PMD vector can be
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expanded as [SM05; NJ05]:

τ (ω0 + ω) = τ0 + ωτ1 +
1

2
ω2τ2 + . . . (3.54)

where τ0 ≡ τ (ω = ω0) is the term referred to as first-order PMD vector, while n-th

order derivative τn ≡ dnτ

dωn
is referred to as (n+ 1)-th order PMD vector [SM05;

NJ05; PN97].
The PMD vector is useful because it allows to draw a link between the time-

domain description of the polarization dispersion phenomenon portrayed in the
previous section and the frequency domain one, which we present now. In Sec.3.2.5
it has been observed that, for the case of uniform birefringence, the field polariza-
tion rotates with frequency about the principal axes (i.e., the eigenpolarizations)
on the Poincaré sphere, in case the transmit polarization is different from the
eigenpolarizations. The theoretical and experimentally verified existence of PSPs
(e.g., [Poo+88]) allows to extend that description to the case of fibers with non-
uniform birefringence. Indeed, starting from the expression for the derivative of a
polarization vector, Eq.3.50, it is possible to prove (see [GK00] or, in a different
way, [FP91]) that the field output polarization evolves with frequency (fixed a
position z) as [Poo+88; PN97; NJ05; SM05; GK00]

dŝ

dω
= τ × ŝ (3.55)

Notice that in the first-order PMD approximation, the PMD vector has fixed
direction τ0 and so the previous equation describes a precession of the polarization
state about the first-order PMD vector, that is, about the PSP. In other words,
Eq.3.55 is the law of infinitesimal rotation for the polarization in the frequency
domain. Observe the duality with the law of infinitesimal rotation for the position-
domain, Eq.3.18.

If one considers the higher-order terms of the PMD vector, then the evolution
is more complex and it is no more exactly a precession about a fixed axis. For
example, if the PMD vector is composed of the first two terms of the expansion
3.54, the exact expression of the polarization state derivative becomes (applying
Eq.3.55):

dŝ

dω
= τ0 × ŝ+ ωτ1 × ŝ (3.56)

However, one can always narrow the frequency range in order for the first-order
approximation to be accurate enough and describe the polarization evolution as a
precession about the PSP at a certain fixed frequency ω = ω0.

Eq.3.55 tells that the higher the DGD |τ | = ∆τ (rate of rotation of the polar-
ization ŝ on the Poincaré sphere) and the misalignement between the polarization
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ŝ and the PSP direction τ̂ , the higher the frequency-variation of the polarization
vector. If, e.g., the transmitted polarization coincides with one PSP, then the
cross-product τ × ŝ goes to zero and no polarization variation with frequency
happens. On the opposite, if ŝ is equally split between the two PSPs, there is
maximum angular excursion for ŝ on the Poincaré sphere. This is consistent
with the time-domain description of Eq.3.52 where the higher the DGD and the
decomposition among the two PSPs, the higher the signal broadening.

For completeness, we report another insightful relation which can be assumed
as an alternative definition of PSPs ([NJ05]) or derived (see [GK00]):

τg = τc +
1

2
τ · s(z = 0) (3.57)

where τg is the group delay of the received signal | ˜︁E(z, ω)⟩ of Eq.3.52 and τc is
the common group delay defined in Eq.3.25. Eq.3.57 basically expresses the signal
delay τg as an average between the two PSPs delays, weighted by the coefficients
of the decomposition of s along the two PSPs.

Notice that τg is not a propagation delay associated to a replica of the trans-
mitted signal, that is, it is not possible to write something like |E(z = 0, t− τg)⟩,
because the signal is received distorted and so it cannot be just a replica of the
transmitted one. Then, it is the propagation delay of the distorted envelope.
However, if the signal polarization s(z = 0) is parallel to one of the input PSPs,
then Eq.3.57 provides τg ∈ {τ+, τ−} (because two orthogonal Jones vectors, like
the eigenpolarizations or the PSPs, are antiparallel in Stokes space), consistently
with the fact that pulses transmitted along the PSPs have maximum and minimum
delay, as already observed from Eq.3.52.

Higher-Order PMD

We will not discuss about the PMD terms in Eq.3.54 of order greater than the first
in detail. It is enough to mention that their presence describes a frequency-variation
of the PMD vector τ . Concerning the second-order PMD, the dependence of ∆τ
on the frequency gives rise to polarization-dependent chromatic dispersion (PCD)
which broadens or compresses the received pulses [PN97; NJ05]. The dependence
of the PMD vector direction τ̂ = p̂−(z, ω) on frequency accounts for the PSP
depolarization (i.e., rotation) with frequency, which yields envelope distortions
like overshoots [NJ05]. An example of higher-order effects is given in Fig.3.16a
for the time-domain, in Fig.3.16b for the PSP evolution over the Poincaré sphere
in frequency-domain. In this case, the combination of birefringence, signal band
and distance produces a significant distortion of the received envelope such that
we are no more in the first-order PMD assumption. In particular, notice that
the received signals appear to be a train of pulses with different delays, which
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is consistent with the bifurcation idea of polarization mode dispersion and mode
coupling. Nevertheless, the received envelope can be recognized to be a sort of
superposition of the two replicas over the PSPs.
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Figure 3.16: Higher-order PMD effects on the received envelope (Fig.3.16a) and PSP
direction in frequency (Fig.3.16b) at a symbol rate RS = 1GBaud for a fiber with length
L = 100 km, section length LS = 1 km and mean refractive index difference ∆n = 2 · 10−5

3.3.6 Statistics of PMD

It has been mentioned in Sec.3.3 that the birefringence vector β is modeled as
a stochastic process owing to the fact that any fiber suffers a different profile
of perturbations and it changes rapidly in a single fiber owing to the change
of environmental conditions (e.g., vibrations, temperature). This implies that
the PMD vector τ is a stochastic processes as well, whose statistics have been
extensively studied in the literature [PWN91; FP91; SM05; NJ05; PN97]. A core
equation for the statistical analysis is the universal or dynamical PMD equation
[PWN91; FP91; PN97; GK00; NJ05; SM05] which directly connects the PMD and
birefringence Stokes vectors as

∂τ (z, ω)

∂z
=

∂β(z, ω)

∂ω
+ β(z, ω)× τ (z, ω) (3.58)

The derivation of 3.58 starts by differentiating the equation for the birefringence
vector Eq.3.18 w.r.t. ω and the equation for the dispersion vector Eq.3.55 w.r.t. z
and then requires little algebraic manipulation [PWN91].
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Usually, the way the dynamical equation is used consists in fixing the statistics
of the birefringence stochastic process and retrieving the statistics of the PMD
stochastic process, either by numerical solution [PWN91] or through analytic
methods [FP91].

An interesting result is that the DGD of the overall fiber is Maxwellian dis-
tributed [PWN91; FP91; PN97; NJ05; SM05]. Indeed, if the fiber birefringence
is modeled as a random-walk process, the PMD vector τ turns out to converge
to a Gaussian vector (i.e., a vector with i.i.d. Gaussian components [PWN91]),
given that the PMD vector can be seen to be in some sense the sum of Gaussian
vectors, the PMD vectors of the single segments [FP91; GK00]. Hence, the DGD,
being the modulus of a Gaussian vector, is Maxwellian distributed. Being the
DGD Maxwellian distributed, it can assume particularly high values, even though
with low probability. This last aspect has two consequences. The first is that
it is not possible to adopt a worst-case approach in designing systems which are
PMD-tolerant, but a statistical approach considering the outage probability for a
certain threshold of PMD, i.e., the probability that the DGD is beyond a certain
value considered the boundary for the fault-rejection capabilities of the system, has
to be employed. The second implication is that extreme events are rare to happen
in simulation if every time a random realization of fiber channel is considered.
Then, a possible solution is to simulate beforehand a large number of realizations
for a specific fiber and store the worst case (or the worst-acceptable case), together
with other realizations of interest (e.g., corresponding to an average value of DGD).

Fig.3.17b presents the DGD histogram obtained through simulating 105 fiber
realizations of 1000 fiber segments each of length 100m and ∆n = 10−6 (the
eigenpolarizations of a fiber realization are depicted in the Poincaré sphere in
Fig.3.17a) compared against the theoretical best-fitting Maxwellian curve. The two
curves are close to each other, confirming the theoretical expectations.

Other two parameters of great importance in the statistical analysis of PMD are
the mean value of the DGD ⟨∆τ⟩ and the mean square value of the DGD ⟨∆τ 2⟩,
where, according to the definition, the averaging is performed over an ensamble
of statistically equivalent fibers and for a fixed frequency [NJ05, p. 12]. However,
the ensamble averages are hard to compute in practice due to the lack of an
ensamble of fibers. Hence, it has been shown [PWN91; NJ05] (through comparison
of simulation and experimental results) that the average can be computed in the
frequency domain ∆τ(ω) from a single fiber realization [NJ05, p. 17].

Indeed, as already mentioned, the DGD is frequency-dependent. This computa-
tion is most common in experimental analysis where usually only one or few fibers
are available. It is even possible to compute the average from fiber realizations
at different time instants of the same physical fiber, because of the time-varying
property of the stochastic fiber channel [NJ05, p. 25]. Yet, the time scale of such
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channel variations can be particularly long depending on the situation, hence the
method might be practically unfeasible [NJ05, p. 17]. Finally, an analytic expression
for ⟨∆τ 2⟩ is [NJ05]:

⟨∆τ 2⟩ = 2(∆τbLC/LB)
2(L/LC + e−L/LC − 1) (3.59)

where LC is the correlation length and LB is the beat length.
We tried to estimate ∆τ through

√︁
⟨∆τ 2⟩, which is not based on any rigorous

derivation, but it is just a reasonable estimation, and through spectral averaging
as a way of applying the definition and we obtained close values. Poole et. al.
observed in his simulations [PWN91] that the discrepancy between the root-mean
square value

√︁
⟨∆τ 2⟩ and ∆τ is at most of the 8%, confirming the sufficient quality

of the approximation for our interests.
Another relevant concept which emerges from the study of the PMD statistics

is the PSP bandwidth [NJ05] which is defined as the signal bandwidth ∆fPSP over
with the first-order PMD approximation holds. Hence, values of DGD separated
by a frequency spacing ∆f > 6∆fPSP are uncorrelated. A practical formula to
compute ∆fPSP is the following [NJ05, p. 12]:

∆fPSP = 125GHz/∆τ (3.60)

The PSP band can be equivalently estimated as the bandwidth of the PMD
correlation function [SM05; NJ05]:

⟨τ (f)τ (f +∆f)⟩

This is reasonable since the correlation function informs on the stregth of the
dependence of two values of a certain fuction, τ (f) here, at a certain distance, ∆f
in this case.

3.4 Harmonization
In the previous sections we have shown that it is possible to model and simulate
the fiber channel through the use of the transmission matrix T generated as
concatenation of segment matrices Ti = CHT ′C, where T ′ is related to the
ordinary and extraordinary propagation constants by T ′ = diag(e−jβΨz, e−jβχz)
and C contains the eigenpolarization vectors (see Eq.3.12 and Eq.3.24). We have
introduced T through reasonable and experimental-based considerations about
birefringence in a fiber, but we did not show its consistency with the Helmoltz
wave equation (2.34) presented in Ch.2, which is fundamental since deriving from
the Maxwell’s equations. Furthermore, in the previous sections we have presented
the local birefringence vector β(z, ω) which describes the local properties of the
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Figure 3.17: Simulation of 105 fiber realizations of N = 1000 sections each of length
LS = 100m, total fiber length L = 100 km, with non-uniform birefringence and mean
refractive index difference ∆n = 10−6. The statistical properties of the generated
birefringence vector are described in Sec.3.3. In 3.17a a realization of the eigenpolarizations
is shown; in 3.17b the Probability Density Function retrieved through the simulation is
compared against the Maxwellian fitting curve.

birefringence which vary along fiber length. Such a vector describes also the
evolution with z of a generic input polarization state s through Eq.3.18.

Aim of the present section is to show the connections among T proposed in
Eq.3.12 and in Eq.3.24, the birefringence vector β (to understand in which way the
components of β are related to the propagation constants used in T ′ of Eq.3.12)
and the LSE of Ch.2.

Let us start with rewriting the Helmoltz equation (5.35) with the Jones vector
notation, as

∂2 | ˜︁E(z, ω)⟩
∂z2

+ εr(x, y, z)k
2
0 | ˜︁E(z, ω)⟩ = 0 (3.61)

where we recall that εr(x, y, z) is the relative dielectric permettivity tensor.
In truth, the Helmoltz equation (2.34) of Ch.2 was written for the ideal fiber,

in which case εr is the ideal dielectric tensor and there is no birefringence, and for
a single frequency, while here we are considering a modulated field. The Helmoltz
equation for the case of linear perturbations and a generic transmitted signal is
(5.35) derived in Ch.5. Nonetheless, concerning the linear part, it is similar to
(2.34), with the differences that in (5.35) εr is the actual perturbed dielectric and
not the ideal one, and instead of phasor there is the transmitted signal.

We factor out the contribution of the common phase e−jβc(ω)z (βc(ω) defined in
(3.9)), which is a fast-varying phase, as already done several times (e.g., in (3.13)),
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as
| ˜︁E(z, ω)⟩ = e−jβcz |s(z, ω)⟩ (3.62)

where |s⟩ still contains information on the complex envelope like | ˜︁E⟩, and a slow-
varying phase. We indeed assume that |s⟩ and εr are slow-varying with z (adiabatic
approximation [GK00]), which in practice means that the second-order derivatives
of these quantities with respect to z are negligible.

In addition, we express the dielectric tensor εr as a function of the local
birefringence Stokes vector β, like [GK00, Sec.6]

εk2
0 = β2

cI + βcβ · σ (3.63)

where σ is the vector collecting the three Pauli spin matrices and the product has
to be intended as [GK00]

β · σ = β1σ1 + β2σ2 + β3σ3 (3.64)

where σi are the Pauli spin matrices and βi are the three components of β.
Equation 3.63 expresses the dielectric tensor as a sum between a common

component represented by the common propagation constant βc and the deviations
of the components due to birefringence.

Inserting 3.62 and 3.63 in 3.61 and exploiting adiabaticity we retrieve the
following propagation equation, that is the linear Schrödinger equation (LSE)
written with a mixture of Jones and Stokes vector formalism [GK00, Sec.6]

∂ |s(z, ω)⟩
∂z

+
1

2
jβ · σ |s(z, ω)⟩ = 0 (3.65)

Let us now consider a piece of fiber with uniform birefringence so that εr(x, y, z) =
εr(x, y) and β(z) = β. The extension of the reasoning to a series of differently
perturbed sections is treated afterwards. Thanks to the uniformity assumption,
Eq.3.65 becomes a first-order linear differential equation with constant coefficients
and, thus, admits the exponential solution

|s(z, ω)⟩ = e−j 1
2
β(ω)·σz |s(z = 0, ω)⟩ = e−j 1

2
∆β(ω)β̂·σz |s(z = 0, ω)⟩ (3.66)

where the reason for the factorization of β(ω) = ∆β(ω)β̂ will be clear soon. Notice
that −β̂ · σ and e−

1
2
j∆ββ̂·σz are 2× 2 Jones matrices.

The matrix exponential is defined through a matrix power series, but in the
case of a diagonalizable matrix, the expression is simpler. Let us first diagonalize
β̂ · σ as

β · σ = C−1ΛC (3.67)
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where Λ = diag(λ1, λ2) is a diagonal matrix whose diagonal elements λ1, λ2 are the

eigenvalues of β̂ · σ and C =

[︃
⟨v1|
⟨v2|

]︃
has as rows the Hermitian conjugate of the

eigenvectors {|v1⟩ , |v2⟩} of C. Then, the exponential matrix of Eq.3.66 becomes
([wik]):

e−j 1
2
∆ββ̂·σz = C−1e−j 1

2
∆βΛzC (3.68)

Notice that since −j 1
2
∆βΛz is a diagonal matrix, its exponential e−

1
2
j∆βΛz is a

diagonal matrix being the element-wise exponential of −j 1
2
∆βΛz ([wik]). Hence,

Eq.3.68 already provides a diagonalization of −1
2
j∆ββ̂ · σz. Then, Eq. 3.68 also

implies that a diagonalizable matrix and its exponential have the same eigenvectors.
Moreover, the eigenvalues of the exponential matrix are the exponential of the
eigenvalues of the argument matrix.

The last step consists in finding the expression of the eigenvectors |v1⟩ , |v2⟩ to
compute C and the eigenvalues λ1, λ2 to compute Λ to calculate the diagonalization
(3.67) of ŝ · σ. To do so, it is useful to exploit the property [GK00]

|ŝ⟩ = ŝ · σ |ŝ⟩ (3.69)

where |ŝ⟩ is the unit Jones vector corresponding to the generic unit Stokes vector ŝ.
Eq.3.69 states that an eigenvector of the matrix ŝ · σ is simply |ŝ⟩ with eigenvalue
1. It can be easily shown (from Eq.3.10 of [GK00]) that the Stokes vector ŝ⊥
perpendicular to ŝ is the other eigenvector of ŝ · σ, with eigenvalue −1.

Hence, the eigenvectors |v1⟩ , |v2⟩ of β̂ · σ are the Jones vectors |êχ⟩ and |êΨ⟩
corresponding to the Stokes vectors β̂ ≡ êχ and eΨ (which is perpendicular to
eχ), with eigenvalues +1 and −1. Then, the C and Λ of Eq.3.67, containing the
eigenvectors and eigenvalues of β̂ · σ, respectively, are

C =

[︃
⟨eΨ|
⟨eχ|

]︃
Λ =

[︃
−1 0
0 +1

]︃
(3.70)

Thus, Eq.3.68 assumes the form:

C−1e−j 1
2
∆βΛzC = C−1e

−j 1
2
∆β

⎡⎣−1 0
0 +1

⎤⎦z
C = C−1

[︃
e+j 1

2
∆βz 0

0 e−j 1
2
∆βz

]︃
C (3.71)

Hence, the solution (3.66) of the LSE can be written as

|s(z, ω)⟩ = e−j 1
2
β(ω)·σz |s(z = 0, ω)⟩ = C−1

[︃
e+j 1

2
∆β(ω)z 0

0 e−j 1
2
∆β(ω)z

]︃
C |s(z = 0, ω)⟩

(3.72)
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which shows that the transfer matrix for a fiber segment with uniform birefringence
is

T = C−1

[︃
e+j 1

2
∆βz 0

0 e−j 1
2
∆βz

]︃
C (3.73)

Eq.3.73, derived from the solution of the LSE 3.65, is exactly the transfer matrix
which has been presented in Eq.3.12 through reasonable and experimental-based
considerations on the physics of system and has been used in the simulations.
Moreover, its formulation is consistent with the definition of the Stokes vector of
local birefringence β since it has been used in the above proof.

Moreover, defining

B :=
1

2
jβ · σ (3.74)

we obtain from (3.65), (3.67) and (3.70) that

B = β · σ = C−1

[︃
−∆β 0
0 +∆β

]︃
C (3.75)

and so the LSE (3.65) can be written equivalently as

∂ |s(z, ω)⟩
∂z

+
1

2
jB |s(z, ω)⟩ = 0 (3.76)

Besides the Jones vector formalism, Eq.(3.76) is the most common way of expressing
the LSE for the 2-polarization mode case in literature and, from a symbolic
perspective, identical to the LSE for the multimode case (see (4.1) in Ch.4).

Eq.(3.75) provides again the same explanation of the out-diagonal / coupling
coefficients of B matrix given in Sec.3.2.2: they are the result of both the bire-
fringence intensity ∆β and the misalignment between the pair of input orthogonal
polarizations and the pair of eigenpolarizations of the present fiber segments. The
higher the birefringence and the misalignment, the higher the coupling coefficient.

The exact knowledge of ∆β and C for every fiber segment in a real fiber
is practically impossible and, actually, irrelevant for long-haul fibers where the
statistical properties of PMD depend only on the mean square value of β (or,
equivalently, of τ ). Yet, Eq.3.75 offers an interesting insight on the origin and
scaling of coupling coefficients.

Furthermore, it is possible to prove (see [GK00, Sec.6]) that the infinitesimal
law of rotation 3.18 can be derived from Eq.3.65, which confirms once more the
agreement between the LSE, the birefringence vector and its law of infinitesimal
rotation.

To conclude the analysis, when the birefringence is not uniform, the fiber can
be considered as a series of sections short enough to consider the birefringence
constant within each section. Then, the differential equation Eq.3.65 can be solved
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by dividing the integration in intervals corresponding to the sections of uniform
birefringence and solving each differential equation through the methods described
above. Finally, the continuity of the field has to be imposed at the boundary of
each interval which, in this case, means that the output of one segment is the input
of the next one. In this way, the connection between the LSE 3.65 and the channel
transfer matrix computed as the product of the matrices of the single sections,
Eq.3.24, is justified.



Chapter 4

Spatial Mode Coupling

The previous chapter has been dedicated to explain birefringence and mode coupling
phenomena focusing on the case of 2-polarization modes, i.e., polarization-mode
coupling. We now extend these concepts to the generic multimodal case of M = 2N
supported modes, where there are N spatial modes and 2 polarizations for each of
them. In this multimode scenario, both polarization mode coupling and spatial
mode coupling are present.

With recall from Ch.2 that spatial mode coupling refers to the coupling occurring
among modes with different spatial patterns. The coupling among spatial modes of
the same manifold is referred to as intramode coupling, while the coupling among
difference manifolds is called intermode coupling.

The origins of spatial mode coupling are analogous to the polarization mode
ones, i.e., geometrical imperfections and external or internal fiber stresses, like
bends, core ellipticity, torsion or external magnetic fields [Mar74; Pal13; Pal14].
However, a perturbation introducing birefringence does not have to induce also
strong spatial mode coupling, and viceversa. That is, every perturbation has
a different impact on coupling polarizations and spatial modes, with different
perturbations coupling different modal groups and with a different intensity.

The difference in propagation constants ∆βmk = βk − βm between two modes
is called phase mismatch and, for reasons which will be clear later on, it plays a
relevant role in mode coupling. In particular, it is generally true that the higher
the phase mismatch between two modes, the lower the coupling efficiency between
them [Mar74; KHS12; Pal13; Pal14; Agr19]. Hence, polarization mode coupling is
usually stronger than intramode coupling, which is in turn stronger than intermode
coupling. Exceptions are perturbations with a specific spatial frequency which
enhances the coupling between selected modal groups because of the particular
phase mismatch [Mar74; Pal14].

A better understanding of the coupling mechanisms is offered by coupled mode
theory [Mar74; Mar75; PN97], the broad theory under which falls the PSP theory.

57
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Coupled mode theory models the interaction of modes through complex coefficients
κmn appearing in the multimode linear Schröedinger equation (LSE) written in
frequency domain as [Mar75, p. 44]

∂ ˜︁Am(z, ω)

∂z
= −jβm(ω) ˜︁Am(z, ω)− j

M∑︂
k=1

κmk(z, ω) ˜︁Ak(z, ω) (4.1)

where ˜︁Am(z, t) is the excitation coefficients, or modal amplitude, and βm(ω) the
propagation constant of the m-th mode.

In general the coupling effects vary along fiber length. Hence, the coupling
coefficients κmk are z-dependent. However, as for the PMD case, we can define the
correlation length as the length over which such such phenomena are approximately
constant and choose to model the fiber again as a concatenation of uniform segments
(or sections) of length LS equal to the correlation length. Within each segment the
coefficients κmk are constant, while κmk change from a segments to another.

The segment length can be assumed to be in the same range as the section
length for birefringence (see the end of Sec.3.3), i.e., from 10 m to 1 km, depending
on the specific scenario.

The concepts of weak- and strong-coupling regime, which are related to the
correlation length and which have been presented at the end of Sec.3.3, can be
extended to the multimode case, as well.

The LSE 4.1 has the exponential solution for a uniform segment and, exploiting
the same reasoning of Sec.3.3 and Sec.3.4, for a generic series of segments the
channel transfer matrix is the product of the matrices of the single segments as

T (z ∈ [(n− 1)LS, nLS], ω) = e−j(Bideal+Kn)(z−(n−1)LS)

n−1∏︂
i=1

e−j(Bideal+Ki)LS (4.2)

where n = 1, 2, . . . is the index of current segment, LS is the segment length,
Bideal = diag(β1(ω), . . . , βM(ω)) is the matrix of ideal propagation, Kn is the
matrix whose elements are the coupling coefficients κmk for the current segment.
Eq.(4.2) has a slightly cumbersome expression in order to be formally correct, yet
the idea behind it is simple, as explained above.

The coupling among different modes is due to the off-diagonal elements of T
which are present due to the nonzero off-diagonal elements of the coupling matrices
Kn. Such elements introduce the so-called distributed coupling [SKP21], right
because their effect accumulates along fiber length. However, when rotations of
the segment axes or offsets between consecutive segments are considered, we talk
about discrete coupling [SKP21]. Indeed, the matrices correspondent to these
effects are directly multiplied to Kn at the interface between two segments. To
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draw a parallel, coupling in the 2-polarization case appeared due to a change of
eigenpolarizations between consecutive segments and so it was a discrete coupling.

One might suspect that this description of discrete coupling is not consistent
with (4.2) and it is partially true. While the presence of axis rotation is still
included in Kn and so in (4.2), the offset is not because an offset changes the
boundary conditions between two consecutive segments requiring a projection of
the modal basis of one segment onto the basis of the subsequent. However, we do
not consider offsets in our model, so (4.2) is the valid solution of the LSE for us.

In order to mention a relevant phenomenon in multimode propagation, let us
remember that the propagation constant can be expanded as

βm(ω0 +∆ω) = β(0)
m + β(1)

m ∆ω +
1

2
β(2)
m (∆ω)2 + . . . (4.3)

where β(0)
m := βm(ω0) and β

(a)
m :=

(︃
daβm

dωa

)︃
ω0

are the dispersion coefficients. Observe

that in the absence of coupling, i.e., when κmk ≈ 0 ∀ (m, k), the LSE (4.1) indicates
that the different modes of a multimode fiber travel at different group velocity vg,m =
1

β
(1)
m

(see (3.6)) because LP modes belonging to different manifolds have different
propagation constants. Note that for the exact fiber modes, the propagation
constants are different also within a manifold. The different velocities among modes
imply that pulses sent in parallel over them walk-off with distance, similarly to
what has been shown for the case of birefringence in Fig.3.6b in Sec.3.2.5. This
distortion phenomenon is called modal dispersion and it is graphically visible in
Fig.4.1, where a Gaussian pulse at the transmitter excites the first M = 16 modes
of a GRIN fiber, which propagate for 20 km.

However, the presence of coupling tends to reduce modal dispersion because,
intuitively, the various pulses over the modes start mixing due to the presence of
distributed and discrete coupling effects, similarly to what has been discussed for
the PMD case throughout Ch.3. The effectiveness of mode coupling in reducing
the modal dispersion is graphically analyzed later in Sec.4.4.

Eq.(4.1) and its coefficients κmk result from the manipulation of Maxwell’s
equations (as proven in Ch.5 where nonlinear effects are considered as well), after
having assumed the electric field to be expressible through a modal expansion as
[Mar74; Mar75]

E(r, t) =
∑︂
k

Ak(z, t)F k(r, ω0) (4.4)

where the summation runs, in principle, over all guided and radiation modes and
F k(r, ω0) is the modal profile of the k-th mode. F k is assumed to be frequency-
independent within the narrowband spectrum of the propagating signal E(r, t).

A fundamental concept of coupled mode theory is that, since the actual fiber
is perturbed by z-dependent disturbances, while the modes are solution of an
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Figure 4.1: Modal dispersion for a Gaussian transmitted pulse with a symbol rate of
10GHz in a GRIN fiber supporting M = 16 modes. No mode coupling, only birefringence
is present. The fiber length is L = 20 km and the birefringence is ∆n = 10−6.

unperturbed structure, it is necessary to choose a fictitious ideal structure for which
the modes are computed. The way the fictitious ideal structure can be chosen
depends on the particular modal expansion. Several modal expansions are possible,
all of them fulfilling some completeness theorem to ensure that any solution of
the Maxwell’s equations in the fiber is expressible as a superposition of modes
[Mar74]. However, backward propagating modes and radiated modes are necessary
for the completeness to hold, while in most of the cases one assumes the coupling
to them to be negligible [Mar74; She+09; Jua+14]. It is not always clear when this
approximation holds [KM04], but the simplification of the calculations is enough to
justify its use. Since only forward guided modes are detected in the field of optical
communications, backward waves and radiated modes, if excited, represent a power
loss called coupling loss. Hence, when one wants to neglect the coupling losses, it is
natural to neglect the presence of backward waves and radiated modes and consider
an increased fiber attenuation α. Another option is to consider the coupling with
the first nonguided mode and periodically discard its energy to account for coupling
losses, as done by [Jua+14]. We will just neglect the nonguided modes and assume
the linear perturbations to be small to consider the coupling loss negligible.

Marcuse [Mar74] presents and discusses in detail two modal expansions for
the isotropic waveguide: the ideal modal expansion (IM) and the local normal
mode expansion (LNM). In [Mar75] he extends the IM technique to the case of
anisotropic waveguides.

A material is said to be anisostropic if, considering linear effects only, the electric
induction ˜︁D(r, ω) = ε0εr(r, ω)˜︁E(r, ω) (see (5.11)) is not parallel to the electric
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field ˜︁E(r, ω). This implies that the relative dielectric permettivity εr(r, ω) is not a
scalar, but a tensor.

The IM method assumes the fictitious ideal waveguide is characterized by a
z-independent refractive index n0(x, y). Thus, the modal profiles F k(x, y) are
also z-independent. The choice of n0(x, y) is arbitrary in the sense that the
coupling coefficients can be computed for any n0(x, y). The only discriminant is
the convenience of a certain refractive index in simplifying the computation of the
coefficients based on the specific perturbations acting on the fiber. For example in
some circumstances a particular choice of geometry and refractive index profile for
the ideal waveguide could lead to coupling coefficients that are zero for most of the
fiber length, while another choice could have coefficients which never vanish.

Conversely to the IM method, in the LNM approach the fictitious ideal fiber is
assumed to be at every point z coincident with the actual waveguide in geometry
and material, that is, n0(x, y, z) = n(x, y, z), where n(x, y, z) is the actual perturbed
refractive index. Hence, the modal profiles are also z-dependent and this is the
reason for which in (4.4) we indicated a r-dependent modal profile F k(r, ω0) for
the most general case.

The two approaches are both valid, besides some criticality for the boundary
conditions, and the choice of one or the other is driven by reasons of convenience
of calculations of the coupling coefficients on the specific situation, similarly to the
hints given for the choice of the ideal waveguide in the IM case.

As mentioned, the expression for the coupling coefficient depends on the specific
expansion chosen. In the general case of an anisotropic waveguide, the coupling
coefficients for the IM approach are computed as [Mar75, Eq.48]

κmk(ω) =
ω

2c
√
DmDknmnk

∫︂ +∞

−∞

∫︂ +∞

−∞
F ∗

m(x, y, ω0) ·
(︁
δεrFk(x, y, ω0)

)︁
dx dy (4.5)

where nk is the effective refractive index of the k-th mode, Dk is the mode area of
the k-th mode defined in (5.47), reported here for convenience

Dk =

∫︂ +∞

−∞

∫︂ +∞

−∞
∥Fk(x, y, ω0)∥2 dx dy

and δεr = εp − εr is relative the dielectric permettivity perturbation tensor, i.e.,
the difference between the actual (perturbed) dielectric tensor εp and the tensor
εr = n2

0(x, y) of the chosen ideal fictitious fiber.
Notice that κmk = κ∗

mk because εr is symmetric, given that the material is
assumed lossless [Pal14]. This confirms that the coupling matrix K is Hermitian
and the transfer matrix T , whose expression is given by (4.2), is unitary.

Marcuse provides the formula in [Mar75, Eq.48] with a different notation and
with in a slightly different prefactor due to both a different normalization of the
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modal profiles and to account also for backward waves and nonguided modes. On
the opposite, we have expressed (4.5) to conform with the normalization of the
modal amplitudes shown in (5.90) and with the notation we adopt in Ch.5, where
we also provide its derivation from Maxwell’s equations. Our proof is different
from Marcuse’s one, yet the results are equivalent, once the same notation and
normalization for the modal profiles are used.

Eq.(4.5) is an approximation valid in the limit of small linear perturbations,
that is, (δεr)ij << εr. The more general and complicated formula, from which
(4.5) is derived, is offered in [Mar75, Eq.46].

Notice that κmk(ω) is in general frequency dependent due to the presence of
the factor ω. Strictly speaking, also the refractive indices nm, nk and the modal
profiles Fm, F k are frequency dependent, but the approximation with the values
at the central frequency is less harmful in this case. Nonetheless, the frequency
dependence of κmk is often neglected since being a small variation with respect to
the contribution at the central frequency κmk(ω0) [MAS12b].

(4.5) should not confuse the reader with the orthogonality condition among
modes, which, within the weakly-guiding approximation, is∫︂ +∞

−∞

∫︂ +∞

−∞
F ∗

m(x, y, ω0) · F k(x, y, ω0) dxdy = δmk (4.6)

where δmk is Kronecker’s delta.
Such condition is not in contrast with (4.5) because in (4.5) the polarization

of F k is modified by the tensor δεr. Moreover, even in the isotropic case (i.e., δεr
is scalar), δεr varies along the section and, thus, the integral result is in general
different from 0.

4.1 Importance of Phase-Matching
We have mentioned before that phase matching is a crucial concept for mode
coupling. Assuming to be working with the IM expansion and to consider a
segment with uniform perturbations , let us rewrite the modal expansion (4.4) in
frequency domain factoring out the propagation constant, i.e.,

E(r, ω) =
∑︂
k

˜︁A′
k(z, ω)F k(r, ω0)e

−jβk(ω)z (4.7)

where ˜︁A′
k(z, ω) is a slowly-varying envelope with z, since the fast oscillations induced

by β(ω) have been factored out.
The relation between the fast- and slowly-varying envelopes ˜︁Ak(z, ω) and˜︁A′

k(z, ω) is immediate comparing the two expansions (4.4) (in frequency domain)



CHAPTER 4. SPATIAL MODE COUPLING 63

and (4.7), i.e., ˜︁Ak(z, ω) = ˜︁A′
k(z, ω)e

−jβk(ω)z (4.8)

Inserting (4.8) in (4.1), we obtain the LSE for the slowly-varying amplitude [Mar74,
p. 105]

∂(e−jβm(ω)zA′
m(z, ω))

∂z
= −jβm(ω)e

−jβm(ω)zA′
m(z, ω)− j

∑︂
k

κmke
−jβk(ω)zA′

m(z, ω)

⇓

−jβm(ω)e
−jβm(ω)zA′

m(z, ω) + e−jβm(ω)z ∂A
′
m(z, ω)

∂z

= −jβm(ω)e
−jβm(ω)zA′

m(z, ω)− j
∑︂
k

κmke
−jβk(ω)zA′

k(z, ω)

⇓
∂A′

k(z, ω)

∂z
= −j

∑︂
k

κmke
−j(βk(ω)−βm(ω))zA′

k(z, ω) (4.9)

Integrating the previous equation, we get [Mar74, p. 106]

A′
k(z, ω)− A′

k(z0, ω) = −j

∫︂ z

z0

∑︂
k

κmke
−j(βk(ω)−βm(ω))zA′

k(z
′, ω) dz′ (4.10)

Eq.(4.10) shows that, whenever there is a phase mismatch between two modes, a
fast-oscillating term e−j(βk(ω)−βm(ω))z appears in the the propagation equation and
in its solution, so that the various small contributions to the integral have different
phase and tend to average out (given that A′

k(z, ω) is slowly-varying and κmk is
constant in a uniform segment). Hence, the higher the phase mismatch, the lower
the coupling efficiency. Provided that modes belonging to different manifolds have
different propagation constants, intermode coupling is expected to be smaller than
intramode coupling.

Observe that in a real fiber the situation is a bit more complicated than the
one just described since the perturbations inducing the presence of the coupling
coefficients κmk are z-dependent (yet, slowly-varying with z for unintentional
perturbations in a typical communication system), as said before. However, the
described principle is valid.

As a last remark, the previous analysis was considering IMs, while for LNMs the
propagation constants are z-varying since the LNMs are z-varying. If a step-wise
approximation like the previous one is undesired, an integration in the exponential
is necessary to account for the changes in βk along z, i.e., [Mar74, pp. 107, 108]

A′
k(z, ω)−A′

k(z0, ω) = −j

∫︂ z

z0

∑︂
k

κmke
−j

∫︁ z′
z0

(βk(z
′′,ω)−βm(z′′,ω)) dz′′

A′
k(z, ω) dz

′ (4.11)
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4.2 Mode Coupling through Physical Effects
The coupling coefficient (4.5) allows to model the coupling effect introduced by a
perturbation, once a model for the dielectric tensor difference εr is known. Modeling
linear coupling is still an active area of research because, despite the availability of
physical models for the dielectric tensor perturbations, it is still necessary to assess
how these models relate to reality through experimental analysis [Pal13; SKP21].
Every model requires the measurement of some physical parameters and it is not
always clear how to choose them in a realistic way. For few disturbances Spenner
[SKP21] carried out some experiments to find some realistic values for the coupling
parameters and so, for the case of core ellipticity, we adopt his results as a reference
for comparison with ours.

In this sections we present some common models for the relative dielectric tensor
perturbation εr, derived mainly from Palmieri’s work [Pal13; Pal14], which have
been adapted to the different normalization we use (see (5.90) in Ch.5). Moreover,
the factor ε0, the dielectric permittivity of vacuum, has been removed from his
equations since we work with the relative dielectric tensor, not the absolute one as
him.

We consider axis rotations, bends and core ellipticity. Twist [Pal13] is not
included because it requires considering the longitudinal components of the modes,
which we do not do since working with LP modes. Offset [SKP21] is not considered
since introducing losses.

Note that coupling can occur between the transverse components of two modes,
between the longitudinal components, or between the transfer component of a
mode and the longitudinal of the other. Given that the longitudinal component
of a mode is significantly smaller than its transverse component(s), reason for
which we also neglect it in the LP modal approximation, the intensity of the
coupling coefficients is generally highest for transverse-transverse coupling, lower
for transverse-longitudinal coupling, even lower for the longitudinal-longitudinal
case [Pal13].

The transverse-longitudinal coupling, and in general the coupling between two
orthogonal polarizations, happen only for anisotropic distortion effects, i.e., when εr
is a tensor. In this case, even if two modes Fm and F k have orthogonal polarizations
so that Fm · F k = 0, the presence of εr acts as if the polarization of a mode was
modified. Hence, the integrand Fm · (εr · F k) of the coupling coefficient does not
vanish and the coupling coefficient κkm might not vanish.

On the opposite, if the model for the perturbation is scalar, i.e., εr is a scalar,
then given two orthogonal polarizations Fm and F k, Fm · (εr · F k) = εrFm · F k

and so κkm = 0.
If the longitudinal field component is neglected, which happens when working

with LP modes as we do, only the elements of εr which are not relative to a z
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component are of interest.
Finally, for reasons of symmetry of the modes, the coupling coefficients κmn are

expected to vanish for some indexes (m,n) for certain modal groups, as observed
by Palmieri [Pal13]. This happens because both the modal profiles and the
perturbations are periodic functions of the azimuth angle Φ through a dependence
of the type sin (nΦ) or cos (nΦ). Such theoretical expectations, proposed by [Pal13],
match the experimental results visible in the figures below depicting the power
coupling matrices for each analyzed phenomenon. With power matrix we mean a
matrix whose elements are the square norm of the elements of another matrix.

4.2.1 Axis Rotation

The coupling coefficients of a perturbing effect depend on the reference system
adopted to express them. Let us assume that the modes are ordered for increasing
modal order with all x-polarized waves first, and then all y-polarizations in the
same order as the x-polarizations. Within a certain manifold, the even modes (i.e.,
cos (nΦ) dependency) are put before the odd ones (i.e., sin (nΦ) dependency). If
we assume that the coupling matrix K ′ of a certain perturbation is computed in a
reference system parallel to the axes {x′, y′} of the perturbation, then the coupling
matrix in the reference frame {x, y} along which the modes are expressed can be
shown to be computed as [Pal13; Pal14]

K = R−1K ′R = RTK ′R (4.12)

where in the last passage the orthogonality of R has been exploited. R is defined
as a block diagonal matrix as

R = diag(R1,R2, . . . ,RM) (4.13)

where Ri with i = 1, . . . ,M is the projection matrix for the i-th manifold. If the
manifold has two modes (polarization degeneracy only), which means the azimuth
order is 0 (as explained in Sec.2.1), then

Ri =

⎡⎢⎢⎣
cos (α) 0 sin (α) 0

0 cos (α) 0 sin (α)
− sin (α) 0 cos (α) 0

0 − sin (α) 0 cos (α)

⎤⎥⎥⎦ (4.14)
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If the manifold has four modes (polarization degeneracy and geometrical degeneracy)
of azimuth order n, then

Ri = RpolRspat,i

Rpol =

⎡⎢⎢⎣
cos (α) 0 sin (α) 0

0 cos (α) 0 sin (α)
− sin (α) 0 cos (α) 0

0 − sin (α) 0 cos (α)

⎤⎥⎥⎦ (4.15)

Rspat,i =

⎡⎢⎢⎣
cos (nα) sin (nα) 0 0
− sin (nα) cos (nα) 0 0

0 0 cos (nα) sin (nα)
0 0 − sin (nα) cos (nα)

⎤⎥⎥⎦ (4.16)

Ri accounts for the rotation (in a four dimensional space) of both the polarizations
and the spatial modes, represented by Rpol and Rspat,i, respectively. An important
remark is that the expression of the rotation matrices have been provided for the
specific mode order adopted by us. If a different order is chosen, like alternating
x- and y-waves, the matrices Rpol and Rspat,i have to be sorted accordingly. E.g.,
Palmieri [Pal13] provides the matrices for alternated x- and y-polarizations with
even modes first and odd modes second. Moreover, our definition of Ri coincides
with the Hermitian of his rotation matrix because, conversely to Palmieri, we chose
Ri as the projection from {x′, y′} to {x, y}, in accordance with our convention for
the change-of-basis for the PMD case (see Ch.3).

The disposition of the elements of Rspat makes it clear that such matrix in-
troduces only intramode coupling. The intuition behind its expression is that
a mode whose reference system is rotated w.r.t. another one where we want to
express it, can be decomposed over only the modes of the same manifold of the
second reference system. For instance, if the relative orientation between the two
cartesian pairs of axes {x, y} and {x′, y′} is 90◦, LP11ax becomes LP11by , with
ŷ polarization. Expressing a modes in a different reference system cannot change
its properties related to its propagation constant, so it is not possible that there
is coupling to a different manifold. Hence, Ri and R do not introduce intermode
coupling, given that Rpol and Rspat,n are only responsible for intramode coupling.

Finally, observe that the rotation matrices can be applied to any coupling
matrix of a certain perturbation effect referred to its own perturbation axes, with
the result of modeling rotated perturbations.

4.2.2 Bend

Several models for bends are available, like the scalar model used by Shemirani et
al. [She+09] or the one used by Juarez et al. [Jua+14]. The model we report here
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is from Palmieri [Pal13]. It considers bends in the x-z plane and the correspondent
dielectric perturbation tensor is

εr(x, y) = −an(x, y)4r cosΦ

⎡⎣q1 0 0
0 q1 0
0 0 q2

⎤⎦ (4.17)

where a = 1/b is the curvature of the bend, i.e., the inverse of the bending radius b,
n is the fiber refractive index, r and Φ are the radial and azimuth coordinates of a
reference system centered in the center of the core, q1 and q2 are two parameters
related to the fiber material. In fused silica q1 ≈ 0.206 and q2 ≈ 0.031.

Observe that neglecting the longitudinal component of the modes, εr =
−an(x, y)4r cosΦq1 becomes a scalar and so polarization mode coupling is not
possible.

Palmieri provides also the tensor of a second-order contribution arising from
bends, which we neglect for simplicity.

In Fig.4.2a is depicted a realization of a normalized power coupling matrix (in
dB) generated with the model (4.17) (with a certain axis rotation), for the first 15
spatial modes of the GRIN fiber presented in Ch.2.1. Containing values normalized
to the maximum matrix element, it is independent on the chosen bending radius b.
As mentioned before, some groups have vanishing coupling coefficients for reasons
of symmetry of the modes and of the bend tensor 4.17.

However, since as argued in the previous section, the actual coupling strength
is given by the elements of the channel transfer matrix T which depend on the
phase mismatch between the modes. Hence, to test the coupling introduced by
bend we have simulated the channel matrix as

T = e−j(Bideal+K)L (4.18)

where Bideal is the ideal propagation matrix and K is the coupling matrix resulting
from bend, that is, its elements κmk have been computed inserting the tensor
model for bends (4.17) into the expression for the coupling coefficient (4.5). The
fiber length has been set to L = 4.4 km and the perturbation has been considered
uniform all over the fiber length, i.e., κmk have been considered z-independent.
After some simulations, it has been noticed that the order of magnitude for the
bending radius to have some non-negligible coupling is 1 cm. Such a value loses its
physical sense because, if we model the fiber as a cascade of segments of length
LS in the order of tens to hundreds of meters, we expect the bend radius for each
segment to be at least 100m. To remedy, a possibility would be to consider the
curvature a in (4.17) not for its physical sense of bending radius, but only as a
model parameter to be tuned to introduce the desired level of coupling during
simulations. In conclusion, this aspect needs further investigation. For the moment
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we limit ourselves to show in Fig.4.2b the power transfer matrix for the case of
bending radius b = 1 cm. Observe that the coupling is limited to intramode or,
at most, among adjacent modal groups for which the phase mismatch does not
produce cancellation.

(a) (b)

Figure 4.2: Power matrices for the bend model (4.17), for a bending radius b = 1 cm.
Fig.4.2a shows the power coupling matrix, Fig.4.2b shows the power transfer matrix for a
fiber of length of 4.4 km, with uniform perturbation.

4.2.3 Core ellipticity

The model for the tensor perturbation associated to an elliptically deformed core
along the reference x-y axis is offered by Ulrich et al. [US79], as

εr(r,Φ) = −ηr cos (2Φ) (4.19)

where, besides the symbols already defined for (4.17), η is a physical parameter
to be tuned. In Fig.4.3a we show a realization of the coupling coefficients for the
model (4.19) (with a certain axis rotation), where it is possible to observe the
coefficients that are nonvanishing for the case of core ellipticity. It is not clear
to us which is a realistic range of values for η, but from simulations it has been
observed that η = 1.5 yields a power transfer matrix qualitatively similar to the
one presented in [SKP21]. For a fair comparison with [SKP21], the fiber length has
been set to 4.4 km and the perturbation has been assumed uniform along the fiber
length, following the same approach already described in the previous section. The
resulting power transfer matrix is shown in Fig.4.3b. Again, notice that the actual
coupling exists only within some manifold or among adjacent manifolds due to the
phase-mismatch.
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(a) (b)

Figure 4.3: Power matrices for the model (4.19) of elliptical core, with η = 1.5. Fig.4.3a
shows the power coupling matrix, Fig.4.3b shows the power transfer matrix for a fiber of
length of 4.4 km, with uniform perturbation.

4.2.4 Simulation Model of a Fiber with Physical Coupling
Phenomena

Based on the analysis of the previous sections, we simulated a fiber channel as a
concatenation of segments each one suffering from:

• birefringece, modeled by the matrix Bbiref,i(ω)

• bend, modeled by Kbend,i

• core ellipticity, modeled by Kellip,i

• axis rotation, modeled by Ri, as discussed in Sec.4.2.1, with random orienta-
tions

• eingepolarization variation, modeled by and Ci

This last effect is generated through a random walk on the Poincare sphere in
Cartesian coordinates as described in Sec.3.3. A statistical generation approach has
been preferred here to a physical one because birefringence and polarization mode
coupling are experimentally known to be always present in fibers, but the physical
models considered above do not introduce them if the longitudinal component of
the modes is neglected.

The bend and the core ellipticity effects are also differently oriented with respect
to the common axes of the segment through rotation matrices like Rbend,i and
Rellip,i, with the orientations randomly generated. That is,

Kbend,i = RH
bend,iKbendRbend,i
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and
Kellip,i = RH

ellip,iKellipRellip,i

where Kbend and Kellip are the z-independent coupling matrices discussed in
Sec.4.2.3 and Sec.4.2.2, respectively. The role of the rotation matrices Rellip,i

and Rbend,i is to simulate the possibility that the perturbation axes of the two
phenomena are not always aligned.

Finally, the transfer matrix of this physical model for a segment with uniform
perturbations is

Ti(z, ω) = e
−j

(︂
CH
i RH

i

(︁
Bideal(ω)+Bbiref,i(ω)+Kbend,i+Kellip,i

)︁
RiCi

)︂
z

(4.20)

This model is exploited later in Sec.4.4 to perform some simulations.
A realization of the power transfer matrix for a fiber of length L = 4.4 km, with

uniform perturbations with bend parameter b = 1 cm and ellipticity parameter
η = 1.5, birefringence ∆n = 10−6 is depicted in Fig.4.4a. Observe the present of
significant intramode coupling and little coupling among adjacent modal groups,
while, due to the phase-mismatch, almost no intermode coupling among groups
far apart. Notice also the polarization dependence of the coupling due to the axis
rotation and the eingepolarizations presence.

A realization of a power transfer matrix for a fiber of length L = 4.4 km, with
the same parameters as before, but with segments of length LS = 100m, is provided
in Fig.4.4b. Notice the higher level of coupling thanks to the nonuniformity of the
modeled perturbations.

4.3 Mode Coupling through a Statistical Approach
The physical models for mode coupling explained so far are not the one commonly
employed to introduce mode coupling in signal propagation. Mode coupling is often
modeled through a statistical approach for long-haul communications [Pal13], in
particular in combination with the study of nonlinear effects, usually considering
strong intramode coupling [MMW97; MAS12b; MAS12a] and, if desired, also
strong intermode coupling [MEA13; ASM16]. The basic idea behind the statistical
approach is that over distances much longer than the correlation length of the linear
coupling disturbances the details of the physical coupling models are irrelevant.

The statistical approach consists in considering as channel matrix of the i-th
segment

Ti(z, ω) = Rie
−jBideal(ω)z (4.21)

where Bideal = diag(β1(ω), . . . , βM(ω)) accounts for the ideal propagation and Ri

is a random unitary matrix. A numerically stable algorithm to generate random



CHAPTER 4. SPATIAL MODE COUPLING 71

(a) (b)

Figure 4.4: Realizations of power matrices for the multimode fiber model of Sec.4.2.4.
Fiber length L = 4.4 km, bend parameter b = 1 cm, ellipticity parameter η = 1.5,
birefringence ∆n = 10−6. Fig.4.4a is for uniform perturbations along L. Fig.4.4b is for
nonuniform perturbations, with segment length LS = 100m.

coupling matrices uniformly distributed on the the set U(M) of unitary matrices of
dimensions M ×M follows the next steps (see [Mez06] for the formal background):

1. generate a M ×M matrix A with elements drawn by a complex standard
normal distribution.

2. decompose A as A = QR through a QR decomposition algorithm.

3. build the diagonal matrix

Λ =

⎡⎢⎣
r11

|r11|2
. . .

rMM

|rMM |2

⎤⎥⎦
where rii is the i-th diagonal element of R.

4. the matrix R = QΛ is the desired random uniform unitary matrix.

An example of realization of a random unitary matrix R generated through the
mentioned algorithm is depicted in Fig.4.5 (power matrix), where it is evident that
all coupling coefficients have similar strength, conversely to the matrices for the
physical models which tend to couple only few groups. Notice that the a discrete
coupling like the one introduced by R does not suffer of the canceling effect of the
phase-mismatch because it is independent on it. Also for this reason the modes
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are expected to be more strongly coupled when a statistical approach is employed
compared to the case in which physical models are used, if an adequate number of
segments are employed.

A power transfer matrix is not shown here since it would be qualitatively the
same as Fig.4.5.

Figure 4.5: Power matrix of the realization of a random unitary matrix for the statistical
approach of Sec.4.3 following the Algorithm 4.3.

4.4 Primary Modes and Simulations
The concept of Principal States of Polarization can be extended to the multimode
case, where the modes fulfilling the definition of being undistorted to first order in
frequency are called Primary Modes (PMs) [FK05; KHS12; Ant+12; CES16]. The
definitions of Jones and Stokes spaces can also be extended to the multimode case
[Ant+12], with only few differences with the single mode case.

Therefore, it is not surprising that given the GD operator (formally identical to
(3.44) the GD operator for the PSPs) [FK05; KHS12; Ant+12]

G = −jUHUω (4.22)

the modes can be proved to be the eigenvectors of (4.22) and the GDs are their
eigenvalues, as for the PSPs (see Sec.3.3.3). The proof proceeds formally the same
way it has been shown in Sec.(3.3.3) for the PSPs, with the only difference that the
Jones vectors this time contain M ≥ 2 modes. U is again the the transfer matrix
without the common phase, see (3.26).

Fig.4.6 illustrates the property of the PMs not to suffer from GD dispersion
within a perturbed fiber channel, by comparing the envelopes detected over the
PMs with the envelopes detected over the ideal modes. In this particular case, the
first M = 6 modes of a GRIN fiber have been excited with a Gaussian envelope at a
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symbol rate of 10GHz, exploiting the physical fiber model of Sec.4.2.4 for a fiber of
length L = 10 km, with segments of 1 km. Group-velocity dispersion has also been
considered. Observe that the LP modes at the receiver are differently delayed and
distorted due to modal dispersion and mode coupling. On the opposite, the PMs
retain better the Gaussian shape. Their amplitudes are differently since depending
on the power coupled to each input PM.

Notice also that the ideal modes are divided between LP01 and LP11 groups
for what concerns the propagation delays. This boils down from the fact that there
is lower intermode coupling than intramode one.
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Figure 4.6: Comparison between the envelopes detected over the ideal modes (Fig.4.6a)
and over the PMs (Fig.4.6b). The first M = 6 modes of a GRIN fiber have been excited
with a Gaussian envelope at a symbol rate of 10GHz, exploiting the physical fiber model
of Sec.4.2.4 for a fiber of length L = 10 km, with segments of 1 km. Group-velocity
dispersion has also been considered.

It can be shown that, analogous to the PMD case, the mean of the maximum
delay difference (MDGD) between two PMs scales linearly with the fiber length in
the weak-coupling regime, while it scales with the square root of the fiber length for
the strong-coupling regime [KHS12]. That is, strong-coupling reduces the modal
dispersion because the MDGD is lower.

Khan [KHS12] showed that the p.d.f. of the MDGD is no more Maxwellian
as for the 2-polarizations case, but semicircular. Given that the complexity of a
MIMO receiver depends on the duration of the channel impulse response and the
duration is proportional to the MDGD, knowing the statistics of the MDGD is
useful for designing the MIMO compensation receiver. Moreover, since the MDGD
can span thousands of symbols [KHS12] for a typical long-haul transmission in a
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weak-coupling scenario, the presence of strong coupling is usually desired to reduce
the distortions and the receiver complexity [KHS12; Ant+12].

The general principles mentioned for the PMD that increasing the variance
of the perturbations [KHS12; She+09] and reducing the segment length tend to
increase coupling are still valid. Indeed, in such circumstances the correlation
length reduces and the coupling is “stronger”.

The effect of mode coupling in reducing the distortions on the received envelopes
is visible comparing the previous case of Fig.4.6b with Fig.4.7a. In both case a
Gaussian pulse at 10GHz has been sent over the first M = 6 modes of a GRIN
fiber of length L = 10 km, modeled according to the physical approach of Sec.4.2.4
(considering GVD as well). The difference between the two cases is that the segment
length has been reduced from 1 km for Fig.4.6b, to 100m for Fig.4.7a. In this
second case, the DGDs among the PMs are lower than in the first one and, thus,
also the distortions suffered by a pulse over a generic mode.
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Figure 4.7: Comparison between the physical coupling approach, Fig.4.7a, and the random
coupling one, Fig.4.7b. The first M = 6 modes of a GRIN fiber have been excited with
a Gaussian envelope at a symbol rate of 10GHz, for a fiber of length L = 10 km, with
segments of 100m. Group-velocity dispersion has also been considered.

The physical model of Sec.4.2.4 has also been compared, through simulations,
against the statistical model of Sec.4.3. As expected from the considerations of
Sec.4.3, the statistical approach introduces higher coupling and so lower distortion.
This is visible comparing Fig.4.7a (physical approach of Sec.4.2.4) with Fig.4.7b
(statistical approach of Sec.4.7a). Both simulations have been run transmitting a
Gaussian pulse at 10GHz over the first M = 6 modes of a GRIN fiber of length
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L = 10 km with segment length LS = 100m.
The higher coupling effects of the random approach are even more pronounced

considering a transmitted Gaussian pulse at 100GHz, as visible comparing the
Fig.4.8a, for the physical approach, with Fig.4.8b, for the random matrix approach.
An intuitive explanation in time domain is that the pulses walk-off quicker due to
the lower duration, for which the coupling introduced by the physical perturbations
cannot “compensate”. In frequency one can draw an analogy with the PSP case,
where a higher band meant exceeding the PSPs coherence band and, thus, higher-
order distortion effects kicked in.
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Figure 4.8: Comparison between the physical coupling approach, Fig.4.8a, and the random
coupling one, Fig.4.8b, for a symbol rate of 100GHz over M = 6 modes of a GRIN fiber
of length L = 10 km, with segments of 100m. Group-velocity dispersion has also been
considered.

The significant discrepancy in DGDs and distortion of the envelopes between
the physical and the random models emerging from the presented plots raises
the question of which scenarios and to which extend the assumption of strong
intermode coupling is reasonable. More investigation is needed in this sense.



Chapter 5

Generalized Multimode Nonlinear
Schrödinger Equation

The present chapter aims at deriving the propagation equation for the case when
the nonlinearities are of interest, as it is for the case of long-reach optical com-
munications. Such propagation equation is called in the literature in various way,
like coupled nonlinear Schrödinger equation (CNLSE) ([ASM16]), vectorial nonlin-
ear Schrödinger equation (VNLSE) ([Han21]), multimode nonlinear Schrödinger
equation (MMNLSE) ([Agr19]) or simply nonlinear Schrödinger equation (NLS /
NLSE) ([Agr19]). We adopt the acronym GMMNLSE, which stands for generalized
multimode nonlinear Schrödinger equation (also MM-GNLSE [PH08; HP12]) used
by Wright et al. [Wri+17].

One of the first and most popular works to derive the GMMNLSE as used in
optical communications has been done by Poletti and Horak [PH08], based on a
previous paper of Kolesik [KM04]. However, the derivation proposed here mainly
follows the procedure of Agrawal [Agr19] and Antonelli et al. [ASM16].

Before digging into the math, the main “tools” we use are:

1. Maxwell’s equations

2. Constitutive relations of the material

3. Expression for the material polarization vector

4. Fiber modal expansion

The basic idea of the derivation is to exploit the constitutive relations and
the material polarization vector to obtain a wave equation containing only an
unknown, the electric field.Then, the electric field is decomposed through a modal
expansion, which allows to retrieve the nonlinear propagation equation for every
modal amplitude.

76
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A number of approximations are going to be made to simplify a problem which
would be otherwise too general and complex. In the following, the mathematical
formality is kept to a minimum, which means that, e.g., the hypotheses which allow
to exchange order between space and time derivatives, as well as the conditions for
the existence of some integrals and of some Fourier transforms are always tacitly
assumed to hold for the cases of interest.

5.1 Derivation
The derivation starts from Maxwell’s equations [Agr19, p. 27][Coe10, p. 16][Mid03]

∇×E(r, t) = −∂B(r, t)

∂t
(5.1a)

∇×H(r, t) = +
∂D(r, t)

∂t
+ J(r, t) (5.1b)

∇ ·D(r, t) = ϱc; (5.1c)
∇ ·B(r, t) = 0; (5.1d)

(5.1e)

where E is the electric field vector, H is the magnetic field vector, D is the electric
displacement or electric induction vector, B is the magnetic induction or magnetic
flux density vector, J is the current density, ϱc is the volumetric charge density.

∇ is the nabla operator, through are expressed in a symbolic form the curl as
∇×, the divergence as ∇·, the gradient as ∇ and the Laplacian as ∇2.

In optical fibers the are no free charges, hence [Agr19]

J = 0 (5.2a)
ϱc = 0 (5.2b)

The constitutive relations of the material are

D = ε0E + P (5.3a)
B = µ0H + µ0M (5.3b)

where P is the induced electric material polarization vector, M is the induced
magnetic polarization, ε0 is the vacuum dielectric permettivity, µ0 is the vacuum
magnetic permeability. For a nonmagnetic material, like those of which fibers are
made of, [Agr19, p. 27][Coe10, p. 16]

M = 0 (5.4)
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The electric material polarization vector can be expanded as [Coe10, p. 2.27]:

P (r, t) :=

ε0

∫︂ +∞

−∞
χ(1)(t− t1) ·E(t1) dt1

ε0

∫︂ +∞

−∞

∫︂ +∞

−∞
χ(2)(t1 − t, t2 − t) ..E(t1)E(t2) dt1 dt2

ε0

∫︂ +∞

−∞

∫︂ +∞

−∞

∫︂ +∞

−∞
χ(3)(t1 − t, t2 − t, t3 − t)

... E(t1)E(t2)E(t3) dt1 dt2 dt3

+ . . .

(5.5)

It can also be written as

P (r, t) := P L(r, t) + PNL(r, t) (5.6)

where [Agr19, p. 28]

P L(r, t) := ε0

∫︂ +∞

−∞
χ(1)(r, t− t′) ·E(r, t′)dt′ (5.7)

is the linear part of the polarization vector and χ(1) is the first-order nonlinear
susceptability tensor, related to the refractive index of the medium. Its expression
in the frequency domain is˜︁P L(r, ω) = ε0˜︁χ(1)(r, ω) · ˜︁E(r, ω) (5.8)

Moreover,

PNL(r, t) := ε0

∫︂ +∞

−∞

∫︂ +∞

−∞

∫︂ +∞

−∞
χ(3)(t1−t, t2−t, t3−t)

... E(t1)E(t2)E(t3) dt1 dt2 dt3

(5.9)
is the nonlinear part of the polarization vector, where χ(3) is the third-order
nonlinear susceptability tensor, from which arise the Kerr nonlinear effect, also
called Four Wave Mixing (FWM), and the Raman nonlinear effect [HP12; Agr19;
Wri+17; Han21]. Notice PNL accounts for the third-order nonlinear effects only
because the second order-term of (5.5) is negligible in the optical fibers for symmetry
reasons [Coe10, p. 18], while the terms of order higher than the third are neglected.
Let us insert (5.5) in (5.3a)

D = ε0E + P L + PNL (5.10)

and transform it to frequency domain˜︁D = ε0 ˜︁E+ ˜︁P L+ ˜︁PNL = ε0 ˜︁E+ε0˜︁χ · ˜︁E(r, ω)+ ˜︁PNL = ε0(I+ ˜︁χ(1))˜︁E+ ˜︁PNL (5.11)
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We define [Agr19, p. 2.1.13] [Han21, p. 3.18]

εr(r, ω) + δεr(r, ω) := I + ˜︁χ(1)(ω) (5.12)

where εr is the material relative dielectric tensor and δεr is its perturbation induced
by the linear perturbations. We also define [Agr19, p. 2.1.14] [Coe10]

εr(r, ω) :=

(︃
n(r, ω)I + j

αc

2ω

)︃2

(5.13)

where n is the material refractive index and α is the fiber loss. Notice this is also
the definition of refractive index. Since α is small for a fiber of usual material and
frequency range, we neglect it and insert it in the final equation, when needed,
through a perturbative approach [Agr19, p. 29]. Hence, (5.13) reduces to

εr(r, ω) ≈ n(r, ω)2I (5.14)

An explicit expression for δεr is available only when a specific distortion effect
is considered. Moreover, δεr is in general a tensor to account for anisotropic
disturbances. However, when the stress is isotropic, it reduces to be proportional
to a scalar, i.e., the refractive index perturbation δn2. Nonetheless, for the sake of
clarity, we can write the tensor δε as

δεr =

⎡⎣δεxx δεxy δεxz
δεyx δεyy δεyz
δεzx δεzy δεzz

⎤⎦ (5.15)

In an anisotropic material δεr contains off-diagonal elements, while δεr is pro-
portional to the identity matrix if no anisotropy is present. The anisotropicity
corresponds to have a response of the medium which is not parallel to the action
on it [Mid03; Coe10], that is, D is not parallel to E, as can be seen from (5.11).
As a side note, when LP modes are considered (weakly-guiding approximation),
the z component of the eletromagnetic field is negligible and so the elements the
third column and the third row of (5.15) are not of interest.

Inserting firstly (5.12) and then (5.14) in (5.11), we get˜︁D = ε0(n
2I + δεr)˜︁E + ˜︁PNL (5.16)

Up to now we have not started manipulating Maxwell’s equations, but just
paved down the preliminaries. The next target is to retrieve a propagation equation
where only the electric field is figuring. To do so, we have to get rid of D and B.
Thus, let us insert (5.3a) in (5.1b) and cancel J thanks to (5.2), obtaining

∇×H =
∂(ε0E + P )

∂t
= ε0

∂E

∂t
+

∂P

∂t
(5.17)



CHAPTER 5. GENERALIZED MULTIMODE NONLINEAR SCHRÖDINGER EQUATION80

Similarly to (5.17), inserting (5.3b) in (5.1b), canceling M thanks to (5.4), we
retrieve

∇×E = −µ0
∂H

∂t
(5.18)

Applying the curl to (5.18)

∇×∇×E = −µ0
∂(∇×H)

∂t
(5.19)

and inserting (5.17) in 5.19, it is obtained

∇×∇×E = −µ0ε0
∂2E

∂t2
− µ0

∂P

∂t
= − 1

c2
∂2E

∂t2
− µ0

∂P

∂t
(5.20)

where it has been exploited the relation for the speed light in vacuum c

c =
1

√
µ0ε0

(5.21)

Eq.(5.20) presents a double curl of E which is undesired to us since we intend to
retrieve an expression directly relating the space derivatives to the time derivative
of the field. Hence, we exploit the identity

∇×∇×≡ ∇ ()−∇2 (5.22)

to write the l.h.s. of (5.20) as

∇×∇×E = ∇ (∇ ·E)−∇2E (5.23)

Neglecting the term ∇ (∇ · E) in the previous expression would simplify our
calculations. This is surely satisfied if ∇ ·E = 0. To see when this happens, apply
the divergence to the constitutive relation (5.3a)

∇ ·D = ∇ · (ε0E + P ) = ε0∇ ·E +∇ · P (5.24)

Since D = 0, we have

ε0∇ ·E = −∇ · P (5.25)
⇒ ∇ ·E = 0 ⇔ ∇ · P = 0 (5.26)

Thus, to nullify ∇ ·E is necessary to set

∇ · P = ∇ · P L +∇ · PNL = 0 (5.27)
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That is, the material polarization vector contribution to (5.23) is neglected. If we
observe that in general P L ̸= PNL, condition (5.27) means

∇·PNL ≈ 0 (5.28)
∇·P L ≈ 0 (5.29)

That is, basically, both the linear and nonlinear polarizations are required to
be nonvarying in space, or at least approximately. Since PNL, if present, is r
dependent (see, e.g., 5.86 ), condition (5.28) means assuming PNL has a negligible
contribution to the divergence. Concerning P L, its connection with the refractive
index and the linear distortions has been shown through (5.11), (5.12) and (5.13).
Hence, condition (5.28) corresponds to not only assuming the linear distortions
(which are r dependent) vary little over space, but also the refractive index variation
over the fiber cross-section is negligible. This last assumption is exact in case
of SI fibers (see Sec.2.1) because the refractive index is constant within the core
and within the cladding and (5.23) is solved separately for the two parts. Then,
the boundary conditions are exploited to match the field at the core-cladding
interface. On the opposite, condition (5.28) is only an approximation for, e.g.,
GRIN fibers. Depending on the desired level of accuracy, this approximation is not
always assumed in literature. Yet, for our scopes it is sufficient and it allows to
reach the same nonlinear propagation equation as common references in literature
[PH08; ASM16; Agr19].

With these considerations in mind, we approximate (5.23) as

∇×∇×E ≈ ∇2E (5.30)

and then insert (5.30) in (5.20), obtaining

∇2E =
1

c2
∂2E

∂t2
− µ0

∂P

∂t
(5.31)

We transform (5.31) to frequency domain

∇2 ˜︁E =
1

c2
(jω2)˜︁E + (jω)2µ0

˜︁P = −ω2

c2
˜︁E − ω2µ0

˜︁P = −k2
0
˜︁E − ω2µ0

˜︁P (5.32)

where we have exploited the definition of the free-space propagation constant k0

k0 := ω/c = 2π/λvacuum (5.33)

and the derivation rule

F

[︃
dna(t)

dtn

]︃
= (jω)nF

[︃
a(t)

]︃
(5.34)
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Inserting (5.5), (5.8) and (5.12) in (5.32) yields

∇2 ˜︁E = −k2
0
˜︁E − ω2µ0(˜︁P L + ˜︁PNL) = −k2

0
˜︁E − ω2µ0ε0˜︁χ(1) ˜︁E − ω2µ0

˜︁PNL

= −ω2

c2
(I + ˜︁χ(1))˜︁E − ω2µ0

˜︁PNL = −ω2

c2
(εr + δεr)˜︁E − ω2µ0

˜︁PNL

(5.35)

At this point, we have to observe that in all the previous equations E(r, t) is a
real-passband signals. Indeed, Maxwell’s equations and the polarization vectors
have been (tacitly) written for the real-passband signals. Let us recall that a
real-passband signal is a signal assuming real values in time, like the actual electric
field in a fiber. Thus, its Fourier transform is Hermitian and it has both positive
and negative frequency contributions. The analytic signal of a certain real-passband
signal is defined as twice the positive-frequency part only of the real-passband
signal, i.e., ˜︁EA(r, ω) = 2u(ω)˜︁ERP (r, ω) (5.36)

where the subscript RP has been assigned to the real-passband signal and the
subscript A for the analytic signal and

u(ω) :=

{︄
1 if ω ≥ 0

0 otherwise
(5.37)

The relation between the two signals can be shown to be

ERP (r, t) = ℜ[EA(r, t)] =
1

2

(︁
EA(r, t) +E∗

A(r, t)
)︁

(5.38)

Given the analytic signal, the complex envelope or baseband equivalent signal EC

can be defined as

˜︁EC(r, ω) = ˜︁EA(r, ω + ω0) ⇔ ˜︁EA(r, ω) = ˜︁EC(r, ω − ω0) (5.39)

where the subscript C has been used for the complex envelope, and ω0 is a
conventional frequency, normally the central frequency of the spectrum of EA(r, ω).
The complex envelope is often a convenient signal since it is slowly-varying with
time being centered at zero frequency, while the analytic signal is fast varying being
centered at ω0.

The passages we are going to perform are simpler with the analytic signal for
the electric field rather then the real-passband signal. Later we will make us also
of the modal amplitudes that are complex envelopes, as already tacitly done in the
previous chapters.

For simplicity of notation, in all previous equations the real-passband signal has
been indicated as E instead of ERP , and similarly for PNL. For simplicity again,
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we are not going to use EA to refer to the analytic signal in the next equations,
but just with E, and similarly for PNL. Confusion should not arise given that in
the following we use E and PNL to refer to the analytic signals, unless otherwise
specified.

Hence, (5.35) has to be considered now for analytic signals, i.e., we keep only
(twice) the positive frequency components of ˜︁E and ˜︁PNL appearing inside, as for
definition of analytic signal. However, the equation is formally the same.

We also resort to the following modal expansion for M guided modes

˜︁E(r, ω) =
M∑︂
k=0

˜︁Bk(z, ω, )F k(x, y, ω0)e
−jβk(ω)z (5.40)

which will allow us to obtain the propagation equations for the slowly-varying
excitation coefficients ˜︁Bk . Note that the modal amplitudes ˜︁Bk are z-dependent
right because of the presence of linear and nonlinear distortion effects. ˜︁Bk is said
to be slowly-varying in space because the fast space-oscillating term e−jβkz has
been factored out in (5.40). However, it is not slowly-varying in frequency since
the term e−jω0t has not been factored out yet. That is, ˜︁Bk is an analytic signal,
not a complex basenband signal. This aspect is going to be addressed later on,
when a change of variable is introduced.

As already mentioned in other chapters, the modal set of guided and radiation
modes can be shown to constitute a complete set of solutions for the linear problem.
That is, if the nonlinear perturbations were not present, the electric field in the
fiber resulting from the presence of the linear distortion introduced by δε could
be exactly described as a superposition of the ideal fiber modes, including both
the discrete set of guided modes and the continuum of radiation modes [Mar74,
p. 98] [Mar75]. Since in this study we neglect the contribution of radiation modes,
the modal expansion is only an approximation for the exact field which can be
regarded as accurate if

(δεr)i,j << εr (5.41)

Hence, we are assuming both the linear and nonlinear perturbations do not affect
the transverse mode profiles.

Similar considerations hold for the nonlinear polarization vector whose pertur-
bations have to be small. These two conditions are consistent with (5.28).

We remember that the Laplacian operator can be written, in a symbolic form,
as

∇2 = ∇2
T +

∂2

∂z2
(5.42)



CHAPTER 5. GENERALIZED MULTIMODE NONLINEAR SCHRÖDINGER EQUATION84

The modal expansion (5.40) and the property (5.42) are inserted in (5.35), leaving

(︂
∇2

T +
∂2

∂z2

)︂(︂ M∑︂
k=0

˜︁Bk(z, ω)F k(x, y, ω0)e
−jβk(ω)z

)︂
= −ω2

c2

(︂
εr + δεr

)︂(︂ M∑︂
k=0

˜︁Bk(z, ω)F k(x, y, ω0)e
−jβk(ω)z

)︂
− ω2µ0

˜︁PNL

⇒
M∑︂
k=0

˜︁Bk(z, ω)∇2
T

(︂
F k(x, y, ω0)

)︂
e−jβk(ω)z+

M∑︂
k=0

F k(x, y, ω0)
∂2
(︂
( ˜︁Bk(z, ω)e

−jβk(ω)z
)︂

∂z2

= −ω2

c2
εr

M∑︂
k=0

˜︁Bk(z, ω)F k(x, y, ω0)e
−jβk(ω)z+

ω2

c2
δεr

M∑︂
k=0

˜︁Bk(z, ω)F k(x, y, ω0)e
−jβk(ω)z

− ω2µ0
˜︁PNL (5.43)

Let us write the second-order derivative term on the left-hand side of (5.43) as

∂2( ˜︁Bke
−jβkz)

∂z2
=

∂

(︄
∂Bk

∂z
e−jβkz − jβke

−jβkz ˜︁Bk

)︄
∂z

=
∂2 ˜︁Bk

∂z2
e−jβkz +

∂ ˜︁Bk

∂z
(−jβk)e

−jβkz − jβke
−jβkz

∂ ˜︁Bk

∂z
+ (−jβk)

2e−jβkz ˜︁Bk

≈− 2jβke
−jβkz

∂ ˜︁Bk

∂z
− β2

ke
−jβkz ˜︁Bk)

(5.44)

where in the last passage we neglected
∂2 ˜︁Bk

∂z2
because we assume that then linear

and nonlinear distortions are little so that the modal envelopes vary slowly with
z. This is referred to as adiabatic approximation [GK00] or slow varying wave
approximation [Han21, p. 221] [Agr19, p. 37].

Substituting (5.44) in (5.43) yields

M∑︂
k=0

˜︁Bk∇2
TF ke

−jβkz −
M∑︂
k=0

2jβke
−jβkz

∂ ˜︁Bk

∂z
F k−

M∑︂
k=0

β2
ke

−jβkz ˜︁BkF k

= −ω2

c2
εr

M∑︂
k=0

˜︁BkF ke
−jβkz − ω2

c2
δεr

M∑︂
k=0

˜︁BkF ke
−jβkz − ω2µ0

˜︁PNL (5.45)

Observe that the colored terms in (5.45) cancel out each others because they
fulfill the relation 2.37 of Ch.2 for ideal modal profiles
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Hence, from (5.45) we are left with

−
M∑︂
k=0

2jβke
−jβkz

∂ ˜︁Bk

∂z
F k =

− ω2

c2
δεr

M∑︂
k=0

˜︁BkF ke
−jβkz − ω2µ0

˜︁PNL (5.46)

Notice that in case the linear perturbations were not considered, the term propor-
tional to δεr would not be present anymore.

The previous equation contains on both sides a summation over all the M modes
and the modal profiles Fk(x, y, ω0), while we would like to retrieve an equation
where only one modal amplitude ˜︁Bm is figuring. Let us first define the mode area
of the k-th mode as [Agr19, p. 39]

Dk =

∫︂ +∞

−∞

∫︂ +∞

−∞
∥F k(x, y, ω0)∥2 dx dy (5.47)

To do so, we can introduce a scalar multiplication by F ∗
m(x, y, ω0) on both sides of

(5.46), normalize by the modal area Dm and integrate over a cross-section (x, y) of
infinite area, like this

−
M∑︂
k=0

2jβk(ω)e
−jβk(ω)z

∂ ˜︁Bk

∂z
(z, ω)

∫︂ +∞

−∞

∫︂ +∞

−∞

Fm
∗(x, y, ω0) · F k(x, y, ω0)

Dm

dx dy =

− ω2

c2

M∑︂
k=0

˜︁Bk(z, ω)

∫︂ +∞

−∞

∫︂ +∞

−∞

Fm
∗(x, y, ω0) ·

(︁
δεrF k(x, y, ω0)

)︁
Dm

e−jβk(ω)z dx dy

− ω2µ0

∫︂ +∞

−∞

∫︂ +∞

−∞

Fm
∗(x, y, ω0) · ˜︁PNL

Dm

dx dy (5.48)

The orthonormality relation among the modes is∫︂ +∞

−∞

∫︂ +∞

−∞

Fm
∗(x, y, ω0) · F k(x, y, ω0)

Dm

dx dy = δmk (5.49)

where δmn is Kronecker’s delta defined as

δmn =

{︄
1 if m ̸= n

0 if m = n
(5.50)

This orthonormality condition (5.49) is less formal than the actual orthornormality
condition we should be requiring for generic modes. Eq.(5.49) holds only in the
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limit of the weakly-guiding approximation [ASM16; Mar75; PH08; HP12], assuming
modes fulfill

Hk =
Ek × ẑ

Zk

(5.51)

where with Zk it is referred to the impedance of the k-th mode [ASM16], i.e.:

Zk =
Z0

nk

(5.52)

where Z0 is the impedance of the vacuum and nk is the effective refractive index of
the k-th mode.

Exploiting the orthonormality relation (5.49) in (5.48), we get

− 2jβm(ω)e
−jβm(ω)z ∂

˜︁Bm

∂z
(z, ω) + j

M∑︂
k=0

κmk
˜︁Bk(z, ω)e

−jβk(ω)z =

− ω2µ0

∫︂ +∞

−∞

∫︂ +∞

−∞

Fm
∗(x, y, ω0) · ˜︁PNL

Dm

dx dy (5.53)

where the linear mode coupling coefficient has been defined as

κmk =
ω2

c2Dm

∫︂ +∞

−∞

∫︂ +∞

−∞
F ∗

m(x, y, ω0) ·
(︁
δεrF k(x, y, ω0)

)︁
dx dy (5.54)

Notice that the presence of the dielectric tensor δεr does not allow to exploit the
orthonormality relation for the second term on the r.h.s. of (5.53). Indeed, that
term accounts for the anisotropic linear distortion effects.

Eq.(5.53) is manipulated to express it in a “nicer” form

∂ ˜︁Bm

∂z
(z, ω) + j

M∑︂
k=0

κmk
˜︁Bk(z, ω)e

−j(βk(ω)−βm(ω))z =

− j
e+jβm(ω)z

2βm(ω)
ω2µ0

∫︂ +∞

−∞

∫︂ +∞

−∞

F ∗
m(x, y, ω0) · ˜︁PNL

Dm

dx dy (5.55)

where the linear mode coupling coefficient (5.54) has been redefined as

κmk =
ω2

2βm(ω)c2Dm

∫︂ +∞

−∞

∫︂ +∞

−∞
F ∗

m(x, y, ω0) ·
(︁
δεrF k(x, y, ω0)

)︁
dx dy (5.56)

The prefactor of (5.56) can be manipulated as

ω2

2βm(ω)c2Dm

=
ω

2cDm

k0
βm(ω)

=
ω

2cDm

1

nm(ω)
≈ ω

2cnm(ω0)Dm

(5.57)
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where it has been exploited ω/c = k0, β0/k0 = nm is the effective refractive index
of the m-th mode and nm(ω) ≈ nm(ω0).

The prefactor of the nonlinear term in (5.55) can be manipulated as

−j
e+jβm(ω)z

2βm(ω)
ω2µ0 = −j

e+jβm(ω)z

2βm(ω)
ω2µ0ε0

ε0
= −j

e+jβm(ω)z

2βm(ω)
ω2 1

c2ε0
=

−j
e+jβm(ω)z

2βm(ω)

ω

c
k0

1

ε0
= −j

e+jβm(ω)zω

2nm(ω)ε0c
≈ −j

e+jβm(ω)zω

2nm(ω0)ε0c
(5.58)

where it has been used 1/(µ0ε0) = c2, ω/c = k0, β0/k0 = nm, nm(ω) ≈ nm(ω0).
Expressing the prefactor of the nonlinear term of (5.58) as (5.55), yields

∂ ˜︁Bm

∂z
(z, ω) + j

M∑︂
k=0

κmk
˜︁Bk(z, ω)e

−j(βk(ω)−βm(ω))z =

− j
e+jβm(ω)zω

2nm(ω0)ε0c

∫︂ +∞

−∞

∫︂ +∞

−∞

F ∗
m(x, y, ω0) · ˜︁PNL

Dm

dx dy (5.59)

Expressing the prefactor of the linear coupling coefficient (5.54) as (5.57), yields

κmk =
ω0

2cnm(ω0)Dm

∫︂ +∞

−∞

∫︂ +∞

−∞
F ∗

m(x, y, ω0) ·
(︁
δεrF k(x, y, ω0)

)︁
dx dy (5.60)

Notice that (5.59) and (5.60) are equivalent to (5.55) and (5.56), respectively. The
only difference is that the prefactors have been written in another (equivalent)
form which is going to be handier for later. Moreover, we have assumed κmk to be
frequency independent since its frequency dependence is only a weak correction to
the frequency independent part [MAS12b].

At this point, it is necessary to provide an expression for ˜︁PNL where the
dependence on the modal amplitudes is explicit. However, since it is more convenient
for us to find such an expression in time domain, we have to transform (5.55) to
time domain. To ease this task, we move to a slightly different modal expansion,
because the expansion used up to now, (5.40), does not allow for an easy expression
in time domain due to the presence of the dispersion term e−jβk(ω)z. The time
domain expression of the new modal expansion is

E(z, t) =
M∑︂
k=1

Ak(z, t)F k(x, y, ω0)e
−jβ

(0)
k ze+jω0t (5.61)

where, besides all the already-introduced symbols, Ak are the new modal amplitudes
and we recall the notation

β
(0)
k ≡ βk(ω0)β

(n)
k ≡ dnβk(ω0)

dωn
(ω = ω0), for n = 0, 1, 2, . . . ND (5.62)
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where ND is called dispersion order.
Note that the modal amplitudes Ak are z-dependent because of the presence

of linear and nonlinear distortion effects. Ak is said to be slowly-varying in
time because the fast time-oscillating term e+jω0t has been factored out since the
beginning since the signal is the equivalent baseband, and in space since the fast
space-oscillating term e−jβkz has been factored out in (5.61).

In order to express (5.55) with respect to Ak, we need to find the relation
between Ak and Bk, which is easier to be obtained in frequency. Hence, let us
transform (5.61) to frequency domain, i.e.,

˜︁E(z, ω) =
M∑︂
k=1

˜︁Ak(z, ω − ω0)F k(x, y, ω0)e
−jβ

(0)
k z (5.63)

where it has been used the rule

F

[︃
a(t)e−j2πf0t

]︃
(f) = F

[︃
a(t)

]︃
(f − f0) (5.64)

Comparing (5.40) and (5.63), we get

˜︁Bk(z, ω) = ˜︁Ak(z, ω − ω0)e
+j(βk(ω)−β

(0)
k )z (5.65)

Taking the derivative with respect to z yields

∂ ˜︁Bk

∂z
(z, ω) =

∂
(︁ ˜︁Ak(z, ω − ω0)e

+j(βk(ω)−β
(0)
k )z
)︁

∂z

=
∂ ˜︁Ak(z, ω − ω0)

∂z
e+j(βk(ω)−β

(0)
k )z + j(βk(ω)− β

(0)
k )e+j(βk(ω)−β

(0)
k )z ˜︁Ak(z, ω − ω0)

(5.66)

Hence, substituting (5.65) and (5.66) in (5.59),

∂ ˜︁Am(z,∆ω)

∂z
e+j(βm(ω)−β

(0)
m )z + j(βm(ω)− β(0)

m )e+j(βm(ω)−β
(0)
m )z ˜︁Am(z,∆ω)

+j
M∑︂
k=0

κmk
˜︁Ak(z,∆ω)e+j(βk(ω)−β

(0)
k )ze−j(βk(ω)−βm(ω))z

= −j
e+jβm(ω)z (ω0 +∆ω)

2nm(ω0)ε0c

∫︂ +∞

−∞

∫︂ +∞

−∞

F ∗
m(x, y, ω0) · ˜︁PNL

Dm

dx dy

(5.67)

where we defined
∆ω := ω − ω0 (5.68)
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Remind that the propagation constant βk(ω) of the k-th mode can be expanded
in a Taylor series around ω0 as

βm(ω) = β(0)
m +

ND∑︂
k=1

1

k!
β(k)
m ∆ω (5.69)

Diving by e+j(βm(ω)−β
(0)
m )z and exploiting the Taylor series (5.69), we obtain from

(5.67)

∂ ˜︁Am(z,∆ω)

∂z
+ j

ND∑︂
k=1

1

k!
β(k)
m ∆ω ˜︁Am(z,∆ω) + j

M∑︂
k=0

κmk
˜︁Ak(z,∆ω)e−j(β

(0)
k −β

(0)
m )z

=− j
e+jβ

(0)
m z (ω0 +∆ω)

2nm(ω0)ε0c

∫︂ +∞

−∞

∫︂ +∞

−∞

F ∗
m(x, y, ω0) · ˜︁PNL

Dm

dx dy

(5.70)

The previous equation is ready to be transformed to time domain. However, the
frequency variable in this case is considered to be ∆ω which eases the calculations
since the equation is mostly written with respect to ∆ω. That is,

F−1

[︃
A(∆ω)

]︃
(t) =

1

2π

∫︂ +∞

−∞
A(∆ω)e+j∆ωt d∆ω (5.71)

We just recall that ˜︁PNL(r, ω) is an analytic passband signal and it holds the
property

˜︁PNL(r, ω) = ˜︁PNL(r, ω0 +∆ω)

↓

F−1

[︃ ˜︁PNL(ω0 +∆ω, z)

]︃
= PNL(r, t)e

−jω0t (5.72)

With the help of (5.71), (5.72) and the derivation rule (5.34) applied to the
second term on the l.h.s. of (5.70), we transform (5.70) to time domain

∂Am(z, t)

∂z
+ j

(︄
ND∑︂
k=1

1

k!
β(k)
m

∂k

∂tk

)︄
Am(z, t) + j

M∑︂
k=0

κmkAk(z, t)e
−j(β

(0)
k −β

(0)
m )z

=− j
e+jβ

(0)
m z ω0

(︂
1 + 1

jω0

∂

∂t

)︂
2nm(ω0)ε0c

∫︂ +∞

−∞

∫︂ +∞

−∞

F ∗
m(x, y, ω0) · PNL

Dm

dx dy

(5.73)
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We now have to provide an explicit expression for PNL(r, t), which we repeat is
an analytic signal. The definition of nonlinear polarization vector, (5.9), is however
for the real-passband version of the vector

PNL,RP (r, t) := ε0

∫︂ +∞

−∞

∫︂ +∞

−∞

∫︂ +∞

−∞
χ(3)(t1 − t, t2 − t, t3 − t)

... ERP (t1)

ERP (t2)ERP (t3) dt1 dt2 dt3 (5.74)

where, conversely to (5.9), we have emphasized that the vectors are real-passband
signals through the subscript RP .

The third-order nonlinear susceptability tensor can be shown to assume a
simplified form in silica fibers [Agr19, p. 687]

χ(3)(t1−t, t2−t, t3−t) = χ(K)δ(t−t1)δ(t−t2)δ(t−t3)+χ(R)(t1−t2)δ(t−t1)δ(t2−t3)
(5.75)

where δ(t− ti) is the Dirac’s delta.
The term proportional to χ(K) in (5.75), Kerr constant, accounts for the (approx-

imately) instantaneous response of the electrons of the medium, which is referred
to as Kerr effect. The term proportional to χ(R) accounts for the response of nuclei
of the material, which being heavier, have a noninstantaneous response [Agr19,
p. 687] [RP05; ASM16; HP12; Wri+17].

Hence, it makes sense to separate PNL in his two Kerr and Raman contributions,
as

PNL,RP = PK
NL + PR

NL,RP (5.76)

where, inserting (5.75) in (5.9), [Agr19, p. 687]

PK
NL,RP (r, t) := ε0χ

(K) ... ERP (r, t)ERP (r, t)ERP (r, t) (5.77)

and [Agr19, p. 687]

PR
NL,RP := ε0ERP (t)

∫︂ +∞

−∞
χ(R)(t− t1)

... ERP (t1)ERP (t1) dt1 (5.78)

Owing to the isotropicity of the silica, the elements of the tensor χ(K) are
(approximately) dependent on one single value, as

χ
(K)
ijkl =

σK

3
(δijδkl + δikδjl + δilδjk) (5.79)

while the elements of the tensor χ(R) reduce to be combinations of only two
independent contributions, like [RP05] [Agr19, p. 687]

χ
(R)
ijkl = σR[faha(t)δijδkl +

1

2
fbhb(t)(δikδjl + δilδjk)] (5.80)
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Exploiting the previous two relations, after few algebraic passages, (5.77) be-
comes [RP05] [Agr19, p. 687]

PK
NL,RP (r, t) := ε0σK(ERP (r, t) ·ERP (r, t))ERP (r, t) (5.81)

and (5.78), after few algebraic passages, becomes [RP05] [Agr19, p. 687]

PR
NL,RP (r, t) := ε0σR

(︄
ERP (r, t)

∫︂ +∞

−∞
faha(t− t1)(ERP (r, t1) ·ERP (r, t1)) dt1

+

∫︂ −∞

−∞
fbhb(t− t1)(ERP (r, t1) ·ERP (r, t1))ERP (r, t1)

)︄
dt1 (5.82)

where

fa + fb = 1∫︂ +∞

−∞
ha(t) dt =

∫︂ +∞

−∞
hb(t) dt = 1

We recall that the relation between the real passband signal ERP and the
analytic signal E is

ERP =
1

2
(E + c.c.) (5.83)

Substituting the previous equation in (5.81) produces terms at ±ω0 and ±3ω0. We
keep only the positive frequencies of the result since, as said, we are looking for the
analytic version, PNL, of the polarization vector PNL,RP . Moreover, the terms at
±3ω0 can be shown to be strongly non phase matched and so negligible. Hence,
the analytic part of (5.81) at frequency +ω0 is [Agr19, p. 688]

PK
NL(z, t) =

2

8
σKε0(2∥E∥2E + (E ·E)E) (5.84)

Similarly for (5.82), if we keep only the terms at +ω0
∗, we arrive to [ASM16]

PR
NL(z, t) =

(︂σRε0
4

)︂
2E(r, t)

∫︂ +∞

−∞
h(t− t1)

(︁
E(r, t1) ·E∗(r, t1)

)︁
dt1 (5.85)

Now, it is possible to substitute (5.61) in PK
NL(z, t) and PR

NL(z, t). For the
former we obtain

PK
NL(z, t) =

ε0σK

4
e+jω0t

∑︂
j

∑︂
k

∑︂
l

AjAkA
∗
l e

+j(−β
(0)
j −β

(0)
k +β

(0)
l )z[2(F j·F ∗

l )·F k+(F j·F k)F
∗
l ]

(5.86)
∗This corresponds to keeping the first term of Eq.B.9 of [Agr19, p. 688] setting fa = 1, fb = 0
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Inserting (5.61) in PR
NL(z, t) we get

PR
NL(z, t) =

(︂ε0σR

2

)︂
e+jω0t

∑︂
k

∑︂
j

∑︂
l

F k(F j · F ∗
l )e

−j(β
(0)
j +β

(0)
k −β

(0)
l )zAk(z, t)

·
∫︂ +∞

−∞
h(t− t1)Aj(t1)A

∗
l (t1) dt1 (5.87)

Notice the presence of the term e+jω0t in both the previous equations because
only the contributes at frequency ω0 have been saved. Observe also that both
polarization vectors contain a vector term F k(F j · F ∗

l ).
Plugging (5.86) and (5.87) into (5.73), via (5.76), results immediately in the

following propagation equation

∂Am(z, t)

∂z
+ j

(︄
ND∑︂
k=1

1

k!
β(k)
m

∂k

∂tk

)︄
Am(z, t) + j

M∑︂
k=0

κmkAk(z, t)e
−j(β

(0)
k −β

(0)
m )z =

− jω0

(︂
1 +

1

jω0

∂

∂t

)︂ 1

2nm(ω0)ε0cDm

∑︂
j

∑︂
k

∑︂
l

(︂ε0σK

4
C

′

jklmAjAkA
∗
l

+
ε0σR

2
Q

′

jklmAk

∫︂ +∞

−∞
h(t− t1)AjA

∗
l

)︂
e−j∆βjklmz

(5.88)

where the linear coupling coefficients are given by (5.54) and

C
′

jklm = 2Q
′

jklm +R
′

jklm (5.89a)

Q
′

jklm =

∫︂ +∞

−∞

∫︂ +∞

−∞
(F j · F ∗

l )(F k · F ∗
m) dx dy (5.89b)

R
′

jklm =

∫︂ +∞

−∞

∫︂ +∞

−∞

[︂
(F j · F k)(F

∗
l · F ∗

m)
]︂
dx dy (5.89c)

∆βjklm = −β(0)
m + β

(0)
j + β

(0)
k − β

(0)
l (5.89d)

Notice the exchange of the double integrals with the summations moving from
(5.73) to (5.88).

The derivation of the GMMNLSE could stop at (5.88) since all the information
about the signal propagation is already present in (5.88). However, we perform few
more passages to rearrange the equation in a form closer to the common literature
notation and to clarify the idea behind the choice of a certain normalization. The
target is to reach the same form as Antonelli et al. [ASM16].
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5.2 Manipulation of the GMMNLSE
Eq.(5.88) has been expressed referring to the modal expansion (5.61), which assumes
the modal profiles F k to be adimensional and so, given that the electric field is in
units of V/m in the S.I. (International System of Units), the modal amplitudes are
also in units of V/m. However, it is common practice to handle modal amplitudes
whose modulus square is the power of the considered mode in units of

√
W. In

order to achieve it, it is necessary to consider a slightly different modal expansion
from (5.61). In particular, we consider

E(z, t) =
M∑︂
k=1

Ak(z, t)F k(x, y, ω0)

Nk

e−jβ
(0)
k ze+jω0t (5.90)

where Nk is a normalization constant in units of m√
Ω

and its square value is defined
as

N2
k :=

Dk

2Zk

(5.91)

where Dk and Zk are the mode area (5.47) in m2 and the impedance (5.52) in Ω,
respectively, of the k-th mode.

Let us define the modal electric field of the k-th mode as

Ek =
Ak(z, t)F k(x, y, ω0)

Nk

e−jβ
(0)
k ze+jω0t (5.92)

and the modal power Pk as the power of the k-th mode. Within the weak-guidance
and narrowband signal approximation, i.e., the signal frequency is much lower than
the carrier, the power of the k-th mode is

Pk(z, t) =

∫︂ ∫︂
∥Ek(z, t)∥2

2Zk

dx dy (5.93)

The previous formula can be derived following the ideas in Appendix B of [ASM16].
Substituting (5.92) in (5.93)

Pk(z, t) =

∫︂ ∫︂
∥Ak(z, t)F k(x, y, ω0)∥2

2ZkN2
k

dx dy = ∥Ak(z, t)∥2
∫︂ ∫︂

∥F k(x, y, ω0)∥2

2ZkN2
k

dx dy

⇓

Pk(z, t) = ∥Ak(z, t)∥2
∫︂ ∫︂

∥F k(x, y, ω0)∥2

2Zk
Dk
2Zk

dx dy = ∥Ak(z, t)∥2 (5.94)

where in the last passage it has been exploited also the Definition (5.47) of Dk. As
we wanted to show, the modal expansion (5.92) allows to have as ∥Ak∥2(z, t) the
power carried over a single mode in units of Watts [PH08; ASM16] [Agr19, p. 39].
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In truth, (5.91) makes sense only in the limit of the weakly-guiding approxi-
mation [PH08; HP12; ASM16] because the modes can no more be approximated
as plane waves and the orthogonality relation becomes more complex than (5.49).
The more general normalization coefficient Nk can be found in [ASM16]. However,
for our purposes (5.91) is enough.

If the new modal expansion (5.92) is employed, the GMMNLSE (5.88) assumes
a slightly different expression. In order to reduce possible misunderstandings,
let us rename the modal amplitudes of the previous expansion (5.61) and of the
GMMNLSE (5.88) as A

′
m and keep the symbol Am for the amplitudes of the new

expansion (5.92). Comparing the two expansions (5.61) and (5.92), the relation
between the amplitudes is immediate

A
′

m =
Am

Nm

(5.95)

Performing the change of variable (5.95) in (5.88) yields (in red the new terms, in
green some old terms used later)

∂Am

∂z
+ j

(︄
ND∑︂
k=1

1

k!
β(k)
m

∂k

∂tk

)︄
Am + j

M∑︂
k=0

Nm

Nk

κmkAk(z, t)e
−j(β

(0)
k −β

(0)
m )z

= −jω0

(︂
1 +

1

jω0

∂

∂t

)︂ 1

8nm(ω0)cDm

∑︂
j

∑︂
k

∑︂
l

Nm

NjNkNl

(︂
σKC

′

jklmAjAkA
∗
l

+ 2σRQ
′

jklmAj

∫︂ +∞

−∞
h(t− t1)AkA

∗
l

)︂
e−j∆βjklmz

(5.96)

Including the factor Nm/Nk in the previous definition (5.60) of linear coupling
coefficients, we get that the prefactor of the new coupling coefficient is

Nm

Nk

ω0

2cnm(ω0)Dm

=

√
Dmnm√
Dknk

ω0

2cnm(ω0)Dm

=
ω0

2c
√
DmDknmnk

(5.97)

where the definition of mode area (5.47) has been exploited.
The colored (green and red) factor appearing in the nonlinear part of (5.96)

can be manipulated as

ω0

8nmc

1

Dm

Nm

NjNkNl

=
ω0

8nmc

1

2ZmN2
m

Nm

NjNkNl

=
ω0

16

1

nmc

1

Zm

1

NmNjNkNl

=
ω0

16

√
ε0µ0

nm

1

Zm

1

NmNjNkNl

=
ω0

16
ε0Zm

1

Zm

1

NmNjNkNl

=
ω0ε0
16

1

NmNjNkNl

(5.98)
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Hence, the colored term of (5.88) becomes

ω0ε0
16

1

NmNjNkNl

(5.99)

Let us define the nonlinear parameter [ASM16] [Agr19, p. 39]

γ :=
ω0n2

cAeff
=

ω0

cAeff

3

4

χ(3)

neff
Z1 (5.100)

where [ASM16]

n2 :=
3

4

χ(3)

neff
Z1 (5.101)

and

χ(3) = σK +
2

3
σR (5.102)

neff ≡ n1 (5.103)

Aeff =

∫︁ ∫︁ (︂
∥F 2

1(x, y, ω0)∥
)︂2

dx dy∫︁ ∫︁
F 4

1(x, y, ω0) dx dy
(5.104)

The nonlinear coefficients γ and n2 are the same as the single mode nonlinear
propagation equation where the nonlinear term is given by [ASM16]

− γ
|E|2

2Z1

E (5.105)

or by
− γ|E|2E (5.106)

depending on whether the term 2Z1 is included or not in n2 [ASM16]. Observe
that a more common definition of n2 considers the core refractive index n at the
denominator [Agr19, p. 39], instead of the effective refractive index neff of the
fundamental mode as for (5.101). Such definition is reasonable since one desires the
nonlinear parameter n2 to be linked to the fiber material only, not the specific fiber
geometry. Yet, given our derivation it makes more sense to follow the definition
(5.101) we adopted, which is the same of Antonelli et al. [ASM16].

Given the previous definitions, the nonlinear term (5.99) can be expressed as

ω0ε0
16

1

NmNjNkNl

= γ

(︃
Aeffneff

Z1

1

χ(3)

4

3
c

)︃
ε0
16

1

NmNjNkNl

= γ
Aeffn

2
eff

12Z0

1

χ(3)

c

ε0

1

NmNjNkNl

= γ
Aeffn

2
eff

12Z0

1

χ(3)

1

Z0

1

NmNjNkNl

= γ
Aeffn

2
eff

12Z2
0

1

χ(3)

1

NmNjNkNl

(5.107)
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Thus, substituting the nonlinear colored terms in (5.96) with (5.107) provides
the final form of the GMMNLSE, when loss is neglected, i.e.,

∂Am

∂z
+ j

(︄
ND∑︂
k=1

1

k!
β(k)
m

∂k

∂tk

)︄
Am + j

M∑︂
k=0

κmkAke
−j
(︁
β
(0)
k −β

(0)
m

)︁
z =

− j
(︂
1 +

1

jω0

∂

∂t

)︂
γ
∑︂
j

∑︂
k

∑︂
l

(︂
CjklmAjAkA

∗
l +HjklmAk

∫︂ +∞

−∞
h(t− t1)AjA

∗
l dt1

)︂
e−j∆βjklmz

(5.108)

where the linear coupling coefficient has been redefined as explained in relation to
(5.97), i.e.,

κmk =
ω0

2c
√
DmDknmnk

∫︂ +∞

−∞

∫︂ +∞

−∞
F ∗

m(x, y, ω0) ·
(︁
δεrF k(x, y, ω0)

)︁
dx dy (5.109)

and the other parameters are

Cjklm =
Aeffn

2
eff

12Z2
0

(1− fR)(2Qjklm +Rjklm) (5.110)

Hjklm =
Aeffn

2
eff

12Z2
0

(fR)(3Qjklm) (5.111)

Qjklm =

∫︂ +∞

−∞

∫︂ +∞

−∞

[︂
(F j · F ∗

l )(F k · F ∗
m)
]︂

NjNkNlNm

dx dy (5.112)

Rjklm =

∫︂ +∞

−∞

∫︂ +∞

−∞

[︂
(F j · F k)(F

∗
j · F ∗

m)
]︂

NjNkNlNm

dx dy (5.113)

fR =
2
3
σR

χ(3)
(5.114)

(1− fR) =
σK

χ(3)
(5.115)

∆βjklm = −β(0)
m + β

(0)
j + β

(0)
k − β

(0)
l (5.116)

Observe that fR is the relative intensity of the Raman parameter relative to the sum
of the Raman and Kerr parameter. In other words, it is the Raman contribution
to the Kerr effect.

Notice that the GMMNLSE in the form (5.108) with the parameters (5.110)
is very close in content and notation to the one shown in [ASM16], besides an
approximation of the Raman term which is going to be discussed soon and besides
the fact that the authors does not consider a physical model for linear coupling,
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conversely from our approach through (5.109). The GMMNLSE of [PH08], one of
the first works to derive it, is also similar, with the differences that no linear mode
coupling is modeled, while some more nonlinear contributions of the Raman term
(5.82), are considered in that paper. Agrawal [Agr19], on which the first part of the
derivation is based, does not provide the equation with all the terms (5.108), but
several versions considering the separate effects and, anyhow, it paves down the way
to derive this equation. [HP12] and [Wri+17] show a similar version of the equation,
but without considering linear coupling and with the latter restricting to the single
polarization case. All the above mentioned works adopt the convention for the
phase retardation opposite to us, i.e., they treat a forward-propagating mode with
e+jβkz, resulting in different signs in some terms of the equation. However, this
does not affect the interpretation of the phenomena since, when the real passaband
electric field is considered, the description is the same.

5.3 Brief Description of the GMMNLSE Terms
The terms on the l.h.s. of the GMMNLSE account all for the linear effects. The term
proportional to the time derivatives accounts for the mode-independent dispersion
terms up to the desired order, often two. E.g., the first-order derivative is responsible
for the propagation delay of a mode, the second for chromatic dispersion.

The third term on term on the l.h.s. of the equation models linear mode
coupling, whose discussion happened in the previous chapters. The presence of
the phase-mismatch between a pair of modes determines the presence of a fast-

oscillating (with z) term e−j
(︁
β
(0)
k −β

(0)
m

)︁
z which tends to average out the coupling

term and, thus, has the effect of reducing the actual coupling strength between the
modes, as discussed in Ch.4.

On the r.h.s. of the equation there are the nonlinear terms. 1
jω0

∂

∂t
is called self-

steepening and it generally does not have a great impact on the signal propagation
[Wri+17].

The nonlinear term proportional to Cjklm is responsible for Kerr effect. Par-
ticular cases of it are the self-phase modulation (SPM), proportional to |Am|2Am,
where the phase of Am is modulated by the power of Am itself; the cross-phase
modulation (XPM), proportional to |Aj|2Am, where the phase of Am is modulated
by the power of another modal amplitude Aj; the more complex four-wave mixing
(FWM) where not only the phase of Am is modulated, but there is an exchange of
power between the modes given the generality of the terms AjAkA

∗
l .

The nonlinear term proportional to Hjklm is responsible for Raman effect, which
determines a transfer of power among the modes and with the material, which
implies a loss of energy [Agr19, p. 16].
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Similar to the linear coupling, observe the presence of the phase-mismatch ∆β
for the nonlinear coupling which determines the actual intensity of the coupling
terms.

In the following we consider two final aspects: the approximation of the Raman
term for signals with band below 10THz, and the inclusion of fiber loss.

5.4 Modelling the Raman Impulse Response
The Raman impulse response h(t) defining the Raman part of the nonlinear polar-
ization vector (5.85) and entering the GMMNLSE (5.108), has to be experimentally
assessed. However, some simplified models requiring few measured parameters
are possible [Agr19, Sec.2.3.3] [RP05]. For example, a basic one is the damped
harmonic oscillator, whose impulse response is [Agr19, p. 2.3.39] [RP05]

h(t) =
τ 21 + τ 22
τ1τ 22

e
−t
τ2 sin

(︃
t

τ1

)︃
(5.117)

where τ1 and τ2 are two experimental parameters. For silica fibers, τ1 = 12 fs and
τ2 = 32 fs; for germanosilicate fibers, τ1 = 12 fs and τ2 = 83 fs [RP05; Agr19].

The impulse and frequency responses are depicted in Fig.5.1.
From the latter is evident that the model is not too accurate in representing

the typical Raman gain curves (see, e.g., [Agr19, Fig.2.2]). At the same time, the
Raman response has a bandwidth of approximately 15THz, which means that the
model is overcomplicated for bandwidth lower than, at least, few THz. Moreover, if
such model is employed for simulations, a simulation bandwidth of at least 30THz
is needed in simulations, otherwise strong aliasing occurs. For signals of bandwidth
much lower than few THz, a huge oversampling factor would be required slowing
down the computations. Hence, in this circumstances another simpler model is
more suited. It is based on approximating the Raman frequency response with a
Taylor expansion of the first order [ASM16; Was02] [Agr19, p. 44]˜︁h(∆ω) ≈ 1− jTR∆ω (5.118)

where

TR := −1

j

(︃
dh

dω

)︃
0

= −
∫︂ +∞

−∞
th(t) dt (5.119)

is the Raman time constant. From a physical perspective, it represents the Raman
gain around the central frequency [Was02]. Notice that (5.119) has first summand
equal to one since the integral of h(t) has been normalized to be unity, as required
by (5.1). Inverse transforming (5.118) we obtain the Raman impulse response,
symbolically, as

h(t) = δ(t)− TR
∂

∂t
(5.120)
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Figure 5.1: Oscillator model (5.117) with τ1 = 12 fs and τ2 = 83 fs.
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Exploiting (5.118), the argument of the triple summation on the r.h.s. of the
GMMNLSE (5.108) becomes

CjklmAjAkA
∗
l +HjklmAk

∫︂ +∞

−∞
h(t− t1)AjA

∗
l dt1

= (Cjklm +Hjklm)AjAkA
∗
l − TRHjklmAk

∂(AjA
∗
l )

∂t

= C̃jklmAjAkA
∗
l − TRHjklmAk

∂(AjA
∗
l )

∂t

(5.121)

where

C̃jklm := Cjklm +Hjklm =
Aeffn

2
eff

12Z2
0

[︂
(1− fR)(2Qjklm +Rjklm) + 3fRQjklm

]︂
(5.122)

Observe that (5.122) indicates that the instantaneous part of the Raman effect has
a similar contribution to the Kerr effect, through fR.

5.5 Inclusion of Loss
The last missing piece of our interest of the GMMNLSE is the fiber loss, which
is not negligible for the fiber lengths typical of long-haul communication systems.
For simplicity, we assume it to be mode and frequency independent.

Let α be the loss coefficient in units of 1/m and let αdB be the loss in dB/m,
whose typical value in current communication systems is around 0.20 dB/km. The
loss coefficient α is defined relative to the signal power as [Agr19, Eq.1.2.3]

P (z) = e−αzP (z = 0) (5.123)

where, thanks to our expansion (5.92) for which the power of a mode is the
amplitude square of its modal coefficient (5.2),

P (z, t) =
M∑︂
k=1

Pk(z, t) =
M∑︂
k=1

|Ak(z, t)|2 (5.124)

Notice that, being e−αz the loss factor relative to the power, the attenuation factor
on the field E is √

e−αz = e−
α
2
z (5.125)

In view of the presence of fiber loss, a term α
2
Am has to be inserted on the r.h.s.
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of the GMMNLSE (5.108), obtaining (in red the the addition)
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e−j∆βjklmz

(5.126)

where all the other terms are as in (5.110)-(5.109).
Then, we consider a new modal expansion where a term

e−
α
2
z (5.127)

is factored out from the modal amplitude. That is, the new modal expansion is

Ek =
Ak(z, t)F k(x, y, ω0)

Nk

e−jβ
(0)
k ze+jω0te−

α
2
z (5.128)

Renaming A
′′
m the modal amplitude of the previous modal expansion (5.92) and

keeping Am for the new modal expansion (5.128), the relation between the two is

A
′′

m = Ame
−α

2
z (5.129)

Hence, the GMMNLSE for the modal expansion (5.128) can be obtained by inserting
(5.129) in (5.126), i.e. (in red the additions),
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(5.130)

After basic simplifications, we retrieve the following GMMNLSE
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(5.131)
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where the coefficients are defined as in (5.110)-(5.109).
Notice that, compared to (5.126), the term +α

2
Am has (clearly) disappeared

and an equivalent contribution popped up on the nonlinear term. Indeed, the
nonlinearities depend on the field power. If the modal expansion (5.90) is considered
for the GMMNLSE (5.126), the modal amplitudes decreases with z and so the
effect of the nonlinearities, depending on the power of the modal amplitudes, is
intrinsically weaker. However, if the expansion (5.128) is adopted, the modal
amplitudes do not reduce with z due to loss, given that the term e−

α
2
z has been

factored out. However, one still intuitively expects that the strength of the
nonlinearities decreases with distance. This is indeed the case, because now the
nonlinear terms in the GMMNLSE (5.126) (correspondent to the expansion (5.128))
explicitly reduce over distance.

The mentioned fact that the modal amplitudes do not reduce with z due to loss
is sometimes an advantage in simulations and the reason for which the expansion
(5.128) is sometimes preferable over (5.90).



Chapter 6

Simulator Design

In this chapter we provide indications for the implementation of a numerical solver
for the GMMNLSE comprising both linear and nonlinear coupling effects, giving
to the reader the chance to choose the preferred expression of the GMMNLSE
among the various presented in the previous chapter. A comparison of the available
techniques and a rigorous theoretical description of the chosen one is beyond the
scope of this work. Hence, we limit ourselves to select and present in a light way an
algorithm already successfully exploited in literature for optical communications,
that is, the Split-Step Fourier method (SSFM) combined with a Runge-Kutta
(RK) algorithm used by Poletti et al. [PH08; HP12] and Wright et al. [Wri+17].
Wright et al. started from the GMMNLSE of [HP12] and, among the other things,
provided an implementation of the numerical solver for the GMMNLSE, without
linear coupling and restricting to the single-polarization case, while in this thesis
we are concerned with both polarizations and the inclusion of linear coupling. They
implemented both the SSFM with the RK method, and the so-called Massive
Parallel Algorithm (MPA), which outperforms the former if a GPU is exploited.
Nonetheless, both algorithms show a significantly reduced computational time
(up to two orders of magnitude) when the efficient GPU implementation is used
instead of the one relying on the CPU only. The implementation and an excellent
documentation is freely available at [Wri+18] and it has been a reference for this
chapter.

The method we briefly present for the solution of the GMMNLSE is the SSFM
with a RK method of fourth order (RK4) employed by Wright et al., adding the
linear coupling effects discussed in Ch.3-4.

103
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6.1 Split-Step Fourier Method
The SSFM is a widely known and used method (e.g., [Was02] [Agr19, p. 46]) to
efficiently and rather easily solve the nonlinear Schrödinger equation for the single
mode case, like

∂A(z, t)

∂z
= −jβ(2)A(z, t)− jγ|A(z, t)|2A(z, t) (6.1)

where A is the modal amplitude, β(2) is the only surviving dispersion term after
having factored out the frequency-independent part of the propagation constant and
having chosen a reference system moving with the group delay, γ is the nonlinearity
constant. The previous equation can be rewritten in a symbolic way as

∂A(z, t)

∂z
= (D̂ + N̂)A(z, t) (6.2)

where D̂ = −jβ(2) is the linear dispersion operator and N̂ = −jγ|A(z, t)|2 is the
nonlinear operator. The exact solution of (6.2) is, in a symbolic form, [Agr19,
p. 46]

A(z +∆z, t) = e(D̂+N̂)∆zA(z, t) (6.3)

where ∆z is the longitudinal step size.
For applying the SSFM we assume the linear and nonlinear effects to be

independent on one another along the longitudinal step, which clearly is just an
approximation. Hence, the solution of (6.2) is given by the product of the solutions
of the two phenomena computed independently on one another, i.e.,

A(z +∆z, t) = eD̂∆zeN̂∆zA(z, t) (6.4)

With the help of the Baker-Hausdorff formula (see, e.g., [Was02] [Agr19, p. 46]),
the error of the approximation is found to be of second-order in the step size ∆z
(symbolically O((∆z)2)), i.e., proportional to (∆z)2 and hence the method is said
to be of first order. Indeed, a solution method having an error which is O((∆z)n+1)
is called an n-th order method. A refined version of the SSFM (6.4) is the so-called
symmetrized split-step Fourier method which consists in splitting the linear step
in two half-steps, one before and one after the nonlinear step, whose symmetric
structure gives the name to the method. That is,

A(z +∆z, t) = eD̂
∆z
2 eN̂∆zeD̂

∆z
2 A(z, t) (6.5)

With the help of, again, the Baker-Hausdorff formula, the approximation is found to
have an error which is O((∆z)3), and hence the symmetrized SSFM is a second-order
method, compared to the original formulation which is first-order.
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For the solution of (6.5) a common approach is to compute the dispersive part
in the Fourier domain with the efficient FFT and the nonlinear part in time domain.
Indeed, as known from the previous chapters, the solution to the LSE is expressed
in the frequency domain as

˜︁A(z +∆z, ω) = eD̂ω∆z ˜︁A(z, ω) (6.6)

where D̂ω is the dispersion operator in frequency domain which in this case is

D̂ω = e−j β
(2)

2
ω2

(6.7)

Hence, the overall solution for one step is

A(z +∆z, t) = F−1

[︃
eD̂ω∆z/2F

[︃
eN̂∆zF−1

[︃
eD̂ω∆z/2 ˜︁A(z, ω)]︃]︃]︃ (6.8)

Moving from the single mode to the multimode case, the linear solution is
replaced by the transfer matrix T described in Sec.4.2.4 and Sec.4.3, depending on
whether the physical or statistical approach is employed.

Moreover, in the multimode case instead of computing the nonlinear step as
eN̂z, an alternative is, given the result of the first linear-half step, to numerically
integrate the nonlinear equation through a method like the RK4 to obtain the
nonlinear increment. The common idea between the two approaches is to have an
algorithm which advances for a nonlinear step, that is, an algorithm which solves
only the nonlinear part of the equation for a step. We do not provide a formal
proof to back it up, but we limit to observe this is a common approach in literature
[PH08; HP12; Wri+17].

6.2 Runge-Kutta Method
We now briefly describe the RK4 method following the notions provided by [Pre+07].
The RK4 method is a standard numerical solution algorithm for ordinary differential
equations. Its basic configuration is rather simple, but some improvements, like
the stepsize adaption to the estimated error, are possible. To introduce it, let us
consider an ordinary differential equation like

dA(z)

dz
= f(z, A) (6.9)

where A is the unknown function and z is the independent variable. Notice that
the GMMNLSE without the linear dispersive terms can be written like (6.9).
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Discretizing the derivative on the l.h.s. of (6.9), that is, substituting it with
∆A/∆z and multiplying ∆z on both sides, (6.9) becomes an iterative numerical
solution method

An+1 ≈ An + f(zn, An)∆z, for n = 0, 1, . . . (6.10)

where (z0, A0) represent the initial conditions of the system and ∆z is the integration
stepsize.

In other words, at every step n we are approximating A with a Taylor expansion
truncated to the first order term, where the derivative is immediately provided
by the r.h.s. f(z, A) of the differential equation, evaluated in the previous point.
From the Taylor expansion of the exact solution

An+1 = An + f(zn, An)∆z +O(∆z2) (6.11)

we can observe that the error in using the Euler method (6.10) is proportional to
the second power of the stepsize ∆z. A solution method having an error which is
O((∆z)n+1) is called an n-th order method. Hence, the Euler method is first-order
accurate in ∆z. Its weak point is to exploit only the derivative of A computed at
the initial point of the current step to compute the value of A at the end of the
step, while the derivative of A changes along the step. Here is where Runge-Kutta
methods come into play. RK evaluates the r.h.s. of (6.9) at multiple points for a
single step and exploits such evaluations to improve the accuracy. A Runge-Kutta
method of order 2, RK2, performs two evaluations of f for a single step, one at the
beginning of the step (like the Euler method), as

k1 = ∆z f(zn, An) (6.12)

and one at the middle of the step exploiting the previous computation of the
derivative

k2 = ∆z f(zn +∆z/2, An + k1/2) (6.13)

Then, this second derivative allows for a more accurate estimation of An+1 as

An+1 = An + k2 (6.14)

Computing the error for the RK2, one finds that it is O((∆z)3) and so the RK2
is second-order in ∆z. However, notice that the RK2 requires two evaluations of
f for a single step, while the Euler method just one. Hence, RK2 is superior to
the Euler method only if, for the same accuracy, it allows to increase the stepsize
more than twice compared to the Euler method. This indicates that a higher-order
method does not always mean a better method.

Combining multiple evaluations of f at intermediate points of a step allows
for higher order RK methods. The construction of the RK formulas is not trivial
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because the evaluations have to be chosen to cancel the error terms of the Taylor
expansion, leaving an error O((∆z)n+1) for a RK method to be called of order n.
The RK4 method is one of the most popular since being fourth-order, yet still easy
to implement and with still a limited number of evaluations, four, needed. That is,
[Pre+07]

k1 = ∆z f(zn, An) (6.15)
k2 = ∆z f(zn +∆z/2, An + k1/2) (6.16)
k3 = ∆z f(zn +∆z/2, An + k2/2) (6.17)
k4 = ∆z f(zn +∆z, An + k3) (6.18)

An+1 = An + 1/6k1 + 1/3k2 + 1/3k3 + 1/6k4 (6.19)

The same considerations about the comparison between RK2 and Euler method
hold for the comparison between RK2 and RK4. However, it is generally the case
that RK4 outperforms RK2 in the sense that it allows for a stepsize more than the
double of RK2 for the same accuracy.

The stepsize ∆z can also be adaptively adjusted from step to step, based on
some error metric which can be computed from An+1, through the so-called double
stepping or the embedded Runge-Kutta formulas. The basic idea is to exploit two
estimates of An+1 computed independently with two different methods.

In the double stepping, one estimate is computed through the chosen RK for
the chosen stepsize, while the other estimate is computed by halving the stepsize.
The subtraction between the two estimates is an estimate of the error, based on
which one can exploit algorithms for stepsize adaption. The most basic consists in
recomputing An+1 (and the error) for a reduced stepsize, if the error is higher than
a threshold.

In the embedded RK formulas, the two estimates of An+1 come from two RKs of
different order, but based on the same ki evaluations (combined in a different way).
Hence, the difference between the two provides an estimate of the truncation error
for the lower order RK. Even if formally the error applies to the lower order RK,
the higher order estimate of An+1 can be used, in which case it is said that An+1

has been obtained by local extrapolation. The first to be discovered has been the
Runge-Kutta-Fehlberg method which exploits a RK4 and a RK5 both computed
through six evalutios ki arranged in different order.

Finally, from our first attempts of implementation and from running the im-
plementation of [Wri+17] it emerged that the computational time is in the order
of days per kilometer of fiber, if a GPU is not used. The reason for it is the tiny
step sizes needed to account for the mode beating arising from the phase-mismatch
between the modes [Wri+17] and a sufficient number of time/frequency points to
prevent the signal broadening (both in time and frequency) to introduce artifacts
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[Was02]. When an efficient GPU implementation is considered, the time reduces
between one and two orders of magnitude.

6.3 Hints on Manakov Equations
Another option to significantly speed up the integration consists in exploiting a
simplified version of the GMMNLSE, the Manakov equations. These are a family
of equations first invented and used within the framework of SMF transmission
[MMW97] for simplifying the numerical solution of the nonlinear Schrödinger
equation. They have been later extended to the multimode case [MAS12b; MAS12a;
Ryf+12; ASM16] considering firstly only the Kerr terms and later the Raman as
well, for different scenarios of linear mode coupling. Nowadays they have been
derived for weak, intermediate and strong coupling [Agr19, p. 638].

These propagation equations are derived by averaging the coefficients of the
nonlinear evolution with respect to the fast evolution of the frequency-independent
birefringence and mode coupling. The idea behind this approach is that the
nonlinear perturbations affect the signal propagation on length scales much longer
than the fast (hyper)polarization variations due to birefringence and mode coupling.
Hence, instead of considering the actual nonlinear terms of the GMMNLSE, it is
possible to average their parameters over the (hyper)polarization variations. In this
way, we are missing the exact local description of the signal propagation, which
for long-haul communications is irrelevant, but we are enormously reducing the
solution time. Indeed, the Manakov equations have less terms and allow to use
much longer stepsizes compared to the GMMNLSE, not having to deal anymore
with the short beat length.

More details on the the topic can be found, e.g., in [Ryf+12; ASM16].



Chapter 7

Conclusions and Outlook

This thesis has been composed of three main parts. In the first we have reviewed
polarization-mode coupling, in the second spatial mode coupling.

Particular attention has been devoted to the 2-polarization case and the theory
of the principal states of polarization, because they are basic elements for the
more complex multimode scenario and to understand advanced concepts, like the
Manakov equations. In addition, they are naturally generalized to the multimode
scenario.

We have provided and implemented two possible models for the multimode
fiber channel in linear regime, one modeling some distortion effects acting on the
fibers and one based on a statistical approach. The latter seems to introduce a too
strong level of coupling compared to the former when the same segment length is
assumed. Yet, it is a fast simulation tool and it might be tweaked to bring about a
level of coupling closer to reality.

There is room for research in modeling physical perturbing phenomena. In
particular, alternatives should be investigated for bend since the model employed
by us loses significance, if realistic level of coupling are desired.

In the last part of the thesis, the derivation of the GMMNLSE has been reviewed
starting from Maxwell’s equations, highlighting the role of the different terms and
of the various possible normalizations. The reader shall adapt it to the considered
scenario. For instance, the Raman term can be simplified when the signal band is
below 10 THz, as illustrated. A possible design for the numerical solver, comprising
both linear and nonlinear effects, has been proposed. The next step consists in its
implementation, giving attention to exploit a GPU to speed up the computations.

As a future direction of research, it has been mentioned that the Manakov
equations significantly reduce the computational burden for long-haul applications,
as space-division multiplexing. However, the intuition and derivation of this
technique requires a broad view on both the linear and nonlinear phenomena
described by the GMMNLSE. This thesis covers all of them to various degree of
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detail. Hence, it provides all the necessary tools to approach the Manakov model
and to implement it. The availability of both the GMMNLSE, where the linear
effects are modeled through a physical approach, and the Manakov model, which is
usually based on statistical considerations on linear coupling, would allow to assess
the accuracy of the Manakov model in various scenarios of coupling.
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