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Abstract

The aerospace sector is increasingly looking to the advent of the more electrical philosophy,
but from a practical point of view the technologies available are neither sufficient nor suitable
for aeronautical use, especially for primary flight controls, for which the levels of safety and
reliability required are very high. For this reason, great care is needed in fault management,
not only through redundancies, which are not always feasible on an aircraft for weight
reasons, but also through suitably designed diagnostic and prognostic software.

Given the importance that these problems have assumed today, it was therefore considered
important to try to develop algorithms capable of detecting faults before they can irreversibly
compromise the aircraft.

In particular, the choice of the field of application of these algorithms (inspired by various
biological species) fell on an electromechanical actuator, aimed at the implementation of
primary flight commands.

The actuator and its failure modes were modelled in Matlab Simulink. After studying
the dynamic response of the system and reporting the results, several algorithms were
implemented in order to use them for prognostic purposes.
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Chapter 1

Overview

1.1 More-electric philosophy

In the aerospace sector, the development of technology generally aims to achieve a reduction
in weight and operating and /or maintenance costs and an increase in performance, reliability
and safety. This evolution is combined with that of electrical systems, so that heavy and
complex hydraulic power systems can be replaced by lighter, less bulky and less expensive
electrical systems during their operating life.

For this reason, the more electric philosophy is becoming increasingly widespread, tending
more and more towards the all electric one [1].

The current application field of this philosophy involves flight commands, power generation
and propulsion control. Here we will focus on the flight controls.

At present, the implementation of flight controls in medium and large aircraft is done by
fly-by-wire (FBW), a technology created to meet the need for increasingly faster modern
aircraft.

Specifically, in the cockpit the control column allows roll and pitch maneuvers to be performed,
while the pedals allow the rudder to be controlled for yawing. This is done by means
of a computer that translates pilot-induced command movements into low-power electrical
signals. The system comprises electric cables, which have already replaced the old steel ones,
to transmit the electric signals to a hydraulic pump position transducer, which drives the
relevant moving surface. The fly-by-wire system also allows signals to be introduced not
from pilot input, but from the computer itself, to automatically stabilise the aircraft, acting
as a closed-loop system [2].

As a result, the system is electrically controlled but hydraulically powered.

A diagram of the typical operation of the fly-by-wire system is shown in the figure 1.1.

Technology is moving in the direction of fly-by-light, where electric cables are replaced by
fibre optic cables. This system is lighter and has a higher bandwidth and a lower risk of
electromagnetic interference.
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Figure 1.1: Fly-by-wire system

However, the challenge is to completely eliminate hydraulic connections and the associated
risks. Currently, this type of technology is slowly finding use mainly for secondary flight
controls as they are less critical to flight safety than primary ones. It is also being developed
for primary flight controls for small aircraft.

The development in this sense of an all-electric actuation - which finds application in the
electromechanical actuator (EMA) that we will analyze in the section 1.2 - is due to the
different criticality of flight controls.

In fact, primary flight controls have the task of locally modifying the aerodynamic forces to
generate aerodynamic moments around the three body axes of the aircraft. On the other
hand, the secondary flight controls have the objective of altering the coefficients of drag and
maximum lift without modifying the aircraft’s attitude; this makes it possibile to obtain
greater and better control of the aircraft in any flight phase and condition.

Due to the crucial nature of the former, the mere replacement of the hydraulic system by
the electrical one is insufficient. In fact, a higher level of safety is required, which can be
achieved by the installation of additional devices that increase the reliability of the system.
However, this process makes the system itself havier, more complicated and more expensive;
for these reasons the solution described still needs further development.

1.2 EMA vs EHA

In order to better understand the issues related to hydraulic or electric actuation technologies,
the main features of electro-hydraulic (EHA) and electro-mechanical actuators (EMA) are
presented in this section.

The most commonly used electro-hydraulic actuator consists of a bidirectional variable speed
pump driven by appropriate electronics. It provides switching or actuation by hydraulic
force, which is constantly regulated by servo valves. These regulate the hydraulic flow of the
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actuator through the relationship between pressure and flow rate, allowing the conversion of
hydraulic energy into mechanical one. The fluid pressure pushes a piston, which is located
inside a specific chamber, back and forth.

The electro-hydraulic actuator provides movement by constantly adapting to the demands
of the system in commensurate increments. This is made possible by a set of valves and a
servo amplifier in the actuator circuit. The amplifier receives input signals from the sensors,
interprets the demands and processes them into appropriate signals, which are sent to a series
of servo valves. Each servo valve is used to control the duration of the hydraulic actuator’s
movement, the speed at which it moves, and the amount of torque or power it exerts.

An electro-hydraulic actuator can be linear, i.e. perform the actuating movement in a
straight line, or rotative. In the first case, the actuator is called a jack and is mainly used
for primary flight controls; in the second case, the actuator is a motor, currently used for
secondary flight controls [3].

At present, aircraft such as the A380 and B787 already use the EHA system as a back-up
to the hydraulic system.

The figure 1.2 shows a generic example of an electro-hydraulic actuator.

p—
; Torque motor
i Ffapper
r ] Servo valve
Return circuit Supply circuit
Cylinder
Piston

User

Figure 1.2: Electro-hydraulical actuator

The advantages and disadvantages of an electro-hydraulic actuation system are summarised
below [4]:

— long service life;
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large actuation forces;

— overload protection;

reliability due to a well-designed and guaranteed pump;

— developed and validated active/stand-by and active/active configurations;
— hydraulic maintenance requirements;

— required weight improvement;

— required cost improvement.

The electromechanical actuator (EMA) is now described in general terms.

It consists of an electric motor (DC, in aviation) which takes electrical power from the
transmission bar of the electrical system and converts it into mechanical power. In particular,
the angular rate of the electric motor is regulated by a power converter which changes the
magnitude and frequency of the phase voltages applied to the stator windings. The torque
and speed developed by the motor are managed by a reducer to reach values that meet the
downstream power requirements, making the system more efficient in terms of volume and
weight. The system ends with a screw drive element or, in general, a gear system [5].

In fact, for an electric system the actuator can only be rotative, so if translational actuation
is required, a component is needed that is able to convert rotational motion into translational
one. The system is connected to a control logic that receives the command and compares it
with the actual position or speed. These measurements are acquired by means of appropriate
transducers that collect the signals and convey them to an amplifier before reaching the
motor.

The figure 1.3 below shows a generic example of an electro-mechanical actuator.

HF

Gearbox Screw jack

(®) o b

Figure 1.3: Electro-mechanical actuator

0

An electromechanical actuator, on the other hand, has the following characteristics [4]

— low weight;



Overview: Faults and reliability

— high efficiency;

— maintenance cost reduction;

— potentially higher reliability, but technology still under development;
— possible use of the actuators in stand-by;

— sensitive and critical screw elements because they increase mechanical play (can be
replaced by ball or roller screws);

— flutter due to mechanical backlash;
— susceptibility to jamming.

The following table (1.1) summarises the advantages and disadvantages of both implemented
systems, taking into account the current state of the art. In white are the pros, in black
the cons, and in grey the possible advantages that could be obtained following further
development of the current technology.

Table 1.1: Advantages and disadvantages of EMA and FHA systems

EHA EMA
Long service life High efficiency
Ability to predict failures Inability to predict failures without

diagnostic and prognostic tools

Reliability driven by a well-designed and Potentially higher reliability but under
guaranteed pump development technology
Developed and validated active/stand-by Possible use of actuators in stand-by
and active/active configuration configuration
Hydraulic maintenance requirements Maintenance requirements due to the

critical screw elements risulting in
possible backlash and jamming

Required cost improvement Maintenance cost reduction

Required weight improvement Low weight

1.3 Faults and reliability

The advent of the more electric, as we have already seen, is directing the development of
technology towards an increasing use of electric devices to replace hydraulic ones. However,
in the field of actuators, this does not imply a direct switch from an electro-hydraulic actuator
to an electromechanical one. In fact, it is necessary to evaluate what is involved in replacing
a hydraulic device with an electric one, in terms of use, implementation, monitoring and
tendency of the device to fail.
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We can assess the problems related to the transition from an actuation system working with
hydraulic devices to a fully electric one.

An electric system does not use any hydraulic power, so it favors greater reliability, associated
with a reduction in losses, and a lowering of maintenance costs as there are no components
subject to wear such as, for example, the gaskets. Furthermore, it is a position sensitive
device, that is it’s only used for maintaining and movement of the implemented utilities.
The hydraulic system, on the other hand, produces continuous pressure, i.e. it is a load
sensitive system, consuming a lot of energy and generating a lot of unwanted heat. In this
case the oil temperature must be monitored because the leakage gives heat to the fluid with
the risk of loss of its viscous properties and possible polymerization [3].

It must be considered that it is possible to replace the old hydraulic system with an electric
actuation system as long as it meets at least the same safety requirements [6]. This translates
into appropriate fault management, should they occur.

A failure is an unwanted event consisting of the interruption of a control action, the generation
of sensor measurement errors or the modification of the input or output dynamics expected
for a defined system. The effect is a degradation of performance, damage, or in the most
catastrophic case, a collapse of the entire equipment [7].

For hydraulic systems there is a tendency to easily isolate an actuator leak that could
compromise flight safety and reliability. Similarly, it must be ensured that a critical failure
of the electromechanical actuator can be readily identified and isolated. However, in the
former case a possible fault can be warned before a load is required from the user, by virtue
of its continuous operation; conversely, this is not the case for the electromechanical system.
It follows that occurrence of a fault in the electrical system is risky and introduces a new
safety problem, because no preventive corrective action can be taken to mitigate the effect
of the fault itself if no additional auxiliary system is provided.

For this purpose, it is necessary to design an appropriate control system that performs
two main functions: recognition and removal. The first function encompasses the two
sub-functions of detection, diagnosis and prognosis [8].

The following describes the intrinsic characteristics of the EMA that make prevention system
necessary.

The safety of the EMA is often tied to the reliability of the motor and electrical component.
In particular, possible electromagnetic and electronic failures of an actuator include open
circuit of windings or power devices, closed circuit of windings, motor terminals or power
devices, failures of DC link capacitor and sensors malfunction. In order to detect the fault,
and therefore make a diagnosis in real time, the power modules must have a high short-circuit
capacity. Furthermore, it is necessary that the two functions of fault isolation and fault
identification can be implemented. In fact, if one of these malfunctions occurs, it is necessary
that an ongoing fault does not affect the operations of adjacent phases, so that the service
is always ensured without interruption [4].
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For this reason, it is essential to have devices capable of stopping the flow of current in the
event of a short circuit and a configuration of the system able to maintain the functionality
in case of fault. Therefore, it is important that these modules can be replaced individually.
Moreover, a modular and distributed control system is needed to meet these requirements.
The electrical machine must have a high efficiency during operation, high winding inductance
to reduce short-circuit currents in the coils, high torque for the same current to reduce
losses and finally have insulation between phases to prevent fault propagation and reduce
thermal transmission. In addition, attention must be paid to electronic devices already
installed on the aircraft, which induce electromagnetic compatibility (EMC) problems for
the electromechanical actuator.

This system is supported by the sensors that provide important informations on the actuator’s
health status by giving out values of specific measured quantities, thus supporting the fault
identification function. Among the sensors commonly used on an electromechanical actuator
we find: phase current sensors to analyze the signal to detect faults in the windings and in the
mechanics; DC voltage sensors to obtain information on possible short circuits and capacitor
overvoltages; sensors at the output of the capacitor to verify the correct power modulation
and detect faults in the power switches or motor phases; position or rate sensors to close the
control loop. The latter are also useful for detecting mechanical or electromagnetic faults.
Unfortunately, sensors are also prone to faults. It may happen that the failure is detected
and reported via the communication bus. If the fault is not detected the value provided by
the sensor is incorrect, so a malfunction occurs. In this case it is necessary to evaluate which
sensor is not working and, if necessary and possible, proceed with replacement [4].

In addition to electrical failures, mechanical faults must also be considered. In fact, the
loads continuously applied on the actuator induce fatigue and wear of the structures that
can produce problems of mechanical backlash or eccentricity of the motor rotor that, in
general, lead to a deterioration of the performance of the whole system. This type of failure
must also be properly detected.

Currently in the aviation industry, it is necessary to ensure the detection of at least 99% of
the failure cases that occur . This means increasing the reliability of the actuator by applying
a fault-tolerant approach to the system. Fault tolerance must be applied appropriately to
each device in the system so that it, as a whole, can be as efficient and safe as possible.

To understand how this approach is generally applied, examples are given for different parts
of the system.

For instance, the motor in use in aviation can in most cases be a Switched Reluctance Motor
(SRM) or Permanent Magnet (PM) motor. The former is inherently fault-tolerant but is not
suitable for the electromechanical actuator, for which reduced weight and higher efficiency
are desirable. The latter, on the other hand, is efficient over a wide rate range, has a high
power ratio, and allows for easy cooling.

Another type of choice, conversely, is made for power electronics, for which the fault tolerance
approach is applied through the choice of appropriate redundancies. In this case a multiphase

7
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drive is applied so that each phase can be considered as a single part, which has only minimal
influence on the others that continue to operate normally. Doubling the power electronics
allows the nominal voltage to be reduced, resulting in lower inverter losses, lower demands on
the dissipator and, unexpectedly, a reduction in weight. In addition, redundant components
generally only operate when a fault occurs in the main components.

Sensors also make use of redundancy, at least in part. In this way, in fact, permanent failures
can be managed by the duplicated hardware components, while temporary ones can still be
detected, analyzed and processed by properly designed software [4].

It is clear that it is not possible to perform the fault diagnosis method through the simple
use of redundancies for the whole system. In fact, hardware redundancy is often expensive
and requires volumes and weights that are not always available or possible on board.

From these examples, we can see that the system of an electromechanical actuator is composed
of several interconnected hardware and software components, which make the system itself
critical and complex to monitor and possibly protect. In fact, it is not enough to analyse
the components individually, but it is necessary to study their cross interactions so that
the control system can correctly perform its function of monitoring, fault detection and
calculation of a possible divergence path.

For this reason, appropriate monitoring technology must be added to a fault-tolerant system
to increase its reliability.

This is where prognostics comes in. Prognostics allows faults to be identified in their
early stage, before they induce catastrophic consequences through their propagation. The
two main functions of prognosis are, in fact: prediction, i.e. predicting the effect of a
failure and studying its possible propagation at several levels in the operative environment;
extrapolation, i.e. predicting the trend of a fault over time [8]. It allows, therefore, to plan
maintenance interventions before the actuator, or the aircraft in general, completely loses
its functionality.

The figure 1.4 is a summary diagram of the control system functions specified above.

v v

Recognition Removal
|
Detection Diagnosis Prognosis
| |
v \Z \7 v
Isolation Identification Prediction Extrapolation

Figure 1.4: Control functions
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1.4 Prognostics as a solution

Being able to monitor the system before a fatal failure occurs is crucial to ensure greater
system reliability. Indeed, a malfunction of an electromechanical actuator can induce a
mechanical jam, which could be fatal in terms of safety. However, through prognostics a
failure can be detected quite early, increasing the reliability of the engine and electronics, it
may be possible to use electromechanical actuator technology also on primary flight controls.

In fact, prognostics is based on the observation of changes in operating parameters of a given
system during its normal operating cycle. The objective is to predict an incipient failure
before it causes a shutdown that would have disastrous conseguences on the production cycle
and the integrity of the system itself. In other words, it must be ensured that the components
always conform to the required performance and specifications [9].

Until now, this need has been met by standard maintenance procedures, i.e., so-called
predictive maintenance. Initially, that is, the machine was physically inspected, when not in
operation, at regular time intervals. This method, however, cannot handle faults that occur
before the end of the operating cycle, thus before the periodic inspection, risking to induce the
loss of the component or of the whole aircraft. Conversely, if premature failures do not occur,
intervention is often not justified by the actual conditions of the system, since maintenance
actions are performed following the definition of very stringent reliability requirements [10],
thus the costs are higher than necessary. In addition, this activity also implies a decrease in
the readiness of the different components during the mission, thus generally requiring some
non-use time of the aircraft, implying further costs.

Another solution adopted was to opt for the addition of redundancies in order to increase
the reliability of the system, as seen in the previous paragraph. This solution, apart from
not being the most economical, also complicates control operations and it is not a solution
that can be adopted for all system components.

Current health monitoring techniques make an accurate diagnosis of the actual state of
the component, allowing Condition Based Maintenance (CBM), through which maintenance
plans are organised according to the existing condition. The evolution of this diagnostic
system tends to continue towards the prognostics systems of our interest, which are able
to predict the degradation of the component starting from the current health state of the
system continuously updated, thus allowing the definition of advanced maintenance plans
and the definition of the useful life of the different components [9]. This is why we speak of
Prognostic € Health Monitoring (PHM) Systems.

A more advanced stage of this technology could be the one constituted by the proactive
prognostics, which has the objective, not only to foresee the evolution of a failure, but also
to suggest to the pilot actions or maneuvers that, in the long run, may lead to a reduction
of the damage induced by a specific failure.

The operations of a prognostic activity can be summarized as follows:
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— identification of a failure case history, i.e. how the failure may occur and how it affects
the production process (statistical analysis and FMECA);

— determination of a failure evidence through the study of significant signals or their
combination with respect to an incipient failure: measurements and acquisitions are
carried out and a data base is compiled to highlight temporal divergences of faults;

— development of algorithms, i.e. elaboration of the acquired signals to reveal significant
variations from a normal condition to a fault condition and, if necessary, report them;

— prediction of Remaining Useful Life (RUL).

1.4.1 Model-based prognostics

In this work we discuss a model-based approach to prognostics. It is based on an analytical
and dynamic model consisting of algebraic or differential equations that are able to represent
the real behavior of the analyzed system, including degradation phenomena, in a simulation
environment.

This environment, in our case Matlab-Simulink, is a kind of virtual test bench that allows the
input and analysis of faults to direct the development of a specific implemented algorithm,
which represents the system degradation and its effects on the performance of the actuator
components. In particular, the parameters of the system are estimated through the comparison
between the actual response simulated by the control command and the response provided
by the algorithm [9].

A typical procedure for the model-based approach is as follows [9]:
— automatic analysis of faults and their propagation;
— design and verification of the PHM algorithm(s);
— dynamic simulations;
— code generation;
— validation tests (not performed during this thesis work).

There are several advantages of using the model-based approach. First of all, they are easy
to understand because the mathematical relationships are closely related to the physical
mechanisms that affect the health of the system. In addition, the failure modes are correlated
to significant physical parameters of the system, which provide the maintainer with immediate
diagnostic information. Finally, the presence of a model is useful when there is no off-the-shelf
data and it is not possible to collect it, but also when the physical system is not present.

On the other hand, one has to consider the difficulty of generating an accurate model of a
system characterized by complex physical behaviors under both nominal and non nominal
operation. Furthermore, the model can be used and be deemed accurate to the physical
system if the operating condition considered reflects the specific conditions for which it

10
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was created; therefore more experimentation may be required, which can be costly and
time consuming. Finally, it must be taken into account that the model must be suitably
simplified so that it can provide results in real time and be useful, therefore, for prognostic
and diagnostic purposes.

For example, during this work, as we will see in the chapter 2, we first consider a high-fidelity
electromechanical actuator model, then, through appropriate and researched simplifications,
we obtain a low-fidelity but computationally faster model.

In the next paragraph we will describe in a general way the type of algorithms that have
been implemented to support the development of the prognostics software.

1.5 Methaeuristic bio-inspired algorithms

In general, the optimization process is a kind of computational manipulation of a structure
to achieve specific goals. Such a system is expressed through mathematical functions and
the goal is to find, depending on the field of application, the minimum or maximum. These
functions are called objective functions and are described by specific variables called decision
variables, limited by specific constraints [11].

For the resolution of this problem the application of exact methods is not always possible for
two main reasons: such methods take unreasonable computation time to generate a solution
or the system is too complex. Because of this, an alternative way is reached through heuristic
methods that involve two apparently opposite characteristics: the empirical intuition related
to a specific context and the rigor and systematicity of an algorithm capable of verifying
that the solution is close to the one sought or providing a stopping criterion[12].

The presence of a stochastic component implies that these methods rely mostly on random
numbers, so if the algorithm is run multiple times, the result can be, to certain extent,
different. In contrast, an algorithm is deterministic [11].

In particular, the task of heuristic methods is to generate good solutions, i.e. close to the
optimum, at a reasonable computational cost but they are unable to guarantee the optimum
itself [13]. This approach, for example, is suitable for model-based prognostics. In fact, many
of the parameters involved are determined from assumptions on which depend estimates or
approximate values inevitably affected by error. Consequently, it is not efficient to use
an algorithm with high computational cost to find the exact optimum of an approximate
solution.

Heuristic methods can be classified into three main categories [12]:

— constructive heuristics: starts from an empty set to search for at least one admissible
solution;

— ameliorative heuristics: attempts to improve an admissible solution;

11
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— metaheuristics: uses several procedures to obtain good solutions to optimization problems
within a large set of admissible solutions.

The method that will be considered here is the metaheuristic method. This must have
components and their respective interactions defined in order to obtain a good solution for
that specific problem. In fact, metaheuristics is based on local search applied to a particular
field of application, among many possible ones. What allows the good fitting of the method to
the problem under consideration is the correct selection of the type of optimization algorithm.

The algorithms that will be considered here do not have primary mathematical origins but
have biological ones.

The interest in nature is related to the fact that it is mainly based on the phenomenon of
adaptation that can be interpreted as a form of optimization.

Adaptation is defined as a gradual change in properties and behaviors in response to changes
in the environment or surrounding conditions. Biological organisms also, in some cases,
exhibit the ability to cooperate with each other.

The goal of bio-inspired algorithms, however, is not to reproduce biological behavior but
to select relevant aspects of it for each specific problem to be solved. Some algorithms, in
fact, tend to exasperate the analogy with biological processes, some eliminate some features,
others add properties that are not pertinent to the phenomenon being studied [11].

Here two types of algorithms will be treated: the evolutionary and swarm intelligence
ones. This type of approach is becoming increasingly popular in the development of new
optimization techniques because they are based on simple ideas, consequently they are easy
to implement, and at the same time they succeed in approaching complex problems.

1.5.1 Evolutionary Algorithms (EA)

Evolutionary algorithms take their name phenomena of biological evolution, which is where
they owe their terminology.

In fact, one must distinguish between natural and artificial evolution. The former, as we
have seen, has only the purpose of long-term adaptation and has no second goal. Vice versa,
the second one performs a specific optimization process suitable for a particular problem.
It follows that an individual in the first case is considered to be as good as its ability
to reproduce; in the second one, it is considered valid an individual who is able to solve
better than others a specific objective. For this reason, as much as an algorithm can be
implemented to ensure diversity among individuals through the introduction of elements of
randomness, certainly the biodiversity present in nature can not be compared in artificial
evolution algorithms, because all solutions will aim to ensure the resolution of a particular
problem.

The distinguishing features to evolutionary algorithms, which directly conform to the properties
of natural evolution, are:
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— population: there can be no evolution with only one organism: in fact, during the
evolution is not the individual to change but the population; it is initialized at the
beginning of the cycle;

— wvariety: the different characteristics of individuals ensure adaptation to external condi-
tions and environment and allows to discover new features or behaviors of the species;
this ensures that the search for solutions does not rely solely on stochastic effects;

— heredity: ability to pass on a trait to their offspring in order to confer better coping
skills than their peers;

— selection: not all of the population is able to procreate: the best elements of the
population will have larger offspring, the less suitable or those who possess undesirable
characteristics have low or no probability of reproduction.

We need to pay attention to the variety property. One must make sure that there are no
individuals that have too high a fitness score compared to the rest of the population. In fact,
the algorithm would tend to evolve only such individuals, without considering other solutions,
and in practice would prevent the same requirement of variety. In this case, moreover, the
algorithm would tend to converge too early, probably without having explored other valid
genotypes.

Variety is held during algorithm execution through the process of crossover, which allows
recombination of parental features, or through random mutation of the genotype to look for
solutions not yet explored. Mutation prevents local minima and is especially useful when
the population is strongly convergent so that genetic recombination has limited effect.

With regard to selection property, the ability of a species to be selected in nature is influenced
exclusively by the environment in which individuals survive, so it is not said that future
generations are better than the parents because the boundary conditions are different. On
the contrary, for artificial algorithms selection must occur only in the desired direction, that
is, towards the minimum or maximum condition. This implies, once again, the necessary
presence of a final goal or optimal state of a system.

At the computational level, the objective to be pursued during the execution of the algorithm
is determined by the so-called fitness function. The individuals represent the various solutions
to which a score called fitness value is attributed, determined by evaluating the phenotype
of the subjects in question. In addition, a reproduction operator selects the phenotypes with
higher score and generates a determined number of copies of the corresponding genotypes.
Some of these genotypes are then modified and reintroduced into the initial population.
These steps are performed iteratively until either a solution near the minimum or maximum
point is reached or the stopping condition occurs .

In the figure 1.5 below it is represented the generic diagram of flow of an evolutionary
algorithm. In chapter 4 each will be described in detail.
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Figure 1.5: Evolutive Algorithm flow-chart

Evolutionary algorithms can be applied to many problems as long as a consistent genetic
representation can be defined. In fact, first it is necessary to define one or more discrete
neighbourhoods so that a particular subset of genotypes can be associated with each solution.
These neighbourhoods must be appropriately selected depending on the problem and the
goals to be achieved. For example, small neighbourhoods allow for faster solution convergence,
but discrete local minima result in worse solutions. Indeed, on the one hand it must be
considered that, in most cases, the algorithm must examine all the admissible solutions in
order to select the best one; on the other hand, not always small neighbourhoods include a
sufficient number of admissible solutions so that the calculation could be concluded in an
insufficient time. For example, if most individuals have a similar fitness value, the mutations
and variations that may occur have a very low probability of producing an improvement, so
a larger initial population is needed [14][15].
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The evolutionary algorithms implemented and applied to the electromechanical actuator
model are the Genetic Algorithm (GA) and Differential Evolution (DE). The latter belongs
to the subgroup of Fvolutionary Strategies (ES).

Genetic Algorithms (GA)

Genetic algorithm is a combinatorial optimization technique based on search, natural selection
and the principles of genetics. The individuals on which the algorithm operates consist of
binary representations (strings of Os and 1s).

In this case, the set of possible solutions is called the search space, in which there is a
defined set of solutions to the problem, the chromosomes, constituting the population. Each
chromosome consists of the randomly arranged genes, which correspond to the individual
values of the string and identify the decision variables of the problem. The variation of
a gene determines a different chromosome, consequently a different solution. Finally, each
gene corresponds to an allele, which is the value defined by a gene.

A graphical representation of the constituent parts of the genetic algorithm is shown in the
figure 1.6.

The algorithm starts with an initial population of randomly generated solutions that evolve
iteratively. At each iteration these are evaluated by a fitness function, i.e. the quantitative
measure of an individual’s fitness and, consequently, chosen. Those selected, are then
recombined to generate new solutions, the offspring, which tend to transmit the good
characteristics of the parent solutions in subsequent generations. Recombination of parents
is referred to as crossover and is often associated with mutation (in which case the process
of recombination and mutation is referred to as mating), which is the random modification
of certain genes that prevents premature population convergence and similarity between
individuals.

The iteration ends when the arrest condition is satisfied, thus the best generated solution is
provided.
Possible stopping criteria can be:

— maximum number of iterations;

— limit on the execution time;

maximum number of iterations reached without achieving improvement;

— low variance of fitness values between chromosomes.
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Figure 1.6: Genetic algorithm scheme

Differential Evolution (DE)

The algorithm of Differential Evolution is a method of solving a mathematical process of
optimization based on the concept of a differential vector that has the task of perturbing the
initial population vector in order to obtain new species that improve the fitness value.

In particular, there is a single vector related to the whole population, afferent to the single
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first generation.

The development of the algorithm begins through the process of mutation. This occurs
when two individuals, then two parts of the population vector, are compared by difference,
and the resulting gradient is added to a third vector. At this point the recombination or
crossover phase begins: the mutated parameters of the initial vector are mixed with those
of the so-called target vector to form the trial vector. Through the selection process the trial
and target vectors are compared. The vector with the best fitness value will remain in the
future generation: for instance, if the trial has a higher score than the target, it will be the
future target, otherwise it is simply discarded.

In this case the stopping criterion is defined by the algorithm itself as the described procedure
is performed for each vector belonging to the first generation [12].

A graphical representation of the steps of the differential evolution algorithm is shown in the
figure 1.7.

Initial population

. Target vector (T)

Three random vectors
(A, B, C)

Intermediate vector

T A B C
Mutation -_— Ricombination (crossover)
Intermediate vector: , Tr: trial vector
I=(A-B)+C
 —
I T I Tr

Figure 1.7: Differential Evolution scheme

1.5.2 Swarm Intelligence algorithms (SI)

Swarm intelligence refers to the intelligent behavior of biological swarms through the interaction
of two or more individuals in certain environments. These methods are used to find a solution

17



Overview: Methaeuristic bio-inspired algorithms

to real problems through simulation of biological behaviors.
These collective phenomena have an adaptive function that would not be satisfiable if
individuals operated alone.

The main features of this type of algorithm are self-organization and division of labor. In fact,
the interactions of individuals generate a higher level structure. This is characterized by a
complexity and an improvement in the general capabilities of perception and action, resulting
in an increase in efficiency, which an individual alone could never achieve. For example, in
nature everyone in the group is individually responsible for a specific task in order to achieve
a specific common goal such as searching for food, defense, hunting, leadership, etc. This
type of phenomenon is not the result of a genetic process, but a collective one, driven by
interaction.

Another important feature of collective intelligence is the ability to voluntarily or involuntarily
provide feedback or signal to individuals in the group, so as to signal the increased presence
of food or the presence of danger by adjusting the intensity of the signal itself. When the
signal is involuntary it is called a cue; an example of this is the paw mark left on the ground.
In this case it is up to the observer to determine whether or not to follow the cue. A signal,
on the other hand, is left voluntarily by individuals with the goal that it be perceived and
followed by the other components.

In order that the optimal solution to a specific problem is found, it is necessary that the
algorithm is opportunely selected, therefore the collective phenomenon suitable to explain
the dynamics of a specific problem is chosen [16].

Two algorithms inspired by collective phenomena will be described below: Particle Swarm
Optimisation (PSO) and Gray Wolf Optimisation (GWO).

Particle swarm (PSO)

This optimisation method is derived from the flocking of bir