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Abstract 

The concept of Autonomous Vehicles (AVs), such as self-driving cars and Unmanned Aerial Vehicles (UAVs), 

has been widely explored in recent years. UAVs, or commonly known as pilotless aircrafts, are widely used in 

military and security applications. As an example, in 1946 to 1948, United States Air Force and Navy used 

unmanned B-17 and F6Fs to fly into nuclear clouds within minute after bomb detonation, to collect 

radioactive samples. Moreover, availability and accessibility of advanced autonomous technology, has 

encourage the development of civilian applications.  

Quadrotors are Vertical Take-Off and Landing (VTOL) aerial vehicles with a four motor-rotor assembly for 

generating lift and controllability. In recent years, ease of design and simple dynamics have increased their 

use in aerial robotics research. In the last decades efforts were made to improve autopilot performance 

developing advanced Guidance, Navigation and Control (GNC) algorithms. Despite numerous advantages, 

quadrotors may suffer various problems such as gust disturbance, mechanical vibration, and actuator failures 

during flight. All these problems reduce the flight performance and bring difficulties in the controller design. 

An effective controller must ensure smooth and collision free flight in the complex surrounding environment, 

considering aerodynamic drag and moments. In literatures, the multirotor control problem has been 

addressed using several control approaches, like Proportional-Integrative-Derivative (PID), Linear-Quadratic-

Regulator (LQR) and H-infinity for linear control system. In this work a linear Model-Predictive-Control (MPC) 

approach is applied. 

The aims of this thesis are to develop, implement and test, both hardware (HW) and software (SW) system 

of a multirotor UAV for indoor applications. There are many quadrotors that are commercially available 

nowadays, however, off-the-shelf quadrotors usually lack the ability to be reprogrammed and are unsuitable 

for use as research platforms. Therefore, an HW selection has been carried out in the first part of the project, 

starting from Commercial-Off-the-Shelf (COTS) components. The motors, the propellers, the battery, the 

Electronic Speed Control (ESCs), the frame and the avionics systems (such as autopilot, flight computer and 

sensors) are chosen concerning compatibility constraints, good endurance, and low weight. The quadrotor 

autopilot is based on ‘Pixhawk 4 mini’ and it is able to fly indoor using stationary ultrasonic beacons 

(‘Marvelmind Set HW v4.9’) as indoor positioning system. Using personalized 3D printed components, all the 

selected items were integrated and assembled in an efficient, working configuration. The first part of the 

project ended with the verification and validation of communication between HW’s components and flying 

tests. 

The second part of the project concerns the SW development and testing. Due to the complexity and the 

computational need of the control algorithm, most of the commercial autopilots, are based on Proportional 

Derivative Integrative (PID) controller. This thesis proposed a Receding Horizon Control (RHC). RHC, also 

known as Model Predictive Control (MPC), is an optimal control-based strategy that uses a plant model to 

predict the effect of an input profile on the evolving state of the plant. At each sample time, an optimal 

control problem is solved, and its optimal input profile is implemented until another plant measurement 

becomes available. The updated information is used to formulate and solve a new optimization problem, and 

the process is repeated. A practical disadvantage is its computational cost, so the MPC applications are 

usually limited to linear process with relatively slow dynamics such as chemical engineering systems. 
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However, with the raising of more powerful computers it is now being used in system with faster dynamics. 

Starting from the equations of motions of an aircraft, assuming some simplifications, the nonlinear 

mathematical model of the plant is derived. Quadrotor dynamics can be split into two categories: slow 

dynamics, regarding the position; and fast dynamics, regarding the attitude and altitude. Thanks to this 

classification, an MPC-based cascade controller is developed. The controller is structured into two loops: an 

outer loop related to UAVs slow dynamics (controlled by a PD controller) and an inner loop related to UAVs 

fast dynamic (controlled by MPC controller). The controller is tested tracking different reference trajectories 

ranging from simple ones to complex waypoints-following trajectories with increasing difficulty in terms of 

changes in the states. In these studies, a linearized model is adopted, and the Receding Horizon method is 

applied to generate the optimal control sequence. The MPC parameters (prediction horizons, weighting 

matrices, and discretization parameters) are selected by trial-and-error approach. Several simulations are 

conducted to examine and evaluate the performance of the proposed control approach using MATLAB and 

Simulink environment. Simulation results show that this kind of control is highly effective to track different 

types of given reference trajectory. The performances of the controller have been further tested on a virtual 

environment, using Unreal Engine as plant to have more realistic results representations. 

Future work involves Hardware-in-the-Loop (HIL) and Processor-in-the-Loop testing. Once such processes are 

concluded, a custom MAVLink-based flight controller (in C language) will be developed, deploying it into the 

real quadrotor flight computer and testing the algorithm’s performance with experimental flight tests. 
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CHAPTER 1 

Introduction 

Unmanned Aerial Vehicles (UAVs), commonly known as drones, are aircraft able to fly without any human 

pilot, crew, or passenger on board. This doesn’t necessary imply that the vehicle can fly autonomously. UAVs 

can be controlled by an autonomous on onboard controller (autonomous flight) or can be remotely piloted. 

Typically, military drones are remotely operated from a Ground Control Station (GCS) with the help of 

different communication protocols such as MAVLink, UranusLink and UAVCAN. The term autonomous flight 

for UAV systems is used to identify the capability of a system to know the position and, in certain case, also 

sensing the environment to flight with little or no pilot inputs. Autonomous Vehicles (AVs) must be able to 

compute the absolute or relative positions in space and then take decision on the path to follow for reaching 

a target, relying on available data, provided by its onboard electronic system.  

Despite numerous advantages, like hovering and manoeuvrability, vertical take-off and landing and simple 

design, rotorcraft and multi-rotor UAVs may suffer various problems such as gust disturbance, mechanical 

vibration, and actuator failures during flight. All these problems reduce the flight performance and bring 

difficulties in the controller design. An effective controller must ensure smooth and collision free flight in the 

complex surrounding environment, considering aerodynamic drag and moments. These abilities come from 

the integration of an autopilot inside the control loop of the UAV. Most of modern autopilots incorporate 

control law algorithms to meet demanding requirements of high performances flight manoeuvres and to 

successfully accomplish the task of autonomous flight. In the last decades, a large number of control theory 

have been implemented for onboard Guidance, Navigation and Control (GNC) applications; however, despite 

their success, only a small number of that applications have been developed on real platform because of 

their complexity, nonlinear nature, and computational cost. In literature, the UAVs control problem has been 

addressed using control approaches, like Proportional-Integrative-Derivative (PID), Linear-Quadratic-

Regulator (LQR) and H-infinity for linear control system. Some GNC solutions are off-the-shelf and can be 

customized by the user, but are usually used for research purposes. So, a low cost and reconfigurable system 

is the best solution for research. Despite the recent progress in the field of autonomous flight, navigation in 

GPS-denied environments continues to be a challenging problem that has been tackled in recent researches 

through sensor-based approaches.  

This thesis focuses on a particular application of UAVs for GPS-denied environment, using a control technique 

based on Receding Horizon Control (RHC), also known as Model-Predictive-Control (MPC). The proposed 

solution is a feedback control system that first became popular in the 1980s. MPC leverages a plant model to 

predict the effect of an input profile on the evolving state of the plant. At each sample time, an optimal 

control problem is solved, and its optimal input profile is implemented until another plant measurement 

becomes available. The updated information is used to formulate and solve a new optimization problem, and 

the process is repeated. Furthermore, RHC handles input constraints, output constraints and a variety of 

control objectives, enabling controlled systems to operate near their physical limits, obtaining performances 

superior to linear control strategies.  
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1.1 – UAVs Historical Survey and Classification 

Current developments in UAVs trace their modern origins back to the development of aerial torpedoes and 

flying bombs during the First World War (1914-1918). First efforts consisted of combining wood airframes 

with gyroscope and propellers to carry heavy payloads of explosives over a distance of hundreds of 

kilometres, to be used against U-boat bases. These rudimental UAVs highlighted two operational problems: 

launch-recover operations and stabilization during flight. During the Interwar Period, radio and improved 

aircraft engineering allowed UAV to enhance their performance. Radio-controlled drones were used by both 

the Allied and Axis during the Second World War (1939-1945). Soon after the end of the Second World War 

interest in reconnaissance missions increased; moreover, with the start of the Cold War (1947-1989), UAVs 

began to be used as Intelligence, Surveillance and Reconnaissance (ISR) systems. The improvement of 

unmanned vehicle performances continued throughout the Vietnam War (1955-1975), but the major studies 

were conducted during the Gulf War (1991). While drones have had a long history in military deployment, 

their increasingly widespread use in non-military roles is not negligible. Unmanned aerial vehicles are an 

example of how military technologies, in the past as well as in the present, can affect the civilian business 

with similar but completely different application.  

In literature, different UAV classifications have been proposed to differentiate existing unmanned system, 

based on their operational characteristics and their capabilities. Different requirements and rules are 

imposed on different UAV classes, based on their operational applications. Aspects such as mean take-off 

weight, wingspan, speed, operative range, maximum altitude, and operating conditions are all specifications 

used as metrics to distinguish different class of UAVs. As discussed in Weibel and Hensman (R.E. Weibel, 

2004), mean take-off weight (MTOW) is a good metric to classify aircraft for regulatory purposes since it 

correlates with the expected impact kinetic energy, which is affecting safety and operations. As an example, 

largest UAVs such as ‘Predator’ (Figure 1) or ‘Northrop Grumman RQ-4 Global Hawk’ (Figure 2) can weight 

several thousand pounds and can have wingspans on the order of 3 to 30 meters. On the other hand, there 

are UAVs whose maximum dimensions are on the order of centimetres and weights on the order of grams.  

 

Figure 1: flying fixed wing UAV MQ-9A Predator B. 

 

Figure 2: flying fixed wing Northrop Grumman RQ-4 Global Hawk. 

Table 1 shows a possible classification based on UAVs mass, range, flight altitude and endurance. 



16 
 

Table 1: UAV categorization, Kimon P. Valavanis, George J. Vachtsevanos, “Handbook of Unmanned Aerial Vehicles”, Springer Reference, 2015 & 
Peter van Blyenburgh, "UAV Systems: Global Review", Avionics'06 Conference Amsterdam, March 9, 2006. 

 

A variety of UAV system has been developed and is currently in the advancement phase; some of them 

includes the fixed-wing aircraft, single rotor, multirotor and fixed-wing hybrid UAV.  A classification based on 

aerodynamic configuration is shown below. 

 Fixed Wing UAVs are equipped with fixed wings and a rotor positioned on the front or back of the 

main body. This class of UAVs outperforms multirotors in term of flight autonomy and cruising 

velocities. However, similar to aeroplanes, they do not have the ability to vertically take-off and land. 

They require a runway or alternatively can be catapult launched. Concerning their application’s field, 

they are extensively used in various monitoring operations such as meteorological and 

environmental monitoring or reconnaissance. 

 

Figure 3: SITARIA UAV fixed-wing unmanned electric aircraft designed by UAVOS. 

 Single-Rotor or rotorcraft UAVs are propelled by a single rotor positioned in the middle of the 

vehicle’s body (main rotor) and a rotor on the tail to counteract the torque generated by the main 

propeller (tail rotor). This class of UAVs are able to vertically take-off and land, hover, fly in low 

altitudes, rotate in the air, and move backwards and sideways. However, they need complex 

mechanical transmission of torque, so they are not widely used. 
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Figure 4: MQ-8 Fire Scout single-rotor UAV developed by Northrop Grumman for USAF. 

 Multi-Rotor UAVs are the most common category. This class of UAVs poses a set of advantages 

compared to fixed wing class, such as hovering, vertical take-off and landing and accurate 

manoeuvring. Despite their advantages, multirotors consume significantly more energy because 

thrust is generated only by propellers, unlike fixed wing UAVs where thrust is generated by 

propulsors and shape of the spacecraft. There are several types of chasses available with four, six, 

eight or more propellers. One of the most used is the quadrotor, which has four rotors and it is 

typically designed in a cross configuration, with two pairs of opposite rotors rotating clockwise and 

the other two rotating counter-clockwise to balance the torque.  

 

Figure 5: Freefly ALTA 8 Multirotor Camera Drone design by Freefly Systems. 

 Fixed-Wing Hybrid UAVs are able to vertical take-off and land but, at the same time, can assume a 

configuration similar to fixed-wing during flight. These properties allow the UAVs to increase cruising 

speed like fixed wing UAVs and vertically take-off and land like single-rotor and multi-rotors. 

 

Figure 6: Joby S4 fixed-wing hybrid e-VTOL developed by Joby Aviation. 
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1.2 – Motivations of the Thesis 

Thanks to their adaptability and versatility UAV applications have proliferated vastly in the last few years and 

their operational experience has proven that UAV technology can have a dramatic influence in the military 

and civilian areas. The utility of drones in military applications is readily apparent. UAVs can potentially carry 

out the range of tasks normally executed by human operators without placing human pilots in jeopardy. 

These military purposes are not suitable for civilian usage, as most of these UAVs are large in size, equipped 

with expensive instruments and needed proper supporting facilities. It’s worth mentioning that availability 

and easily accesses of advanced autonomous technologies have encouraged UAVs civilian applications. 

According to Merkert and Bushell (Rico Merkert, 2020), drones’ field of application can be classified into four 

main categories: monitoring and data acquisition, photography, logistics and recreation. Hereafter some 

practical examples. 

 Saving life: according to Zurli and Leiras (Raissa Zurli Bittencourt Bravo, 2015), the used of unmanned 

aerial vehicles to support humanitarian actions has grown since 2001, after the terrorist attack of 

9/11. One of the most challenging difficulties facing United Nations and Non-Governmental 

Organizations when responding to disasters, like floods, earthquakes and hurricanes is to understand 

the condition of the affected population accurately and rapidly. Current methods are time 

consuming, and the captured data are often inaccurate. Drones can perform in disaster environment, 

providing first-class services without compromising lives of life-saving human operators.  

 Forecast of hurricanes: a drone can reach areas subject to devastating meteorological events in order 

to collect data for the study and prevention of similar events. 

 Infrastructure maintenance: drones can be controlled by specialized operators carrying out 

dangerous operations like power-line inspection in close proximity to live electrical cables. For the 

overall surveying industry, UAV usage brings vital time and money saving and decreases exposure of 

staff to dangerous environments. Moreover, micro-UAVs are most appropriate for reconnaissance 

mission inside buildings because of their compact design and manoeuvrability. 

 

Figure 7: octocopter performs power-line inspection. 

 

Figure 8: picture provided by new service approach for power-line 
inspections provided by Siemens SIEAERO1. 

 

 
1 Siemens has launched a new service approach for overhead line inspection called ‘SIEAERO’ at European Utility Week 
2018 in Vienna, Austria. SIEAERO smart analytics software is utilizing artificial intelligence AI and machine learning to 
store manage and analyse all data in one integrated software system. 
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 Agricultural monitoring: images taken by low altitude remote sensing platforms, such as drones, are 

useful in Precision Agriculture2 (PA). According to Ehsani and Mari Maja (Reza Ehsani, 2013), the 

number of farms in the United States in 2012 was estimated at 2.2 million, with an average size of 

471 acres. Most manual activities require operators to perform intensive field collection and are 

therefore destructive and time-consuming. In contrast, UAVs can be applied in agriculture activities 

such as crop scouting, irrigation and drainage planning, efficient use of chemicals and pesticide 

completely autonomously, thus saving resources and time. Moreover, UAVs can be equipped with a 

variety of imaging sensors, such as hyperspectral camera or thermal camera, collecting field data 

providing useful information on field status, composition, and production capability. 

 

Figure 9: agricultural drones being used to spray pesticide on crops 
in a village in Poyang, central China's Jiangxi province. 

 

Figure 10: false-colour difference vegetation index from near-
infrared images collected by an Agribotix drone. 

 Support law enforcements: drones can be used to perform surveillance operations, accident 

investigation and suspect tracking and crowd monitoring. 

 Aerial Photography: a drone can perform risk-free aerial shooting for harsh and hazardous 

environments. Earth observation can significantly contribute to improving efforts in developing 

proper disaster mitigation strategies and providing relevant agencies with essential information for 

alleviating impacts of a disaster and relief management. 

 

Figure 11: photo captured by UAVs high resolution camera during search and rescue operation, after the devastating earthquake and tsunami in 
Banda Aceh, Indonesia on 26 December 2004. 

 
2 According to the International Society of Precision Agriculture, PA is a management strategy that gathers, processes 
and analyses temporal, spatial and individual data and combines it with other information to support management 
decisions according to estimated variability for improved resource use efficiency, productivity, quality, profitability, 
and sustainability of agriculture production.  
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 Packages delivery: UAVs can be customized to delivery small-sized packages. Many multinational 

technology companies, such as, Google has already built and tested autonomous aerial vehicles, and 

believes they could be used for goods deliveries. 

 

Figure 12: Wing company launches its first drone delivery service in 
Australia (2019). 

 
Figure 13: photo of Wing drone from Google delivers goods 

during COVID-19 pandemic. 

 3D mapping: drones are able to use their sensors to capture images, scans environments and 

elaborate useful data to process them in term of three-dimensional maps.  

Beyond aforementioned, two more motivators for multirotor are reliability and compactness. These two 

characteristics are essential for portable systems that operate in close proximity to people and closed 

unknown environments. Conventional helicopters use complex mechanism to control the attitude of the 

airframe. This system is called ‘swashplate’, an assembly of sophisticated pieces of high-speed machinery 

operating in a vibrating environment, highly prone to failure without constant maintenance. On the other 

hand, quadrotors have an almost negligible chance of catastrophic failure with inexpensive maintenance, 

thanks to the simple design of the direct-drive electric motor head (with only four moving parts, the 

propellers). Moreover, the reduced rotor diameters and the absence of a long tail boom that can collide with 

obstacles, make multirotor, and particularly quadrotors, the ideal solution for precision tasks to be 

accomplished in indoor and outdoor environments.  

Currently, UAVs are mostly remotely piloted by humans, operating from ground stations. This approach 

requires highly skilled pilots which is expensive and time-consuming. In the field of security and civilian 

applications, there is a strong need to provide reliable technology, so that some of the decision-making 

responsibility resides within the vehicle. This approach comes at a price, as controlling a multirotor is not 

easy because of the coupled dynamics and its under-actuated design configuration. Moreover, the dynamics 

of a quadrotor is highly non-linear, and several uncertainties must be considered, thereby making its flight 

control a challenging venture. 

The motivation of this thesis is to face the main technological challenge of developing, modeling and 

controlling an autonomous multi-rotor system for GPS-denied applications, integrating sensors, actuators, 

and algorithms into a lightweight and volume efficient working solution. Since commercially available 

quadrotor can be very restrictive for use in research applications, in this thesis a customized quadrotor has 

been used.  

Thus, the main objective of this thesis is to build a customized small prototype quadrotor, using Commercial-

Off-the-Shelf (COTS) components. More particularly, the proposed research focuses on the development of 
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a multirotor UAV for indoor GPS-denied environment, using a set of ultrasonic sensors as indoor positioning 

system. The work focuses on both hardware (HW) and (SW) implementation and testing.  

The first part of the project concerns the HW selection and assembly. There are many quadrotors that are 

commercially available nowadays, however, off-the-shelf quadrotors usually lack the ability to be 

reprogrammed and are unsuitable for use as research platforms. Therefore, an HW selection has been carried 

out, starting from COTS components. All the components, for example, the  motors, the propellers, and the 

avionics systems (such as autopilot, flight computer and sensors) are chosen concerning compatibility 

constraints, good endurance, and low weight. Research and development activities presented herein include 

selection of frame-compatible COTS avionics elements, design and modeling of 3D printed integration 

components and their assembly in an efficient working configuration. As concerns SW implementation, links 

between avionic systems and indoor ultrasonic sensor have been established using algorithms written in C 

and Python. The first part of the project ended with the verification and validation of communication 

between HW components and flying tests. 

The second part of the project concerns the SW development and testing. Due to the complexity and the 

computational need of the control algorithm, most of the commercial autopilots are based on Proportional 

Derivative Integrative (PID) controller. The main objective of this thesis is to develop a structured interior-

point method for the efficient solution of the MPC-based optimal control problem.  

Starting from the equations of motion of an aircraft, assuming some simplifications, the nonlinear 

mathematical model of the plant is derived. Quadrotor dynamics can be split into two categories: slow 

dynamics, regarding the position; and fast dynamics, regarding the attitude and altitude. Thanks to this 

classification, an MPC-based cascade controller is developed. The controller is structured into two loops: an 

outer loop related to UAVs slow dynamics (controlled by a PD controller) and an inner loop related to UAVs 

fast dynamic (controlled by MPC controller). Two solutions are compared: the first one features a MPC in the 

inner loop driving both the quadrotor attitude and altitude control, whereas in the outer loop a simple PD 

controller is used to track the North-East position. The second solution uses a PID for altitude control and an 

MPC for attitude and North-East position control. Both controller’s performance are tested tracking different 

reference trajectories ranging from simple ones to complex waypoints-following trajectories with increasing 

difficulty in terms of changes in the states. Furthermore, an Artificial Potential Field (APF) based guidance 

algorithm is provided to test the ability of obstacle avoidance.  

A broader contribution of this study is the evaluation of the designed controller in a simulated environment. 

The experimental results and data collected in this research project provide a reference basis to future 

embedded applications of MPC controller to a real platform. Several simulations are conducted to examine 

and evaluate the performance of the proposed control approach using MATLAB and Simulink environment. 

Simulation results show that this kind of control is highly effective to track different types of given reference 

trajectory. The performances of the controller have been further tested on a virtual environment, using 

Unreal Engine as plant to have more realistic results representations. Furthermore, the controller block is 

designed such that it can undergo the code generation process without any substantial modifications. 

In conclusion the research has ultimately resulted in the following scientific contribution in the area of UAV 

modeling and controller design: 
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 A customized small quadrotor UAV for indoor GPS-denied environment has been developed from 

COTS hardware components. The framework is designed such that it can be equipped with a set of 

ultrasonic sensors (‘Marvelmind Set HW v4.9’ indoor positioning system) to generate a navigation 

solution, which, in turn, is used in the guidance and control algorithm. 

 A MPC controller written in MATLAB is provided and tested in different simulation environments 

(Simulink and Unreal Engine). Using the ‘Embedded Coder’ tool the MPC Simulink model is converted 

into C language and tested in a simulated environment based on Unreal Engine software framework. 

Experimental results and data collected in this research provide reference basis to future embedded 

applications of MPC to real platform.   

1.3 – Thesis Outline 

This works is the result of eight months activities in the research, modeling, and assembly of a real 

quadcopter platform, in collaboration with ALTEN Italia spa, a French multinational technology consulting 

and engineering company placed in Milan.    

This thesis consists of six chapters, here summarized for a quick understanding of the whole work structure: 

 Chapter 1 provides a brief introduction to the topic of UAV as well as main motivation of the thesis. 

It presents a brief overview of UAVs history and a possible categorization of unmanned vehicles 

based on aerodynamic configuration. It also outlines the main advantages-drawbacks of UAVs and 

their military and non-military application. The chapter ends with the outlines of motivation, aims 

and organization of the work. 

 Chapter 2 focuses on the preliminaries required for comprehensive understanding of concepts 

presented in this work. Firstly, the operation principle of multirotor is presented, followed by the 

basic mathematical notions for the derivation of quadrotor dynamic model and the controller 

design. Starting from reference frames and vehicle’s axes configuration, the equation of movement 

is obtained. Once obtained a state space representation of the model, a linearization is performed 

in order to apply a Linear Model Predictive Control MPC. 

 Chapter 3 presents a brief overview of UAV technology and individual components used in 

multirotor. It describes the development of the various hardware and software components that 

constitute the proposed customize quadrotor. The design and modeling of the prototype quadrotor 

are provided, focusing on its avionics COTS components selection and integration in a working 

configuration. It also presents the integration of ultrasonic sensors as indoor positioning system to 

generate a navigation solution, which, in turn, is used in the guidance and control algorithm. 

Eventually, details of modelled quadrotor are provided through a CAD model realized in SolidWorks 

environments. The chapter ends with a photographic collection of quadrotor and flight test.  

 Chapter 4 presents an overview of typical Guidance, Navigation and Control (GNC) system, focusing 

on the control algorithms applied in this thesis. A brief overview of RHC and interior-point method 

is provided, followed by the development of an MPC-based cascade controller. The state space 

linearized model, obtained in Chapter 2, is used in the design of two solutions: the first one features 

a MPC in the inner loop driving both the quadrotor attitude and altitude control, whereas in the 
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outer loop a simple PD controller is used; the second one uses a PID for altitude control and an MPC 

for attitude and position control.  

 Chapter 5 treats the results obtained from Simulink model. All the controllers presented in Chapter 

4 are tested. The results obtained from different path tracking are commented and compared for 

different patterns. This chapter also presents the problem of obstacles avoidance including an APF 

algorithm in the main model. Lastly the performance of the designed MPC in Unreal Engine 

simulated environment are investigated.  

 Chapter 6 summarises the main points and results of this thesis. It also outlines the possible future 

works of this project together with some improvement suggestions.  
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CHAPTER 2 

Multirotor Mathematical Model 

In this chapter a qualitative introduction on the working principles of quadrotor is discussed. Firstly, a brief 

description of the reference frames used to characterize drone’s dynamics is exposed. Before describing the 

mathematical model, the configuration of the axes is explained. Then, the mathematical model is derived, 

using Newton’s law. Once obtained the mathematical model, a linearization is performed, obtaining a state 

space representation of which controllability and observability are analysed.  

2.1 – Quadrotor Working Principle 

The simplest fully controllable multi-rotor aircraft is the quadrotor, which uses four rotors connected to the 

fuselage through booms, generally arranged in a square pattern. The whole quadcopter setup consists of two 

clockwise (CW) rotating motors and two counter-clockwise (CCW) rotating motors on the vertex of a square 

framework. There are two possible configurations: an ‘X’ (cross) configuration, which maximizes the 

moments generated by the motor thrust (shown in Figure 14), and a ‘+’ (plus) configuration (shown in Figure 

15). According to Niemiec and Gandhi (Robert Niemiec, September 5-8, 2016), an important distinction 

between the cross and plus configuration is that when producing a pitching or rolling moment, the cross-

type uses all four rotors, as opposed to the plus-type that uses only two of them (this will be examined deeply 

in the next paragraph).  

 

 

Figure 14: quadrotor cross 'X' configuration. 

 

 

Figure 15: quadrotor plus '+' configuration. 

 

The spin direction of the motors is critical since it counterbalances the torque generated by the spinning 

propellers, preventing the rotation of the drone around its ‘down’ axis. The quadrotor is an under-actuated 
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system, this means that the rotational and translational motions in the three-dimensional space in all 6 

Degrees of Freedom (DoF) have to be coupled, bringing to a highly non-linear dynamic. 

Four control inputs, corresponding to the rotational speed of the four rotors, are generally used to control 

the quadcopter dynamic. All the control actions, roll, pitch, yaw, and up-thrust are controlled by changing 

the thrust of the rotors using Pulse-Width-Modulation (PWM) to obtain the desired output. While this is valid 

to control the speed of each rotor individually, this kind of control produces a highly coupled response. As an 

example, for both the plus and cross configurations, the collective mode, affects only the overall generated 

thrust and doesn’t generate any roll, pitch or yaw torques. Considering the pitch mode, the two front rotors 

speed up and the two rear rotors slow down on the cross-configuration, generating a nose-up pitching 

moment. Of the two front rotors speeding up, one rotates CW and the other CCW, hence the torques 

generated cancels out. The same is true of the rear rotors slowing down, hence pitch mode doesn’t introduce 

any yaw moment on the cross-configuration. On the other hand, the pitch mode speeds up the single front 

rotor and slow down the single rear rotor on the plus configuration. The torque does not vary linearly with 

RPM, hence the increase in torque of the CCW spinning front rotor does not cancel with the torque reduction 

of the CCW rear rotor, resulting in a yaw moment of the airframe requiring a compensation with a yaw control 

input. That having been said, there remains a distinction between the two considered configurations: the 

pitch and roll control modes on the cross-type are decoupled from yaw, while they introduce yawing 

moments on the plus-type, requiring a compensation action. 

As said earlier, the attitude and the position of the quadrotor can be controlled to desire values by changing 

the speed of the four rotors. The space motion of the rigid body aircraft, can be divided into two parts: the 

barycentre movement and the movement around the CoG. Space motion can be described any time with six 

degree of freedom, three translation and three rotation motions along the three axes. Depending on the 

speed rotation it is possible to identify the four basic movements of the quadrotor, which are shown below. 

 
Figure 16: quadrotor upward 

movement 

 

Figure 17: quadrotor roll 
movement 

 
Figure 18: quadrotor pitch 

movement 

 

Figure 19: quadrotor yaw 
movement 

2.1.1 – Reference Frames  

There are different frames of reference that need to be considered in quadrotor analysis. First of all, it is 

necessary to understand how the quadcopter moves in space and which reference frames are used. There 

are two main reference frames: an inertial reference frame and a Body fixed frame (both of them are 

presented in Figure 20). In this works the North-East-Down (NED) reference frame is used. The NED frame, 

also called the Inertial Frame, is fixed with the ‘down’ axis points toward the centre of the Earth. It doesn’t 

move or rotate with the drone; on the contrary, the Body frame is a non-inertial reference frame composed 

by a set of axes fixed to the body. The body frame is rotated with respect to the inertial frame whenever 

drone moves since it is centred in the quadrotor Centre of Gravity (CoG). The axes of the non-inertial frame 



26 
 

are 𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏. The 𝑥𝑏 axis points in the forward direction; the 𝑧𝑏 axis points towards the centre of the Earth, 

and lastly 𝑦𝑏 completes the right-hand rule.  

 

Figure 20: illustration of used reference frames: the Body reference frame in the top left and the NED inertial reference frame in the bottom right. 

2.1.2 – Euler Angles and Quaternions 

As introduced in the paragraph above, the Body frame is rotated with respect to the inertial frame whenever 

drone moves since it is centred in the quadrotor Centre of Gravity (CoG); thus, a conversion from one 

reference frame to another is needed to describe the orientation of the airframe in the three-dimensional 

space. This conversion can be performed making use of two distinct approach Euler angles or Quaternions.  

 Euler Angles can describe any arbitrary three-dimensional rotation with a sequence of individual 

rotation around three axes. Euler angles are also defined as three parameters 𝜙, 𝜃 and 𝜓. A three-

dimensional rotation matrix is a 3 𝑥 3  matrix because each point in a frame has three 

coordinates that must be changed. Considering an arbitrary frame 𝑥, 𝑦, 𝑧, the rotations around 

each of the frame axes are expressed as three matrices, respectively 𝑅𝑥, 𝑅𝑦 and 𝑅𝑧: 

 

𝑅𝑥 = [
1 0 0
0 cos 𝜙 −sin 𝜙
0 sin𝜙 cos𝜙

]     𝑅𝑦 = [
cos 𝜃 0 sin 𝜃

0 1 0
−sin 𝜃 0 cos 𝜃

]     𝑅𝑧 = [
cos𝜓 − sin𝜓 0
sin𝜓 cos𝜓 0

1 0 0

] 

 
(1) 

In order to build the matrix that convert NED inertial reference frame to Body reference frame, three 

rotations have to be performed: the first one around 𝑧𝑁𝐸𝐷 of value 𝜓, the second one around 𝑦′
𝑁𝐸𝐷 

of value 𝜃 (it is used 𝑦′
𝑁𝐸𝐷  instead of 𝑦𝑁𝐸𝐷  since the new 𝑦 axis refers to the rotated reference 

frame) and the last one around 𝑥′′
𝑁𝐸𝐷 of 𝜙 (it is used 𝑥′′

𝑁𝐸𝐷 instead of 𝑥𝑁𝐸𝐷 since the new 𝑥 axis 

refers to the twice rotated reference frame). It is possible to rewrite the three rotations multiplying 

the three matrices defined in (1), obtaining the transformation from NED to Body: 

 

 

𝑅𝑁𝐸𝐷
𝑏𝑜𝑑𝑦

= [
cos𝜓 −sin 𝜓 0
sin 𝜓 cos𝜓 0

1 0 0

] [
cos 𝜃 0 sin 𝜃

0 1 0
− sin 𝜃 0 cos 𝜃

] [
1 0 0
0 cos𝜙 − sin𝜙
0 sin𝜙 cos𝜙

] 

 
(2) 

The opposite conversion between the Body frame and the NED frame is obtained throw the 

transposition of matrix in (2). The resulting matrix is shown below: 

 

 

𝑅𝑏𝑜𝑑𝑦
𝑁𝐸𝐷 = [

cos 𝜃 cos𝜓 sin𝜙 sin 𝜃 cos𝜓 − cos𝜙 sin𝜓 cos𝜙 sin 𝜃 cos𝜓 + sin 𝜙 𝑠𝑖𝑛𝜓
cos 𝜃 sin𝜓 sin𝜙 sin 𝜃 sin𝜓 + cos𝜙 cos𝜓 cos𝜙 sin 𝜃 sin 𝜓 + cos𝜙 cos𝜓

−sin 𝜃 sin𝜙 cos 𝜃 cos𝜙 cos 𝜃
] 

 
(3) 

As an example, assuming 𝑎 ∈ ℝ3  defined in NED and the corresponding 𝑎′ ∈ ℝ3  in the Body 

reference frame, the possible transformations are: 
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 𝑎′ = 𝑅𝑁𝐸𝐷
𝑏𝑜𝑑𝑦

∙ 𝑎 = 𝑅𝑏𝑜𝑑𝑦
𝑁𝐸𝐷 𝑇

∙ 𝑎          𝑜𝑟          𝑎 = 𝑅𝑏𝑜𝑑𝑦
𝑁𝐸𝐷 ∙ 𝑎′ = 𝑅𝑁𝐸𝐷

𝑏𝑜𝑑𝑦𝑇
∙ 𝑎′ 

 

(4) 

Even though Euler angles grant a better visualization of the attitude of the vehicle, it is worth 

mentioning that they must be limited due to the singularities that can be found using them as 

attitude variables within the kinematics equations. Moreover, 𝜙 and 𝜓 become undistinguishable 

when 𝜃  assumes critical values; often referred to as Gimbal Lock Singularity. Due to these 

disadvantages the quadrotor attitude is often described using the quaternions. 

Before introducing quaternion algebra, the relationship between the quadrotor attitude with 

reference to NED inertial frame (Euler angles) and the angular velocities 𝑝, 𝑞 and 𝑟 is provided: 

 

 

[

�̇�

�̇�
�̇�

] = [

1 sin𝜙 tan 𝜃 cos𝜙 tan 𝜃
0 cos𝜙 − sin𝜙

0
sin 𝜙

cos 𝜃

cos𝜙

cos 𝜃

] [
𝑝
𝑞
𝑟
] 

 
(5) 

 Quaternions are hyper complex numbers in ℝ4 that allow the representation of orientations and 

rotations of an object in three dimensions with the advantage over Euler angles method of not 

suffering from singularity. A quaternion consists of four elements: a scalar part, often referred to as 

𝑞0, and a vectorial part 𝒒 = [𝑞1 𝑞2 𝑞3]. The 4-tuple can be represented in many ways, while two of the 

most popular approaches are shown in equations (6): 

 𝑞 = 𝑞0 + 𝑞1𝒊 +  𝑞2𝒋 + 𝑞3𝒌               𝑞 = [𝑞0   𝑞1   𝑞2   𝑞3]
𝑇 (6) 

All the quantities 𝑞𝑖 are real numbers and 𝒊, 𝒋, 𝒌 satisfy the following identities: 

 

 

𝒊2 = 𝒋2 = 𝒌2 = −1 
𝒊𝒋 = 𝒌, 𝒋𝒊 = −𝒌 
𝒋𝒌 = 𝒊, 𝒌𝒋 = −𝒊 
𝒌𝒊 = 𝒋, 𝒊𝒌 = −𝒋 

 
(7) 

Quaternion conjugate, quaternion normalization and quaternion multiplication are the three main 

operations used in the quaternion algebra for attitude control.  

Given the quaternion 𝑞 = 𝑞0 + 𝑞1𝑖  + 𝑞2𝑗  + 𝑞3�⃗⃗�  its conjugate is defined as: 

 𝑞∗ = 𝑞0 − 𝑞1𝒊 − 𝑞2𝒋 − 𝑞3𝒌               𝑞 = [𝑞0   −𝑞1  −𝑞2   −𝑞3]
𝑇 (8) 

And its norm as: 

 
|𝑞| = √𝑞0

2 + 𝑞1
2 + 𝑞2

2 + 𝑞3
2 

 
(9) 

The normalization operation is used to convert a quaternion into unit quaternion as shown in (10): 

 

 

�̂� =
𝑞0 + 𝑞1𝒊 +  𝑞2𝒋 + 𝑞3𝒌

√𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2
 

 
(10) 

The multiplication of two quaternions is being performed by the Kronecker3 product, also referred to 

as Hamilton product, denoted as .  

 
3 Kroner product: if 𝑞 represent one rotation and 𝑝 represents another rotation, the quaternion multiplication 𝑞 Ä 𝑝 

represents the combined rotation. The product is equal to: 𝑞 Ä 𝑝 = 𝑞0𝑝0 − 𝒒 ∙ 𝒑 + 𝑞0𝒑 + 𝑝0𝒒 + 𝒒 x 𝒑 
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Thanks to the Hamilton product, it is possible to express an error quaternion, like the difference 

between a desired attitude and the current one, using the following equation: 

 𝑞𝑒𝑟𝑟 = 𝑞−1 Ä qdes 
 

(11) 

Where 𝑞 is the current estimated quaternion and 𝑞𝑑𝑒𝑠 is the provided reference. The inverse of a 

quaternion is defined as the normal inverse of a complex number, 𝑞−1 =
𝑞∗

|𝑞|2
. Moreover, if the 

quaternion is unitary, then the inverse is the same as its conjugate. 

Thanks to Euler’s Rotation Theorem, any displacement of a rigid body in 3D space such that a point 

of the rigid body remains fixed is equivalent to a single rotation about an axis passed through that 

fixed point. The axis of rotation passing through that fixed point is called Euler axis and is represented 

by �⃗� = (𝑎𝑥 , 𝑎𝑦, 𝑎𝑧) and 𝛼 is a simple rotation angle. Using these two elements, the corresponding 

rotation is translated into the equivalent quaternion: 

 𝑞 = cos
𝛼

2
+ �⃗� sin

𝛼

2
 

 

(12) 

Assuming a vector �⃗� ∈ 𝑅3 from reference frame 𝑙, and �⃗�′ ∈ 𝑅3 as the same vector in a different 

reference frame 𝑚, then the rotation can be expressed as: 

 [
0
𝑣′] = 𝑞 ∙ [

0
𝑣
] ∙ 𝑞−1 = [

1 0𝑇

0 𝑅𝑞(𝑞)
] [

0
𝑣
] 

 
(13) 

Where the transformation from 𝑙 to 𝑚 is given by matrix: 

 

 

𝑅𝑞(𝑞) = [

𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2 2𝑞1𝑞2 + 2𝑞0𝑞3 2𝑞1𝑞3 − 2𝑞0𝑞2

2𝑞1𝑞2 − 2𝑞0𝑞3 𝑞0
2 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2 2𝑞2𝑞3 + 2𝑞0𝑞1

2𝑞1𝑞3 + 2𝑞0𝑞2 2𝑞2𝑞3 − 2𝑞0𝑞1 𝑞0
2 − 𝑞1

2 + 𝑞2
2 + 𝑞3

2

] 
 
(14) 

Moreover, the composition of rotations can be expressed just as with rotation matrices. Assuming 

two consecutive rotations, 𝑞1 and 𝑞2, the composition of such rotations is provided by the matrix: 

 
 

𝑅𝑞(𝑞1 ∙ 𝑞2) = 𝑅𝑞(𝑞1)𝑅𝑞(𝑞2) 
 

(15) 

Lastly the quaternion time derivative can be defined using the following relation: 

 

 

�̇� =
1

2
 𝛀 𝒒 = [

0 −𝑝 −𝑞 −𝑟
𝑝 0 𝑟 −𝑞
𝑞 𝑟 0 𝑝
𝑟 𝑞 −𝑝 0

] [
𝑞0

𝒒 ] 

 
(16) 

Where 𝛀 = [p q r]T represents the vehicle body rates and the value assumed by the quaternion can 

be estimated by integrating equation (16). 

Despite quaternions are simpler than Euler angles, are numerically stable and more efficient in terms 

of computing implementations, in this thesis the Euler angles method have been adopted to describe 

the attitude of the vehicle because of its easy visualization properties. 
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2.2 – Quadrotor Mathematical Model 

Mathematical model describes quadrotor movement and behaviour with respect to the inputs values of the 

model and external influences on the system. It can be seen as a function that traces the inputs and the 

outputs of the system. The idea behind the definition of a mathematical model is to make possible the 

development of a control system. If the model is too complex, the design of the controller will be arduous. 

Depending on the requirements, it is necessary to find a compromise between model complexity and 

accuracy. Because of quadrotor nonlinear nature, some assumptions are made in the modelling process. This 

project results are based on some simplifications concerning quadrotor structure and other factors without 

losing precision in the description of motion. The simplifications adopted are listed below: 

 The CoG of the quadrotor is assumed to be at the centre of the body, coincident with the origin of 

the body reference frame; 

 The effects of Earth rotation are assumed negligible; 

 The vehicle and its components are rigid bodies fixed to each other; 

 The structure is symmetrical; 

 Aerodynamic forces are assumed to be negligible; 

 No gust disturbance, air fluctuations and ground effect are considered; 

The introduction of these simplification hypothesis scales down problem complexity, however difficulties are 

still present due to the non-linearities of the model and the control challenges of an under-actuated system. 

2.3 – Quadrotor Dynamics: Forces and Moments 

Normally two approaches are used to develop the mathematical model of an aerial vehicle: the Newton-Euler 

Equations or the Lagrangian Equations. In this thesis a procedure similar to (Brian L Stevens, 2015) is adopted. 

The forces and moments that act on a quadcopter are mainly due to the gravity and the four propellers. Each 

propeller is responsible of the generation of an upward force 𝐹 and a torque 𝜏. Thus, the total force acting 

on a quadrotor is given by the sum of all the forces and the same principle applies for the torques.  

 𝐹 = ∑ 𝐹𝑖

4

𝑖=1
              𝜏 = ∑ 𝜏𝑖

4

𝑖=1
 

 

(17) 

Considering the forces, the model of the quadrotor is obtained making use of Newton’s Second Law: 

 𝐹𝐵𝑜𝑑𝑦 + 𝑅𝑁𝐸𝐷
𝐵𝑜𝑑𝑦

𝑚𝑔 =
𝑑

𝑑𝑡
𝑚𝑣𝐵𝑜𝑑𝑦 

 

(18) 

Where the total forces acting on quadcopter’s body, expressed in Body frame are included in 𝐹𝐵𝑜𝑑𝑦, 𝑚 is the 

mass of the vehicle, 𝑔 is the gravitational acceleration and 𝑣𝑏 is the vector of linear velocities of quadcopter’s 

CoG expressed in Body frame. According to the Coriolis Theorem, the derivative of a vector with reference to 

a different frame can be defined as: 

 
𝑑

𝑑𝑡
𝑣𝐵𝑜𝑑𝑦 = �̇�𝐵𝑜𝑑𝑦 + 𝜔𝐵𝑜𝑑𝑦  x 𝑣𝐵𝑜𝑑𝑦  

 

(19) 

Thus, applying this definition to Newton’s Second Law it is obtained: 
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 𝐹𝐵𝑜𝑑𝑦 + 𝑅𝑁𝐸𝐷
𝐵𝑜𝑑𝑦

𝑚𝑔 = �̇�𝑣𝐵𝑜𝑑𝑦 + 𝑚
𝑑

𝑑𝑡
𝑣𝐵𝑜𝑑𝑦 = 0 + �̇�𝐵𝑜𝑑𝑦 + 𝜔𝐵𝑜𝑑𝑦  x 𝑣𝐵𝑜𝑑𝑦 

 

(20) 

Where the term �̇�𝑣𝐵𝑜𝑑𝑦 = 0 since the variation of mass is significant only when dealing with varying-mass 

systems along the mission. The vectors 𝑣𝐵𝑜𝑑𝑦 and 𝜔𝐵𝑜𝑑𝑦 are defined as: 

 𝑣𝐵𝑜𝑑𝑦 = [
𝑢
𝑣
𝑤

]          𝜔𝐵𝑜𝑑𝑦 = [
𝑝
𝑞
𝑟
] 

 

(21) 

On the other hand, moments are obtained as: 

 𝑇𝐵𝑜𝑑𝑦 =
𝑑

𝑑𝑡
𝐻𝐵𝑜𝑑𝑦 =

𝑑

𝑑𝑡(𝐽𝜔𝐵𝑜𝑑𝑦)
 

 

(22) 

Where 𝑇𝐵𝑜𝑑𝑦  is the total torque acting about the CoG, and 𝐻𝐵𝑜𝑑𝑦 = 𝐽𝜔𝐵𝑜𝑑𝑦  is the angular momentum vector 

of the vehicle, both expressed in the Body frame. Introducing the Inertia matrix4 of a rigid body 𝐽, it is possible 

to rewrite the moments equation leaving alone 𝜔𝐵𝑜𝑑𝑦, results in the following equation: 

 �̇�𝐵𝑜𝑑𝑦 = −𝐽−1 (𝜔𝐵𝑜𝑑𝑦 x ( 𝐽 𝜔𝐵𝑜𝑑𝑦 )) + 𝐽−1𝑇𝐵𝑜𝑑𝑦 
 

(23) 

Once obtained the dynamics of the quadcopter, the state space representation is provided. 

2.4 – State-Space Model Representation 

As introduced in Paragraph 2.1 the quadrotor is an under-actuated nonlinear system, its model can be 

described using a differential equation of the type: 

 �̇� = 𝑓(𝑥) + 𝑔 ∙ 𝑢 
 

(24) 

Where the vector of states is 𝑥 ∈ ℝ12 and the vector of control inputs is 𝑢 ∈ ℝ6 . The states and inputs 

components used in this thesis are provided hereafter: 

 𝑥 = [𝑝𝑁 𝑝𝐸  ℎ 𝜙 𝜃 𝜓 𝑢 𝑣 𝑤 𝑝 𝑞 𝑟]𝑇          𝑢 = [𝐹𝑥 𝐹𝑦 𝐹𝑧 𝜏𝑥  𝜏𝑦  𝜏𝑧]
𝑇
 

 

(25) 

Using the rotation matrix 𝑅𝐵𝑜𝑑𝑦
𝑁𝐸𝐷 , the derivative of quadrotor position in the inertial frame is determined: 

 [

 �̇�𝑁

�̇�𝐸

ℎ̇

] = 𝑅𝐵𝑜𝑑𝑦
𝑁𝐸𝐷 [

𝑢
𝑣
𝑤

] (26) 

The derivatives of the Euler angles can be expressed as: 

 
4 The Inertia matrix contains the moments of inertia and the cross-products of inertia. Due to the assumption of a 
symmetrical body with respect to the x-z plane, the only terms to be considered 𝐽𝑥𝑥 , 𝐽𝑦𝑦 , 𝐽𝑧𝑧 and 𝐽𝑥𝑧. 

𝐽 = [

𝐽𝑥𝑥 −𝐽𝑥𝑦 −𝐽𝑥𝑧

−𝐽𝑥𝑦 𝐽𝑦𝑦 −𝐽𝑦𝑧

−𝐽𝑥𝑧 −𝐽𝑦𝑧 𝐽𝑧𝑧

] = [

𝐽𝑥𝑥 0 −𝐽𝑥𝑧

0 𝐽𝑦𝑦 0

−𝐽𝑥𝑧 0 𝐽𝑧𝑧

] 
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 [

�̇�

�̇�
�̇�

] =

[
 
 
 
𝑝 + tan 𝜃 (𝑞 sin𝜙 + 𝑟 cos𝜙)

𝑞 cos𝜙 − 𝑟 sin𝜙
1

cos 𝜃 (𝑞 sin𝜙 + 𝑟 cos𝜙) ]
 
 
 

 (27) 

Using the aforementioned Newton’s Second Law, the derivative of vector 𝑣𝐵𝑜𝑑𝑦  is defined as: 

 �̇�𝐵𝑜𝑑𝑦 = [
�̇�
�̇�
�̇�

] = [

−𝑞𝑤 + 𝑟𝑣 − 𝑔 sin 𝜃 
𝑝𝑤 − 𝑟𝑢 + 𝑔 sin 𝜙 cos 𝜃

−𝑝𝑣 + 𝑞𝑢 + 𝑔 cos𝜙 cos 𝜃
] +

1

𝑚
[

𝐹𝑁

𝐹𝐸

𝐹𝐷

] (28) 

In conclusion, using the equation derived in (23) the angular acceleration in Body frame is written as: 

 �̇�𝐵𝑜𝑑𝑦 = [
�̇�
�̇�
�̇�

] = [

𝑞(𝑟𝑐1 + 𝑝𝑐2)

𝑝𝑟𝑐5 − 𝑐6(𝑝
2 − 𝑟2)

𝑞(𝑝𝑐8 − 𝑟𝑐2)

] + [

𝑐3𝜏𝑥 + 𝑐4𝜏𝑧

𝑐7𝜏𝑦

𝑐4𝜏𝑥 + 𝑐9𝜏𝑧

] (29) 

Where, according with the hypothesis of symmetry, assuming Γ = Jx𝐽𝑦 − 𝐽𝑥𝑧
2  the coefficients 𝑐𝑖  are defined as: 

 𝑐1 =
𝐽𝑥𝑧(𝐽𝑥 − 𝐽𝑦 + 𝐽𝑧)

Γ
 𝑐2 =

𝐽𝑥𝑧(𝐽𝑥 − 𝐽𝑦 + 𝐽𝑧)

Γ
 𝑐3 =

𝐽𝑧
Γ

 

(30)  𝑐4 =
𝐽𝑥𝑧

Γ
 𝑐5 =

𝐽𝑧 − 𝐽𝑦

Γ
 𝑐6 =

𝐽𝑥𝑧

Γ
 

 𝑐7 =
1

𝐽𝑦
 𝑐8 =

𝐽𝑥𝑧
2 + 𝐽𝑥(𝐽𝑥 − 𝐽𝑦)

Γ
 𝑐9 =

𝐽𝑥
Γ

 

Lastly, the matrices of the state space representation are provided: 

 𝑓(𝑥) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 𝑅𝐵𝑜𝑑𝑦

𝑁𝐸𝐷 [
𝑢
𝑣
𝑤

]

𝑝 + + tan 𝜃 (𝑞 sin𝜙 + 𝑟 cos𝜙)

𝑞 cos𝜙 − 𝑟 sin𝜙
1

cos 𝜃
(𝑞 sin𝜙 + 𝑟 cos𝜙)

−𝑞𝑤 + 𝑟𝑣 − 𝑔 sin 𝜃
𝑝𝑤 − 𝑟𝑢 + 𝑔 sin𝜙 cos 𝜃

−𝑝𝑣 + 𝑞𝑢 + 𝑔 cos𝜙 cos 𝜃

𝑞(𝑟𝑐1 + 𝑝𝑐2)

𝑝𝑟𝑐5 − 𝑐6(𝑝
2 − 𝑟2)

𝑞(𝑝𝑐8 − 𝑟𝑐2) ]
 
 
 
 
 
 
 
 
 
 
 
 
 

          𝑔 =

[
 
 
 
 
 
 
 
 
 
 
 

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1 𝑚⁄ 0 0 0 0 0
0 1 𝑚⁄ 0 0 0 0
0 0 1 𝑚⁄ 0 0 0
0 0 0 𝑐3 0 𝑐4

0 0 0 0 𝑐7 0
0 0 0 𝑐4 0 𝑐9]

 
 
 
 
 
 
 
 
 
 
 

 

 

 

(31) 

2.5 – Quadrotor Linearized Model 

Once obtained quadrotor’s mathematical model, a linearization is performed for subsequent controller 

design. From the state space representation, the linearization is obtained around an equilibrium point of the 

system, �̅�. In order to define a linear model, the following equation must be fulfilled: 

 𝑓(�̇�, 𝑥, 𝑢) = 0     𝑤𝑖𝑡ℎ     �̇� ≡ 0;  𝑢 ≡ 0 𝑜𝑟 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (32) 

Considering the nonlinear nature of the equations defined in 𝑓(𝑥), an approximation is introduced, assuming 

small variations of the angles it is possible to use: sin𝛼 ≈ 𝛼 and cos 𝛼 ≈ 1.  Thus, the equations become: 
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�̇�𝑁 ≈ 𝑢 + 𝑣(𝜙𝜃 − 𝜓) + 𝑤(𝜃 + 𝜙𝜓)

�̇�𝐸 ≈ 𝑢𝜓 + 𝑣(𝜙𝜃𝜓 + 1) + 𝑤(𝜃𝜓 − 𝜙)

ℎ̇ ≈ −ℎ𝜃 + 𝑣𝜙 + 𝑤

�̇� ≈ 𝑝 + 𝜃(𝑞𝜙 + 𝑟)

�̇� ≈ 𝑝 + 𝜃(𝑞𝜙 + 𝑟)

�̇� ≈ (𝑞𝜙 + 𝑟)

�̇� ≈ −𝑞𝑤 + 𝑟𝑣 − 𝑔𝜃 + 1 𝑚⁄ 𝐹𝑁

�̇� ≈ 𝑝𝑤 − 𝑟𝑢 + 𝑔𝜙 + 1 𝑚⁄ 𝐹𝐸

�̇� ≈ −𝑝𝑣 + 𝑞𝑢 + 𝑔 + 1 𝑚⁄ 𝐹𝐷

�̇� ≈ 𝑞(𝑟𝑐1 + 𝑝𝑐2) + 𝑐3𝜏𝑥 + 𝑐4𝜏𝑧

�̇� ≈ 𝑝𝑟𝑐5 − 𝑐6(𝑝
2 − 𝑟2) + 𝑐7𝜏𝑦

�̇� ≈ 𝑞(𝑝𝑐8 − 𝑟𝑐2) + 𝑐4𝜏𝑥 + 𝑐9𝜏𝑧

 

 

(33) 

2.5.1 – Equilibrium Point and Linearization 

By setting �̇� = 0 , providing the appropriate substitutions in (33), the equilibrium point �̅� , and the 

corresponding set of control inputs �̅� are obtained: 

 
�̅� = [0 0 0 0 0 0 0 0 0 0 0 0]𝑇 ∈ ℝ12 
�̅� = [0 0 𝑚𝑔 0 0 0]𝑇 ∈ ℝ6 

 

(34) 

That having been said, the linearized model can be written using matrices 𝐴, 𝐵, 𝐶 and 𝐷: 

 
�̇� = 𝐴𝑥 + 𝐵𝑢 
𝑦 = 𝐶𝑥 + 𝐷𝑢 

(35) 

Where the matrices 𝐴, 𝐵, 𝐶 and 𝐷 are respectively the state matrix, the input matrix, the output matrix, and 

the feedthrough matrix, defined as follow: 

 𝐴 =
𝜕𝑓(�̅�, �̅�)

𝜕𝑥
=

[
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 −𝑔 0 0 0 0 0 0 0
0 0 0 𝑔 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 
 
 
 
 

           (36) 

 

 𝐵 =
𝜕𝑓(�̅�, �̅�)

𝜕𝑢
=

[
 
 
 
 
 
 
 
 
 
 
 

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1 𝑚⁄ 0 0 0 0 0
0 1 𝑚⁄ 0 0 0 0
0 0 1 𝑚⁄ 0 0 0
0 0 0 𝑐3 0 𝑐4

0 0 0 0 𝑐7 0
0 0 0 𝑐4 0 𝑐9]

 
 
 
 
 
 
 
 
 
 
 

 (37) 
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 𝐶 = 𝑒𝑦𝑒(12,12) = [

1 0 ⋯ 0
0 ⋱ ⋮ ⋮
⋮ ⋮ ⋱ 0
0 ⋯ 0 1

] 
 

(38) 

 

 

 

𝐷 = 𝑧𝑒𝑟𝑜𝑠(12,6) = [
0 0 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 0

] 
 

(39) 

 

The last two matrices have been chosen considering the absence of feedthrough signals and the output as 

the states of the system. Both of them have been defined according to the built Simulink model. 

2.5.2 – Controllability and Observability 

The dual concepts of controllability and observability are fundamental in control system theory and 

consequently need to be investigated in more details. According to Aguirre (Aguirre, 2016) a system is state 

controllable if there exists a control 𝑢 that can drive the system from an arbitrary initial state 𝑥(𝑡𝑖 = 0) to an 

arbitrary final state 𝑥(𝑡𝑓) in a finite time. This property measures the effect of the control input over the state 

variables and can be determined using the rank of matrix C, defined as follow: 

 C = [𝐵 𝐴𝐵 𝐴2𝐵 … 𝐴𝑛−1𝐵] (40) 

On the contrary a system is state observable at a time 𝑡𝑓  if the initial state 𝑥(𝑡𝑖 = 0)  can be uniquely 

determined from the knowledge of a finite time history of the input 𝑢(𝜏) and output 𝑦(𝜏). This property 

points out the capability of determining the states of a system by measuring its outputs over a limited time 

interval and can be determined using the rank of matrix O, defined as: 

 O = [𝐶𝑇 𝐴𝑇𝐶𝑇 (𝐴𝑇)2𝐶𝑇 … (𝐴𝑇)𝑛−1𝐶𝑇] (41) 

In this project, both matrix C and O have been computed and their ranks have been evaluated using MATLAB 

2018b. The results show that both the matrices are full rank; thus, the quadrotor system is completely 

controllable and observable.    
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CHAPTER 3 

Quadrotor Design 

3.1 – Quadrotor Anatomy 

The majority of commercial quadrotor are designed with the aim of doing aerial photography. Despite their 

advantages, this kind of quadcopters have closed-source avionics, thus they cannot be used in research 

applications. There are many research activities based on open-source projects for quadrotors development; 

the aims of these studies are tailored for the development and testing of flight control, state estimation and 

navigation algorithms. According to Bangura (Moses, February 2017), the idea of open-source UAVs was 

introduced thanks to the ‘AscTec Hummingbird Project’, a research activity conducted by the General 

Robotics, Automation Sensing and Perception (GRASP) laboratory and the Flying Machine Arena. This work 

has led to the development of a unified communication protocol called MAVLink5 Meier, in 2009.    

According to Khosiawan and Nielsen (Yohanes Khosiawan, 2016), there are three elements to be considered 

in employing UAVs for a certain application domain: tasks, environment, and UAV Operation System (UAV 

OS). Tasks consist of a series of action that UAVs must fulfil in an efficient way without compromising its 

structure or surrounding environments; in this work the main task is indoor navigation. Environment is the 

surroundings and infrastructures where the UAV will be employed; in this project an indoor environment is 

considered. UAV OS includes different components such as imaging devices, sensors, recharge centres and 

other resources which are fundamental for the UAV operations; the UAV OS of this project is provided in the 

following paragraphs. 

This chapter outlines the different hardware (HW) and software (SW) components that have been used in 

the development of the real-world quadrotor platform of this work. The quadrotor is built using entirely 

Commercial-Off-the-Shelf (COTS) components which ensures the replacement of any of the HW components 

for any of the dynamics levels. A typical quadrotor configuration consists of an airframe (cross or plus 

configuration), four brushless direct-current motors (BLDC), four propellers, one or more batteries, a flight 

control board (which is part of the avionic system), a companion computer and four Electronic Speed 

Controllers (ESCs) that are used to regulate the thrust produced by each of the four BLDC. In addition to the 

previous elements, quadrotors can be equipped with a transmitter-receiver system and additional sensors 

as local positioning system for indoor application or global positioning system (GPS) for outdoor applications.  

 
5 MAVLink ‘Micro Air Vehicle Communication Protocol’ is a messaging protocol for communicating with small UAVs and 
between their onboard components. It follows a modern hybrid publisher-subscriber and point-to-point design pattern. 
All data streams are published as topic while configuration subprotocols are point-to-point with retransmission. 
Messages are defined within XML files; each file defines the message set supported by a peculiar MAVLink system. 
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3.1.1 – Airframe: Holybro X500 Frame 

The airframe is an essential component of a quadcopter (and more in general of any UAVs). The torques 

generated by the motor systems, the landing impacts and other external factors make the frame vital in terms 

of design and maintenance.  Furthermore, the frame must be as light as possible, to increase the possible 

payload, and as robust as possible, for facing high vibrations. Most available materials for frame are carbon 

fiber, wood, aluminium, plastic & PVC, and fiberglass.  

In accordance with the purpose of indoor autonomous flight, it has been chosen the commercially available 

Holybro X500 airframe kit. The X500 frame is a full carbon fiber airframe produced by Holybro. As shown in 

the following figures, the kit (shown in Figure 21) consists of two carbon fiber landing gear with plastic 

connectors, a battery mounting board (shown in Figure 22), a payload platform board (shown in Figure 23) 

and two carbon fiber plates with a thickness of 2 [𝑚𝑚] (shown in Figure 24). It has been chosen a cross 

chassis with a wheelbase6 of  500 [𝑚𝑚] and a weight of about 470 [𝑔]. The choice of that airframe was 

driven by its perfectly compatibility with Pixhawk 4 and Pixhawk 4 mini autopilot. 

 

Figure 21: photo of kit Holybro X500 frame contents. 

 

Figure 22: representation of Holybro battery mounting board. 

 

Figure 23: representation of Holybro payload platform board. 

 

Figure 24: representation of Holybro X500 complete assembly. 

3.1.2 – Control Module: Pixhawk 4 Mini and PX4 

Avionics systems applied into UAVs were adapted from standard aviation avionics (the majority of them are 

similar or exactly the same). Most of commercially available quadrotors are characterized by their own 

avionics with closed-source firmware and software. One of the main avionics systems is the autopilot which 

is used to control the attitude, position, and trajectory of UAVs. Autopilots can be semi-automatically, which 

means that commands from remote pilot are needed, or fully automatically. Some of the most popular 

 
6 The multirotor frame size is defined as the distance from opposite corner motors.  
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avionics boards currently in use are shown in Table 2: Ardupilot, AeroQuad, Openpilot, Paparazzi, Pixhawk 

and Mikrokopter. An avionic board can be divided into the software part and the hardware part. The SW is 

the brain of the vehicle, and it is used to process and send information, while the HW part includes 

components such as the Inertial Measurement Unit (IMU), barometers, microcomputers, GPS receiver and 

interfaces elements which are used as bridge connection between on-board items.  

Table 2: open-source autopilots of multicopters. 

 

Figure 25: Ardupilot Mega 2.0 

 

Figure 26: AeroQuad flight controller board 

 

Figure 27: OpenPilot CC3D flight controller 

 

Figure 28: PaparazziUAV Lisa/M v2.0 

 

Figure 29: Pixhawk 4 Mini flight controller 

 

Figure 30: MikroKopter v2.5 flight controller 

All the avionics boards are developed with a Ground Control Station (GCS) software in order to visualize 

telemetry data and to control the vehicle. There are a lot of free open-source GCS software such as: Mission 

Planner (Ardupilot), Openpilot, Paparazzi and QGroundControl (PX4). Most of the avionics boards come with 

micro-electro-mechanical-system (MEMS) gyroscopes, accelerometers, and magnetometers to measure the 

attitude as well as determine the position. The autopilot, also referred to as flight controller (FC), processes 

measured data for either stabilizing the UAV and hold the position in hover state or flying predefined paths. 

In this work a Pixhawk 4 Mini autopilot running the PX4 open-source software (Dronecode Foundation, San 

Francisco, CA, USA) has been used. The PX4 has been selected because of its modular architecture which is 

built on the NuttX real-time operating system, simplifying the difficulties of adding new sensors, peripherals, 

expansion modules and the development of new state control algorithms. Due to its properties, PX4 is a great 

testing environment for research purposes.  

 

Figure 31: PX4 software structure from (Meier, 2015). 
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As shown in Figure 31, the PX4 flight control framework consists of three main layers: PX4 flight stack 

(containing individual applications such as the FC, state estimation and others), PX4 middleware (containing 

communications between the applications and the driver) and PX4 drivers (architect specific). The lower half 

of the scheme manages device drivers required for a particular microcontroller or bus type. Moreover, this 

half includes a simulation layer, that enables the PX4 flight code to run on a desktop operating system and 

control a modelled vehicle in a simulated environment, providing Software-In-the-Loop (SITL) simulations. 

The PX4 flight stack is a collection of guidance, navigation, and control algorithm for autonomous flight; it 

includes controller for VTOL and fixed-wing vehicles in addition to attitude and position estimators.  

This architecture allows for a modular design since those three layers are separated and can be run 

independently. The FC and the state estimation are examples of self-contained applications, which can be 

run independently at runtime. This property allows the use of the Pixhawk autopilot for a variety of 

autonomous vehicle such as fixed-wing aerial vehicle or Unmanned-Ground-Vehicle (UGV). Moreover, each 

application connects to other processes and drivers using a Publisher-Subscriber7 framework, allowing an 

efficient communication between processes. In other words, the broker 𝜇𝑂𝑅𝐵 uses a Pub-Sub data protocol 

where a publisher advertises a topic (structured message) which contains information to be shared. As an 

example, the estimator application advertises state estimation as a topic and publishes it to 𝜇𝑂𝑅𝐵 for the 

other applications; the subscriber subscribes to the topic via 𝜇𝑂𝑅𝐵 and accesses the state estimation data. 

Once subscribed, the data are copied into a variable that can be used in the independent application. 

That having been said, the core part of the PX4 is the control block, which represents a control algorithm that 

calculates and sends control signals to the propulsion module, relying on sensors data and states estimation. 

A schematic representation of PX4 controller is provided in Figure 32. The inputs to the control system are 

the reference states, referred to as 𝜂𝑟𝑒𝑓, RC signals and sensors readings 𝜂. The telemetry module is used for 

two-way communication between the aircraft and the base station while the system monitoring and logging 

block is used to store flight data like aircraft status, battery status and propulsion status.   

 

Figure 32: PX4 flight stack schematic representation. 

 

Figure 33: illustration of Pixhawk 4 Mini flight controller. 

 

 
7 The Publish-Subscribe pattern, also referred to as Pub-Sub, is an architectural design pattern that provides a framework 
for exchanging messages between publishers and subscribers. In addition to the publisher and the subscriber, this 
pattern includes a message broker that relays messages from the Pub to the Sub. The idea behind Pub-Sub is the 
movement of messages between different components without the components being aware of each other’s identity.  
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The position and attitude estimator receive sensors readings and combines them using an algorithm, the 

Extended Kalman Filter (EKF) to estimate the vehicle states. These states are used by the navigator and the 

controller module. Both position and attitude controllers, receive the estimated states and the RC input 

desired by the user, via the radio receiver connected to the Pixhawk. The controller output commands which 

are then converted into motor commands for each motor. Lastly the obtained commands are sent to the 

ESCs of each motor to regulate the speed of each propeller as desired.  

In conclusion a brief overview of Pixhawk 4 Mini autopilot characteristics (shown in Table 3) is provided. 

Pixhawk 4 Mini have been developed in order to provide the same performance of Pixhawk 4 while 

eliminating interfaces that are usually unused; this allows smaller drones applications (it can fit in a 

250 [𝑚𝑚] racing drone). It is based on the FMUv5 design standard and is optimized to run PX4 flight control 

software. Table 3 outlines autopilot main characteristics: 

Table 3: main characteristics of Pixhawk 4 mini, as taken from 'Pixhawk 4 Mini Technical Data Sheet' (Foundation, 2018). 

Processor 32 Bit Arm Cortex-M7, 216 MHz, 512 KB RAM 

On-board Sensors 
Two redundant IMUs (accels and gyros) 
One magnetometer IST8310 
One barometer MS5611 

Interfaces 

Eight PWM outputs 
Four dedicated PWM/capture inputs on FMU 
One dedicated R/C input for CPPM, 
Spektrum/DSM and S. Bus 
Three general purposes serial port 
Two I2c ports 
Three SPI buses 
One CANBuses for CAN ESC 
Analog inputs for voltage / current of battery 
Two additional analog input 

Weight and Dimensions 
Weight of 37.2 [g] 
Dimensions: 38 x 55 x 15. [mm] 

3.1.3 – Propulsion Module: Motors and Propellers 

As introduced in Chapter 2, the control of a multirotor UAVs is achieved using the differential thrust produced 

by individual’s rotos. The use of a compact, lightweight, and efficient propulsion system is one of the main 

technological requirements for a long endurance electric UAV. Currently, the most popular trend is to use 

battery sources which provide direct current to operate the electric power module. Electric motors operate 

on Faraday’s Law of electromagnetic induction. Calling 𝑒𝑚𝑓 the electromotive force inducted in an inductor 

coil, the module of the force is directly proportional to the rate of change of the flux linkage, thus, to create 

𝑒𝑚𝑓 a magnetic field and a moving coil are needed. The currently available types of DC motors include 

stepper, brushed and brushless. Brushless DC motor (BLDC) is a permanent magnet electric motor with an 

electronic commutation system; electromagnets (armature) are located on the stator while permanent 

magnets are located on the rotor. Compared to conventional direct current DC motors, BLDC have higher 

efficiency, increased reliability, and higher torque by weight. Because of their better characteristics and 

superior performances, they have rapidly gained popularity; moreover, they can provide information about 

motor poles, thus, the speed of the motor-rotor system, which is essential in control algorithms design. 

Despite their advantages, DC motors have a drawback due to the conversion of the DC voltage into three 

phase voltages, which is accomplished by expensive electronics, known as Electronic Speed Control ESCs.  
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As shown in Figure 34, the size of BLDC motors is normally given by a four-digit number, where the first two 

digits stands for the stator width, while the last two digits for the stator height. 

 

Figure 34: illustration of stator width and height of a BLDC motor. 

Taller stators have larger surface; therefore, they can cut through more magnetic field, increasing overall 

thrust generation; for this reason, taller stators are preferred for high rpm and fast drones. On the other 

hand, a wider stator allows a larger bearing, improving efficiency and smoothness of the motor.  

The rotational speed, defined as revolutions-per-minutes (rpm), and the torque are other two characteristics 

to take into consideration in the selection of a BLDC motor. Typically, the parameter specified by the 

manufacturer is the KV, which is defined as the increase of brushless motor’s rpm when the voltage goes up 

by one volt 1[𝑉] without load. This parameter is evaluated without the propellers on; once mounted the 

propellers, the rpm decreases due to air resistance. Generally speaking, heavier quadrotors pair with medium 

to low KV, while lighter quadrotor usually use high KV motors8. By pairing a high KV motor with an excessively 

large propeller, the motor tries to produce the required torque drawing more current, subsequently 

generating too much heat which could lead to motor overheats and, in the worst cases, electrical shorts 

inside the motor.  

Aircraft propellers are characterized by three main parameters: diameter, pitch, and the number of blades. 

By rotation of propellers, the aerodynamic forces and moment generated, directly affect the dynamics of the 

multirotor. Assuming fixed pitch propellers, the required aerodynamic forces and torques are achieved by 

changing the rpm of the rotor. Generally speaking, increasing the number of blades, the pitch angle or the 

diameter, results in a larger amount of induced airflow, hence greater thrust force. On the other hand, 

greater resistance to rotation is exerted, hence motor torque and power consumption increases. That having 

been said, the thrust force of the single rotor is defined as: 

 𝐹𝑖 = 𝑘𝐹𝜔𝑖
2          𝑤𝑖𝑡ℎ          𝑘𝐹 = 𝐶𝑇𝜌𝐴𝑟2 (42) 

Where 𝜔𝑖 is the angular velocity of the i-th rotor and 𝑘𝑓 is the thrust force factor expressed in 𝑁𝑠2. The thrust 

force factor depends on the propeller’s geometry (𝐴 propeller disk surface and 𝑟 radius), air density 𝜌 and 

propeller thrust coefficient 𝐶𝑇. Both multi-bladed and two-bladed propellers are good solutions, however 

two-bladed propellers are more common due to their higher aerodynamic efficiency. Assuming the air 

 
8 𝐾𝑉 > 2000 is mainly used to propel micro and small aircraft, 2000 >= 𝐾𝑉 >= 200 is used to propel aircraft 
intended for photography or similar tasks where cargo masses are below 10 [𝐾𝑔] and 𝐾𝑉 < 200 are intended for 
heavier payload. 
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density to be constant and the absence of turbulence and wind gust, the thrust, torque, and power depend 

only on propeller speed.  

Table 4 presents a general guideline for selection of BLDC motors and propellers based on components 

characteristics which are often provided by manufacturer. However, it must be emphasised that this is not a 

rule; depending on applications fields different couplings are also possible.  

Table 4: guideline table for motors and propellers selection. 

Frame Size Propellers Size Motor Dimensions KV 

150 [𝑚𝑚] ≤  3 “  ≤  1105 − 1306  ≥  3000 [𝐾𝑉]   

180 [𝑚𝑚]  4 “  1806  2600 –  3000 [𝐾𝑉]  

210 [𝑚𝑚]  5 “  2204 − 2208, 2306  2300 − 2600 [𝐾𝑉]  

250 [𝑚𝑚]  6 “  2204 − 2208, 2306  2000 − 2300 [𝐾𝑉]  

350 [𝑚𝑚]  7 “  2208  1600 [𝐾𝑉]  

450 [𝑚𝑚] ≥  8 “, 9”, 10 “  ≥  2212  ≤  1000 [𝐾𝑉]  

Once introduced motors and propeller’s properties, the thrust-to-weight ratio is defined. The higher the 

thrust, the easier is to control your drone in elaborate acrobatics. Racing drones, also referred to as First 

Person View (FPV), can be equipped with motors of 10: 1 or 13: 1 thrust-to-weight ratio, because of their 

application in competitive race where manoeuvrability and speed are essential. However, high thrust-to-

weight ratio required expert pilot due to the reduced stability of the system; therefore, quadrotors are 

commonly equipped with motors between 3: 1 to 4: 1 thrust-to-weight ratio.  

In accordance with the guidelines of Table 4 and the weight of the modelled quadrotor 1.4 [𝐾𝑔], the following 

components have been chosen: Goolsky A2212 1000KV Outrunner Motors and Goolsky 1045 propellers. 

 

Figure 35: photo of Goolsky A2212 Outrunner Motor installed on 
Holybro X500 frame arm. 

 

Figure 36: photo of complete propulsion module: Goolsky 1045 
propellers and Goolsky A2212, installed on Holybro X500 frame. 

3.1.4 – Propulsion Module: Electronic Speed Control ESCs 

Electronic Speed Controllers (ESCs) are electronic circuit provided to control the rotational speed and the 

direction of rotation of BLDC motors. The ESC consists of a microcontroller that processes the input PWM 

signal and switching transistors. The ESC implements the proper sequence of switches to energize particular 

phases of a motor, achieving continuous rotation, thus desired rpm set by the input from the flight controller. 

The main parameter for selecting the ESC is the maximum allowed current, which is defined as the current 

rating, measured in [𝐴]. Motors draw current when spinning, hence if they draw more current than ESC can 
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handle it will start to overheat and eventually fail. Generally, a maximum allowable current must be from 

20% to 50% higher than the maximum motor current, in order to avoid motors overheating or failure.  

 

Figure 37: wire welding procedure of BLDC motor Goolsky A2212 1000KV and HP 30A ESC. 

3.1.5 – Energy Module: LiPo Battery 

It is worth mentioning that the main limitation of UAVs is their flight time, which is bound by battery capacity, 

which is in turn limited by the size and weight of the UAVs. According to Mandel, Milford, and Gonzalez 

(Nicolas Mandel, A Method for Evaluating and Selecting Suitable Hardware for Deployment of Embedded 

System on UAVs, 2020), over 90% of power is consumed by the motors supplying thrust; however, the 

influence of computational capabilities on power is also to be considered. According to Boroujerdian and 

Genc (Behzad Boroujerdian, 2018), faster computation capabilities can greatly reduce total power 

consumption for the same task due to reduced time spent at hover and lower accelerations; studies confirm 

that an efficient system design can improve battery endurance. By increasing processing speed to 5 times, 

drone’s energy consumption can be reduced by close to 4 times. As an example, assuming a small quadrotor, 

a 4-cell lithium-polymer (4S LiPo) battery with a capacity of 2200 [𝑚𝐴ℎ] gives an average flight time of 10 

minutes which can be improved to 30 minutes by increasing processing speed. 

Battery is also a demanding element concerning UAVs weight. In accordance with the work of Kumar and 

Michael (V. Kumar, 2012), the battery unit accounts for between 25% to 50% of the gross weight of a 

quadcopter. Figure 38 shows the weight distribution of the realized quadcopter; as can be seen, the battery 

source, Youme 3S LiPo, is the second heaviest only to the main Holybro X500 carbon-fiber frame.   

 

Figure 38: pie chart showing the weights distribution in grams of the realized prototype quadcopter. 
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In accordance with (Marcin Biczyski, 2020), Lithium Polymer (LiPo) batteries currently dominate the market 

of lightweight aerial vehicles thanks to their high energy density and high current discharge capabilities. 

These batteries consist of several cells, connected in series with a voltage that changes according to the state 

of charge of the battery. In nominal condition cell voltage is about 3.7 [𝑉]. The cells can be connected in 

series or in parallel, denoted respectively by S or P. Furthermore, batteries are characterized by capacity, 

expressed in [𝑚𝐴ℎ] and a C-rating. Battery capacity is defined as the maximum amount of energy that can 

be extracted from the battery under certain specified conditions. The most common measure of battery 

capacity is [𝐴ℎ], which is the number of hours for which a battery can provide a current equal to the discharge 

rate at the nominal voltage of the battery. On the other hand, the C-rating is the measurement of the current 

in which a battery is charged and discharged; as an example, a battery with 50 [𝐶] and 1300 [𝑚𝐴ℎ] has a 

maximum discharge current of 50 ∙ 1.3 = 65 [𝐴]. 

In this project a 3S LiPo battery with a nominal voltage of 11.1 [𝑉], a capacity of 3300 [𝑚𝐴ℎ] and a C-rating 

of 50 [𝐶] has been chosen. Recalling what said in Paragraph 3.1.3, the maximum motors speed in no-load 

conditions can be calculated form the KV parameter multiplied by the applied voltage: 

 𝜔𝑁𝑜 𝐿𝑜𝑎𝑑 = 𝐾𝑉 ∙ 𝑉 (43) 

This means that the higher the voltage, the faster the motor spin. In this work a LiPo battery with a nominal 

voltage of 11.1 [𝑉]  and four motors with 1000 𝐾𝑉  have been considered, thus, a theoretical value of 

11100 [𝑟𝑝𝑚], in no-load conditions, is obtained for each motor.  

 

Figure 39: illustration of 3S LiPo power battery Youme, nominal voltage 11.1[V], capacity of 3300[mAh] with a C-rating of 50[C]. 

3.1.6 – Sensors and Indoor Positioning System 

A suite of sensor system is required to provide quadrotor with position and attitude information that are vital 

in autonomous flight. In order to design the control system, it is needed to collect certain data linked to the 

flying behaviour of the quadcopter. These data include the position, the altitude, the linear accelerations, 

and angular rates that can be provided by the Inertial Measurement Unit (IMU). IMU consists of gyroscopes 

and accelerometers that could send data directly either on Euler angles or quaternions. In this thesis the 

Euler angles output is chosen over the quaternions, due to the convenience of the data based on the 

mathematical model of the system. The data coming from the sensors are received by the microcontroller 

(𝜇𝐶), then they are processed in order to control the behaviour of the quadcopter and the output signal is 

sent directly to the motor drivers. The inertial measurements packets are also used as a ‘heartbeat’ for the 

avionics and base station, with received packets signifying an active and healthy communication link. 

The attitude is sensed by three gyroscopes along with a 3D magnetometer. Moreover, the system is equipped 

with three accelerometers to measure the acceleration in body fixed coordinates. The height, position and 

velocity information are provided by an indoor positioning system, which is described hereafter. 
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Getting position information in an outdoor environment can be done easily using Global Positioning System 

(GPS) as has been done in many previous works, such as (Kayton, 1997). Unfortunately, there is no way to 

obtain position information of an UAV in an indoor or in a satellite occluded area environment. For this 

reason, many research have been conducted on the development of a solution to the accurate and reliable 

location of UAVs in indoor environments such as using a laser ranger, ultrasonic sensors, infrared sensors, 

and visual sensors. For all the solutions proposed above, several experiments have been conducted. As an 

example, in (Ruijie He, 2008) it was demonstrated the limited range of field of view of laser range-finder 

which can cause vehicle to lose track of its own position in certain configurations and some parts of 

environment. According to Mustafah, Azman and Akbar (Yasir Mohd Mustafah, 2012), a localization system 

based on visual sensors has a reduced accuracy due to the limited number of cameras that can equipped the 

UAV and the possibility of data losses during transmission.  

 

Figure 40: Starter Set HW v4.9-NIA includes four stationary 
Beacons HW v4.9, one mobile Beacon HW v4.9 and one 

router modem v5.1. 

 

Figure 41: illustration of Marvelmind Set HW v4.9-NIA 4x stationary beacons, 1x 
mobile Beacon and modem disposition. Reference (Robotics, Indoor "GPS" 

Autonomous Copter Setting Manual) 

In this project, UAV localization has been performed using a set of ultrasonic sensors, the Marvelmind Starter 

Set HW v4.9-NIA 9 . The advantage of using a set of ultrasonic sensors is that it can provide accurate 

information, within a tolerance of ±2[𝑐𝑚] , without any additional distance measurement sensor. The 

navigation system is based on stationary beacons that are linked through radio interfaces running on a 

frequency of 915 [𝑀𝐻𝑧]. A central router, connected to the ground station (an octa core Intel i7 ground 

laptop, running Windows 10 as operating system), provides the location of the mobile beacon using the time 

delay of ultrasonic signals, also known as Time-Of-Flight, and triangulation algorithms.  

Table 5: technical details Marvelmind Starter Set HW v4.9-NIA. Reference (Robotics, Marvelmind Starter Set HW v4.9-NIA, 2020) 

Distance Between Beacons Up to 50 [𝑚] in indoor environment 

Coverage Area Coverage similar to cellular networks up to 1000 [𝑚2] 

Location Precision Absolute 1%-3% of the distance between beacons (differential ±2[𝑐𝑚]) 

Location Update Rate Can be set manually – nominal 0.05 to 25 [𝐻𝑧] 

Power Supply Internal LiPo battery 1000 [𝑚𝐴ℎ] – stationary up to 72 [ℎ𝑟], mobile up to 12 [ℎ𝑟] 

Weight 59 [𝑔] including battery and housing and antenna 

Beacon Size 55 𝑥 55 𝑥 65 [𝑚𝑚] (considering antenna) 

 
9 Marvelmind Indoor Navigation System offers two SW possibilities, Non-Inverse-Architecture (NIA) and Inverse-
Architecture (IA). The difference is that NIA consists of two or more stationary Beacons and a mobile Beacon transmitting 
on the same frequency, while the IA the mobile Beacon receives different ultrasonic frequencies at the same time.  
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3.2 – Quadrotor Assembly: Hardware Architecture 

Based on the previous investigations and observations, the architecture of the designed quadrotor system is 

presented. In accordance with the classification provided in (Yuntian Li, 2018) UAV system can be divided 

into four parts: ground station, on-board avionics, on-board actuators, and accessories.  

A ground station consists of a ground station HW and SW. The software is typically designed as an application, 

running on a ground-based computer that communicates with UAV via wireless telemetry. It displays real-

time data on the UAVs performance and position and can be used to control UAV in flight, uploading new 

mission’s commands and settings parameters. In this project, the QGroundControl software has been used. 

This GCS offers many advantages, it works with MAVLink based autopilot (both PX4 and ArduPilot are 

supported) and it runs on all platform desktop (Windows, Mac OS X, Linux) and mobile (Android and iOS).  

The ground station software has been tested on octa core Intel i7 ground laptop, running Windows 10 as 

operating system, which communicates with onboard avionics.  

 

Figure 42: illustration of QGroundControl application user interface running on a Windows 10 operating system with a PX4-based autopilot. 

The quadrotor on-board avionics and actuators consist of the aforementioned (Paragraph 3.1) propulsion 

module, control module and energy module. The control module includes the autopilot Pixhawk 4 Mini and 

the companion computers, respectively the Raspberry-Pi 3 and the Nucleo STM32. On the other hand, the 3S 

LiPo battery and the power module are classified as part of energy module. The designed quadrotor hardware 

architecture is shown in Figure 47. Starting from the energy module, the 3S LiPo battery is directly connected 

to the power module which consists of the Power Control Board (PCB) and the Battery Eliminator Circuit 

(BEC). The Power Module Board (PMB) (shown in Figure 43 and Figure 44) serves the purpose of a power 

module as well as a power distribution board. It provides regulated power to the autopilot and at the same 

time it sends information about battery’s voltage and current draw to the autopilot. Initially, PDB were very 

simple, they were made of a thick copper with an input from the battery and multiple outputs. As the need 

for regulated voltages for various components has become more common, manufacturers have begun 

including voltage regulators on the PMB so that sensitive components can be reliably powered. The BEC is a 

voltage regulator which is designed to drop big voltage to smaller ones, allowing the power of on-board 

devices such as autopilot with a lower voltage without using a separate battery. As can be seen, the propellers 

are directly connected through the ESC to the PCB (shown in Figure 44) while the autopilot and the Raspberry-

Pi are powered by a voltage of 5 [𝑉] provided by the BEC.  
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Figure 43: illustration of Pixhawk 4 Mini power wiring scheme. 
Reference "PX4 User Guide". 

 

Figure 44: photo of designed quadrotor PMB and ESC wiring 
connection, installed on X500 frame bottom plate. 

The flight controller is the main element of the control module. It is used to deal with all the management 

and control actions like arming, disarming, responding to GCS inputs, adjusting motor speed and so on. Since 

most data processing and fusing are time-consuming and cannot be handled by normal flight control board, 

the most suitable solution is to use a companion computer. As can be seen in Figure 47 the Raspberry-Pi 3 

(RPi3) communicates with Pixhawk autopilot using Pulse-Position-Modulation PPM signals; while the STM32 

connects to autopilot’s GPS1 port, providing data received from a serial connection with Marvelmind mobile 

Beacon. Two algorithms run on the Nucleo STM32: the first one is used to read NMEA packets provided by 

the ultrasonic indoor positioning sensor and convert them in ASHTECH; while the second one displays 

warnings or failure messages on LCD. The autopilot’s TELEM1 port is used to communicate with the FC using 

the MAVLink protocol. Hence, additional tasks, such as obstacle avoidance, can be performed using 

algorithms running on Raspberry-Pi, sending MAVLink commands directly to Pixhawk TELEM1 port. 

 

Figure 45: photo of Raspberry-Pi 3 installed on Holybro X500 
frame bottom plate through 3D printed support. 

 

Figure 46: photo of LCD, ESCs and mobile ultrasonic sensor installed on 
Holybro X500 frame through 3D printed component. 

The on-board accessories are part of the equipment module, which includes external HW items such as the 

Liquid Crystal Display (LCD) and the remote joystick controller. As stated before, LCD screen has been 

introduced to display warning or error messages that can occur during flight. On the other side, the joystick 

has been developed as a remote control that communicates with RPi, using USB port, in emergency situation. 

Joystick’s inputs are provided to an algorithm that runs on RPi. The remote controller has a security purpose; 
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it is designed to send predefined MAVLink messages to autopilot, performing emergency manoeuvres (such 

as engine shut down or rapid landing), that the user requests, in presence of dangerous situations.  

 

Figure 47: quadrotor hardware architecture block diagram and wiring scheme of connections between power module, propulsion module, autopilot, 
companion computer, local positioning system and external additional hardware. 

3.2.1 – SolidWorks CAD Model and 3D Printed Components 

Despite their simple working principle, quadcopters are highly complex vehicles with numerous hardware 

components and wirings connections that must be integrated in a volume efficient, lightweight working 

configuration. Moreover, all on-boards avionics must withstand the mechanical loads and the strong 

vibrations, produced by propellers rotation during flight. These factors turn into harsh assembling 

requirements. In this project, different commercially available items have been chosen, hence, their 

installation on the chassis and their wiring connection call for the design of custom chasing and supports that 

allow stable and reliable but at the same time easily removable connections.  

 

Figure 48: photo of 3D printer during printing of the component Marvelmind 
mobile Beacon sensor's chase. 

 

Figure 49: 3D printed ultrasonic sensor support installed on 
Marvelmind mobile Beacon. 

Considering the aforementioned problems, 3D printing seems to be the optimal solution. 3D printing, also 

known as additive manufacturing, is defined as the process of converting a digital design into a tangible 

model. The 3D printer creates specified object by depositing thin layers of material on top of the other, all 

under computer control (shown in Figure 48). According to (R A Navrotsky, 2021), the application of this 

technology affords ample opportunities for different field of application; as an example, the printing of units 
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and parts of small UAVs makes it possible to obtain new configurations and to improve existing devices. In 

this project, 3D printed components have been used to: 

 Secure the autopilot Pixhawk 4 Mini in place during quadcopter manoeuvres. Two openings along 

the two opposing sides of the perimeter of the chase enable the wiring connection of the autopilot 

with the Power Module Board and both the companion computer RPi and Nucleo STM32; 

 

 

Figure 50: Solidworks® render of designed CAD model of Pixhawk 4 
Mini autopilot chase. 

 

Figure 51: photo of Pixhawk 4 Mini secure to Holybro X500 bottom 
plate through 3D printed chase. 

 Secure the ultrasonic local positioning sensor Marvelmind mobile Beacon to the upper plate of 

Holybro X500 frame. The sensor’s chase has been designed in order to damp vibrations during flight 

and to be easily removable when recharging is needed (shown in Figure 49); 

 Secure the Liquid Crystal Display LCD to the Holybro X500 payloads platform board and to allow the 

connection to the companion computer Nucleo STM32; 

 

 

Figure 52: Solidworks® render of designed CAD model of LCD support 
for Holybro X500 payload platform. 

 

Figure 53: photo of LCD screen installed on Holybro X500 frame 
payload platform board through 3D printed support. 

 Secure the ESCs to the arm of the Holybro X500 frame, reducing the propagation of vibration. 

All the 3D printed components have been manufactured using 3D printable Poly-Lactic Acid (PLA) filament. 

All the chases and supports have been implemented consistent with the Holybro X500 airframe; hence a 

complete CAD of the quadrotor frame has been designed in Solidworks® (shown in Figure 54).  
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Figure 54: Solidworks® render of complete designed quadrotor CAD model, including Holybro X500 airframe, BLDC motors and propellers. In the 
top left front view, in the top right top view and in the bottom perspective view. 

 

3.2.2 – Prototype Quadrotor 

Lastly, some photos of the quadrotor final assembly are provided. 

  

Figure 55: on the left front view of quadrotor final assembly; on the right perspective view of quadrotor final assembly.  
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CHAPTER 4 

Guidance, Navigation and Control Algorithm 

Regardless UAVs size and mission application, all UAVs share the need for navigation sensors and avionics 

systems which provide an estimate of the vehicle’s full state vector. The states normally include three 

position coordinates, three components of velocity and six components to describe vehicle attitude (Euler 

angles and angular rates). In addition to states estimation, drones need control and guidance systems to 

manoeuvre in a way consistent with their mission. The intrinsically unstable nature of UAV necessitates a 

rigorous approach to the analysis and design of their Guidance, Navigation and Control (GNC) techniques. 

The guidance system generates instructions on what state trajectory should be followed, while the control 

system operates the aircraft controls, based on navigation sensors estimations, to follow the desired 

trajectory. According to (Kimon P. Valavanis, 2015), there are four main flight control techniques for UAVs: 

Linear Flight Control, Nonlinear Flight Control, Adaptive Control and Robust Control. This chapter focuses on 

linear control techniques, which are often used to improve UAV performance and reliability. Such techniques 

are actively being studied to handle nonlinear aerodynamic-kinematic effects, actuator saturations and rate 

limitations, modeling uncertainties and time varying dynamics. The chapter is organised as follow: firstly, a 

brief overview of general guidance and navigation algorithm is provided, focusing on the guidance algorithm 

(Artificial Potential Field, APF) used in the obstacle avoidance task; then the control techniques (PD controller, 

PID controller and MPC controller) developed to follow the designed path are analysed. 

4.1 – Guidance Algorithm 

In order to achieve autonomous flight in complex indoor environments with multiple obstacles, there is the 

need of robust and reliable path planning algorithm. The term path planning refers to get from present 

location to the desired location with minimum control effort and time. On the other hand, path following is 

the concept of following an already present path with minimum error. In accordance with (U. Orozco-Rosas, 

2019) and (T. T. Mac, 2016) many path planning methods have been proposed in literature, such as iteration 

method or heuristic method, however both of them need more time for computing to find good path 

planning. Meanwhile, the real-time method does not need iterations and has simple mathematical equations, 

thus it needs less time for processing.  

One of the main real-time methods is the Artificial Potential Field (APF). The APF algorithm uses the position-

based potential functions to modify the quadrotor’s velocity as it moves closer to the goal and obstacles. It 

receives as inputs the current position of the UAV, the obstacle positions and the target position and 

computes the desired velocities as outputs. As mentioned before, the APF has simple equations, so it needs 

low computational effort, and it is suitable for real time applications. However, one drawback of APF is the 

local minima problem which occurs when the sum of the overall forces (attractive and repulsive) acting on 

the system is null. Most of solutions proposed in literature have faced those problems by modifying the 

algorithm. An example is provided in (Y. B. Chen, 2016). This section presents the analytical implementation 
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of a modified APF algorithm for obstacle avoidance applications. Commonly APF consists of two forces, the 

first one is the attractive force 𝐹𝑎𝑡𝑡, while the second is the repulsive force 𝐹𝑟𝑒𝑝. The attractive force is used 

to navigate the UAV to the desired reference.  

Assuming a state vector of two elements 𝑥 = [𝑥𝑞 , 𝑦𝑞]
𝑇

, the attractive force is expressed as: 

 

𝑈𝑎𝑡𝑡 =
1

2
𝑘𝑎(𝑥 − 𝑥𝑑)2 

 
𝐹𝑎𝑡𝑡(𝑥) = −∇𝑈𝑎𝑡𝑡(𝑥) 

 

                    = −𝐾𝑎(𝑥 − 𝑥𝑑) 

(44) 

Where 𝑘𝑎 is the attractive gain and 𝑥𝑑 is the reference states vector. On the other hand, the repulsive force, 

which is responsible of the avoidance of obstacles, is defined as: 

 

𝑈𝑟𝑒𝑝 = {

1

2
𝑘𝑟 (

1

𝜌
−

1

𝜌0
)
2

,     𝑖𝑓 𝜌 < 𝜌0

                       0   ,     𝑖𝑓 𝜌 > 𝜌0

 

 
𝐹𝑟𝑒𝑝(𝑥) = −∇𝑈𝑟𝑒𝑝(𝑥) 

 

               = {
−𝑘𝑟 (

1

𝜌
−

1

𝜌0
)

1

𝜌2

𝜕𝜌

𝜕𝑥
 ,     𝑖𝑓 𝜌 < 𝜌0

                                 0   ,     𝑖𝑓 𝜌 > 𝜌0

 

 
(45) 

Where 𝑘𝑟 is the repulsive gain, 𝜌 = √𝑥 − 𝑥0 is the distance between the quadrotor and the obstacle (with 

𝑥0 = [𝑥𝑜, 𝑦𝑜]
𝑇and 𝜌0 is the minimal distance between the UAV and the obstacle that has a repulsive effect. 

Moreover, the term 𝜕𝜌 𝜕𝑥⁄  can be substituted with the following expression: 

 
𝜕𝜌

𝜕𝑥
= [

𝜕𝜌

𝜕𝑥𝑞

𝜕𝜌

𝜕𝑦𝑞
] =

𝑥0 − 𝑥

𝜌
 (46) 

In accordance with the modified APF algorithm proposed in (Iswanto, 2019), the avoidance of the local 

minima can be performed adding a virtual force 𝐹𝑣𝑖𝑟(𝑥) to the repulsive force, hence it is obtained: 

 

 

𝐹𝑟𝑒𝑝(𝑥) = {
𝐹𝑟𝑒𝑝1(𝑥) + 𝐹𝑣𝑖𝑟(𝑥) ,     𝑖𝑓 𝜌 < 𝜌0

                                 0 ,     𝑖𝑓 𝜌 > 𝜌0
 

 

𝐹𝑟𝑒𝑝1(𝑥) = −𝑘𝑟 (1 −
𝜌

𝜌0
)
𝑥0 − 𝑥

𝜌3
 

 

𝐹𝑣𝑖𝑟(𝑥) = −𝑘𝑣

1

𝜌0
 

 
(47) 

Lastly, the total force of the APF can be computed as the sum of the attractive term and repulsive term: 

 𝐹𝑡𝑜𝑡𝑎𝑙(𝑥) = 𝐹𝑎𝑡𝑡(𝑥) + ∑𝐹𝑟𝑒𝑝𝑖
(𝑥)

𝑛

𝑖=1

      𝑛 = number of obstacles (48) 
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In this thesis, the aforementioned APF formulation has been adapted in order to run simultaneously with a 

trajectory planner algorithm. As will be deeper discussed in Chapter 5, the trajectory planner is aimed to 

create a path that the quadrotor is able to follow in a given amount of time. It imposes a trapezoidal linear 

velocity profile on the segment linking two consecutive waypoints, hence the attractive force provided by 

the APF algorithm has been discarded, providing the system with only the repulsive term desired velocities.  

Lastly, for the sake of clarity, an example of APF potential field is provided. Figure 56 shows the APF potential 

field in presence of obstacles considering a snail pattern. The aim of this graph is to show the attractive action 

of waypoints and the repulsive actions of obstacles, through the overlapping of APF attractive, repulsive 

potential field and quadcopter’s trajectory. 

 

Figure 56: illustration of total potential field 𝑈𝑡𝑜𝑡 = 𝑈𝑎𝑡𝑡 + 𝑈𝑟𝑒𝑝 computed by APF algorithm for the snail pattern in presence of obstacles. 

Quadcopter path trajectory has been added, showing the attractive actions of waypoints and the repulsive actions of obstacles on quadcopter 
behaviour during a path following manoeuvre. 

 

4.2 – Navigation Algorithm 

The navigation module in a GNC system implements aircraft state estimation. As introduced in Chapter 1, in 

order to be able to guide and control the UAV, the current states of the vehicle must be provided to the 

controller at high fidelity and high bandwidth.  The advantages provided by powerful computer and lower 

computational costs have allowed sensor fusion for navigation. Thanks to multi-sensor navigation, it is 

possible to obtain high fidelity information about the aircraft using minimum combination of sensors. This is 

a considerable advantage to UAV, where size, weight, power, and endurance are all critical. 

In this project the controller algorithms have been tuned and tested assuming the states provided by the 

plant model as the estimated states, hence the estimator and the filtering stage have been bypassed. 
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4.3 – Control Algorithm  

Control system design represents a considerable area of research application. Multirotor UAVs are generally 

a very interesting platform for evaluating existing and testing new control approaches. It is worth mentioning 

that in real system, such as multirotor, the field of control theory is closely related to signals processing, 

hence data from sensors need to be processed. As mentioned before, in this project it has been assumed the 

states provided by the plant as estimated states, bypassing the states estimator block and filtering stage. 

Generally, UAV dynamics can be classified into two categories: fast dynamics, which relates to the attitude 

and angular rates, and slow dynamics, which relates to the position (referred to a fixed reference frame). 

This classification allows the development of a cascade controller composed by two loops: an inner loop 

related to fast dynamics (which often includes the altitude) and an outer loop related to position. 

As introduced in Chapter 1, this thesis focuses on two controllers’ architectures: the first one based on an 

MPC for quadrotor attitude and altitude control (inner loop) and a PD controller for the position control; the 

second one based on an MPC for quadrotor position and attitude control and a PID controller for the altitude 

control (inner loop). In designing MPC, particular properties of the quadcopter are required. The physical 

properties used in this project are based on (Carminati, 2019) and are listed in Table 6. 

Table 6: Quadcopter physical properties used in controllers tuning. 

Quadcopter Parameters 

Mass, 𝑚 1.5 [𝐾𝑔] 

Moment Arm, 𝑙 0.2 [𝑚] 

Moment of Inertia about x-axis, 𝐼𝑥𝑥 0.0170 [𝐾𝑔 ∙ 𝑚2] 

Moment of Inertia about y-axis, 𝐼𝑦𝑦 0.0308 [𝐾𝑔 ∙ 𝑚2] 

Moment of Inertia about z-axis, 𝐼𝑧𝑧 0.0173 [𝐾𝑔 ∙ 𝑚2] 

4.3.1 – Proportional Integral Derivative – PID Controller 

A Proportional Integral Derivative PID controller is a well-known feedback controller most widely used in 

various type of plant industries utilizing robotics all over the world. The widespread use of PID controllers in 

industries has affected efforts in the designing of conventional PID controller achieving good performance. 

A complete PID controller generates control actions using information about the difference between the 

measured outputs of the system and a reference signal or setpoint; this value is called error 𝑒. The generic 

PID generates a control action taking into account the current error estimation (measured at a certain time), 

the derivative and the integral of the error. This controller takes many structures, however, the most 

important one is as in the following form: 

 𝑢(𝑡) = 𝐾𝑃 𝑒(𝑡) + 𝐾𝐼 ∫ 𝑒(𝑡)
𝑡

0

𝑑𝑡 + 𝐾𝐷

𝑑𝑒(𝑡)

𝑑𝑡
 

 

(49) 

Where 𝑢(𝑡) is the input signal to the plant and the error is expressed as 𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡) where 𝑦(𝑡) is 

the vector of systems outputs and 𝑟(𝑡) is the vector containing the reference signals. The arbitrary selected 

parameters 𝐾𝑃, 𝐾𝐼 and 𝐾𝐷 are respectively the proportional gain, the integral gain, and the derivative gain. 
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As can be seen a PID controller is simple and easy to design which often results in satisfactory performances; 

however, it has various limitations since the fixed gains limits the performance of the algorithm over a wide 

range of operating points. As a PID controller is based on a linear model, nonlinearities in the system brings 

uncertainty and degraded performance. The overall performances can be significantly penalized by the 

current operating point and cannot achieve optimal control.  

One interesting aspect of PID controller is the selection of the method of control; it can be mode-based or 

non-mode based. The mode-based is based on independent controllers for each controlled state and a higher 

level controller decide how these interact; while the non-mode based consists of a single controller for all the 

states together. In this thesis the adopted mode-based approach is tested considering two different 

approaches: the first one a Proportional Derivative PD which relates to quadrotor position control and the 

second one a Proportional Integral Derivative PID which relates to altitude control. A schematic 

representation is provided in Figure 57 and Figure 58. 

PD Position – Outer Loop 

 

 

Figure 57: block diagram PD controller to  control quadrotor slow dynamics. 

 

PID Altitude – Inner Loop 

 

 

Figure 58: block diagram PID controller to control quadrotor altitude. 
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4.3.2 – Receding Horizon Controller – RHC Controller 

The Receding Horizon Controller RHC, also referred to as Model Predictive Controller MPC, is a widely spread 

technology in industry for the control of highly complex multivariable systems. The approach is said 

predictive, because the optimal control action is obtained as the result of an optimal control problem 

formulated over a time-interval that starts at the current time up to a certain time in the future. In accordance 

with (Bemporad, Model Predictive Control Design: New Trends and Tools, 2006) the basic idea behind MPC 

is to start with a model of the open-loop process (in order to explain the relations between system’s 

variables), then, add constraints specifications on system variables (such as inputs constraints and outputs 

constraints) and define desired performance specifications through different weights on tracking errors and 

actuators efforts (like classical linear quadratic regulator). Firstly, an optimal control problem based on the 

given model, constraints and weights is constructed and translated into an equivalent optimization problem. 

Then, at each sampling time, the optimization problem, which is based on the initial state and the reference, 

is solved by tacking the current state as the initial condition of the problem. The result of the optimization 

problem is an optimal sequence of control inputs and only the first sample of such sequence is applied to the 

process. At the next time step the aforementioned procedure is repeated over a shifted prediction horizon 

(this is the reason of the approach’s name receding-horizon). 

Once defined an accurate model of the controlled system and the performance index and constraints are 

determined in accordance with the desired system behaviour, MPC provides near-optimal control. It is worth 

mentioning that the simpler the model the easier is solving the optimization problem. While simulation 

models looks for the most accurate model to numerically reproduce the behaviour of the system, prediction 

model uses very simple model, yet representative enough to capture the main dynamics relations. The RHC 

controller can be conceptually divided into two parts: an estimator, which makes predictions about the future 

states based on the current available information and an optimizer, which calculates an optimal plan of 

actions assuming the estimates are correct. A typical RHC working policy is based on the following steps: 

 At instant 𝑡 it is considered a time interval extending 𝑇 time step into the future 𝑡, 𝑡 + 1,… , 𝑡 + 𝑇; 

 By using available data at time 𝑡 a predictive model is built; 

 Objective function and estimations are based on data available at time 𝑡. The problem of constrained 

objective function minimization is addressed using a solver. The optimal values obtained as the 

solution of the RHC optimization problem are defined as a plan of action for the next 𝑇 steps; 

 The first sequence of control inputs is applied to the system, the remaining are discarded. At the next 

time step the process is repeated with the updated estimates of the current states. 

This section is organised as follow: firstly, a brief overview of MPC based on linear models and quadratic 

programming are provided; then the implemented MPC algorithm in MATLAB and Simulink is presented.  

4.3.2.1 – Problem Formulation: Linear Model Predictive Control 

In this section the fundamental formulation of the Linear-Model-Predictive-Controller LMPC is presented. 

Several formulations of MPC algorithms have been proposed in literature; however, the simplest MPC 

algorithm is based on the linear discrete-time prediction model. The discrete dynamical system model used 

by the controller is the state-system formulation reported below: 
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𝑥𝑘+1 = 𝐴 𝑥𝑘 + 𝐵 𝑢𝑘           𝑘 = 0, 1, 2, … 

 
𝑦𝑘 = 𝐶 𝑥𝑘 

(50) 

Where 𝑦 ∈ ℝ𝑝 is the vector of outputs, 𝑢 ∈ ℝ𝑚 is the vector of inputs control actions and 𝑥 ∈ ℝ𝑛 is the 

vector of states. The receding horizon regulator, also referred to as RHC or MPC, is based on the minimization 

of the following infinite horizon open-loop quadratic objective function: 

 min
𝑢𝑁

∑(𝑥𝑘+𝑗
𝑇  𝑄 𝑥𝑘+𝑗 + 𝑢𝑘+𝑗

𝑇  𝑅 𝑢𝑘+𝑗  + Δ𝑢𝑘+𝑗
𝑇  𝑆 Δ𝑢𝑘+𝑗)

∞

𝑗=0

 (51) 

Where 𝑄  is a symmetric positive semidefinite penalty matrix on the outputs, 𝑅  is a symmetric positive 

definite penalty matrix on the inputs and 𝑢𝑘+𝑗 is the vector of the input at time 𝑗 in the open-loop objective 

function. Lastly, 𝑆 is a symmetric positive matrix on the rate of change of the input and Δ𝑢𝑘+𝑗 = 𝑢𝑘+𝑗 −

𝑢𝑘+𝑗−1 is the rate of change of the input vector at instant  𝑗. On the other hand, the minimization shown in 

equation (51) returns a vector 𝑢𝑁 defined as the vector of the N future open-loop control moves: 

 𝑢𝑁 = [𝑢𝑘  𝑢𝑘+1 𝑢𝑘+2 . . .  𝑢𝑘+𝑁−1] 
(52) 

As can be seen, the last element of vector 𝑢𝑁 is 𝑢𝑘+𝑁−1 since the value of the input vector at time 𝑘 + 𝑁 is 

set to zero for all 𝑗 ≥ 𝑁 in the open-loop objective function. The RHC computes the vector 𝑢𝑁 that optimizes 

the open-loop objective function, defined in equation (51), and applies the first input command 𝑢𝑘 to the 

plant. The procedure is repeat at each subsequent control interval, considering a new state vector at time 𝑘 

provided by the plant measurements. The infinite horizon open-loop quadratic objective function reported 

in (51) can be adapted to a finite horizon of prediction; the result is a finite time optimal control problem: 

 

min
𝑢𝑁

∑(𝑥𝑘+𝑗
𝑇  𝑄 𝑥𝑘+𝑗 + 𝑢𝑘+𝑗

𝑇  𝑅 𝑢𝑘+𝑗  + Δ𝑢𝑘+𝑗
𝑇  𝑆 Δ𝑢𝑘+𝑗)

𝑁−1

𝑗=0

+ 𝑥𝑘+𝑁
𝑇  �̅� 𝑥𝑘+𝑁 + Δ𝑢𝑘+𝑁

𝑇  𝑆 Δ𝑢𝑘+𝑁 

 

𝑠. 𝑡.      𝑥𝑘+1 = 𝐴 𝑥𝑘 + 𝐵 𝑢𝑘            𝑘 = 0, 1, … , 𝑁 − 1

             𝑥0 = 𝑥(𝑡)

             𝑢𝑚𝑖𝑛 ≤ 𝑢𝑘 ≤ 𝑢𝑚𝑎𝑥               𝑘 = 0, 1, … , 𝑁 − 1
             𝑦𝑚𝑖𝑛 ≤ 𝐶𝑥𝑘 ≤ 𝑦𝑚𝑎𝑥             𝑘 = 0, 1, … , 𝑁 − 1

 

 
  (53) 

Where 𝑁 is the prediction horizon,  𝑢𝑁 ∈ ℝ𝑁𝑚 is the sequence of the manipulated variables to be optimized, 

the two matrices  �̅�  and 𝑆  are weighting matrix (like 𝑄  and 𝑅 ) of appropriate dimensions defining the 

performance index, 𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥 ∈ ℝ𝑚 and 𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥 ∈ ℝ𝑝 define constraints on inputs and state variables 

respectively. Assuming 𝑘 = 0 in equation (53), by substituting 𝑥𝑗 = 𝐴𝑗𝑥(𝑡) + ∑ 𝐴𝑖𝐵𝑢𝑘−1−𝑖
𝑗−1
𝑖=0  the optimal 

control problem can be recast as the Quadratic Programming QP problem: 

 
𝑈∗(𝑥(𝑡)) ≜ argmin

𝑈

1

2
𝑈′𝐻𝑈 + 𝑥′(𝑡)𝐶′𝑈 +

1

2
𝑥′(𝑡)𝑌𝑥(𝑡) 

 
𝑠. 𝑡.      𝐺𝑈 ≤ 𝑊 + 𝑆 𝑥(𝑡) 

 
(54) 

Where 𝑈∗(𝑥(𝑡)) is the sequence of optimal control inputs, 𝐻 = 𝐻′ > 0 and 𝐶, 𝑌, 𝐺,𝑊, 𝑆 are matrices of 

appropriate dimensions. Hence, the MPC operates the following actions: at time 𝑡 it measures or estimates 

the current state 𝑥(𝑡), solves the QP problem and applies only the first sequence to the system. 
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 𝑢(𝑡) = 𝑢0
∗(𝑥(𝑡)) (55) 

The procedure is repeated at each time step of simulation, hence at time 𝑡 + 1, 𝑡 + 2,… , 𝑡𝑒𝑛𝑑. It is worth 

mentioning that when there are no constraints, 𝑁 → ∞  and 𝑃  is the solution of the Riccati Equation 

associated with the matrices 𝐴, 𝐵 and weights 𝑄, 𝑅, the MPC coincides with the classical Linear Quadratic 

Regulator LQR controller. Hence the MPC can be seen as a constrained LQR controller. 

4.3.2.2 – Reference Tracking Formulation 

Once designed the basic MPC controller law (53) other possible applications of MPC can be further analysed. 

Usually there is interest to make a certain output vector 𝑦(𝑡) = 𝐶𝑥(𝑡) track a reference signal 𝑟(𝑡) under 

specified constraints. This task can be addressed by the following cost function: 

 ∑ (𝑦𝑗 − 𝑟(𝑡)) 𝑄𝑦  (𝑦𝑗 − 𝑟(𝑡)) + Δ𝑢′𝑗  𝑅 Δ𝑢𝑗

𝑁−1

𝑗=0

 (56) 

Where the matrix 𝑄𝑦 ∈ ℝ𝑝,𝑝 is the matrix of output weights and the increment of commands values, defined 

as in (51), is the new optimization variable. Hence the tracking task is addressed using the following setup: 

 

𝑈∗(𝑥(𝑡)) ≜ argmin
𝑈

1

2
𝑈′𝐻𝑈 + [𝑥′(𝑡) 𝑟′(𝑡)𝑢′(𝑡 − 1)]𝐶′𝑈 +

1

2
𝑥′(𝑡)𝑌𝑥(𝑡) 

 

𝑠. 𝑡.      𝐺𝑈 ≤ 𝑊 + 𝑆 [

𝑥(𝑡)
𝑟(𝑡)

𝑢(𝑡 − 1)
] 

(57) 

 Where the new control law is defined as 𝑢(𝑡) = 𝑢(𝑡 − 1) + Δ𝑢0
∗(𝑥(𝑡), 𝑟(𝑡), 𝑢(𝑡 − 1)). For the sake of clarity 

Figure 59 shows the control actions provided by the MPC controller in a simple path following manoeuvre. 

The results show only the actions applied to the plant, while Figure 60 show one component (in this case 

Δ𝜏𝑥) of the entire optimized vector 𝑈∗(𝑥(𝑡)) computed at different time of simulations, classified by colour.  

  

Figure 59: snail pattern, path following MPC controller. On the left MPC controller inputs 𝐹𝑧 , 𝜏𝑥 , 𝜏𝑦,  𝜏𝑧 ; on the right 3D plot of snail path. 
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As can be seen, the values of the pink marker’s series are near zeros, since the time in which the optimization 

has been computed (𝑡 ≅ 4.9[𝑠]) is not close enough to consider the next control action. As expected, torque 

values increasingly change (from orange to green) moving toward the next reference waypoint on the path. 

 

Figure 60: 𝛥𝜏𝑥 inputs optimization results over prediction horizon N = 30. Each coloured circle represents a control input 𝛥𝜏𝑥 computed by the MPC. 
The prediction horizon (N=30) is on the x-axis while the different colours are referred to predicted inputs at different times of computations.  

4.3.2.3 – Problem Solution: Interior Point Method 

According to (Wright, 1997) developments in MPC have created a demand for fast, reliable solution of 

problems in which nonlinearities, noise and constraints on the states and controls may all be present. 

Interior-point methods and stochastic optimization are both powerful tools that can improve significantly 

MPC performances. The problems proposed in (53) and (54) are both examples of convex quadratic program. 

Two successful methods for addressing this class of problems are the active set method (Fletcher, 1987) and 

the interior-point method (Wright, 1997). In this section an interior-point-based approach for solving the MPC 

optimization problem is proposed. The description of the interior-point method can be addressed defining 

the mixed monotone linear complementarity problem (mLCP), which is a powerful paradigm that generalizes 

the optimality conditions for linear quadratic programs. 

The mLCP is defined in terms of a square, positive semidefinite matrix 𝑀 ∈ ℝ𝑛,𝑛 and a vector 𝑞 ∈ ℝ𝑛; the 

problem is to find the vectors 𝑧, 𝑥, and 𝑠 such that: 

 
[
𝑀11 𝑀12

𝑀21 𝑀22
] [

𝑧
𝑥
] + [

𝑞1

𝑞2
] = [

0
𝑠
] 

 
𝑥 ≥ 0,     𝑠 ≥ 0,     𝑥𝑇𝑠 = 0 

(58) 

The matrices 𝑀11 and 𝑀22 are square submatrices of dimensions 𝑛1 and 𝑛2. The infeasible-interior point 

algorithm starts at point (𝑧0, 𝑥0, 𝑠0)  with 𝑥0 > 0  and 𝑠0 > 0 . All iterations (𝑧𝑘 , 𝑥𝑘 , 𝑠𝑘)  maintain the 

positivity properties but the complementarity gap defined as: 

 𝜇𝑘 = (𝑥𝑘)
𝑇
𝑠𝑘/𝑛2 (59) 
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Gradually reduced to zero as the number of iterations tends to 𝑘 → ∞. Each step of the algorithm is a 

modified Newton step for the system of nonlinear equations defined in (58) and the complementarity 

condition 𝑥𝑖𝑠𝑖 = 0 with 𝑖 = 1,2,… , 𝑛2. Hence the system can be written as: 

 𝐹(𝑧, 𝑥, 𝑠) ≝ [
𝑀11𝑧 + 𝑀12𝑥

𝑀21𝑧 + 𝑀22𝑥 − 𝑠
𝑋𝑆𝑒

] = 0 (60) 

Where it has been adopted the following notations: 𝑋 = 𝑑𝑖𝑎𝑔(𝑥1, 𝑥2, … , 𝑥𝑛2
) and 𝑆 = 𝑑𝑖𝑎𝑔(𝑠1, 𝑠2, … , 𝑠𝑛2

). 

Once introduced the mLCP the algorithm can be expressed using the following form: 

 

𝐺𝑖𝑣𝑒𝑛:          (𝑧0, 𝑥0, 𝑠0)    𝑤𝑖𝑡ℎ     (𝑥0, 𝑠0) > 0 
 

𝑓𝑜𝑟:               𝑘 = 0,1,2,… 
 

𝑓𝑜𝑟 𝑠𝑜𝑚𝑒     𝜎𝑘 ∈ (0,1),     𝑠𝑜𝑙𝑣𝑒: 
 

[
𝑀11 𝑀12 0
𝑀21 𝑀22 −𝐼

0 𝑆𝑘 𝑋𝑘

] [
Δ𝑧
Δ𝑥
Δ𝑠

] = [

−𝑟1
𝑘

−𝑟2
𝑘

−𝑋𝑘𝑆𝑘𝑒 + 𝜎𝑘𝜇𝑘𝑒

] 

 

(61) 

Where 𝑟1
𝑘 = 𝑀11𝑧

𝑘 + 𝑀12𝑥
𝑘 while 𝑟2

𝑘 = 𝑀21𝑧
𝑘 + 𝑀22𝑥

𝑘 − 𝑠𝑘. Lastly 𝑒 is 𝑒 = (1, 1, … , 1)𝑇.  

Moreover, introducing a parameter 𝛼𝑘, the values of (𝑧𝑘+1, 𝑥𝑘+1, 𝑠𝑘+1) are defined as follow: 

 

(𝑧𝑘+1, 𝑥𝑘+1, 𝑠𝑘+1) = (𝑧𝑘 , 𝑥𝑘 , 𝑠𝑘) + 𝛼𝑘(Δ𝑧𝑘, Δ𝑥𝑘, Δ𝑠𝑘) 

 

𝑤𝑖𝑡ℎ     𝛼𝑘 ∈ (0,1]     𝑡ℎ𝑎𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑦     (𝑥𝑘+1, 𝑠𝑘+1) > 0 

(62) 

The only two parameters to choose in implementing the algorithm are the values of 𝜎𝑘 and 𝛼𝑘. The choice 

of 𝜎𝑘  is arbitrary (generally it is confined to the range [10−3, 0.8]) while 𝛼𝑘  is required to satisfy some 

conditions detailed in (Wright, 1997). When the two parameters satisfy the aforementioned conditions, 

global convergence to a solution of system (58) is attained (whenever such solution exist).  

In practical implementations of interior-point methods, 𝛼𝑘 is always chosen via the following simple heuristic: 

 
𝛼𝑘

𝑚𝑎𝑥 = {𝛼 ∈ (0,1] | (𝑧𝑘, 𝑥𝑘 , 𝑠𝑘) + 𝛼(Δ𝑧𝑘 , Δ𝑥𝑘 , Δ𝑠𝑘) > 0} 

 
𝛼𝑘 = min(1,0.995 ∙ 𝛼𝑘

𝑚𝑎𝑥) 

(63) 

The major computational effort to be performed is the solution of the system (61), the matrix in this system 

has a lot of structure due to the zeroes blocks and the diagonal 𝐼,𝑆𝑘 and 𝑋𝑘. Moreover, the matrix M is sparse 

so sparse matrix factorizations are called for; however, problems like MPC optimization problem require 

simpler factorization code. The solution of (61) is obtained eliminating the Δs component: 

 Δ𝑠 = (𝑥𝑘)
−1

(−𝑋𝑘𝑆𝑘𝑒 + 𝜎𝑘𝜇𝑘𝑒 − 𝑆𝑘Δ𝑥𝑘) 

 

(64) 

By substituting into the first two rows of (61) it is obtained the final system: 
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 [
𝑀11 𝑀12

𝑀21 𝑀22 + (𝑋𝑘)
−1

𝑆𝑘] [
Δ𝑧
Δ𝑥

] = [
−𝑟1

𝑘

−𝑟2
𝑘 − 𝑠𝑘 + 𝜎𝑘𝜇𝑘(𝑋

𝑘)
−1

𝑒
] (65) 

In most cases, the partitions 𝑀11, 𝑀12, 𝑀21 and 𝑀22 are zero diagonal or have some simple structure so 

further reduction of the system is possible. The solution presented for the problem formulated in (58) can 

be easily adapted to a convex linear quadratic programming problem. Considering a general convex QP and 

the Karush-Kuhn-Tucker10 (KKT) conditions the QP problem can be expressed in the form of mLCP. 

 
 

 

min
z

1

2
𝑧𝑇 𝑄 𝑧 + 𝑐𝑇𝑧      𝑠. 𝑡.      𝐻𝑧 = ℎ, 𝐺𝑧 ≤ 𝑔  

 

𝑀11 = [ 𝑄 𝐻𝑇

−𝐻 0
]          𝑀12 = [𝐺

𝑇

0
] 

 
𝑀21 = [−𝐺 0]          𝑀22 = 0 

 

𝑞1 = [
𝑐
ℎ
]          𝑞2 = 𝑔          𝑠 ← 𝑡 

 

 
(66) 

 

  

 
10 The Karush-Kuhn-Tucker KKT conditions, in mathematical optimization, are defined as the first derivative tests for an 
optimal solution in nonlinear programming, assuming regularity conditions to be satisfied. From a mathematical point 
of view, allowing inequality constraints, the KKT conditions can be though as a generalization of the method of Lagrange 
Multipliers which allows only equality constraints. 
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4.3.2.4 – Implementation of MPC Algorithm in MATLAB and Simulink 

The standard way of computing the Linear MPC is to solve the QP problem online at each sample time t. 

Commercially available tools are classified into two main categories: tools with a proprietary real-time 

industrial control system, such as DMCplus (by Aspen Technology Inc.); and tools intended for analysis and 

prototyping, such as the MPC Toolbox for MATLAB (MathWorks, Inc.).  

In this project the MPC algorithm has been design and implemented from scratch (no Simulink pre-built 

toolbox has been used). The algorithm has been designed working on both MATLAB and Simulink 

environments. It consists of a first script written in MATLAB and a Simulink model, which is run directly from 

MATLAB. All the parameters of the continuous state space model and controller are initialized from the script. 

These values include the quadrotor’s physical properties (mass and moments of inertia), quadrotor thrust 

and drag coefficient, maximum and minimum allowed thrust, and torque, continuous state space matrices, 

MPC prediction horizon, MPC weighting matrices, PD (and PID) tuning parameters, model’s initial states and 

inputs, time of simulation and reference trajectories (and obstacles) to be tracked (and avoid). For the sake 

of clarity, a flow chart of the implemented algorithm in MATLAB and Simulink is provided in Figure 61:   

 

Figure 61: flow chart of MPC algorithm implementation in MATLAB and Simulink 2018b. 

Once defined matrices 𝐴, 𝐵, 𝐶, 𝐷, the states space model is obtained using the MATLAB function: 

 𝑠𝑦𝑠 = 𝑠𝑠(𝐴, 𝐵, 𝐶, 𝐷) 
 

(67) 

By using the MATLAB function 𝑐2𝑑𝑚 the continuous state space model is converted into a discrete one. 
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 [𝐴𝑑 , 𝐵𝑑 , 𝐶𝑑 , 𝐷𝑑] = 𝑐2𝑑𝑚(𝐴, 𝐵, 𝐶, 𝐷, 𝐷𝑡𝑠) 
 

(68) 

Where the matrices 𝐴, 𝐵, 𝐶, 𝐷 are the continuous states matrices and 𝐷𝑡𝑠 is the user-defined discretization 

time. In this project the 𝐷 matrix is assumed null since there is no feedthrough signals. The next step is the 

definition of MPC prediction horizon 𝐻𝑝 and the initialization of inputs constraints 𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥 and weighting 

matrices 𝑄  and 𝑅  which are used in the optimization problem formulation. Once defined the matrices 

𝐴𝑑 , 𝐵𝑑 , 𝐶𝑑 , 𝐷𝑑 and the MPC weighting matrices, the cost function is assembled in the following form: 

 

 

𝐽(𝑧, 𝑥0) = 𝑥′0𝑄𝑥0 + [

𝑥1

⋮
𝑥𝑁−1

𝑥𝑁

]

𝑇

[

𝑄 0 … 0
0 𝑄 ⋮ ⋮
⋮ ⋮ ⋱ 0
0 … 0 𝑃

] [

𝑥1

⋮
𝑥𝑁−1

𝑥𝑁

] + [

𝑢1

⋮
⋮

𝑢𝑁−1

]

𝑇

[

𝑅 0 … 0
0 𝑅 ⋮ ⋮
⋮ ⋮ ⋱ 0
0 … 0 𝑅

] [

𝑢1

⋮
⋮

𝑢𝑁−1

] 

 

                     [

𝑥1

⋮
𝑥𝑁−1

𝑥𝑁

] = [

𝐴𝑑 0 … 0
𝐴𝑑𝐵𝑑 𝐵𝑑 ⋮ ⋮

⋮ ⋮ ⋱ 0
𝐴𝑑

𝑁−1𝐵𝑑 𝐴𝑑
𝑁−2𝐵𝑑 … 𝐵𝑑

] [

𝑢1

⋮
⋮

𝑢𝑁−1

] + [

𝐴𝑑

𝐴𝑑
2

⋮
𝐴𝑑

𝑁

] 𝑥0 

 
(69) 

These equations can be replaced by the compact form: 

 

𝐽(𝑧, 𝑥0) = 𝑥′0𝑄𝑥0 + [

𝑥1

⋮
𝑥𝑁−1

𝑥𝑁

]

𝑇

�̅�  [

𝑥1

⋮
𝑥𝑁−1

𝑥𝑁

] + [

𝑢1

⋮
⋮

𝑢𝑁−1

]

𝑇

�̅�  [

𝑢1

⋮
⋮

𝑢𝑁−1

] 

 

   [

𝑥1

⋮
𝑥𝑁−1

𝑥𝑁

] = 𝑆̅ 𝑧 + �̅� 𝑥0 

(70) 

By replacing the vector of states [𝑥1 …𝑥𝑁−1𝑥𝑁] in the cost function 𝐽(𝑧, 𝑥0), it is found: 

 

𝐽(𝑧, 𝑥0) = 𝑥′
0 𝑄 𝑥0 + (𝑆̅ 𝑧 + �̅� 𝑥0)

′ �̅� (𝑆̅ 𝑧 + �̅� 𝑥0) + 𝑧′ �̅� 𝑧 
 

               =
1

2
𝑥′

02(𝑄 + �̅�′�̅��̅�) 𝑥0 + 𝑥′
02�̅�′�̅�𝑆̅ 𝑧 +

1

2
𝑧′ 2(�̅� + 𝑆̅′�̅�𝑆̅)𝑧 

 

               =
1

2
𝑥′

0 𝑌 𝑥0 + 𝑥′
0 𝐹

′𝑧 +
1

2
𝑧′ 𝐻 𝑧 

 

(71) 

The QP have been implemented; then, by using the MATLAB function: 

 𝑆𝑖𝑚𝑂𝑢𝑡 = 𝑠𝑖𝑚(′𝑀𝑜𝑑𝑒𝑙𝑁𝑎𝑚𝑒. 𝑠𝑙𝑥′, 𝑇𝑠) 
 

(72) 

The 𝑆𝑖𝑚𝑢𝑙𝑖𝑛𝑘. 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑂𝑢𝑡𝑝𝑢𝑡 object is returned, containing all the output computed by the Simulink 

model. The QP problem is solved using the policy presented in Section 4.3.2.3, the solver is implemented 

through a MATLAB Function Simulink block as function 𝑞𝑢𝑎𝑑_𝑤𝑟𝑖𝑔ℎ𝑡, which is defined as: 

 [𝑥, 𝑖𝑡𝑒𝑟] = 𝑞𝑢𝑎𝑑_𝑤𝑟𝑖𝑔ℎ𝑡(𝐻, 𝑓, 𝐴, 𝑏,𝑚𝑎𝑥𝑖𝑡𝑒𝑟, 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒, 𝑥0) 
 

(73) 
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Where the matrices 𝐻, 𝑓 are the matrices of the QP problem and the 𝑏 vector define the upper and lower 

inputs constraints 𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥. In compact form the convex QP is expressed as, reference (Wright, 1997): 

 
𝐽(𝑥) =

1

2
 𝑥′𝐻 𝑥 + 𝑓′𝑥 

 

𝐴𝑥 ≤ 𝑏 

 
(74) 

In accordance with notation used in Section 4.3.2.1, at each time step the 𝑞𝑢𝑎𝑑_𝑤𝑟𝑖𝑔ℎ𝑡 function returns a 

vector 𝑈∗(𝑥(𝑡)) ∈ ℝ𝑝𝐻𝑝 containing the control inputs predicted over the prediction horizon 𝐻𝑝. 

Lastly, Table 7 shows the vector of the controlled variables 𝑥 ∈ ℝ𝑛𝑠𝑡𝑎𝑡𝑒𝑠, the continuous state space matrices 

𝐴 ∈ ℝ𝑛𝑠𝑡𝑎𝑡𝑒𝑠,𝑛𝑠𝑡𝑎𝑡𝑒𝑠  and 𝐵 ∈ ℝ𝑛𝑠𝑡𝑎𝑡𝑒𝑠,𝑛𝑖𝑛𝑝𝑢𝑡𝑠  (matrices 𝐶 = 𝑒𝑦𝑒(𝑛𝑠𝑡𝑎𝑡𝑒𝑠) and 𝐷 = 𝑧𝑒𝑟𝑜𝑠(𝑛𝑠𝑡𝑎𝑡𝑒𝑠 , 𝑛𝑖𝑛𝑝𝑢𝑡𝑠) are not 

shown) and the number of receding prediction horizon 𝐻𝑝. 

Table 7: definition of vector of states, continuous state space matrices A (states) B (inputs) for implemented MPC controller. On the left system based 
on MPC for attitude and altitude control; on the right system based on MPC for position and attitude control. 

MPC Attitude and Altitude MPC Position and Attitude 

  
𝑥 = [𝜙, 𝜃, 𝜓, 𝑝, 𝑞, 𝑟, 𝑧, 𝑤] 

 
𝑥 = [𝑥, 𝑦, 𝑢, 𝑣, 𝜙, 𝜃, 𝜓, 𝑝, 𝑞, 𝑟] 

 

 

𝐴 =

[
 
 
 
 
 
 
 
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 

 
𝐴 =

[
 
 
 
 
 
 
 
 
 
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 −𝑔 0 0 0 0
0 0 0 0 𝑔 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 
 
 

 

 

𝐵 =

[
 
 
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 𝑐3 0 𝑐4

0 0 0 0 𝑐7 0
0 0 0 𝑐4 0 𝑐9

0 0 0 0 0 0
0 0 1/𝑚 0 0 0 ]

 
 
 
 
 
 
 

 
𝐵 =

[
 
 
 
 
 
 
 
 
 

0 0 0 0 0 0
0 0 0 0 0 0

1/𝑚 0 0 0 0 0
0 1/𝑚 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 𝑐3 0 𝑐4

0 0 0 0 𝑐7 0
0 0 0 𝑐4 0 𝑐9]

 
 
 
 
 
 
 
 
 

 

  
𝐻𝑝 = 30 𝐻𝑝 = 30 
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CHAPTER 5 

Simulation Results 

This section provides a brief overview of the implemented Simulink models and simulation results for the 

designed control algorithms, showing their performance in both path planning and obstacle avoidance tasks. 

The use of simulated environments allows designed algorithms to be analysed and tested without the need 

to act directly on a real platform. All system blocks, used in Simulink model, are discussed, and characterized 

with their impact on the results. Lastly, the results of modeling and its effects on the control strategies are 

presented. The simulations have been performed using MATLAB®-Simulink® 2018b and MATLAB®-Simulink® 

2021b as software platforms.  

5.1 – Simulation in MATLAB and Simulink Environment 

This paragraph describes the main elements of the designed Simulink model. To make the simulation as real 

as possible the Simulink model has been designed taking into consideration a non-linear quadrotor model 

with fast and the slow dynamics. Moreover, a trajectory planning is implemented to generate complex 

trajectory path and to perform waypoint following tasks. The paragraph ends with the analysis of obstacle 

avoidance tasks accomplished by an Artificial Potential Field APF algorithm.  

Figure 62 shows a simplified block diagram of studied model. Four main blocks are considered:  

 the trajectory planner computes the reference path, which is provided as input to the controller;  

 the control algorithms, defined in the controller block, evaluate the corrective actions to be 

performed in order to follow the desired path;  

 the state estimator block, measures the current states, computed by the plant, and feeds the 

trajectory planner and the control block with the measured values.  

 

Figure 62: illustration of main elements of simplified Simulink model for Path Following, block diagram. 

The trajectory generator consists of two algorithms: the first one is implemented in MATLAB and is used to 

generate time-dependent reference path given a set of waypoints with specified Time-Of-Arrival (ToA). The 

second one is a Simulink block that is used to synchronize the desired ToA with time of simulation. Each 

segment, linking two consecutive waypoints, is characterized by a trapezoidal linear velocity profile. The 
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algorithm integrates the quadrotor reference NED position as a function of time providing a maximum 

acceleration, which cannot exceed half gravitational acceleration 
𝑔

2
, and a maximum velocity that allows the 

successful accomplishment of the manoeuvre (respecting ToA). Algorithm’s inputs are a vector 𝑇𝑜𝐴 ∈ ℝ𝑛 

and a matrix 𝑊𝑦𝑃 ∈ ℝ𝑛,3 where 𝑛 is the number of specified waypoints. The vector 𝑇𝑜𝐴 coinsists of the 

time of arrivals of all the waypoints, while the matrix 𝑊𝑦𝑃 provides the NED positions 𝑥𝑁𝐸𝐷, 𝑦𝑁𝐸𝐷 , 𝑧𝑁𝐸𝐷 of 

each waypoint. Desired time-dependent positions and velocities are provided to the Simulink block 

Trajectory Planner, shown in Figure 63. Additionally, a Simulink block called Digital Clock, provides the time 

of simulation, allowing the synchronization of the desired reference with the running simulation. 

 

Figure 63: illustration of inputs and outputs of designed Trajectory Planner block in MATLAB-Simulink 2018b. 

The plant block, shown in Figure 62, consists of the set of differential equations derived in Chapter 2. The 

non-linear model updates quadrotor states using the control forces and torques provided by the controller. 

This block is essential since it will help testing algorithms performance. In accordance with experimental tests 

performed in (Carminati, 2019) using a thrust stand RCBenchmark Series 1520, it has been used an actuator 

model to convert the force and moments provided by the control block into Pulse-Width-Modulation PWM 

signal that are directly used to control motors ESCs. The phase of testing and validation of the designed 

controllers in simulated environments, like Unreal Engine®, and flight simulators, such as AirSim®, required 

the conversion of torques and thrust inputs into PWM signals. Firstly, these signals are processed through a 

saturation block, then they are packed into MAVLink messages, using predefined functions such as 

mavlink_msg_hil_actuator_controls_pack11, and send to the autopilot in order to update the motors states. 

 

Figure 64: illustration of inputs and outputs of designed Motor Mixer block in MATLAB-Simulink 2018b. 

 

 
11 There are different MAVLink libraries compatible with different programming languages. In this project both the 
Mavgen library for C and Python have been used. The MAVLink C library generated by Mavgen is a header-only 
implementation that is highly optimized for resource-constrained system with limited RAM and flash memory. 
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It must be mentioned that for the tune and testing of the controllers all the states have been used directly 

as estimated states. Hence, sensors and filtering stage (like Extended Kalman Filter) have been bypassed.  

The following section is addressed to the description of the control techniques considered in this project and 

to test their performance on path following and obstacle avoidance tasks. As mentioned in Chapter 1, the 

controller block consists of two loops: an inner loop responsible of quadrotor fast dynamics control and an 

outer loop applied to quadrotor slow dynamics. Since two different controllers’ architecture have been 

tested, the discussion of both controller’s structure and performance are carried out individually.  

5.1.1 – Model-In the Loop Simulation – Path Following 

The aim of this paragraph is to present two simulation models that have been designed to test path following 

algorithms. The rest of the paragraph is organized as follow: Section 5.1.1.1 presents a simulation model 

based on a PD controller to control the outer loop slow dynamics and an MPC controller to control the inner 

loop fast dynamics. Lastly, in Section 5.1.1.2 a Simulink model based on a MPC controller to control quadrotor 

position and attitude dynamics and a PID controller to control the altitude 𝑧 and velocity 𝑤𝑁𝐸𝐷 is proposed. 

5.1.1.1 – PD and MPC controller 

The proposed Simulink model, shown in Figure 65, is composed by a total of four subsystems. The Trajectory 

Planner and the NL_Dynamic (previously referred to as plant) blocks have been described in Paragraph 5.1; 

the ‘PD’ and the ‘MPC’ blocks, which are related respectively to the control of quadrotor slow and fast 

dynamics, are further scrutinized hereafter.   

 

Figure 65: illustration of complete Simulink model based on PD (position control) and MPC (attitude and altitude control) controller. Software 
platform MATLAB-Simulink 2018b. 
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For the sake of clarity, a brief overview of the simulating process is outlined. Firstly, the outputs from the 

Trajectory Planner (time-dependant values of position 𝑥𝑑𝑒𝑠, 𝑦𝑑𝑒𝑠  and velocity 𝑢𝑑𝑒𝑠, 𝑣𝑑𝑒𝑠 ) are provided as 

input to the outer-loop controller, the PD block. The latter also receives as inputs the current states, provided 

by the plant block, and computes the desired Euler angles and angular rates, which are directly provided to 

the inner-loop controller MPC. Similarly, the MPC block receives as inputs two vectors, respectively the vector 

of desired states 𝑥𝑑𝑒𝑠 ∈ ℝ8  and the vector of current states 𝑥 ∈ ℝ8. At each time step it computes the 

control actions that need to be performed to track the reference trajectory. Lastly, the forces and moments 

are provided to the plant which update the states and feeds the controllers blocks with the updated states.  

Table 8: Position Control - outer-loop quadrotor slow dynamics PD parameters; Attitude & Altitude Control – inner loop quadrotor fast dynamics 
MPC states weighting matrix 𝑄𝑀𝑃𝐶 ∈ ℝ10,10; Inputs Control – inner loop quadrotor fast dynamics MPC inputs weighting matrix 𝑅𝑀𝑃𝐶 ∈ ℝ6,6.  

Position Control - PD 

Axis Parameter Value 

𝑥 
𝐾𝑃𝑥  0.02 

𝐾𝐷𝑥  0.39 

𝑦 
𝐾𝑃𝑦  0.034 

𝐾𝐷𝑦 0.29 

 

Attitude & Altitude Control - MPC 

Axis Parameter Value 

𝜙 𝑄𝑀𝑃𝐶(1,1) 3 × 104 

𝜃 𝑄𝑀𝑃𝐶(2,2) 10.5 

𝜓 𝑄𝑀𝑃𝐶(3,3) 18 

𝑝 𝑄𝑀𝑃𝐶(4,4) 9 × 104 

𝑞 𝑄𝑀𝑃𝐶(5,5) 10.3 

𝑟 𝑄𝑀𝑃𝐶(6,6) 18 

𝑧 𝑄𝑀𝑃𝐶(7,7) 9.5 × 102 

𝑤 𝑄𝑀𝑃𝐶(8,8) 7.5 × 101 
 

Inputs Control - MPC 

Axis Parameter Value 

𝐹𝑥 𝑅𝑀𝑃𝐶(1,1) 1 

𝐹𝑦 𝑅𝑀𝑃𝐶(2,2) 1 

𝐹𝑧 𝑅𝑀𝑃𝐶(3,3) 5 × 101 

𝜏𝑥  𝑅𝑀𝑃𝐶(4,4) 3 × 10−3 

𝜏𝑦 𝑅𝑀𝑃𝐶(5,5) 3 × 10−3 

𝜏𝑧 𝑅𝑀𝑃𝐶(6,6) 3 × 10−3 

 
 

The evaluation of controllers’ parameters have been obtained through trial and error. The obtained values, 

used in the simulations results (Section 5.1.3), are reported in Table 8. 

5.1.1.2 – MPC and PID controller 

In this section, the second proposed solution is considered. The simulation works the same as the model 

presented in Section 5.1.1.1; however, in this configuration the quadrotor dynamics is completely controlled 

by the MPC controller, except for the altitude, 𝑧𝑑𝑒𝑠, 𝑤𝑑𝑒𝑠, which is based on a separate PID controller block. 

As shown in Figure 66 the MPC block receives two inputs vectors. The desired position, velocities (provided 

by the Trajectory Planner 𝑥𝑑𝑒𝑠, 𝑦𝑑𝑒𝑠 and  𝑢𝑑𝑒𝑠, 𝑣𝑑𝑒𝑠) and the desired attitude are combined in a vector of 

dimension 𝑥𝑑𝑒𝑠 ∈ ℝ10. The second input is provided by the plant block and has dimension 𝑥 ∈ ℝ10. Once 

found the solution of the optimization problem, the MPC returns as outputs the vector of control inputs, 

which is a vector of dimension 𝑢 ∈ ℝ6. 
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Figure 66: illustration of complete Simulink model based on MPC (position and attitude control) and PID (altitude control) controller. Software 
platform MATLAB-Simulink 2018b. 

Table 9: Altitude Control - outer-loop quadrotor slow dynamics PID parameters; Position & Attitude Control – inner loop quadrotor fast dynamics 
MPC states weighting matrix 𝑄𝑀𝑃𝐶 ∈ ℝ10,10; Inputs Control – inner loop quadrotor fast dynamics MPC inputs weighting matrix 𝑅𝑀𝑃𝐶 ∈ ℝ6,6.  

Altitude Control - PID 

Axis Parameter Value 

𝑧 

𝐾𝑃𝑧 35.6 

𝐾𝐼𝑧 12.18 

𝐾𝐷𝑧 0.005 

 

Position & Attitude Control - MPC 

Axis Parameter Value 

𝑥 𝑄𝑀𝑃𝐶(1,1) 30 

𝑦 𝑄𝑀𝑃𝐶(2,2) 30 

𝑢 𝑄𝑀𝑃𝐶(3,3) 16.4 

𝑣 𝑄𝑀𝑃𝐶(4,4) 16.7 

𝜙 𝑄𝑀𝑃𝐶(5,5) 3 

𝜃 𝑄𝑀𝑃𝐶(6,6) 10 

𝜓 𝑄𝑀𝑃𝐶(7,7) 18 

𝑝 𝑄𝑀𝑃𝐶(8,8) 9 

𝑞 𝑄𝑀𝑃𝐶(9,9) 10 

𝑟 𝑄𝑀𝑃𝐶(10,10) 18 
 

Inputs Control - MPC 

Axis Parameter Value 

𝐹𝑥 𝑅𝑀𝑃𝐶(1,1) 1 

𝐹𝑦 𝑅𝑀𝑃𝐶(2,2) 1 

𝐹𝑧 𝑅𝑀𝑃𝐶(3,3) 2 × 10−1 

𝜏𝑥  𝑅𝑀𝑃𝐶(4,4) 2 × 10−1 

𝜏𝑦 𝑅𝑀𝑃𝐶(5,5) 2 × 10−1 

𝜏𝑧 𝑅𝑀𝑃𝐶(6,6) 2 × 10−1 
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In accordance with the previous analysis, the evaluation of the controllers’ parameters have been obtained 

through trial and error. The chosen values of both MPC and PID controllers are defined in Table 9. 

5.1.2 – Model-In-the-Loop Simulation – Obstacle Avoidance 

Parallel to the design of path following algorithms, the study of a collision avoidance solution has been carried 

out. In this section the problem of obstacle avoidance is addressed using an Artificial Potential Field APF 

algorithm. As shown in Figure 67 the simulation model is similar to the previous one, presented in Section 

5.1.1. However, the inputs of the controller’s block are changed. The reference velocities and positions are 

provided by the Trajectory Planner until an obstacle is detected. This means that, as long as the difference 

between quadcopter position and obstacle position is within a predefined tolerance: Δ𝑥𝑜𝑏𝑠 = 𝑥𝑐𝑢𝑟𝑟 −

𝑥𝑜𝑏𝑠 < 𝑡𝑜𝑙𝑙, the reference velocities are provided only by the Trajectory Planner; otherwise, they are the 

result of the Trajectory Planner and APF algorithm combination. In other words, the APF comes with a 

switching function, to provide the reference velocities only in close proximity to an obstacle, if not its output 

is null.  

 

Figure 67: illustration of main elements of modified Simulink model for Obstacle Avoidance task, block diagram. 

To implement the APF algorithm, different algorithms found in literature have been evaluated and it has 

been chosen the most appropriate for the purpose of this project. The algorithm has been subsequently 

implemented in a MATLAB Function to fit the existing working model.  As shown in Figure 68, the APF receives 

as inputs two vectors of three elements, 𝑝𝑜𝑠 ∈ ℝ3 and 𝑝𝑜𝑠𝑑𝑒𝑠 ∈ ℝ3. The first one is provided by the plant 

block while the second one is the desired vector of positions computed by the Trajectory Planner algorithm.  

 

Figure 68: Artificial Potential Field Simulink subsystem. Software platform MATLAB-Simulink 2018b. 
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5.1.3 – Path Following and Obstacle Avoidance: Results Discussion 

The aim of this section is to illustrate the ability of the designed controllers in stabilizing quadrotor dynamics 

throughout Simulink simulations. Some flight patterns are proposed, and the produced references are 

analysed. The complexity of the flight patterns increases progressively intending to test the controller 

capabilities in path following and in obstacle avoidance manoeuvres. Since quadrotor is intended for indoor 

applications, the paths have been sized in order to withstand typical room dimensions.  

5.1.3.1 – Square Pattern 

Table 10: square pattern reference waypoints and time of arrivals. 

Waypoint Time of Arrival Waypoint Position 

1 0 [0,0,0] 

2 10 [0,0,−1] 

3 20 [0,3,−1] 

4 30 [3,0,−1] 

5 40 [0, −3,−1] 

6 50 [−3,0,−1] 

7 60 [0,3,−1] 

In accordance with the description provided in Section 5.1, the Trajectory Planner receives as inputs the 

vectors of waypoints positions and ToA and computes the desired time-dependant vectors of positions and 

velocities that are used as inputs for the controller block. Table 10 shows the elements of the vector 𝑇𝑜𝐴 ∈

ℝ𝑛 (listed under Time of Arrival column) and the components of the matrix of waypoints 𝑊𝑦𝑃 ∈ ℝ𝑛,3 (listed 

under Waypoint Position column) where 𝑛 = 7 is the number of waypoints that determine the path.  

  

Figure 69: comparison of square pattern path following North-East plane; on the left PD controller and on the right MPC controller. 

The results show that the performance of the PD controller in controlling the slow dynamics are less accurate 

compared to MPC. The PD outer loop needs to be improved since the obtained path is not as good as the 

results obtained with the MPC control applied to quadrotor slow dynamics. Both proposed solutions 

complete the path in the given time, however, the MPC results are close to the reference during all the 

simulation, while the PD presents a meaningful error. Moreover, looking at the PD results, at each change of 

direction the system requires more time to stabilize compared to MPC behaviour.   
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Figure 70: comparison of square pattern time response 𝑧𝑁𝐸𝐷 and 𝑤𝑁𝐸𝐷; on the left MPC altitude control and on the right PID altitude control. 

Figure 70 shows the response of both proposed solutions in the tracking of a reference altitude. While the 

trajectory in the 𝑥𝑦 plane, shown in Figure 69, shows significant discrepancies, the reference altitude tracking 

of the PD and the MPC is comparable. The solution based on MPC (shown on the left) has a slower 𝑧𝑁𝐸𝐷 

response, showing slight fluctuations at the changes of direction. Moreover, looking at the 𝑤𝑁𝐸𝐷  trend, 

despite the smaller overshoot, the behaviour is much more unstable compared to the PID solution (shown 

on the right). In conclusion, the MPC presents more fluctuations with smaller velocity overshoot, compared 

to PID controller, however, it is able to follow the reference 𝑧𝑁𝐸𝐷 even though some slight fluctuations are 

present at changes of direction. The results of the linear velocity 𝑢𝑁𝐸𝐷 and 𝑣𝑁𝐸𝐷, shown in Figure 71, outlines 

the unstable behaviour of the PD controller in the velocity tracking. As can be seen, both the 𝑢𝑁𝐸𝐷 and 𝑣𝑁𝐸𝐷 

required time to stabilize around the reference. The change of velocity is faster in the PD controller; however, 

the MPC proves better performances in reference following.  

  

Figure 71: comparison of square pattern time response  𝑢𝑁𝐸𝐷 and 𝑣𝑁𝐸𝐷; on the left PD velocity control and on the right MPC velocity control. 
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5.1.3.2 – Butterfly Pattern 

Table 11: butterfly pattern reference waypoints and time of arrivals. 

Waypoint Time of Arrival Waypoint Position 

1 0 [0,0,0] 

2 10 [0,0,−2.5] 

3 20 [3,−3,−2.5] 

4 30 [3,3,−2.5] 

5 40 [−3,−3,−2.5] 

6 50 [−3,3,−2.5] 

7 60 [3,−3,−2.5] 

Table 11 lists the vectors of waypoints and time of arrivals provided to the MATLAB function trajectory 

planner for the butterfly pattern following. As described in the previous Section 5.1.3.1, two controllers are 

considered, respectively the first one based on a PD position control, while the second one is based on an 

MPC position control. Figure 72 shows an overall view of the butterfly pattern execution, comparing the two 

studied solution, PD on the left and MPC on the right. 

  

Figure 72: comparison of butterfly pattern path following North-East plane; on the left PD controller and on the right MPC controller. 

As can be noticed in Figure 72, the PD controller position response is not as accurate as the MPC. Both 

proposed solutions complete the path in the given time, however, the MPC results are closer to the reference 

during all the simulation, while the PD presents larger overshoots at changes of direction. Moreover, the 

MPC has a better behaviour, not only in terms of position, but also in the attitude parameters with an 

accurate and stable behaviour. The behaviour of the Euler angles and angular rates is shown in Figure 73 

(first proposed solution) and Figure 74 (second analysed solution). Both controllers display similar behaviour.  

The attitude based on a MPC controller is significantly more stable with overshoot only in correspondence of 

change directions, while the attitude control based on a PD algorithm is not as stable as the MPC, presenting 

higher peaks values and oscillations around the zero reference. If the peaks are analysed, the largest pitch 

and yaw variation are in proximity of the end of the simulation, this depends on how fast the quadrotor is 

going during the specific phase of the manoeuvre.  
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Figure 73: butterfly pattern time response of Euler angles 𝜙, 𝜃,𝜓 and angular rates 𝑝, 𝑞, 𝑟 of a system based on a MPC controller for the attitude 
and altitude control and a PD controller for the position control. 

 

 

Figure 74: butterfly pattern time response of Euler angles 𝜙, 𝜃,𝜓 and angular rates 𝑝, 𝑞, 𝑟 of a system based on a MPC controller for the attitude 
and position control and a PID controller for the altitude control. 
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5.1.3.3 – Snake Pattern 

Table 12: snake pattern reference waypoints and time of arrivals. 

Waypoint Time of Arrival Waypoint Position 

1 0 [0,0,0] 

2 10 [0,0, −2.5] 

3 20 [3, −3, −2.5] 

4 30 [3,0, −2.5] 

5 40 [−3,0, −2.5] 

6 50 [−3,3, −2.5] 

7 60 [3,3, −2.5] 

8 70 [3,6, −2.5] 

9 80 [−3,6, −2.5] 

10 90 [−3,−3,−2.5] 

11 100 [3, −3, −2.5] 

Table 12 lists the vectors of waypoints and time of arrivals provided to the MATLAB function trajectory 

planner for the snake pattern. In this section the complexity of the flight pattern is increased intending to 

test the proposed controller capabilities in path following. Considering the ToA vector and the number of 

waypoints, it can be noticed that the system is subject to a different reference each 10[𝑠], hence it must be 

fast, responsive, and precise to track all waypoints in the predefined time of simulation. 

  

Figure 75: comparison of snake pattern path following North-East plane; on the left PD controller and on the right MPC controller. 

In accordance with the results presented in Figure 75, the trajectory is complete by both controllers in the 

predefined given time. As expected, the response of the PD controller is not as good as the MPC. This 

behaviour depends on the rise in the number of reference waypoints and the time given to track each of 

them. The MPC presents less overshoot and oscillations than the PD which requires longer time to stabilize 

around the reference. However, at the changes of direction (such as waypoint [3,3, −2.5] or [−3,6,−2.5]) 

even the MPC presents slight overshoots which depend on how fast the quadrotor is going. In conclusion, in 

accordance with the aforementioned properties, the snake pattern is better performed with a system based 

on an MPC controller than a PD controller.  
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Figure 76: comparison of snake pattern time response 𝑧𝑁𝐸𝐷 and 𝑤𝑁𝐸𝐷; on the left MPC altitude control and on the right PID altitude control. 

Figure 76 shows the comparison of the proposed controller results in the tracking of a reference altitude. The 

figures on the left present the results obtained for the MPC-based attitude control; while figures on the left 

an altitude control based on a PD algorithm. The aim of these figures is to outlines the behaviour of the 

simulated system in response to an out-of-plane manoeuvre. As can be noticed, the 𝑧𝑁𝐸𝐷 is close to the 

reference in both controllers; however, the 𝑤𝑁𝐸𝐷 needs to be further investigated. The PID controller has 

faster behaviour and higher overshoot than the MPC. On the other hand, the MPC response is slower and 

fluctuates around the reference provided by the trajectory planner. Figure 77 inspects the velocity reference 

signals and the time response of both proposed systems during the snake pattern manoeuvre. It shows that 

the PD solution is faster during velocity changes but not as good as the MPC in the tracking of the reference. 

On the other hand, the MPC presents better performance in terms of path following but is less responsive in 

the tracking of reference velocities.  

  

Figure 77: comparison of square pattern time response  𝑢𝑁𝐸𝐷 and 𝑣𝑁𝐸𝐷; on the left PD velocity control and on the right MPC velocity control. 
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5.1.3.4 – Snail Pattern 

Table 13: snail pattern reference waypoints and time of arrivals. 

Waypoint Time of Arrival Waypoint Position 

1 0 [0,0,0] 

2 5 [1,0,0] 

3 10 [1,1,0] 

4 15 [0,1,0] 

5 20 [0,0.3,0] 

6 25 [0.8,0.3,0] 

7 30 [0.8,0.6,0] 

8 35 [0.3,0.6,0] 

9 45 [0.2,0.6,0] 

Table 13 shows the elements of the vector 𝑇𝑜𝐴 ∈ ℝ𝑛  (listed under Time of Arrival column) and the 

components of the matrix of waypoints 𝑊𝑦𝑃 ∈ ℝ𝑛,3 (listed under Waypoint Position column), where 𝑛 = 9 

is the number of waypoints that determine the path. In this section, the complexity of the path following task 

is further improved by reducing the dimensions of the reference path. Moreover, the time between 

consecutive waypoints is halved to 5[𝑠]. As shown in Figure 78 the overall simulation is performed within a 

one-by-one-meter area. Lastly, the behaviour of the controller in presence of obstacles is presented.  

  

Figure 78: comparison of snail pattern path following North-East plane; on the left PD controller and on the right MPC controller. 

As expected, the overall controller’s performance have been affected by the reduction of path dimensions. 

The PD controller presents meaningful overshoots and significant position errors; hence, the quadrotor slow 

dynamics PD controller needs to be further improved. On the other hand, despite the shrink of path 

dimensions and the imposed hard timing constraints, the MPC presents a responsive behaviour. However, 

the closeness of waypoints and the reduced time of arrival generate fast changes of directions, thus not all 

waypoints are touched during the simulation (such as waypoint [1,0,0] or [0,1,0]). In conclusion in presence 

of path following tasks which require fast manoeuvres within restricted area, such as indoor applications, the 

combination of MPC controller for the translational and rotational dynamics and the PID controller for the 

altitude dynamics is the best solution. 
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5.1.3.5 – Obstacle Avoidance Results: MPC and APF based controller 

Once studied the performance of the designed controllers, the problem of obstacle avoidance is addressed. 

The following results are based on the same system used in the above paragraphs (MPC for position and 

attitude control and PID for altitude control) by the addition of the Artificial Potential Field APF algorithm. 

The results shown in Figure 79 and Figure 80 have been obtained considering spherical obstacles, 

dimensioned in accordance with path dimensions. In all the graphs the same representations scheme is used: 

obstacles are blue circles, while the green dashed lines outline obstacles tolerances. Different situations have 

been considered (closest obstacles, obstacle in critical position, obstacle near waypoints); however, the 

designed algorithm provide reliable results. Depending on the quadrotor’s positions and velocities, the 

obstacles are always avoided correctly. Moreover,the square and snake patterns (respectively Figure 79 left 

and Figure 80 left) don’t complete the path in the given time; this is a consequence of states and path 

adaptation to obstacles. 

  

Figure 79: path following and obstacle avoidance North-East plane MPC controller (time of simulation 60[s], MPC prediction horizon 30 step). On the 
left square pattern; on the right butterfly pattern. 

  

Figure 80: path following and obstacle avoidance North-East plane MPC controller (time of simulation 100[s] snake and 45[s] snail, MPC prediction 
horizon 30 step). On the left snake pattern; on the right snail pattern. 
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CHAPTER 6 

Unreal Engine® Simulations and AirSim Simulator 

As mentioned in Chapter 1, the development of software-based system has a high cost of verification and 

validation. The use of simulated environment to test and verify system performance can reduce these costs 

and optimize engineer’s workflow without resorting to prototyping. According to (Dekker, 1988) a simulation 

environment is defined as a programming environment of a computer, that is dedicated to system 

simulations and that takes care for flexible and intelligent interfacing between a user and the system to be 

studied. It is made clear that a simulator has to support different tasks, such as modelling description, 

experimentation, knowledge handling and reporting, which ask for high performance computing. That having 

been said, there are many simulators commercially available; in this thesis AirSim based on Unreal Engine® 

software framework is presented. Unreal Engine is a software framework primarily design for the 

development of video games, created in 1998 by Epic Games®. Thanks to its graphic capabilities, it is used in 

numerous applications, from video games design to film making and 3D photorealistic objects animation. On 

the other hand, AirSim is an open-source cross-platform simulator for drones and ground vehicles, built on 

Epic Games Unreal Engine, developed by Microsoft. It is a cross-platform that supports Software-In-the-Loop 

and Hardware-In-the-Loop simulations with the most popular flight controllers, such as PX4 and Ardupilot. It 

is worth mentioning that AirSim is developed as an Unreal plugin; hence, it can be simply dropped into any 

Unreal environment for physically and visually realistic experiment with deep learning, computer vision and 

reinforcement learning algorithms for autonomous vehicles. This section is structure as follow: firstly, a brief 

overview of Simulink UAV toolbox for Unreal Engine is provided; then the development and testing of a 

custom flight controller, based on a MPC attitude controller in AirSim is presented. 

6.1 – Simulink 3D Animation and UAV Toolbox 

Simulink 3D Animation® package provides apps for linking Simulink model and MATLAB scripts to 3D graphic 

objects. This package can be used to visualize and verify dynamic system behaviour in a virtual reality 

environment. As an example, the Simulink 3D Animation toolbox enables the animation of 3D graphics 

objects such as car, vehicles, quadrotor, multirotor and fixed wing vehicles in virtual reality environments, 

such as Unreal Engine. The links between Simulink model and MATLAB algorithms allows the use of sensors 

to sense collisions and other events in the virtual world and feed them back into MATLAB and Simulink to be 

processed and analysed.  

Another useful Simulink library for UAV behaviours visualization and flight controller testing is UAV Toolbox. 

This is a Simulink 2021b toolbox that provides tools and applications for the design, simulation and testing of 

UAVs. This toolbox is used to design customized autonomous flight algorithms and flight controllers that can 

be tested and analyse in photorealistic 3D environments. Thanks to its connections it is possible to generate 

personalized flight controller for desktop simulation and Hardware-In-the-Loop (HIL) testing. Moreover, it is 

possible to simulate on-board avionics and receive as feedback sensors information such as camera images, 



78 
 

lidar’s point-cloud, Inertial-Measurement-Unit (IMU) measurements and GPS data. The toolbox is developed 

in order to support both C and C++ code generation for rapid prototyping in Hardware-In-the-Loop testing 

and standalone hardware, like Pixhawk autopilot. 

 

Figure 81: UAV Toolbox blocks used for co-simulation framework that links Simulink and Unreal Engine from Epic Games 

UAV Toolbox provides a co-simulation framework that models driving algorithms in Simulink and visualizes 

their performance in a virtual simulation environment. This environment is the aforementioned Unreal 

Engine by Epic Games. Figure 81 shows two blocks that are used and connected  with UAV non-linear model 

to perform realistic closed loop simulations. These blocks are Simulation 3D UAV Vehicle and Simulation 3D 

Scene Configuration. During each simulation, the Unreal Engine simulation block Simulation 3D UAV Vehicle 

initializes the vehicle information and sends its translation and rotation signals to the simulation 3D Scene 

Configuration block. The latter receives vehicle data and implements a 3D simulation environment that is 

rendered by using the Unreal Engine platform. This block is built such as it can simulate a series of different 

prebuilt scenes, or it is possible to create new one using UAV Toolbox Interface for Unreal Engine Projects.   

6.1.1 – UAV Toolbox Interface for Unreal Engine 

Once designed the flight controller algorithms, Simulink co-simulates the algorithms in the visualization 

engine. The workflow of communications between Simulink and Unreal Engine can be summarized as follow. 

First, UAV Toolbox configures the visualization environments, specifically the scene capture from cameras 

and initial object position, then it determines the next position of the objects using the simulated 

environment feedback. This logic can be summarized with the following scheme: 

 

Figure 82: work logic diagram Simulink and Unreal Engine communication. 

As mentioned before, during each simulation, the UAV toolbox in Simulink sends information about UAV 

translation and rotation to the Simulation 3D Scene Configuration block, which receives vehicle data and 

sends it to the sensor block. The latter processes the information in order to correctly visualize the 

quadcopter. It is worth mentioning that there is a priority property which controls the execution order of this 
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actions. By default, Simulink has the following order of priority:  Simulation 3D UAV Vehicle, Simulation 3D 

Scene Configuration and lastly Simulation 3D Camera, Fisheye Camera and Lidar. 

6.1.2 – Unreal Engine 3D Results Visualization 

This section is organised as follow: first, a brief overview of Simulink-Unreal Editor configuration procedure 

is provided, then an example of path following and obstacle avoidance task, running on a customize scene, 

is presented. Once installed the UAV Toolbox Interface for Unreal Engine Projects it is possible to modify or 

create customize scenes using the Unreal Editor from Epic Games. Custom scenes allow the co-simulation in 

both Simulink and Unreal Editor (Figure 83) so that the user can directly modify the object positions or the 

environment settings between simulations runs. The UAV toolbox for Unreal Engine consists of two files: the 

first one is an Unreal Engine project called ‘AutoVrtlEnv.uproject’ which includes the editable versions of many 

prebuilt scenes that the user can select from the scene source settings parameter of the block; the other file 

contains two plugins, which are ‘MathWorkSimulation.upligin’ and ‘MathWorksUAVContent.uplugin’. Both of 

them are needed to establish the connection between Simulink and the virtual environment’s editor, hence 

they must be installed in the plugin folder of the local installation folder of Unreal Engine. It must be 

mentioned that, since the latest released version of Unreal Engine v4.27 is not compatible with UAV Toolbox 

Interface for Unreal Engine Projects, it has been necessary to install an older version of the software v4.25. 

  

Figure 83: On the left Unreal Engine Editor main page configuration; on the right mobile preview of path following and obstacle avoidance task of 
the simulated quadrotor running in Simulink UAV Toolbox and visualized in a customize scene in Unreal Engine (Microsoft Windows 10). 

Once installed the aforementioned plugins, the MPC-based Simulink model presented in Section 5.1.1.2 has 

been adapted to co-simulate with Unreal Engine introducing the Simulation 3D UAV Vehicle and Simulation 

3D Scene Configuration blocks. By setting the parameter scene source to ‘Unreal Editor’ and the project 

parameter to the path containing the file ‘AutoVrtlEnv.uproject’ the connection can be established. Lastly, 

the Sim3dLevelScriptActor level blueprint used by UAV Toolbox, which is the algorithm that controls how 

objects interacts with the environment, must be associated with the current project.  

After correctly done the steps, the customized scene has been created. Figure 85 shows a perspective view 

of the customized environment in Unreal Engine Editor; the area of manoeuvre has been delimited using 

traffic cones while wire road-centre barriers and bushes have been used as obstacles to avoid. The scene has 

been designed in accordance with the obstacles position provided in the MATLAB script. Moreover, the MPC 

parameters (prediction horizon 𝐻𝑝 , weighting matrices 𝑄𝑀𝑃𝐶 , 𝑅𝑀𝑃𝐶 , inputs constraints 𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥  and 

initial states 𝑥0), the obstacles positions 𝑥𝑜𝑏𝑠 ∈ ℝ3, the APF parameters and the path waypoints have been 

defined in the MATLAB script (the parameters values are the same of the model presented in Chapter 5). The 
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results of the Simulink simulation, shown in Figure 84, have been visualized using Unreal Editor as interface 

(Figure 83). As expected, the quadrotor successfully completes the path in the given time avoiding all the 

obstacles in North-East, such as North-Down planes. 

 

Figure 84: MATLAB results showing North-East plane quadrotor behaviour in the avoidance manoeuvre of 3 obstacles using an MPC based controller. 
Obstacle position 𝑥𝑜𝑏𝑠 = [4,0,0; 11,0,0; 17,0,0][𝑚] with dimensions 𝑅𝑜𝑏𝑠 = 0.5[𝑚] and a tolerance of 𝜂0 = [0.4,0.4,0.4][𝑚] 

  

 

Figure 85: Unreal Engine Editor high resolution screenshot of customize obstacle avoidance path. The disposition of obstacles and the area of 
manoeuvre have been defined in accordance with data provided by MATLAB script. 
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6.2 – AirSim Simulator 

As mentioned before, AirSim is an open-source simulator developed by Microsoft AI & Research as a plugin 

for Unreal Engine framework. It was publicly made available in February 2017. AirSim aims to be a useful tool 

in the development of autonomous vehicles and the gathering of training data for Artificial Intelligence (AI) 

studies, trying to narrow the gap between simulations and reality. The plugin-based architecture of AirSim, 

allows its use in any environment developed by Unreal Engine, such as those available in the marketplace or 

customize ones. The Unreal Engine platform provides open source code access, making easier the interaction 

with visually realistic graphics by offering modern graphics features such as photometric lights, planar 

reflections, and lit translucency. An example of Unreal Engine realistic graphic is shown in Figure 86. However, 

it must be noticed that, due to the young age of AirSim, there is little to none-research based on simulator, 

hence the studies of its architecture, protocols of communications and settings configurations have been 

carried out studying AirSim source code and open-source flight controllers (FC) algorithm. 

 

Figure 86: Unreal Engine camera capture of running quadcopter simulation using Python API commands implemented in Visual Studio Code. 
Environment name: ZhangJiaJie. Ground Unit: Windows 10 laptop, Intel Core i7, graphic processor unit NVIDIA GeForce GTX970M. 

This section presents a brief overview of the main features of AirSim, such as APIs commands and ways of 

communicating with AirSim relevant to FC implementations; moreover, it is analysed a modified open-source 

PID-based autopilot written in C language, which has been tested and modified, replacing the pre-existent 

PID attitude controller with the MPC algorithm implemented in Chapter 5.1.1.2. Lastly, the results of the 

custom made PID and MPC based flight controller are provided. 

6.2.1 – Introduction to AirSim   

Doing some research on the features of AirSim and its different ways of communicating, determine the 

possibility of implementing a custom flight controller in C, able to control the quadrotor in the simulator. 

Before proceeding with the main AirSim commands and settings, a schematic illustration of simulator 

architecture is provided. The architecture consists of six core elements: the vehicle model, the environment 

model, the sensors models, physical engine, rendering engine and a public Application Programming Interface 
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(API) layer. A high level overview of AirSim architecture is shown in Figure 87. In accordance with the 

information provided by the developers of AirSim, running a simulation, results in: 

 the flight controller block being continuously fed with sensors data from the sensor model block; 

 by using these data, the FC can compute the actuator signal, which is handled as input by the vehicle 

model. The vehicle model contains all the physical information of the vehicle, such as mass, inertia, 

thrust coefficient, drag coefficient, and computes the forces 𝐹  and torques 𝜏  generated by the 

virtual rotors in accordance with the vehicle information specified by the user.   

 

Figure 87: illustration of AirSim simulator architecture. The scheme shows a block diagram of the 6 main elements and their interactions. 

 The forces and moment signals are passed to the physics engine which combines this information 

with the data provided by the environment model (such as gravity force, air pressure and magnetic 

field) providing as outputs the kinematic states of the vehicle and all the bodies that are simulated in 

the virtual environment; 

 lastly, these states information are handled by the sensor model, which processes the kinematics into 

sensors data, feeding back the flight controller (the loop is closed).  

On the other hand, the desired states can be provided in two ways: using a Remote Controller (RC) which 

sends desired states directly to the FC; or a Companion Computer (CC) which communicates via the API layer 

with the use of Remote Procedure Call (RPC). Moreover, the CC allows more complex tasks such as mission 

planning or path planning determining the desired sequence of waypoints. 

6.2.1.1 – Remote Procedure Call and API Commands 

The term Remote Procedure Call (RPC) is used to describe a computer programming invoking a procedure to 

execute in a different program (not necessarily limited to the current computer). The idea behind RPC 

consists of a client-server based communication procedure. The clients creates a procedure which is encoded 

and sent over the ethernet (or serial) to a server that decodes the message and processes the requested 
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procedure. Once the task is completed, the server returns a signal as a response to the client. AirSim uses an 

API accessible through RPC on localhost port 41451 by default (it is possible to change the port values in the 

simulator settings file ‘settings. json’). An example of AirSim RPC procedure based on MAVLink library is 

shown in Figure 88. The flight controller creates the messages which are encoded to binary form and 

transferred over the ethernet or serial to be received by the Ground Control Station GCS which decodes and 

parses the messages. The GCS, in turn, sends messages to the flight controller with a similar procedure. 

 

Figure 88: overview of AirSim RPC procedure based on MAVLink library. 

As mentioned before, AirSim allows the customization of different settings through the changing of its 

settings file managed in a Java-Script-Object-Notation (JSON) called ‘settings. json’, which is located on the 

path of installation of AirSim. This file allows the definition of the model vehicle, referred to as SimMode 

(multirotor or car), the sensors to simulate (such as Lidar, GPS, Camera) and the communication settings, 

which is defined as DefaultVehicleConfig. The latter tells AirSim to use the default settings based on 

SimpleFlight communication or to switch the way of communication to PX4 autopilot, allowing the 

communication by sending and receiving MAVLink messages. In other words, AirSim exposes two APIs: the 

first one implements its functionalities by using the built-in FC SimpleFligth; while the second one, PX4, 

communicates through the usage of MAVLink messages allowing individual motors control. It must be 

noticed that the ‘settings. json’ schema has been changed with AirSim v1.2; for the sake of clarity, in this 

thesis it has been used the older v1.1 schema to allow PX4 autopilot and MAVLink based communication. 

{ 
  "SettingsVersion": 1.2, 
  "SimMode": "Multirotor", 
  "ClockSpeed": 1.0, 
  "Vehicles": { 
    "SimpleFlight": { 
      "VehicleType": "SimpleFlight", 
      "DefaultVehicleState": "Armed", 
      "EnableCollisionPassthrogh": false, 
      "EnableCollisions": true, 
      "AllowAPIAlways": true, 
    } 
  } 
} 
 

 

{ 
  "SettingsVersion": 1.2, 
  "SimMode": "Multirotor", 
  "ClockSpeed": 1.0, 
  "DefaultVehicleConfig": "PX4", 
  "PX4": { 
    "FirmwareName": "PX4", 
    "UseSerial": false, 
    "UdpIp": "127.0.0.1", 
    "UdpPort": 14560, 
    "SitlIp": "127.0.0.1", 
    "SitlPort": 14556, 
    "LocalHostIp": "127.0.0.1", 
  } 
} 

 

Figure 89: on the left file settings. json compatible with latest AirSim v1.6 configured for 'SimpleFlight' vehicle communication; on the right settings. 
json compatible with AirSim v1.2 (or earlier) configured for 'PX4' communications protocol based on MAVLink messages. 
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Figure 89 shows two examples of settings files; on the left it is presented a SimpleFlight vehicle configuration 

compatible with the latest version of AirSim, on the right a PX4 vehicle configuration based on MAVLink 

messages, compatible with AirSim v1.2 or earlier. By setting DefaultVehicleConfig to SimpleFlight (left case) 

the flight controller performs default implemented procedures such as arm, disarm, take-off, land, hover and 

move to a specified position. Changing the DefaultVehicleConfig to PX4 results in AirSim sending MAVLink 

messages over User Datagram Protocol (UDP) instead of serial. As shown in Figure 89 (right) the UDP port 

used by AirSim is specified at lines 8-9, while the SITL communication is defined at lines 10-11. The latter 

provides a version of PX4 running in Linux. Since the ground station used in this project is an octa core Intel 

i7 ground laptop, running Windows 10 as operating system, the Cygwin Toolchain Terminal has been used to 

allow the PX4 Linux toolchain setup.   

6.2.2 – AirSim Flight Controller 

AirSim supports various flight controllers that can be either Hardware-In-the-Loop (HIL) or completely 

Software-In-the-Loop (SIL). Moreover, third party flight controllers can be used if they support 

communication through MAVLink-based messages. The default AirSim flight controller is called SimpleFlight. 

In this project both the default software-simulated flight controller provided by AirSim, and a customize flight 

controller, hereinafter referred to as simple_flight_controller_c, have been tested.  

6.2.2.1 – Simple Flight Controller 

The default API exposes multiple procedures provided by the default flight controller. The library used by 

AirSim is called rpclib. In this project the flight controller, SimpleFlight, capabilities have been tested 

developing a personalized class in Python, using Visual Studio Code v1.61.2. Different aspects have been 

tested from the simpler tasks, like arm, disarm and take-off, to the development of obstacles avoidance 

manoeuvre using lidar data. Some of the implemented class functions are shown in Figure 90. 

def Connection(self, drone_name): 
   # conncect to AirSim, Arm the drone & Take off 
   self.client = MultirotorClient() 
   self.client.reset() 
   time.sleep(2) 
   self.client.confirmConnection() 
   self.client.enableApiControl(True, vehicle_name=drone_name) 
   print('Enabling API control') 
   self.client.armDisarm(True, vehicle_name=drone_name) 
   print('Ariming drone') 
   self.client.takeoffAsync(timeout_sec=3,vehicle_name=drone_name).join() 
   print('Take Off: now...') 
   time.sleep(2) 
   return self.client 

def ShowLidarPC(self, sensor_name, drone_name): 
   # similar to ReadLidarPC but also print the array of point 
   lidardata = np.array(self.client.getLidarData(lidar_name = 
sensor_name, vehicle_name = drone_name).point_cloud) 
   print(sensor_name, lidardata) 
   return lidardata 
 
def ObstacleDetection(self,lidardata): 
   # detect the obstacle and return true if it is detected 
   if len(lidardata)!=0: 
      isobstacle = True 
   else: 
      isobstacle = False 
   return isobstacle 

Figure 90: on the left Python function used to establish a connection with the quadrotor, to enable the API commands, to arming the motors and 
take-off with a time delay of 3 [s] on AirSim; on the right Python function used to show lidar point cloud and detect obstacles. 

6.2.2.2 – Custom Flight Controller 

By using the settings presented in Figure 89 (right) AirSim will send MAVLink messages over UDP port 14560. 

In order to receive these messages, it is necessary to listen for them on the specify socket address, store 

them in a buffer and parse a MAVLink message for the buffer. All these functions are performed through a 

MAVLink function called mavlink_parse_char(), defined in the MAVLink library. This function receives as 

inputs the ID of the channel to be parsed and parse one byte at a time until a complete packet could be 

successfully decoded. When a complete message is received, it is copied into a variable. Once received, the 
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message must be classified depending on what type of message it is. This can be performed looking at the ID 

of the message and decoding its information using a specific function defined in the MAVLink library.  

As an example, the mavlink_msh_hil_gps_decode() or mavlink_msg_local_position_ned_decode() are 

functions used to decode respectively the messages provided by the GPS and the positions provided by 

inertial reference frame North-East-Down. Like the reception of messages, in order to be able to send 

MAVLink messages, they must be created and encoded into a suitable format for transmission. These 

messages are sent using a function called send_mavlink_message(). The message library used to control the 

vehicle in AirSim is the actuator controls pack which packs the PWM signals of each motor into a message 

struct.  

The first phase of this project consists of testing a PID-based open-source12 flight controller written in C 

(Wachsler, 2018), called simple_flight_controller_c. The code is based on a socket communication on 

localhost UDP port 14560 and four threads, respectively: 

 the first one is used to create a MAVLink message listener; 

 the second one to send heartbeat messages;  

 the third one to update motor states; 

 the fourth to compute PID controls actions.  

By starting a simulation using Cygwin64 terminal, all the threads run simultaneously allowing the user to 

control the quadcopter. All the implemented command arm (starting motors), disarm (stopping motors), 

takeoff (PID computes commands to reach the desired altitude), flyto (PID computes commands to reach the 

desired latitude and longitude using GPS status), land (PID computes commands to land), GPS (print the 

current GPS values latitude-longitude-altitude), altitude (print current altitude) have been tested and they 

work all correctly.  

The second part of the project aims to adapt the aforementioned PID controller in order to control the 

attitude using the MPC attitude controller, presented in Chapter 5.1.1.2. This task has been performed using 

the tool Embedded Coder from Simulink. Firstly, the Simulink model has been modified since not all Simulink 

blocks can be imported in C. The flight controller algorithm, simple_flight_controller_c, has been modified 

adding a fifth thread for the attitude control, based on MPC. Therefore, the final FC consists of a PID position 

controller and an MPC attitude controller. The implemented algorithm shows good behaviours in term of 

position however it has not been possible to stabilize quadrotor attitude. This behaviour can be a 

consequence of fluctuations in IMU measurements of Euler angles and not optimal tuning of MPC weightings 

matrices. As the overall thesis target was to test the implemented MPC-based flight controller in AirSim 

simulator, it is possible to say that the main target of this part of the thesis has been achieved; however, the 

results obtained aimed to be further studied in future advancements of this thesis. 

 
12 The flight controller is part of a repository GitHub by Joel Wachsler and Daniel Aros Banda. This repository contains 
code examples of how to communicate with AirSim by using the default API accessible through RPC and other message 
oriented API called MAVLink. Reference: (Wachsler, 2018) 
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Figure 91: illustration of AirSim environment Africa and customize FC connection procedure using Cygwin64 Terminal for Windows 10. The 
connection is established, and quadrotors motors are ready to be armed and take-off. 

 

 

Figure 92: illustration of AirSim environment and customize FC connection using Cygwin64 Terminal for Windows 10. Quadrotor is flying and 
some examples of implemented commands results are printed on Cygwin64 Terminal interface. 
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CHAPTER 7 

Conclusions 

This thesis aimed to identify an effective solution for the modeling and development of a customized 

quadrotor for indoor applications and to design an MPC based simulator. This work is the result of the 

integration of 6 months internship experience and research activities conducted in the fields of GNC 

algorithm and their embedded implementation on hardware components. As established, during the 

internship, carried out at the ALTEN Italia s.p.a. company (Milan), a small quadrotor UAV for indoor 

applications made of COTS hardware and software have been built. The cheap, fast, and accessible COTS 

technologies offer a rapid and effective solution for UAV development. The design process started with the 

definition of the customer drone operational needs, in this case the autonomous flight in indoor or GPS-

denied environments. This work is meant to be a study and modeling of a customized quadrotor working 

architecture based on ultrasonic sensors, Marvelmind Set HW v4.9-NIA, as indoor positioning system. Thanks 

to the efficient integration of open source software and hardware, the main objective of indoor flight and 

autonomous flight has been accomplished. The objective has been nevertheless achieved thanks to the 

choice of the appropriate components, in particular the Pixhawk 4 Mini autopilot and the companion 

computers Raspberry Pi 3 and Nucleo STM32, that allowed high computational power while keeping the 

overall weight of quadcopter relatively low. Many problems, related to hardware interfaces and software 

communications, have been faced during the assembly of the final configuration. Most of the software 

challenges have been overcome implementing purpose-oriented code (written in both Python, C and C++ 

code languages).  

The second part of the thesis focuses on the design of an MPC based simulator and its Model-In-the-Loop 

and Software-In-the-Loop simulations testing. In this work, two novel control architectures are presented. 

The first one is an MPC cascade controller based on a PD position controller and an MPC attitude and altitude 

controller. The second one is a full MPC based controller with a PID altitude controller. Both simulations are 

implemented in Simulink considering a non-linear dynamical model of quadrotor. Different controller’s 

behaviours in path following tasks are compared. Moreover, MPC have been further improved introducing a 

guidance Artificial Potential Field algorithm. This configuration has been analysed in obstacle avoidance tasks, 

providing excellent results. The overall final results show that the MPC for position control has higher nominal 

performance in terms of path following, executing all the patterns in the given time of arrival ToA with high 

accuracy. On the other hand, the PD controller is less accurate and presents more fluctuations in the tracking 

of desired references. Model-In-the-Loop testing has been performed for all the pairings of control algorithm 

in order to achieve the best outcome. It has been concluded that the PD presents much rough response 

including higher overshoot, while the MPC shows a near optimal behaviour due to both smooth reference 

path following and precise variable control actions. Summing up, when an underactuated system such a 

quadrotor, is called for precise and accurate manoeuvres, the MPC provides the best performance. It 

embodies technical specifications into the control algorithm, and in particular no a-posteriori patches are 
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required to consider limitations on system’s variable. So, an MPC-based system is a systematic design flow, 

being independent of the chosen model and performance constraint specifications.  

Using Simulink 3D Animation™, Simulink UAV toolbox and Unreal Engine Editor (developed by Epic Games), 

the performance of the MPC based simulator have been visualized and monitored. This approach allows the 

user to have better understanding of quadrotor position and attitude response in proximity of reference 

waypoints or obstacles. Furthermore, the MATLAB and Simulink MPC controller have been converted in C 

language, using Simulink Embedded Coder. The latter allows MPC testing on a virtual autopilot in the open-

source cross platform for drones AirSim Simulator. All MATLAB and Simulink models have been designed such 

that they can be adapted for code generation without heavy modifications.  

As mentioned before, during the development of this project, great efforts have been put into the purpose 

of performing Software-In-the-Loop simulations in Unreal Engine environment using AirSim. This kind of 

testing is strongly desired previous to experimental flight tests with real platform. The main difficulties were 

faced in establishing a communication between the MPC algorithm, running in Cygwin64 Terminal for 

Windows, and AirSim simulator, which requires a User Datagram Protocol UDP-based link. Considering the 

absence of documents and research of AirSim architecture and settings, an open-source PID-based autopilot 

written in C has been modified, replacing the pre-existent PID attitude controller with the implemented MPC 

algorithm. The result is a custom flight controller in C, that controls a quadrotor in a virtual environment 

using a communication based on a MAVLink protocol. The controller shows good behaviours in terms of 

position; however, the quadrotor attitude  cannot be stabilized. This behaviour can be a consequence of 

fluctuations in IMU measurements of Euler angles and not optimal tuning of MPC weightings matrices.  

Future works are aimed to improve the simulation environment and test the controllers’ performance in path 

following and obstacle avoidance, introducing noises and disturbances. Moreover, a more complex trajectory 

planner can be designed; such as a Dubins curves-based planner or a Bézier curves-based planner. Moreover, 

in future work, the MPC algorithm will be implemented on a real prototype in real time environment 

including the development of avoidance algorithm once obtained the output data from detection sensors. It 

should be also interesting to investigate the detection and avoidance decision mechanism when multiple 

obstacles are introduced.  Lastly, as the overall target of this thesis is the autonomous flight in indoor 

environments, the equipment on-board must be as independent as possible from ground. This implies 

operating with sensors that do not require infrastructure deployment previous to flight.  

 

 

 

 

 

 

 



89 
 

 

 

 

 

 

 

 

  



90 
 

Bibliography 

[1.] Aguirre, L. A. (2016, July 13). Controllability and Observability of Linear Systems: some noninvariant 

aspects. IEEE Transactions on Education, p. 33-39. 

[2.] Akhil M., M. K. (2012). Simulation of the Mathematical Model of a Quad Rotor Control System using 

Matlab Simulink. Applied Mechanics and Materials, 110-116. 

[3.] Akhil M., M. K. (2012). Simulation of the Mathematical Model of a Quad Rotor Control System using 

Matlab Simulink. Applied Mechanics and Materials, 2577-2584. 

[4.] Akkas Uddin Haque, A. E. (2020, January). UAV Autonomous Localization using Macro-Features 

Matching with a CAD Model. 

[5.] Alfian Ma’arif, A. A. (2021). Artificial Potential Field Algorithm for Obstacle Avoidance in UAV 

Quadrotor for Dynamic Environment. IEEE International Conference on Communication, Networks 

and Satellite (Comnetsat). 

[6.] Arjomandi, M. (2007). Classification of Unmanned Aerial Vehicles. Academia. 

[7.] Atheer L. Salih, M. M. (2010). Flight PID Controller Design for a UAV Quadrotor. Scientific Research 

and Essays Vol. 5(23), 3660-3667. 

[8.] B. Kada, Y. G. (2011). Robust PID Controller Design for an UAV Flight Control System. Proceedings of 

the World Congress on Engineering and Computer Science (p. Vol). San Francisco, USA: WCECS. 

[9.] Behzad Boroujerdian, H. G. (2018). MAVBench: Micro Aerial Vehicle Benchmarking. 2018 51st 

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). Fukuoka, Japan: IEEE. 

[10.] Bemporad, A. (2006). Model Predictive Control Design: New Trends and Tools. Proceedings of the 

45th IEEE Conference on Decision & Control, San Diego, CA, USA. 

[11.] Bemporad, A. (2019). Model Predictive Control. Lucca, Italy: School For Advanced Studies Lucca. 

[12.] Bhushan, N. (2019). UAV: Trajectory Generation and Simulation. Arlington, Texas, USA: UTA 

Research Institute. 

[13.] Brian L Stevens, F. L. (2015). Aircraft control and simulation: dynamics, controls design, and 

autonomous systems. John Wiley & Sons. 

[14.] C. V. Rao, S. J. (1998). Application of Interior-Point Methods to Model Predictive Control. Journal of 

Optimization Theory and Applications, 723-757. 

[15.] Carminati, D. (2019). Design and Testing of Indoor UAS Control Techniques. Turin, Italy: Politecnico 

di Torino. 

[16.] Cezary, S. (2015). UAVs and Their Avionic Systems: Development Trends and Their Influence On 

Polish Research and Market. Aviation, 49-57. 



91 
 

[17.] Chinedu Amata Amadi, W. S. (2018). Design and Implementation of Model Predictive Control on 

Pixhawk Flight Controller. Stellenbosh, South Africa: Faculty of Engineering, Stellenbosch University. 

[18.] Christiana Honsberg, S. B. (2020). Battery Capacity. Tratto da PV Education PVCDROM: 

https://www.pveducation.org 

[19.] Daniel Aros Banda, J. W. (2018). Exploration of AirSim using C and Rust in the Context of 

SafetyCritical Systems. Stockholm, Sweden: KTH Royal Institu of Technology School of Electrical 

Engineering and Computer Science. 

[20.] Dekker, L. (1988). Simulation Environments. Systems Analysis and Simulation II, 344-350. 

[21.] Denis Kotarski, P. P. (2021). A Modular Multirotor Unmanned Aerial Vehicle Design Approach for 

Development of an Engineering Education Platform. Sensors. 

[22.] Drone Inspections are Improving Efficiency in the Utilities Industry. (202, September 23). Tratto da 

Drone-powered Solutions: https://www.feds.ae 

[23.] Emil Fresk, G. N. (2013). Full Quaternion Based Attitude Control for a Quadrotor. 2013 European 

Control Conference (ECC). Zürich, Switzerland. 

[24.] Fletcher, R. (1987). Practical Methods of Optimization. New York: John Wiley and Sons. 

[25.] Foundation, D. (2018). Pixhawk® 4 Mini Technical Data Sheet.  

[26.] Fum, W. Z. (2015). Implementation of Simulink Controller Design on Iris+ Quadrotor. Monterey, 

California: Naval Postgraduate School. 

[27.] G.T. Poyi, M. W. (2013). Validation of a quad-rotor helicopter Matlab/Simulink and Solidworks 

models. IET Conference on Control and Automation 2013: Uniting Problems and Solutions. 

Birmingham, UK: IET . 

[28.] Gatti, M. (2015). Design and Prototyping High Endurance Multi-Rotor. Bologna, Italy: Università di 

Bologna. 

[29.] II, R. G. (2020). COTS DRONE DESIGN: A RAPID EQUIPAGE ALTERNATIVE FOR FORCE RECON 

COMPANIES. Monterey, California: Naval Postgraduate School. 

[30.] Iswanto, A. M. (2019). Artificial potential field algorithm implementation for quadrotor path 

planning. International Journal of Advanced Computer Science and Applications, vol. 10, 575–585. 

[31.] John F. Keane, S. S. (2013). A Brief History of Early Unmanned Aircraft. Johns Hopkins APL Technical 

Digest, Volume 32, Number 3. 

[32.] José A. Paredes, F. J. (2017). 3D Indoor Positioning of UAVs with Spread Spectrum Ultrasound and 

Time-of-Flight Cameras. Sensors. 

[33.] Kayton, M. a. (1997). Avionics Navigation Systems. John Wiley and Sons. 



92 
 

[34.] Kenneth R. Muske, J. B. (1993). Model Predictive Control with Linear Models. AIChE Journal, Vol. 39, 

No. 2. 

[35.] Kimon P. Valavanis, G. J. (2015). Handbook of Unmanned Aerial Vehicles. Dordrecht: Springer. 

[36.] Lei Deng, Z. M. (2018). UAV-based multispectral remote sensing for precision agriculture: A 

comparison between different cameras. ISPRS Journal of Photogrammetry and Remote Sensing. 

[37.] Liang, O. (2021, June 12). How to Choose FPV Drone Motors. Tratto da OscarLiang.com: 

https://oscarliang.com 

[38.] Luke S. Dai, M. A. (2016). 3D Printed Quadcopters. New Jersey, USA: New Jersey Governor’s School 

of Engineering and Technology. 

[39.] Marcin Biczyski, R. S. (2020). Multirotor Sizing Methodology with Flight Time Estimation. Journal of 

Advanced Transportation. 

[40.] Matija, K. (2020). Modelling and control of hybrid propulsion systems for multirotor unmanned 

aerial vehicles. Zagreb, Croatia: University of Zagreb, Faculty of Mechanical Engineering and Naval 

Architecture. 

[41.] Meier, L. H. (2015). PX4: A node-based multithreaded open source robotics framework for deeply 

embedded platforms. Robotics and Automation (ICRA), 2015 IEEE International Conference . 

[42.] Moses, B. (February 2017). Aerodynamics and Control of Quadrotors. Canberra, Australia: A thesis 

submitted for the degree of Doctor of Philosophy. 

[43.] Nicolas Mandel, M. M. (2020). A Method for Evaluating and Selecting Suitable Hardware for 

Deployment of Embedded System on UAVs. Sensors. 

[44.] Nicolas Mandel, M. M. (2020). A Method for Evaluating and Selecting Suitable Hardware for 

Deployment of Embedded System on UAVs. Sensors. 

[45.] Petar Piljek, D. K. (2020). Method for Characterization of a Multirotor UAV Electric Propulsion 

System. Applied Sciences. 

[46.] Peter Burggräf, A. R. (2019). Quadrotors in factory applications: design and implementation of the 

quadrotor’s P-PID cascade control system. SN Applied Sciences. 

[47.] Pounds, P. E. (2007). Design, Construction and Control of a Large Quadrotor Micro Air Vehicle. 

Australian National University. 

[48.] Powerline inspection with UgCS. (s.d.). Tratto da UgCS: https://www.ugcs.com 

[49.] Protocol, M. A. (s.d.). MAVLink Developer Guide. Tratto da MAVLINK Micro Air Vehicle 

Communication Protocol: https://mavlink.io/en/ 

[50.] Quan, Q. (2017). Introduction to Multicopter Design and Control. Singapore: Springer. 



93 
 

[51.] R A Navrotsky, G. V. (2021). Exploration of strength characteristics quadrocopter frame structure 

obtained using 3d printing technology. IOP Conf. Series: Materials Science and Engineering. 

Moscow, Russia: IOP Publishing. 

[52.] R.E. Weibel, R. H. (2004). Safety considerations for operation of different classes of UAVs in the 

NAS. Proceedings of the AIAA 4th Aviation Technology, Integration and Operations Forum and AIAA 

3rd Unmanned Unlimited Technical Conference, Workshop and Exhibit. Chicago. 

[53.] Rahul, B. (June 9, 2019). Quaternion and Euler Angles. Arizona, USA. 

[54.] Raissa Zurli Bittencourt Bravo, A. L. (2015). Literature review of the applications of UAVs in 

humanitarian relief. XXXV Encontro Nacional De Engenharia De Producao. Fortaleza, CE, Brasil. 

[55.] Reid, J. (2017, January 27). Understanding KV Ratings. Tratto da Rotor Drone PRO: 

https://www.rotordronepro.com 

[56.] Research, M. (2021). AirSim. Tratto da Microsoft GitHub AirSim: https://microsoft.github.io/AirSim/ 

[57.] Reza Ehsani, J. M. (2013). The Rise of Small UAVs in Precision Agriculture. Lake Alfred, USA: 

American Society of Agricultural and Biological Engineer. 

[58.] Rico Merkert, J. B. (2020). Managing the drone revolution: A systematic literature review into the 

current use of airborne drones and future strategic directions for their effective control. Journal of 

Air Transport Management. 

[59.] Robert Niemiec, F. G. (September 5-8, 2016). A Comparison Between Quadrotor Flight 

Configurations. 42nd European Rotorcraft Forum. Lille, France. 

[60.] Robotics, M. (2020). Marvelmind Starter Set HW v4.9-NIA. Tratto da Marvelmind Robotics: 

https://marvelmind.com/product 

[61.] Robotics, M. (s.d.). How to Build Autonomous Drones Indoor. Tratto da Marvelmind Robotics: 

https://marvelmind.com/drones 

[62.] Robotics, M. (s.d.). Indoor "GPS" Autonomous Copter Setting Manual. Tratto da Marvelmind 

Robotics: https://marvelmind.com/pics/indoor_navigation_system_ENG_copter_help_manual.pdf 

[63.] Ruijie He, P. S. (2008). Planning in information space for a quad rotor helicopter in a GPS-denied 

environment. 2008 IEEE International Conference on Robotics and Automation (p. 1814-1820). 

Pasadena, CA, USA: IEEE. 

[64.] Sabatino, F. (2015). Quadrotor Control: Modeling, Nonlinear Control Design and Simulation. 

Stockholm, Sweden: KTH Electrical Engineering. 

[65.] Sheng-Lung Peng, L. H. (2019). Intelligent Computing and Innovation on Data Science. Warsaw, 

Poland: Springer. 



94 
 

[66.] Siemens launches SIEAERO – the next generation of overhead line inspection. (2018, November 14). 

Tratto da Geospatial World. Advancing Knowledge for Sustainability: 

https://www.geospatialworld.net 

[67.] Slawomir Grzonka, G. G. (2012). A Fully Autonomous Indoor Quadrotor. IEEE Transactions on 

Robotics, 90-100. 

[68.] Sravan Kumar N., R. K. (2016). Design and Control Implementation of Quadcopter. International 

Journal of Mechanical And Production Engineering, 2320-2092. 

[69.] Szyk, B. (2021, August 15). Drone Motor Calculator. Tratto da Omni Calculator: 

https://www.omnicalculator.com 

[70.] T. T. Mac, C. C. (2016). Heuristic Approaches in Robot Path Planning: A Survey. Robotics and 

Autonomous Systems, 13-28. 

[71.] Tamino Wetz, N. W. (2021). Distributed wind measurements with multiple quadrotor unmanned 

aerial vehicles in the atmospheric boundary layer. Atmospheric Measurement Techniques, 3795-

3814. 

[72.] The MathWorks, I. (2021). Simulink 3D Animation. Tratto da MathWorks: https://it.mathworks.com 

[73.] U. Orozco-Rosas, O. M. (2019). Mobile Robot Path Planning Using Membrane Evolutionary Artificial 

Potential Field. Applied Soft Computing Journal, 236–251. 

[74.] V. Kumar, N. M. (2012). Opportunities and challenges with autonomous. The International Journal 

of Robotics Research, 1279-1291. 

[75.] Wachsler, J. (2018, June 20). airsim-examples. Tratto da GitHub: 

https://github.com/JoelWachsler/airsim-examples 

[76.] Wang, L. (2009). Model Predictive Control System Design and Implementation Using MATLAB. 

Melbourne, Australia: Springer. 

[77.] Wei Dong, G.-Y. G. (2013). Modeling and Control of a Quadrotor UAV with Aerodynamic Concepts. 

International Journal of Aerospace and Mechanical Engineering, Vol:7, No:5. 

[78.] Wei Dong, G.-Y. G. (2013). Modeling and Control of a Quadrotor UAV with Aerodynamic Concepts. 

International Journal of Aerospace and Mechanical Engineering, Vol:7, No:5. 

[79.] Wright, S. J. (1997). Applying New Optimization Algorithms to Model Predictive Control. Chemical 

Process Control-V, CACHE, AIChE , 147-155. 

[80.] Y. B. Chen, G. C. (2016). UAV path planning using artificial potential field method updated by 

optimal control theory. International Journal of Systems Science, vol. 47, 1407-1420. 

[81.] Yasir Mohd Mustafah, A. W. (2012). Indoor UAV Positioning Using Stereo Vision Sensor. 

International Symposium on Robotics and Intelligent Sensors 2012 (IRIS 2012) (p. 575-579). Kuala 

Lumpur, Malaysia: Elsevier. 



95 
 

[82.] Yohanes Khosiawan, I. N. (2016). A system of UAV application in indoor environment. Production & 

Manufacturing Research, 2-22. 

[83.] Yuntian Li, M. S. (2018). A Novel Distributed Archtecture for UAV Indoor Navigation. Intenrational 

Conference on Air Transport - INAIR 2018 (p. 13-22). ELSEVIER. 

[84.] Zoran Benić, P. P. (2016). MATHEMATICAL MODELLING OF UNMANNED AERIAL VEHICLES WITH 

FOUR ROTORS. Zagreb, Croatia: Interdisciplinary Description of Complex Systems. 

 


