

POLITECNICO DI TORINO
Master’s Degree in Aerospace Engineering

Master’s thesis

Solving methods for the Multi-item Inventory

Routing Problem with Pickup and Delivery

Relators:

Prof. Renzo Arina

Prof.ssa Stefania Scarsoglio

Prof. Patrice Leclaire

Prof. Arthur Bit-Monnot

Candidate:

Filippo Montanari

December 2021

 i

Acknowledgment

First of all, I would like to thank my internship supervisors Prof. Arthur BIT-

MONNOT and Mr. Mathieu TOUCHARD for the trust they placed in me and their

valuable tutoring role. Their guidance was precious and decisive to enhance my

working skills and develop the content of this thesis.

I sincerely thank Prof. Patrice LECLAIRE for helping me take this opportunity

and being truly supportive with me on many occasions during the last year. I thank

him for his constant professionality, always accompanied by a particular awareness

of students’ needs and evolvement.

I would like to thank all the great people I had the chance of having at my side

along the way, from Turin, to Paris, to Toulouse, in both pleasant and difficult times.

A special thank to those whom, despite the distance, have always been there for me.

I consider this thesis the conclusion of a 6-years-long journey, and I feel lucky for all

the spiritual and concrete support I received in so many occasions. “The road to

knowledge is a road that passes through good encounters.” (Spinoza)

Last, I heartfully thank my family, which is the start and the harbour of every

journey I made and will be able to make in my life.

Grazie a tutti voi. Merci a vous tous.

Filippo Montanari

17/11/2021

ii

Blank page

 iii

Abstract

As industry 4.0, IoT and clouding technologies take hold, real-time scheduling

and resource allocation solutions by means of proven optimization techniques have a

concrete interest and remarkable market opportunities. Concerning the logistic and

production domains, some solid well-designed optimization systems can be a precious

ally to Just-In-Time philosophy at work. Speaking of logistics, it is a fast-growing

sector responsible for a significant share of company costs, and its optimization has

a major impact on economic rentability and competitiveness.

The topic of this thesis is the research of dynamic and flexible scheduling methods

for a generic indoor logistic support system. More specifically, the sought methods

concern the optimal satisfaction of the expressed material needs of an indoor

manufacturing facility, by means of a capacitated vehicle fleet. Part I is devoted to

bibliographic research, preceded by an introduction to some optimization key-

concepts. Part II presents and discusses in detail the problem, its mathematical

formulations, and the methods adopted to solve it. A series of MILP formulations

are proposed, each with a specific set of hypotheses, the associated mathematical

model, and some considerations about applicability and solvability. Then, an ad-hoc

heuristic was designed to compare and evaluate the performance of the Discrete-

Time 1-mainstock MILP (DT-1ms-MILP) formulation.

The thesis ends with a joint evaluation of two tested methods, with a special

appreciation for DT-1ms-MILP by reason of its performances and flexibility. Last,

some directions are given for a further development of this thesis work.

Keywords: Inventory Rounting Problem, multi-item IRP, pickup and delivery,

dynamic scheduling

iv

Con l’avanzare dell’industria 4.0, dell’IoT, e delle tecnologie cloud, la

pianificazione e l’allocazione di risorse in tempo reale attraverso tecniche di

ottimizzazione collaudate destano un concreto interesse nel mercato tecnologico. Dei

metodi di ottimizzazione robusti ed efficaci costituiscono un valido alleato per la

filosofia Just-In-Time nei campi della logistica e dei sistemi di produzione. La

logistica in particolare è un settore in forte crescita che determina una parte

considerevole delle spese di un’azienda, e l’ottimizzazione delle attività che ne fanno

parte può portare un considerevole guadagno in termini di redditività e competitività.

L’argomento di questa tesi è la ricerca di metodi dinamici e flessibili per la

pianificazione di una flotta di veicoli da interno a supporto di una linea di produzione.

I suddetti metodi devono permettere di soddisfare in maniera ottimale i bisogni

materiali della produzione a mezzo di una flotta a capacità finita. La parte I è

dedicata alla ricerca bibliografica e all’introduzione di alcuni concetti chiave

dell’ottimizzazione. La parte II presenta e discute in dettaglio il problema e i metodi

impiegati per risolverlo. Anzitutto, una serie di formulazioni MILP, ognuna con le

proprie ipotesi, il modello matematico associato, e alcune considerazioni riguardo alla

applicabilità e alla risolvibilità. Segue la presentazione di un’euristica ad-hoc,

sviluppata al fine di comparare e co-valutare la formulazione MILP Discrete-Time 1-

mainstock (DT-1ms-MILP).

La tesi si conclude con una valutazione congiunta dei metodi testati, con un

particolare apprezzamento per la DT-1ms-MILP in ragione delle performance e della

flessibilità dimostrate. Infine, alcuni suggerimenti sono altresì dati per un eventuale

continuazione del lavoro presentato.

 v

Content

PART I – BIBLIOGRAPHIC RESEARCH AND STATE-OF-THE-ART

1.1 About mathematical optimization ... 7

1.2 Combinatorial optimization... 8

1.3 Exact methods .. 9

1.3.1 Dynamic programming ... 9

1.3.2 Linear programming ... 10

1.3.2.1 LP duality ... 11

1.3.2.2 Simplex algorithm ... 12

1.3.2.3 Discrete linear programs: ILP and MILP 12

1.3.3 Cutting-plane methods ... 13

1.3.3.1 Gomory cut ... 13

1.3.4 Branch-and-bound .. 14

1.3.5 Branch-and-cut .. 16

1.3.6 Column generation ... 16

1.3.7 Branch-and-price .. 17

1.4 Heuristic methods ... 17

1.5 Metaheuristic methods .. 17

1.5.1 History of metaheuristic methods ... 18

1.5.2 Genetic algorithm ... 19

1.5.3 Simulated annealing ... 20

1.5.4 Tabu search ... 22

1.5.5 Ant colony optimization ... 23

1.5.6 Particle swarm optimization .. 23

1.5.7 Harmony search ... 24

1.5.8 GRASP .. 25

2.1 Travelling Salesman Problem .. 27

2.2 Vehicle Routing Problems ... 28

2.2.1 Capacitated VRP ... 28

2.2.2 VRP with Time Windows .. 30

2.2.3 Time-Dependent VRP .. 30

vi

2.2.4 VRP with Pickup and Delivery .. 30

2.3 Inventory Routing Problems ... 31

2.3.1 Basic IRP statement .. 31

2.3.2 Production Routing Problem ... 32

2.4 Bus Routing Problem .. 32

3.1 Multi-product IRP .. 35

3.1.1 Multicompartment IRP .. 36

3.1.2 Multi-compatibility and site-dependency ... 36

3.2 IRP with Pickup and Delivery .. 37

3.3 IRP with Transshipment ... 37

3.4 The Mi-IRP-PD of this thesis ... 38

PART II – DEVELOPMENT OF SOLVING MODELS

 Mi-IRP-PD

4.1 Case 1: Indoor logistic operation manager... 41

4.1.1 Use cases and data of the logistic support system 43

4.1.2 Class definitions ... 45

4.1.3 ILOM problem statement with a single main stock 45

4.1.4 Generalized ILOM problem statement ... 46

4.2 Case 2: Supply-chain network manager ... 47

4.2.1 SNM problem statement ... 48

4.3 Considerations about applicability .. 49

5.1 Common standards and considerations ... 51

5.2 CT-FOQ-MILP formulation .. 52

5.2.1 Pre-calculation of pickups and deliveries .. 52

5.2.2 Parameters and variables ... 53

5.2.3 CT-FOQ-MILP model .. 54

5.3 DT-1ms-MILP formulation ... 56

5.3.1 Parameters and variables ... 57

5.3.2 Standards applied to states and transitions ... 59

5.3.3 DT-1ms-MILP model ... 60

5.3.4 DT-1ms-MILP results post-processing ... 64

5.4 DT-Ms²-Mib-MILP formulation .. 65

5.4.1 Parameters and variables ... 66

5.4.2 DT-Ms²-Mib-MILP model .. 67

 vii

5.4.3 DT-Ms²-Mib-MILP with distance minimization 69

5.5 DT-1ms-PR-MILP formulation ... 70

5.5.1 Route building and subperiod length ... 71

5.5.2 Parameters and variables ... 72

5.5.3 DT-1ms-MILP model ... 73

6.1 Standards and notations ... 77

6.2 Heuristic method design .. 78

6.2.1 MPA flowchart ... 80

6.2.2 Penalty function and acceptance conditions ... 82

6.2.3 Visits to main stock ... 83

6.3 Post-processing algorithms .. 84

6.4 MPA parametrization ... 85

7.1 Test instances ... 87

7.1.1 Instance A - 8 buffers ... 88

7.1.2 Instance B - 14 buffers ... 89

7.1.3 Instance C - 20 buffers ... 90

7.1.4 Some considerations about test instances ... 92

7.2 Test results ... 92

7.2.1 Evaluation metrics ... 92

7.2.2 Results of instance A.. 93

7.2.3 Results of instance B .. 94

7.2.4 Results of instance C .. 94

7.3 Results evaluation and comments ... 95

7.4 Period decomposition .. 96

7.5 Visual representation of the solution ... 97

viii

List of figures

Figure 1.1. Classification of combinational optimization techniques 8

Figure 1.2. A generic 3-d polytope and a 3-d simplex (simplest polytope) 10

Figure 1.3. Representation of a primal problem and its dual 12

Figure 1.4. Partial classification of metaheuristic methods 18

Figure 1.5. Flowchart of a generic genetic algorithm ... 20

Figure 1.6. Flowchart of simulated annealing .. 21

Figure 1.7. Flowchart of a simple tabu search ... 22

Figure 2.1. Visual comparison between TSP and CVRP 29

Figure 2.2. Graphic scheme of the Production Routing Problem 33

Figure 4.1. Class structure of the GSVT model... 44

Figure 4.2. Graphic example of a supply chain network 47

Figure 4.3. Graphic example of staircase and piece-wise objective functions 49

Figure 5.1. Visual example of buffer repartition in the DT-1ms-PR-MILP 72

Figure 6.1. Example of MPA exploration tree ... 79

Figure 6.2. Minimum Penalty Algorithm .. 81

Figure 6.3. Good solution regions on the 𝛼2-𝜋𝑚𝑎𝑥 chart 85

Figure 7.1. Graph of test instance A ... 88

Figure 7.2. Graph of test instance B ... 89

Figure 7.3. Graph of test instance C ... 90

Figure 7.4. Example of a problem decomposed in subperiods 97

Figure 7.5. Usage rates, instance A (8b|3v|15t), MPA .. 97

Figure 7.6. Travelled distances, instance A (8b|3v|15t), MPA 98

Figure 7.7. Buffer content evolution, instance A (8b|3v|15t), MPA 98

Figure 7.8. Task scheduling, instance A (8b|3v|15t), MPA 98

Figure 7.9. Usage rates, instance A (8b|3v|15t), DT-1ms-MILP 99

Figure 7.10. Travelled distances, instance A (8b|3v|15t), DT-1ms-MILP 99

Figure 7.11. Buffer content evolution, instance A (8b|3v|15t), DT-1ms-MILP ... 99

Figure 7.12. Task scheduling, instance A (8b|3v|15t), DT-1ms-MILP 100

 ix

List of tables

Table 1.1 Primal-dual relationships in a LP .. 11

Table 2.1. IRP characteristics and variations .. 32

Table 4.1. Use cases and scenarios of the ILOM .. 43

Table 5.1. Sets of CT-FOQ-MILP ... 53

Table 5.2. Parameters of CT-FOQ-MILP .. 53

Table 5.3. Variables of CT-FOQ-MILP ... 54

Table 5.4. Sets of DT-1ms-MILP ... 57

Table 5.5. Parameters of DT-1ms-MILP ... 57

Table 5.6. Variables of DT-1ms-MILP... 58

Table 5.7. State variables of DT formulations ... 59

Table 5.8. Sets of DT-Ms²-Mib-MILP.. 65

Table 5.9. Parameters of DT-Ms²-Mib-MILP .. 66

Table 5.10. Variables of DT-Ms²-Mib-MILP ... 66

Table 5.11. Sets of DT-1ms-PR-MILP .. 71

Table 5.12. Parameters of DT-1ms-PR-MILP ... 72

Table 5.13. Variables of DT-1ms-PR-MILP .. 73

Table 7.1. Buffer data of instance A .. 89

Table 7.2. Vehicle data of instance A .. 89

Table 7.3. Buffer data of instance B .. 89

Table 7.4. Vehicle data of instance B .. 90

Table 7.5. Buffers of instance C ... 91

Table 7.6. Vehicle data of instance C .. 91

Table 7.7. Results of instance A .. 93

Table 7.8. Results of instance B .. 94

Table 7.9. Results of instance C .. 94

Table 7.10. Resume and comparison of results .. 96

x

Blank page

1

0Introduction

Optimization techniques are a major engineering tool with an impact on several

fields, such as transportation, production scheduling, network design and multi-dis-

ciplinary systems. Every company that wishes to keep up with times must constantly

find new ways to improve productivity and service quality while mitigating costs.

Optimization plays a central role in it, firmly backed by calculators and their expo-

nentially increasing processing power. No matter the context, wisely applied optimi-

zation techniques grant more efficient processes and services. As industry 4.0, IoT

and clouding technologies take hold, real-time data analysis and processing by means

of proven optimization techniques has a concrete interest and remarkable market

opportunities.

Scheduling and resource allocation problems are among the most studied discrete

and combinatorial optimisation issues. A common trait of many practical decision

problems it that they are computationally challenging. Solving time is, along with

solution quality, one of the most important aspects of an optimization technique,

and the criticality of it over the quality of results depends on each specific application

cases. Especially in dynamic scheduling, a method yielding a quick acceptable solu-

tion is frequently more effective than another slowly converging to global optimality.

Concerning logistic and production sectors, some solid well-designed optimization

system can be a precious ally to Just-In-Time philosophy at work. J-I-T is a corner-

stone of lean management, defined by [1] as a set of practices to “precisely specify

value by specific product, identify the value stream for each product, make value

flow without interruptions, let customer pull value from the producer, and pursue

perfection.” Speaking of logistics, it is a relatively new sector (applied to economic

and industrial environments since 1950s’), but its importance has exponentially in-

creased in the last years due to globalization. It does not directly produce value-

added; however, it is generally responsible for a significant share of company costs,

and optimizing it has a major impact on economic rentability and competitiveness.

This thesis work is based on a 6-months internship at the LAAS-CNRS of Tou-

louse started on April 2021. The main goal of the internship was the research of

dynamic scheduling methods for an indoor logistic support system. More specifically,

2

the sought method concerns the optimal satisfaction of specific material needs of an

indoor manufacturing facility. The fleet in charge of performing logistic operations is

composed by a limited number of vehicles, and scheduling methods shall be suffi-

ciently quick to adapt to production changes almost in real-time.

Three are the peculiar and challenging aspects of the problem. First, vehicles can

load different kinds of articles, each with a specific lot size. Hence, the method shall

record a different value for each loadable article expressed in a unified measure unit.

Second, time approximations shall be limited to allow a fine fleet control in accord-

ance with J-I-T principles. Last, the method shall be reactive to production changes

and dynamically adapt current fleet plan.

Considering the importance of inventory management aspects, as well as the analo-

gies with routing problems, the core topic of this thesis was identified as Multi-item

Inventory Routing Problem with Pickup and Delivery (Mi-IRP-PD). Although the

primary objective is generally not inventory-and-routing cost minimization, these

two terms can still be considered for method piloting or evaluation.

Part I is devoted to bibliographic research and the introduction of some important

theoretical concepts met during the internship. Chapter 1 gives a brief insight on

some of the most used combinatorial optimization techniques, with a main distinction

between exact and approximate methods. Chapter 2 contains a general overview of

routing problems’ state-of-the-art. The chapter begins with the most basic problems

such as the travelling salesman one (TSP), and progressively introduces new ele-

ments. The vendor managed inventory (VMI) concept allows to finally reach the

definition of inventory routing problem (IRP). Chapter 3 concerns the Mi-IRP-PD

itself and makes an overview of similar problems in literature.

Part II introduces and discusses in detail the internship core problem, its solving

formulations, and the methods adopted to solve it. First, Chapter 4 presents the

indoor logistic support manager (ILOM), as well as its generalization and a similar

application case in the transportation sector. After that, chapter 5 explains the de-

signed MILP formulations, each with a set hypothesis, the associated mathematical

model, and some considerations about applicability and solvability. Linear program-

ming is a powerful optimization technique, but also very time-consuming. The chance

of getting a solution in a reasonable amount of time is a delicate issue, thus problems

must be wisely formulated, and the choice of a good commercial solver can make the

difference. The chapter proposes formulations with different characteristics, with

both continuous (CT) and discrete (DT) time domains, and diverse degrees of free-

dom concerning the key aspects of the problem. A special focus concerns the formu-

lation called Discrete-Time 1-mainstock Mixed-Integer Linear Program (DT-1ms-

MILP), as it matches with the ILOM problem and was hence developed and tested

during the internship. Chapter 6 introduces an ad-hoc heuristic, specifically designed

to compare and evaluate the performance of DT-1ms-MILP formulation. This

method, simply called Minimum Penalty Algorithm (MPA), is based on a direct tree-

Introduction 3

search, and has the same input and output data format of DT-1ms-MILP for an easy

co-evaluation. Both methods are tested on a set of fictive instances with different

sizes. Chapter 7 presents the characteristics of each test instance, then test results

followed by some critical comments.

Finally, the thesis ends with some conclusions about the developed methods, with

a special focus on DT-1ms-MILP results. Moreover, some future research directions

are suggested to the reader.

4

Blank page

5

PART I

BIBLIOGRAPHIC RESEARCH

AND STATE-OF-THE-ART

6

Blank page

 7

CHAPTER 1

1Introduction

to combinatorial optimization

This chapter presents a general outline about optimization methods, with a focus

on the combinatorial optimization techniques met and implemented during my stud-

ies in France and my internship at the LAAS-CNRS of Toulouse. Although this

content might be non-exhaustive, it helped me and could help the reader to have an

insight on working principles of a set of optimization methods vastly used in litera-

ture and in commercial applications.

1.1 About mathematical optimization

Optimizing consists in finding the best element among a set of available ones by

respecting some selection criteria. An optimization problem (also called mathematical

programming problem) can be written as follows. Given a function 𝑓: 𝑆 → ℝ from a

set 𝑆 to the real numbers, find an element 𝑥∗ in 𝑆 such that 𝑓(𝑥∗) is an extreme

value of 𝑓(𝑥), ∀𝑥 ∈ 𝑆. This problem consists of either a minimization or a maximiza-

tion of 𝑓. Optimization problems are usually stated in terms of minimization, and

the expression 𝑓(𝑥∗) ≥ 𝑓(𝑥) ⟺ −𝑓(𝑥∗) ≤ −𝑓(𝑥), ∀𝑥 ∈ 𝑆 allows the reversion of any

problem direction. 𝑆 is the domain of 𝑓, called search space; the elements of 𝑆 are

called feasible solutions and must respect all problem constraints. 𝑓 is usually called

objective function, sometime renamed loss function, cost function, or energy function

depending on the application field. The solution 𝑥∗ that satisfies all the constraints

and minimizes (or maximizes) the value of 𝑓 is called an optimal solution [2, 3].

Optimization is applied to many technical fields, such as logistics, production sys-

tems, economics, computer science and network design. As for other branches of

applied mathematics, several analogies make it possible to apply similar optimization

problems to very different fields. Frequently the objective functions of different prob-

lems contain similar terms, and the search space is often limited by constraints in a

codified form (upper and lower bounds, balancing, incompatibility, etc.).

8

1.2 Combinatorial optimization

Discrete optimization consists in finding one of the best elements in a search space

𝑆 with at least a component 𝑠 defined in a discrete domain (∃𝑠 ∈ 𝑆 | 𝑠 ⊆ ℤ). Combi-

national optimization is a specification of discrete optimization in which some search

space components are defined on a discrete and finite set. Problems concerning deci-

sion making, resource assignment, or any other field that needs a discrete search

space require combinatorial optimization techniques to be solved. Some application

fields are:

• Graph theory, in which the problem can be formulated as a graph explora-

tion problem. (e.g., the Travelling Salesman Problem shown in chapter 2).

The topic of this thesis work belongs to this category.

• Games theory, that concerns the strategic interactions of decision-makers

with the aim of maximizing their performance.

• Control theory, that studies the influence and the effects of internal and

external agents on a complex system of decision-making units.

• Multi-disciplinary optimization employed in the design of complex sys-

tems in which different technical aspects participate to the global quality of a

product.

The search space of combinatorial optimization problems (COPs) is typically too

large to allow an exhaustive search with a brute force algorithm. In fact, these algo-

rithms usually have a factorial complexity and quickly become unsolvable. Some

Combinational optimization

techniques

Exact Approximate

Ad-hoc heuristics Metaheuristics

Trajectory Population

 Branch&Cut

Branch&Bound
Cutting

planes

Column
generation

Constraint
programming

Dynamic
programming

 Branch&Price

Figure 1.1. Classification of combinational optimization techniques.

Chapter 1. Introduction to combinatorial optimization 9

combinatorial optimization problems can be solved exactly in polynomial time, for

example by a dynamic programming algorithm, or by formulating them with an

integer linear programming approach. However, in most cases the problem is NP-

hard, and only a small group of methods can effectively find a solution. In practice,

the acceptable complexity is often only polynomial; for many instances, approximate

methods such as heuristics and metaheuristics are convenient with respect to exact

methods. These methods find feasible solutions that approximate the optimum, some-

times with a known marge of error, in a generally reasonable amount of time.

1.3 Exact methods

In operations research (OR) and IT, exact methods consist of algorithms that

aim to solve an optimization problem to global optimality. Among the exact methods

of combinatorial optimization, the branch-and-bound is probably the most universally

applied. It consists in the exploration of solution tree, subset by subset, starting from

a given feasible solution 𝑥0. The aim is to progressively find a feasible minorant of

the upper vertex of solution tree. Some other useful techniques are the cutting-plane

methods, often combined with simplex and branch-and-bound methods in a powerful

linear-programming solving approach. The joint application of these three exact

methods is codified under the name of branch-and-cut. It is about exploring the

solution tree of the relaxed problem, in which integer constraints are initially lifted,

then gradually reformulate them with cutting-plane methods until the initial problem

is reobtained. In particular, the branch-and-cut method is used by all major commer-

cial solvers for ILP and MILP problems (Mixed-Integer Liner Programming), as well

as any other type of linearizable formulation. Other techniques to solve exact com-

binatorial optimization problems are dynamic programming – provided that problem

optimum is reachable by breaking it down into subproblems and solving them to the

optimum – and constraint programming – where there is no objective function and

solution should just respect all problem constraints. Finally, it is worth mentioning

the column generation methods, which apply to large linear problems and make it

possible to solve them by considering only a subset of involved variables.

1.3.1 Dynamic programming

Dynamic Programming (DP) applies to broken-down problems for which it can

be demonstrated that the optimality of subproblems also grants global optimality.

This concept, formalized in the Bellman equation, was introduced by him in [4] for

solving optimization problems.

Let us consider a generic optimization problem 𝑚𝑎𝑥{𝑓(𝑥) | 𝑥 ∈ 𝑆}. DP can be applied

to optimally solve the problem if the feasible region 𝑆 can be divided into subsets

𝑆0 ⊂ 𝑆1 ⊂ ⋯ ⊂ 𝑆𝑛 = 𝑆, and global optimum can be reached by a set of sequential

10

solutions of growing size, such that the optimum in 𝑆𝑖 is equal to the optimum in

𝑆𝑖−1 plus the optimum of the problem 𝑚𝑎𝑥{𝑓(𝑥) | 𝑥 ∈ 𝑆𝑖 ∪ 𝑆𝑖−1}, for each 𝑖 ∈ {1,… , 𝑛}:

 𝑓(𝑥∗) = {
𝑓(𝑥, 𝑆0)

𝑓(𝑥, 𝑆𝑖) = 𝑓(𝑥, 𝑆𝑖−1) + 𝑓(𝑥, 𝑆𝑖, 𝑆𝑖−1)
 (1.1)

1.3.2 Linear programming

“Linear programming (LP) is an optimization method to achieve the best out-

come in a mathematical model the requirements of which are represented by linear

relationships. In fewer words, linear programming is a technique for the optimization

of a linear objective function, subject to linear constraints. Its feasible region is a

convex polytope, which is a set defined as the intersection of finitely many half

spaces, each of which is defined by a linear inequality. Its objective function is a real-

valued linear function defined in this polytope. A linear programming algorithm finds

a point in the polytope where this function has its extreme value (min or max), if

such a point exists.” [5].

In their canonical form, LP problems concern the research of the optimal solution

vector 𝑥 ∈ ℝ𝑛 out of the statement:

Maximize 𝑐𝑇𝑥 (1.2)

Subject to 𝐴𝑥 ≤ 𝑏,
 𝑥𝑖 ≥ 0

𝑐 ∈ ℝ𝑛 is the column vector of objective function coefficients, 𝑏 ∈ ℝ𝑚 is the column

vector of constraint constant terms, and 𝐴 ∈ ℝ𝑚×𝑛 is the matrix of constraint coeffi-

cients. “The inequalities 𝐴𝑥 ≤ 𝑏 and 𝑥 ≥ 0 are the constraints which specify a convex

polytope over which the objective function is to be optimized. In this context, two

vectors are comparable when they have the same dimensions. If every entry in the

first is less-than or equal-to the corresponding entry in the second, then it can be

said that the first vector is less-than or equal-to the second vector.” [5].

Each corner solution of the polytope 𝑥′ contains basic 𝑥𝑖
𝑁 and non-basic 𝑥𝑖

𝑁𝐵 varia-

bles. Variable 𝑥𝑖
′ ∈ 𝑥′ is said basic with respect to that corner if it assumes a non-

zero, non-basic otherwise.

Figure 1.2. A generic 3-d polytope and a 3-d simplex (simplest polytope).

Chapter 1. Introduction to combinatorial optimization 11

As shown in (1.2), the canonical form of a maximization LP problem requires all

constraints to be written as smaller-or-equal inequations. However, in real-life prob-

lems grater-or-equal signs are very often required, and there are some techniques to

write a generic LP formulation in its canonical form by adding auxiliary variables

𝑦𝑘 ≥ 0 to every grater-or-equal constraint.

Maximize 𝑐𝑇𝑥 → Maximize 𝑐𝑇𝑥 (1.3)

Subject to 𝐴𝑥 ≥ 𝑏, Subject to 𝐴𝑥 + 𝑦 ≤ 𝑏
 𝑥 ≥ 0 𝑥, 𝑦 ≥ 0

Moreover, other than the canonical form, a LP formulation can be written in its

standard form, in which all constraints are equalities. To do so, some slack variables

𝑒𝑖 ≥ 0 are added to each constraint to represent the distance between the hyperplane

of the original constraint and the current solution vertex [6].

Maximize 𝑐𝑇𝑥 → Maximize 𝑐𝑇𝑥 (1.4)

Subject to 𝐴𝑥 ≤ 𝑏, Subject to 𝐴𝑥 + 𝑒 = 𝑏
 𝑥 ≥ 0 𝑥, 𝑒 ≥ 0

1.3.2.1 LP duality

Duality is an important property of mathematical programming. Given a primal

linear program (max 𝑐𝑇𝑥 s.t. 𝐴𝑥 ⋛ 𝑏), it can be turned into its dual problem, (min

𝑏𝑇𝑢 s.t. 𝐴𝑇𝑢 ⋛ 𝑐) by following some conversion rules:

Table 1.1 Primal-dual relationships in a LP.

Primal (dual) Dual (primal)

Maximization → Minimization

Constraint 𝑖 ≤ → Variable 𝑢𝑖 ≥ 0

Constraint 𝑖 ≥ → Variable 𝑢𝑖 ≤ 0

Constraint 𝑖 = → Variable 𝑢𝑖 ∈ ℝ

Variable 𝑥𝑗 ≥ 0 → Constraint 𝑗 ≥

Variable 𝑥𝑗 ≤ 0 → Constraint 𝑗 ≤

Variable 𝑥𝑗 ∈ ℝ → Constraint 𝑗 =

Cost 𝑐𝑗 → Parameter 𝑐𝑗

Parameter 𝑏𝑖 → Cost 𝑏𝑖

Coefficient 𝑎𝑖𝑗 → Coefficient 𝑎𝑗𝑖

Theorem of weak duality. Given a linear program, any feasible solution 𝓏 of the

primal formulation (written as a maximization) provides a lower bound for the opti-

mal value 𝑤∗ of the dual formulation (written as a minimization). Similarly, any

feasible solution 𝑤 of the dual formulation provides an upper bound for the optimal

value 𝓏∗ of the primal formulation. The statement with all signs reversed is also true.

12

Theorem of strong duality. Given a linear program, if its primal formulation has

an optimal solution, then the dual formulation also has one, and they have the same

value 𝓏∗ = 𝑤∗.

1.3.2.2 Simplex algorithm

The simplex algorithm and its variants are widely used to solve LP problems.

Their working principle was first introduced by George Dantzig in 1947 as an exact

rigorous method to find the corner point of a 𝑛-dimensional convex polytope that

maximizes an objective function 𝑓: 𝑆 → ℝ.

The algorithm requires a linear program written in its standard form and a first

feasible solution to start. The first solution can be a trivial one (e.g., the origin 𝑥 = 0⃗)

or obtained by solving a modified version of the problem. After that, the simplex

algorithm is based on two fundamental considerations:

1. It can be demonstrated that if a value 𝑥∗ exists in 𝐴 such that

𝑓(𝑥∗) = max{𝑓(𝑥) | 𝑥 ∈ 𝑆}, this value is geometrically located in a corner of

problem’s polytope.

2. It is also true that any linear objective function is weakly monotone along all

convex polytope edges. Therefore, it can be stated that each edge connects

two extreme points 𝑥1, 𝑥2 such that 𝑓(𝑥1) ≥ 𝑓(𝑥2), and that the edge can be

‘crossed’ by switching a basic variable with a non-basic one in 𝑥.

The simplex algorithm exploits these principles to ‘walk’ along the polytope edges

and arrive, if it exists, to the optimum corner in a finite number of iterations (since

finite is also the number of vertices in the polytope) [7, 8, 9].

1.3.2.3 Discrete linear programs: ILP and MILP

Even though simplex algorithm is designed to solve LP problems, it is often com-

bined with relaxation techniques and heuristics for solving discrete linear programs.

Given an optimization problem, if all its variables have integer domains the problem

is called an integer linear programming (ILP) problem. Unlikely most LP problems,

𝐴

𝑐𝑇

𝑏
𝐴𝑇

𝑏𝑇

𝑐

Primal

max 𝑐𝑇𝑥

s.t. 𝐴𝑥 ⋛ 𝑏

Dual

min 𝑏𝑇𝑦

s.t. 𝐴𝑇𝑦 ⋛ 𝑐

Figure 1.3. Representation of a primal problem and its dual.

Chapter 1. Introduction to combinatorial optimization 13

the existence of integer or binary constraints makes ILP problems NP-hard, and do

not always allow an effective resolution with existing methods.

If only a subset of variables has integer or binary domains, the problem is called

a mixed-integer linear programming (MILP) problem. These problems are generally

NP-hard, too, and are largely encountered in combinatorial optimization applica-

tions. Chapter 6 of this thesis is devoted to the developed MILP formulations.

1.3.3 Cutting-plane methods

Cutting-plane are a group of exact optimization methods for integer linear pro-

grams. They were first introduced by Ralph E. Gomory in the 1950s’ and further

developed by Václav Chvátal. “The cutting-plane method is any of a variety of op-

timization methods that iteratively refine a feasible set or objective function by

means of linear inequalities, termed cuts. Such procedures are commonly used to find

integer solutions to mixed-integer linear programming (MILP) problems, as well as

to solve general, not necessarily differentiable, convex optimization problems.” [10].

“Cutting plane methods for MILP work by solving a non-integer linear program, the

linear relaxation of the given integer program. The theory of Linear Programming

dictates that under mild assumptions (if the linear program has an optimal solution,

and if the feasible region does not contain a line), one can always find an extreme

point or a corner point that is optimal. The obtained optimum is tested for being an

integer solution. If it is not, there is guaranteed to exist a linear inequality that

separates the optimum from the convex hull of the true feasible set. Finding such an

inequality is the separation problem, and such an inequality is a cut, that can be

added to the relaxed linear program. This process is repeated until the best integer

solution is found.” [10, 11].

Cutting plane methods can also solve nonlinear problems as long as solution

search space is convex and continuous. Kelley's method, Kelley–Cheney–Goldstein

method, and bundle methods are commonly used to this purpose. They can solve

“non-differentiable convex minimization, where a convex objective function and its

subgradient can be evaluated efficiently but usual gradient methods for differentiable

optimization cannot be used.” [10]. The underlying principle of these nonlinear meth-

ods is to approximate the feasible region of a convex problem by a set of linear half-

spaces enclosed in problem search space.

1.3.3.1 Gomory cut

In practice, the cutting-plane method proposed by Gomory is considered ineffec-

tive due to the many rounds often required to progress towards problem solution,

besides being subject to numerical instability. Nevertheless, these methods gained in

popularity during the 1990s’, when Gérard Cornuéjols and his research team

14

demonstrated the effectiveness of combining cutting-planes with branch-and-bound

methods, and developed some techniques to avoid numerical instability. Since then,

cutting-plane methods are greatly employed in commercial solvers for discrete and

combinatorial optimization. “Gomory cuts are very efficiently generated from a sim-

plex tableau, whereas many other types of cuts are either expensive or even NP-hard

to separate. Among other general cuts for MILP, most notably lift-and-project dom-

inates Gomory cuts.” [11, 12].

In the following, the working principle of Gomory cut is briefly discussed. Let us

consider an ILP or MILP problem:

Maximize 𝑐𝑇𝑥 (1.5)

Subject to 𝐴𝑥 ≤ 𝑏,

 𝑥 ≥ 0, 𝑥𝑗 integer

First, integer constraints are dropped, and the problem is solved in its relaxed con-

tinuous form. This solution is geometrically located in a vertex of the expanded

polytope containing the whole feasible region of the original problem. If this vertex

does not satisfy all the integer constraints, then it cannot be the sought solution, and

a hyperplane is generated to separate it from the feasible integer points inside the

polytope. To do so, an additional linear constraint – a Gomory cut – is added to the

relaxed problem to cut the infeasible vertex out of the polytope. The relaxed problem

with cutting-plane constraints is then solved, and the process is iterated until a fea-

sible solution is found.

Other than Gomory, other cutting-plane techniques commonly used by commer-

cial solvers are, e.g., implied bound, projected implied bound, MIR, strong Chvátal-

Gomory, flow cover, zero half, RLT, relax-and-lift.

1.3.4 Branch-and-bound

Branch-and-bound (B&B) is the solving-paradigm of several exact algorithms for

ILP problems, based on the progressive and systematic exploration of solution search

space by splitting it and evaluating the resulting branches. Proposed by Alisa Land

and Alison Doig in the 1960s’, B&B is today one of the most used exact solving

approaches for NP-hard problems, such as the Travelling Salesman Problem (pre-

sented in chapter 2) and many other combinatorial optimization applications.

Branch-and-bound algorithms start by considering the solution of a relaxed ver-

sion of the problem, and as their name suggests, rely on two working principles:

1. Split the search space into smaller pieces by a defined criterion (branching).

2. Find the optimum on each branch, compare the results, and trim the branches

for which it is proven they cannot contain the optimal solution (bound).

Chapter 1. Introduction to combinatorial optimization 15

The algorithm below shows the basic working principle of branch-and-bound in

the case of a maximization. Let us consider a ILP problem 𝑃0 and its relaxed version

𝑃0𝑅. The symbol �̂� indicates the problem currently being pointed by the algorithms,

which is associated to a node in the search tree. Each problem 𝑃 – thus each node –

is a continuous LP that can be solved with the simplex algorithm. Its optimal solution

and optimal solution objective value are indicated with 𝑥𝑃 and 𝑓(𝑥𝑃). The algorithm

also speaks of closed and non-closed nodes; in fact, once branches are explored, the

algorithm closes and do not visit them anymore [13].

Algorithm 1.1. Branch-and-bound general algorithm

1 Initialize root-node 𝑃 ← 𝑃0𝑅 and the pointed-node �̂� ← 𝑃0𝑅

2 Initialize objective bound values 𝑓 ← 𝑓(𝑥𝑃0𝑅
), 𝑓 ← 0

3 While children(𝑃) ≠ ∅ do

4 If �̂� is feasible and 𝑓(𝑥�̂�) ≥ 𝑓 and has any non-closed child

6 If �̂� breaks any integral constraint of 𝑃0

7 Descend of a level: �̂� ← best non-closed node in children(�̂�) gener-

ated with branching criteria. Each child of �̂� is equal to �̂� ∪ {addi-

tional constraint}.

8 Else → feasible solution found

9 Close the node �̂� (bound)

10 If 𝑓(𝑥𝑃0
) < 𝑓(𝑥�̂�) or 𝑥𝑃0

 still unfound

11 Titular best solution: 𝑥𝑃0
 ← 𝑥�̂�

12 New obj. lower bound: 𝑓 ← 𝑓(𝑥�̂�)

13 End if

14 Climb of a level: �̂� ← parent(�̂�)

15 End if

16 Else → �̂� ‘dead branch’

17 Close the node �̂� (bound)

18 Climb of a level: �̂� ← parent(�̂�)

19 End if

20 If 𝑃 has only one non-closed child

21 New active root-node: 𝑃 ← non-closed child of 𝑃

22 New obj. upper bound: 𝑓 ← 𝑓(𝑥𝑃)

23 End if

24 Continue

The upper bound at line 2 can also be initialized via a heuristic method. This trick

can help accelerate the B&B algorithm.

Concerning the branching criteria at line 7, the simplest classic technique is splitting

problem �̂� into two subproblems, each with an additional constraint originated from

a violated integral condition. More specifically, given an optimal solution 𝑥�̂�
∗ for which

16

the component 𝑥�̂�,𝑗
∗ is required to be integer but is not, two are the children problems

originated from �̂�: �̂� ∪ {𝑥�̂�,𝑗 ≤ ⌊𝑥�̂�,𝑗
∗ ⌋} and �̂� ∪ {𝑥�̂�,𝑗 ≥ ⌈𝑥�̂�,𝑗

∗ ⌉}.

1.3.5 Branch-and-cut

As it can be inferred from the paragraphs above, branch-and-cut algorithms adopt

the branch-and-bound exploration approach with the application of cutting-plane

methods before each branching step. The employed cutting-plane techniques can vary

during the same solving instance. The locally unsatisfied integral conditions give

indications about which cutting methods are likely to be the most effective for the

algorithm. Although the simplex algorithm is generally quick, the B&B algorithm

requires to run it a great number of times, and a good cutting approach has a re-

markable impact on branch-and-cut duration.

Two are the main reasons to prefer a branch-and-cut approach over a simple branch-

and-bound [14]:

1. To reduce the number of nodes to explore and the simplex instances to solve,

thus accelerate the overall algorithm.

2. To reduce the number of explicit constraints in case the original problem has

too many to be exhaustively enumerated.

1.3.6 Column generation

Column generation (CG) is a technique for solving large LP problems based on

the duality and reduced cost concepts. Since duality do not apply to ILP, column

generation cannot solve discrete optimization problems. The idea behind it is that

many linear programs are too large to allow the exhaustive enumeration of all vari-

ables; in addition, it can be assumed that the basic (non-zero) variables in the opti-

mal solution will only be a restricted subset of the whole. CG is hence a method to

rewrite a linear program only considering the subset of variables that impacts the

objective function [15].

First, the initial master problem (MP) is converted into the restricted master

problem (RMP) only formed by a subset of MP variables. The choice of RMP vari-

ables can be made, for example, with a heuristic approach. After that, the RMP and

its dual are solved for finding the optimal value of dual variables 𝑢𝑖, needed by CG

to generate the subproblem (also called pricing problem), then check for RMP’s op-

timality. The pricing problem consist in searching for new variables to add to RMP

thought the search for the smallest (for a minimization) reduced cost in the reduced

cost vector 𝑐̅:
 𝑐̅∗ = 𝑚𝑖𝑛{𝑐𝑗 − ∑ 𝑎𝑖𝑗𝑢𝑖

𝑚
𝑖=1 , ∀𝑗 ∈ [1,… , 𝑛]} (1.6)

Chapter 1. Introduction to combinatorial optimization 17

If 𝑐̅∗ is negative, it means that the associated variable can improve the solution,

therefore it is added to RMP, which is solved again with its dual and the process

repeats until no more negative reduced costs are found [14].

Reduced cost concept is essential to the column generation method. “Reduced

cost 𝑐�̅� is the amount by which an objective function coefficient 𝑐𝑗 would have to

improve (so increase for maximization problem, decrease for minimization problem)

before it would be possible for a corresponding variable 𝑥𝑗 to assume a positive value

in the optimal solution.” [16].

1.3.7 Branch-and-price

The column generation method can also help solving large ILP and MILP prob-

lems if combined to branch-and-bound algorithms. Branch-and-price is the name of

some algorithms based on tree exploration (like branch-and-bound) and exploiting

column generation to solve the large relaxed linear programs before each branching

[14].

On the other hand, branch-and-price algorithms are not easy to use due to sub-

problems, sometimes hard to solve, and to the need to find effective branching tech-

niques for avoiding an uncontrolled constraint propagation.

1.4 Heuristic methods

“A heuristic technique (from Greek εὑρίσκω ‘to find, discover’) is any approach to

problem-solving that uses a practical method and various shortcuts in order to pro-

duce solutions that may not be optimal, but are of a sufficient quality given a limited

timeframe or deadline.” [17]. Heuristic methods are usually problem-dependant, and

“are used for quick decisions, especially when finding an optimal solution is either

impossible or impractical and when working with complex data.” [17]. “A heuristic

function ranks alternatives at each branching step of a search algorithm, deciding

the branch to follow based on available information.” [18].

Heuristic methods do not backtrack what they progressively find, that means they

do not have an improvement phase after the exploration one.

1.5 Metaheuristic methods

As stated above, heuristics are problem-dependent methods. As such, they need

to be manually adapted to any new problem to take full advantage of problem char-

acteristics and peculiarities. In addition, unless proven otherwise (e.g., by demon-

strating the objective function is convex), heuristic methods usually end their search

in local optima and fail, in general, to reach the global optimum.

18

On the other hand, metaheuristics are problem-independent methods. Their working

principles are not as greedy as heuristic techniques, and they generally succeed in

reaching better solutions. However, they still need to be tuned at hand depending on

the problem to improve, as their working parameters have a remarkable impact on

results. In general, they need a solution to start, then explore the search space around

them trying to increase solution quality with a trade-off between randomized and

local deterministic search. In some cases, they can accept some partial solution dete-

riorations to get out of a local optimum point (this is the case, e.g., of simulated

annealing algorithm, in which adverse solution fluctuations are accepted on a sto-

chastic basis).

A first metaheuristic classification divides metaheuristics into trajectory-based

and population-based. The main methods belonging to these two categories are shown

in the chart at figure 1.4. The structural difference between them lies in memory

usage. In fact, trajectory-based metaheuristic are memory-less algorithms in which

“the next state only depends on the information accumulated in the current state of

the search process, as a Markov process.” [19]. On the contrary, population-based

methods are also known as memory-usage algorithms, as “there is a usage of short

and/or long-term memory. Usually, the first keeps track of recently visited solutions

(moves), while the second has a wider information storage concerning the entire

search process.” [19].

1.5.1 History of metaheuristic methods

As for most optimization techniques, the history of metaheuristics is coeval with

computer evolution. The first landmark came with the development of evolutionary

algorithms by I. Rechenberg and H. Schwefel in the 1960s’. Some years later, J.

Holland proposed the genetic algorithms is his seminal book published in 1975. In

1983, S. Kirkpatrick developed the simulated annealing, that takes inspiration by

metals annealing process, and in the same years F. Glover was working on his tabu

Metaheuristic methods

Trajectory-based Population-based

Ant

colony

Swarm

optimization

Tabu

search

Local search

algorithms
GRASP

Simulated

annealing

Genetic

algorithms

Figure 1.4. Partial classification of metaheuristic methods.

Chapter 1. Introduction to combinatorial optimization 19

search, then published in 1997. In tabu search algorithms, a tabu list contains the

elements to avoid to progressively get to the best feasible one.

The innovative ant colony optimization was proposed in 1992 by M. Dorigo in his

PhD thesis, and in the same year J. R. Koza published a revolutionary book about

genetic programming. Between 1995 and 1997, J. Kennedy and R. C. Eberhart pro-

posed the particle swarm optimization, while R. Storn and K. Price developed the

vector-based differential evolution algorithm, that proved to be better than genetic

algorithms in many cases [20].

Innovation trend kept on during 21st century. “First, Z. Woo Geem developed the

harmony search algorithm in 2001, a music-inspired algorithm. Around 2002, a bac-

teria foraging algorithm was developed by Passino. In 2004, S. Nakrani and C. Tovey

proposed the honeybee algorithm and its application for optimizing internet hosting

centres, which was followed by the development of a novel bee algorithm by D. T.

Pham and the artificial bee colony by D. Karaboga in 2005. In 2009, X. Yang and

S. Deb introduced an efficient cuckoo search algorithm and proved it to be far more

effective than most existing metaheuristic algorithms.” [20].

1.5.2 Genetic algorithm

Genetic algorithms are abstractions of biological behaviours based on Charles

Darwin's theory of natural selection. Many variants of genetic algorithms have been

developed and applied to a wide range of optimization problems, such as graph col-

ouring, pattern recognition, for both discrete (e.g., the travelling salesman problem)

and continuous systems (e.g., aerospace airfoil design). Crossover, recombination,

mutation and selection are the essential components of genetic algorithms’ solving

strategy. “The essence of genetic algorithms involves the encoding of solutions as

arrays of bits or character strings (chromosomes), the manipulation of these strings

by genetic operators and a selection based on their fitness to find a solution to a

given problem.” [20].

Figure 1.5 shows how each algorithm iteration gives birth to a new generation of

chromosomes, that is the current solution population. The objective function is usu-

ally encoded in a fixed-length binary or real array. The most critical issues of genetic

algorithms concern the choice of proper fitness function and selection criteria, as well

as the extent of crossover and mutation operations. Transferring some good chromo-

somes from a generation to another without much change is called elitism. “The basic

procedure consists in selecting the best chromosome (in each generation) which will

be carried over to the new generation without being modified by the genetic opera-

tors. This ensures that a good solution is attained more quickly.” [20].

20

1.5.3 Simulated annealing

Simulated annealing (SA) is based on the metal annealing process and the statis-

tical mechanics principles that rule it. It was specifically presented to solve combi-

natorial optimization problems with an explicit strategy to avoid being trapped in

local minima. A well-tuned SA has the potential to converge either to global opti-

mum, or to a very good solution close to it.

Problem solution is iteratively perturbated by some fluctuations similar to those of

genetic algorithms (mutation, crossover, etc.). “Essentially, SA is a search along a

Markov chain, which converges under appropriate conditions.” [20]. If the energy of

the new system is lower than the previous one (i.e., new solution is ‘more optimal’),

the new solution is retained. However, the most characteristic aspect of SA is the

Figure 1.5. Flowchart of a generic genetic algorithm.

Chapter 1. Introduction to combinatorial optimization 21

acceptance in some circumstances of search moves that do not improve the optimality

of current solution. The acceptance of these apparently adverse changes – adverse in

the short-term, but likely beneficial to final result – is calculated with the Metropolis-

Hastings algorithm as:

 𝑝 = exp (−
Δ𝐸

𝑘𝐵𝑇
) (1.7)

𝑝 is the acceptance probability, and this exponential expression is known as Boltz-

mann’s distribution. 𝑇 is the temperature that rules SA progression; 𝑘𝐵 is the Boltz-

mann’s constant; Δ𝐸 is the energy gap between the new and the old solution, that is

proportional to objective function variation (Δ𝐸 ∝ Δ𝑓). From the Boltzmann’s dis-

tribution at (1.7), it can be inferred that as temperature increases, the probability of

retaining an adverse fluctuation decreases. Also, a wider positive energy gap results

in a smaller chance of retaining the new solution. In practice, the adverse solution is

retained if the value drawn from a simple uniform distribution U(0,1) is smaller than

Figure 1.6. Flowchart of simulated annealing.

22

exp(−Δ𝐸 𝑘𝐵𝑇⁄). After solution evaluation and replacement, a cooling low is applied

to decrease temperature 𝑇 and make the algorithm progress:

 𝑇 = 𝑇0 ⋅ exp(− 𝑡 𝜏⁄) (1.8)

Where 𝑇0 is the initial SA temperature, 𝑡 is the fictive time that increases by one at

each iteration, and 𝜏 is the cooling parameter. SA general algorithm is shown in

figure 1.6. The termination criterion is usually a lower temperature limit 𝑇𝑚𝑖𝑛, so

that SA ends when 𝑇 ≤ 𝑇𝑚𝑖𝑛. The values of 𝑇0, 𝜏, 𝑇𝑚𝑖𝑛 and the extent of fluctuations

must be carefully chosen to obtain good solutions [20, 21].

1.5.4 Tabu search

Tabu search (TS) is a memory-based algorithm largely used in combinatorial

optimization. Unlikely simulated annealing, TS stores a number of tried solutions in

a tabu list to avoid circularities, escape local minima, and speed up local search.

“studies show that the use of tabu lists with integer programming can save compu-

ting effort by at least two orders of magnitude for a given problem, as compared with

standard integer programming.” [20]. As shown at point ❸ of figure 1.7, the tabu

list has a limited size called tabu tenure and is dynamically filled and emptied as the

algorithm progresses, often with a simple FIFO technique. Termination criterion can

either be the achievement of a solution with the desired characteristics and quality,

or the depletion of local search space {𝑠′ | 𝑠′ ∈ Γ(𝑠) ∖ 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡}. Given a solution 𝑠,

Γ(𝑠) is the set of neighbour solutions reachable from 𝑠 with an elementary local

search move.

Figure 1.7. Flowchart of a simple tabu search.

Chapter 1. Introduction to combinatorial optimization 23

It could be argued that keeping in memory a bunch of complete solutions can result

inefficient. Therefore, it is not uncommon to only store a set of solution attributes

that grant a univocal solution identification. “Attributes are usually components of

solutions, moves, or differences between two solutions.” [21]. Obviously, a special

care must be put in the choice of attributes that minimize the risk of ambiguities.

1.5.5 Ant colony optimization

Ant colony optimization (ACO) is inspired by the social behaviour of ants and

their interaction with the surrounding environment. “Each ant lays chemical scents

called pheromones to communicate with others, and is also able to follow the route

marked with pheromone laid by other ants. When an ant finds a food source, it will

mark the trail to and from it with a defined quantity of pheromone.” [20].

Once laid, pheromone has a concentration 𝜑0 that evaporates with time at the ex-

ponential rate 𝜉 shown at (1.9). Pheromone evaporation is crucial to algorithm con-

vergence to a self-organized state.
 𝜑(𝑡) = 𝜑0 exp(−𝜉𝑡) (1.9)

Let 𝑃 be a CO problem with a finite 𝑛 × 𝑚-dimensional search space

𝑆 = {𝑥𝑖𝑗}𝑖∈{1,…,𝑛},𝑗∈{1,…,𝑚}, and an objective function 𝑓: 𝑆 → ℝ. A pheromone value is

associated to any possible variable assignment. I.e., a time-dependent pheromone

value 𝜑𝑎𝑏
𝑖 (𝑡) exist for each endomorphism 𝑥𝑖𝑎 ↦ 𝑥𝑖𝑏. Given a variable component 𝑖

with values 𝑥𝑖𝑎, an ant chooses the next variable value 𝑥𝑖𝑏 with a stochastic mecha-

nism. However, if edge (𝑎, 𝑏) presents a pheromone track, the probability of choosing

it is proportional to pheromone concentration 𝜑𝑎𝑏
𝑖 (𝑡). In turn, 𝜑𝑎𝑏

𝑖 (𝑡) is enhanced by

the number of ants crossing (𝑎, 𝑏) to search for food on the other side. As the algo-

rithm evolves, the overall favourite path emerges as the most convenient one. This

is the basic working principle of any ant colony algorithm [22].

1.5.6 Particle swarm optimization

Particle swarm optimization (PSO) is based on the swarm behaviour of some

animal species, such as fishes and birds. “PSO has been applied to almost every area

in optimization, computational intelligence, and design/scheduling applications.

There are at least two dozens of PSO variants, and a much larger number of hybrid

algorithms obtained by combining PSO with other optimization techniques, which

are increasingly popular.” [19]. The working principle of PSO consists of piecewise

particle trajectories formed by three components (bold letters indicate vectors):

• a deterministic component that tends to attract each particle toward the

global best solution 𝑿∗;

• a deterministic component that tends to attract each particle towards the best

solution found for the particle itself 𝒙𝑖
∗;

24

• a stochastic component that randomly moves the particle in the search space.

Each particle is a candidate solution for the problem and is associated to a time-

dependent positional vector with a position and a velocity [23]. “PSO is a metaheu-

ristic, as it makes few or no assumptions about the problem being optimized and can

search very large spaces of candidate solutions. Also, PSO does not use the gradient

of the problem being optimized, which means PSO does not require that the optimi-

zation problem be differentiable as is required by classic optimization methods such

as gradient descent and quasi-newton methods.” [24].

At each time 𝑡, each particle 𝑖 has a position vector 𝒙𝑖,𝑡 and velocity vector 𝒗𝑖,𝑡.

For every PS iteration, the new velocity vector of 𝑖 is calculated as:

 𝒗𝑖,𝑡+1 = 𝜃𝒗𝑖,𝑡 + 𝜙𝑠𝑟𝑠(𝑿
∗ − 𝒙𝑖,𝑡) + 𝜙𝑐𝑟𝑐(𝒙𝑖

∗ − 𝒙𝑖,𝑡) (1.10)

𝜃 is the inertia parameter that plays a stabilizing role and must be smaller than 1

to prevent swarm divergence. Typically, 𝜃 ∈ [0.5,0.9]. 𝜙𝑠 and 𝜙𝑐 are respectively

called cognitive and social coefficient, as they determine these two aspects of particle

behaviours. In general, 𝜙𝑠, 𝜙𝑐 ≈ 2. 𝑟𝑠 and 𝑟𝑐 are two random coefficients drawn from

a uniform distribution U(0,1) that determine the extent of the component to which

they are associated. Consequently, the new position of 𝑖 is calculate as:

 𝒙𝑖,𝑡+1 = 𝒙𝑖,𝑡 + 𝒗𝑖,𝑡+1 (1.11)

As the algorithm progresses, the best particle swarm solution 𝑿∗ could converge

toward the global optimum. As for other metaheuristic, the choice of parameters 𝜃,

𝜙𝑠 and 𝜙𝑐 has a major impact on solution quality, and many research works are

focused on PSO parametrization procedures [19].

1.5.7 Harmony search

Harmony Search (HS) is a relatively new metaheuristic based on music composi-

tion. The HS optimization moves are inspired by the following three musician exer-

cises [20].

Musicians HS optimization

Play a piece of music they know Usage of harmony memory

Play a piece arranged from a known one Pitch adjustment

Compose new music or random notes Randomization

The basic HS method is composed of four principal steps [25]:

1. The HS memory (HSM) is initialized with a set of 𝑚 random solutions to the

problem: {𝑥𝑚 ∈ HSM | 𝑥𝑚 = {𝑥1
𝑚, 𝑥2

𝑚, … , 𝑥𝑛
𝑚}}.

Chapter 1. Introduction to combinatorial optimization 25

2. Generate a new solution 𝑥′ = {𝑥1
′ , 𝑥2

′ , … , 𝑥𝑛
′ } from HSM elements. Each com-

ponent 𝑥𝑖
′ is randomly chosen from an existing 𝑥𝑗

𝑚 and mutated with a pitching

adjust rate. This step of HS is similar to genetic algorithm’s crossover and

mutation.

3. If 𝑥′ is better than the worst solution in HSM, it takes its place, elsewise it is

discarded.

4. Repeat steps 2 and 3 until a termination criterion is met. For example, a

solution in HSM has the desired quality, or the maximum number of iterations

is reached.

1.5.8 GRASP

The Greedy Randomized Adaptive Search Procedure (GRASP) is a multi-start iter-

ative metaheuristic in which each iteration presents two steps:

1. Construction, in which a solution is built with a greedy heuristic.

2. Local search, that tries to repair the solution obtained at point 1 in case it

is infeasible. If local search cannot reach feasibility, the solution is discarded

and a new initial solution is sought. Otherwise, the feasible solution is kept,

and a new neighbourhood is recursively searched until a local minimum is

reached.

GRASP is based on the multiple resolution of the problem with a logic improvement

pattern. The randomized component of GRASP lies in its multi-start approach, as

the initial solutions sought at point 1 are obtained with different greedy parameters.

Once the algorithm is over, the best solution found during its execution is picked as

problem solution [26].

GRASP was introduced by [27] in 1989, and its first application concerned the

set covering problem. Today this flexible algorithm is widely used in a number of

hybrid applications, often combined with other metaheuristic such as tabu search,

simulated annealing, and genetic algorithms.

26

Blank page

 27

CHAPTER 2

2Overview on Routing Problems

Vehicle Routing Problems (VRPs) are an important class of problems in opera-

tions research and combinatorial optimization. The common goal is to determine the

routes of a vehicle fleet to perform some tasks at a certain number of space-distrib-

uted stations under a series of constraints. The objective is minimizing the cost of

problem solution based on many factors, such as distance and penalties. This kind

of problem is generally applied to logistic and transport science problems; however,

they can easily be adapted to other fields due to the strong analogies they have with

other organizational problems, such as circuits (electrical, hydraulic, etc.) and com-

puter networks design.

This chapter shows the basic concepts of VRPs and progressively adds complexity

elements that are relevant to the topic of this thesis.

2.1 Travelling Salesman Problem

The statement of the TSP (Traveling Salesman Problem) is as follows. Given a

set of 𝑛 points (also called cities) and the pairwise distances between them, find the

closed path in which each city is visited once and only once and the total travelled

distance is minimal. Formally, the problem consists in finding the shortest Hamilto-

nian cycle in a graph 𝐺 = (𝑉, 𝐸, 𝑐), where 𝑉 is the set of vertices (cities), 𝐸 is the set

of edges, and 𝑐 is the set of costs associated to each edge. To make sure the problem

is solvable, an associated Hamiltonian graph must exist [28].

This problem could look easy, but is still one of the most studied in combinatorial

optimization and belongs to the list of 21 NP-complete problems of Karp. The TSP

is NP-complete as no known method can grant an effective resolution for any problem

instance. Non-deterministic Polynomial-time (NP) problems are a class of computa-

tional decision problems solvable by a non-deterministic Turing machine in polyno-

mial time. NP-complete problems are defined as the hardest NP problems [29].

The TSP is said symmetrical if all edges are bidirectional and both directions have

the same weight, asymmetrical otherwise.

28

A brute-force algorithm for solving this problem has a factorial complexity 𝑂(𝑛!),

more precisely equal to (𝑛 − 1)! 2⁄ . Thus, problem resolution with this kind of algo-

rithms becomes soon impractical also with a few cities [28]. Held and Karp demon-

strated that dynamic programming algorithms can solve the TSP with a time com-

plexity of the order 𝑂(𝑛22𝑛) [30]. “Among the methods known today, the best for

the resolution of the TSP have proved to be linear optimization and approximate

methods such as heuristics and metaheuristics. Linear programming can solve con-

siderably large problems, even if solving times can be important.”

As long as problem size is reasonable, the TSP can be solved with a ILP formulation;

given a set of cities 𝒞 = {dep, 1, … , 𝑛} such that the travelling cost 𝑐𝑖𝑗 is known for

each pair (𝑖, 𝑗), find the best set of binary connection variables 𝑥𝑖𝑗 such that each

city is visited once and only once, and the total problem cost is minimized:

Minimize ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑛
𝑗≠𝑖

𝑛
𝑖 (2.1)

Subject to ∑ (𝑥𝑖𝑗 + 𝑥𝑗𝑖)𝑛
𝑖 = 1, ∀𝑗 ∈ 𝒞 (visit unicity constraints)

𝑥𝑖𝑗 ≥ 𝑥𝑗𝑘 , ∀𝑖 ∈ 𝒞 ∖ {dep}, ∀𝑘 ∈ 𝒞 (route continuity constraints)

𝑥𝑖𝑗 ∈ {0,1} (binary constraints)

2.2 Vehicle Routing Problems

The TSP is a Vehicle Routing Problem in its simplest form, where a single vehicle

has to visit a set of cities through the shortest path. More generally, VRP family is

about finding the most efficient way to move passengers or goods in a network of

stations, subject to a set of constraints. The optimization objective is generally about

minimizing travelled distance, but other terms can integrate it or even take its place

in some cases. As stated before, the most classic instance is the Traveling Salesman

Problem (TSP), where the aim is finding the shortest path that starts at a central

depot, visits all destinations once and only once, and finally returns to starting point.

Some other common VRP variants are known as CVRP (Capacitated VRP),

VRP-TW (VRP with Time Windows), TD-VRP (Time-Dependent VRP), and VRP-

PD (VRP with Pickup and Delivery). Book [31] presents a vast collection of VRP

variants and their solving methods.

2.2.1 Capacitated VRP

The Capacitated Vehicle Routing Problem (CVRP) adds a major logistic issue to

the VRP, that is the quantification and the constraining of moved goods or people.

This is a basic aspect of all practical VRP problems. In fact, there is no interest in

moving a vehicle without considering the transported items.

CVRP was first presented in 1959 in a paper called ‘The Truck Dispatching Problem’,

“concerned with the optimum routing of a fleet of gasoline delivery trucks between

Chapter 2. Overview on Routing Problems 29

a bulk terminal and a large number of service stations supplied by the terminal. The

routes between any two points in the system are given, and a demand for one or

several products is specified for every station within the distribution system.” [32]

The aim was creating a set of truck routes capable of satisfying station demands such

that the overall travelled distance was minimized. The problem was solved with a

near-optimal LP formulation and tested on some fictive instances.

In general, the capacity of problem vehicles does not allow to find a single route that

satisfies the needs of all the cities. As shown in figure 2.1, CVRP solutions usually

involve more than a route, to be covered either by an equal number of vehicles in

parallel, or sequentially by a smaller set of vehicles.

The CVRP is widely studied, and several heuristic and metaheuristic solving

approaches are present in the literature. Exact optimization is also largely spread,

mainly as MILP formulations. Assuming the number of available vehicles is known,

a CVRP formulation can be written by adapting the linear program at (2.1) with

some additional parameters, variables, and equations:

Additional parameters and variables:

𝑑𝑖 (parameter) demand of city 𝑖, must be greater than zero,

𝑄𝑘 (parameter) capacity of vehicle 𝑘 ∈ 𝒱 = {1,2, … , 𝑚},

𝑞0
𝑘 (parameter) initial content of vehicle 𝑘, usually equal to zero,

𝑞𝑖
𝑘 (variable) content of vehicle 𝑘 after visiting 𝑖.

Additional constraints:

𝑞𝑖
𝑘 + 𝑑𝑖 = 𝑞𝑗

𝑘 ⟺ 𝑥𝑖𝑗 = 1, ∀𝑖, 𝑗 ∈ 𝒞, 𝑘 ∈ 𝒱 (content evolution constraints) (2.2)

𝑞𝑖
𝑘 ≤ 𝑄𝑘, ∀𝑘 ∈ 𝒱 (capacity constraints)

𝑞𝑖
𝑘 ∈ ℝ.

Figure 2.1. Visual comparison between TSP and CVRP.

30

2.2.2 VRP with Time Windows

The VRP with Time Windows (VRP-TW) adds further complexity to the VRP

and CVRP. It is about introducing some time-related aspects to the formulation,

namely by imposing that each delivery is completed within a specified time-window.

Thus, time dimension enters the VRP model. The VRP-TW is particularly useful to

represent the situations in which a delivery deadline is imposed, or when destinations

are not open at all time. There could also be some start-times before which a delivery

shall not be made, for example to avoid overstock at a destination. To this purpose,

vehicles could be given the change to wait at some location if there is no delivery

that can be made in that moment.

These time-related features can either enter the model as constraints, or as objective

function terms by putting a penalty on retards. The second option can sometimes

relax the model and enhance solvability in presence of excessively rigid constraints.

2.2.3 Time-Dependent VRP

In real-life problems, especially those in urban or congested areas, travelling times

not only depend on distance, but also on traffic conditions at passing hour. The

Time-Dependent VRP (TD-VRP) considers this aspect by associating a different

travelling cost 𝑐𝑖𝑗 to each (𝑖, 𝑗) connections as a function of the time at which they

are crossed. E.g., crossing a sector of Paris’ ring-road can take much longer at 5 p.m.

with respect to the same stretch at 3 p.m. Traffic aspects are also very important to

green variants of VRP aiming at minimizing energy waste. Anyway, a traffic time-

model is required in input to any TD-VRP.

[33] makes some key considerations about the gap between VRP models and real-

life situations, especially focusing on travel time variability. It also presents a GRASP

heuristic for the TD-VRP with time windows applied to Turin’s road network and

demonstrates that polynomial functions are suitable for representing real speed fluc-

tuations along roads.

2.2.4 VRP with Pickup and Delivery

The VRP with Pickup and Delivery (VRP-PD) allows both loading and unloading

operations in a same route. In general, each delivered item shall be previously loaded

at some point in the route. The VRP-PD is crucial to optimize fleet operations in a

model composed by multiple sources and destinations. In fact, for a company the

rentability of vehicles is partially proportional to the average fill rate, and only-

load/unload routes seldom allow a fill rate higher than 50%. In parallel, a higher fill

rate decreases gas emission and has an important role in green routing problems.

The VRP-PD was investigated in [34]. The paper proposes a cooperative approach

in which a logistic operator delivers goods and collects waste simultaneously. The

Chapter 2. Overview on Routing Problems 31

problem is solved with a heuristic method, tuned on some fictive instances, and suc-

cessfully tested on a real-life application case.

2.3 Inventory Routing Problems

The Inventory Routing Problems (IRPs) combine VRPs with the Vendor-man-

aged Inventory (VMI) model. In opposition to traditional inventory management, in

which the retailer asks for a precise order quantity, in the VMI the information about

stock levels is shared with the vendor (supplier), so that the vendor is the decision-

maker about order quantity and time. This inventory management system promotes

buyer-vendor cooperation and showed operational advantages and cost reduction.

The supplier benefits from a wider knowledge about clients’ inventories and can

guarantee a better delivery service, while the retailer saves the resources previously

employed for active inventory monitoring.

[35] makes a clear and practical distinction between IRPs and classical VRPs. It

states that “VRPs occur when customers place orders and the delivery company, on

any given day, assigns the orders for that day to routes for trucks. In inventory

routing problems, the delivery company, not the customer, decides how much to

deliver to which customers each day. There are no customer orders. Instead, the

delivery company operates under the restriction that its customers are not allowed

to run out of product. Another difference is the planning horizon. VRPs typically

deal with a single day, and the only requirement is that all orders have to be delivered

by the end of the day. Inventory routing problems deal with a longer horizon. Each

day the delivery company makes decisions about which customers to visit and how

much to deliver to each of them, while keeping in mind that decisions made today

impact what has to be done in the future. The objective is to minimize the total cost

over the planning horizon while making sure no customers run out of product.” [35].

2.3.1 Basic IRP statement

Let 𝐺(ℛ, 𝒟) be a graph composed by a set of vertices (1 supplier and 𝑅 retailers)

ℛ = {supplier, 1, … , 𝑅} and a set of arcs (connections) 𝒟 = {(𝑖, 𝑗) | 𝑖, 𝑗 ∈ ℛ, 𝑖 ≠ 𝑗}. In a

discrete-time IRP formulation, the planning horizon 𝑇𝑃 is divided into a set of same-

length timeframes �̂� = {0,1, … , 𝑇}. For each 𝑡 ∈ �̂�, every retailer 𝑖 has a consumption

𝛾𝑖(𝑡) and a storage cost 𝑠𝑖 (cost⋅content-1⋅time-1). Each arc in 𝒟 has a distance 𝑑𝑖𝑗.

Let 𝒱 = {1,2, … , 𝑉} be a set of vehicles, each with a capacity 𝑄𝑘 and a transportation

cost 𝑐𝑘 (cost⋅load-1⋅distance-1) [36]. The IRP aims at finding a set of distribution

routes, one for each vehicle, such that there is no stockout and the total inventory-

transportation cost is minimal. For each delivery, three interdependent decisions

must be taken:

1. when to deliver,

32

2. how much to deliver,

3. how to insert the delivery in a route.

Other than this basic version, real-life applications of IRP present many more

aspects to consider and integrate within the model. [37] identifies seven characteris-

tics that affect IRP model building. They are listed in the table below.

Table 2.1. IRP characteristics and variations.

Characteristic Alternatives

Time Instant Finite Infinite

Demand Stochastic Deterministic

Topology One-to-one One-to-many Many-to-many

Routing Direct Multiple Continuous

Inventory type Fixed Stock-out Lost sale Back-order

Fleet Homogeneous Heterogeneous

Fleet size Single Multiple Unconstrained

The basic IRP stated above is NP-hard as any problem derived from the TSP.

Some exact approaches are found in literature, but heuristic methods are used for

the most to solve IRPs.

2.3.2 Production Routing Problem

The Production Routing Problem (PRP) is an extension of the IRP in which a

superior supplying echelon (a production plant or another supplier) is added before

the direct vendor.

Paper [38] studies the case of a single supplier in charge of distributing different

products to a set of retailers (see figure 2.2). Both the supplier and the retailers have

limited storage capacity, and the supplier can place orders to the plant at a fixed

cost in order to get the required articles. The objective of the problem is minimizing

the total cost of plant orders, inventory holding, and distribution.

2.4 Bus Routing Problem

The Bus Routing Problem (BRP) is a specific multi-objective version of the VRP

with some interesting characteristics. “The problem of scheduling and routing school

buses deals with the important question of how to transport pupils to and from

schools in the safest, most economical and most convenient manner.” [39]. One pe-

culiar aspect of the BRP is that transporting pupils is a delicate and demanding task.

In fact, each pupil would like to be transported in the shortest possible time, and its

Chapter 2. Overview on Routing Problems 33

impatience is likely to increase more-than-linearly as the service takes longer. In the

BRP there are three aspects to minimize [39, 40]:

• the cost of the service (usually proportional to total distance),

• the number of buses required,

• the dissatisfaction of pupils (function of the time that each pupil spends

onboard).

Figure 2.2. Graphic scheme of the Production Routing Problem.

34

Blank page

 35

CHAPTER 3

3The Multi-item IRP

with Pickup and Delivery

The core topic of this thesis is the Multi-item Inventory Routing Problem with

Pickup and Delivery, abbreviated as Mi-IRP-PD in the following. As the name sug-

gests, it is an extended version of the Inventory Routing Problem with both pickups

and deliveries of many diverse items. Basically, the problem is composed of a set of

stocks and a set of capacitated vehicles. Each stock can only contain a defined subset

of items and has some consumption values as functions of time. The objective is

finding a set of vehicle routes that satisfies every stock demand and does not break

any capacity, time-coherence, or item-coherence constraints.

This chapter presents some cases of Multi-item IRP and IRP-PD found in liter-

ature, then makes a prior introduction to the Mi-IRP-PD version discussed in this

thesis.

3.1 Multi-product IRP

The multi-product (or multi-item) aspect is the first to consider for modelling the

Mi-IRP-PD. The previous chapter presents many variants of the VRP and the IRP

in which product variety is not mentioned. However, many practical applications of

the IRP require the distribution of more than a unique type of article. E.g., the works

at [41, 42] discuss the Multiproduct Multivehicle Inventory Routing (MMIRP) and

propose two mixed-integer linear programs to solve it exactly.

[41] shows the case of the Indonesian LPG supply chain, with two different arti-

cles to distribute: the 5.5. kg and the 12 kg LPG cylinders. A two-vehicles fleet is in

charge of dispatching the products over a total of 46 clients scattered in Malang-

City. The exact solving procedure yields for each vehicle a Monday-to-Friday sched-

ule composed of six closed daily routes. Hence, every vehicle serves an ordered subset

of clients each day, and the delivered quantities of each product are decision varia-

bles, too. The objective function includes three terms: the fuel cost per kilometre, the

36

fuel cost per kilogram onboard, and the customer inventory cost. Although MILP

solution includes more vehicle routes with respect to the planning traditionally used

by the company (i.e., more visits to the central stock), it allows to reduce fuel con-

sumption by 13.39% and inventory cost by 16.01%.

On the other hand, paper [42] discusses the MMIRP, too, and introduces some con-

sistency features to increase service quality. These features have the purpose of mak-

ing the model more realistic and be compliant with some concerns about workforce

management and regularity of service. (E.g., establishment of a trust relationship

between some customers and a specific driver; existence of a reasonable non-visit

time to a same customer after a delivery.)

In a linear program, the multi-product aspect can be handled by adding a further

article index, hence splitting and specifying all the load-related variables and con-

straints. For example, let 𝒱 = {𝑘 | 𝑘 = 1, . . . , 𝐾} be a set of vehicles with capacity 𝑄𝑘.

Also, let 𝒜 = {𝜃 | 𝜃 = 1, . . . , Θ} be a set of products. Content (𝑞𝑘,𝜃) and loading (𝐿𝑘,𝜃)

variables are defined for each pair (𝑘, 𝜃). 𝑞𝑘,𝜃 indicates the quantity of 𝜃 on 𝑘 at a

certain moment, while 𝐿𝑘,𝜃 ≥ 0 indicates the quantity of 𝜃 loaded by 𝑘 (thus, Δ𝑞𝑘,𝜃)

at a certain moment. The following expressions can describe capacity and loading

constraints for a MMIRP:

∑ 𝑞𝑘,𝜃
𝜃∈𝒜 ≤ 𝑄𝑘, ∀𝑘 ∈ 𝒱, at any moment (capacity constraints) (3.1)

[𝑞𝑘,𝜃 + 𝐿𝑘,𝜃]before − [𝑞𝑘,𝜃]after = 0, ∀𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜 (loading constraints) (3.2)

3.1.1 Multicompartment IRP

A specification of the Multiproduct IRP is the Multicompartment IRP (MCIRP).

In the MCIRP each vehicle has devoted compartments of fixed capacity for each

product. “There are many industrial fields in which the multicompartment vehicles

are employed. The first example arises in the process of supplying fuels, where a lot

of vehicles or ships with some tanks of various capacities are used to settle the prob-

lem. Another example is the transportation of food, where different degrees of refrig-

eration goods are stored in different compartments in one vehicle.” [43], slightly

adapted. In the same paper, the MCVRP is solved with a hybrid ACO algorithm.

3.1.2 Multi-compatibility and site-dependency

Paper [44] introduces multi-compatibility and site-dependency in the MMIRP

applied to a food distribution service. The capacity of vehicles is divided into three

zones with different temperatures (multi-compatibility of the products with compart-

ments), and each vehicle can only visit a subset of destinations due to the specifica-

tions of unloading facilities (site-dependency). Then, the problem is solved with a

three-stage math-heuristic based on the cluster-first and route-second method.

Chapter 3. The Multi-item IRP with Pickup and Delivery 37

For a Multi-compatibility MCIRP linear program, the expressions (3.1) and (3.2)

must be modified to consider the capacity of every compartment. Let each vehicle 𝑘

have a set of compartments 𝒬𝑘 = {𝜎 | 𝜎 = 1, … , Σ𝑘}, each of capacity 𝑄𝑘,𝜎. Content

variables must be rewritten with the additional index 𝜎; thus, 𝑞𝑘,𝜎,𝜃 is the quantity

of 𝜃 in compartment 𝜎 of vehicle 𝑘. Consequently, loading variables become 𝐿𝑘,𝜎,𝜃.

The expressions (3.1) and (3.2) are rewritten as:

∑ 𝑞𝑘,𝜎,𝜃
𝜃∈𝒜 ≤ 𝑄𝑘,𝜎, ∀𝑘 ∈ 𝒱, 𝜎 ∈ 𝒬𝑘, at any moment (3.3)

[𝑞𝑘,𝜎,𝜃 + 𝐿𝑘,𝜎,𝜃]before − [𝑞𝑘,𝜎,𝜃]after = 0, ∀𝑘 ∈ 𝒱, 𝜎 ∈ 𝒬𝑘, 𝜃 ∈ 𝒜 (3.4)

These expressions can be simplified by assuming that each article is compatible with

at most one compartment onboard of each vehicle. This compatible-articles set is

defined as 𝒜𝜎, and (3.3), (3.4) become as follows:

∑ (𝑞𝑘,𝜃)𝜃∈𝒜𝜎
≤ 𝑄𝑘,𝜎 , ∀𝑘 ∈ 𝒱, 𝜎 ∈ 𝒬𝑘, at any moment (3.5)

[𝑞𝑘,𝜃 + 𝐿𝑘,𝜃]before − [𝑞𝑘,𝜃]after = 0, ∀𝑘 ∈ 𝒱, 𝜎 ∈ 𝒬𝑘, 𝜃 ∈ 𝒜𝜎 (3.6)

Index 𝜎 disappeared from variables as the compartment is implicitly specified by the

article 𝜃 ∈ 𝒜𝜎.

3.2 IRP with Pickup and Delivery

The pickup-and-delivery aspect is the second main pillar of Mi-IRP-PD. The IRP

with Pickup and Delivery is an important variant of the IRP with a great number

of practical applications.

Paper [45] discusses the problem in detail and presents a discrete-time mathematical

model solved with a branch-and-cut algorithm, while [46] concerns the IRP-PD with

time windows and perishability constraints.

By reference to the model briefly introduced in the previous chapter, the pickup-

and-delivery aspect can be integrated in a linear program by allowing negative values

of 𝐿𝑘,𝜃. As a consequence, vehicle content must be lower-bounded, and the constraint

set is rewritten as:

∑ 𝑞𝑘,𝜃
𝜃∈𝒜 ≤ 𝑄𝑘, ∀𝑘 ∈ 𝒱, at any moment (upper capacity constraints) (3.7)

∑ 𝑞𝑘,𝜃
𝜃∈𝒜 ≥ 0, ∀𝑘 ∈ 𝒱, at any moment (lower capacity constraints) (3.8)

[𝑞𝑘,𝜃 + 𝐿𝑘,𝜃]before − [𝑞𝑘,𝜃]after = 0, ∀𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜 (loading constraints) (3.9)

3.3 IRP with Transshipment

In logistics, transshipment is a term coming from the maritime sector that “means

the unloading of goods from one ship and its loading into another to complete a

journey to a further destination, even when the cargo may have to remain ashore

38

some time before its onward journey. The term can also be applied more generally

to other transport modes, such as freight transport by road or rail or air, or any

combination of them.” [47].

From an OR point of view, the use of a transshipment in IRPs can bring a consider-

able problem relaxation, as well as a general lead time reduction and an improvement

of distribution performance. “The optimization problem must find the best configu-

ration of vehicles, routes, pickups, deliveries and transshipments for each period, so

as to minimize the total cost of supply chain operations.” [49]. Depending on the

problem, transshipment can rely on suppliers, retailers, suppliers-and-retailers, or

even on devoted intermediate warehouses.

Two literature cases are shown at [48, 49]. The first presents an adaptive large

neighbourhood search heuristic to solve the IRP with transshipment, while the sec-

ond proposes an exact MILP formulation and tests it on instances of different size

(with up to 15 stations and 12 scheduling periods).

3.4 The Mi-IRP-PD of this thesis

The Mi-IRP-PD discussed in this thesis presents some structural differences with

respect to the IRPs usually found in literature. In fact, the application case for which

this Mi-IRP-PD version was developed presents three characterizing aspects:

1. Each vehicle has a starting point, where it is not obliged to get back at the

end of the period. Every vehicle can finish its route anywhere on problem

ground.

2. Although the problem is about routing and inventory management, the min-

imization of distribution and storage costs are generally not a priority. As

shown in part II of this thesis, the priority is given to the overall inventory-

demand satisfaction.

3. Time-control shall be fine, of the order of some tens of seconds to some

minutes. Therefore, the assumption for which any route is completed within

a timeframe hardly matches with the here-presented Mi-IRP-PD.

How these three characteristic where handled is one of the main topics of part II, in

which the aforementioned application case is also presented.

39

PART II

DEVELOPEMNT

OF SOLVING MODELS

40

Blank page

 41

CHAPTER 4

4Mi-IRP-PD formalization

and application cases

This chapter discusses the origin and the evolution of the model proposed to solve

the Multi-item Inventory Routing Problem with Pickup and Delivery (Mi-IRP-PD).

The models and formulations described in this thesis were partially developed during

my 6-months internship at the Laboratory of Analysis and Architecture of Systems

(LAAS-CNRS) in Toulouse. The chapter starts by outlining its goals and ambitions,

as well as all the elements that play a relevant role in it.

First, the proposed class structure allowed to adapt different problems to some

common solving approaches developed during the internship. The main application

case is the Indoor logistic operation manager. It consists in finding a viable schedul-

ing of an indoor vehicle fleet to support the production of a manufacturing facility.

The chapter deals with some variants of this problem, and an additional application

case is introduced, too.

4.1 Case 1: Indoor logistic operation manager

This internship at LAAS-CNRS focused on the development of an operation

scheduling system for an indoor vehicle fleet in charge of supporting the logistic needs

of a manufacturing facility. The goal of the fleet is to collect and dispatch items

(components, subassemblies, waste, tools) to manufacturing facility workstations so

as to maintain acceptable stock levels at all times, all along the production line.

Moreover, the scheduling system shall be able to quickly react to unforeseen produc-

tion perturbations. If an unexpected event changes production schedule, the logistic

support system shall also reschedule in response to the new needs. Consequently,

system scheduling methods shall be able to give a new viable solution in a very short

time, quantified at a few seconds. The Indoor logistic operation manager problem is

also indicated with the acronym ILOM.

42

In its simplest form, this problem involves a set of stocks dislocated along the

production facility, allowed to store a single article reference each, and associated to

a provisional consumption profile. A main stock is also present on the production

ground to generate and absorb articles that enter and quit it. However, not all the

articles are involved in this in-out process; the main stock is a source of assembly

components and a sink for defective pieces and waste. Semi-assembled parts can be

transferred from a station to another but are not allowed to leave the production

ground through the main stock. Forecasts about consumptions come from production

planning or production simulation. The first method consists in scheduling produc-

tion activities at workstations by collecting client orders and their deadlines. Once

each workstation has its operations scheduled, material consumptions can be derived

though the bill of materials. Alternatively, simulating production activities in a dig-

ital environment can also provide material consumptions profiles at each workstation.

The involved vehicle fleet in charge of transferring items from a stock to another

can consist of heterogeneous vehicles, each with its own capacity and speed. The

content of the vehicles shall be expressed in a generic load unit related to a univocal

physical quantity, such as a fraction of the supported weight or of the available

surface onboard. Stock contents and consumptions are expressed in load units, too;

therefore, all item quantities shall be scaled from their real size to the unified one.

E.g., let us consider a production line that assembles car wheels. Among other parts,

vehicles are also called to transport bolts and tyres, that have a very different size.

Making the hypotheses that:

• the line produces one wheel per minute,

• each wheel requires a tyre and six bolts,

• the space taken by a tyre can host 2000 bolts,

• the load unit (LU) is equal to the space taken by a tyre,

consumptions 𝛾 can be calculated as follows:

𝛾tyres = 1
wheel

min
⋅ 1

tyre

wheel
⋅ 1

LU

tyre
= 1

LU

min
 (4.1)

𝛾bolts = 1
wheel

min
⋅ 6

bolts

wheel
⋅ 1

LU

tyre
⋅ (2000

bolts

tyre
)

−1

= 0.003
LU

min
 (4.2)

The same kind of calculation must be made for stored contents and lot sizes, respec-

tively indicated by the letters 𝐶 and 𝜆 in the following chapters.

Finally, item collection and delivery are made according to a full-lot policy. Every

article reference has a lot size expressed in load units that corresponds to the mini-

mum divisor of loadable/unloadable quantities.

Chapter 4. Mi-IRP-PD formalization and application cases 43

4.1.1 Use cases and data of the logistic support system

Les us consider a set of buffer stocks ℬ, a main stock MS, and a set of vehicles 𝒱.

The following table shows system interaction scenarios in their most essential form.

Table 4.1. Use cases and scenarios of the ILOM.

Use case Scenario Action

 1. b ← MS
Items required at buffer b and

absent on production ground.

Items shall be retrieved at main

stock MS and brought to b.

 2. b ← b
Items required at buffer b and

present at buffer b .

Items shall be retrieved at b

and brought to b.

 3. b ← v
Items required at buffer b and

present on vehicle v.

Vehicle v shall deliver the items

at b.

 4. b → MS

Items to remove at buffer b

and no more needed on pro-

duction ground.

Items shall be collected at b and

brought to main stock MS.

 5. b → b
Items to remove at buffer b

and needed at buffer b .

Items shall be collected at b and

brought to b .

 6. b → v

Items to remove at buffer b

and soon needed on produc-

tion ground, or not absorbable

by MS.

Items shall be collected at b by

vehicle v and kept onboard.

Listing these use cases made it possible to identify the fundamental classes of the

problem. However, to refine their formal definition it was then necessary to investi-

gate their interdependencies and the relevant data belonging to each class. The ver-

sion described in this paragraph was not the first to be developed during the intern-

ship. Indeed, the initial structure underwent several changes – usually simplifications

– until reaching the current version. The final data structure features fours object

classes: Ground, Stocks, Vehicles, and Tasks, hence called GSVT structure. The di-

agram presented at Figure 6.1 shows the aforementioned structure divided into three

areas:

1. Spatial data of production ground. It contains a static class called Ground

that stocks every useful topological information of the manufacturing facility.

2. Production forecast data, that lied outside the scope of the internship.

Nevertheless, production is the most crucial data source of the problem. Its

function is to forecast consumption (or production) profiles of materials at

each workstation, and thus to allow the calculation of buffer needs overtime.

Client orders are processed through MPS (Master Production Schedule) and

44

MRP (Material Requirements Planning) in order to obtain workstation-level

activities and consumptions.

3. Data actively handled by scheduling methods. This area contains the

classes of objects that have a direct role in solving procedures. In fact, the

applied scheduling methods can read, process, and overwrite the objects be-

longing to these dynamic classes. After several simplifications and some re-

search, the number of dynamic classes was reduced to three: Stocks, Vehicles,

and Tasks.

The most important part of problem results is the list of Tasks generated by solving

methods. The evolution of buffer and vehicle contents is also a relevant part of the

solution. It is particularly useful for making a detailed analysis of result quality and

balance, since it allows to easily identify local overloaded spots along the scheduling.

Figure 4.1. Class structure of the GSVT model.

Chapter 4. Mi-IRP-PD formalization and application cases 45

4.1.2 Class definitions

• Ground: set of coordinates and pairwise distances of all the remarkable points

inside the manufacturing facility. Distances correspond to the actual direc-

tional paths between each pair of points, including tight corners and perma-

nent ground obstacles.

• Stock: a physical storage unit that is located somewhere within the produc-

tion ground. Two subclasses derive from the Stock: Buffers and Gateways.

The first one can contain a single article reference and has lower and upper

content limits. Moreover, each buffer has a provisional consumption profile

that allows to track content evolution overtime. Instead, gateways have the

function of generating and/or absorbing a specific subset of items. In the sim-

plest case, a single gateway called ‘main stock’ is the source of every supply

article and the sink of waste material.

• Vehicle: object that can load, contain, transfer, and unload items. Each ve-

hicle has a capacity and a constant speed. Vehicles carry out tasks.

• Task: activity with a start and an end time. It has a single destination and a

single vehicle in charge of its completion. A task only ends when the vehicle

that performs it is free of leaving task’s destination.

4.1.3 ILOM problem statement with a single main stock

Let us consider a manufacturing facility during a period 𝑇𝑃 for which the produc-

tion scheduling is known. The following sets of elements are deployed on the produc-

tion ground.

• A set of article references 𝒜 = {𝑎1, 𝑎1, … , 𝑎Θ}, indicated by index 𝜃, such that

each article has a unique lot size 𝜆𝜃.

• A set of buffers ℬ = {𝑏1, 𝑏2, … , 𝑏I}, with index 𝑖, such that each buffer has the

following parameters:

𝜃𝑖 the only allowed article reference,

𝐶𝑖 upper content limit,

𝐶𝑖 lower content limit,

𝐶𝑖,𝑡 = 𝑓(𝑡) set of content values overtime,

𝐶𝑖,0 initial content value,

𝛾𝑖,𝑡 = 𝑓(𝑡) set of consumptions,

a value of 𝛾𝑖,𝑡
𝜃 below zero represents a production,

𝑑𝑖𝑗 travel distance from 𝑖 to any other fixed element 𝑗,

𝜏𝑖 forfeit time to complete onsite operations (load/unload).

• A main stock 𝕚 with the following parameters:

𝒜𝕚 ⊆ 𝒜 set of article references allowed in 𝕚,

46

𝑑𝕚𝑗 travel distance from 𝕚 to any other fixed element 𝑗,

𝜏𝕚 forfeit time to complete onsite operations (load/unload).

• A set of vehicles 𝒱 = {𝑣1, 𝑣2, … , 𝑣K}, with index 𝑘, such that each vehicle has

the following parameters:

𝑄𝑘 capacity,

𝑠𝑘 speed,

𝑞𝑡
𝑘,𝜃 = 𝑓(𝑡) set of content values overtime for each article 𝜃 ∈ 𝒜,

𝑞0
𝑘,𝜃 set of initial content values for each article 𝜃 ∈ 𝒜,

𝑑𝕠𝑗
𝑘 distance between vehicle initial condition 𝕠 and any fixed

element 𝑗,

𝑡𝕠
𝑘 unavailability time of the vehicle, that cannot move or do

any task as long as 𝑡 < 𝑡𝕠
𝑘.

The main objective is finding the set of feasible vehicle routes (encoded in a list

of tasks) that minimizes the sum of buffer content values exceeding the limits 𝐶𝑖, 𝐶𝑖,

∀𝑖 ∈ ℬ. Travelled distance minimization could have an interest, too, for some specific

cases.

This basic formulation can be generalized in a more complete one, in which sources

and sinks of articles are not centralized in a single main stock. Furthermore, some

multi-item auxiliary buffers can be added to the model as logistic supports for the

other elements, therefore allowing a more flexible scheduling.

4.1.4 Generalized ILOM problem statement

The ILOM problem with multiple sources/sinks and multi-item-buffers is the

generalization of what exposed in the previous chapter. Statements about articles,

vehicles, and vehicles initial conditions do not change. Buffers and main stock state-

ments are replaced by the following.

• A set of multi-item buffers ℬ = {𝑏1, 𝑏2, … , 𝑏I}, with index 𝑖, such that each

buffer has the following parameters:

𝒜𝑖 ⊆ 𝒜 set of allowed article references,

𝐶𝑖 buffer capacity,

𝐶𝑖
𝜃 set of lower content limits for each article 𝜃 ∈ 𝒜𝑖,

𝐶𝑖,𝑡
𝜃 = 𝑓(𝑡) set of content values overtime for each article 𝜃 ∈ 𝒜𝑖,

𝐶𝑖,0
𝜃 set of initial content values for each article 𝜃 ∈ 𝒜𝑖,

𝛾𝑖,𝑡
𝜃 = 𝑓(𝑡) set of consumptions for each article 𝜃 ∈ 𝒜𝑖,

a value of 𝛾𝑖,𝑡
𝜃 below zero represents a production, and a

𝛾𝑖,𝑡
𝜃 = 0 represents a logistic support buffer,

𝑑𝑖𝑗 travel distance from 𝑖 to any other fixed element 𝑗,

𝜏𝑖 forfeit time to complete onsite operations (load/unload),

Chapter 4. Mi-IRP-PD formalization and application cases 47

𝑤𝑖
𝜃 penalty weight associated to the importance of avoiding

stockout of article 𝜃 at 𝑖.

• A set of source/sink points 𝒫 = {𝑝1, 𝑝2, … , 𝑝Ψ}, with index 𝜓, such that each

s/s point has the following parameters:

𝒜𝜓 ⊆ 𝒜 set of allowed article references,

𝑑𝜓𝑗 travel distance between 𝜓 and any other fixed element 𝑗,

𝜏𝜓 forfeit time to complete onsite operations (load/unload).

The objective of the problem remains the same: finding the set of feasible vehicle

routes that minimizes the weighted sum of buffer content values exceeding the limits

𝐶𝑖, 𝐶𝑖, ∀𝑖 ∈ ℬ. Minimizing the overall travelled distance can be part of the objective,

too.

4.2 Case 2: Supply-chain network manager

The Multi-item Inventory Routing Problem with Pickup and Delivery (Mi-IRP-

PD) can be tailored to different application cases for which deterministic consump-

tion previsions are known. Solving model is flexible; its constraints permit to obtain

a realistic and customizable solution, and scalable time granularity is a crucial aspect

of the model. In fact, time detail can easily be chosen as a function of the fundamental

time unit of the problem (minutes, hours, days, etc.).

For the Supply-chain network manager (SNM) problem, let us consider a network

of geographically distributed factories, warehouses and shops (as shown in figure 4.2),

each producing, storing, or selling a certain number of different articles. The produc-

tion output of factories is known, as well as shops provisional sales and return rates.

The proposed Mi-IRP-PD model can help to manage warehouse and shop inventories,

as well as to organize delivery, transfer and returning operations.

Figure 4.2. Graphic example of a supply chain network.

48

4.2.1 SNM problem statement

This problem is an adapted version of the ones presented in the Indoor logistic

operation manager chapter. The model is composed of a set of factory inventories

(buffers with negative consumptions), a set of shop inventories (buffers with positive

consumptions), and a set of intermediate warehouses (buffers with no consumption).

Moreover, the model can include provisional return fluxes originating from shops. In

that case, shops can have negative consumptions for return articles, and a gateway

is required to allow them to quit the area.

Let us consider a supply chain network during a period 𝑇𝑃 for which production

and sales are known. The following sets of elements are deployed in the network.

• A set of article references 𝒜 = {𝑎1, 𝑎1, … , 𝑎Θ}, indicated by index 𝜃, such that

each article has a unique lot size 𝜆𝜃.

• A set of facilities (factories, shops, and warehouses) ℬ = {𝑏1, 𝑏2, … , 𝑏I}, indi-

cated by index 𝑖, such that each of them has the following parameters:

𝒜𝑖 ⊆ 𝒜 set of allowed article references,

𝐶𝑖 inventory capacity,

𝐶𝑖
𝜃 set of lower content limits for each article 𝜃 ∈ 𝒜𝑖,

𝐶𝑖,𝑡
𝜃 = 𝑓(𝑡) set of content values overtime for each article 𝜃 ∈ 𝒜𝑖,

𝐶𝑖,0
𝜃 set of initial content values for each article 𝜃 ∈ 𝒜𝑖,

𝛾𝑖,𝑡
𝜃 = 𝑓(𝑡) set of consumptions for each article 𝜃 ∈ 𝒜𝑖,

𝛾𝑖,𝑡
𝜃 is the parameter that marks the difference between

factories, shops, and warehouses. Factories have values

𝛾𝑖,𝑡
𝜃 ≤ 0 as they produce articles; shops have values of

𝛾𝑖,𝑡
𝜃 ≥ 0 as articles are sold, thus consumed; warehouses

have values of 𝛾𝑖,𝑡
𝜃 = 0 as they are logistic support ele-

ments.

𝑑𝑖𝑗 travel distance from 𝑖 to any other fixed element 𝑗,

𝜏𝑖 forfeit time to complete onsite operations (load/unload),

𝑤𝑖
𝜃 penalty weight associated to the importance of avoiding

stockout of article 𝜃 at 𝑖.

• A set of return points 𝒫 = {𝑝1, 𝑝2, … , 𝑝Ψ}, with index 𝜓, such that each point

has the following parameters:

𝒜𝜓 ⊆ 𝒜 set of allowed article references,

𝑑𝜓𝑗 travel distance between 𝜓 and any other fixed element 𝑗,

𝜏𝜓 forfeit time to complete onsite operations (load/unload).

• A set of cargo vehicles 𝒱 = {𝑣1, 𝑣2, … , 𝑣K}, with index 𝑘, such that each vehicle

has the following parameters:

Chapter 4. Mi-IRP-PD formalization and application cases 49

𝑄𝑘 capacity,

𝑠𝑘 speed,

𝑞𝑡
𝑘,𝜃 = 𝑓(𝑡) set of content values overtime for each article 𝜃 ∈ 𝒜,

𝑞0
𝑘,𝜃 set of initial content values for each article 𝜃 ∈ 𝒜,

𝑑𝕠𝑗
𝑘 distance between vehicle initial condition 𝕠 and any fixed

element 𝑗,

𝑡𝕠
𝑘 unavailability time of the vehicle, that cannot move or do

any task as long as 𝑡 < 𝑡𝕠
𝑘.

The objective of the SC network manager problem is expressed as a two-terms

minimization; first, minimize the inventory exceeding content limits at each facility,

and second, minimize the overall travelled distance of the fleet. It can be proven that

the second term has the heaviest impact on exact methods solving time. However,

while finding the global optimum can take a very long time, it frequently happens

that a very good solution is already found at an early solving stage. A technical trick

could be the introduction of progressive distance brackets for evaluating the quality

of a solution. The problem is hence relaxed, and optimality precision is known a

priori. As shown in figure 4.3, this trick is equivalent to defining a staircase or piece-

wise objective function. The precision of solution optimality is given by the width of

each step. (E.g., if a solution has a distance included in the step (𝑑1, 𝑑2) and is

assigned the average value (𝑑1 + 𝑑2) 2⁄ , the maximum error is then equal to

|𝑑1 − 𝑑2| 2⁄ .)

4.3 Considerations about applicability

Other than the ILOM (indoor logistic operation manager) and the SNM (supply-

chain network manager), the generalized Mi-IRP-PD can be applied to any problem

with the following characteristics:

• a set of scattered batch elements the content of which changes overtime,

• a set of items that can selectively enter and exit the global system, and can

be picked-up from or delivered to batch elements,

Figure 4.3. Graphic example of staircase and piece-wise objective functions.

50

• a set of capacitated transporters, each with a set of supported items.

However, the following conditions restrain the applicability field:

• the time spent for onsite operations at each batch is constant and does not

depend on loaded/unloaded quantities,

• travel time does not change overtime. In other words, it is calculated as the

product of distance and vehicle speed, and does not take account of any traffic

condition or speed fluctuation.

 51

CHAPTER 5

5MILP formulations

This chapter presents the Mixed Integer Linear Programming (MILP) formula-

tions developed to solve the problems of Chapter 4. First, a continuous-time formu-

lation CT-MILP is introduced with its advantages, disadvantages, and applicability

conditions. Next, some discrete-time formulations DT-MILP are presented. As ex-

plained in this chapter, DT formulations allow the exploration of a wider search

space and give better quality results with respect to CT formulations. On the other

hand, CT formulations are simpler to solve, and generally require a much shorter

solving time.

5.1 Common standards and considerations

All the MILP formulations of this chapter have some common standards concern-

ing the definition of sets, indexes, and units of measure. In general, all stocks are

indexed with letters 𝑖 and 𝑗, all vehicles with letter 𝑘, all article references with Greek

letter 𝜃, and time with letter 𝑡. However, each formulation paragraph explicitly re-

ports its indexing system to avoid any misunderstanding.

Also, in the following pages, unless otherwise specified, the word article is used to

indicate an article reference – a SKU – rather than the unitary item. This allows to

reduce verbiage and display the models in a more readable way.

The content of Buffers and Vehicles is expressed in a generic measure unit called

Load Unit (LU). In a real problem, a LU corresponds to a physical capacity unit,

such as a weight in kilograms, a surface in m², or a volume in m³. The number of

Load Units on a vehicle or inside any inventory corresponds to the number of article

units multiplied for the LU taken by one of them: 𝐶[LU] = 𝐶[units] ⋅ LU taken by

one article [LU/unit]. Consequently, content values, provisional consumptions, and

stock content limits must undergo this procedure before entering MILP formulations,

as shown at paragraph 4.1.

52

5.2 CT-FOQ-MILP formulation

As its name suggests, the Continuous-Time Fixed-Order-Quantity MILP (CT-

FOQ-MILP) at this paragraph adopts the hypotheses of fixed order quantity pick-

ups and deliveries. It means that a vehicle visiting a buffer can only load or unload

a predefined quantity that depends on the buffer. This assumption permits to write

the problem as a continuous-time model where pickup-delivery target times are pre-

calculated parameters; target times come out from the integration of consumption

profiles overtime.

5.2.1 Pre-calculation of pickups and deliveries

Let us consider a period of length 𝑇𝑃. The punctual logistic needs are the outcome

of a simple integration algorithm. Algorithm input data includes buffer initial content

𝐶𝑖,0, buffer limits 𝐶𝑖 and 𝐶𝑖, and consumption rate function 𝛾𝑖(𝑡): consumption/dt(𝑡).

First, consumptions are integrated in time and give content evolution profiles, i.e.,

provisional content level at each moment 𝑡′.

 𝐶𝑖(𝑡′) = 𝐶𝑖,0 − ∫ 𝛾𝑖(𝑡)𝑑𝑡
𝑡′

0

 (5.1)

If 𝛾𝑖(𝑡) is a piecewise function defined in 𝐷 domains {Γ0, Γ1, … , Γ𝐷−1}, the expression

can be converted in a form which is closer to numerical discrete-time models:

 𝐶𝑖(𝑡′)|𝑡′∈Γ′ = 𝐶𝑖,0 − ∑ (∫ 𝛾𝑖(𝑡)𝑑𝑡

Γ

)

Γ<Γ′

Γ=Γ0

− ∫ 𝛾𝑖(𝑡)𝑑𝑡
𝑡′

inf Γ′

, ∀Γ′ ∈ {Γ0, Γ1, … , Γ𝐷−1} (5.2)

These equations shall be combined to the fixed order quantity approach to get to the

pickup-delivery target times. In fact, each buffer has a fixed order quantity 𝒪𝒬𝑖, that

is often equal to the allowed content gap of the buffer (𝐶𝑖 − 𝐶𝑖). This quantity is not

directly integrated in CT-FOQ-MILP models, as the pre-calculation algorithm sums

it to buffer content 𝐶𝑖(𝑡) whenever the buffer reaches its limits. The times at which

this happens are the pickup-delivery target times.

Algorithm 5.1 Pre-calculation of Pickup-Delivery target times

1 For each buffer 𝑖

2 Initialise pickup-delivery target times set 𝒯𝑖 = ∅

3 𝑡′ = 0, 𝐶𝑖 = 𝐶𝑖,0
4 While 𝑡′ < 𝑇 do
5 While 𝐶𝑖 ∈ [𝐶𝑖, 𝐶𝑖] do

6 Integrate consumptions 𝐶𝑖 ← 𝐶𝑖 − ∫ 𝛾𝑖(𝑡)𝑑𝑡
𝑡′+𝑑𝑡′

𝑡′

7 Make time progress 𝑡′ ← 𝑡′ + 𝑑𝑡′

8 Continue

Chapter 5. MILP formulations 53

9 𝒯𝑖 ← 𝒯𝑖 ∪ {𝑡′}

10 𝐶𝑖 ← 𝐶𝑖 + 𝒪𝒬𝑖

11 Continue

12 Next 𝑖

The algorithm returns many sets of target times 𝒯𝑖, one for each buffer. At this point,

𝒯𝑖 and 𝒪𝒬𝑖 values converge into a unique set of pickup-delivery elements 𝒩 =

{𝑛1, 𝑛2, … , 𝑛𝑁}, also called needs, that adopts the 𝑖-index formerly used to indicate

buffers. For the rest of this paragraph, index 𝑖 marks pickup-delivery objects that

have a position, a demanded quantity, and a target time.

5.2.2 Parameters and variables

About formulation indexes:

• Buffer needs (pickup-deliveries) are indexed with letters 𝑖, 𝑗 and 𝑙; vehicles

with letter 𝑘; articles with Greek letter 𝜃.

• The main stock is indicated with symbol 𝕚, and the initial conditions of vehi-

cles are indicated with symbol 𝕠. The sets 𝒩 ∪ {𝕚}, 𝒩 ∪ {𝕠} are also written

𝒩𝕚, 𝒩𝕠.

• For sake of readability, the elements of sets 𝒩, 𝒱, 𝒜 are directly written as

their indexes, as reported in the table below at the column ‘Simplified’.

Table 5.1. Sets of CT-FOQ-MILP.

Set Set element notations

Name Symbol Index Complete Simplified

Needs 𝒩 𝑖, 𝑗, 𝑙 {𝑛𝑖}𝑖∈{1,2,…,𝑁} {1,2, … , 𝑁}

Vehicles 𝒱 𝑘 {𝑣𝑘}𝑘∈{1,2,…,𝐾} {1,2, … , 𝐾}

Articles 𝒜 𝜃 {𝑎𝜃}𝜃∈{1,2,…,Θ} {1,2, … , Θ}

Table 5.2. Parameters of CT-FOQ-MILP.

 Description Index domains

𝒪𝒬𝑖 order quantity of need 𝑖 𝑖 ∈ 𝒩

�̇�𝑖 target time of need 𝑖 𝑖 ∈ 𝒩

𝑑𝑖𝑗 Distance to go from 𝑖-need location to 𝑗-need location 𝑖, 𝑗 ∈ 𝒩𝕚, 𝑖 ≠ 𝑗

𝜏𝑖 time required to perform onsite operations for 𝑖 𝑖 ∈ 𝒩𝕚

𝑄𝑘 capacity of vehicle 𝑘 𝑘 ∈ 𝒱

54

𝑠𝑘 speed of vehicle 𝑘 𝑘 ∈ 𝒱

𝑞0
𝑘,𝜃 initial content of vehicle 𝑘 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜

𝑡𝕠
𝑘 time from which vehicle 𝑘 is available 𝑘 ∈ 𝒱

𝑑𝕠𝑖
𝑘 distance from 𝑘 initial position to 𝑖-need location 𝑖 ∈ 𝒩𝕚, 𝑘 ∈ 𝒱

𝑀 sufficiently big number = max
𝑘∈𝒱

{𝑇𝑃, 𝑄𝑘}

Model variables are specific to each formulation. In the following, they are written

in bold to distinguish from constant parameters.

Table 5.3. Variables of CT-FOQ-MILP.

 Description Index domains

𝒙𝒊𝒋
𝒌

1 if vehicle 𝑘 goes from 𝑖 to 𝑗,
 without passing from main stock 𝕚

0 otherwise

𝑖 ∈ 𝒩𝕠, 𝑗 ∈ 𝒩,

𝑖 ≠ 𝑗, 𝑘 ∈ 𝒱

𝒚𝒊𝒋
𝒌

1 if vehicle 𝑘 goes from 𝑖 to 𝑗,
 passing from main stock 𝕚

0 otherwise

𝑖 ∈ 𝒩𝕠, 𝑗 ∈ 𝒩,

𝑖 ≠ 𝑗, 𝑘 ∈ 𝒱

𝒕𝒊 Time at which the need 𝑖 is satisfied 𝑖 ∈ 𝒩

𝒒𝒊
𝒌,𝜽 content of vehicle 𝑘 in terms of 𝜃 after satisfying 𝑖

𝑖 ∈ 𝒩, 𝑘 ∈ 𝒱,
𝜃 ∈ 𝒜

Auxiliary variable

𝜹𝒊 ≥ |�̇�𝑖 − 𝒕𝒊| 𝑖 ∈ 𝒩

5.2.3 CT-FOQ-MILP model

The CT-FOQ-MILP model is formulated as follows:

 𝑓 = ∑ 𝜹𝒊

𝑖∈𝒩

+ 𝛼𝑑 (∑ ∑ ∑ 𝑑𝑖𝑗𝒙𝒊𝒋
𝒌

𝑘∈𝒱𝑗∈𝒩𝑖∈𝒩𝕠

+ ∑ ∑ ∑(𝑑𝑖𝕚+𝑑𝕚𝑗)𝒚𝒊𝒋
𝒌

𝑘∈𝒱𝑗∈𝒩𝑖∈𝒩𝕠

) (5.3)

Subject to:

𝒒𝒊
𝒌,𝜽 ≥ 0 ∀𝑖 ∈ 𝒩, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜 (5.4)

∑ 𝒒𝒊
𝒌,𝜽

𝜃∈𝒜

≤ 𝑄𝑘 ∀𝑖 ∈ 𝒩, 𝑘 ∈ 𝒱 (5.5)

 Boolean var ∶= {

 Boolean var ∶= {

Minimize

Chapter 5. MILP formulations 55

∑(𝒙𝕠𝒋
𝒌 + 𝒚𝕠𝒋

𝒌)

𝑗∈𝒩

≤ 1 ∀𝑘 ∈ 𝒱 (5.6)

∑ (𝒙𝒊𝒋
𝒌 + 𝒚𝒊𝒋

𝒌)

𝑖∈𝒩𝕠

≥ ∑(𝒙𝒋𝒍
𝒌 + 𝒚𝒋𝒍

𝒌)

𝑙∈𝒩

 ∀𝑗 ∈ 𝒩, 𝑘 ∈ 𝒱 (5.7)

∑ ∑(𝒙𝒊𝒋
𝒌 + 𝒚𝒊𝒋

𝒌)

𝑘∈𝒱𝑖∈𝒩𝕠

= 1 ∀𝑗 ∈ 𝒩, 𝑖 ≠ 𝑗 (5.8)

𝒕𝒊 + 𝑑𝑖𝑗 𝑠𝑘⁄ + 𝜏𝑗 ≤ 𝒕𝒋 + 𝑀(1 − 𝒙𝒊𝒋
𝒌) ∀ 𝑖, 𝑗 ∈ 𝒩, 𝑘 ∈ 𝒱 (5.9)

𝑡𝕠
𝑘 + 𝑑𝕠𝑗

𝑘 𝑠𝑘⁄ + 𝜏𝑗 ≤ 𝒕𝒋 + 𝑀(1 − 𝒙𝕠𝒋
𝒌) ∀𝑗 ∈ 𝒩, 𝑘 ∈ 𝒱 (5.9')

𝒕𝒊 + 𝑑𝑖𝕚 𝑠𝑘⁄ + 𝜏𝕚 + 𝑑𝕚𝑗 𝑠𝑘⁄ + 𝜏𝑗 ≤ 𝒕𝒋 + 𝑀(1 − 𝒚𝒊𝒋
𝒌) ∀ 𝑖, 𝑗 ∈ 𝒩, 𝑘 ∈ 𝒱 (5.10)

𝑡𝕠
𝑘 + 𝑑𝕠𝕚

𝑘 𝑠𝑘⁄ + 𝜏𝕚 + 𝑑𝕚𝑗 𝑠𝑘⁄ + 𝜏𝑗 ≤ 𝒕𝒋 + 𝑀(1 − 𝒚𝕠𝒋
𝒌) ∀𝑖 ∈ 𝒩, 𝑘 ∈ 𝒱 (5.10')

𝒒𝒊
𝒌,𝜽 + 𝒪𝒬𝑗 ≤ 𝒒𝒋

𝒌,𝜽 + 𝑀(1 − 𝒙𝒊𝒋
𝒌) ∀ 𝑖, 𝑗 ∈ 𝒩, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖 (5.11)

𝑞𝕠
𝑘,𝜃 + 𝒪𝒬𝑗 ≤ 𝒒𝒋

𝒌,𝜽 + 𝑀(1 − 𝒙𝕠𝒋
𝒌) ∀ 𝑗 ∈ 𝒩, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖 (5.11')

𝒒𝒊
𝒌,𝜽 + 𝒪𝒬𝑗 ≥ 𝒒𝒋

𝒌,𝜽 − 𝑀(1 − 𝒙𝒊𝒋
𝒌) ∀𝑖, 𝑗 ∈ 𝒩, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖 (5.12)

𝑞𝕠
𝑘,𝜃 + 𝒪𝒬𝑗 ≥ 𝒒𝒋

𝒌,𝜽 − 𝑀(1 − 𝒙𝕠𝒋
𝒌) ∀𝑗 ∈ 𝒩, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖 (5.12')

𝒒𝒊
𝒌,𝜽 + 𝒪𝒬𝑗 ≤ 𝒒𝒋

𝒌,𝜽 + 𝑀(1 − 𝒚𝒊𝒋
𝒌) ∀ 𝑖, 𝑗 ∈ 𝒩, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖 ∖ 𝒜𝕚 (5.13)

𝑞𝕠
𝑘,𝜃 + 𝒪𝒬𝑗 ≤ 𝒒𝒋

𝒌,𝜽 + 𝑀(1 − 𝒚𝕠𝒋
𝒌) ∀ 𝑗 ∈ 𝒩, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖 ∖ 𝒜𝕚 (5.13')

𝒒𝒊
𝒌,𝜽 + 𝒪𝒬𝑗 ≥ 𝒒𝒋

𝒌,𝜽 − 𝑀(1 − 𝒚𝒊𝒋
𝒌) ∀ 𝑖, 𝑗 ∈ 𝒩, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖 ∖ 𝒜𝕚 (5.14)

𝑞𝕠
𝑘,𝜃 + 𝒪𝒬𝑗 ≥ 𝒒𝒋

𝒌,𝜽 − 𝑀(1 − 𝒚𝕠𝒋
𝒌) ∀ 𝑗 ∈ 𝒩, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖 ∖ 𝒜𝕚 (5.14')

𝜹𝒊 ≥ �̇�𝑖 − 𝒕𝒊 ∀𝑖 ∈ ℬ, 𝑡 ∈ �̂� ∖ {0} (5.15)

𝜹𝒊 ≥ 𝒕𝒊 − �̇�𝑖 ∀𝑖 ∈ ℬ, 𝑡 ∈ �̂� ∖ {0} (5.16)

𝒙𝒊𝒋
𝒌 ∈ {0,1} ∀𝑖 ∈ 𝒩𝕠, 𝑗 ∈ 𝒩, 𝑘 ∈ 𝒱 (5.17)

𝒚𝒊𝒋
𝒌 ∈ {0,1} ∀𝑖 ∈ 𝒩𝕠, 𝑗 ∈ 𝒩, 𝑘 ∈ 𝒱 (5.18)

The objective function contains two terms. The first aims at minimizing the over-

all gap between pickup-delivery target times and real pickup-delivery times. The

second is multiplied for a weight 𝛼𝑑 ≥ 0 and aims at minimizing the global travelled

distance of all vehicles.

56

The first set of constraints (5.4) imposes to every vehicle content to be greater or

equal to zero, as negative contents have no physical meaning. On the other hand,

(5.5) ensures that vehicle capacities are not exceeded. Expressions (5.6), (5.7) and

(5.8) bind connection variables 𝒙𝒊𝒋
𝒌 and 𝒚𝒊𝒋

𝒌 . (5.6) imposes that if vehicles start their

route, they start it once and in a single way (not-visiting the main stock - 𝒙𝕠𝒋
𝒌 = 1

XOR visiting it - 𝒚𝕠𝒋
𝒌 = 1). Expression (5.7) imposes a series of chain dependencies

between connection variables. In fact, no need location can be left it is not reached

first. Finally, (5.8) states that each need location must be visited – thus each need

must be satisfied – once and only once. The expression (5.6) is still necessary as (5.8)

does not forbid the departure of a same vehicle from its initial condition 𝕠 to two

different need locations; more specifically, (5.8) does not forbid the combinations of

the kind (𝒙𝕠𝟏
𝟏 , 𝒙𝕠𝟐

𝟏) = (1,1).

Expressions from (5.9) to (5.10') are the time constraints of the formulation. (5.9)

states that if vehicle 𝑘 crosses the arc 𝑖𝑗, then the time at which 𝑘 can leave 𝑗 must

be greater or equal to the time at which 𝑘 left 𝑖, plus the travel time from 𝑖 to 𝑗, plus

the duration of onsite operations at 𝑗. (5.10) imposes the same time relationships in

case the main stock is visited between 𝑖 and 𝑗. These two sets of constraints are

written like in (5.9') and (5.10') if 𝑖 = 𝕠.

Expressions from (5.11) to (5.14') rule the evolution of vehicle content. (5.11) and

(5.12) state that if vehicle 𝑘 crosses the arc 𝑖𝑗, then its content increases exactly of

𝒪𝒬𝑗; otherwise, content values 𝒒𝒊
𝒌,𝜽 and 𝒒𝒋

𝒌,𝜽 are unbound. (5.13) and (5.14) impose

the same content relationships in case the main stock is visited between 𝑖 and 𝑗, and

if the involved article cannot be exchanged with the main stock (𝜃 ∈ 𝒜𝑖 ∖ 𝒜𝕚). In

fact, if 𝒚𝒊𝒋
𝒌 = 1 and 𝜃 can be exchanged with the main stock, 𝒒𝒊

𝒌,𝜽 and 𝒒𝒋
𝒌,𝜽 are un-

bound. These four sets of constraints are written like in (5.11'), (5.12'), (5.13') and

(5.14') if 𝑖 = 𝕠.

Constraints (5.15) and (5.16) rule the auxiliary variables 𝜹𝒊 that must satisfy the

inequation 𝜹𝒊 ≥ |�̇�𝑖 − 𝒕𝒊|. Finally, (5.17) and (5.18) express the Boolean domain of

variables 𝒙𝒊𝒋
𝒌 and 𝒚𝒊𝒋

𝒌 .

5.3 DT-1ms-MILP formulation

The Discrete-Time 1-main-stock MILP (DT-1ms-MILP) formulation can be used

to solve to the Mi-IRP-PD with a unique main stock that generates supply material

and absorbs waste. This formulation is based on the classes of GSVT structure

(Ground, Stock, Vehicles, Tasks) adapted to the indoor logistic operations with a

unique main-stock problem.

This formulation is time-discrete; the scheduling period of length 𝑇𝑃 is converted

into a discrete set of equal timeframes �̂� = {�̂�0, �̂�1, �̂�2, … , �̂�𝑇}. This means that the exact

state of the problem is only known in a finite set of instants. Conventionally, the 𝑡-

Chapter 5. MILP formulations 57

index found in the formulation indicates the exact state of the system at instant 𝑡,

as well as its approximate state during the interval [𝑡, 𝑡+1). Consequently, problem

parameters and variables involving time are expressed in terms of (∗) per timeframe,

where (∗) is a generic physical quantity, and timeframe duration is defined as

Δ�̂� = (�̂�𝑡+1 − �̂�𝑡). Δ�̂� can be chosen freely; nevertheless, a too (and sometimes unnec-

essarily) small value of Δ�̂� adds a greater number of constraints and complexifies the

resolution procedure.

About formulation indexes:

• Buffers are indexed with letters 𝑖 and 𝑗; vehicles with letter 𝑘; articles with

Greek letter 𝜃; time with letter 𝑡.

• The main stock is indicated with symbol 𝕚, and vehicles initial conditions are

indicated with symbol 𝕠. The sets ℬ ∪ {𝕚}, ℬ ∪ {𝕠}, ℬ ∪ {𝕠, 𝕚} are also written

ℬ𝕚, ℬ𝕠, ℬ𝕠𝕚.

• For sake of readability, the elements of ℬ, 𝒱, 𝒜, �̂� are directly written as

their indexes, as reported in the table below at the column ‘Simplified’.

Table 5.4. Sets of DT-1ms-MILP.

Set Set element notations

Name Symbol Index Complete Simplified

Buffers ℬ 𝑖, 𝑗 {𝑏𝑖}𝑖∈{1,2,…,𝐵} {1,2, … , 𝐵}

Vehicles 𝒱 𝑘 {𝑣𝑘}𝑘∈{1,2,…,𝐾} {1,2, … , 𝐾}

Articles 𝒜 𝜃 {𝑎𝜃}𝜃∈{1,2,…,Θ} {1,2, … , Θ}

Timeframes �̂� 𝑡 {�̂�𝑡}𝑡∈{0,1,2,…,𝑇} {0,1,2, … , 𝑇}

5.3.1 Parameters and variables

The nomenclature of model parameters reflects what stated for the 1-main-stock

indoor logistic operations problem.

Table 5.5. Parameters of DT-1ms-MILP.

 Description Index domains

𝜆𝜃 load units in a lot of 𝜃 𝜃 ∈ 𝒜

𝐶𝑖 lower content limit of buffer 𝑖 𝑖 ∈ ℬ

𝐶𝑖 upper content limit of buffer 𝑖 𝑖 ∈ ℬ

𝐶𝑖,0 initial content of buffer 𝑖 𝑖 ∈ ℬ

𝛾𝑖,𝑡 consumption of buffer 𝑖 during 𝑡 𝑖 ∈ ℬ, 𝑡 ∈ �̂� ∖ {𝑇}

58

𝑑𝑖𝑗 travelling distance from 𝑖 to 𝑗 𝑖, 𝑗 ∈ ℬ𝕚, 𝑖 ≠ 𝑗

𝜏𝑖 time required to perform onsite operations at 𝑖 𝑖 ∈ ℬ𝕚

𝑄𝑘 capacity of vehicle 𝑘, in load units 𝑘 ∈ 𝒱

𝑠𝑘 speed of vehicle 𝑘 𝑘 ∈ 𝒱

𝑞0
𝑘,𝜃 initial content of vehicle 𝑘 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜

𝑡𝕠
𝑘 time from which vehicle 𝑘 is available 𝑘 ∈ 𝒱

𝑑𝕠𝑖
𝑘 distance from 𝑘 initial position to 𝑖 𝑖 ∈ ℬ𝕚, 𝑘 ∈ 𝒱

Π𝑖𝑗,𝑡
𝑘 rounded-up integer job finish-time = ⌈𝑡 + 𝑑𝑖𝑗 𝑠𝑘⁄ + 𝜏𝑗⌉

𝑖, 𝑗 ∈ ℬ𝕚,𝑖 ≠ 𝑗,

𝑘 ∈ 𝒱, 𝑡 ∈ �̂� ∖ {𝑇}

𝑀 sufficiently big number = min { max
𝑘∈𝒱,𝜃∈𝒜

{𝑄𝑘 𝜆𝜃⁄ } , max
𝑖∈ℬ𝕚

{𝐶𝑖 𝜆𝜃𝑖
⁄ }}

Variables are written in bold. The do and wait states mentioned for 𝒙𝒊,𝒕
𝒌 and 𝒚𝒊,𝒕

𝒌

variables are better explained in the following paragraph.

Table 5.6. Variables of DT-1ms-MILP.

 Description Index domains

𝒙𝒊,𝒕
𝒌

1 if vehicle 𝑘 is in do state during 𝑡

0 otherwise

𝑖 ∈ ℬ𝕚,

𝑘 ∈ 𝒱, 𝑡 ∈ �̂�

𝒚𝒊,𝒕
𝒌

1 if vehicle 𝑘 is in wait state during 𝑡

0 otherwise

𝑖 ∈ ℬ𝕚𝕠,

𝑘 ∈ 𝒱, 𝑡 ∈ �̂�

𝑪𝒊,𝒕 content of buffer 𝑖 at instant 𝑡 𝑖 ∈ ℬ, 𝑡 ∈ �̂� ∖ {0}

𝒒𝒕
𝒌,𝜽 content of vehicle 𝑘 in terms of 𝜃 at instant 𝑡

𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜,
𝑡 ∈ �̂� ∖ {0}

𝑳𝒊,𝒕
𝒌,𝜽 number of lots of 𝜃, loaded at 𝑖 by 𝑘 at instant 𝑡

𝑖 ∈ ℬ𝕚,

𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖,
𝑡 ∈ �̂� ∖ {0}

Auxiliary variable

𝝐𝒊,𝒕 ≥ max{0, 𝑪𝒊,𝒕 − 𝐶𝑖, 𝐶𝑖 − 𝑪𝒊,𝒕} 𝑖 ∈ ℬ, 𝑡 ∈ �̂� ∖ {0}

 Boolean var ∶= {

 Boolean var ∶= {

Chapter 5. MILP formulations 59

5.3.2 Standards applied to states and transitions

This paragraph defines the relationships between variables as a function of time,

first recalling that all variables with the same 𝑡 must represent the exact state of the

system in that moment. Once the problem is solved, the values assumed by state-

variables (𝒙𝒊,𝒕
𝒌 and 𝒚𝒊,𝒕

𝒌) encode vehicle routes and allow state transitions that are

crucial to make other variables change.

States and transitions follow some guidelines:

• A vehicle 𝑘 can be in two different states:

Table 5.7. State variables of DT formulations.

State Variables Description

do (𝒙𝒊,𝒕
𝒌 , 𝒚𝒊,𝒕

𝒌) = (1,0)
Vehicle 𝑘 is going to or doing onsite opera-

tions at buffer 𝑖 during timeframe 𝑡.

wait (𝒙𝒊,𝒕
𝒌 , 𝒚𝒊,𝒕

𝒌) = (0,1)
Vehicle 𝑘 is waiting at buffer 𝑖 during

timeframe 𝑡.

These two states cannot coexist; each vehicle must be in one and only one

state at a time, for one and only one value of 𝑖.

• Three state transitions are defined, depending on state-variable changes from

𝑡 to 𝑡+1. In the tables below, only the variables involved in transitions have

a non-blank value case.

1. do-𝑖 → do-𝑗:

At instant 𝑡 + 1, vehicle 𝑘 ends the job it was doing for buffer 𝑖 and

starts a new job for buffer 𝑗. In this case, 𝑖 and 𝑗 must have different

values.

𝑘-𝑖𝑗 variables at 𝑡 𝑘-𝑖𝑗 variables at 𝑡+1

𝒙𝒊,𝒕
𝒌 𝒚𝒊,𝒕

𝒌 𝒙𝒋,𝒕
𝒌 𝒚𝒋,𝒕

𝒌 𝒙𝒊,𝒕+𝟏
𝒌 𝒚𝒊,𝒕+𝟏

𝒌 𝒙𝒋,𝒕+𝟏
𝒌 𝒚𝒋,𝒕+𝟏

𝒌

1 0 0 1

2. do-𝑖 → wait-𝑖:

At instant 𝑡 + 1, vehicle 𝑘 ends the job it was doing for buffer 𝑖 and

starts waiting at the same buffer.

𝑘-𝑖𝑗 variables at 𝑡 𝑘-𝑖𝑗 variables at 𝑡+1

𝒙𝒊,𝒕
𝒌 𝒚𝒊,𝒕

𝒌 𝒙𝒋,𝒕
𝒌 𝒚𝒋,𝒕

𝒌 𝒙𝒊,𝒕+𝟏
𝒌 𝒚𝒊,𝒕+𝟏

𝒌 𝒙𝒋,𝒕+𝟏
𝒌 𝒚𝒋,𝒕+𝟏

𝒌

1 0 0 1

3. wait-𝑖 → do-𝑗:

At instant 𝑡 + 1, vehicle 𝑘 stops waiting at buffer 𝑖 and starts a job for

buffer 𝑗. In this case, 𝑖 is allowed to be equal to 𝑗.

60

𝑘-𝑖𝑗 variables at 𝑡 𝑘-𝑖𝑗 variables at 𝑡+1

𝒙𝒊,𝒕
𝒌 𝒚𝒊,𝒕

𝒌 𝒙𝒋,𝒕
𝒌 𝒚𝒋,𝒕

𝒌 𝒙𝒊,𝒕+𝟏
𝒌 𝒚𝒊,𝒕+𝟏

𝒌 𝒙𝒋,𝒕+𝟏
𝒌 𝒚𝒋,𝒕+𝟏

𝒌

 1 0 0 1

wait-𝑖 → wait-𝑗 transitions do not exist, since a vehicle cannot move from a

buffer 𝑖 to a buffer 𝑗 (with 𝑖 ≠ 𝑗) without passing through a do state.

• Consumption values 𝛾𝑖,𝑡 refer to the number of load units consumed during

timeframe 𝑡. The whole consumption is conventionally counted once the 𝑡-

frame is over, i.e., at instant 𝑡+1. Thus, 𝑪𝒊,𝒕 is not deprived yet of the quantity

𝛾𝑖,𝑡 with respect to 𝑪𝒊,𝒕−𝟏.

Numerical example:

𝑡 0 1 2 3 4 5 6 7 8

𝛾𝑖,𝑡 0 3 3 3 0 0 2 2 0

𝐶𝑖,𝑡 20 20 17 14 11 11 11 9 7

N.B.: since 𝑪𝒊,𝒕 represents buffer content during the whole 𝑡 time frame, posi-

tive consumptions values could be right shifted of a −Δ�̂� (𝛾𝑖,𝑡 ↦ 𝛾𝑖,𝑡−1) to en-

sure that real buffer content never runs below zero.

E.g., in the small table below, buffer content could go negative for 𝑡 ≥ 2 in

real world operations. In fact, passing to a continuous domain and considering

a constant consumption rate between 𝑡2 and 𝑡3, buffer content at 𝑡2.9̅ is equal

to −0.9. Nevertheless, the solution is formally acceptable.

𝑡 0 1 2 3 4

𝛾𝑖,𝑡 0 1 1 1 …

𝐶𝑖,𝑡 1.1 1.1 0.1 0.1 0.1

∑ 𝐿𝑖,𝑡 0 0 1 1 1

• When a do-𝑖 → ∗ transition occurs, the involved vehicles and buffer can ex-

change their content. Content value changes and article loading / unloading

all happen at instant 𝑡+1, when the transition occurs.

5.3.3 DT-1ms-MILP model

The DT-1ms-MILP model is formulated as follows:

 𝑓 = ∑ ∑ 𝝐𝒊,𝒕

𝑡∈�̂�∖{0}𝑖∈ℬ

 (5.19)

Subject to:

Minimize

Chapter 5. MILP formulations 61

𝑪𝒊,𝒕 ≥ 0 ∀𝑖 ∈ ℬ, 𝑡 ∈ �̂� ∖ {0} (5.20)

𝑪𝒊,𝒕+𝟏 = 𝑪𝒊,𝒕 − 𝛾𝑖,𝑡 − 𝜆𝜃𝑖
⋅ ∑ 𝑳𝒊,𝒕+𝟏

𝒌,𝜽𝒊

𝑘∈𝒱

 ∀𝑖 ∈ ℬ, 𝑡 ∈ �̂� ∖ {0, 𝑇} (5.21)

𝑪𝒊,𝟏 = 𝐶𝑖,0 − 𝛾𝑖,0 − 𝜆𝜃𝑖
⋅ ∑ 𝑳𝒊,𝟏

𝒌,𝜽𝒊

𝑘∈𝒱

 ∀𝑖 ∈ ℬ (5.21')

𝒒𝒕
𝒌,𝜽 ≥ 0 ∀𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜, 𝑡 ∈ �̂� ∖ {0} (5.22)

∑ 𝒒𝒕
𝒌,𝜽

𝜃∈𝒜

≤ 𝑄𝑘 ∀𝑘 ∈ 𝒱, 𝑡 ∈ �̂� ∖ {0} (5.23)

𝒒𝒕+𝟏
𝒌,𝜽 = 𝒒𝒕

𝒌,𝜽 + ∑ 𝜆𝜃𝑳𝒊,𝒕+𝟏
𝒌,𝜽

𝑖∈ℬ∩{𝑖′|𝜃∈𝒜𝑖′}

 ∀𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜, 𝑡 ∈ �̂� ∖ {0, 𝑇} (5.24)

𝒒𝟏
𝒌,𝜽 = 𝑞0

𝑘,𝜃 + ∑ 𝜆𝜃𝑳𝒊,𝟏
𝒌,𝜽

𝑖∈ℬ∩{𝑖′|𝜃∈𝒜𝑖′}

 ∀𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜 (5.24')

𝑀𝒙𝒊,𝒕
𝒌 + 𝑳𝒊,𝒕+𝟏

𝒌,𝜽 ≥ 0 ∀𝑖 ∈ ℬ𝕚, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖 , 𝑡 ∈ �̂� ∖ {𝑇} (5.25)

−𝑀𝒙𝒊,𝒕
𝒌 + 𝑳𝒊,𝒕+𝟏

𝒌,𝜽 ≤ 0 ∀𝑖 ∈ ℬ𝕚, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖 , 𝑡 ∈ �̂� ∖ {𝑇} (5.26)

𝑀(1 − 𝒙𝒊,𝒕+𝟏
𝒌) + 𝑳𝒊,𝒕+𝟏

𝒌,𝜽 ≥ 0 ∀𝑖 ∈ ℬ𝕚, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖 , 𝑡 ∈ �̂� ∖ {𝑇} (5.27)

−𝑀(1 − 𝒙𝒊,𝒕+𝟏
𝒌) + 𝑳𝒊,𝒕+𝟏

𝒌,𝜽 ≤ 0 ∀𝑖 ∈ ℬ𝕚, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖 , 𝑡 ∈ �̂� ∖ {𝑇} (5.28)

∑ 𝒙𝒊,𝒕
𝒌

𝑖∈ℬ∪{𝕚}

+ ∑ 𝒚𝒊,𝒕
𝒌

𝑖∈ℬ∪{𝕠,𝕚}

= 1 ∀𝑘 ∈ 𝒱, 𝑡 ∈ �̂� (5.29)

1 − (𝒙𝒊,𝒕
𝒌 + 𝒚𝒊,𝒕

𝒌) − 𝒙𝒋,𝒕+𝟏
𝒌 + 𝒙𝒋,𝝅

𝒌 ≥ 0
∀𝑖, 𝑗 ∈ ℬ𝕚, 𝑖 ≠ 𝑗, 𝑘 ∈ 𝒱

∀𝑡 ∈ �̂� ∖ {𝑇}, 𝜋 ∈ [𝑡 + 2, Π𝑖𝑗,𝑡
𝑘] (5.30)

1 − 𝒚𝕠,𝒕
𝒌 − 𝒙𝒋,𝒕+𝟏

𝒌 + 𝒙𝒋,𝝅
𝒌 ≥ 0

∀𝑗 ∈ ℬ𝕚, 𝑘 ∈ 𝒱,
∀𝑡 ∈ �̂� ∖ {𝑇}, 𝜋 ∈ [𝑡 + 2, Π𝑖𝑗,𝑡

𝑘] (5.30')

𝒙𝒊,𝒕
𝒌 + 𝒚𝒊,𝒕

𝒌 ≥ 𝒚𝒊,𝒕+𝟏
𝒌 ∀𝑖 ∈ ℬ𝕚, 𝑘 ∈ 𝒱, 𝑡 ∈ �̂� ∖ {𝑇} (5.31)

𝒚𝕠,𝒕
𝒌 ≥ 𝒚𝕠,𝒕+𝟏

𝒌 ∀𝑘 ∈ 𝒱, �̂� ∈ �̂� ∖ {𝑇} (5.31')

1 − 𝒚𝒊,𝒕
𝒌 ≥ 𝒙𝒊,𝒕+𝟏

𝒌 ∀𝑖 ∈ ℬ𝕚, 𝑘 ∈ 𝒱, 𝑡 ∈ �̂� ∖ {𝑇} (5.32)

𝒚𝕠,𝒕
𝒌 = 1 ∀𝑘 ∈ 𝒱, 𝑡 ∈ [0, 𝑡𝕠

𝑘) (5.33)

∑ 𝒚𝒊,𝑻
𝒌

𝑖∈ℬ∪{𝕠,𝕚}

= 1 ∀𝑘 ∈ 𝒱 (5.34)

62

𝝐𝒊,𝒕 ≥ 0 ∀𝑖 ∈ ℬ, 𝑡 ∈ �̂� ∖ {0} (5.35)

𝝐𝒊,𝒕 ≥ 𝑪𝒊,𝒕 − 𝐶𝑖 ∀𝑖 ∈ ℬ, 𝑡 ∈ �̂� ∖ {0} (5.36)

𝝐𝒊,𝒕 ≥ 𝐶𝑖 − 𝑪𝒊,𝒕 ∀𝑖 ∈ ℬ, 𝑡 ∈ �̂� ∖ {0} (5.37)

𝒙𝒊,𝒕
𝒌 ∈ {0,1} ∀𝑖 ∈ ℬ𝕚, 𝑘 ∈ 𝒱, 𝑡 ∈ �̂� (5.38)

𝒚𝒊,𝒕
𝒌 ∈ {0,1} ∀𝑖 ∈ ℬ𝕠𝕚, 𝑘 ∈ 𝒱, 𝑡 ∈ �̂� (5.39)

𝑳𝒊,𝒕
𝒌,𝜽 ∈ ℤ0 ∀𝑖 ∈ ℬ𝕚, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖 , 𝑡 ∈ �̂� ∖ {0} (5.40)

The objective function min 𝑓 = ∑ ∑ 𝝐𝒊,𝒕𝑡𝑖 aims at minimizing the overall portion

of buffer contents exceeding the desired limits [𝐶𝑖, 𝐶𝑖].

Buffer contents are constrained by inequations (5.20), (5.21) and (5.21'). Content

values cannot take negative values (5.20) since the resulting solution would be phys-

ically impossible. Expression (5.21) handles buffer content evolutions overtime, and

expression (5.21') binds the set of first variable content values (𝑪𝒊,𝟏) to the set of

initial conditions 𝐶𝑖,0. These two sets of equations show that at each time step

𝑡 → 𝑡+1, buffer contents are deprived of the quantity consumed during 𝑡-frame and

the overall quantity loaded by every vehicle at instant 𝑡+1. These constraints only

exist for 𝜃 = 𝜃𝑖. (Indeed, for all 𝜃 ≠ 𝜃𝑖 the 𝑳𝒊,𝒕
𝒌,𝜽 variable do not exist.) Moreover, for

𝑖 = 𝕚 these constraints do not exist either, because the main stock has no content

variable.

The constraints (5.22), (5.23), (5.24) and (5.24') bind vehicle content evolution to

the quantities exchanged with vehicles. First, (5.22) impose to every 𝒒-value to be

greater or equal to zero since negative contents have no physical meaning. Second,

expression (5.23) ensures that vehicle capacities are not exceeded. Last, (5.24) man-

ages vehicle content evolutions overtime and (5.24') binds the set of first variable

content values (𝒒𝟏
𝒌,𝜽) to the initial contents 𝑞0

𝑘,𝜃.

Inequations (5.25), (5.26), (5.27) and (5.28) have a crucial role in allowing content

exchanges between vehicles and buffers. In fact, the lot exchange variables 𝑳𝒊,𝒕
𝒌,𝜽 can

be different from zero only if a do-𝑖 → ∗ transition occurs at the same time. These

four constraint sets must ensure the following relationships:

do-𝑖 → ∗ transition at instant 𝑡+1 𝒙𝒊,𝒕
𝒌 𝒙𝒊,𝒕+𝟏

𝒌 𝑳𝒊,𝒕+𝟏
𝒌,𝜽𝒊

no 0 0

⇒

0

no 0 1 0

yes 1 0 unbound

no 1 1 0

In other terms, the following expression must be verified:

Chapter 5. MILP formulations 63

𝒙𝒊,𝒕
𝒌 = 1 ∨ 𝒙𝒊,𝒕

𝒌 = 0 ⟺ 𝒙𝒊,𝒕
𝒌 − 𝒙𝒊,𝒕+𝟏

𝒌 < 1 ⇒ 𝑳𝒊,𝒕+𝟏
𝒌,𝜽 = 0,

∀𝑖 ∈ ℬ𝕚, 𝑘 ∈ 𝒱

∀𝜃 ∈ 𝒜𝑖 , 𝑡 ∈ �̂� ∖ {𝑇}

The 𝑀 parameter in (5.25), (5.26), (5.27), (5.28) must take the smallest value that

can overcome any possible |𝑳𝒊,𝒕+𝟏
𝒌,𝜽 |. It is calculated as:

𝑀 = min { max
𝑘∈𝒱,𝜃∈𝒜

{𝑄𝑘 𝜆𝜃⁄ } , max
𝑖∈ℬ𝕚

{𝐶𝑖 𝜆𝜃𝑖
⁄ }}

Constraints (5.29) to (5.34) have the function of binding state variables 𝒙𝒊,𝒕
𝒌 , 𝒚𝒊,𝒕

𝒌

overtime. Namely, they define the consistent set of rules that apply to vehicle route

making. Expression (5.29) constrains each vehicle to lie in one and only state at one

and only buffer at a time.

The set of constraints expressed at (5.30) deserves a special attention. In fact, it

permits to schedule multi-timeframe do-jobs, and thus to freely scale model time

granularity. On the other hand, by increasing time granularity the formulation com-

plexifies and becomes harder to solve; a fair trade-off must be found. This set of

constraints states that after a ∗ → do-𝑗 transition at instant 𝑡, the following 𝑥𝑗,∗
𝑘 are

equal to 1 until the do-job is not over, i.e., as long as 𝑡 ≤Π𝑖𝑗,𝑡
𝑘 = ⌈𝑡 + 𝑑𝑖𝑗 𝑠𝑘⁄ + 𝜏𝑗⌉.

The Π parameters are fundamental for writing these constraints, as it corresponds

to the rounded-up integer finish time of each hypothetical do-job performed by 𝑘,

starting at 𝑡, and going from buffer 𝑖 to buffer 𝑗. Let us see the origin of this con-

straint set; the ∗ → do-𝑗 transition that triggers the constraint only exists if

(𝑥𝑗,𝑡
𝑘 , 𝑥𝑗,𝑡+1

𝑘) = (0,1). Since 𝑥𝑗,𝑡
𝑘 = 0, there must be a buffer 𝑖 ≠ 𝑗 for which (𝑥𝑖,𝑡

𝑘 +

𝑦𝑖,𝑡
𝑘) = 1. Let 𝜋 ∈ {𝑡∗ | 𝑡∗ ∈ �̂�, 𝑡+1 < 𝑡∗ ≤Π𝑖𝑗,𝑡

𝑘 }, the relationships to respect are:

∗ → do-𝑗 transition at instant 𝑡+1 𝒙𝒊,𝒕
𝒌 + 𝒚𝒊,𝒕

𝒌 𝒙𝒋,𝒕+𝟏
𝒌 𝒙𝒋,𝝅

𝒌

no 0 0

⇒

unbound

no 0 1 unbound

no 1 0 unbound

yes 1 1 1

In other terms, the following expression must be verified:

(𝒙𝒊,𝒕
𝒌 + 𝒚𝒊,𝒕

𝒌) = 1 ∧ 𝒙𝒋,𝒕+𝟏
𝒌 = 1 ⟺

⟺ (𝒙𝒊,𝒕
𝒌 + 𝒚𝒊,𝒕

𝒌) + 𝒙𝒋,𝒕+𝟏
𝒌 = 2 ⇒ 𝒙𝒋,𝝅

𝒌 = 1,
∀𝑖, 𝑗 ∈ ℬ𝕚, 𝑖 ≠ 𝑗, 𝑘 ∈ 𝒱

∀𝑡 ∈ �̂� ∖ {𝑇}, 𝜋 ∈ [𝑡 + 2, Π𝑖𝑗,𝑡
𝑘]

For 𝑖 = 𝕠, the expression becomes as in (5.30'), since the initial condition 𝕠 cannot

be a do-job destination, and consequently variables 𝑥𝕠,𝑡
𝑘 do not exist.

Expression (5.31) states that vehicles can pass to wait state only at the buffer they

visited last. Therefore, the 𝒚𝒊,𝒕+𝟏
𝒌 variable can be set to 1 if and only if either 𝒙𝒊,𝒕

𝒌 or

𝒚𝒊,𝒕
𝒌 is equal to 1. For 𝑖 = 𝕠, the expression becomes as in (5.31'). Expression (5.32)

states that a vehicle waiting at a buffer cannot start a do-job toward the same buffer:

𝒚𝒊,𝒕
𝒌 = 1 → 𝒙𝒊,𝒕+𝟏

𝒌 = 0. Constraint (5.33) is to be used in case some vehicles are not

immediately available to start do-jobs. They are put in wait state at their initial

64

condition 𝕠 as long as their availability time 𝑡𝕠
𝑘 is not reached. Finally, (5.34) grants

that no vehicle can finish the scheduling period in a do state. In fact, a do-job cannot

start if it cannot be finished, too.

Constraints (5.35), (5.36), (5.37) rule the auxiliary variables 𝝐𝒊,𝒕, that must satisfy

the inequation 𝝐𝒊,𝒕 ≥ max{0, 𝑪𝒊,𝒕 − 𝐶𝑖, 𝐶𝑖 − 𝑪𝒊,𝒕}.

Finally, (5.38) and (5.39) express the Boolean domain of variables 𝒙𝒊,𝒕
𝒌 and 𝒚𝒊,𝒕

𝒌 , while

(5.40) imposes the integral domain of 𝑳𝒊,𝒕
𝒌,𝜽. All the other variables have continuous

domains.

5.3.4 DT-1ms-MILP results post-processing

The DT-1ms-MILP formulation was chosen as the most appropriate for solving

the ILOM at the basis of this thesis and the internship. Therefore, the variables

forming DT-1ms-MILP solution must be interpreted so as to be understood, evalu-

ated, compared, and visualized. The following algorithm creates a set of tasks

𝒵 = {𝓏(𝑡𝑠, 𝑡𝑒 , 𝑖, 𝑘, 𝐿𝜃) | (𝑖, 𝑘, 𝜃)𝑇 ∈ (ℬ, 𝒱, 𝒜)𝑇 , 0 ≤ 𝑡𝑠 ≤ 𝑡𝑒 ≤ 𝑇𝑃}, where each task 𝓏 has

a start time 𝑡𝑠, an end time 𝑡𝑒, an appointed vehicle 𝑘, a destination 𝑖, and a set of

quantities to pick-up 𝐿𝜃.

Standards:

1. In pseudocode, MILP solution variables are called with the expression

𝒮[<var.name>][<indexes>].

2. Tasks are of two types: do and wait tasks. A wait-task differs from a do-task

as its destination does not change with respect to the current buffer. Moreover,

wait-tasks always have pick-up quantities 𝐿𝜃 set at zero.

3. To make it simpler, let us assume a Δ�̂� = 1.

4. The symbol ⋆ indicates a yet undefined quantity, specified later by the algo-

rithm.

Algorithm 5.2. Conversion of DT-1ms-MILP solution variables into tasks

1 Initialize tasks set 𝒵 ← ∅

 C R E A T I O N O F T A S K S :
2 For each triplet (𝑖, 𝑘, 𝑡)

3 If 𝒮[𝒙][𝑖, 𝑘, 𝑡] = 1 (i.e., 𝑘 in a do state toward 𝑖 at time 𝑡)

4 If there is a do-task 𝓏𝑑𝑜 ∈ 𝒵 such that (𝑖, 𝑘, 𝑡𝑒)𝓏𝑑𝑜
𝑇 = (𝑖, 𝑘, 𝑡)𝑇

5 Update the end time of 𝓏𝑑𝑜: 𝑡𝑒
𝓏𝑑𝑜 ← 𝑡𝑒

𝓏𝑑𝑜 + 1

6 Else

7 Create a new do-task: 𝒵 ← 𝒵 ∪ {𝓏(𝑡, 𝑡+1, 𝑖, 𝑘,⋆}

8 End if

9 Elsif 𝒮[𝒚][𝑖, 𝑘, 𝑡] = 1 (i.e., 𝑘 in a wait state at 𝑖 at time 𝑡)

10 If there is a wait-task 𝓏𝑤𝑎𝑖𝑡 ∈ 𝒵 such that (𝑖, 𝑘, 𝑡𝑒)𝓏𝑤𝑎𝑖𝑡

𝑇 = (𝑖, 𝑘, 𝑡)𝑇

11 Update the end time of 𝓏𝑤𝑎𝑖𝑡: 𝑡𝑒
𝓏𝑤𝑎𝑖𝑡 ← 𝑡𝑒

𝓏𝑤𝑎𝑖𝑡 + 1

Chapter 5. MILP formulations 65

12 Else

13 Create a new wait-task: 𝒵 ← 𝒵 ∪ {𝓏(𝑡, 𝑡+1, 𝑖, 𝑘, 0}

14 End it

15 End if

16 Next (𝑖, 𝑘, 𝑡)

 D E F I N I T I O N O F L O A D E D /UN L O A D E D QU A N T I T I E S :
17 For each do-task 𝓏 ∈ 𝒵

18 For each article 𝜃 ∈ 𝒜

19 𝐿𝜃,𝓏 ← value of variable 𝒮[𝐿][𝑖𝓏 , 𝑘𝓏 , 𝜃, 𝑡𝑒
𝓏]

20 Next 𝜃

21 Next 𝓏

5.4 DT-Ms²-Mib-MILP formulation

The Discrete-Time Multiple-source/sinks Multi-item-buffers MILP (DT-Ms²-

Mib-MILP) formulation is the generalisation of DT-1ms-MILP. It can be applied to

the homonymous problem, in which there is not a unique main stock and each buffer

capacity can be shared by more than a single allowed article. Furthermore, vehicles

can be completely heterogeneous and can possibly support only a limited set of arti-

cles. The standards adopted for this formulation are the same seen for DT-1ms-

MILP. However, concerning the involved elements there are some differences:

• Buffers are multi-item and can contain many different item references until a

common content limit is reached. The set of supported articles at buffer 𝑖 is

indicated with 𝒜𝑖 ⊆ 𝒜.

• Some articles can enter and exit the problem via source/sink elements. These

elements behave like buffers with endless content and capacity, and the joint

set of buffers and source/sinks is indicated by symbol ℬ𝒮. The set ℬ𝒮 ∪ {𝕠} is

also written ℬ𝒮𝕠.

• Vehicles can possibly support a limited set of articles indicated with 𝒜𝑘 ⊆ 𝒜.

This feature can be useful in case articles have different physical state or

properties (for example, solid and liquid products, type of packaging, items

stored at different temperatures, etc.).

The set 𝒜𝑖 ∩ 𝒜𝑘 is also written 𝒜𝑖𝑘 , ∀𝑖 ∈ ℬ, 𝑘 ∈ 𝒱.

Table 5.8. Sets of DT-Ms²-Mib-MILP.

Set Set element notations

Name Symbol Index Complete Simplified

Buffers ℬ 𝑖, 𝑗 {𝑏𝑖}𝑖∈{1,2,…,𝐵} {1,2, … , 𝐵}

Source/sinks 𝒮 𝑖, 𝑗 {𝑠𝑖}𝑖∈{1,2,…,𝑆} {1,2, … , 𝑆}

Buffers & s/s ℬ𝒮 𝑖, 𝑗 {𝑏𝑠𝑖}𝑖∈{1,2,…,𝐵𝑆} {1,2, … , 𝐵𝑆}

66

Vehicles 𝒱 𝑘 {𝑣𝑘}𝑘∈{1,2,…,𝐾} {1,2, … , 𝐾}

Articles 𝒜 𝜃 {𝑎𝜃}𝜃∈{1,2,…,Θ} {1,2, … , Θ}

Timeframes �̂� 𝑡 {�̂�𝑡}𝑡∈{0,1,2,…,𝑇} {0,1,2, … , 𝑇}

5.4.1 Parameters and variables

The nomenclature of model parameters is conceptually the same shown for DT-

1ms-MILP, and the most modified parts are the ‘Index domains’.

Table 5.9. Parameters of DT-Ms²-Mib-MILP.

 Description Index domains

𝜆𝜃 load units in a lot of 𝜃 𝜃 ∈ 𝒜

𝐶𝑖 upper content limit (capacity) of buffer 𝑖 𝑖 ∈ ℬ

𝐶𝑖
𝜃 lower content limit of buffer 𝑖 for article 𝜃 𝑖 ∈ ℬ, 𝜃 ∈ 𝒜𝑖

𝐶𝑖,0
𝜃 initial content in buffer 𝑖 of article 𝜃 𝑖 ∈ ℬ, 𝜃 ∈ 𝒜𝑖

𝛾𝑖,𝑡
𝜃 consumption of article 𝜃 at buffer 𝑖 during 𝑡

𝑖 ∈ ℬ, 𝜃 ∈ 𝒜𝑖
𝑡 ∈ �̂� ∖ {𝑇}

𝑑𝑖𝑗 travelling distance from 𝑖 to 𝑗 𝑖, 𝑗 ∈ ℬ𝒮, 𝑖 ≠ 𝑗

𝜏𝑖 time required to perform onsite operations at 𝑖 𝑖 ∈ ℬ𝒮

𝑤𝑖 penalty weight of overstock at 𝑖 𝑖 ∈ ℬ

𝑤𝑖
𝜃 penalty weight of stockout of 𝜃 at 𝑖 𝑖 ∈ ℬ, 𝜃 ∈ 𝒜𝑖

All vehicle parameters are identical to those in DT-1ms-MILP formulation, except

for article index domains that change from 𝒜 to 𝒜𝑘.

Table 5.10. Variables of DT-Ms²-Mib-MILP.

 Description Index domains

𝒙𝒊,𝒕
𝒌

1 if vehicle 𝑘 is in do state during 𝑡

0 otherwise

𝑖 ∈ ℬ𝒮,

𝑘 ∈ 𝒱, 𝑡 ∈ �̂�

𝒚𝒊,𝒕
𝒌

1 if vehicle 𝑘 is in wait state during 𝑡

0 otherwise

𝑖 ∈ ℬ𝒮 ∪ {𝕠},

𝑘 ∈ 𝒱, 𝑡 ∈ �̂�

𝑪𝒊,𝒕
𝜽 quantity of 𝜃 at buffer 𝑖 at instant 𝑡

𝑖 ∈ ℬ, 𝜃 ∈ 𝒜𝑖
𝑡 ∈ �̂� ∖ {0}

 Boolean var ∶= {

 Boolean var ∶= {

Chapter 5. MILP formulations 67

𝒒𝒕
𝒌,𝜽 quantity of 𝜃 on vehicle 𝑘 at instant 𝑡

𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑘,
𝑡 ∈ �̂� ∖ {0}

𝑳𝒊,𝒕
𝒌,𝜽 number of lots of 𝜃, loaded at 𝑖 by 𝑘 at instant 𝑡

𝑖 ∈ ℬ𝒮, 𝑘 ∈ 𝒱,

𝜃 ∈ 𝒜𝑖 ∩ 𝒜𝑘,
𝑡 ∈ �̂� ∖ {0}

Auxiliary variables

𝝐𝒊,𝒕 ≥ max{0, ∑ 𝑪𝒊,𝒕
𝜽

𝜃∈𝒜𝑖
− 𝐶𝑖} 𝑖 ∈ ℬ, 𝑡 ∈ �̂� ∖ {0}

𝝐𝒊,𝒕
𝜽 ≥ max{0, 𝐶𝑖

𝜃 − 𝑪𝒊,𝒕
𝜽 }

𝑖 ∈ ℬ, 𝜃 ∈ 𝒜𝑖,
𝑡 ∈ �̂� ∖ {0}

5.4.2 DT-Ms²-Mib-MILP model

The DT-Ms²-Mib-MILP model is formulated as follows:

 𝑓 = ∑ ∑ 𝑤𝑖𝝐𝒊,𝒕

𝑡∈�̂�∖{0}𝑖∈ℬ

+ ∑ ∑ ∑ 𝑤𝑖
𝜃𝝐𝒊,𝒕

𝜽

𝑡∈�̂�∖{0}𝜃∈𝒜𝑖𝑖∈ℬ

 (5.41)

Subject to:

𝑪𝒊,𝒕
𝜽 ≥ 0 ∀𝑖 ∈ ℬ, 𝜃 ∈ 𝒜𝑖 , 𝑡 ∈ �̂� ∖ {0} (5.42)

𝑪𝒊,𝒕+𝟏
𝜽 = 𝑪𝒊,𝒕

𝜽 − 𝛾𝑖,𝑡
𝜃 − ∑ 𝜆𝜃𝑳𝒊,𝒕+𝟏

𝒌,𝜽

𝑘∈𝒱∩{𝑘′|𝜃∈𝒜𝑘′}

 ∀𝑖 ∈ ℬ, 𝜃 ∈ 𝒜𝑖 ,
𝑡 ∈ �̂� ∖ {0, 𝑇}

(5.43)

𝑪𝒊,𝟏
𝜽 = 𝐶𝑖,0

𝜃 − 𝛾𝑖,0
𝜃 − ∑ 𝜆𝜃𝑳𝒊,𝟏

𝒌,𝜽

𝑘∈𝒱∩{𝑘′|𝜃∈𝒜𝑘′}

 ∀𝑖 ∈ ℬ (5.43')

𝒒𝒕
𝒌,𝜽 ≥ 0 ∀𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑘 , 𝑡 ∈ �̂� ∖ {0} (5.44)

∑ 𝒒𝒕
𝒌,𝜽

𝜃∈𝒜𝑘

≤ 𝑄𝑘 ∀𝑘 ∈ 𝒱, 𝑡 ∈ �̂� ∖ {0} (5.45)

𝒒𝒕+𝟏
𝒌,𝜽 = 𝒒𝒕

𝒌,𝜽 + ∑ 𝜆𝜃𝑳𝒊,𝒕+𝟏
𝒌,𝜽

𝑖∈ℬ∩{𝑖′|𝜃∈𝒜𝑖′}

 ∀𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑘 , 𝑡 ∈ �̂� ∖ {0, 𝑇} (5.46)

𝒒𝟏
𝒌,𝜽 = 𝑞0

𝑘,𝜃 + ∑ 𝜆𝜃𝑳𝒊,𝟏
𝒌,𝜽

𝑖∈ℬ∩{𝑖′|𝜃∈𝒜𝑖′}

 ∀𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑘 (5.46')

𝑀𝒙𝒊,𝒕
𝒌 + 𝑳𝒊,𝒕+𝟏

𝒌,𝜽 ≥ 0 ∀𝑖 ∈ ℬ𝒮, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖𝑘 , 𝑡 ∈ �̂� ∖ {𝑇} (5.47)

Minimize

68

−𝑀𝒙𝒊,𝒕
𝒌 + 𝑳𝒊,𝒕+𝟏

𝒌,𝜽 ≤ 0 ∀𝑖 ∈ ℬ𝒮, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖𝑘 , 𝑡 ∈ �̂� ∖ {𝑇} (5.48)

𝑀(1 − 𝒙𝒊,𝒕+𝟏
𝒌) + 𝑳𝒊,𝒕+𝟏

𝒌,𝜽 ≥ 0 ∀𝑖 ∈ ℬ𝒮, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖𝑘 , 𝑡 ∈ �̂� ∖ {𝑇} (5.49)

−𝑀(1 − 𝒙𝒊,𝒕+𝟏
𝒌) + 𝑳𝒊,𝒕+𝟏

𝒌,𝜽 ≤ 0 ∀𝑖 ∈ ℬ𝒮, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖𝑘 , 𝑡 ∈ �̂� ∖ {𝑇} (5.50)

∑ 𝒙𝒊,𝒕
𝒌

𝑖∈ℬ∪{𝕚}

+ ∑ 𝒚𝒊,𝒕
𝒌

𝑖∈ℬ∪{𝕠,𝕚}

= 1 ∀𝑘 ∈ 𝒱, 𝑡 ∈ �̂� (5.51)

1 − (𝒙𝒊,𝒕
𝒌 + 𝒚𝒊,𝒕

𝒌) − 𝒙𝒋,𝒕+𝟏
𝒌 + 𝒙𝒋,𝝅

𝒌 ≥ 0
∀𝑖, 𝑗 ∈ ℬ𝕚, 𝑖 ≠ 𝑗, 𝑘 ∈ 𝒱

∀𝑡 ∈ �̂� ∖ {𝑇}, 𝜋 ∈ [𝑡 + 2, Π𝑖𝑗,𝑡
𝑘] (5.52)

1 − 𝒚𝕠,𝒕
𝒌 − 𝒙𝒋,𝒕+𝟏

𝒌 + 𝒙𝒋,𝝅
𝒌 ≥ 0

∀𝑗 ∈ ℬ𝕚, 𝑖 ≠ 𝑗, 𝑘 ∈ 𝒱
∀𝑡 ∈ �̂� ∖ {𝑇}, 𝜋 ∈ [𝑡 + 2, Π𝑖𝑗,𝑡

𝑘] (5.52')

𝒙𝒊,𝒕
𝒌 + 𝒚𝒊,𝒕

𝒌 ≥ 𝒚𝒊,𝒕+𝟏
𝒌 ∀𝑖 ∈ ℬ𝒮, 𝑘 ∈ 𝒱, 𝑡 ∈ �̂� ∖ {𝑇} (5.53)

𝒚𝕠,𝒕
𝒌 ≥ 𝒚𝕠,𝒕+𝟏

𝒌 ∀𝑘 ∈ 𝒱, �̂� ∈ �̂� ∖ {𝑇} (5.53')

1 − 𝒚𝒊,𝒕
𝒌 ≥ 𝒙𝒊,𝒕+𝟏

𝒌 ∀𝑖 ∈ ℬ𝒮, 𝑘 ∈ 𝒱, 𝑡 ∈ �̂� ∖ {𝑇} (5.54)

𝒚𝕠,𝒕
𝒌 = 1 ∀𝑘 ∈ 𝒱, 𝑡 ∈ [0, 𝑡𝕠

𝑘) (5.55)

∑ 𝒚𝒊,𝑻
𝒌

𝑖∈ℬ∪{𝕠,𝕚}

= 1 ∀𝑘 ∈ 𝒱 (5.56)

𝝐𝒊,𝒕 ≥ 0 ∀𝑖 ∈ ℬ, 𝑡 ∈ �̂� ∖ {0} (5.57)

𝝐𝒊,𝒕 ≥ ∑ 𝑪𝒊,𝒕
𝜽

𝜃∈𝒜𝑖

− 𝐶𝑖 ∀𝑖 ∈ ℬ, 𝑡 ∈ �̂� ∖ {0} (5.58)

𝝐𝒊,𝒕
𝜽 ≥ 0 ∀𝑖 ∈ ℬ, 𝑡 ∈ �̂� ∖ {0} (5.59)

𝝐𝒊,𝒕
𝜽 ≥ 𝐶𝑖

𝜃 − 𝑪𝒊,𝒕
𝜽 ∀𝑖 ∈ ℬ, 𝜃 ∈ 𝒜𝑖 , 𝑡 ∈ �̂� ∖ {0} (5.60)

𝒙𝒊,𝒕
𝒌 ∈ {0,1} ∀𝑖 ∈ ℬ𝒮, 𝑘 ∈ 𝒱, 𝑡 ∈ �̂� (5.61)

𝒚𝒊,𝒕
𝒌 ∈ {0,1} ∀𝑖 ∈ ℬ𝒮 ∪ {𝕠}, 𝑘 ∈ 𝒱, 𝑡 ∈ �̂� (5.62)

𝑳𝒊,𝒕
𝒌,𝜽 ∈ ℤ0 ∀𝑖 ∈ ℬ𝒮, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖𝑘, 𝑡 ∈ �̂� ∖ {0} (5.63)

The objective function min 𝑓 = ∑ ∑ 𝑤𝑖𝝐𝒊,𝒕𝑡𝑖 + ∑ ∑ ∑ 𝑤𝑖
𝜃𝝐𝒊,𝒕

𝜽
𝑡𝜃𝑖 aims at minimizing

the weighted overstock and stockout for each article at each buffer. Constraints can

be understood by reading the DT-1ms-MILP model description.

Chapter 5. MILP formulations 69

5.4.3 DT-Ms²-Mib-MILP with distance minimization

A few modifications of the model permit to integrate distance minimization in

the objective function. Even though distance minimization has a secondary role in

the indoor logistic operation manager problem, it is crucial to effectively solve the

supply-chain network one. On the other hand, adding this feature to the model can

sensibly complexify it and result in much longer solving times.

Let us consider the DT-Ms²-Mib-MILP formulation. Each new transfer from 𝑖 to

𝑗 begins with a ∗ → do-𝑗 transition. A way to identify these transitions already exists

at constraint (5.30), and a new set of Boolean auxiliary variables 𝒛𝒊𝒋,𝒕
𝒌 can be used to

mark any time 𝑡 at which a vehicle 𝑘 at 𝑖 starts a new do-task toward 𝑗:

𝒛𝒊𝒋,𝒕
𝒌

1 if vehicle 𝑘 begins 𝑖→𝑗 transfer at 𝑡

0 otherwise

𝑖 ∈ ℬ𝒮,

𝑘 ∈ 𝒱, 𝑡 ∈ �̂�

The table hereafter reports the conditions to respect.

∗ → do-𝑗 transition at instant 𝑡+1 𝒙𝒊,𝒕
𝒌 + 𝒚𝒊,𝒕

𝒌 𝒙𝒋,𝒕+𝟏
𝒌 𝒛𝒊𝒋,𝒕+𝟏

𝒌

no 0 0

⇒

unbound

No 0 1 unbound

No 1 0 unbound

Yes 1 1 1

The following expression resumes the content of the table.

(𝒙𝒊,𝒕
𝒌 + 𝒚𝒊,𝒕

𝒌) = 1 ∧ 𝒙𝒋,𝒕+𝟏
𝒌 = 1 ⟺

⟺ (𝒙𝒊,𝒕
𝒌 + 𝒚𝒊,𝒕

𝒌) + 𝒙𝒋,𝒕+𝟏
𝒌 = 2 ⇒ 𝒛𝒊𝒋,𝒕+𝟏

𝒌 = 1,
∀𝑖, 𝑗 ∈ ℬ𝒮, 𝑖 ≠ 𝑗

∀𝑘 ∈ 𝒱, 𝑡 ∈ �̂� ∖ {𝑇}

The MILP model presents therefore some additional constraints:

1 − (𝒙𝒊,𝒕
𝒌 + 𝒚𝒊,𝒕

𝒌) − 𝒙𝒋,𝒕+𝟏
𝒌 + 𝒛𝒊𝒋,𝒕+𝟏

𝒌 ≥ 0
∀𝑖 ∈ ℬ𝒮 ∪ {𝕠}, 𝑗 ∈ ℬ𝒮, 𝑖 ≠ 𝑗

∀𝑘 ∈ 𝒱, 𝑡 ∈ �̂� ∖ {𝑇}
(5.64)

1 − 𝒚𝕠,𝒕
𝒌 − 𝒙𝒋,𝒕+𝟏

𝒌 + 𝒛𝕠𝒋,𝒕+𝟏
𝒌 ≥ 0

∀𝑗 ∈ ℬ𝒮, 𝑘 ∈ 𝒱
∀𝑡 ∈ �̂� ∖ {𝑇}

(5.64')

𝒛𝒊𝒋,𝒕
𝒌 ∈ {0,1}

∀𝑖 ∈ ℬ𝒮 ∪ {𝕠}, 𝑗 ∈ ℬ𝒮, 𝑖 ≠ 𝑗
∀𝑘 ∈ 𝒱, 𝑡 ∈ �̂�

(5.65)

Finally, the objective function with distance minimization is written as:

 𝑓 = ∑ ∑ 𝑤𝑖𝝐𝒊,𝒕

𝑡∈�̂�∖{0}𝑖∈ℬ

+ ∑ ∑ ∑ 𝑤𝑖
𝜃𝝐𝒊,𝒕

𝜽

𝑡∈�̂�∖{0}𝜃∈𝒜𝑖𝑖∈ℬ

+ (5.66)

 Boolean var ∶= {

Minimize

70

+𝛼𝑑 (∑ ∑ ∑ ∑ 𝑑𝑖𝑗𝒛𝒊𝒋,𝒕
𝒌

𝑡∈�̂�∖{0}𝑘∈𝒱𝑗∈ℬ𝒮𝑖∈ℬ𝒮

+ ∑ ∑ ∑ 𝑑𝕠𝑗
𝑘 𝒛𝕠𝒋,𝒕

𝒌

𝑡∈�̂�∖{0}𝑘∈𝒱𝑗∈ℬ𝒮

)

5.5 DT-1ms-PR-MILP formulation

The DT-1ms-MILP formulation is a versatile mathematical model that allows a

flexible operation scheduling with a fine time control. However, its size grows in a

polynomial fashion with problem size, and it risks becoming impractical with higher

numbers of buffers, vehicles, articles, and timeframes.

The Discrete-Time 1-main-stock with Predefined Routes MILP (DT-1ms-PR-MILP)

aims at reducing the number of variables and constraints by making two assump-

tions:

1. Vehicle routes are pre-defined, and decision-making does not involve their

building. This assumption can be particularly reasonable for the ILOM prob-

lem involving some flow-shop manufacturing facilities. In fact, part consump-

tions are generally proportional along a flow-shop, thus supplying and waste

collection operations can be done with the same frequency. The whole assem-

bly line is thus decomposed in different zones, possibly based on production

models (open-shop, flow-shop, job-shop), and for each of them a circuit tying

all buffers is defined. If the manufacturing plant permits it, placing loading

points after unloading ones could be beneficial for solution optimality. Also,

the twin-buffers (pair of buffers containing the same subassembly article but

with opposite consumption sign) must be put in the same route, as their con-

tent cannot be unloaded at the main stock.

With the predefined-routes assumption, the decision variables are no more

about how to build pickup-delivery routes, but rather which vehicles launch

on each route at the beginning of each subperiod.

2. Any pickup-delivery route is completed in a subperiod (discrete

timeframe). This second assumption is complementary to the first, as it allows

to avoid trans-period carryover of vehicle contents. I.e., each route begins and

ends at the main stock during the same subperiod, therefore there is no need

to stock information about vehicle content when passing from a subperiod to

the following.

The solution of the DT-1ms-PR-MILP is clearly suboptimal compared to the route-

building version DT-1ms-MILP. However, under some circumstances it can give good

results in a much shorter time.

The DT-1ms-PR-MILP is a discrete-time model in which the scheduling period

of length 𝑇𝑃 is converted into a discrete set of equal subperiods �̂� = {�̂�0, �̂�1, �̂�2, … , �̂�𝑃}.

Chapter 5. MILP formulations 71

The exact state of the system within a subperiod is not entirely known, but the

solution gives to each vehicle a list of pickup-deliveries to do during each subperiod.

About formulation indexes:

• Buffers are indexed with letters 𝑖 and 𝑗; routes with letter 𝑤; vehicles with

letter 𝑘; subperiods with letter 𝑝.

• The main stock is indicated with symbol 𝕚, and vehicles initial conditions are

indicated with symbol 𝕠. The set ℬ ∪ {𝕚} is also written ℬ𝕚.

• For sake of readability, the elements of ℬ, ℛ, 𝒱, �̂� are directly written as their

indexes, as reported in the table below at the column ‘Simplified’.

Table 5.11. Sets of DT-1ms-PR-MILP.

Set Set element notations

Name Symbol Index Complete Simplified

Buffers ℬ 𝑖, 𝑗 {𝑏𝑖}𝑖∈{1,2,…,𝐵} {1,2, … , 𝐵}

Routes ℛ 𝑤 {𝑟𝑤}𝑤∈{1,2,…,𝑊} {1,2, … , 𝑊}

Vehicles 𝒱 𝑘 {𝑣𝑘}𝑘∈{1,2,…,𝐾} {1,2, … , 𝐾}

Subperiods �̂� 𝑝 {�̂�𝑝}𝑝∈{1,2,…,𝑃} {1,2, … , 𝑃}

5.5.1 Route building and subperiod length

In accordance with the second assumption made above, the length of subperiods

Δ�̂� must be large enough to grant the completion of any predefined route within its

duration. To calculate it, the following data is necessary:

Ω𝑤 ordered set of buffers in route 𝑤, ∀𝑤 ∈ ℛ,

𝑑𝑖𝑗 travelling distance between each couple of buffers 𝑖, 𝑗 ∈ ℬ𝕚, 𝑖 ≠ 𝑗,

𝜏𝑖 time required to perform onsite operations at 𝑖, ∀𝑖 ∈ ℬ𝕚,

𝑠𝑘 speed of vehicle 𝑘, ∀𝑘 ∈ 𝒱,

�̅� maximum speed of any vehicle = max{𝑠𝑘 | 𝑘 ∈ 𝒱}.

The minimum subperiod length necessary to fully cover any route is calculated as:

 Δ�̂� = max
𝑤∈ℛ

 2𝜏𝕚 + �̅�⋅(𝑑𝕚,inf Ω𝑤
+ 𝑑sup Ω𝑤,𝕚) + (𝜏𝑖 + �̅�⋅𝑑𝑖,𝑖+1) + 𝜏sup Ω𝑤

 (5.67)

where 𝜏𝕚 is counted twice, once at the beginning, and once at the end of the route.

The duration of subperiods is also necessary to calculate the consumptions values

of 𝛾𝑖,𝑝 during each period 𝑝. A fair strategy for calculating 𝛾 has a positive impact

on scheduling reliability, since a finer content control within a subperiod is not per-

mitted by the DT-1ms-PR-MILP formulation. In other terms, since it is not possible

to know the exact moment at which a buffer will be visited within a period, content

{ ∑

𝑖∈Ω𝑤∖{sup Ω𝑤}

 }

72

and consumptions value shall be calculated in a form that grants to really prevent

stockouts.

5.5.2 Parameters and variables

Table 5.12. Parameters of DT-1ms-PR-MILP.

 Description Index domains

𝜆𝑖 load units in a lot of the articles at buffer 𝑖 𝑖 ∈ ℬ

𝐶𝑖 lower content limit of buffer 𝑖 𝑖 ∈ ℬ

𝐶𝑖 upper content limit of buffer 𝑖 𝑖 ∈ ℬ

𝐶𝑖,0 initial content of buffer 𝑖 𝑖 ∈ ℬ

𝛾𝑖,𝑝 consumption of buffer 𝑖 during 𝑝 𝑖 ∈ ℬ, 𝑝 ∈ �̂�

𝑄𝑘 capacity of vehicle 𝑘, in load units 𝑘 ∈ 𝒱

𝑝𝕠
𝑘 period from which vehicle 𝑘 is available 𝑘 ∈ 𝒱

𝑀 sufficiently big number = min { max
𝑘∈𝒱,𝑖∈ℬ

{𝑄𝑘 𝜆𝑖⁄ } , max
𝑖∈ℬ𝕚

{𝐶𝑖 𝜆𝑖⁄ }}

Route subsets

Ω𝑤 ordered set of buffers in route 𝑤 𝑤 ∈ ℛ

𝜔𝑤
subset of Ω𝑤 containing the buffers that can exchange

their content with the main stock 𝕚.
𝑤 ∈ ℛ

�̃�𝑤
subset of Ω𝑤 containing the buffers that cannot ex-

change their content with the main stock 𝕚.
𝑤 ∈ ℛ

As shown in figure 5.1, for all 𝑤 ∈ ℛ the sets 𝜔𝑤 and �̃�𝑤 are disjoint (𝜔𝑤 ∩ �̃�𝑤 = ∅)

and one the complement of the other with respect to Ω𝑤 (𝜔𝑤 ∪ �̃�𝑤 = Ω𝑤).

Figure 5.1. Visual example of buffer repartition in the DT-1ms-PR-MILP

Chapter 5. MILP formulations 73

Table 5.13. Variables of DT-1ms-PR-MILP.

 Description Index domains

𝒙𝒘,𝒑
𝒌

1 if 𝑘 covers routes 𝑤 during 𝑝

0 otherwise
𝑤 ∈ ℛ, 𝑘 ∈ 𝒱
𝑝 ∈ �̂�

𝑪𝒊,𝒑 content of buffer 𝑖 at the end of period 𝑝 𝑖 ∈ ℬ, 𝑝 ∈ �̂�

𝑳𝒊,𝒑
𝒌 number of lots loaded at 𝑖 by 𝑘 during 𝑝

𝑖 ∈ ℬ𝕚, 𝑘 ∈ 𝒱,
𝑝 ∈ �̂�

Auxiliary variable

𝝐𝒊,𝒑 ≥ max{0, 𝑪𝒊,𝒑 − 𝐶𝑖, 𝐶𝑖 − 𝑪𝒊,𝒑} 𝑖 ∈ ℬ, 𝑝 ∈ �̂�

5.5.3 DT-1ms-MILP model

The DT-1ms-MILP model is formulated as follows:

 𝑓 = ∑ ∑ 𝝐𝒊,𝒑

𝑝∈�̂�∖{1}𝑖∈ℬ

 (5.68)

Subject to:

𝑪𝒊,𝒑 ≥ 0 ∀𝑖 ∈ ℬ, 𝑝 ∈ �̂� (5.69)

𝑪𝒊,𝒑+𝟏 = 𝑪𝒊,𝒑 − 𝛾𝑖,𝑝+1 − 𝜆𝑖⋅ ∑ 𝑳𝒊,𝒑+𝟏
𝒌

𝑘∈𝒱

 ∀𝑖 ∈ ℬ, 𝑝 ∈ �̂� ∖ {𝑃} (5.70)

𝑪𝒊,𝟏 = 𝐶𝑖,0 − 𝛾𝑖,1 − 𝜆𝑖⋅ ∑ 𝑳𝒊,𝟏
𝒌

𝑘∈𝒱

 ∀𝑖 ∈ ℬ (5.70')

∑ 𝜆𝑖𝑳𝒊,𝒑
𝒌

𝑗

𝑖∈Ω𝑤

≥ −𝑄𝑘 ∀𝑗 ∈ Ω𝑤, 𝑤 ∈ ℛ, 𝑘 ∈ 𝒱, 𝑝 ∈ �̂� (5.71)

∑ 𝜆𝑖𝑳𝒊,𝒑
𝒌

𝑗

𝑖∈Ω𝑤

≤ 𝑄𝑘 ∀𝑗 ∈ Ω𝑤, 𝑤 ∈ ℛ, 𝑘 ∈ 𝒱, 𝑝 ∈ �̂� (5.72)

∑ 𝜆𝑖𝑳𝒊,𝒑
𝒌

𝑗

𝑖∈�̃�𝑤

≥ 0 ∀𝑗 ∈ Ω𝑤, 𝑤 ∈ ℛ, 𝑘 ∈ 𝒱, 𝑝 ∈ �̂� (5.73)

∑ 𝜆𝑖𝑳𝒊,𝒑
𝒌

𝑖∈�̃�𝑤

= 0 ∀𝑤 ∈ ℛ, 𝑘 ∈ 𝒱, 𝑝 ∈ �̂� (5.74)

 Boolean var ∶= {

Minimize

74

𝑀𝒙𝒘,𝒑
𝒌 − 𝑳𝒊,𝒑

𝒌 ≥ 0 ∀𝑖 ∈ Ω𝑤, 𝑤 ∈ ℛ, 𝑘 ∈ 𝒱, 𝑝 ∈ �̂� (5.75)

−𝑀𝒙𝒘,𝒑
𝒌 − 𝑳𝒊,𝒑

𝒌 ≤ 0 ∀𝑖 ∈ Ω𝑤, 𝑤 ∈ ℛ, 𝑘 ∈ 𝒱, 𝑝 ∈ �̂� (5.76)

∑ 𝒙𝒘,𝒑
𝒌

𝑤∈ℛ

≤ 1 ∀𝑘 ∈ 𝒱, 𝑝 ∈ �̂� (5.77)

𝒙𝒘,𝒑
𝒌 = 0 ∀𝑤 ∈ ℛ, 𝑘 ∈ 𝒱, 𝑝 ∈ [1, 𝑝𝕠

𝑘) (5.78)

𝝐𝒊,𝒑 ≥ 0 ∀𝑖 ∈ ℬ, 𝑝 ∈ �̂� (5.79)

𝝐𝒊,𝒑 ≥ 𝑪𝒊,𝒑 − 𝐶𝑖 ∀𝑖 ∈ ℬ, 𝑝 ∈ �̂� (5.80)

𝝐𝒊,𝒑 ≥ 𝐶𝑖 − 𝑪𝒊,𝒑 ∀𝑖 ∈ ℬ, 𝑝 ∈ �̂� (5.81)

𝒙𝒘,𝒑
𝒌 ∈ {0,1} ∀𝑤 ∈ ℛ, 𝑘 ∈ 𝒱, 𝑝 ∈ �̂� (5.82)

𝑳𝒊,𝒑
𝒌 ∈ ℤ0 ∀𝑖 ∈ ℬ𝕚, 𝑘 ∈ 𝒱, 𝑝 ∈ �̂� (5.83)

Similarly to DT-1ms-MILP, the objective function min 𝑓 = ∑ ∑ 𝝐𝒊,𝒑𝑝𝑖 aims at min-

imizing the overall portion of buffer contents exceeding the desired limits [𝐶𝑖, 𝐶𝑖].

(5.69) prevents buffer contents from going negative, while the expressions (5.70)

and (5.70') constrain buffer content evolution.

The inequations (5.71) to (5.74) limit vehicle content evolution within a period.

(5.71) and (5.72) impose that vehicle content remains between −𝑄𝑘 and 𝑄𝑘 after

each visited buffer in Ω𝑤. If ∑ 𝜆𝑖𝑳𝒊,𝒑
𝒌

𝑖∈Ω𝑤
< 0 it means that the vehicle shall load some

articles at the main stock before starting the route. (5.73) and (5.74) add two addi-

tional rules for the articles that are not exchangeable with the main stock; (5.73)

imposes that the sum of loaded/unloaded articles at buffers in �̃�𝑤 is always greater

than zero, as these articles cannot be loaded at the main stock; (5.74) imposes that,

for each route, the end balance of loaded/unloaded articles in �̃�𝑤 is equal to zero.

Constraints (5.75) and (5.76) set at zero the 𝑳𝒊,𝒑
𝒌 variables for the subperiods in which

vehicle 𝑘 does not cover the route containing buffer 𝑖. The following relationships are

imposed:

Route 𝑤 covered by 𝑘 during 𝑝 (𝒙𝒘,𝒑
𝒌 = 1?) 𝑖 ∈ Ω𝑤 𝑳𝒊,𝒑

𝒌

no no

⇒

unbound

no yes 0

yes no unbound

yes yes unbound

Hence, the following expression must be verified:

𝒙𝒘,𝒑
𝒌 = 0 ∧ 𝑖 ∈ Ω𝑤 ⇒ 𝑳𝒊,𝒑

𝒌 = 0, ∀𝑖 ∈ ℬ𝕚, 𝑤 ∈ ℛ, 𝑘 ∈ 𝒱, 𝑝 ∈ �̂�

Chapter 5. MILP formulations 75

The 𝑀 parameter is calculated as:

𝑀 = min { max
𝑘∈𝒱,𝑖∈ℬ

{𝑄𝑘 𝜆𝑖⁄ } , max
𝑖∈ℬ𝕚

{𝐶𝑖 𝜆𝑖⁄ }}

(5.77) imposes to each vehicle to only cover a single route per subperiod. (5.78) is to

be used in case some vehicles are only available starting from a period 𝑝𝕠
𝑘. Constraints

(5.79), (5.80), (5.81) rule the auxiliary variables 𝝐𝒊,𝒑, that must satisfy the inequation

𝝐𝒊,𝒑 ≥ max{0, 𝑪𝒊,𝒑 − 𝐶𝑖 , 𝐶𝑖 − 𝑪𝒊,𝒑}. Finally, (5.82) expresses the Boolean domain of

𝒙𝒘,𝒑
𝒌 , and (5.83) the integral domain of 𝑳𝒊,𝒑

𝒌 .

NB: no constraint is imposed to limit the number of vehicles covering the same route

during a period; if necessary, more than a vehicle can be simultaneously launched on

a route.

76

Blank page

 77

CHAPTER 6

6Heuristic method:

minimum penalty algorithm

The DT-1ms-MILP formulation proposed in the previous chapter demonstrated

good solving performances for the indoor logistic operations manager. However, hav-

ing the results of another method can help evaluate the performances of DT-1ms-

MILP in a more significant way. To this purpose, an ad-hoc heuristic algorithm called

Minimum Penalty Algorithm (MPA) was developed, coded, and tested. The input

data of the heuristic are the same of DT-1ms-MILP, with the same GSVT (Ground,

Stocks, Vehicles & Tasks) data structure. Solutions are also syntactically similar and

comparable with MILP ones. In accordance with its heuristic nature, the main ad-

vantage of MPA compared to DT-1ms-MILP is a shorter solving time.

The MPA finds solutions in a semi-discrete time domain; as for DT-MILP for-

mulations, the scheduling period 𝑇𝑃 is divided into 𝑇 timeframes of the same dura-

tion. However, unlike DT-MILP, the MPA allows some events to happen within a

timeframe instead of its extremities.

6.1 Standards and notations

The notations used in this chapter are mainly the same of the previous one.

Problem elements are the following:

ℬ set of buffers,

𝒱 set of vehicles,

𝒜 set of article references,

𝐶𝑖(𝑡) content of buffer 𝑖 at time 𝑡 (in continuous domain),

𝛾𝑖(𝑡) consumption of buffer 𝑖 at time 𝑡 (in continuous domain),

𝑑𝑖𝑗 distance from point 𝑖 to point 𝑗,

𝜏𝑖 duration of onsite operations at 𝑖,

𝑞𝑘,𝜃 load units of article 𝜃 currently onboard of vehicle 𝑘,

𝑡𝑘 availability time of vehicle 𝑘,

78

𝓏 task object, with: 𝑛𝓏 task number in a sorted task set 𝒵

 𝑛𝓏 ∈ [0,1, … , +∞),

𝑡𝑠,𝓏 start time of 𝓏,

𝑡𝑒,𝓏 end time of 𝓏 (equal to 𝑡𝑠,𝓏 plus task travel-

ling distance plus 𝜏𝑖𝓏
),

𝑖𝓏 destination of 𝓏,

𝑘𝓏 vehicle appointed to perform 𝓏,

𝐿𝓏
𝜃 lots of 𝜃 charged at 𝑖𝓏 by 𝑘𝓏, ∀𝜃 ∈ 𝒜.

6.2 Heuristic method design

The heuristic method shall have the same objective of DT-1ms-MILP formula-

tion, i.e., to grant the satisfaction of system material needs by picking-up and deliv-

ering the required articles. The design of an algorithm directly based on that seems

complicated, as stock consumptions are not stationary, and shortcomings as a func-

tion of delivery decisions are not easy to forecast. In other terms, there is no direct

decision parameter (such as distance, delay, etc) that grants objective satisfaction.

Moreover, the effects of a decision taken upstream can remarkably affect the system

downstream in a hardly predictable way.

Despite that, the fleet and the system have some other direct parameters that can

relate to the fact of ‘being doing a good supporting job’. Since the fleet is composed

of a limited number of vehicles, it can be logically inferred that fleet efficiency in-

creases if pickup and deliveries are as complete as possible, and useless fleet move-

ments are reduced.

The Minimum Penalty Algorithm was designed as a direct step-by-step tree-ex-

ploration heuristic, in which a decision is taken at each tree-level. It is not led by

time progression, but rather system (stocks and vehicles) asynchronous evolution.

Let us consider a graph 𝐺 = (𝑉, 𝐸, Π), where 𝑉 is the set of vertices representing

different system states, 𝐸 is the set of edges representing state evolutions (i.e., tasks)

and Π is the set of penalties associated to each edge. System state 𝑠 is defined by the

following elements and data:

 𝑠 = {
{(𝐶𝑖,0, 𝑪𝒊(𝑡), 𝛾𝑖(𝑡)) | 𝑖 ∈ ℬ, 𝑡 ∈ [0, 𝑇𝑃]}

{(𝑞0
𝑘,𝜃, 𝒒𝒌,𝜽, 𝒕𝒌) | 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜, 0 ≤ 𝑡𝑘 ≤ 𝑇𝑃}

 } (6.1)

The elements written in bold are manipulated by the MPA, as they are part of

problem solution once the algorithm is over. Another important data container of

the MPA is set 𝒵 containing Task objects 𝓏:

 𝒵 = {𝔃(𝑡𝑠, 𝑡𝑒 , 𝑖, 𝑘, 𝐿𝜃) | (𝑖, 𝑘, 𝜃)𝑇 ∈ (ℬ, 𝒱, 𝒜)𝑇 , 0 ≤ 𝑡𝑠 < 𝑡𝑒 ≤ 𝑇𝑃} (6.2)

Chapter 6. Heuristic method: minimum penalty algorithm 79

Tasks are defined by a start time 𝑡𝑠, and end time 𝑡𝑒, an appointed vehicle 𝑘, a

destination buffer 𝑖, and a set of article quantities to pick-up (or deliver) 𝐿𝜃. Tasks

are collected in set 𝒵 as the algorithm progresses.

As shown in the following, the algorithm ends when time variables 𝑡𝑘 are equal to

𝑇𝑃 for all vehicles 𝑘 ∈ 𝒱.

The graph 𝐺(𝑉, 𝐸, Π) is a simply connected graph the origin of which is vertex

𝑠0 ∈ 𝑉, that represents system initial state. Vertex 𝑠0 is connected to a series of other

vertices {𝑠1
′ , 𝑠1

′′, … } ∈ 𝑉1 ⊆ 𝑉 by the edges (𝑠0, 𝑠1) ∈ 𝐸1 ⊆ 𝐸. 𝑉1 contains all system

states reachable from 𝑠0 with the execution of one and only one Task (Task object

as defined in chapter 4). Namely, the involved task 𝓏 could either be of type go and

pickup/delivery or wait a Δ𝑡. In graph exploration, each task is associated to an edge,

and allows the calculation of the associated penalty 𝜋𝓏 ∈ Π. The penalty function

only considers the current state and the states directly reachable from it – the algo-

rithm is not regret-based. It can feature different terms and shall permit the choice

of the best task in each circumstance. Therefore, an adapted and well-parameterized

penalty function is essential to MPA success.

As stated before, graph exploration is step-by-step, and method visibility is limited

to the current exploration level. Once the choice of 𝑠1 is made in the minimum-

penalty sense, the algorithm calculates the set of states {𝑠2
′ , 𝑠2

′′, … } ∈ 𝑉2 ⊆ 𝑉 reachable

by 𝑠1 via the edges (𝑠1, 𝑠2) ∈ 𝐸2. A second task is chosen and added to 𝒵, then the

procedure is repeated from 𝑠2 until the end condition is reached. A graphic represen-

tation of MPA exploration tree is shown at figure 6.1.

Figure 6.1. Example of MPA exploration tree.

80

The step-by-step approach makes the algorithm very lean in both runtime and

memory usage, since it does not calculate the unexplored and useless graph regions,

children of the non-selected state vertices.

 MPA solution is contained in the final state 𝑠. System evolution can also be read

along the elementary path traced by the algorithm in 𝐺(𝑉, 𝐸, Π). Once more, the

algorithm is not led by system time progression. Time goes on asynchronously for

every vehicle as the algorithm progresses, and buffer data is consequently modified

with task creation. Indeed, MPA progression is granted by the step-by-step decision-

making process that adds tasks to 𝒵 and updates system state.

6.2.1 MPA flowchart

The Minimum Penalty Algorithm flowchart is shown in figure 6.2.

First, system objects (buffers and vehicles) are initialized ❶, along with penalty func-

tion Π and its parameter set 𝛼 ❷. The algorithm features two nested loops. The outer

and main one is charged of vertical exploration of state tree. It starts with the ini-

tialization of a feasible task set f𝒵 ❸ that only exists inside this loop. After that, the

inner loop begins. It performs the horizontal tree exploration by evaluating the fea-

sibility and the penalty value of all tasks involving each vehicle-buffer combination
❹…⓫. Once all feasible tasks are explored, the minimum-penalty one is picked ⓬. If

its penalty is smaller than the maximum allowed penalty ⓭, then the task enters the

resulting task set 𝒵 ⓮. Otherwise, the picked task is discarded, and a new wait task

is added to 𝒵 ⓯. In both cases, system state is updated with the evolutions produced

by the last added task ⓰. Finally, the algorithm checks the arising of the exit-condi-

tion ⓱. If it is verified, the algorithm ends by returning the task list 𝒵, else it goes

back to ❸ and repeats the outer loop. Generally, the exit-condition consists in the

fulfilment of all buffer needs over the period, or in the exhaustion of fleet availability

(i.e., all vehicles are completely scheduled: 𝑡𝑘 = 𝑇𝑃 ∀𝑘 ∈ 𝒱).

Problem constraints mentioned at ❺ and ❽ are related to loadable/unloadable

quantities. In general, feasibility conditions of a task 𝓏 are:

• vehicle 𝑘𝓏 must be able to load/unload at least a lot at time 𝑡𝑒,𝓏 − 𝜏𝑖𝓏
,

• buffer 𝑖𝓏 must the able to yield/accept at least a lot at time 𝑡𝑒,𝓏 − 𝜏𝑖𝓏
.

Chapter 6. Heuristic method: minimum penalty algorithm 81

Figure 6.2. Minimum

Penalty Algorithm.

82

6.2.2 Penalty function and acceptance conditions

The choice of a proper penalty function Π and its coefficients 𝛼 is crucial to

solution quality. The objective of MPA is solving the ILOM scheduling problem by

granting a set of buffer pickup-deliveries that can effectively cope the provisional

needs of the supported production system. Given a task 𝓏(𝑡𝑠, 𝑡𝑒 , 𝑖, 𝑘, 𝐿), the function

used to calculate penalty and set priority order is composed of the following terms.

1. Gap between completion time and deadline

𝜋𝓏,𝑑𝑙𝑖𝑛𝑒 = 𝛼𝑑𝑙𝑖𝑛𝑒(�̂�𝑖 − 𝑡𝑒,𝓏) (6.3)

Proportional to the difference between the time �̂�𝑖 at which the buffer reaches

its content threshold and the earliest time 𝑡𝑒,𝓏 at which the appointed vehicle

can complete the task.

2. Relative gap between delivered and demanded

𝜋𝓏,𝑞𝑡𝑦 = 𝛼𝑞𝑡𝑦

𝐷𝑖,𝑡𝑒,𝓏

𝜃 + 𝜆𝜃𝐿𝓏

𝐶𝑖 − 𝐶𝑖

 (6.4)

𝐷𝑖,𝑡𝑒,𝓏

𝜃 is the demand of buffer 𝑖 at task delivery time 𝑡𝑒,𝓏. 𝜆𝜃 is the lot size of

article 𝜃, and 𝐿𝓏 is the number of lots that can be delivered by performing

task 𝓏. The fact that the vehicle cannot fully satisfy buffer demand counts as

a penalty; as stated above, the aim is maximizing the picked-up/delivered

quantities. If the weight 𝛼𝑞𝑡𝑦 is equal to 1, 𝜋𝓏,𝑞𝑡𝑦 corresponds to the percentage

of buffer demand that cannot be satisfied by the vehicle, scaled on the maxi-

mum number of load units that the buffer can exchange (i.e., 𝐶𝑖 − 𝐶𝑖).

NB, pay attention to signs: 𝐷𝑖,𝑡𝑒,𝓏

𝜃 > 0 if the buffer has a positive content need,

and 𝐿𝓏 > 0 if the buffer is emptied of some content. The minimum 𝜋𝓏,𝑞𝑡𝑦 is

reachable when 𝐷𝑖,𝑡𝑒,𝓏

𝜃 = −𝐿𝓏. In addition, it is always true that |𝐷𝑖,𝑡𝑒,𝓏

𝜃 | ≥ |𝐿𝓏|.

3. Distance to destination

𝜋𝓏,𝑑𝑖𝑠𝑡 = 𝛼𝑑𝑖𝑠𝑡𝑑𝓏 (6.5)

Proportional to the distance 𝑑𝓏 travelled by the vehicle doing task 𝓏.

4. Flag: task completed late

𝜋𝓏,𝑙𝑎𝑡𝑒 = {
1 if 𝐶𝑖,𝑡𝑒,𝓏

∉ [𝐶𝑖, 𝐶𝑖]

0 otherwise

 (6.6)

Tasks in advance have the priority over late tasks, and a task is late if its

completion is achieved when its content is out of the allowed limits. 𝜋𝓏,𝑙𝑎𝑡𝑒 is

a Boolean flag that stores this information and has an impact on task priority

order. The developer can choose whether using this parameter on not for pri-

ority definition. Some tests have shown that considering 𝜋𝓏,𝑙𝑎𝑡𝑒 can improve

Chapter 6. Heuristic method: minimum penalty algorithm 83

solution quality of mildly constrained problems. In contrast, it seems to dete-

riorate solution quality for more rigid ones (shortage of vehicles).

5. Flag: content runs below zero

𝜋𝓏,𝑏𝑒𝑙𝑜𝑤0 = {
1 if 𝐶𝑖,𝑡𝑒

𝓏 < 0

0 otherwise
 (6.7)

Since a negative buffer content makes the solution physically unfeasible, the

tasks that allow a buffer to keep its content above zero have the priority over

the others. 𝜋𝓏,𝑏𝑒𝑙𝑜𝑤0 is a Boolean flag that stores this information and has an

impact on task priority order.

Task priority decisions are based on the five parameters listed above, considered

in the following order:

• Tasks with 𝜋𝓏,𝑙𝑎𝑡𝑒 = 0 have the priority,

• 𝜋𝓏,𝑙𝑎𝑡𝑒 being equal, tasks with 𝜋𝓏,𝑏𝑒𝑙𝑜𝑤0 = 1 have the priority.

• 𝜋𝓏,𝑙𝑎𝑡𝑒 and 𝜋𝓏,𝑏𝑒𝑙𝑜𝑤0 being equal, the task with the smallest (𝜋𝓏,𝑑𝑙𝑖𝑛𝑒 + 𝜋𝓏,𝑞𝑡𝑦 +

𝜋𝓏,𝑑𝑖𝑠𝑡) has the priority.

Another important parameter of MPA is the maximum allowed penalty value �̅�.

Tasks can be added to set 𝒵 if and only if their penalty is smaller than �̅�. In fact, it

could happen that at some point the most convenient decision is making a vehicle

wait at its current location rather than starting a do-task.

The choice of the vehicle to put on hold can follow two strategies: either it will be

the vehicle with the most advanced timing (𝑘 with the greatest 𝑡𝑘), or the one with

the least advanced timing (𝑘 with the smallest 𝑡𝑘). Some tests showed that the solu-

tions obtained with these two strategies do not present significant differences in

quality. Nevertheless, choosing the first strategy (the most advanced timing) causes

a greater imbalance of vehicles’ activity ratio, while the second strategy allocates

tasks more uniformly across the entire fleet.

6.2.3 Visits to main stock

When a vehicle visits the main stock, the algorithm forces it to unload as many

articles as possible (every article compatible with the main stock). Then, the vehicle

is filled of unspecified articles until its capacity is reached. These special unspecified

articles are later converted either into real ones, or into empty space. After the MPA

ends, a post-processing algorithm runs back through the sorted task set to specify

which articles were actually loaded during main-stock visits. This aspect of the MPA

makes it more effective and introduces some further visibility to task creation.

Example: an empty vehicle of capacity 5 load units (LU) visits the main stock.

There it loads 5 LU of unspecified ‘ ’ (𝑞0 =). Then, it visits a buffer 𝑏1

84

where it loads 2 LU of ◩ (→ 𝑞1 = ◩◩); then buffer 𝑏2 where it unloads 2 LU

of ◨ (→ 𝑞2 = ◩◩); finally, 𝑏3 where it unloads 3 LU of ◩ (→ 𝑞3 = ∅). By a

backward analysis through the sorted task set, the algorithm finds that the real

vehicle content after visiting the main stock must have been 𝑞0 = ◩◨◨.

6.3 Post-processing algorithms

MPA results consist in a vehicle-time-sorted list of tasks. However, articles loaded

at each main-stock visit are still to be specified. The following algorithm was designed

to this purpose.

Algorithm 6.1. Article specification of main stock visits

1 For each vehicle 𝑘 ∈ 𝒱

2 Define the subset 𝒵𝑘 ≔ {𝓏 | 𝓏 ∈ 𝒵, 𝑘𝓏 = 𝑘}

3 Sort tasks in 𝒵𝑘, key : greatest start-time first

4 Initialize delivered article quantities for vehicle 𝑘: 𝒟𝜃 ← 0, ∀𝜃 ∈ 𝒜

5 For each task 𝓏 in 𝒵𝑘

6 If 𝓏 is a do-task and 𝑖𝓏 ≠ 𝕚

7 𝒟𝜃 ← 𝒟𝜃 − 𝐿𝓏
𝜃, ∀𝜃 ∈ 𝒜

8 Elsif 𝓏 is a do-task and 𝑖𝓏 = 𝕚

9 For each article in {𝜃|𝜃 ∈ 𝒜𝕚, ℒ𝜃 > 0}

10 Calculate real loaded units 𝒰𝜃 = min{𝐿𝓏
𝑢𝑛𝑠𝑝, 𝒟𝜃}

11 𝐿𝓏
𝑢𝑛𝑠𝑝 ← 𝐿𝓏

𝑢𝑛𝑠𝑝 − 𝒰𝜃
12 𝐿𝓏

𝜃 ← 𝒰𝜃

13 𝒟𝜃 ← 𝒟𝜃 − 𝒰𝜃

14 Next 𝜃

15 End if

16 Next 𝓏

17 Remove any residual 𝐿𝓏
𝑢𝑛𝑠𝑝 for any 𝓏 ∈ 𝒵𝑘

18 Next 𝑘

Given any point of algorithm 6.1, 𝒟𝜃 corresponds to the units of 𝜃 already delivered

by vehicle 𝑘 for which a source was not specified yet. 𝐿𝓏
𝜃 is the loaded quantity of 𝜃

at the end of task 𝓏. For this reason, they have opposite signs in the expressions at

line 7. For example, if a vehicle loads in a row 1 and 2 units of 𝜃 at two different

buffers, 𝒟𝜃 is then equal to –3, which means that a source must be found for them.

When the algorithm arrives to a main-stock-task (line 9) it can convert the quantity

𝐿𝓏
𝑢𝑛𝑠𝑝 of unspecified loaded articles into specified 𝐿𝓏

𝜃. 𝒰𝜃 is the number of 𝜃 units that

can be exchanged with 𝕚, equal to the minimum value between the still unspecified

units loaded during 𝓏 (𝐿𝓏
𝑢𝑛𝑠𝑝) and the delivered units of 𝜃 that still have not a source

(𝒟𝜃). Thus, 𝐿𝓏
𝜃 is set equal to 𝒰𝜃, which is also subtracted from 𝐿𝓏

𝑢𝑛𝑠𝑝 and 𝒟𝜃.

Chapter 6. Heuristic method: minimum penalty algorithm 85

Once the article-specification algorithm is completed, some tasks may remain

empty (no loaded/unloaded articles). In that case, the do-task is called useless, oth-

erwise it is said useful. A second post-processing algorithm is required to remove

useless tasks and adapt the scheduling.

Algorithm 6.2. Useless-tasks removal

1 For each vehicle 𝑘 ∈ 𝒱

2 Define the subset 𝒵𝑘 ≔ {𝓏|𝓏 ∈ 𝒵, 𝑘𝓏 = 𝑘}

3 Sort tasks in 𝒵𝑘, key : greatest 𝑡𝓏,𝑒 (finish-time) first

4 Initialize last useful task index 𝑛�̂� ← 0

5 While 𝑛𝓏 < cardinality(𝒵𝑘) do

6 If 𝓏 is a do-task and 𝐿𝓏 ≠ 0 (useful task)

7 New last useful task index 𝑛�̂� ← 𝑛𝓏

8 Elsif 𝓏 is a do-task and 𝐿𝓏 = 0 (useless task)

9 While 𝓏 is not a useful do-task do

10 𝑛𝓏 ← 𝑛𝓏 + 1

11 Continue
12 Remove all the tasks between �̂� and 𝓏 from 𝒵𝑘 (�̂�, 𝓏 excluded)

13 Update the end-time of �̂�: 𝑡𝑒,�̂� ← 𝑡𝑠,�̂� + 𝑑𝑖�̂�𝑖𝓏
+ 𝜏𝑖𝓏

14 Add a new wait-task to fill the time gap in 𝒵𝑘: 𝓏𝑤𝑎𝑖𝑡(𝑡𝑒,�̂� , 𝑡𝑠,𝓏 , 𝑖�̂� , 𝑘, ∅)

15 End if

16 Continue

17 Next 𝑘

6.4 MPA parametrization

MPA results drastically vary depending on the chosen parameters 𝛼𝑑𝑙𝑖𝑛𝑒, 𝛼𝑞𝑡𝑦,

𝛼𝑑𝑖𝑠𝑡 (called 𝛼1, 𝛼2, 𝛼3 in the following) and �̅� (𝜋𝑚𝑎𝑥). The choice of considering or

not 𝜋𝓏,𝑙𝑎𝑡𝑒 impacts on solution quality, too. In general, it has been observed through

several tests that good solutions are located on a diagonal band of the (𝛼2, 𝜋𝑚𝑎𝑥)

chart, divided into two main clusters as shown by figure 6.3. Combining high values

Figure 6.3. Good solution regions on the 𝛼2-𝜋𝑚𝑎𝑥 chart.

86

of 𝛼2 with low values of 𝜋𝑚𝑎𝑥, and vice versa, does not produce good solutions.

Moreover, increasing 𝛼1 has a down-right stretching effect on the chart. The following

empirical formula can sometimes find an effective value of 𝛼1 for a good heuristic

solution:

 𝛼1 = max {
5.3 ⋅ Δ𝑡

(#𝒱)2.2
 , 0.5} (6.8)

Δ𝑡 is the elementary timeframe duration, and #𝒱 is the cardinality of 𝒱, hence the

number of available vehicles.

In conclusion, the relationship between MPA parameters and result quality

should be further investigated. In fact, a clear dependency pattern was not found;

nevertheless, a quick and effective parametrizing procedures can have a remarkable

impact on MPA usefulness and operational speed.

 87

CHAPTER 7

7MILP and heuristic results

This chapter concerns the side-by-side testing of the Discrete-Time 1-main-stock

MILP formulation and the heuristic Minimum Penalty Algorithm. First, three test

instances of growing size are presented. Then, the chapter shows test results for both

methods, followed by a critical evaluation and some comments.

7.1 Test instances

DT-1ms-MILP and MPA were jointly tested on a set of instances based on three

fictive workshops. Each workshop plant has a different size; it contains a single main

stock, a set of buffers with a unique allowed article reference, and a directional net-

work of vehicle tracks. Articles are either parts (raw materials or assembly compo-

nents), subassemblies, or waste. Parts are collected at the main stock and delivered

at buffers; subassemblies are to be moved from a buffer to another (called twin-

buffer); waste is a particular kind of article that is collected at some devoted buffers

and must be disposed at the main stock.

For each plant there are nine test instances with different combinations of vehicle

fleet size and production intensity. Taking up the notation of chapter 4, production

intensity depends on the values of consumptions 𝛾 along scheduling period.

 #𝒱0 #𝒱−1 #𝒱−2

𝛾×1.0

𝛾×1.5

𝛾×2.0

In the following, the three instances used to test the two methods are shown and

explained in detail. Each instance is scheduled over a period 𝑇𝑃 of 20 minutes, divided

into a set �̂� of 20 timeframes of one minute each (Δ𝑡 = 60 seconds). The articles

allowed in each buffer are identified by minuscule letters. Input data was chosen such

that the average base-value of 𝛾 is 0.3 load units per minute, absorbed or produced

by the production line.

88

 �̅�𝑏𝑎𝑠𝑒 =
∑ ∑ |𝛾𝑖,𝑡|𝑡𝑖

#ℬ ⋅ (#�̂� − 1)
= 0.3 LU (7.1)

Each test instance has a devoted subparagraph that shows the graph of stocks (ver-

tices), vehicle tracks (edges) and distances between each pair of knots (weights), as

well as all the initial and static characteristics of the involved elements. The legend

of graph elements is shown below; each buffer has its allowed elements written aside,

and the small bidirectional edges that connect each buffer to the rest of the graph

have a distance equal to 1.

7.1.1 Instance A - 8 buffers

The first test instance consists of a single main stock and 8 buffers. Figure 7.1

shows the disposition of ground elements in test instance A and their connections,

while the table below contains their characteristics. Δ𝑡 = 60 seconds.

Main stock 𝕚:

𝜏𝕚[Δ𝑡] = 1.4; 𝒜𝕚 = {a,b,c,e,w}

Table 7.1. Buffer data of instance A.

𝒊 type 𝑪𝒊,𝟎[] 𝑪𝒊[] 𝑪𝒊[] 𝝉𝒊[Δ𝑡] 𝜽𝒊 𝝀𝜽[lot/]

1 Part 3.5 2 5 .7 a 1

2 Waste 2 0 4 .7 w 1

3 Part 3.5 2 5 .7 b 1

4 Part 3.5 2 5 .7 c 1

5 Subassy 3.5 2 5 .7 d 1

6 Subassy 3.5 2 5 .7 d 1

7 Part 3.5 2 5 .7 e 1

8 Waste 2 0 4 .7 w 1

Figure 7.1. Graph of test instance A.

Chapter 7. MILP and heuristic results 89

Table 7.2. Vehicle data of instance A.

𝒌 𝒔𝒌[m/Δ𝑡] 𝒒𝒌,𝟎
𝜽 𝒕𝕠

𝒌[Δ𝑡] notes

1 60 ⌀ 0

2 60 ⌀ 0

3 60 ⌀ 0 Removed on 2nd and 3rd test column

4 60 ⌀ 0 Removed on 2nd test column

7.1.2 Instance B - 14 buffers

The second test instance consists of a single main stock and 14 buffers. Figure

7.2 shows the disposition of ground elements in test instance B and their connections,

while the table below contains their characteristics. Δ𝑡 = 60 seconds.

Main stock 𝕚:

𝜏𝕚[Δ𝑡] = 1.4; 𝒜𝕚 = {a,b,c,e,g,h,w}

Table 7.3. Buffer data of instance B.

𝒊 type 𝑪𝒊,𝟎[] 𝑪𝒊[] 𝑪𝒊[] 𝝉𝒊[Δ𝑡] 𝜽𝒊 𝝀𝜽[lot/]

1 Part 3.5 2 5 .7 a 1

2 Waste 2 0 4 .7 w 1

3 Part 3.5 2 5 .7 b 1

4 Part 3.5 2 5 .7 c 1

Figure 7.2. Graph of test instance B.

90

5 Subassy 3.5 2 5 .7 d 1

6 Subassy 3.5 2 5 .7 d 1

7 Part 3.5 2 5 .7 e 1

8 Subassy 3.5 2 5 .7 f 1

9 Subassy 3.5 2 5 .7 f 1

10 Part 3.5 2 5 .7 g 1

11 Part 3.5 2 5 .7 h 1

12 Waste 2 0 4 .7 w 1

13 Subassy 3.5 2 5 .7 i 1

14 Subassy 3.5 2 5 .7 i 1

Table 7.4. Vehicle data of instance B.

𝒌 𝒔𝒌[m/Δ𝑡] 𝒒𝒌,𝟎
𝜽 𝒕𝕠

𝒌[Δ𝑡] notes

1 60 ⌀ 0

2 60 ⌀ 0

3 60 ⌀ 0

4 60 ⌀ 0

5 60 ⌀ 0 Removed on 2nd and 3rd test column

6 60 ⌀ 0 Removed on 2nd test column

7.1.3 Instance C - 20 buffers

Figure 7.3. Graph of test instance C.

Chapter 7. MILP and heuristic results 91

The third and last test instance consists of a single main stock and 20 buffers.

Figure 7.3 shows the disposition of ground elements in test instance C and their

connections, while the table below contains their characteristics. Δ𝑡 = 60 seconds.

Main stock 𝕚:

𝜏𝕚[Δ𝑡] = 1.4; 𝒜𝕚 = {a,b,c,e,g,h,i,k,l,w}

Table 7.5. Buffers of instance C.

𝒊 type 𝑪𝒊,𝟎[] 𝑪𝒊[] 𝑪𝒊[] 𝝉𝒊[Δ𝑡] 𝜽𝒊 𝝀𝜽[lot/]

1 Part 3.5 2 5 .7 a 1

2 Waste 2 0 4 .7 w 1

3 Part 3.5 2 5 .7 b 1

4 Part 3.5 2 5 .7 c 1

5 Subassy 3.5 2 5 .7 d 1

6 Subassy 3.5 2 5 .7 d 1

7 Part 3.5 2 5 .7 e 1

8 Subassy 3.5 2 5 .7 f 1

9 Subassy 3.5 2 5 .7 f 1

10 Part 3.5 2 5 .7 g 1

11 Part 3.5 2 5 .7 h 1

12 Part 3.5 2 5 .7 i 1

13 Waste 2 0 4 .7 w 1

14 Subassy 3.5 2 5 .7 j 1

15 Subassy 3.5 2 5 .7 j 1

16 Part 3.5 2 5 .7 k 1

17 Part 3.5 2 5 .7 l 1

18 Waste 2 0 4 .7 w 1

19 Subsassy 3.5 2 5 .7 m 1

20 Subassy 3.5 2 5 .7 m 1

Table 7.6. Vehicle data of instance C.

𝒌 𝒔𝒌[m/Δ𝑡] 𝒒𝒌,𝟎
𝜽 𝒕𝕠

𝒌[Δ𝑡] notes

1 60 ⌀ 0

2 60 ⌀ 0

3 60 ⌀ 0

4 60 ⌀ 0

5 60 ⌀ 0

6 60 ⌀ 0

7 60 ⌀ 0 Removed on 2nd and 3rd test column

8 60 ⌀ 0 Removed on 2nd test column

92

7.1.4 Some considerations about test instances

Before showing test results, here are some considerations about how relevant

these instances are to the evaluation of DT-1ms-MILP and MPA. In particular, the

just-in-time aspect is investigated.

First, some numerical considerations:

• the average gap between the allowed content limits of all buffers is generally

around 3.2 LU:

 𝐶𝑔𝑎𝑝
̅̅ ̅̅ ̅̅ =

∑ (𝐶𝑖 − 𝐶𝑖)𝑖

card(ℬ)
≅ 3.2 LU (7.2)

• as written in (7.1), the average basic consumption value is around 0.3 LU.

From these two values it can be inferred that, in average, each buffer should be

visited and totally refilled/emptied every 10-11 minutes (3.2 LU 0.3 LU⁄) to respect

content limits. Also, by applying a gamma-multiplier 𝛾× = 2, visit frequency doubles,

too, passing from 10-11 minutes to little more than 5 minutes. This quick but mean-

ingful consideration helps to understand the coherence between the proposed test

instances and the just-in-time approach.

7.2 Test results

For each test instance and both methods, nine test cases were carried out with

decreasing fleet size #𝒱 and increasing consumption multiplier 𝛾×. For practical rea-

sons, MILP solving time was limited to 1200 seconds (20 minutes), which is also

equal to the length of the scheduling.

Machine: DELL Vostro 5481, Windows 10 64bit-Professional, Intel(R) Core(TM)

i7-8565U CPU @ 1.80GHz 1.9) GHz, RAM 8.00 GB.

Solver: Gurobi Optimizer, version 9.1.2 build v9.1.2rc0 (win64), academic license.

Programming language: Python (MPA coding and Gurobi’s API).

7.2.1 Evaluation metrics

The following metrics were used to evaluate instance results. Their calculated

values are shown for each test in the tables below.

• 𝓈𝓉[s]: solving time.

Concerning the MPA, solving time does not include best-parameters search,

as it still needs further research and improvement.

Concerning the DT-1ms-MILP, two solving times are shown. First, the time

necessary to get to the best solution, then, in brackets, the time after which

a first feasible solution was found.

Chapter 7. MILP and heuristic results 93

• 𝒪𝑏𝑗[LU]: value of the objective function to minimize, i.e., the sum of all the

portions of 𝐶𝑖,𝑡 values exceeding the imposed limits 𝐶𝑖 and 𝐶𝑖. The 𝒪𝑏𝑗 value

in the cell is referred to the best solution the methods could find.

• 𝑏0[LU]: sum of all −𝐶𝑖,𝑡 values such that 𝐶𝑖,𝑡 < 0. As stated above, if 𝑏0 > 0

the solution is impractical.

• 𝒶𝑟 ∈ [0,1]: average activity rate of the fleet, calculated as the sum of all travel

and load/unloading times, divided by the overall scheduling period duration.

This metric quickly points out whether resources are underexploited; however,

it does not provide any information about the effectiveness of carried-out ac-

tivities. In fact, a scheduling in which vehicles roam around in a poorly effec-

tive way still has a high 𝒶𝑟 value.

• 𝓉𝑜 ∈ [0,1]: average item turnover on vehicles. This is the most important

value for evaluating scheduling effectiveness; a higher value of 𝓉𝑜 is a univocal

sign that the fleet operates in a more effective way. A unitary 𝓉𝑜 value indi-

cates that, at each timeframe, each vehicle of the fleet fully unloads then loads

a quantity equal to its capacity. E.g., considering a vehicle 𝑘 with 𝑄𝑘 = 4 LU,

𝓉𝑜 = 1 if 𝑘 unloads 4 LU and loads as many at each timeframe 𝑡 ∈ [1,2, … , 𝑇].

Grey text indicates unfeasible test cases. Concerning DT-1ms-MILP, a case is

unfeasible if no solution was found by the solver in the available time. For MPA, a

solution is unfeasible if it presents any negative content value.

7.2.2 Results of instance A

Table 7.7 #𝒱 (fleet size)

 4 3 2

𝛾× metrics MPA MILP MPA MILP MPA MILP

1.0

𝓈𝓉[s]

𝒪𝑏𝑗[LU]

𝑏0[LU]
𝒶𝑟—

𝓉𝑜—

0.03

0.1

-

0.64

0.10

1.3(0)

0

-

0.74

0.14

0.03

0

-

0.83

0.13

1.3(0)

0

-

0.57

0.14

0.01

12.6

-

1.00

0.21

2.6(0)

0

-

0.90

0.17

1.5

𝓈𝓉[s]

𝒪𝑏𝑗[LU]

𝑏0[LU]
𝒶𝑟—

𝓉𝑜—

0.01

3.9

-

0.78

0.16

3.8(1)

0

-

0.88

0.17

0.03

29.8

2.5

0.93

0.18

11.0(1)

0

-

0.70

0.18

0.01

148.1

83.5

0.80

0.27

573(2)

8.55

-

1.00

0.27

2.0

𝓈𝓉[s]

𝒪𝑏𝑗[LU]

𝑏0[LU]
𝒶𝑟—

𝓉𝑜—

0.02

54.4

0.6

0.84

0.23

17.6(1)

0

-

0.95

0.20

0.01

134.5

54.3

0.82

0.22

798(8)

4.7

-

1.00

0.25

0.01

339.3

229.5

0.85

0.28

1200

-

-

-

-

94

7.2.3 Results of instance B

Table 7.8 #𝒱 (fleet size)

 6 5 4

𝛾× metrics MPA MILP MPA MILP MPA MILP

1.0

𝓈𝓉[s]

𝒪𝑏𝑗[LU]

𝑏0[LU]
𝒶𝑟—

𝓉𝑜—

0.08

8.0

-

0.63

0.11

4.41(3)

0

-

0.62

0.12

0.07

1.6

-

0.77

0.14

4.69(2)

0

-

0.68

0.13

0.03

14.9

0.6

0.85

0.16

6.97(2)

0

-

0.84

0.16

1.5

𝓈𝓉[s]

𝒪𝑏𝑗[LU]

𝑏0[LU]
𝒶𝑟—

𝓉𝑜—

0.06

74.3

19.0

0.86

0.17

26.9(14)

0

-

0.75

0.16

0.05

156.6

55.9

0.84

0.17

51,9(6)

0

-

0.92

0.20

0.03

255.1

115.6

0.83

0.17

322(7)

2.22

-

0.98

0.23

2.0

𝓈𝓉[s]

𝒪𝑏𝑗[LU]

𝑏0[LU]
𝒶𝑟—

𝓉𝑜—

0.05

285.8

106.6

0.78

0.18

545(309)

0.4

-

0.95

0.22

0.04

449.0

200.1

0.82

0.18

1200

-

-

-

-

0.03

530.3

300.7

0.65

0.17

1200

-

-

-

-

7.2.4 Results of instance C

Table 7.9 #𝒱 (fleet size)

 8 7 6

𝛾× metrics MPA MILP MPA MILP MPA MILP

1.0

𝓈𝓉[s]

𝒪𝑏𝑗[LU]

𝑏0[LU]
𝒶𝑟—

𝓉𝑜—

0.14

14.3

-

0.71

0.11

25.1(11)

0

-

0.71

0.13

0.11

4.1

-

0.69

0.12

10.7(6)

0

-

0.81

0.15

0.09

22.3

2.1

0.82

0.15

13.7(7)

0

-

0.82

0.16

1.5

𝓈𝓉[s]

𝒪𝑏𝑗[LU]

𝑏0[LU]
𝒶𝑟—

𝓉𝑜—

0.18

41.3

0.3

0.88

0.17

134(74)

0

-

0.90

0.19

0.09

241.4

107.7

0.75

0.17

100(28)

0

-

0.94

0.20

0.07

314.9

131.9

0.84

0.16

1109(162)

0.15

-

0.95

0.21

2.0

𝓈𝓉[s]

𝒪𝑏𝑗[LU]

𝑏0[LU]
𝒶𝑟—

𝓉𝑜—

0.14

606.7

261.0

0.70

0.16

1200

-

-

-

-

0.13

673.8

306.8

0.72

0.15

1200

-

-

-

-

0.07

749.8

370.2

0.69

0.16

1200

-

-

-

-

Chapter 7. MILP and heuristic results 95

7.3 Results evaluation and comments

In the three tables above, the first glance at each cell is to determine if a feasible

solution was found. Unfeasible test cases can help to determine the capability limits

of each method in terms of problem size and criticality of resources.

If a test case was feasible, the first relevant metric is solving time 𝓈𝓉. It gives an

indication about problem complexity, especially for MILP tests. Other than that, the

most important metric of each test is the turnover 𝓉𝑜. In fact, it can be considered

as the scheduling efficiency index, since it is proportional to the number of articles

picked-up and delivered.

In the following, a specific test cell is identified with the wording: <instance>(<#𝒱>,

<𝛾×>, <method>). E.g., A(7, 1.5, MPA) indicates the result of instance A, tested

with a fleet size #𝒱 = 7, a gamma-multiplier 𝛾× = 1.5, and solved with MPA.

Comment about Minimum Penalty Algorithm:

• It could quickly find feasible solutions for all the proposed instances as long

as production intensity was limited and the number of vehicles was reasonable

(neither too high, nor too low).

• The maximum activity rate 𝒶𝑟 is around 85%. Exceptional peak of 100% at

A(2, 1.0, MPA).

• Solution turnover 𝓉𝑜 rarely exceeds 17%. As for 𝒶𝑟, the limits on the value of

𝓉𝑜 are methodological, as they are mainly due to the reduced visibility horizon

of MPA. Exceptional peak value reached at A(2, 1.0, MPA), where 𝓉𝑜 = 21%.

• The only advantage of this heuristic method compared to DT-1ms-MILP is

the smaller solving time, which is of the order of 0.1 seconds (excluding best-

parameters search).

• On the other hand, a major disadvantage of heuristics is precisely its sensitiv-

ity to parameterization and the still unclear correlation between parameter

values and the quality of results.

Comment about Discrete-Time 1-mainstock MILP:

• It could find a solution in almost all cases, with a resolution time that rises

very quickly as production intensifies and fleet size decreases. In general, it

can be inferred that the factor that makes a problem harder is logistic resource

shortage (too much production and/or too few vehicles) rather than global

instance size (8 vs. 14 vs. 20 buffers). Even for medium-sized problems (20

buffers), solving time remains very reasonable if the fleet is sufficiently large.

• Since DT-1ms-MILP has a visibility horizon that coincides with the whole

scheduling period, the activity rate 𝒶𝑟 of vehicles can potentially reach 100%.

𝒶𝑟 = 100% at A(3, 2.0, MILP).

• For the same reason, the turnover 𝓉𝑜 can reach highest values in MILP solu-

tions. 𝓉𝑜 max was found at A(3, 2.0, MILP), and is equal to 26%.

96

In practice, assuming a capacity 𝑄𝑘 = 4 for all vehicles, a value of 𝓉𝑜 = 26%

means that, on average, each vehicle exchanges 2.08 LU of its content at every

1-minute timeframe.

• Given the discrete-time approximations, DT-1ms-MILP’s limitations are ra-

ther related to the increasing rigidity of the problem (more articles to move,

less vehicles to do it) which determines a steep growth of solving time.

In general, it can be concluded that DT-1ms-MILP formulation programmed and

solved with Gurobi Optimizer shows significantly better performance with respect to

the heuristic Minimum Penalty Algorithm. When the heuristics was able to find a

feasible solution, MILP model also found one, of equal or better quality, and in the

order of a few tens of seconds. However, if a high solving speed is required, the MPA

can schedule the fleet in less than a second and, in some cases, it proved to give a

good and feasible solution up to 17 seconds ahead of DT-1ms-MILP.

Table 7.10. Resume and comparison of results.

 MPA DT-1ms-MILP Variation

Solving time 0.01÷0.2 s 5÷600 s +500÷3000%

Max activity rate

(excluding except. peaks)
85% 100% +15%

Max turnover 17% 26% +9%

Requires parametrization Yes No

Hardest problem solved C(7, 1, MPA) C(6, 1.5, MILP)
–1 vehicle

+0.5𝛾×

7.4 Period decomposition

The instances shown in the paragraphs above present a planning period of 20

minutes. Nevertheless, the actual planning system should be able to schedule longer

periods, of the order of 3-4 hours. Thus, it is necessary to define a split strategy to

divide the planning in subperiods and solve with a sliding horizon approach. Sub-

periods duration is defined upstream, as well as the portion of each subperiod that

is overlapped to the previous one. The subperiods are scheduled one by one, and the

results of the previous one are the input data for the next, as shown in figure 7.4.

Subperiods overlapping is necessary to give a longer horizon of visibility to MILP

methods. For example, optimization is done by knowing what happens in the next

20 minutes, but recorded operations are only those planned for the first 15. The

remaining 5 minutes will be rescheduled with the next subperiod. This allows a more

fluid transition between a subperiod solution and the next.

Chapter 7. MILP and heuristic results 97

7.5 Visual representation of the solution

The outcome of problem resolution and post-processing is a list of instructions

for vehicles. However, a list of tasks is not the best form for an easy and detailed

analysis of the outcome. The charts presented below were developed during the in-

ternship to visualize the results in a more understandable and significant way. They

contain the following information:

• Usage rate of vehicles,

• Travelled distances,

• Buffer content evolution along the period,

• Scheduling of each vehicle (resource diagram).

Figures 7.4 to 7.11 contain these charts for test instance A with #𝒱 = 3, 𝛾× = 1.5,

and 15 timeframes, solved with both MPA and DT-1ms-MILP.

Figure 7.5. Usage rates, instance A (8b|3v|15t), MPA.

Figure 7.4. Example of a problem decomposed in subperiods.

Average activity rate

98

..

Figure 7.6. Travelled distances, instance A (8b|3v|15t), MPA.

Figure 7.7. Buffer content evolution, instance A (8b|3v|15t), MPA.1

Figure 7.8. Task scheduling, instance A (8b|3v|15t), MPA.2

Average distance

Chapter 7. MILP and heuristic results 99

Figure 7.9. Usage rates, instance A (8b|3v|15t), DT-1ms-MILP.

..

Figure 7.10. Travelled distances, instance A (8b|3v|15t), DT-1ms-MILP.

Figure 7.11. Buffer content evolution, instance A (8b|3v|15t), DT-1ms-MILP.1

Average activity rate

Average distance

100

Figure 7.12. Task scheduling, instance A (8b|3v|15t), DT-1ms-MILP.2

1 Format of y-labels in figures 7.7 and 7.11:

<buffer> [<lower bound>, <upper bound>] <supported article>

The number inside each cell indicates buffer content at the beginning of timeframe.

2 Format of cell-labels in figures 7.8 and 7.12:
<task destination> { <article1>.<loaded lots> | <article2>.<loaded lots> | … }

MS: main stock.

101

0Conclusion

The thesis ends with a final comment divided into three main parts. First, the

compliance of developed and tested methods with respect to application cases is

verified, especially for the indoor logistic operation manager. Scheduling objectives

are analysed and checked one by one. Second, a quantitative evaluation of ‘how just-

in-time’ these methods are is presented. Last, a list of potential future works closes

the thesis. This list contains all the complementary aspects that could not be treated

during the 6-months internship at LAAS-CNRS.

Compliance of solving methods with application cases

Objective Compliance

1. Logistic support to guarantee

production operability.

Direct mathematical objective of the devel-

oped methods. Granted by both MPA and

DT-1ms-MILP if logistic resources are suffi-

cient.

2. Minimization of on-ground in-

ventory (stock reduction is a major

aim of the just-in-time approach).

3. Minimization of logistic resources

necessary to effectively support the

production line.

These two objectives are concurrently satis-

fied prior to direct method resolution. Once

the lower and upper limits of each buffer are

fixed, the minimum fleet size necessary to

support production activities is searched off-

line by analysing the results of several ficti-

tious and representative problem instances.

In accordance with a robust programming

approach, it would be appropriate to con-

sider the worst case which could reasonably

occur. For example, the fleet shall be dimen-

sioned to also cope an unforeseen event or a

moderate increase of production intensity. A

slightly over-dimensioned fleet has also some

advantages: it makes it possible to have a

102

surplus of inactive vehicles during nominal

operations that can be employed to process

and satisfy punctual and explicit needs (e.g.,

a production operator that asks for a specific

item for some unforeseen reason).

In general, less capacious buffers require a

larger vehicle fleet to grant system operabil-

ity, and vice versa.

4. Reactivity to unforeseen events The responsiveness of the system to unfore-

seen events is granted by the solving speed

of methods, especially the minimum penalty

algorithm (MPA). This grants an important

dynamic aspect to the support system, that

can quickly react to contingencies by selec-

tively adapting or rescheduling operations.

Just-in-time evaluation

The following calculus aims at proving that the obtained results are compliant

with just-in-time principles by making it possible to supply the production line with

low inventory levels.

Let us consider the hardest instance solved with DT-1ms-MILP. It is the instance C

presented in chapter 7, with 20 buffers, 6 vehicles, and an average absolute consump-

tion �̅� = 0.45 LU per minute. Vehicles have a capacity 𝑄𝑘 = 4 LU, and the average

allowed content gap of all buffers is equal to 3.2 LU (as calculated in paragraph

7.1.4). The average survival time of each buffer can be calculated as:

 av. survival time =
av. allowed content gap

av. absolute consumption
=

3.2 LU

0.45 LU
 ≅ 7.1 min (C.1)

Moreover, the number of available vehicles per buffer is equal to:

#𝒱

#ℬ
=

6

20
= 0.3 vehicles buffer⁄ (C.2)

Hence, the average frequency at which each vehicle should visit a buffer and com-

pletely refill or empty it is calculated as the product of the two values above:

 av. fill-empty frequency = 7.1 min ⋅ 0.3 vehicles buffer⁄ = 2.1
min ⋅ vehicles

buffer
 (C.3)

To summarize, the hardest instance for which DT-1ms-MILP could find a solution

presents the following quantitative characteristics:

• 20 buffers and 6 vehicles

Conclusion 103

• an average buffer content gap of 3.2 load units, equal to 80% of any vehicle

capacity (4 LU),

• an average buffer survival time of 7.1 minutes,

• a fleet of vehicles in which every unit completely refills or empties a buffer

every 2.1 minutes.

Similarly, the hardest instance solved with MPA (20 buffers, 7 vehicles, �̅� = 0.3

LU/min) has an average buffer survival time of 10.7 minutes, and an average fill-

empty frequency of 3.7 minutes.

In both cases, but especially for DT-1ms-MILP, it can be concluded that the

system operates in accordance with just-in-time principles.

Future works

Many complementary aspects were left aside during the internship. They are

enumerated in this paragraph to give some further development prompts.

1. Adapt the application cases and mathematical models to be more compliant

with real instances; review the work of this thesis and validate the assump-

tions regarding core aspects and data handling. Applying the developed meth-

ods to real-life instances could provide some important information to improve

models and algorithms.

2. Search for other evaluation metrics by focusing on more pertinent key aspects

of a real workshop (distances travelled by vehicles, average rate of deliveries

and quantities exchanged, adaptability and reactivity demonstrated in simu-

lations, etc.).

3. Concerning the Minimum Penalty Algorithm, investigate the relationship be-

tween problem data, parameterization, and results, and search for quick and

effective parameterization methods.

Also, look for a more effective penalty function, possibly with a more direct

dependency with problem primary objective.

4. Design and develop a metaheuristic to improve the solutions given by the

MPA. For example, a genetic algorithm or a swarm optimization algorithm to

improve an existing MPA solution, or even making feasible a solution of MPA

which is not. A deterministic component could target unfeasible scheduling

parts, while a second stochastic component modifies them with crossover and

mutation operations. Moreover, unfeasible test cases show a lower activity

rate compared to feasible ones (see table at paragraphs 7.2.2 to 7.2.4). A

metaheuristic algorithm could also aim at adding new do-tasks to improve the

overall vehicle exploitation.

104

Considering search space complexity and the many components involved, a

population-based metaheuristic would be more suitable to effectively solve the

problem. In fact, population-based algorithms make a deeper neighbourhood

search with respect to trajectory-based ones. As such, they often grant a

quicker convergence in presence of complex search spaces with wide optimality

regions.

105

References

[1] J. P. Womack, D. T. Jones, (2003). Lean Thinking: Banish Waste and Create

Wealth in Your Corporation. Simon and Schuster, p. 10.

[2] The Nature of Mathematical Programming, (2014, March 5). Published on

Wayback Machine, Mathematical Programming Glossary, INFORMS

Computing Society.

[3] Wikipedia contributors, (2021, October 25). Mathematical optimization.

Wikipedia, The Free Encyclopedia, retrieved in October 2021.

[4] R. Bellman, (1957). Dynamic programming and the numerical solution of

variational problems. Operations Research, 5, pp. 277-288.

[5] Wikipedia contributors, (2021, October 22). Linear programming. Wikipedia,

The Free Encyclopedia, retrieved in October 2021.

[6] LP: Canonical form and standard form, (2021). Published on complex-systems-

ai.com.

[7] Bradley, Hax, and Magnanti, (1977). Applied Mathematical Programming.

Addison-Wesley. Published on web.mit.edu.

[8] Wikipedia contributors, (2021, September 18). Simplex algorithm. Wikipedia,

The Free Encyclopedia, retrieved in October 2021.

[9] Murty, G. Katta, (1983). Linear programming. New York: John Wiley &

Sons, pp. xix+482.

[10] Wikipedia contributors, (2021, July 6). Cutting-plane method. Wikipedia, The

Free Encyclopedia, retrieved in October 2021.

[11] P. C. Gilmore, R. E. Gomory, (1961). A linear programming approach to the

cutting stock problem. Operations Research, 9, pp. 849–859.

[12] P. C. Gilmore, R. E. Gomory, (1963). A linear programming approach to the

cutting stock problem-Part II. Operations Research, 11, pp. 863-888.

[13] G. Nemhauser, L. Wolsey, (1988). Integer and Combinatorial Optimization.

Wiley Interscience.

[14] H. Toussaint, (2013). Introduction au Branch Cut and Price et au solveur

SCIP (Solving Constraint Integer Programs). Rapport de recherche

LIMOS/RR-13-07.

106

[15] Wikipedia contributors, (2020, November 24). Column generation. Wikipedia,

The Free Encyclopedia, retrieved in October 2021.

[16] Interpreting LP Solutions - Reduced Cost. Published on Courses.psu.edu,

retrieved in October 2021. (https://www.courses.psu.edu/for/for466w_

mem14/Ch11/HTML/Sec4/ch11sec4_RC.htm)

[17] J. Chen, (2021). Heuristics. Published on Investopedia, retrieved in October

2021. (https://www.investopedia.com/terms/h/heuristics.asp)

[18] J. Pearl, (1984). Heuristics: intelligent search strategies for computer problem

solving. United States: Addison-Wesley Pub. Co., p. 3.

[19] S. Consoli, (2006). Combinatorial Optimization and Metaheuristics.

Operational research report: combinatorial optimization and metaheuristics,

TR/01/06, p. 7.

[20] X. Yang, (2011). Metaheuristic Optimization. Published on Scholarpedia,

8(9), p. 11472 (http://www.scholarpedia.org/article/Metaheuristic_Optimi-

zation)

[21] C. Blum and A. Roli, (2001). Metaheuristics in combinatorial optimization:

Overview and conceptual comparison. ACM Computing Surveys, pp. 274-284.

[22] M. Dorigo, M. Birattari and T. Stützle, (2006). Ant Colony Optimization.

IEEE Computational Intelligence Magazine, pp. 29-31.

[23] J. Kennedy and R. C. Eberhart, (1995). Particle swarm optimization. IEEE

International Conference on Neural Networks, Piscataway, NJ. pp. 1942–

1948.

[24] Wikipedia contributors, (2021, October 19). Particle swarm optimization.

Wikipedia, The Free Encyclopedia, retrieved in October 2021.

[25] X. Z. Gao, V. Govindasamy, H. Xu, X. Wang, and K. Zenger, (2015, March

21). Harmony Search Method: Theory and Applications, Hindawi Publishing

Corporation, v.2015, ID.258491.

[26] M. G. C. Resende and C. C. Ribeiro, (2008). GRASP. AT&T Labs Research

Technical Report.

[27] T. A. Feo and M. G. C. Resende, (1989). A probabilistic heuristic for a

computationally difficult set covering problem. Operations Research Letters,

8, pp. 67–71.

[28] Wikipedia contributors, (2021, October 28). Travelling salesman problem.

Wikipedia, The Free Encyclopedia, retrieved in October 2021.

References 107

[29] Wikipedia contributors, (2021, May 28). NP-hardness. Wikipedia, The Free

Encyclopedia, retrieved in October 2021.

[30] M. Held and R. M. Karp, (1962). A Dynamic Programming Approach to

Sequencing Problems. Journal of the Society for Industrial and Applied

Mathematics, 10(1), pp. 196–210.

[31] P. Toth, and D. Vigo, (2014). Vehicle Routing. Mathematical Optimization

Society-SIAM.

[32] G. B. Dantzig and J. H. Ramser, (1959). The Truck Dispatching Problem.

Management Science, 6(1), pp. 80–91.

[33] S. Mancini, (2014). Time dependent travel speed vehicle routing and

scheduling on a real road network: the case of Torino. Transportation

Research Procedia 3.

[34] J. Dethloff, (2001). Vehicle routing and reverse logistics: The vehicle routing

problem with simultaneous delivery and pick-up. OR Spectrum, 23(1), pp. 79-

96.

[35] A. M. Campbell, L. W. Clarke and M. W. P. Savelsbergh, (2002). The Vehicle

Routing Problem. SIAM, pp.309-330.

[36] L. C. Coelho, J. Cordeau, G. Laporte, (2012). Thirty Years of Inventory-

Routing. CIRRELT.

[37] H. Andersson, A. Hoff, M. Christiansen, G. Hasle, A. Løkketangen, (2010).

Industrial aspects and literature survey: Combined inventory management

and routing. Computers & Operations Research, 37(9), pp. 1516-1536.

[38] P. Chandra, (1993). A Dynamic Distribution Model with Warehouse and

Customer Replenishment Requirements. Journal of the Operational Research

Society, 44(7), pp. 681-692.

[39] A. Corberán, M. Laguna, E. Fernandez, R. Marti, (2002). Heuristic solutions

to the problem of routing school buses with multiple objectives. Journal of

the Operational Research Society, 53, pp. 427-435.

[40] L. Y. O. Li, Z. Fu, (2002). The school bus routing problem: A case study.

Journal of the Operational Research Society, 53, pp. 552-558.

[41] I. Masudin, Z. Maghfur, Mudrifah, F. Zulfikarijah, and D. P. Restuputri,

(2019). Multi-Product Multi-Vehicle Inventory Routing Problem With Mixed

Integer Linear Programming. International Conference on Industrial

Engineering and Operations Management.

108

[42] L. C. Coelho, G. Laporte, (2012). A Branch-and-Cut Algorithm for the Multi-

Product Multi-Vehicle Inventory-Routing Problem. CIRRELT, 2012-53.

[43] N. Guo, B. Qian, R. Hu, H. P. Jin, and F. H. Xiang, (2020). A Hybrid Ant

Colony Optimization Algorithm for Multi-Compartment Vehicle Routing

Problem. Hindawi, v.2020, ID.8839526.

[44] S. Ohmori, K. Yoshimoto, (2021). Multi-product multi-vehicle inventory

routing problem with vehicle compatibility and site dependency: A case study

in the restaurant chain industry. Uncertain Supply Chain Management,

2021(9), pp. 351–362.

[45] C. Archetti, M. Christiansen, M. G. Speranza, (2017). Inventory Routing with

Pickups and Deliveries. European Journal of Operational Research.

[46] I. Hssini, N. Meskens, F. Riane, (2016). Blood Products Inventory Pickup and

Delivery Problem under Time Windows Constraints. Proceedings of 5th the

International Conference on Operations Research and Enterprise Systems

(ICORES 2016), pp. 349-356.

[47] Glossary:Transshipment, (2021, July 7). Published on ec.europa.eu, Eurostat

statistics explained.

[48] L. C. Coelho, J. Cordeau, G. Laporte, (2012). The inventory routing problem

with transshipment. Computers & Operations Research, 39(11), pp. 2537-

2548.

[49] S. M. J. Mirzapour Al-e-hashem, Y. Rekik, (2014). Multi-product multi-period

Inventory Routing Problem with a transshipment option: A green approach.

International Journal of Production Economics, 157, pp. 80-88.

