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Abstract 

As industry 4.0, IoT and clouding technologies take hold, real-time scheduling 

and resource allocation solutions by means of proven optimization techniques have a 

concrete interest and remarkable market opportunities. Concerning the logistic and 

production domains, some solid well-designed optimization systems can be a precious 

ally to Just-In-Time philosophy at work. Speaking of logistics, it is a fast-growing 

sector responsible for a significant share of company costs, and its optimization has 

a major impact on economic rentability and competitiveness.  

The topic of this thesis is the research of dynamic and flexible scheduling methods 

for a generic indoor logistic support system. More specifically, the sought methods 

concern the optimal satisfaction of the expressed material needs of an indoor 

manufacturing facility, by means of a capacitated vehicle fleet. Part I is devoted to 

bibliographic research, preceded by an introduction to some optimization key-

concepts. Part II presents and discusses in detail the problem, its mathematical 

formulations, and the methods adopted to solve it. A series of MILP formulations 

are proposed, each with a specific set of hypotheses, the associated mathematical 

model, and some considerations about applicability and solvability. Then, an ad-hoc 

heuristic was designed to compare and evaluate the performance of the Discrete-

Time 1-mainstock MILP (DT-1ms-MILP) formulation.  

The thesis ends with a joint evaluation of two tested methods, with a special 

appreciation for DT-1ms-MILP by reason of its performances and flexibility. Last, 

some directions are given for a further development of this thesis work. 

 

Keywords: Inventory Rounting Problem, multi-item IRP, pickup and delivery, 

dynamic scheduling 
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Con l’avanzare dell’industria 4.0, dell’IoT, e delle tecnologie cloud, la 

pianificazione e l’allocazione di risorse in tempo reale attraverso tecniche di 

ottimizzazione collaudate destano un concreto interesse nel mercato tecnologico. Dei 

metodi di ottimizzazione robusti ed efficaci costituiscono un valido alleato per la 

filosofia Just-In-Time nei campi della logistica e dei sistemi di produzione. La 

logistica in particolare è un settore in forte crescita che determina una parte 

considerevole delle spese di un’azienda, e l’ottimizzazione delle attività che ne fanno 

parte può portare un considerevole guadagno in termini di redditività e competitività. 

L’argomento di questa tesi è la ricerca di metodi dinamici e flessibili per la 

pianificazione di una flotta di veicoli da interno a supporto di una linea di produzione. 

I suddetti metodi devono permettere di soddisfare in maniera ottimale i bisogni 

materiali della produzione a mezzo di una flotta a capacità finita. La parte I è 

dedicata alla ricerca bibliografica e all’introduzione di alcuni concetti chiave 

dell’ottimizzazione. La parte II presenta e discute in dettaglio il problema e i metodi 

impiegati per risolverlo. Anzitutto, una serie di formulazioni MILP, ognuna con le 

proprie ipotesi, il modello matematico associato, e alcune considerazioni riguardo alla 

applicabilità e alla risolvibilità. Segue la presentazione di un’euristica ad-hoc, 

sviluppata al fine di comparare e co-valutare la formulazione MILP Discrete-Time 1-

mainstock (DT-1ms-MILP). 

La tesi si conclude con una valutazione congiunta dei metodi testati, con un 

particolare apprezzamento per la DT-1ms-MILP in ragione delle performance e della 

flessibilità dimostrate. Infine, alcuni suggerimenti sono altresì dati per un eventuale 

continuazione del lavoro presentato. 
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0Introduction 

Optimization techniques are a major engineering tool with an impact on several 

fields, such as transportation, production scheduling, network design and multi-dis-

ciplinary systems. Every company that wishes to keep up with times must constantly 

find new ways to improve productivity and service quality while mitigating costs. 

Optimization plays a central role in it, firmly backed by calculators and their expo-

nentially increasing processing power. No matter the context, wisely applied optimi-

zation techniques grant more efficient processes and services. As industry 4.0, IoT 

and clouding technologies take hold, real-time data analysis and processing by means 

of proven optimization techniques has a concrete interest and remarkable market 

opportunities. 

Scheduling and resource allocation problems are among the most studied discrete 

and combinatorial optimisation issues. A common trait of many practical decision 

problems it that they are computationally challenging. Solving time is, along with 

solution quality, one of the most important aspects of an optimization technique, 

and the criticality of it over the quality of results depends on each specific application 

cases. Especially in dynamic scheduling, a method yielding a quick acceptable solu-

tion is frequently more effective than another slowly converging to global optimality. 

Concerning logistic and production sectors, some solid well-designed optimization 

system can be a precious ally to Just-In-Time philosophy at work. J-I-T is a corner-

stone of lean management, defined by [1] as a set of practices to “precisely specify 

value by specific product, identify the value stream for each product, make value 

flow without interruptions, let customer pull value from the producer, and pursue 

perfection.” Speaking of logistics, it is a relatively new sector (applied to economic 

and industrial environments since 1950s’), but its importance has exponentially in-

creased in the last years due to globalization. It does not directly produce value-

added; however, it is generally responsible for a significant share of company costs, 

and optimizing it has a major impact on economic rentability and competitiveness. 

This thesis work is based on a 6-months internship at the LAAS-CNRS of Tou-

louse started on April 2021. The main goal of the internship was the research of 

dynamic scheduling methods for an indoor logistic support system. More specifically, 
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the sought method concerns the optimal satisfaction of specific material needs of an 

indoor manufacturing facility. The fleet in charge of performing logistic operations is 

composed by a limited number of vehicles, and scheduling methods shall be suffi-

ciently quick to adapt to production changes almost in real-time.  

Three are the peculiar and challenging aspects of the problem. First, vehicles can 

load different kinds of articles, each with a specific lot size. Hence, the method shall 

record a different value for each loadable article expressed in a unified measure unit. 

Second, time approximations shall be limited to allow a fine fleet control in accord-

ance with J-I-T principles. Last, the method shall be reactive to production changes 

and dynamically adapt current fleet plan.  

Considering the importance of inventory management aspects, as well as the analo-

gies with routing problems, the core topic of this thesis was identified as Multi-item 

Inventory Routing Problem with Pickup and Delivery (Mi-IRP-PD). Although the 

primary objective is generally not inventory-and-routing cost minimization, these 

two terms can still be considered for method piloting or evaluation. 

Part I is devoted to bibliographic research and the introduction of some important 

theoretical concepts met during the internship. Chapter 1 gives a brief insight on 

some of the most used combinatorial optimization techniques, with a main distinction 

between exact and approximate methods. Chapter 2 contains a general overview of 

routing problems’ state-of-the-art. The chapter begins with the most basic problems 

such as the travelling salesman one (TSP), and progressively introduces new ele-

ments. The vendor managed inventory (VMI) concept allows to finally reach the 

definition of inventory routing problem (IRP). Chapter 3 concerns the Mi-IRP-PD 

itself and makes an overview of similar problems in literature. 

Part II introduces and discusses in detail the internship core problem, its solving 

formulations, and the methods adopted to solve it. First, Chapter 4 presents the 

indoor logistic support manager (ILOM), as well as its generalization and a similar 

application case in the transportation sector. After that, chapter 5 explains the de-

signed MILP formulations, each with a set hypothesis, the associated mathematical 

model, and some considerations about applicability and solvability. Linear program-

ming is a powerful optimization technique, but also very time-consuming. The chance 

of getting a solution in a reasonable amount of time is a delicate issue, thus problems 

must be wisely formulated, and the choice of a good commercial solver can make the 

difference. The chapter proposes formulations with different characteristics, with 

both continuous (CT) and discrete (DT) time domains, and diverse degrees of free-

dom concerning the key aspects of the problem. A special focus concerns the formu-

lation called Discrete-Time 1-mainstock Mixed-Integer Linear Program (DT-1ms-

MILP), as it matches with the ILOM problem and was hence developed and tested 

during the internship. Chapter 6 introduces an ad-hoc heuristic, specifically designed 

to compare and evaluate the performance of DT-1ms-MILP formulation. This 

method, simply called Minimum Penalty Algorithm (MPA), is based on a direct tree-



Introduction 3 

 

search, and has the same input and output data format of DT-1ms-MILP for an easy 

co-evaluation. Both methods are tested on a set of fictive instances with different 

sizes. Chapter 7 presents the characteristics of each test instance, then test results 

followed by some critical comments. 

Finally, the thesis ends with some conclusions about the developed methods, with 

a special focus on DT-1ms-MILP results. Moreover, some future research directions 

are suggested to the reader.  
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CHAPTER 1 

1Introduction  

to combinatorial optimization 

This chapter presents a general outline about optimization methods, with a focus 

on the combinatorial optimization techniques met and implemented during my stud-

ies in France and my internship at the LAAS-CNRS of Toulouse. Although this 

content might be non-exhaustive, it helped me and could help the reader to have an 

insight on working principles of a set of optimization methods vastly used in litera-

ture and in commercial applications.  

1.1 About mathematical optimization  

Optimizing consists in finding the best element among a set of available ones by 

respecting some selection criteria. An optimization problem (also called mathematical 

programming problem) can be written as follows. Given a function 𝑓: 𝑆 → ℝ from a 

set 𝑆 to the real numbers, find an element 𝑥∗ in 𝑆 such that 𝑓(𝑥∗) is an extreme 

value of 𝑓(𝑥), ∀𝑥 ∈ 𝑆. This problem consists of either a minimization or a maximiza-

tion of 𝑓. Optimization problems are usually stated in terms of minimization, and 

the expression 𝑓(𝑥∗) ≥ 𝑓(𝑥) ⟺ −𝑓(𝑥∗) ≤ −𝑓(𝑥), ∀𝑥 ∈ 𝑆 allows the reversion of any 

problem direction. 𝑆 is the domain of 𝑓, called search space; the elements of 𝑆 are 

called feasible solutions and must respect all problem constraints. 𝑓 is usually called 

objective function, sometime renamed loss function, cost function, or energy function 

depending on the application field. The solution 𝑥∗ that satisfies all the constraints 

and minimizes (or maximizes) the value of 𝑓 is called an optimal solution [2, 3]. 

Optimization is applied to many technical fields, such as logistics, production sys-

tems, economics, computer science and network design. As for other branches of 

applied mathematics, several analogies make it possible to apply similar optimization 

problems to very different fields. Frequently the objective functions of different prob-

lems contain similar terms, and the search space is often limited by constraints in a 

codified form (upper and lower bounds, balancing, incompatibility, etc.). 
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1.2 Combinatorial optimization 

Discrete optimization consists in finding one of the best elements in a search space 

𝑆 with at least a component 𝑠 defined in a discrete domain (∃𝑠 ∈ 𝑆 | 𝑠 ⊆ ℤ). Combi-

national optimization is a specification of discrete optimization in which some search 

space components are defined on a discrete and finite set. Problems concerning deci-

sion making, resource assignment, or any other field that needs a discrete search 

space require combinatorial optimization techniques to be solved. Some application 

fields are: 

• Graph theory, in which the problem can be formulated as a graph explora-

tion problem. (e.g., the Travelling Salesman Problem shown in chapter 2). 

The topic of this thesis work belongs to this category. 

• Games theory, that concerns the strategic interactions of decision-makers 

with the aim of maximizing their performance. 

• Control theory, that studies the influence and the effects of internal and 

external agents on a complex system of decision-making units. 

• Multi-disciplinary optimization employed in the design of complex sys-

tems in which different technical aspects participate to the global quality of a 

product.  

The search space of combinatorial optimization problems (COPs) is typically too 

large to allow an exhaustive search with a brute force algorithm. In fact, these algo-

rithms usually have a factorial complexity and quickly become unsolvable. Some 

Combinational optimization 

techniques 

Exact Approximate 

Ad-hoc heuristics Metaheuristics 

Trajectory Population 

 Branch&Cut 

 

 

 

 

Branch&Bound 
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Figure 1.1. Classification of combinational optimization techniques. 
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combinatorial optimization problems can be solved exactly in polynomial time, for 

example by a dynamic programming algorithm, or by formulating them with an 

integer linear programming approach. However, in most cases the problem is NP-

hard, and only a small group of methods can effectively find a solution. In practice, 

the acceptable complexity is often only polynomial; for many instances, approximate 

methods such as heuristics and metaheuristics are convenient with respect to exact 

methods. These methods find feasible solutions that approximate the optimum, some-

times with a known marge of error, in a generally reasonable amount of time. 

1.3 Exact methods 

In operations research (OR) and IT, exact methods consist of algorithms that 

aim to solve an optimization problem to global optimality. Among the exact methods 

of combinatorial optimization, the branch-and-bound is probably the most universally 

applied. It consists in the exploration of solution tree, subset by subset, starting from 

a given feasible solution 𝑥0. The aim is to progressively find a feasible minorant of 

the upper vertex of solution tree. Some other useful techniques are the cutting-plane 

methods, often combined with simplex and branch-and-bound methods in a powerful 

linear-programming solving approach. The joint application of these three exact 

methods is codified under the name of branch-and-cut. It is about exploring the 

solution tree of the relaxed problem, in which integer constraints are initially lifted, 

then gradually reformulate them with cutting-plane methods until the initial problem 

is reobtained. In particular, the branch-and-cut method is used by all major commer-

cial solvers for ILP and MILP problems (Mixed-Integer Liner Programming), as well 

as any other type of linearizable formulation. Other techniques to solve exact com-

binatorial optimization problems are dynamic programming – provided that problem 

optimum is reachable by breaking it down into subproblems and solving them to the 

optimum – and constraint programming – where there is no objective function and 

solution should just respect all problem constraints. Finally, it is worth mentioning 

the column generation methods, which apply to large linear problems and make it 

possible to solve them by considering only a subset of involved variables. 

1.3.1 Dynamic programming 

Dynamic Programming (DP) applies to broken-down problems for which it can 

be demonstrated that the optimality of subproblems also grants global optimality. 

This concept, formalized in the Bellman equation, was introduced by him in [4] for 

solving optimization problems. 

Let us consider a generic optimization problem 𝑚𝑎𝑥{𝑓(𝑥) | 𝑥 ∈ 𝑆}. DP can be applied 

to optimally solve the problem if the feasible region 𝑆 can be divided into subsets 

𝑆0 ⊂ 𝑆1 ⊂ ⋯ ⊂ 𝑆𝑛 = 𝑆, and global optimum can be reached by a set of sequential 
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solutions of growing size, such that the optimum in 𝑆𝑖 is equal to the optimum in 

𝑆𝑖−1 plus the optimum of the problem 𝑚𝑎𝑥{𝑓(𝑥) | 𝑥 ∈ 𝑆𝑖 ∪ 𝑆𝑖−1}, for each 𝑖 ∈ {1,… , 𝑛}: 

                                        𝑓(𝑥∗) = { 
𝑓(𝑥, 𝑆0)                                                        

𝑓(𝑥, 𝑆𝑖) = 𝑓(𝑥, 𝑆𝑖−1) + 𝑓(𝑥, 𝑆𝑖, 𝑆𝑖−1)
                         (1.1) 

1.3.2 Linear programming 

“Linear programming (LP) is an optimization method to achieve the best out-

come in a mathematical model the requirements of which are represented by linear 

relationships. In fewer words, linear programming is a technique for the optimization 

of a linear objective function, subject to linear constraints. Its feasible region is a 

convex polytope, which is a set defined as the intersection of finitely many half 

spaces, each of which is defined by a linear inequality. Its objective function is a real-

valued linear function defined in this polytope. A linear programming algorithm finds 

a point in the polytope where this function has its extreme value (min or max), if 

such a point exists.” [5].  

In their canonical form, LP problems concern the research of the optimal solution 

vector 𝑥 ∈ ℝ𝑛 out of the statement: 

Maximize  𝑐𝑇𝑥                                                                          (1.2) 

Subject to 𝐴𝑥 ≤ 𝑏, 
   𝑥𝑖 ≥ 0 

𝑐 ∈ ℝ𝑛 is the column vector of objective function coefficients, 𝑏 ∈ ℝ𝑚 is the column 

vector of constraint constant terms, and 𝐴 ∈ ℝ𝑚×𝑛 is the matrix of constraint coeffi-

cients.  “The inequalities 𝐴𝑥 ≤ 𝑏 and 𝑥 ≥ 0 are the constraints which specify a convex 

polytope over which the objective function is to be optimized. In this context, two 

vectors are comparable when they have the same dimensions. If every entry in the 

first is less-than or equal-to the corresponding entry in the second, then it can be 

said that the first vector is less-than or equal-to the second vector.” [5].  

Each corner solution of the polytope 𝑥′ contains basic 𝑥𝑖
𝑁 and non-basic 𝑥𝑖

𝑁𝐵 varia-

bles. Variable 𝑥𝑖
′ ∈ 𝑥′ is said basic with respect to that corner if it assumes a non-

zero, non-basic otherwise.  

Figure 1.2. A generic 3-d polytope and a 3-d simplex (simplest polytope). 
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As shown in (1.2), the canonical form of a maximization LP problem requires all 

constraints to be written as smaller-or-equal inequations. However, in real-life prob-

lems grater-or-equal signs are very often required, and there are some techniques to 

write a generic LP formulation in its canonical form by adding auxiliary variables 

𝑦𝑘 ≥ 0 to every grater-or-equal constraint. 

Maximize  𝑐𝑇𝑥        →    Maximize  𝑐𝑇𝑥                                       (1.3) 

Subject to 𝐴𝑥 ≥ 𝑏,          Subject to 𝐴𝑥 + 𝑦 ≤ 𝑏  
   𝑥 ≥ 0     𝑥, 𝑦 ≥ 0 

Moreover, other than the canonical form, a LP formulation can be written in its 

standard form, in which all constraints are equalities. To do so, some slack variables 

𝑒𝑖 ≥ 0 are added to each constraint to represent the distance between the hyperplane 

of the original constraint and the current solution vertex [6]. 

Maximize  𝑐𝑇𝑥        →    Maximize  𝑐𝑇𝑥                                       (1.4) 

Subject to 𝐴𝑥 ≤ 𝑏,          Subject to 𝐴𝑥 + 𝑒 = 𝑏  
   𝑥 ≥ 0     𝑥, 𝑒 ≥ 0 

1.3.2.1 LP duality 

Duality is an important property of mathematical programming. Given a primal 

linear program (max 𝑐𝑇𝑥 s.t. 𝐴𝑥 ⋛ 𝑏), it can be turned into its dual problem, (min 

𝑏𝑇𝑢 s.t. 𝐴𝑇𝑢 ⋛ 𝑐) by following some conversion rules: 

Table 1.1 Primal-dual relationships in a LP. 

Primal (dual)  Dual (primal) 

Maximization → Minimization 

Constraint 𝑖 ≤ → Variable 𝑢𝑖 ≥ 0 

Constraint 𝑖 ≥ → Variable 𝑢𝑖 ≤ 0 

Constraint 𝑖 = → Variable 𝑢𝑖 ∈ ℝ 

Variable 𝑥𝑗 ≥ 0 → Constraint 𝑗 ≥ 

Variable 𝑥𝑗 ≤ 0 → Constraint 𝑗 ≤ 

Variable 𝑥𝑗 ∈ ℝ → Constraint 𝑗 = 

Cost 𝑐𝑗 → Parameter 𝑐𝑗 

Parameter 𝑏𝑖 → Cost 𝑏𝑖 

Coefficient 𝑎𝑖𝑗 → Coefficient 𝑎𝑗𝑖 

Theorem of weak duality. Given a linear program, any feasible solution 𝓏 of the 

primal formulation (written as a maximization) provides a lower bound for the opti-

mal value 𝑤∗ of the dual formulation (written as a minimization). Similarly, any 

feasible solution 𝑤 of the dual formulation provides an upper bound for the optimal 

value 𝓏∗ of the primal formulation. The statement with all signs reversed is also true. 
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Theorem of strong duality. Given a linear program, if its primal formulation has 

an optimal solution, then the dual formulation also has one, and they have the same 

value 𝓏∗ = 𝑤∗. 

1.3.2.2 Simplex algorithm 

The simplex algorithm and its variants are widely used to solve LP problems. 

Their working principle was first introduced by George Dantzig in 1947 as an exact 

rigorous method to find the corner point of a 𝑛-dimensional convex polytope that 

maximizes an objective function 𝑓: 𝑆 → ℝ.  

The algorithm requires a linear program written in its standard form and a first 

feasible solution to start. The first solution can be a trivial one (e.g., the origin 𝑥 = 0⃗ ) 

or obtained by solving a modified version of the problem. After that, the simplex 

algorithm is based on two fundamental considerations: 

1. It can be demonstrated that if a value 𝑥∗ exists in 𝐴 such that  

𝑓(𝑥∗) = max{𝑓(𝑥) | 𝑥 ∈ 𝑆}, this value is geometrically located in a corner of 

problem’s polytope.  

2. It is also true that any linear objective function is weakly monotone along all 

convex polytope edges. Therefore, it can be stated that each edge connects 

two extreme points 𝑥1, 𝑥2 such that 𝑓(𝑥1) ≥ 𝑓(𝑥2), and that the edge can be 

‘crossed’ by switching a basic variable with a non-basic one in 𝑥. 

The simplex algorithm exploits these principles to ‘walk’ along the polytope edges 

and arrive, if it exists, to the optimum corner in a finite number of iterations (since 

finite is also the number of vertices in the polytope) [7, 8, 9]. 

1.3.2.3 Discrete linear programs: ILP and MILP 

Even though simplex algorithm is designed to solve LP problems, it is often com-

bined with relaxation techniques and heuristics for solving discrete linear programs. 

Given an optimization problem, if all its variables have integer domains the problem 

is called an integer linear programming (ILP) problem. Unlikely most LP problems, 

𝐴 

𝑐𝑇 

𝑏 
𝐴𝑇 

𝑏𝑇 

𝑐 

Primal 

max 𝑐𝑇𝑥 

s.t. 𝐴𝑥 ⋛ 𝑏 

Dual 

min 𝑏𝑇𝑦 

s.t. 𝐴𝑇𝑦 ⋛ 𝑐 

Figure 1.3. Representation of a primal problem and its dual. 
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the existence of integer or binary constraints makes ILP problems NP-hard, and do 

not always allow an effective resolution with existing methods. 

If only a subset of variables has integer or binary domains, the problem is called 

a mixed-integer linear programming (MILP) problem. These problems are generally 

NP-hard, too, and are largely encountered in combinatorial optimization applica-

tions. Chapter 6 of this thesis is devoted to the developed MILP formulations. 

1.3.3 Cutting-plane methods 

Cutting-plane are a group of exact optimization methods for integer linear pro-

grams. They were first introduced by Ralph E. Gomory in the 1950s’ and further 

developed by Václav Chvátal. “The cutting-plane method is any of a variety of op-

timization methods that iteratively refine a feasible set or objective function by 

means of linear inequalities, termed cuts. Such procedures are commonly used to find 

integer solutions to mixed-integer linear programming (MILP) problems, as well as 

to solve general, not necessarily differentiable, convex optimization problems.” [10]. 

“Cutting plane methods for MILP work by solving a non-integer linear program, the 

linear relaxation of the given integer program. The theory of Linear Programming 

dictates that under mild assumptions (if the linear program has an optimal solution, 

and if the feasible region does not contain a line), one can always find an extreme 

point or a corner point that is optimal. The obtained optimum is tested for being an 

integer solution. If it is not, there is guaranteed to exist a linear inequality that 

separates the optimum from the convex hull of the true feasible set. Finding such an 

inequality is the separation problem, and such an inequality is a cut, that can be 

added to the relaxed linear program. This process is repeated until the best integer 

solution is found.” [10, 11]. 

Cutting plane methods can also solve nonlinear problems as long as solution 

search space is convex and continuous. Kelley's method, Kelley–Cheney–Goldstein 

method, and bundle methods are commonly used to this purpose. They can solve 

“non-differentiable convex minimization, where a convex objective function and its 

subgradient can be evaluated efficiently but usual gradient methods for differentiable 

optimization cannot be used.” [10]. The underlying principle of these nonlinear meth-

ods is to approximate the feasible region of a convex problem by a set of linear half-

spaces enclosed in problem search space. 

1.3.3.1 Gomory cut 

In practice, the cutting-plane method proposed by Gomory is considered ineffec-

tive due to the many rounds often required to progress towards problem solution, 

besides being subject to numerical instability. Nevertheless, these methods gained in 

popularity during the 1990s’, when Gérard Cornuéjols and his research team 
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demonstrated the effectiveness of combining cutting-planes with branch-and-bound 

methods, and developed some techniques to avoid numerical instability. Since then, 

cutting-plane methods are greatly employed in commercial solvers for discrete and 

combinatorial optimization. “Gomory cuts are very efficiently generated from a sim-

plex tableau, whereas many other types of cuts are either expensive or even NP-hard 

to separate. Among other general cuts for MILP, most notably lift-and-project dom-

inates Gomory cuts.” [11, 12]. 

In the following, the working principle of Gomory cut is briefly discussed. Let us 

consider an ILP or MILP problem: 

Maximize  𝑐𝑇𝑥                                                                           (1.5) 

Subject to 𝐴𝑥 ≤ 𝑏, 

   𝑥 ≥ 0, 𝑥𝑗 integer 

First, integer constraints are dropped, and the problem is solved in its relaxed con-

tinuous form. This solution is geometrically located in a vertex of the expanded 

polytope containing the whole feasible region of the original problem. If this vertex 

does not satisfy all the integer constraints, then it cannot be the sought solution, and 

a hyperplane is generated to separate it from the feasible integer points inside the 

polytope. To do so, an additional linear constraint – a Gomory cut – is added to the 

relaxed problem to cut the infeasible vertex out of the polytope. The relaxed problem 

with cutting-plane constraints is then solved, and the process is iterated until a fea-

sible solution is found. 

Other than Gomory, other cutting-plane techniques commonly used by commer-

cial solvers are, e.g., implied bound, projected implied bound, MIR, strong Chvátal-

Gomory, flow cover, zero half, RLT, relax-and-lift. 

1.3.4 Branch-and-bound 

Branch-and-bound (B&B) is the solving-paradigm of several exact algorithms for 

ILP problems, based on the progressive and systematic exploration of solution search 

space by splitting it and evaluating the resulting branches. Proposed by Alisa Land 

and Alison Doig in the 1960s’, B&B is today one of the most used exact solving 

approaches for NP-hard problems, such as the Travelling Salesman Problem (pre-

sented in chapter 2) and many other combinatorial optimization applications. 

Branch-and-bound algorithms start by considering the solution of a relaxed ver-

sion of the problem, and as their name suggests, rely on two working principles: 

1. Split the search space into smaller pieces by a defined criterion (branching). 

2. Find the optimum on each branch, compare the results, and trim the branches 

for which it is proven they cannot contain the optimal solution (bound). 



Chapter 1.  Introduction to combinatorial optimization  15 

 

The algorithm below shows the basic working principle of branch-and-bound in 

the case of a maximization. Let us consider a ILP problem 𝑃0 and its relaxed version 

𝑃0𝑅. The symbol 𝑃̂ indicates the problem currently being pointed by the algorithms, 

which is associated to a node in the search tree. Each problem 𝑃 – thus each node – 

is a continuous LP that can be solved with the simplex algorithm. Its optimal solution 

and optimal solution objective value are indicated with 𝑥𝑃 and 𝑓(𝑥𝑃). The algorithm 

also speaks of closed and non-closed nodes; in fact, once branches are explored, the 

algorithm closes and do not visit them anymore [13]. 

Algorithm 1.1. Branch-and-bound general algorithm 

1 Initialize root-node 𝑃 ← 𝑃0𝑅 and the pointed-node 𝑃̂ ← 𝑃0𝑅 

2 Initialize objective bound values 𝑓 ← 𝑓(𝑥𝑃0𝑅
), 𝑓 ← 0 

3 While children(𝑃) ≠ ∅ do 

4 If 𝑃̂ is feasible and 𝑓(𝑥𝑃̂) ≥ 𝑓 and has any non-closed child 

6 If 𝑃̂ breaks any integral constraint of 𝑃0 

7 Descend of a level: 𝑃̂ ← best non-closed node in children(𝑃̂) gener-

ated with branching criteria. Each child of 𝑃̂ is equal to 𝑃̂ ∪ {addi-

tional constraint}. 

8 Else → feasible solution found 

9 Close the node 𝑃̂ (bound) 

10 If 𝑓(𝑥𝑃0
) < 𝑓(𝑥𝑃̂) or 𝑥𝑃0

 still unfound 

11 Titular best solution: 𝑥𝑃0
 ← 𝑥𝑃̂  

12 New obj. lower bound: 𝑓 ← 𝑓(𝑥𝑃̂) 

13 End if 

14 Climb of a level:  𝑃̂ ← parent(𝑃̂) 

15 End if 

16 Else → 𝑃̂ ‘dead branch’ 

17 Close the node 𝑃̂ (bound) 

18 Climb of a level:  𝑃̂ ← parent(𝑃̂) 

19 End if 

20 If 𝑃 has only one non-closed child 

21 New active root-node: 𝑃 ← non-closed child of 𝑃 

22 New obj. upper bound: 𝑓 ← 𝑓(𝑥𝑃) 

23 End if 

24 Continue 

The upper bound at line 2 can also be initialized via a heuristic method. This trick 

can help accelerate the B&B algorithm.  

Concerning the branching criteria at line 7, the simplest classic technique is splitting 

problem 𝑃̂ into two subproblems, each with an additional constraint originated from 

a violated integral condition. More specifically, given an optimal solution 𝑥𝑃̂
∗  for which 
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the component 𝑥𝑃̂,𝑗
∗  is required to be integer but is not, two are the children problems 

originated from 𝑃̂: 𝑃̂ ∪ {𝑥𝑃̂,𝑗 ≤ ⌊𝑥𝑃̂,𝑗
∗ ⌋} and 𝑃̂ ∪ {𝑥𝑃̂,𝑗 ≥ ⌈𝑥𝑃̂,𝑗

∗ ⌉}. 

1.3.5 Branch-and-cut 

As it can be inferred from the paragraphs above, branch-and-cut algorithms adopt 

the branch-and-bound exploration approach with the application of cutting-plane 

methods before each branching step. The employed cutting-plane techniques can vary 

during the same solving instance. The locally unsatisfied integral conditions give 

indications about which cutting methods are likely to be the most effective for the 

algorithm. Although the simplex algorithm is generally quick, the B&B algorithm 

requires to run it a great number of times, and a good cutting approach has a re-

markable impact on branch-and-cut duration. 

Two are the main reasons to prefer a branch-and-cut approach over a simple branch-

and-bound [14]: 

1. To reduce the number of nodes to explore and the simplex instances to solve, 

thus accelerate the overall algorithm. 

2. To reduce the number of explicit constraints in case the original problem has 

too many to be exhaustively enumerated. 

1.3.6 Column generation 

Column generation (CG) is a technique for solving large LP problems based on 

the duality and reduced cost concepts. Since duality do not apply to ILP, column 

generation cannot solve discrete optimization problems. The idea behind it is that 

many linear programs are too large to allow the exhaustive enumeration of all vari-

ables; in addition, it can be assumed that the basic (non-zero) variables in the opti-

mal solution will only be a restricted subset of the whole. CG is hence a method to 

rewrite a linear program only considering the subset of variables that impacts the 

objective function [15]. 

First, the initial master problem (MP) is converted into the restricted master 

problem (RMP) only formed by a subset of MP variables. The choice of RMP vari-

ables can be made, for example, with a heuristic approach. After that, the RMP and 

its dual are solved for finding the optimal value of dual variables 𝑢𝑖, needed by CG 

to generate the subproblem (also called pricing problem), then check for RMP’s op-

timality. The pricing problem consist in searching for new variables to add to RMP 

thought the search for the smallest (for a minimization) reduced cost in the reduced 

cost vector 𝑐̅: 
                                              𝑐̅∗ = 𝑚𝑖𝑛{𝑐𝑗 − ∑ 𝑎𝑖𝑗𝑢𝑖

𝑚
𝑖=1 ,   ∀𝑗 ∈ [1,… , 𝑛]}                                (1.6)  
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If 𝑐̅∗ is negative, it means that the associated variable can improve the solution, 

therefore it is added to RMP, which is solved again with its dual and the process 

repeats until no more negative reduced costs are found [14]. 

Reduced cost concept is essential to the column generation method. “Reduced 

cost 𝑐𝑗̅ is the amount by which an objective function coefficient 𝑐𝑗 would have to 

improve (so increase for maximization problem, decrease for minimization problem) 

before it would be possible for a corresponding variable 𝑥𝑗 to assume a positive value 

in the optimal solution.” [16]. 

1.3.7 Branch-and-price 

The column generation method can also help solving large ILP and MILP prob-

lems if combined to branch-and-bound algorithms. Branch-and-price is the name of 

some algorithms based on tree exploration (like branch-and-bound) and exploiting 

column generation to solve the large relaxed linear programs before each branching 

[14]. 

On the other hand, branch-and-price algorithms are not easy to use due to sub-

problems, sometimes hard to solve, and to the need to find effective branching tech-

niques for avoiding an uncontrolled constraint propagation.  

1.4 Heuristic methods 

“A heuristic technique (from Greek εὑρίσκω ‘to find, discover’) is any approach to 

problem-solving that uses a practical method and various shortcuts in order to pro-

duce solutions that may not be optimal, but are of a sufficient quality given a limited 

timeframe or deadline.” [17]. Heuristic methods are usually problem-dependant, and 

“are used for quick decisions, especially when finding an optimal solution is either 

impossible or impractical and when working with complex data.” [17]. “A heuristic 

function ranks alternatives at each branching step of a search algorithm, deciding 

the branch to follow based on available information.” [18]. 

Heuristic methods do not backtrack what they progressively find, that means they 

do not have an improvement phase after the exploration one. 

1.5 Metaheuristic methods 

As stated above, heuristics are problem-dependent methods. As such, they need 

to be manually adapted to any new problem to take full advantage of problem char-

acteristics and peculiarities. In addition, unless proven otherwise (e.g., by demon-

strating the objective function is convex), heuristic methods usually end their search 

in local optima and fail, in general, to reach the global optimum. 
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On the other hand, metaheuristics are problem-independent methods. Their working 

principles are not as greedy as heuristic techniques, and they generally succeed in 

reaching better solutions. However, they still need to be tuned at hand depending on 

the problem to improve, as their working parameters have a remarkable impact on 

results. In general, they need a solution to start, then explore the search space around 

them trying to increase solution quality with a trade-off between randomized and 

local deterministic search. In some cases, they can accept some partial solution dete-

riorations to get out of a local optimum point (this is the case, e.g., of simulated 

annealing algorithm, in which adverse solution fluctuations are accepted on a sto-

chastic basis). 

A first metaheuristic classification divides metaheuristics into trajectory-based 

and population-based. The main methods belonging to these two categories are shown 

in the chart at figure 1.4. The structural difference between them lies in memory 

usage. In fact, trajectory-based metaheuristic are memory-less algorithms in which 

“the next state only depends on the information accumulated in the current state of 

the search process, as a Markov process.” [19]. On the contrary, population-based 

methods are also known as memory-usage algorithms, as “there is a usage of short 

and/or long-term memory. Usually, the first keeps track of recently visited solutions 

(moves), while the second has a wider information storage concerning the entire 

search process.” [19]. 

1.5.1 History of metaheuristic methods 

As for most optimization techniques, the history of metaheuristics is coeval with 

computer evolution. The first landmark came with the development of evolutionary 

algorithms by I. Rechenberg and H. Schwefel in the 1960s’. Some years later, J. 

Holland proposed the genetic algorithms is his seminal book published in 1975. In 

1983, S. Kirkpatrick developed the simulated annealing, that takes inspiration by 

metals annealing process, and in the same years F. Glover was working on his tabu 

Metaheuristic methods 

Trajectory-based Population-based 

Ant 

colony 

Swarm 

optimization 

Tabu 

search 

Local search 

algorithms 
GRASP 

Simulated 

annealing 

Genetic  

algorithms 

Figure 1.4. Partial classification of metaheuristic methods. 
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search, then published in 1997. In tabu search algorithms, a tabu list contains the 

elements to avoid to progressively get to the best feasible one.  

The innovative ant colony optimization was proposed in 1992 by M. Dorigo in his 

PhD thesis, and in the same year J. R. Koza published a revolutionary book about 

genetic programming. Between 1995 and 1997, J. Kennedy and R. C. Eberhart pro-

posed the particle swarm optimization, while R. Storn and K. Price developed the 

vector-based differential evolution algorithm, that proved to be better than genetic 

algorithms in many cases [20]. 

Innovation trend kept on during 21st century. “First, Z. Woo Geem developed the 

harmony search algorithm in 2001, a music-inspired algorithm. Around 2002, a bac-

teria foraging algorithm was developed by Passino. In 2004, S. Nakrani and C. Tovey 

proposed the honeybee algorithm and its application for optimizing internet hosting 

centres, which was followed by the development of a novel bee algorithm by D. T. 

Pham and the artificial bee colony by D. Karaboga in 2005. In 2009, X. Yang and 

S. Deb introduced an efficient cuckoo search algorithm and proved it to be far more 

effective than most existing metaheuristic algorithms.” [20]. 

1.5.2 Genetic algorithm 

Genetic algorithms are abstractions of biological behaviours based on Charles 

Darwin's theory of natural selection. Many variants of genetic algorithms have been 

developed and applied to a wide range of optimization problems, such as graph col-

ouring, pattern recognition, for both discrete (e.g., the travelling salesman problem) 

and continuous systems (e.g., aerospace airfoil design). Crossover, recombination, 

mutation and selection are the essential components of genetic algorithms’ solving 

strategy. “The essence of genetic algorithms involves the encoding of solutions as 

arrays of bits or character strings (chromosomes), the manipulation of these strings 

by genetic operators and a selection based on their fitness to find a solution to a 

given problem.” [20]. 

Figure 1.5 shows how each algorithm iteration gives birth to a new generation of 

chromosomes, that is the current solution population. The objective function is usu-

ally encoded in a fixed-length binary or real array. The most critical issues of genetic 

algorithms concern the choice of proper fitness function and selection criteria, as well 

as the extent of crossover and mutation operations. Transferring some good chromo-

somes from a generation to another without much change is called elitism. “The basic 

procedure consists in selecting the best chromosome (in each generation) which will 

be carried over to the new generation without being modified by the genetic opera-

tors. This ensures that a good solution is attained more quickly.” [20]. 
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1.5.3 Simulated annealing 

Simulated annealing (SA) is based on the metal annealing process and the statis-

tical mechanics principles that rule it. It was specifically presented to solve combi-

natorial optimization problems with an explicit strategy to avoid being trapped in 

local minima. A well-tuned SA has the potential to converge either to global opti-

mum, or to a very good solution close to it.  

Problem solution is iteratively perturbated by some fluctuations similar to those of 

genetic algorithms (mutation, crossover, etc.). “Essentially, SA is a search along a 

Markov chain, which converges under appropriate conditions.” [20]. If the energy of 

the new system is lower than the previous one (i.e., new solution is ‘more optimal’), 

the new solution is retained. However, the most characteristic aspect of SA is the 

Figure 1.5. Flowchart of a generic genetic algorithm. 
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acceptance in some circumstances of search moves that do not improve the optimality 

of current solution. The acceptance of these apparently adverse changes – adverse in 

the short-term, but likely beneficial to final result – is calculated with the Metropolis-

Hastings algorithm as: 

                                                                    𝑝 = exp (−
Δ𝐸

𝑘𝐵𝑇
)                                                         (1.7) 

𝑝 is the acceptance probability, and this exponential expression is known as Boltz-

mann’s distribution. 𝑇 is the temperature that rules SA progression; 𝑘𝐵 is the Boltz-

mann’s constant; Δ𝐸 is the energy gap between the new and the old solution, that is 

proportional to objective function variation (Δ𝐸 ∝ Δ𝑓). From the Boltzmann’s dis-

tribution at (1.7), it can be inferred that as temperature increases, the probability of 

retaining an adverse fluctuation decreases. Also, a wider positive energy gap results 

in a smaller chance of retaining the new solution. In practice, the adverse solution is 

retained if the value drawn from a simple uniform distribution U(0,1) is smaller than 

Figure 1.6. Flowchart of simulated annealing. 
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exp(−Δ𝐸 𝑘𝐵𝑇⁄ ). After solution evaluation and replacement, a cooling low is applied 

to decrease temperature 𝑇 and make the algorithm progress: 

                                                                   𝑇 = 𝑇0 ⋅ exp(− 𝑡 𝜏⁄ )                                                     (1.8) 

Where 𝑇0 is the initial SA temperature, 𝑡 is the fictive time that increases by one at 

each iteration, and 𝜏 is the cooling parameter. SA general algorithm is shown in 

figure 1.6. The termination criterion is usually a lower temperature limit 𝑇𝑚𝑖𝑛, so 

that SA ends when 𝑇 ≤ 𝑇𝑚𝑖𝑛. The values of 𝑇0, 𝜏, 𝑇𝑚𝑖𝑛 and the extent of fluctuations 

must be carefully chosen to obtain good solutions [20, 21]. 

1.5.4 Tabu search 

Tabu search (TS) is a memory-based algorithm largely used in combinatorial 

optimization. Unlikely simulated annealing, TS stores a number of tried solutions in 

a tabu list to avoid circularities, escape local minima, and speed up local search. 

“studies show that the use of tabu lists with integer programming can save compu-

ting effort by at least two orders of magnitude for a given problem, as compared with 

standard integer programming.” [20]. As shown at point ❸ of figure 1.7, the tabu 

list has a limited size called tabu tenure and is dynamically filled and emptied as the 

algorithm progresses, often with a simple FIFO technique. Termination criterion can 

either be the achievement of a solution with the desired characteristics and quality, 

or the depletion of local search space {𝑠′ | 𝑠′ ∈ Γ(𝑠) ∖ 𝑇𝑎𝑏𝑢𝐿𝑖𝑠𝑡}. Given a solution 𝑠, 

Γ(𝑠) is the set of neighbour solutions reachable from 𝑠 with an elementary local 

search move. 

Figure 1.7. Flowchart of a simple tabu search. 
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It could be argued that keeping in memory a bunch of complete solutions can result 

inefficient. Therefore, it is not uncommon to only store a set of solution attributes 

that grant a univocal solution identification. “Attributes are usually components of 

solutions, moves, or differences between two solutions.” [21]. Obviously, a special 

care must be put in the choice of attributes that minimize the risk of ambiguities.  

1.5.5 Ant colony optimization 

Ant colony optimization (ACO) is inspired by the social behaviour of ants and 

their interaction with the surrounding environment. “Each ant lays chemical scents 

called pheromones to communicate with others, and is also able to follow the route 

marked with pheromone laid by other ants. When an ant finds a food source, it will 

mark the trail to and from it with a defined quantity of pheromone.” [20]. 

Once laid, pheromone has a concentration 𝜑0 that evaporates with time at the ex-

ponential rate 𝜉 shown at (1.9). Pheromone evaporation is crucial to algorithm con-

vergence to a self-organized state. 
                                                                    𝜑(𝑡) = 𝜑0 exp(−𝜉𝑡)                                                   (1.9) 

Let 𝑃 be a CO problem with a finite 𝑛 × 𝑚-dimensional search space 

𝑆 = {𝑥𝑖𝑗}𝑖∈{1,…,𝑛},𝑗∈{1,…,𝑚}, and an objective function 𝑓: 𝑆 → ℝ. A pheromone value is 

associated to any possible variable assignment. I.e., a time-dependent pheromone 

value 𝜑𝑎𝑏
𝑖 (𝑡) exist for each endomorphism 𝑥𝑖𝑎 ↦ 𝑥𝑖𝑏. Given a variable component 𝑖 

with values 𝑥𝑖𝑎, an ant chooses the next variable value 𝑥𝑖𝑏 with a stochastic mecha-

nism. However, if edge (𝑎, 𝑏) presents a pheromone track, the probability of choosing 

it is proportional to pheromone concentration 𝜑𝑎𝑏
𝑖 (𝑡). In turn, 𝜑𝑎𝑏

𝑖 (𝑡) is enhanced by 

the number of ants crossing (𝑎, 𝑏) to search for food on the other side. As the algo-

rithm evolves, the overall favourite path emerges as the most convenient one. This 

is the basic working principle of any ant colony algorithm [22]. 

1.5.6 Particle swarm optimization 

Particle swarm optimization (PSO) is based on the swarm behaviour of some 

animal species, such as fishes and birds. “PSO has been applied to almost every area 

in optimization, computational intelligence, and design/scheduling applications. 

There are at least two dozens of PSO variants, and a much larger number of hybrid 

algorithms obtained by combining PSO with other optimization techniques, which 

are increasingly popular.” [19]. The working principle of PSO consists of piecewise 

particle trajectories formed by three components (bold letters indicate vectors):  

• a deterministic component that tends to attract each particle toward the 

global best solution 𝑿∗; 

• a deterministic component that tends to attract each particle towards the best 

solution found for the particle itself 𝒙𝑖
∗; 



24   

• a stochastic component that randomly moves the particle in the search space. 

Each particle is a candidate solution for the problem and is associated to a time-

dependent positional vector with a position and a velocity [23]. “PSO is a metaheu-

ristic, as it makes few or no assumptions about the problem being optimized and can 

search very large spaces of candidate solutions. Also, PSO does not use the gradient 

of the problem being optimized, which means PSO does not require that the optimi-

zation problem be differentiable as is required by classic optimization methods such 

as gradient descent and quasi-newton methods.” [24]. 

At each time 𝑡, each particle 𝑖 has a position vector 𝒙𝑖,𝑡 and velocity vector 𝒗𝑖,𝑡. 

For every PS iteration, the new velocity vector of 𝑖 is calculated as: 

                                      𝒗𝑖,𝑡+1 = 𝜃𝒗𝑖,𝑡 + 𝜙𝑠𝑟𝑠(𝑿
∗ − 𝒙𝑖,𝑡) + 𝜙𝑐𝑟𝑐(𝒙𝑖

∗ − 𝒙𝑖,𝑡)                        (1.10) 

𝜃 is the inertia parameter that plays a stabilizing role and must be smaller than 1 

to prevent swarm divergence. Typically, 𝜃 ∈ [0.5,0.9]. 𝜙𝑠 and 𝜙𝑐 are respectively 

called cognitive and social coefficient, as they determine these two aspects of particle 

behaviours. In general, 𝜙𝑠, 𝜙𝑐 ≈ 2. 𝑟𝑠 and 𝑟𝑐 are two random coefficients drawn from 

a uniform distribution U(0,1) that determine the extent of the component to which 

they are associated. Consequently, the new position of 𝑖 is calculate as: 

                                                                  𝒙𝑖,𝑡+1 = 𝒙𝑖,𝑡 + 𝒗𝑖,𝑡+1                                                   (1.11) 

As the algorithm progresses, the best particle swarm solution 𝑿∗ could converge 

toward the global optimum. As for other metaheuristic, the choice of parameters 𝜃, 

𝜙𝑠 and 𝜙𝑐 has a major impact on solution quality, and many research works are 

focused on PSO parametrization procedures [19]. 

1.5.7 Harmony search 

Harmony Search (HS) is a relatively new metaheuristic based on music composi-

tion. The HS optimization moves are inspired by the following three musician exer-

cises [20]. 

Musicians  HS optimization 

Play a piece of music they know Usage of harmony memory 

Play a piece arranged from a known one Pitch adjustment 

Compose new music or random notes Randomization 

The basic HS method is composed of four principal steps [25]: 

1. The HS memory (HSM) is initialized with a set of 𝑚 random solutions to the 

problem: {𝑥𝑚 ∈ HSM | 𝑥𝑚 = {𝑥1
𝑚, 𝑥2

𝑚, … , 𝑥𝑛
𝑚}}. 
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2. Generate a new solution 𝑥′ = {𝑥1
′ , 𝑥2

′ , … , 𝑥𝑛
′ } from HSM elements. Each com-

ponent 𝑥𝑖
′ is randomly chosen from an existing 𝑥𝑗

𝑚 and mutated with a pitching 

adjust rate. This step of HS is similar to genetic algorithm’s crossover and 

mutation.  

3. If 𝑥′ is better than the worst solution in HSM, it takes its place, elsewise it is 

discarded. 

4. Repeat steps 2 and 3 until a termination criterion is met. For example, a 

solution in HSM has the desired quality, or the maximum number of iterations 

is reached. 

1.5.8 GRASP 

The Greedy Randomized Adaptive Search Procedure (GRASP) is a multi-start iter-

ative metaheuristic in which each iteration presents two steps: 

1. Construction, in which a solution is built with a greedy heuristic. 

2. Local search, that tries to repair the solution obtained at point 1 in case it 

is infeasible. If local search cannot reach feasibility, the solution is discarded 

and a new initial solution is sought. Otherwise, the feasible solution is kept, 

and a new neighbourhood is recursively searched until a local minimum is 

reached. 

GRASP is based on the multiple resolution of the problem with a logic improvement 

pattern. The randomized component of GRASP lies in its multi-start approach, as 

the initial solutions sought at point 1 are obtained with different greedy parameters. 

Once the algorithm is over, the best solution found during its execution is picked as 

problem solution [26]. 

GRASP was introduced by [27] in 1989, and its first application concerned the 

set covering problem. Today this flexible algorithm is widely used in a number of 

hybrid applications, often combined with other metaheuristic such as tabu search, 

simulated annealing, and genetic algorithms. 
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CHAPTER 2 

2Overview on Routing Problems 

Vehicle Routing Problems (VRPs) are an important class of problems in opera-

tions research and combinatorial optimization. The common goal is to determine the 

routes of a vehicle fleet to perform some tasks at a certain number of space-distrib-

uted stations under a series of constraints. The objective is minimizing the cost of 

problem solution based on many factors, such as distance and penalties. This kind 

of problem is generally applied to logistic and transport science problems; however, 

they can easily be adapted to other fields due to the strong analogies they have with 

other organizational problems, such as circuits (electrical, hydraulic, etc.) and com-

puter networks design. 

This chapter shows the basic concepts of VRPs and progressively adds complexity 

elements that are relevant to the topic of this thesis. 

2.1 Travelling Salesman Problem 

The statement of the TSP (Traveling Salesman Problem) is as follows. Given a 

set of 𝑛 points (also called cities) and the pairwise distances between them, find the 

closed path in which each city is visited once and only once and the total travelled 

distance is minimal. Formally, the problem consists in finding the shortest Hamilto-

nian cycle in a graph 𝐺 = (𝑉, 𝐸, 𝑐), where 𝑉 is the set of vertices (cities), 𝐸 is the set 

of edges, and 𝑐 is the set of costs associated to each edge. To make sure the problem 

is solvable, an associated Hamiltonian graph must exist [28].  

This problem could look easy, but is still one of the most studied in combinatorial 

optimization and belongs to the list of 21 NP-complete problems of Karp. The TSP 

is NP-complete as no known method can grant an effective resolution for any problem 

instance. Non-deterministic Polynomial-time (NP) problems are a class of computa-

tional decision problems solvable by a non-deterministic Turing machine in polyno-

mial time. NP-complete problems are defined as the hardest NP problems [29]. 

The TSP is said symmetrical if all edges are bidirectional and both directions have 

the same weight, asymmetrical otherwise. 
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A brute-force algorithm for solving this problem has a factorial complexity 𝑂(𝑛!), 

more precisely equal to (𝑛 − 1)! 2⁄ . Thus, problem resolution with this kind of algo-

rithms becomes soon impractical also with a few cities [28]. Held and Karp demon-

strated that dynamic programming algorithms can solve the TSP with a time com-

plexity of the order 𝑂(𝑛22𝑛) [30]. “Among the methods known today, the best for 

the resolution of the TSP have proved to be linear optimization and approximate 

methods such as heuristics and metaheuristics. Linear programming can solve con-

siderably large problems, even if solving times can be important.” 

As long as problem size is reasonable, the TSP can be solved with a ILP formulation; 

given a set of cities 𝒞 = {dep, 1, … , 𝑛} such that the travelling cost 𝑐𝑖𝑗 is known for 

each pair (𝑖, 𝑗), find the best set of binary connection variables 𝑥𝑖𝑗 such that each 

city is visited once and only once, and the total problem cost is minimized: 

Minimize      ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑛
𝑗≠𝑖

𝑛
𝑖                                                               (2.1) 

Subject to     ∑ (𝑥𝑖𝑗 + 𝑥𝑗𝑖)𝑛
𝑖 = 1, ∀𝑗 ∈ 𝒞 (visit unicity constraints) 

𝑥𝑖𝑗 ≥ 𝑥𝑗𝑘 , ∀𝑖 ∈ 𝒞 ∖ {dep}, ∀𝑘 ∈ 𝒞 (route continuity constraints) 

𝑥𝑖𝑗 ∈ {0,1} (binary constraints) 

2.2 Vehicle Routing Problems 

The TSP is a Vehicle Routing Problem in its simplest form, where a single vehicle 

has to visit a set of cities through the shortest path. More generally, VRP family is 

about finding the most efficient way to move passengers or goods in a network of 

stations, subject to a set of constraints. The optimization objective is generally about 

minimizing travelled distance, but other terms can integrate it or even take its place 

in some cases. As stated before, the most classic instance is the Traveling Salesman 

Problem (TSP), where the aim is finding the shortest path that starts at a central 

depot, visits all destinations once and only once, and finally returns to starting point.  

Some other common VRP variants are known as CVRP (Capacitated VRP), 

VRP-TW (VRP with Time Windows), TD-VRP (Time-Dependent VRP), and VRP-

PD (VRP with Pickup and Delivery). Book [31] presents a vast collection of VRP 

variants and their solving methods.  

2.2.1 Capacitated VRP 

The Capacitated Vehicle Routing Problem (CVRP) adds a major logistic issue to 

the VRP, that is the quantification and the constraining of moved goods or people. 

This is a basic aspect of all practical VRP problems. In fact, there is no interest in 

moving a vehicle without considering the transported items. 

CVRP was first presented in 1959 in a paper called ‘The Truck Dispatching Problem’, 

“concerned with the optimum routing of a fleet of gasoline delivery trucks between 
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a bulk terminal and a large number of service stations supplied by the terminal. The 

routes between any two points in the system are given, and a demand for one or 

several products is specified for every station within the distribution system.” [32] 

The aim was creating a set of truck routes capable of satisfying station demands such 

that the overall travelled distance was minimized. The problem was solved with a 

near-optimal LP formulation and tested on some fictive instances. 

In general, the capacity of problem vehicles does not allow to find a single route that 

satisfies the needs of all the cities. As shown in figure 2.1, CVRP solutions usually 

involve more than a route, to be covered either by an equal number of vehicles in 

parallel, or sequentially by a smaller set of vehicles.  

The CVRP is widely studied, and several heuristic and metaheuristic solving 

approaches are present in the literature. Exact optimization is also largely spread, 

mainly as MILP formulations. Assuming the number of available vehicles is known, 

a CVRP formulation can be written by adapting the linear program at (2.1) with 

some additional parameters, variables, and equations: 

Additional parameters and variables: 

𝑑𝑖     (parameter) demand of city 𝑖, must be greater than zero, 

𝑄𝑘    (parameter) capacity of vehicle 𝑘 ∈ 𝒱 = {1,2, … , 𝑚}, 

𝑞0
𝑘    (parameter) initial content of vehicle 𝑘, usually equal to zero, 

𝑞𝑖
𝑘    (variable) content of vehicle 𝑘 after visiting 𝑖. 

Additional constraints: 

𝑞𝑖
𝑘 + 𝑑𝑖 = 𝑞𝑗

𝑘 ⟺ 𝑥𝑖𝑗 = 1, ∀𝑖, 𝑗 ∈ 𝒞, 𝑘 ∈ 𝒱 (content evolution constraints)   (2.2) 

𝑞𝑖
𝑘 ≤ 𝑄𝑘, ∀𝑘 ∈ 𝒱 (capacity constraints) 

𝑞𝑖
𝑘 ∈ ℝ. 

Figure 2.1. Visual comparison between TSP and CVRP. 
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2.2.2 VRP with Time Windows 

The VRP with Time Windows (VRP-TW) adds further complexity to the VRP 

and CVRP. It is about introducing some time-related aspects to the formulation, 

namely by imposing that each delivery is completed within a specified time-window. 

Thus, time dimension enters the VRP model. The VRP-TW is particularly useful to 

represent the situations in which a delivery deadline is imposed, or when destinations 

are not open at all time. There could also be some start-times before which a delivery 

shall not be made, for example to avoid overstock at a destination. To this purpose, 

vehicles could be given the change to wait at some location if there is no delivery 

that can be made in that moment. 

These time-related features can either enter the model as constraints, or as objective 

function terms by putting a penalty on retards. The second option can sometimes 

relax the model and enhance solvability in presence of excessively rigid constraints.  

2.2.3 Time-Dependent VRP 

In real-life problems, especially those in urban or congested areas, travelling times 

not only depend on distance, but also on traffic conditions at passing hour. The 

Time-Dependent VRP (TD-VRP) considers this aspect by associating a different 

travelling cost 𝑐𝑖𝑗 to each (𝑖, 𝑗) connections as a function of the time at which they 

are crossed. E.g., crossing a sector of Paris’ ring-road can take much longer at 5 p.m. 

with respect to the same stretch at 3 p.m. Traffic aspects are also very important to 

green variants of VRP aiming at minimizing energy waste. Anyway, a traffic time-

model is required in input to any TD-VRP. 

[33] makes some key considerations about the gap between VRP models and real-

life situations, especially focusing on travel time variability. It also presents a GRASP 

heuristic for the TD-VRP with time windows applied to Turin’s road network and 

demonstrates that polynomial functions are suitable for representing real speed fluc-

tuations along roads. 

2.2.4 VRP with Pickup and Delivery 

The VRP with Pickup and Delivery (VRP-PD) allows both loading and unloading 

operations in a same route. In general, each delivered item shall be previously loaded 

at some point in the route. The VRP-PD is crucial to optimize fleet operations in a 

model composed by multiple sources and destinations. In fact, for a company the 

rentability of vehicles is partially proportional to the average fill rate, and only-

load/unload routes seldom allow a fill rate higher than 50%. In parallel, a higher fill 

rate decreases gas emission and has an important role in green routing problems. 

The VRP-PD was investigated in [34]. The paper proposes a cooperative approach 

in which a logistic operator delivers goods and collects waste simultaneously. The 
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problem is solved with a heuristic method, tuned on some fictive instances, and suc-

cessfully tested on a real-life application case. 

2.3 Inventory Routing Problems 

The Inventory Routing Problems (IRPs) combine VRPs with the Vendor-man-

aged Inventory (VMI) model. In opposition to traditional inventory management, in 

which the retailer asks for a precise order quantity, in the VMI the information about 

stock levels is shared with the vendor (supplier), so that the vendor is the decision-

maker about order quantity and time. This inventory management system promotes 

buyer-vendor cooperation and showed operational advantages and cost reduction. 

The supplier benefits from a wider knowledge about clients’ inventories and can 

guarantee a better delivery service, while the retailer saves the resources previously 

employed for active inventory monitoring. 

[35] makes a clear and practical distinction between IRPs and classical VRPs. It 

states that “VRPs occur when customers place orders and the delivery company, on 

any given day, assigns the orders for that day to routes for trucks. In inventory 

routing problems, the delivery company, not the customer, decides how much to 

deliver to which customers each day. There are no customer orders. Instead, the 

delivery company operates under the restriction that its customers are not allowed 

to run out of product. Another difference is the planning horizon. VRPs typically 

deal with a single day, and the only requirement is that all orders have to be delivered 

by the end of the day. Inventory routing problems deal with a longer horizon. Each 

day the delivery company makes decisions about which customers to visit and how 

much to deliver to each of them, while keeping in mind that decisions made today 

impact what has to be done in the future. The objective is to minimize the total cost 

over the planning horizon while making sure no customers run out of product.” [35]. 

2.3.1 Basic IRP statement 

Let 𝐺(ℛ, 𝒟) be a graph composed by a set of vertices (1 supplier and 𝑅 retailers) 

ℛ = {supplier, 1, … , 𝑅} and a set of arcs (connections) 𝒟 = {(𝑖, 𝑗) | 𝑖, 𝑗 ∈ ℛ, 𝑖 ≠ 𝑗}. In a 

discrete-time IRP formulation, the planning horizon 𝑇𝑃 is divided into a set of same-

length timeframes 𝑇̂ = {0,1, … , 𝑇}. For each 𝑡 ∈ 𝑇̂, every retailer 𝑖 has a consumption 

𝛾𝑖(𝑡) and a storage cost 𝑠𝑖 (cost⋅content-1⋅time-1). Each arc in 𝒟 has a distance 𝑑𝑖𝑗. 

Let 𝒱 = {1,2, … , 𝑉} be a set of vehicles, each with a capacity 𝑄𝑘 and a transportation 

cost 𝑐𝑘 (cost⋅load-1⋅distance-1) [36]. The IRP aims at finding a set of distribution 

routes, one for each vehicle, such that there is no stockout and the total inventory-

transportation cost is minimal. For each delivery, three interdependent decisions 

must be taken: 

1. when to deliver, 
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2. how much to deliver, 

3. how to insert the delivery in a route. 

Other than this basic version, real-life applications of IRP present many more 

aspects to consider and integrate within the model. [37] identifies seven characteris-

tics that affect IRP model building. They are listed in the table below. 

Table 2.1. IRP characteristics and variations. 

Characteristic Alternatives 

Time Instant Finite Infinite 

Demand Stochastic Deterministic 

Topology One-to-one One-to-many Many-to-many 

Routing Direct Multiple Continuous 

Inventory type Fixed Stock-out Lost sale Back-order 

Fleet Homogeneous Heterogeneous 

Fleet size Single Multiple Unconstrained 

The basic IRP stated above is NP-hard as any problem derived from the TSP. 

Some exact approaches are found in literature, but heuristic methods are used for 

the most to solve IRPs. 

2.3.2 Production Routing Problem 

The Production Routing Problem (PRP) is an extension of the IRP in which a 

superior supplying echelon (a production plant or another supplier) is added before 

the direct vendor.  

Paper [38] studies the case of a single supplier in charge of distributing different 

products to a set of retailers (see figure 2.2). Both the supplier and the retailers have 

limited storage capacity, and the supplier can place orders to the plant at a fixed 

cost in order to get the required articles. The objective of the problem is minimizing 

the total cost of plant orders, inventory holding, and distribution. 

2.4 Bus Routing Problem 

The Bus Routing Problem (BRP) is a specific multi-objective version of the VRP 

with some interesting characteristics. “The problem of scheduling and routing school 

buses deals with the important question of how to transport pupils to and from 

schools in the safest, most economical and most convenient manner.” [39]. One pe-

culiar aspect of the BRP is that transporting pupils is a delicate and demanding task. 

In fact, each pupil would like to be transported in the shortest possible time, and its 
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impatience is likely to increase more-than-linearly as the service takes longer. In the 

BRP there are three aspects to minimize [39, 40]: 

• the cost of the service (usually proportional to total distance), 

• the number of buses required, 

• the dissatisfaction of pupils (function of the time that each pupil spends 

onboard). 

  

Figure 2.2. Graphic scheme of the Production Routing Problem. 



34   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Blank page 



  35 

 

CHAPTER 3 

3The Multi-item IRP  

with Pickup and Delivery 

The core topic of this thesis is the Multi-item Inventory Routing Problem with 

Pickup and Delivery, abbreviated as Mi-IRP-PD in the following. As the name sug-

gests, it is an extended version of the Inventory Routing Problem with both pickups 

and deliveries of many diverse items. Basically, the problem is composed of a set of 

stocks and a set of capacitated vehicles. Each stock can only contain a defined subset 

of items and has some consumption values as functions of time. The objective is 

finding a set of vehicle routes that satisfies every stock demand and does not break 

any capacity, time-coherence, or item-coherence constraints. 

This chapter presents some cases of Multi-item IRP and IRP-PD found in liter-

ature, then makes a prior introduction to the Mi-IRP-PD version discussed in this 

thesis.   

3.1 Multi-product IRP 

The multi-product (or multi-item) aspect is the first to consider for modelling the 

Mi-IRP-PD. The previous chapter presents many variants of the VRP and the IRP 

in which product variety is not mentioned. However, many practical applications of 

the IRP require the distribution of more than a unique type of article. E.g., the works 

at [41, 42] discuss the Multiproduct Multivehicle Inventory Routing (MMIRP) and 

propose two mixed-integer linear programs to solve it exactly.  

[41] shows the case of the Indonesian LPG supply chain, with two different arti-

cles to distribute: the 5.5. kg and the 12 kg LPG cylinders. A two-vehicles fleet is in 

charge of dispatching the products over a total of 46 clients scattered in Malang-

City. The exact solving procedure yields for each vehicle a Monday-to-Friday sched-

ule composed of six closed daily routes. Hence, every vehicle serves an ordered subset 

of clients each day, and the delivered quantities of each product are decision varia-

bles, too. The objective function includes three terms: the fuel cost per kilometre, the 
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fuel cost per kilogram onboard, and the customer inventory cost. Although MILP 

solution includes more vehicle routes with respect to the planning traditionally used 

by the company (i.e., more visits to the central stock), it allows to reduce fuel con-

sumption by 13.39% and inventory cost by 16.01%.  

On the other hand, paper [42] discusses the MMIRP, too, and introduces some con-

sistency features to increase service quality. These features have the purpose of mak-

ing the model more realistic and be compliant with some concerns about workforce 

management and regularity of service. (E.g., establishment of a trust relationship 

between some customers and a specific driver; existence of a reasonable non-visit 

time to a same customer after a delivery.)  

In a linear program, the multi-product aspect can be handled by adding a further 

article index, hence splitting and specifying all the load-related variables and con-

straints. For example, let 𝒱 = {𝑘 | 𝑘 = 1, . . . , 𝐾} be a set of vehicles with capacity 𝑄𝑘. 

Also, let 𝒜 = {𝜃 | 𝜃 = 1, . . . , Θ} be a set of products. Content (𝑞𝑘,𝜃) and loading (𝐿𝑘,𝜃) 

variables are defined for each pair (𝑘, 𝜃). 𝑞𝑘,𝜃 indicates the quantity of 𝜃 on 𝑘 at a 

certain moment, while 𝐿𝑘,𝜃 ≥ 0 indicates the quantity of 𝜃 loaded by 𝑘 (thus, Δ𝑞𝑘,𝜃) 

at a certain moment. The following expressions can describe capacity and loading 

constraints for a MMIRP: 

∑ 𝑞𝑘,𝜃
𝜃∈𝒜 ≤ 𝑄𝑘, ∀𝑘 ∈ 𝒱, at any moment (capacity constraints)                  (3.1) 

[𝑞𝑘,𝜃 + 𝐿𝑘,𝜃]before − [𝑞𝑘,𝜃]after = 0, ∀𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜 (loading constraints)            (3.2) 

3.1.1 Multicompartment IRP 

A specification of the Multiproduct IRP is the Multicompartment IRP (MCIRP). 

In the MCIRP each vehicle has devoted compartments of fixed capacity for each 

product. “There are many industrial fields in which the multicompartment vehicles 

are employed. The first example arises in the process of supplying fuels, where a lot 

of vehicles or ships with some tanks of various capacities are used to settle the prob-

lem. Another example is the transportation of food, where different degrees of refrig-

eration goods are stored in different compartments in one vehicle.” [43], slightly 

adapted. In the same paper, the MCVRP is solved with a hybrid ACO algorithm. 

3.1.2 Multi-compatibility and site-dependency  

Paper [44] introduces multi-compatibility and site-dependency in the MMIRP 

applied to a food distribution service. The capacity of vehicles is divided into three 

zones with different temperatures (multi-compatibility of the products with compart-

ments), and each vehicle can only visit a subset of destinations due to the specifica-

tions of unloading facilities (site-dependency). Then, the problem is solved with a 

three-stage math-heuristic based on the cluster-first and route-second method. 



Chapter 3.  The Multi-item IRP with Pickup and Delivery  37 

 

For a Multi-compatibility MCIRP linear program, the expressions (3.1) and (3.2) 

must be modified to consider the capacity of every compartment. Let each vehicle 𝑘 

have a set of compartments 𝒬𝑘 = {𝜎 | 𝜎 = 1, … , Σ𝑘}, each of capacity 𝑄𝑘,𝜎. Content 

variables must be rewritten with the additional index 𝜎; thus, 𝑞𝑘,𝜎,𝜃 is the quantity 

of 𝜃 in compartment 𝜎 of vehicle 𝑘. Consequently, loading variables become 𝐿𝑘,𝜎,𝜃. 

The expressions (3.1) and (3.2) are rewritten as: 

∑ 𝑞𝑘,𝜎,𝜃
𝜃∈𝒜 ≤ 𝑄𝑘,𝜎, ∀𝑘 ∈ 𝒱, 𝜎 ∈ 𝒬𝑘, at any moment                                  (3.3) 

[𝑞𝑘,𝜎,𝜃 + 𝐿𝑘,𝜎,𝜃]before − [𝑞𝑘,𝜎,𝜃]after = 0, ∀𝑘 ∈ 𝒱, 𝜎 ∈ 𝒬𝑘, 𝜃 ∈ 𝒜                      (3.4) 

These expressions can be simplified by assuming that each article is compatible with 

at most one compartment onboard of each vehicle. This compatible-articles set is 

defined as 𝒜𝜎, and (3.3), (3.4) become as follows: 

∑ (𝑞𝑘,𝜃)𝜃∈𝒜𝜎
≤ 𝑄𝑘,𝜎 , ∀𝑘 ∈ 𝒱, 𝜎 ∈ 𝒬𝑘, at any moment                                (3.5) 

[𝑞𝑘,𝜃 + 𝐿𝑘,𝜃]before − [𝑞𝑘,𝜃]after = 0, ∀𝑘 ∈ 𝒱, 𝜎 ∈ 𝒬𝑘, 𝜃 ∈ 𝒜𝜎                           (3.6) 

Index 𝜎 disappeared from variables as the compartment is implicitly specified by the 

article 𝜃 ∈ 𝒜𝜎. 

3.2 IRP with Pickup and Delivery 

The pickup-and-delivery aspect is the second main pillar of Mi-IRP-PD. The IRP 

with Pickup and Delivery is an important variant of the IRP with a great number 

of practical applications.  

Paper [45] discusses the problem in detail and presents a discrete-time mathematical 

model solved with a branch-and-cut algorithm, while [46] concerns the IRP-PD with 

time windows and perishability constraints. 

By reference to the model briefly introduced in the previous chapter, the pickup-

and-delivery aspect can be integrated in a linear program by allowing negative values 

of 𝐿𝑘,𝜃. As a consequence, vehicle content must be lower-bounded, and the constraint 

set is rewritten as: 

∑ 𝑞𝑘,𝜃
𝜃∈𝒜 ≤ 𝑄𝑘, ∀𝑘 ∈ 𝒱, at any moment (upper capacity constraints)             (3.7) 

∑ 𝑞𝑘,𝜃
𝜃∈𝒜 ≥ 0, ∀𝑘 ∈ 𝒱, at any moment (lower capacity constraints)           (3.8) 

[𝑞𝑘,𝜃 + 𝐿𝑘,𝜃]before − [𝑞𝑘,𝜃]after = 0, ∀𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜 (loading constraints)            (3.9) 

3.3 IRP with Transshipment 

In logistics, transshipment is a term coming from the maritime sector that “means 

the unloading of goods from one ship and its loading into another to complete a 

journey to a further destination, even when the cargo may have to remain ashore 
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some time before its onward journey. The term can also be applied more generally 

to other transport modes, such as freight transport by road or rail or air, or any 

combination of them.” [47].  

From an OR point of view, the use of a transshipment in IRPs can bring a consider-

able problem relaxation, as well as a general lead time reduction and an improvement 

of distribution performance. “The optimization problem must find the best configu-

ration of vehicles, routes, pickups, deliveries and transshipments for each period, so 

as to minimize the total cost of supply chain operations.” [49]. Depending on the 

problem, transshipment can rely on suppliers, retailers, suppliers-and-retailers, or 

even on devoted intermediate warehouses. 

Two literature cases are shown at [48, 49]. The first presents an adaptive large 

neighbourhood search heuristic to solve the IRP with transshipment, while the sec-

ond proposes an exact MILP formulation and tests it on instances of different size 

(with up to 15 stations and 12 scheduling periods). 

3.4 The Mi-IRP-PD of this thesis  

The Mi-IRP-PD discussed in this thesis presents some structural differences with 

respect to the IRPs usually found in literature. In fact, the application case for which 

this Mi-IRP-PD version was developed presents three characterizing aspects: 

1. Each vehicle has a starting point, where it is not obliged to get back at the 

end of the period. Every vehicle can finish its route anywhere on problem 

ground. 

2. Although the problem is about routing and inventory management, the min-

imization of distribution and storage costs are generally not a priority. As 

shown in part II of this thesis, the priority is given to the overall inventory-

demand satisfaction. 

3. Time-control shall be fine, of the order of some tens of seconds to some 

minutes. Therefore, the assumption for which any route is completed within 

a timeframe hardly matches with the here-presented Mi-IRP-PD. 

How these three characteristic where handled is one of the main topics of part II, in 

which the aforementioned application case is also presented. 
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CHAPTER 4 

4Mi-IRP-PD formalization  

and application cases 

This chapter discusses the origin and the evolution of the model proposed to solve 

the Multi-item Inventory Routing Problem with Pickup and Delivery (Mi-IRP-PD). 

The models and formulations described in this thesis were partially developed during 

my 6-months internship at the Laboratory of Analysis and Architecture of Systems 

(LAAS-CNRS) in Toulouse. The chapter starts by outlining its goals and ambitions, 

as well as all the elements that play a relevant role in it.  

First, the proposed class structure allowed to adapt different problems to some 

common solving approaches developed during the internship. The main application 

case is the Indoor logistic operation manager. It consists in finding a viable schedul-

ing of an indoor vehicle fleet to support the production of a manufacturing facility. 

The chapter deals with some variants of this problem, and an additional application 

case is introduced, too. 

4.1 Case 1: Indoor logistic operation manager 

This internship at LAAS-CNRS focused on the development of an operation 

scheduling system for an indoor vehicle fleet in charge of supporting the logistic needs 

of a manufacturing facility. The goal of the fleet is to collect and dispatch items 

(components, subassemblies, waste, tools) to manufacturing facility workstations so 

as to maintain acceptable stock levels at all times, all along the production line. 

Moreover, the scheduling system shall be able to quickly react to unforeseen produc-

tion perturbations. If an unexpected event changes production schedule, the logistic 

support system shall also reschedule in response to the new needs. Consequently, 

system scheduling methods shall be able to give a new viable solution in a very short 

time, quantified at a few seconds. The Indoor logistic operation manager problem is 

also indicated with the acronym ILOM.  
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In its simplest form, this problem involves a set of stocks dislocated along the 

production facility, allowed to store a single article reference each, and associated to 

a provisional consumption profile. A main stock is also present on the production 

ground to generate and absorb articles that enter and quit it. However, not all the 

articles are involved in this in-out process; the main stock is a source of assembly 

components and a sink for defective pieces and waste. Semi-assembled parts can be 

transferred from a station to another but are not allowed to leave the production 

ground through the main stock. Forecasts about consumptions come from production 

planning or production simulation. The first method consists in scheduling produc-

tion activities at workstations by collecting client orders and their deadlines. Once 

each workstation has its operations scheduled, material consumptions can be derived 

though the bill of materials. Alternatively, simulating production activities in a dig-

ital environment can also provide material consumptions profiles at each workstation. 

The involved vehicle fleet in charge of transferring items from a stock to another 

can consist of heterogeneous vehicles, each with its own capacity and speed. The 

content of the vehicles shall be expressed in a generic load unit related to a univocal 

physical quantity, such as a fraction of the supported weight or of the available 

surface onboard. Stock contents and consumptions are expressed in load units, too; 

therefore, all item quantities shall be scaled from their real size to the unified one. 

E.g., let us consider a production line that assembles car wheels. Among other parts, 

vehicles are also called to transport bolts and tyres, that have a very different size. 

Making the hypotheses that: 

• the line produces one wheel per minute, 

• each wheel requires a tyre and six bolts,  

• the space taken by a tyre can host 2000 bolts, 

• the load unit (LU) is equal to the space taken by a tyre, 

consumptions 𝛾 can be calculated as follows: 

𝛾tyres =  1
wheel

min
⋅ 1

tyre

wheel
⋅ 1

LU

tyre
= 1

LU

min
                                                                      (4.1) 

𝛾bolts = 1
wheel

min
⋅ 6

bolts

wheel
⋅ 1

LU

tyre
⋅ (2000

bolts

tyre
)

−1

= 0.003 
LU

min
                             (4.2) 

The same kind of calculation must be made for stored contents and lot sizes, respec-

tively indicated by the letters 𝐶 and 𝜆 in the following chapters. 

Finally, item collection and delivery are made according to a full-lot policy. Every 

article reference has a lot size expressed in load units that corresponds to the mini-

mum divisor of loadable/unloadable quantities. 
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4.1.1 Use cases and data of the logistic support system 

Les us consider a set of buffer stocks ℬ, a main stock MS, and a set of vehicles 𝒱. 

The following table shows system interaction scenarios in their most essential form. 

Table 4.1. Use cases and scenarios of the ILOM. 

Use case Scenario Action 

 1.   b ← MS 
Items required at buffer b and 

absent on production ground. 

Items shall be retrieved at main 

stock MS and brought to b. 

 2.   b ← b  
Items required at buffer b and 

present at buffer b . 

Items shall be retrieved at b  

and brought to b. 

 3.   b ← v 
Items required at buffer b and 

present on vehicle v. 

Vehicle v shall deliver the items 

at b. 

 4.   b → MS 

Items to remove at buffer b 

and no more needed on pro-

duction ground. 

Items shall be collected at b and 

brought to main stock MS. 

 5.   b → b  
Items to remove at buffer b 

and needed at buffer b . 

Items shall be collected at b and 

brought to b . 

 6.   b → v 

Items to remove at buffer b 

and soon needed on produc-

tion ground, or not absorbable 

by MS. 

Items shall be collected at b by 

vehicle v and kept onboard. 

Listing these use cases made it possible to identify the fundamental classes of the 

problem. However, to refine their formal definition it was then necessary to investi-

gate their interdependencies and the relevant data belonging to each class. The ver-

sion described in this paragraph was not the first to be developed during the intern-

ship. Indeed, the initial structure underwent several changes – usually simplifications 

– until reaching the current version. The final data structure features fours object 

classes: Ground, Stocks, Vehicles, and Tasks, hence called GSVT structure. The di-

agram presented at Figure 6.1 shows the aforementioned structure divided into three 

areas:  

1. Spatial data of production ground. It contains a static class called Ground 

that stocks every useful topological information of the manufacturing facility. 

2. Production forecast data, that lied outside the scope of the internship. 

Nevertheless, production is the most crucial data source of the problem. Its 

function is to forecast consumption (or production) profiles of materials at 

each workstation, and thus to allow the calculation of buffer needs overtime. 

Client orders are processed through MPS (Master Production Schedule) and 
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MRP (Material Requirements Planning) in order to obtain workstation-level 

activities and consumptions. 

3. Data actively handled by scheduling methods. This area contains the 

classes of objects that have a direct role in solving procedures. In fact, the 

applied scheduling methods can read, process, and overwrite the objects be-

longing to these dynamic classes. After several simplifications and some re-

search, the number of dynamic classes was reduced to three: Stocks, Vehicles, 

and Tasks. 

The most important part of problem results is the list of Tasks generated by solving 

methods. The evolution of buffer and vehicle contents is also a relevant part of the 

solution. It is particularly useful for making a detailed analysis of result quality and 

balance, since it allows to easily identify local overloaded spots along the scheduling. 

Figure 4.1. Class structure of the GSVT model. 
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4.1.2 Class definitions 

• Ground: set of coordinates and pairwise distances of all the remarkable points 

inside the manufacturing facility. Distances correspond to the actual direc-

tional paths between each pair of points, including tight corners and perma-

nent ground obstacles. 

• Stock: a physical storage unit that is located somewhere within the produc-

tion ground. Two subclasses derive from the Stock: Buffers and Gateways. 

The first one can contain a single article reference and has lower and upper 

content limits. Moreover, each buffer has a provisional consumption profile 

that allows to track content evolution overtime. Instead, gateways have the 

function of generating and/or absorbing a specific subset of items. In the sim-

plest case, a single gateway called ‘main stock’ is the source of every supply 

article and the sink of waste material.   

• Vehicle: object that can load, contain, transfer, and unload items. Each ve-

hicle has a capacity and a constant speed. Vehicles carry out tasks. 

• Task: activity with a start and an end time. It has a single destination and a 

single vehicle in charge of its completion. A task only ends when the vehicle 

that performs it is free of leaving task’s destination. 

4.1.3 ILOM problem statement with a single main stock 

Let us consider a manufacturing facility during a period 𝑇𝑃 for which the produc-

tion scheduling is known. The following sets of elements are deployed on the produc-

tion ground. 

• A set of article references 𝒜 = {𝑎1, 𝑎1, … , 𝑎Θ}, indicated by index 𝜃, such that 

each article has a unique lot size 𝜆𝜃. 
 

• A set of buffers ℬ = {𝑏1, 𝑏2, … , 𝑏I}, with index 𝑖, such that each buffer has the 

following parameters: 

𝜃𝑖    the only allowed article reference, 

𝐶𝑖   upper content limit, 

𝐶𝑖   lower content limit, 

𝐶𝑖,𝑡 = 𝑓(𝑡)  set of content values overtime, 

𝐶𝑖,0   initial content value, 

𝛾𝑖,𝑡 = 𝑓(𝑡)   set of consumptions, 

a value of 𝛾𝑖,𝑡
𝜃  below zero represents a production, 

𝑑𝑖𝑗   travel distance from 𝑖 to any other fixed element 𝑗, 

𝜏𝑖    forfeit time to complete onsite operations (load/unload). 

• A main stock 𝕚 with the following parameters: 

𝒜𝕚 ⊆ 𝒜   set of article references allowed in 𝕚, 
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𝑑𝕚𝑗   travel distance from 𝕚 to any other fixed element 𝑗, 

𝜏𝕚    forfeit time to complete onsite operations (load/unload). 

• A set of vehicles 𝒱 = {𝑣1, 𝑣2, … , 𝑣K}, with index 𝑘, such that each vehicle has 

the following parameters: 

𝑄𝑘   capacity, 

𝑠𝑘   speed, 

𝑞𝑡
𝑘,𝜃 = 𝑓(𝑡)  set of content values overtime for each article 𝜃 ∈ 𝒜, 

𝑞0
𝑘,𝜃   set of initial content values for each article 𝜃 ∈ 𝒜, 

𝑑𝕠𝑗
𝑘    distance between vehicle initial condition 𝕠 and any fixed  

element 𝑗, 

𝑡𝕠
𝑘   unavailability time of the vehicle, that cannot move or do  

any task as long as 𝑡 < 𝑡𝕠
𝑘. 

The main objective is finding the set of feasible vehicle routes (encoded in a list 

of tasks) that minimizes the sum of buffer content values exceeding the limits 𝐶𝑖, 𝐶𝑖, 

∀𝑖 ∈ ℬ. Travelled distance minimization could have an interest, too, for some specific 

cases. 

This basic formulation can be generalized in a more complete one, in which sources 

and sinks of articles are not centralized in a single main stock. Furthermore, some 

multi-item auxiliary buffers can be added to the model as logistic supports for the 

other elements, therefore allowing a more flexible scheduling. 

4.1.4 Generalized ILOM problem statement 

The ILOM problem with multiple sources/sinks and multi-item-buffers is the 

generalization of what exposed in the previous chapter. Statements about articles, 

vehicles, and vehicles initial conditions do not change. Buffers and main stock state-

ments are replaced by the following. 

• A set of multi-item buffers ℬ = {𝑏1, 𝑏2, … , 𝑏I}, with index 𝑖, such that each 

buffer has the following parameters: 

𝒜𝑖 ⊆ 𝒜   set of allowed article references, 

𝐶𝑖   buffer capacity, 

𝐶𝑖
𝜃   set of lower content limits for each article 𝜃 ∈ 𝒜𝑖, 

𝐶𝑖,𝑡
𝜃 = 𝑓(𝑡)  set of content values overtime for each article 𝜃 ∈ 𝒜𝑖, 

𝐶𝑖,0
𝜃    set of initial content values for each article 𝜃 ∈ 𝒜𝑖, 

𝛾𝑖,𝑡
𝜃 = 𝑓(𝑡)  set of consumptions for each article 𝜃 ∈ 𝒜𝑖, 

a value of 𝛾𝑖,𝑡
𝜃  below zero represents a production, and a 

𝛾𝑖,𝑡
𝜃 = 0 represents a logistic support buffer,  

𝑑𝑖𝑗   travel distance from 𝑖 to any other fixed element 𝑗, 

𝜏𝑖    forfeit time to complete onsite operations (load/unload), 
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𝑤𝑖
𝜃   penalty weight associated to the importance of avoiding  

stockout of article 𝜃 at 𝑖. 

• A set of source/sink points 𝒫 = {𝑝1, 𝑝2, … , 𝑝Ψ}, with index 𝜓, such that each 

s/s point has the following parameters: 

𝒜𝜓 ⊆ 𝒜   set of allowed article references, 

𝑑𝜓𝑗   travel distance between 𝜓 and any other fixed element 𝑗, 

𝜏𝜓   forfeit time to complete onsite operations (load/unload). 

The objective of the problem remains the same: finding the set of feasible vehicle 

routes that minimizes the weighted sum of buffer content values exceeding the limits 

𝐶𝑖, 𝐶𝑖, ∀𝑖 ∈ ℬ. Minimizing the overall travelled distance can be part of the objective, 

too. 

4.2 Case 2: Supply-chain network manager 

The Multi-item Inventory Routing Problem with Pickup and Delivery (Mi-IRP-

PD) can be tailored to different application cases for which deterministic consump-

tion previsions are known. Solving model is flexible; its constraints permit to obtain 

a realistic and customizable solution, and scalable time granularity is a crucial aspect 

of the model. In fact, time detail can easily be chosen as a function of the fundamental 

time unit of the problem (minutes, hours, days, etc.). 

For the Supply-chain network manager (SNM) problem, let us consider a network 

of geographically distributed factories, warehouses and shops (as shown in figure 4.2), 

each producing, storing, or selling a certain number of different articles. The produc-

tion output of factories is known, as well as shops provisional sales and return rates. 

The proposed Mi-IRP-PD model can help to manage warehouse and shop inventories, 

as well as to organize delivery, transfer and returning operations. 

Figure 4.2. Graphic example of a supply chain network. 
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4.2.1 SNM problem statement 

This problem is an adapted version of the ones presented in the Indoor logistic 

operation manager chapter. The model is composed of a set of factory inventories 

(buffers with negative consumptions), a set of shop inventories (buffers with positive 

consumptions), and a set of intermediate warehouses (buffers with no consumption). 

Moreover, the model can include provisional return fluxes originating from shops. In 

that case, shops can have negative consumptions for return articles, and a gateway 

is required to allow them to quit the area.  

Let us consider a supply chain network during a period 𝑇𝑃 for which production 

and sales are known. The following sets of elements are deployed in the network. 

• A set of article references 𝒜 = {𝑎1, 𝑎1, … , 𝑎Θ}, indicated by index 𝜃, such that 

each article has a unique lot size 𝜆𝜃. 
 

• A set of facilities (factories, shops, and warehouses) ℬ = {𝑏1, 𝑏2, … , 𝑏I}, indi-

cated by index 𝑖, such that each of them has the following parameters: 

𝒜𝑖 ⊆ 𝒜   set of allowed article references, 

𝐶𝑖   inventory capacity, 

𝐶𝑖
𝜃   set of lower content limits for each article 𝜃 ∈ 𝒜𝑖, 

𝐶𝑖,𝑡
𝜃 = 𝑓(𝑡)  set of content values overtime for each article 𝜃 ∈ 𝒜𝑖, 

𝐶𝑖,0
𝜃    set of initial content values for each article 𝜃 ∈ 𝒜𝑖, 

𝛾𝑖,𝑡
𝜃 = 𝑓(𝑡)  set of consumptions for each article 𝜃 ∈ 𝒜𝑖, 

𝛾𝑖,𝑡
𝜃  is the parameter that marks the difference between 

factories, shops, and warehouses. Factories have values 

𝛾𝑖,𝑡
𝜃 ≤ 0 as they produce articles; shops have values of 

𝛾𝑖,𝑡
𝜃 ≥ 0 as articles are sold, thus consumed; warehouses 

have values of 𝛾𝑖,𝑡
𝜃 = 0 as they are logistic support ele-

ments.  

𝑑𝑖𝑗   travel distance from 𝑖 to any other fixed element 𝑗, 

𝜏𝑖    forfeit time to complete onsite operations (load/unload), 

𝑤𝑖
𝜃   penalty weight associated to the importance of avoiding  

stockout of article 𝜃 at 𝑖. 

• A set of return points 𝒫 = {𝑝1, 𝑝2, … , 𝑝Ψ}, with index 𝜓, such that each point 

has the following parameters: 

𝒜𝜓 ⊆ 𝒜   set of allowed article references, 

𝑑𝜓𝑗   travel distance between 𝜓 and any other fixed element 𝑗, 

𝜏𝜓   forfeit time to complete onsite operations (load/unload). 

• A set of cargo vehicles 𝒱 = {𝑣1, 𝑣2, … , 𝑣K}, with index 𝑘, such that each vehicle 

has the following parameters: 
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𝑄𝑘   capacity, 

𝑠𝑘   speed, 

𝑞𝑡
𝑘,𝜃 = 𝑓(𝑡)  set of content values overtime for each article 𝜃 ∈ 𝒜, 

𝑞0
𝑘,𝜃   set of initial content values for each article 𝜃 ∈ 𝒜, 

𝑑𝕠𝑗
𝑘    distance between vehicle initial condition 𝕠 and any fixed  

element 𝑗, 

𝑡𝕠
𝑘   unavailability time of the vehicle, that cannot move or do  

any task as long as 𝑡 < 𝑡𝕠
𝑘. 

The objective of the SC network manager problem is expressed as a two-terms 

minimization; first, minimize the inventory exceeding content limits at each facility, 

and second, minimize the overall travelled distance of the fleet. It can be proven that 

the second term has the heaviest impact on exact methods solving time. However, 

while finding the global optimum can take a very long time, it frequently happens 

that a very good solution is already found at an early solving stage. A technical trick 

could be the introduction of progressive distance brackets for evaluating the quality 

of a solution. The problem is hence relaxed, and optimality precision is known a 

priori. As shown in figure 4.3, this trick is equivalent to defining a staircase or piece-

wise objective function. The precision of solution optimality is given by the width of 

each step. (E.g., if a solution has a distance included in the step (𝑑1, 𝑑2) and is 

assigned the average value (𝑑1 + 𝑑2) 2⁄ , the maximum error is then equal to 

|𝑑1 − 𝑑2| 2⁄ .) 

4.3 Considerations about applicability 

Other than the ILOM (indoor logistic operation manager) and the SNM (supply-

chain network manager), the generalized Mi-IRP-PD can be applied to any problem 

with the following characteristics: 

• a set of scattered batch elements the content of which changes overtime, 

• a set of items that can selectively enter and exit the global system, and can 

be picked-up from or delivered to batch elements, 

Figure 4.3. Graphic example of staircase and piece-wise objective functions. 
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• a set of capacitated transporters, each with a set of supported items. 

However, the following conditions restrain the applicability field: 

• the time spent for onsite operations at each batch is constant and does not 

depend on loaded/unloaded quantities, 

• travel time does not change overtime. In other words, it is calculated as the 

product of distance and vehicle speed, and does not take account of any traffic 

condition or speed fluctuation. 
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CHAPTER 5 

5MILP formulations 

This chapter presents the Mixed Integer Linear Programming (MILP) formula-

tions developed to solve the problems of Chapter 4. First, a continuous-time formu-

lation CT-MILP is introduced with its advantages, disadvantages, and applicability 

conditions. Next, some discrete-time formulations DT-MILP are presented. As ex-

plained in this chapter, DT formulations allow the exploration of a wider search 

space and give better quality results with respect to CT formulations. On the other 

hand, CT formulations are simpler to solve, and generally require a much shorter 

solving time. 

5.1 Common standards and considerations 

All the MILP formulations of this chapter have some common standards concern-

ing the definition of sets, indexes, and units of measure. In general, all stocks are 

indexed with letters 𝑖 and 𝑗, all vehicles with letter 𝑘, all article references with Greek 

letter 𝜃, and time with letter 𝑡. However, each formulation paragraph explicitly re-

ports its indexing system to avoid any misunderstanding.  

Also, in the following pages, unless otherwise specified, the word article is used to 

indicate an article reference – a SKU – rather than the unitary item. This allows to 

reduce verbiage and display the models in a more readable way. 

The content of Buffers and Vehicles is expressed in a generic measure unit called 

Load Unit (LU). In a real problem, a LU corresponds to a physical capacity unit, 

such as a weight in kilograms, a surface in m², or a volume in m³. The number of 

Load Units on a vehicle or inside any inventory corresponds to the number of article 

units multiplied for the LU taken by one of them: 𝐶[LU] = 𝐶[units] ⋅ LU taken by 

one article [LU/unit]. Consequently, content values, provisional consumptions, and 

stock content limits must undergo this procedure before entering MILP formulations, 

as shown at paragraph 4.1. 
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5.2 CT-FOQ-MILP formulation 

As its name suggests, the Continuous-Time Fixed-Order-Quantity MILP (CT-

FOQ-MILP) at this paragraph adopts the hypotheses of fixed order quantity pick-

ups and deliveries. It means that a vehicle visiting a buffer can only load or unload 

a predefined quantity that depends on the buffer. This assumption permits to write 

the problem as a continuous-time model where pickup-delivery target times are pre-

calculated parameters; target times come out from the integration of consumption 

profiles overtime. 

5.2.1 Pre-calculation of pickups and deliveries 

Let us consider a period of length 𝑇𝑃. The punctual logistic needs are the outcome 

of a simple integration algorithm. Algorithm input data includes buffer initial content 

𝐶𝑖,0, buffer limits 𝐶𝑖 and 𝐶𝑖, and consumption rate function 𝛾𝑖(𝑡): consumption/dt(𝑡). 

First, consumptions are integrated in time and give content evolution profiles, i.e., 

provisional content level at each moment 𝑡′. 

                                                               𝐶𝑖(𝑡′) = 𝐶𝑖,0 − ∫ 𝛾𝑖(𝑡)𝑑𝑡
𝑡′

0

                                             (5.1) 

If 𝛾𝑖(𝑡) is a piecewise function defined in 𝐷 domains {Γ0, Γ1, … , Γ𝐷−1}, the expression 

can be converted in a form which is closer to numerical discrete-time models: 

     𝐶𝑖(𝑡′)|𝑡′∈Γ′ = 𝐶𝑖,0 − ∑ (∫ 𝛾𝑖(𝑡)𝑑𝑡
 

Γ

)

Γ<Γ′

Γ=Γ0

− ∫ 𝛾𝑖(𝑡)𝑑𝑡
𝑡′

inf Γ′

,    ∀Γ′ ∈ {Γ0, Γ1, … , Γ𝐷−1}      (5.2) 

These equations shall be combined to the fixed order quantity approach to get to the 

pickup-delivery target times. In fact, each buffer has a fixed order quantity 𝒪𝒬𝑖, that 

is often equal to the allowed content gap of the buffer (𝐶𝑖 − 𝐶𝑖). This quantity is not 

directly integrated in CT-FOQ-MILP models, as the pre-calculation algorithm sums 

it to buffer content 𝐶𝑖(𝑡) whenever the buffer reaches its limits. The times at which 

this happens are the pickup-delivery target times. 

Algorithm 5.1 Pre-calculation of Pickup-Delivery target times 

1 For each buffer 𝑖 

2 Initialise pickup-delivery target times set 𝒯𝑖 = ∅ 

3 𝑡′ = 0, 𝐶𝑖 = 𝐶𝑖,0 
4 While 𝑡′ < 𝑇 do 
5 While 𝐶𝑖 ∈ [𝐶𝑖, 𝐶𝑖] do 

6 Integrate consumptions 𝐶𝑖 ← 𝐶𝑖 − ∫ 𝛾𝑖(𝑡)𝑑𝑡
𝑡′+𝑑𝑡′

𝑡′  

7 Make time progress 𝑡′ ← 𝑡′ + 𝑑𝑡′ 

8 Continue 
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9 𝒯𝑖  ← 𝒯𝑖 ∪ {𝑡′}  

10 𝐶𝑖 ← 𝐶𝑖 + 𝒪𝒬𝑖 

11 Continue 

12 Next 𝑖 

The algorithm returns many sets of target times 𝒯𝑖, one for each buffer. At this point, 

𝒯𝑖 and 𝒪𝒬𝑖 values converge into a unique set of pickup-delivery elements 𝒩 =

{𝑛1, 𝑛2, … , 𝑛𝑁}, also called needs, that adopts the 𝑖-index formerly used to indicate 

buffers. For the rest of this paragraph, index 𝑖 marks pickup-delivery objects that 

have a position, a demanded quantity, and a target time. 

5.2.2 Parameters and variables 

About formulation indexes:  

• Buffer needs (pickup-deliveries) are indexed with letters 𝑖, 𝑗 and 𝑙; vehicles 

with letter 𝑘; articles with Greek letter 𝜃. 

• The main stock is indicated with symbol 𝕚, and the initial conditions of vehi-

cles are indicated with symbol 𝕠. The sets 𝒩 ∪ {𝕚}, 𝒩 ∪ {𝕠} are also written 

𝒩𝕚, 𝒩𝕠. 

• For sake of readability, the elements of sets 𝒩, 𝒱, 𝒜 are directly written as 

their indexes, as reported in the table below at the column ‘Simplified’. 
 

Table 5.1. Sets of CT-FOQ-MILP. 

Set Set element notations 

Name Symbol Index Complete Simplified 

Needs 𝒩 𝑖, 𝑗, 𝑙     {𝑛𝑖}𝑖∈{1,2,…,𝑁}  {1,2, … , 𝑁} 

Vehicles 𝒱 𝑘     {𝑣𝑘}𝑘∈{1,2,…,𝐾}  {1,2, … , 𝐾} 

Articles 𝒜 𝜃     {𝑎𝜃}𝜃∈{1,2,…,Θ}  {1,2, … , Θ} 

 

Table 5.2. Parameters of CT-FOQ-MILP. 

 Description Index domains 

𝒪𝒬𝑖 order quantity of need 𝑖  𝑖 ∈ 𝒩   

𝑡̇𝑖 target time of need 𝑖 𝑖 ∈ 𝒩  

𝑑𝑖𝑗 Distance to go from 𝑖-need location to 𝑗-need location 𝑖, 𝑗 ∈ 𝒩𝕚, 𝑖 ≠ 𝑗  

𝜏𝑖 time required to perform onsite operations for 𝑖 𝑖 ∈ 𝒩𝕚  

𝑄𝑘 capacity of vehicle 𝑘 𝑘 ∈ 𝒱  



54   

𝑠𝑘 speed of vehicle 𝑘 𝑘 ∈ 𝒱  

𝑞0
𝑘,𝜃 initial content of vehicle 𝑘 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜  

𝑡𝕠
𝑘 time from which vehicle 𝑘 is available 𝑘 ∈ 𝒱  

𝑑𝕠𝑖
𝑘  distance from 𝑘 initial position to 𝑖-need location 𝑖 ∈ 𝒩𝕚, 𝑘 ∈ 𝒱  

𝑀 sufficiently big number = max
𝑘∈𝒱

{𝑇𝑃, 𝑄𝑘} 

Model variables are specific to each formulation. In the following, they are written 

in bold to distinguish from constant parameters. 

Table 5.3. Variables of CT-FOQ-MILP. 

 Description Index domains 

𝒙𝒊𝒋
𝒌  

1 if vehicle 𝑘 goes from 𝑖 to 𝑗,  
   without passing from main stock 𝕚 

0 otherwise 

𝑖 ∈ 𝒩𝕠, 𝑗 ∈ 𝒩, 

𝑖 ≠ 𝑗, 𝑘 ∈ 𝒱  

𝒚𝒊𝒋
𝒌  

1 if vehicle 𝑘 goes from 𝑖 to 𝑗,  
   passing from main stock 𝕚 

0 otherwise 

𝑖 ∈ 𝒩𝕠, 𝑗 ∈ 𝒩, 

𝑖 ≠ 𝑗, 𝑘 ∈ 𝒱 

𝒕𝒊 Time at which the need 𝑖 is satisfied 𝑖 ∈ 𝒩  

𝒒𝒊
𝒌,𝜽 content of vehicle 𝑘 in terms of 𝜃 after satisfying 𝑖 

𝑖 ∈ 𝒩, 𝑘 ∈ 𝒱, 
𝜃 ∈ 𝒜  

Auxiliary variable 

𝜹𝒊 ≥ |𝑡̇𝑖 − 𝒕𝒊| 𝑖 ∈ 𝒩  

5.2.3 CT-FOQ-MILP model 

The CT-FOQ-MILP model is formulated as follows: 

                    𝑓 = ∑ 𝜹𝒊

𝑖∈𝒩

+ 𝛼𝑑 ( ∑ ∑ ∑ 𝑑𝑖𝑗𝒙𝒊𝒋
𝒌

𝑘∈𝒱𝑗∈𝒩𝑖∈𝒩𝕠

+ ∑ ∑ ∑(𝑑𝑖𝕚+𝑑𝕚𝑗)𝒚𝒊𝒋
𝒌

𝑘∈𝒱𝑗∈𝒩𝑖∈𝒩𝕠

) (5.3) 

Subject to: 

𝒒𝒊
𝒌,𝜽 ≥ 0 ∀𝑖 ∈ 𝒩, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜 (5.4) 

∑ 𝒒𝒊
𝒌,𝜽

𝜃∈𝒜

≤ 𝑄𝑘 ∀𝑖 ∈ 𝒩, 𝑘 ∈ 𝒱 (5.5) 

 Boolean var ∶= {

 
 
 
 

 

 Boolean var ∶= {

 
 
 
 

 

Minimize 
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∑(𝒙𝕠𝒋
𝒌 + 𝒚𝕠𝒋

𝒌 )

𝑗∈𝒩

≤ 1 ∀𝑘 ∈ 𝒱 (5.6) 

∑ (𝒙𝒊𝒋
𝒌 + 𝒚𝒊𝒋

𝒌 )

𝑖∈𝒩𝕠

≥ ∑(𝒙𝒋𝒍
𝒌 + 𝒚𝒋𝒍

𝒌 )

𝑙∈𝒩

 ∀𝑗 ∈ 𝒩, 𝑘 ∈ 𝒱 (5.7) 

∑ ∑(𝒙𝒊𝒋
𝒌 + 𝒚𝒊𝒋

𝒌 )

𝑘∈𝒱𝑖∈𝒩𝕠

= 1 ∀𝑗 ∈ 𝒩, 𝑖 ≠ 𝑗 (5.8) 

𝒕𝒊 + 𝑑𝑖𝑗 𝑠𝑘⁄ + 𝜏𝑗 ≤ 𝒕𝒋 + 𝑀(1 − 𝒙𝒊𝒋
𝒌 ) ∀ 𝑖, 𝑗 ∈ 𝒩, 𝑘 ∈ 𝒱 (5.9) 

𝑡𝕠
𝑘 + 𝑑𝕠𝑗

𝑘 𝑠𝑘⁄ + 𝜏𝑗 ≤ 𝒕𝒋 + 𝑀(1 − 𝒙𝕠𝒋
𝒌 ) ∀𝑗 ∈ 𝒩, 𝑘 ∈ 𝒱 (5.9') 

𝒕𝒊 + 𝑑𝑖𝕚 𝑠𝑘⁄ + 𝜏𝕚 + 𝑑𝕚𝑗 𝑠𝑘⁄ + 𝜏𝑗 ≤ 𝒕𝒋 + 𝑀(1 − 𝒚𝒊𝒋
𝒌 ) ∀ 𝑖, 𝑗 ∈ 𝒩, 𝑘 ∈ 𝒱 (5.10) 

𝑡𝕠
𝑘 + 𝑑𝕠𝕚

𝑘 𝑠𝑘⁄ + 𝜏𝕚 + 𝑑𝕚𝑗 𝑠𝑘⁄ + 𝜏𝑗 ≤ 𝒕𝒋 + 𝑀(1 − 𝒚𝕠𝒋
𝒌 ) ∀𝑖 ∈ 𝒩, 𝑘 ∈ 𝒱 (5.10') 

𝒒𝒊
𝒌,𝜽 + 𝒪𝒬𝑗 ≤ 𝒒𝒋

𝒌,𝜽 + 𝑀(1 − 𝒙𝒊𝒋
𝒌 ) ∀ 𝑖, 𝑗 ∈ 𝒩, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖   (5.11) 

𝑞𝕠
𝑘,𝜃 + 𝒪𝒬𝑗 ≤ 𝒒𝒋

𝒌,𝜽 + 𝑀(1 − 𝒙𝕠𝒋
𝒌 ) ∀ 𝑗 ∈ 𝒩, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖   (5.11') 

𝒒𝒊
𝒌,𝜽 + 𝒪𝒬𝑗 ≥ 𝒒𝒋

𝒌,𝜽 − 𝑀(1 − 𝒙𝒊𝒋
𝒌 ) ∀𝑖, 𝑗 ∈ 𝒩, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖 (5.12) 

𝑞𝕠
𝑘,𝜃 + 𝒪𝒬𝑗 ≥ 𝒒𝒋

𝒌,𝜽 − 𝑀(1 − 𝒙𝕠𝒋
𝒌 ) ∀𝑗 ∈ 𝒩, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖 (5.12') 

𝒒𝒊
𝒌,𝜽 + 𝒪𝒬𝑗 ≤ 𝒒𝒋

𝒌,𝜽 + 𝑀(1 − 𝒚𝒊𝒋
𝒌 ) ∀ 𝑖, 𝑗 ∈ 𝒩, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖 ∖ 𝒜𝕚 (5.13) 

𝑞𝕠
𝑘,𝜃 + 𝒪𝒬𝑗 ≤ 𝒒𝒋

𝒌,𝜽 + 𝑀(1 − 𝒚𝕠𝒋
𝒌 ) ∀ 𝑗 ∈ 𝒩, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖 ∖ 𝒜𝕚 (5.13') 

𝒒𝒊
𝒌,𝜽 + 𝒪𝒬𝑗 ≥ 𝒒𝒋

𝒌,𝜽 − 𝑀(1 − 𝒚𝒊𝒋
𝒌 ) ∀ 𝑖, 𝑗 ∈ 𝒩, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖 ∖ 𝒜𝕚 (5.14) 

𝑞𝕠
𝑘,𝜃 + 𝒪𝒬𝑗 ≥ 𝒒𝒋

𝒌,𝜽 − 𝑀(1 − 𝒚𝕠𝒋
𝒌 ) ∀ 𝑗 ∈ 𝒩, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖 ∖ 𝒜𝕚 (5.14') 

𝜹𝒊 ≥ 𝑡̇𝑖 − 𝒕𝒊 ∀𝑖 ∈ ℬ, 𝑡 ∈ 𝑇̂ ∖ {0} (5.15) 

𝜹𝒊 ≥ 𝒕𝒊 − 𝑡̇𝑖 ∀𝑖 ∈ ℬ, 𝑡 ∈ 𝑇̂ ∖ {0} (5.16) 

𝒙𝒊𝒋
𝒌 ∈ {0,1} ∀𝑖 ∈ 𝒩𝕠, 𝑗 ∈ 𝒩,  𝑘 ∈ 𝒱 (5.17) 

𝒚𝒊𝒋
𝒌 ∈ {0,1} ∀𝑖 ∈ 𝒩𝕠, 𝑗 ∈ 𝒩,  𝑘 ∈ 𝒱 (5.18) 

The objective function contains two terms. The first aims at minimizing the over-

all gap between pickup-delivery target times and real pickup-delivery times. The 

second is multiplied for a weight 𝛼𝑑 ≥ 0 and aims at minimizing the global travelled 

distance of all vehicles. 
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The first set of constraints (5.4) imposes to every vehicle content to be greater or 

equal to zero, as negative contents have no physical meaning. On the other hand, 

(5.5) ensures that vehicle capacities are not exceeded. Expressions (5.6), (5.7) and 

(5.8) bind connection variables 𝒙𝒊𝒋
𝒌  and 𝒚𝒊𝒋

𝒌 . (5.6) imposes that if vehicles start their 

route, they start it once and in a single way (not-visiting the main stock - 𝒙𝕠𝒋
𝒌 = 1 

XOR visiting it - 𝒚𝕠𝒋
𝒌 = 1). Expression (5.7) imposes a series of chain dependencies 

between connection variables. In fact, no need location can be left it is not reached 

first. Finally, (5.8) states that each need location must be visited – thus each need 

must be satisfied – once and only once. The expression (5.6) is still necessary as (5.8) 

does not forbid the departure of a same vehicle from its initial condition 𝕠 to two 

different need locations; more specifically, (5.8) does not forbid the combinations of 

the kind (𝒙𝕠𝟏
𝟏 , 𝒙𝕠𝟐

𝟏 ) = (1,1). 

Expressions from (5.9) to (5.10') are the time constraints of the formulation. (5.9) 

states that if vehicle 𝑘 crosses the arc 𝑖𝑗, then the time at which 𝑘 can leave 𝑗 must 

be greater or equal to the time at which 𝑘 left 𝑖, plus the travel time from 𝑖 to 𝑗, plus 

the duration of onsite operations at 𝑗. (5.10) imposes the same time relationships in 

case the main stock is visited between 𝑖 and 𝑗. These two sets of constraints are 

written like in (5.9') and (5.10') if 𝑖 = 𝕠. 

Expressions from (5.11) to (5.14') rule the evolution of vehicle content. (5.11) and 

(5.12) state that if vehicle 𝑘 crosses the arc 𝑖𝑗, then its content increases exactly of 

𝒪𝒬𝑗; otherwise, content values 𝒒𝒊
𝒌,𝜽 and 𝒒𝒋

𝒌,𝜽 are unbound. (5.13) and (5.14) impose 

the same content relationships in case the main stock is visited between 𝑖 and 𝑗, and 

if the involved article cannot be exchanged with the main stock (𝜃 ∈ 𝒜𝑖 ∖ 𝒜𝕚). In 

fact, if 𝒚𝒊𝒋
𝒌 = 1 and 𝜃 can be exchanged with the main stock, 𝒒𝒊

𝒌,𝜽 and 𝒒𝒋
𝒌,𝜽 are un-

bound. These four sets of constraints are written like in (5.11'), (5.12'), (5.13') and 

(5.14') if 𝑖 = 𝕠. 

Constraints (5.15) and (5.16) rule the auxiliary variables 𝜹𝒊 that must satisfy the 

inequation 𝜹𝒊 ≥ |𝑡̇𝑖 − 𝒕𝒊|. Finally, (5.17) and (5.18) express the Boolean domain of 

variables 𝒙𝒊𝒋
𝒌  and 𝒚𝒊𝒋

𝒌 . 

5.3 DT-1ms-MILP formulation 

The Discrete-Time 1-main-stock MILP (DT-1ms-MILP) formulation can be used 

to solve to the Mi-IRP-PD with a unique main stock that generates supply material 

and absorbs waste. This formulation is based on the classes of GSVT structure 

(Ground, Stock, Vehicles, Tasks) adapted to the indoor logistic operations with a 

unique main-stock problem. 

This formulation is time-discrete; the scheduling period of length 𝑇𝑃 is converted 

into a discrete set of equal timeframes 𝑇̂ = {𝑡̂0, 𝑡̂1, 𝑡̂2, … , 𝑡̂𝑇}. This means that the exact 

state of the problem is only known in a finite set of instants. Conventionally, the 𝑡-
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index found in the formulation indicates the exact state of the system at instant 𝑡, 

as well as its approximate state during the interval [𝑡, 𝑡+1). Consequently, problem 

parameters and variables involving time are expressed in terms of (∗) per timeframe, 

where (∗) is a generic physical quantity, and timeframe duration is defined as  

Δ𝑡̂ = (𝑡̂𝑡+1 − 𝑡̂𝑡). Δ𝑡̂ can be chosen freely; nevertheless, a too (and sometimes unnec-

essarily) small value of Δ𝑡̂ adds a greater number of constraints and complexifies the 

resolution procedure. 

About formulation indexes:  

• Buffers are indexed with letters 𝑖 and 𝑗; vehicles with letter 𝑘; articles with 

Greek letter 𝜃; time with letter 𝑡. 

• The main stock is indicated with symbol 𝕚, and vehicles initial conditions are 

indicated with symbol 𝕠. The sets ℬ ∪ {𝕚}, ℬ ∪ {𝕠}, ℬ ∪ {𝕠, 𝕚} are also written 

ℬ𝕚, ℬ𝕠, ℬ𝕠𝕚. 

• For sake of readability, the elements of ℬ, 𝒱, 𝒜, 𝑇̂ are directly written as 

their indexes, as reported in the table below at the column ‘Simplified’. 
 

Table 5.4. Sets of DT-1ms-MILP. 

Set Set element notations 

Name Symbol Index Complete Simplified 

Buffers ℬ 𝑖, 𝑗     {𝑏𝑖}𝑖∈{1,2,…,𝐵}  {1,2, … , 𝐵} 

Vehicles 𝒱 𝑘     {𝑣𝑘}𝑘∈{1,2,…,𝐾}  {1,2, … , 𝐾} 

Articles 𝒜 𝜃     {𝑎𝜃}𝜃∈{1,2,…,Θ}  {1,2, … , Θ} 

Timeframes 𝑇̂ 𝑡     {𝑡̂𝑡}𝑡∈{0,1,2,…,𝑇}   {0,1,2, … , 𝑇} 

5.3.1 Parameters and variables 

The nomenclature of model parameters reflects what stated for the 1-main-stock 

indoor logistic operations problem. 

Table 5.5. Parameters of DT-1ms-MILP. 

 Description Index domains 

𝜆𝜃 load units in a lot of 𝜃  𝜃 ∈ 𝒜  

𝐶𝑖 lower content limit of buffer 𝑖 𝑖 ∈ ℬ   

𝐶𝑖 upper content limit of buffer 𝑖 𝑖 ∈ ℬ  

𝐶𝑖,0 initial content of buffer 𝑖 𝑖 ∈ ℬ  

𝛾𝑖,𝑡 consumption of buffer 𝑖 during 𝑡 𝑖 ∈ ℬ, 𝑡 ∈ 𝑇̂ ∖ {𝑇}  
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𝑑𝑖𝑗 travelling distance from 𝑖 to 𝑗 𝑖, 𝑗 ∈ ℬ𝕚, 𝑖 ≠ 𝑗  

𝜏𝑖 time required to perform onsite operations at 𝑖 𝑖 ∈ ℬ𝕚  

𝑄𝑘 capacity of vehicle 𝑘, in load units 𝑘 ∈ 𝒱  

𝑠𝑘 speed of vehicle 𝑘 𝑘 ∈ 𝒱  

𝑞0
𝑘,𝜃 initial content of vehicle 𝑘 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜  

𝑡𝕠
𝑘 time from which vehicle 𝑘 is available 𝑘 ∈ 𝒱  

𝑑𝕠𝑖
𝑘  distance from 𝑘 initial position to 𝑖 𝑖 ∈ ℬ𝕚, 𝑘 ∈ 𝒱  

Π𝑖𝑗,𝑡
𝑘  rounded-up integer job finish-time = ⌈𝑡 + 𝑑𝑖𝑗 𝑠𝑘⁄ + 𝜏𝑗⌉ 

𝑖, 𝑗 ∈ ℬ𝕚,𝑖 ≠ 𝑗, 

𝑘 ∈ 𝒱, 𝑡 ∈ 𝑇̂ ∖ {𝑇} 

𝑀 sufficiently big number = min { max
𝑘∈𝒱,𝜃∈𝒜

{𝑄𝑘 𝜆𝜃⁄ } , max
𝑖∈ℬ𝕚

{𝐶𝑖 𝜆𝜃𝑖
⁄ }} 

Variables are written in bold. The do and wait states mentioned for 𝒙𝒊,𝒕
𝒌  and 𝒚𝒊,𝒕

𝒌  

variables are better explained in the following paragraph. 

Table 5.6. Variables of DT-1ms-MILP. 

 Description Index domains 

𝒙𝒊,𝒕
𝒌  

1 if vehicle 𝑘 is in do state during 𝑡 

0 otherwise 

𝑖 ∈ ℬ𝕚, 

𝑘 ∈ 𝒱, 𝑡 ∈ 𝑇̂  

𝒚𝒊,𝒕
𝒌  

1 if vehicle 𝑘 is in wait state during 𝑡 

0 otherwise 

𝑖 ∈ ℬ𝕚𝕠,  

𝑘 ∈ 𝒱, 𝑡 ∈ 𝑇̂  

𝑪𝒊,𝒕 content of buffer 𝑖 at instant 𝑡 𝑖 ∈ ℬ, 𝑡 ∈ 𝑇̂ ∖ {0}  

𝒒𝒕
𝒌,𝜽 content of vehicle 𝑘 in terms of 𝜃 at instant 𝑡 

𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜,  
𝑡 ∈ 𝑇̂ ∖ {0}  

𝑳𝒊,𝒕
𝒌,𝜽 number of lots of 𝜃, loaded at 𝑖 by 𝑘 at instant 𝑡 

𝑖 ∈ ℬ𝕚, 

𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖,  
𝑡 ∈ 𝑇̂ ∖ {0}  

Auxiliary variable 

𝝐𝒊,𝒕 ≥ max{0, 𝑪𝒊,𝒕 − 𝐶𝑖, 𝐶𝑖 − 𝑪𝒊,𝒕} 𝑖 ∈ ℬ, 𝑡 ∈ 𝑇̂ ∖ {0}  

 

 

 Boolean var ∶= {

 
 
 
 

 Boolean var ∶= {
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5.3.2 Standards applied to states and transitions 

This paragraph defines the relationships between variables as a function of time, 

first recalling that all variables with the same 𝑡 must represent the exact state of the 

system in that moment. Once the problem is solved, the values assumed by state-

variables (𝒙𝒊,𝒕
𝒌  and 𝒚𝒊,𝒕

𝒌 ) encode vehicle routes and allow state transitions that are 

crucial to make other variables change. 

States and transitions follow some guidelines: 

• A vehicle 𝑘 can be in two different states: 

Table 5.7. State variables of DT formulations. 

State Variables Description 

do (𝒙𝒊,𝒕
𝒌 , 𝒚𝒊,𝒕

𝒌 ) = (1,0) 
Vehicle 𝑘 is going to or doing onsite opera-

tions at buffer 𝑖 during timeframe 𝑡. 

wait (𝒙𝒊,𝒕
𝒌 , 𝒚𝒊,𝒕

𝒌 ) = (0,1) 
Vehicle 𝑘 is waiting at buffer 𝑖 during 

timeframe 𝑡. 

These two states cannot coexist; each vehicle must be in one and only one 

state at a time, for one and only one value of 𝑖. 

• Three state transitions are defined, depending on state-variable changes from 

𝑡 to 𝑡+1. In the tables below, only the variables involved in transitions have 

a non-blank value case.  

1. do-𝑖 → do-𝑗:  

At instant 𝑡 + 1, vehicle 𝑘 ends the job it was doing for buffer 𝑖 and 

starts a new job for buffer 𝑗. In this case, 𝑖 and 𝑗 must have different 

values. 

𝑘-𝑖𝑗 variables at 𝑡 𝑘-𝑖𝑗 variables at 𝑡+1 

𝒙𝒊,𝒕
𝒌  𝒚𝒊,𝒕

𝒌  𝒙𝒋,𝒕
𝒌  𝒚𝒋,𝒕

𝒌  𝒙𝒊,𝒕+𝟏
𝒌  𝒚𝒊,𝒕+𝟏

𝒌  𝒙𝒋,𝒕+𝟏
𝒌  𝒚𝒋,𝒕+𝟏

𝒌  

1  0  0  1  

2. do-𝑖 → wait-𝑖: 

At instant 𝑡 + 1, vehicle 𝑘 ends the job it was doing for buffer 𝑖 and 

starts waiting at the same buffer. 

𝑘-𝑖𝑗 variables at 𝑡 𝑘-𝑖𝑗 variables at 𝑡+1 

𝒙𝒊,𝒕
𝒌  𝒚𝒊,𝒕

𝒌  𝒙𝒋,𝒕
𝒌  𝒚𝒋,𝒕

𝒌  𝒙𝒊,𝒕+𝟏
𝒌  𝒚𝒊,𝒕+𝟏

𝒌  𝒙𝒋,𝒕+𝟏
𝒌  𝒚𝒋,𝒕+𝟏

𝒌  

1 0   0 1   

3. wait-𝑖 → do-𝑗: 

At instant 𝑡 + 1, vehicle 𝑘 stops waiting at buffer 𝑖 and starts a job for 

buffer 𝑗. In this case, 𝑖 is allowed to be equal to 𝑗. 
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𝑘-𝑖𝑗 variables at 𝑡 𝑘-𝑖𝑗 variables at 𝑡+1 

𝒙𝒊,𝒕
𝒌  𝒚𝒊,𝒕

𝒌  𝒙𝒋,𝒕
𝒌  𝒚𝒋,𝒕

𝒌  𝒙𝒊,𝒕+𝟏
𝒌  𝒚𝒊,𝒕+𝟏

𝒌  𝒙𝒋,𝒕+𝟏
𝒌  𝒚𝒋,𝒕+𝟏

𝒌  

 1 0   0 1  

wait-𝑖 → wait-𝑗 transitions do not exist, since a vehicle cannot move from a 

buffer 𝑖 to a buffer 𝑗 (with 𝑖 ≠ 𝑗) without passing through a do state. 

• Consumption values 𝛾𝑖,𝑡 refer to the number of load units consumed during 

timeframe 𝑡. The whole consumption is conventionally counted once the 𝑡-

frame is over, i.e., at instant 𝑡+1. Thus, 𝑪𝒊,𝒕 is not deprived yet of the quantity 

𝛾𝑖,𝑡 with respect to 𝑪𝒊,𝒕−𝟏.  

Numerical example: 

𝑡 0 1 2 3 4 5 6 7 8 

𝛾𝑖,𝑡 0 3 3 3 0 0 2 2 0 

𝐶𝑖,𝑡 20 20 17 14 11 11 11 9 7 

N.B.: since 𝑪𝒊,𝒕 represents buffer content during the whole 𝑡 time frame, posi-

tive consumptions values could be right shifted of a −Δ𝑡̂ (𝛾𝑖,𝑡 ↦ 𝛾𝑖,𝑡−1) to en-

sure that real buffer content never runs below zero. 

E.g., in the small table below, buffer content could go negative for 𝑡 ≥ 2 in 

real world operations. In fact, passing to a continuous domain and considering 

a constant consumption rate between 𝑡2 and 𝑡3, buffer content at 𝑡2.9̅ is equal 

to −0.9. Nevertheless, the solution is formally acceptable. 

𝑡 0 1 2 3 4 

𝛾𝑖,𝑡 0 1 1 1 … 

𝐶𝑖,𝑡 1.1 1.1 0.1 0.1 0.1 

∑ 𝐿𝑖,𝑡  0 0 1 1 1 

• When a do-𝑖 → ∗ transition occurs, the involved vehicles and buffer can ex-

change their content. Content value changes and article loading / unloading 

all happen at instant 𝑡+1, when the transition occurs. 

5.3.3 DT-1ms-MILP model 

The DT-1ms-MILP model is formulated as follows: 

                    𝑓 = ∑ ∑ 𝝐𝒊,𝒕

𝑡∈𝑇̂∖{0}𝑖∈ℬ

  (5.19) 

Subject to: 

Minimize 
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𝑪𝒊,𝒕 ≥ 0 ∀𝑖 ∈ ℬ, 𝑡 ∈ 𝑇̂ ∖ {0} (5.20) 

𝑪𝒊,𝒕+𝟏 = 𝑪𝒊,𝒕 − 𝛾𝑖,𝑡 − 𝜆𝜃𝑖
⋅ ∑ 𝑳𝒊,𝒕+𝟏

𝒌,𝜽𝒊

𝑘∈𝒱

 ∀𝑖 ∈ ℬ, 𝑡 ∈ 𝑇̂ ∖ {0, 𝑇} (5.21) 

𝑪𝒊,𝟏 = 𝐶𝑖,0 − 𝛾𝑖,0 − 𝜆𝜃𝑖
⋅ ∑ 𝑳𝒊,𝟏

𝒌,𝜽𝒊

𝑘∈𝒱

 ∀𝑖 ∈ ℬ (5.21') 

𝒒𝒕
𝒌,𝜽 ≥ 0 ∀𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜, 𝑡 ∈ 𝑇̂ ∖ {0} (5.22) 

∑ 𝒒𝒕
𝒌,𝜽

𝜃∈𝒜

≤ 𝑄𝑘 ∀𝑘 ∈ 𝒱, 𝑡 ∈ 𝑇̂ ∖ {0} (5.23) 

𝒒𝒕+𝟏
𝒌,𝜽 = 𝒒𝒕

𝒌,𝜽 + ∑ 𝜆𝜃𝑳𝒊,𝒕+𝟏
𝒌,𝜽

𝑖∈ℬ∩{𝑖′|𝜃∈𝒜𝑖′}

 ∀𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜, 𝑡 ∈ 𝑇̂ ∖ {0, 𝑇} (5.24) 

𝒒𝟏
𝒌,𝜽 = 𝑞0

𝑘,𝜃 + ∑ 𝜆𝜃𝑳𝒊,𝟏
𝒌,𝜽

𝑖∈ℬ∩{𝑖′|𝜃∈𝒜𝑖′}

 ∀𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜 (5.24') 

𝑀𝒙𝒊,𝒕
𝒌 + 𝑳𝒊,𝒕+𝟏

𝒌,𝜽 ≥ 0 ∀𝑖 ∈ ℬ𝕚, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖 , 𝑡 ∈ 𝑇̂ ∖ {𝑇} (5.25) 

−𝑀𝒙𝒊,𝒕
𝒌 + 𝑳𝒊,𝒕+𝟏

𝒌,𝜽 ≤ 0 ∀𝑖 ∈ ℬ𝕚, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖 , 𝑡 ∈ 𝑇̂ ∖ {𝑇} (5.26) 

𝑀(1 − 𝒙𝒊,𝒕+𝟏
𝒌 ) + 𝑳𝒊,𝒕+𝟏

𝒌,𝜽 ≥ 0 ∀𝑖 ∈ ℬ𝕚, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖 , 𝑡 ∈ 𝑇̂ ∖ {𝑇} (5.27) 

−𝑀(1 − 𝒙𝒊,𝒕+𝟏
𝒌 ) + 𝑳𝒊,𝒕+𝟏

𝒌,𝜽 ≤ 0 ∀𝑖 ∈ ℬ𝕚, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖 , 𝑡 ∈ 𝑇̂ ∖ {𝑇} (5.28) 

∑ 𝒙𝒊,𝒕
𝒌

𝑖∈ℬ∪{𝕚}

+ ∑ 𝒚𝒊,𝒕
𝒌

𝑖∈ℬ∪{𝕠,𝕚}

= 1 ∀𝑘 ∈ 𝒱, 𝑡 ∈ 𝑇̂ (5.29) 

1 − (𝒙𝒊,𝒕
𝒌 + 𝒚𝒊,𝒕

𝒌 ) −  𝒙𝒋,𝒕+𝟏
𝒌 + 𝒙𝒋,𝝅

𝒌 ≥ 0 
∀𝑖, 𝑗 ∈ ℬ𝕚, 𝑖 ≠ 𝑗, 𝑘 ∈ 𝒱 

∀𝑡 ∈ 𝑇̂ ∖ {𝑇}, 𝜋 ∈ [𝑡 + 2, Π𝑖𝑗,𝑡
𝑘 ] (5.30) 

1 − 𝒚𝕠,𝒕
𝒌 −  𝒙𝒋,𝒕+𝟏

𝒌 + 𝒙𝒋,𝝅
𝒌 ≥ 0 

∀𝑗 ∈ ℬ𝕚, 𝑘 ∈ 𝒱, 
∀𝑡 ∈ 𝑇̂ ∖ {𝑇}, 𝜋 ∈ [𝑡 + 2, Π𝑖𝑗,𝑡

𝑘 ] (5.30') 

𝒙𝒊,𝒕
𝒌 + 𝒚𝒊,𝒕

𝒌 ≥ 𝒚𝒊,𝒕+𝟏
𝒌  ∀𝑖 ∈ ℬ𝕚, 𝑘 ∈ 𝒱, 𝑡 ∈ 𝑇̂ ∖ {𝑇} (5.31) 

𝒚𝕠,𝒕
𝒌 ≥ 𝒚𝕠,𝒕+𝟏

𝒌  ∀𝑘 ∈ 𝒱, 𝑡̂ ∈ 𝑇̂ ∖ {𝑇} (5.31') 

1 − 𝒚𝒊,𝒕
𝒌 ≥ 𝒙𝒊,𝒕+𝟏

𝒌  ∀𝑖 ∈ ℬ𝕚, 𝑘 ∈ 𝒱, 𝑡 ∈ 𝑇̂ ∖ {𝑇} (5.32) 

𝒚𝕠,𝒕
𝒌 = 1 ∀𝑘 ∈ 𝒱, 𝑡 ∈ [0, 𝑡𝕠

𝑘) (5.33) 

∑ 𝒚𝒊,𝑻
𝒌

𝑖∈ℬ∪{𝕠,𝕚}

= 1 ∀𝑘 ∈ 𝒱 (5.34) 
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𝝐𝒊,𝒕 ≥ 0 ∀𝑖 ∈ ℬ, 𝑡 ∈ 𝑇̂ ∖ {0} (5.35) 

𝝐𝒊,𝒕 ≥ 𝑪𝒊,𝒕 − 𝐶𝑖 ∀𝑖 ∈ ℬ, 𝑡 ∈ 𝑇̂ ∖ {0} (5.36) 

𝝐𝒊,𝒕 ≥ 𝐶𝑖 − 𝑪𝒊,𝒕 ∀𝑖 ∈ ℬ, 𝑡 ∈ 𝑇̂ ∖ {0} (5.37) 

𝒙𝒊,𝒕
𝒌 ∈ {0,1} ∀𝑖 ∈ ℬ𝕚, 𝑘 ∈ 𝒱, 𝑡 ∈ 𝑇̂ (5.38) 

𝒚𝒊,𝒕
𝒌 ∈ {0,1} ∀𝑖 ∈ ℬ𝕠𝕚, 𝑘 ∈ 𝒱, 𝑡 ∈ 𝑇̂ (5.39) 

𝑳𝒊,𝒕
𝒌,𝜽 ∈ ℤ0 ∀𝑖 ∈ ℬ𝕚, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖 , 𝑡 ∈ 𝑇̂ ∖ {0} (5.40) 

The objective function min 𝑓 = ∑ ∑ 𝝐𝒊,𝒕𝑡𝑖  aims at minimizing the overall portion 

of buffer contents exceeding the desired limits [𝐶𝑖, 𝐶𝑖].  

Buffer contents are constrained by inequations (5.20), (5.21) and (5.21'). Content 

values cannot take negative values (5.20) since the resulting solution would be phys-

ically impossible. Expression (5.21) handles buffer content evolutions overtime, and 

expression (5.21') binds the set of first variable content values (𝑪𝒊,𝟏) to the set of 

initial conditions 𝐶𝑖,0. These two sets of equations show that at each time step  

𝑡 → 𝑡+1, buffer contents are deprived of the quantity consumed during 𝑡-frame and 

the overall quantity loaded by every vehicle at instant 𝑡+1. These constraints only 

exist for 𝜃 = 𝜃𝑖. (Indeed, for all 𝜃 ≠ 𝜃𝑖 the 𝑳𝒊,𝒕
𝒌,𝜽 variable do not exist.) Moreover, for 

𝑖 = 𝕚 these constraints do not exist either, because the main stock has no content 

variable. 

The constraints (5.22), (5.23), (5.24) and (5.24') bind vehicle content evolution to 

the quantities exchanged with vehicles. First, (5.22) impose to every 𝒒-value to be 

greater or equal to zero since negative contents have no physical meaning. Second, 

expression (5.23) ensures that vehicle capacities are not exceeded. Last, (5.24) man-

ages vehicle content evolutions overtime and (5.24') binds the set of first variable 

content values (𝒒𝟏
𝒌,𝜽) to the initial contents 𝑞0

𝑘,𝜃. 

Inequations (5.25), (5.26), (5.27) and (5.28) have a crucial role in allowing content 

exchanges between vehicles and buffers. In fact, the lot exchange variables 𝑳𝒊,𝒕
𝒌,𝜽 can 

be different from zero only if a do-𝑖 → ∗ transition occurs at the same time. These 

four constraint sets must ensure the following relationships: 

do-𝑖 → ∗ transition at instant 𝑡+1 𝒙𝒊,𝒕
𝒌  𝒙𝒊,𝒕+𝟏

𝒌   𝑳𝒊,𝒕+𝟏
𝒌,𝜽𝒊  

no 0 0 

⇒ 

0 

no 0 1 0 

yes 1 0 unbound 

no 1 1 0 

In other terms, the following expression must be verified: 
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𝒙𝒊,𝒕
𝒌 = 1 ∨  𝒙𝒊,𝒕

𝒌 = 0  ⟺   𝒙𝒊,𝒕
𝒌 −  𝒙𝒊,𝒕+𝟏

𝒌 < 1  ⇒   𝑳𝒊,𝒕+𝟏
𝒌,𝜽 = 0,

∀𝑖 ∈ ℬ𝕚, 𝑘 ∈ 𝒱            

∀𝜃 ∈ 𝒜𝑖 , 𝑡 ∈ 𝑇̂ ∖ {𝑇}
 

The 𝑀 parameter in (5.25), (5.26), (5.27), (5.28) must take the smallest value that 

can overcome any possible |𝑳𝒊,𝒕+𝟏
𝒌,𝜽 |. It is calculated as: 

𝑀 = min { max
𝑘∈𝒱,𝜃∈𝒜

{𝑄𝑘 𝜆𝜃⁄ } , max
𝑖∈ℬ𝕚

{𝐶𝑖 𝜆𝜃𝑖
⁄ }} 

Constraints (5.29) to (5.34) have the function of binding state variables 𝒙𝒊,𝒕
𝒌 , 𝒚𝒊,𝒕

𝒌  

overtime. Namely, they define the consistent set of rules that apply to vehicle route 

making. Expression (5.29) constrains each vehicle to lie in one and only state at one 

and only buffer at a time.  

The set of constraints expressed at (5.30) deserves a special attention. In fact, it 

permits to schedule multi-timeframe do-jobs, and thus to freely scale model time 

granularity. On the other hand, by increasing time granularity the formulation com-

plexifies and becomes harder to solve; a fair trade-off must be found. This set of 

constraints states that after a ∗ → do-𝑗 transition at instant 𝑡, the following 𝑥𝑗,∗
𝑘  are 

equal to 1 until the do-job is not over, i.e., as long as 𝑡 ≤Π𝑖𝑗,𝑡
𝑘 = ⌈𝑡 + 𝑑𝑖𝑗 𝑠𝑘⁄ + 𝜏𝑗⌉. 

The Π parameters are fundamental for writing these constraints, as it corresponds 

to the rounded-up integer finish time of each hypothetical do-job performed by 𝑘, 

starting at 𝑡, and going from buffer 𝑖 to buffer 𝑗. Let us see the origin of this con-

straint set; the ∗ → do-𝑗 transition that triggers the constraint only exists if 

(𝑥𝑗,𝑡
𝑘 , 𝑥𝑗,𝑡+1

𝑘 ) = (0,1). Since 𝑥𝑗,𝑡
𝑘 = 0, there must be a buffer 𝑖 ≠ 𝑗 for which (𝑥𝑖,𝑡

𝑘 +

𝑦𝑖,𝑡
𝑘 ) = 1. Let 𝜋 ∈ {𝑡∗ | 𝑡∗ ∈ 𝑇̂, 𝑡+1 < 𝑡∗ ≤Π𝑖𝑗,𝑡

𝑘 }, the relationships to respect are: 

∗ → do-𝑗 transition at instant 𝑡+1 𝒙𝒊,𝒕
𝒌 + 𝒚𝒊,𝒕

𝒌  𝒙𝒋,𝒕+𝟏
𝒌   𝒙𝒋,𝝅

𝒌  

no 0 0 

⇒ 

unbound 

no 0 1 unbound 

no 1 0 unbound 

yes 1 1 1 

In other terms, the following expression must be verified: 

(𝒙𝒊,𝒕
𝒌 + 𝒚𝒊,𝒕

𝒌 ) = 1 ∧  𝒙𝒋,𝒕+𝟏
𝒌 = 1  ⟺ 

⟺   (𝒙𝒊,𝒕
𝒌 + 𝒚𝒊,𝒕

𝒌 ) +  𝒙𝒋,𝒕+𝟏
𝒌 = 2  ⇒   𝒙𝒋,𝝅

𝒌 = 1,
∀𝑖, 𝑗 ∈ ℬ𝕚, 𝑖 ≠ 𝑗, 𝑘 ∈ 𝒱               

∀𝑡 ∈ 𝑇̂ ∖ {𝑇}, 𝜋 ∈ [𝑡 + 2, Π𝑖𝑗,𝑡
𝑘 ]

 

For 𝑖 = 𝕠, the expression becomes as in (5.30'), since the initial condition 𝕠 cannot 

be a do-job destination, and consequently variables 𝑥𝕠,𝑡
𝑘  do not exist. 

Expression (5.31) states that vehicles can pass to wait state only at the buffer they 

visited last. Therefore, the 𝒚𝒊,𝒕+𝟏
𝒌  variable can be set to 1 if and only if either 𝒙𝒊,𝒕

𝒌  or 

𝒚𝒊,𝒕
𝒌  is equal to 1. For 𝑖 = 𝕠, the expression becomes as in (5.31'). Expression (5.32) 

states that a vehicle waiting at a buffer cannot start a do-job toward the same buffer: 

𝒚𝒊,𝒕
𝒌 =  1 → 𝒙𝒊,𝒕+𝟏

𝒌 = 0. Constraint (5.33) is to be used in case some vehicles are not 

immediately available to start do-jobs. They are put in wait state at their initial 
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condition 𝕠 as long as their availability time 𝑡𝕠
𝑘 is not reached. Finally, (5.34) grants 

that no vehicle can finish the scheduling period in a do state. In fact, a do-job cannot 

start if it cannot be finished, too. 

Constraints (5.35), (5.36), (5.37) rule the auxiliary variables 𝝐𝒊,𝒕, that must satisfy 

the inequation 𝝐𝒊,𝒕 ≥ max{0, 𝑪𝒊,𝒕 − 𝐶𝑖, 𝐶𝑖 − 𝑪𝒊,𝒕}. 

Finally, (5.38) and (5.39) express the Boolean domain of variables 𝒙𝒊,𝒕
𝒌  and 𝒚𝒊,𝒕

𝒌 , while 

(5.40) imposes the integral domain of 𝑳𝒊,𝒕
𝒌,𝜽. All the other variables have continuous 

domains. 

5.3.4 DT-1ms-MILP results post-processing  

The DT-1ms-MILP formulation was chosen as the most appropriate for solving 

the ILOM at the basis of this thesis and the internship. Therefore, the variables 

forming DT-1ms-MILP solution must be interpreted so as to be understood, evalu-

ated, compared, and visualized. The following algorithm creates a set of tasks  

𝒵 = {𝓏(𝑡𝑠, 𝑡𝑒 , 𝑖, 𝑘, 𝐿𝜃) | (𝑖, 𝑘, 𝜃)𝑇 ∈ (ℬ, 𝒱, 𝒜)𝑇 , 0 ≤ 𝑡𝑠 ≤ 𝑡𝑒 ≤ 𝑇𝑃}, where each task 𝓏 has 

a start time 𝑡𝑠, an end time 𝑡𝑒, an appointed vehicle 𝑘, a destination 𝑖, and a set of 

quantities to pick-up 𝐿𝜃.  

Standards:  

1. In pseudocode, MILP solution variables are called with the expression 

𝒮[<var.name>][<indexes>]. 

2. Tasks are of two types: do and wait tasks. A wait-task differs from a do-task 

as its destination does not change with respect to the current buffer. Moreover, 

wait-tasks always have pick-up quantities 𝐿𝜃 set at zero. 

3. To make it simpler, let us assume a Δ𝑡̂ = 1. 

4. The symbol ⋆ indicates a yet undefined quantity, specified later by the algo-

rithm. 

Algorithm 5.2. Conversion of DT-1ms-MILP solution variables into tasks 

1 Initialize tasks set 𝒵 ← ∅  

 C R E A T I O N  O F  T A S K S :  
2 For each triplet (𝑖, 𝑘, 𝑡) 

3 If 𝒮[𝒙][𝑖, 𝑘, 𝑡] = 1 (i.e., 𝑘 in a do state toward 𝑖 at time 𝑡) 

4 If there is a do-task 𝓏𝑑𝑜 ∈ 𝒵 such that (𝑖, 𝑘, 𝑡𝑒)𝓏𝑑𝑜
𝑇 = (𝑖, 𝑘, 𝑡)𝑇 

5 Update the end time of 𝓏𝑑𝑜: 𝑡𝑒
𝓏𝑑𝑜 ← 𝑡𝑒

𝓏𝑑𝑜 + 1 

6 Else 

7 Create a new do-task: 𝒵 ← 𝒵 ∪ {𝓏(𝑡, 𝑡+1, 𝑖, 𝑘,⋆} 

8 End if 

9 Elsif 𝒮[𝒚][𝑖, 𝑘, 𝑡] = 1 (i.e., 𝑘 in a wait state at 𝑖 at time 𝑡) 

10 If there is a wait-task 𝓏𝑤𝑎𝑖𝑡 ∈ 𝒵 such that (𝑖, 𝑘, 𝑡𝑒)𝓏𝑤𝑎𝑖𝑡

𝑇 = (𝑖, 𝑘, 𝑡)𝑇 

11 Update the end time of 𝓏𝑤𝑎𝑖𝑡: 𝑡𝑒
𝓏𝑤𝑎𝑖𝑡 ← 𝑡𝑒

𝓏𝑤𝑎𝑖𝑡 + 1 
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12 Else 

13 Create a new wait-task: 𝒵 ← 𝒵 ∪ {𝓏(𝑡, 𝑡+1, 𝑖, 𝑘, 0} 

14 End it  

15 End if 

16 Next (𝑖, 𝑘, 𝑡) 

 D E F I N I T I O N  O F  L O A D E D /UN L O A D E D  QU A N T I T I E S :  
17 For each do-task 𝓏 ∈ 𝒵 

18 For each article 𝜃 ∈ 𝒜  

19 𝐿𝜃,𝓏 ← value of variable 𝒮[𝐿][𝑖𝓏 , 𝑘𝓏 , 𝜃, 𝑡𝑒
𝓏] 

20 Next 𝜃 

21 Next 𝓏 

5.4 DT-Ms²-Mib-MILP formulation 

The Discrete-Time Multiple-source/sinks Multi-item-buffers MILP (DT-Ms²-

Mib-MILP) formulation is the generalisation of DT-1ms-MILP. It can be applied to 

the homonymous problem, in which there is not a unique main stock and each buffer 

capacity can be shared by more than a single allowed article. Furthermore, vehicles 

can be completely heterogeneous and can possibly support only a limited set of arti-

cles. The standards adopted for this formulation are the same seen for DT-1ms-

MILP. However, concerning the involved elements there are some differences:  

• Buffers are multi-item and can contain many different item references until a 

common content limit is reached. The set of supported articles at buffer 𝑖 is 

indicated with 𝒜𝑖 ⊆ 𝒜. 

• Some articles can enter and exit the problem via source/sink elements. These 

elements behave like buffers with endless content and capacity, and the joint 

set of buffers and source/sinks is indicated by symbol ℬ𝒮. The set ℬ𝒮 ∪ {𝕠} is 

also written ℬ𝒮𝕠. 

• Vehicles can possibly support a limited set of articles indicated with 𝒜𝑘 ⊆ 𝒜. 

This feature can be useful in case articles have different physical state or 

properties (for example, solid and liquid products, type of packaging, items 

stored at different temperatures, etc.). 

The set 𝒜𝑖 ∩ 𝒜𝑘 is also written 𝒜𝑖𝑘 , ∀𝑖 ∈ ℬ, 𝑘 ∈ 𝒱. 
 

Table 5.8. Sets of DT-Ms²-Mib-MILP. 

Set Set element notations 

Name Symbol Index Complete Simplified 

Buffers ℬ 𝑖, 𝑗     {𝑏𝑖}𝑖∈{1,2,…,𝐵}  {1,2, … , 𝐵} 

Source/sinks 𝒮 𝑖, 𝑗     {𝑠𝑖}𝑖∈{1,2,…,𝑆} {1,2, … , 𝑆} 

Buffers & s/s ℬ𝒮 𝑖, 𝑗     {𝑏𝑠𝑖}𝑖∈{1,2,…,𝐵𝑆} {1,2, … , 𝐵𝑆} 
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Vehicles 𝒱 𝑘     {𝑣𝑘}𝑘∈{1,2,…,𝐾}  {1,2, … , 𝐾} 

Articles 𝒜 𝜃     {𝑎𝜃}𝜃∈{1,2,…,Θ}  {1,2, … , Θ} 

Timeframes 𝑇̂ 𝑡     {𝑡̂𝑡}𝑡∈{0,1,2,…,𝑇} {0,1,2, … , 𝑇} 

5.4.1 Parameters and variables 

The nomenclature of model parameters is conceptually the same shown for DT-

1ms-MILP, and the most modified parts are the ‘Index domains’.   

Table 5.9. Parameters of DT-Ms²-Mib-MILP. 

 Description Index domains 

𝜆𝜃 load units in a lot of 𝜃  𝜃 ∈ 𝒜  

𝐶𝑖 upper content limit (capacity) of buffer 𝑖 𝑖 ∈ ℬ  

𝐶𝑖
𝜃 lower content limit of buffer 𝑖 for article 𝜃 𝑖 ∈ ℬ, 𝜃 ∈ 𝒜𝑖 

𝐶𝑖,0
𝜃  initial content in buffer 𝑖 of article 𝜃 𝑖 ∈ ℬ, 𝜃 ∈ 𝒜𝑖 

𝛾𝑖,𝑡
𝜃  consumption of article 𝜃 at buffer 𝑖 during 𝑡 

𝑖 ∈ ℬ, 𝜃 ∈ 𝒜𝑖 
𝑡 ∈ 𝑇̂ ∖ {𝑇}  

𝑑𝑖𝑗 travelling distance from 𝑖 to 𝑗 𝑖, 𝑗 ∈ ℬ𝒮, 𝑖 ≠ 𝑗  

𝜏𝑖 time required to perform onsite operations at 𝑖 𝑖 ∈ ℬ𝒮  

𝑤𝑖 penalty weight of overstock at 𝑖 𝑖 ∈ ℬ 

𝑤𝑖
𝜃 penalty weight of stockout of 𝜃 at 𝑖 𝑖 ∈ ℬ, 𝜃 ∈ 𝒜𝑖 

All vehicle parameters are identical to those in DT-1ms-MILP formulation, except 

for article index domains that change from 𝒜 to 𝒜𝑘. 

 

Table 5.10. Variables of DT-Ms²-Mib-MILP. 

 Description Index domains 

𝒙𝒊,𝒕
𝒌  

1 if vehicle 𝑘 is in do state during 𝑡 

0 otherwise 

𝑖 ∈ ℬ𝒮, 

𝑘 ∈ 𝒱, 𝑡 ∈ 𝑇̂  

𝒚𝒊,𝒕
𝒌  

1 if vehicle 𝑘 is in wait state during 𝑡 

0 otherwise 

𝑖 ∈ ℬ𝒮 ∪ {𝕠},  

𝑘 ∈ 𝒱, 𝑡 ∈ 𝑇̂  

𝑪𝒊,𝒕
𝜽  quantity of 𝜃 at buffer 𝑖 at instant 𝑡 

𝑖 ∈ ℬ, 𝜃 ∈ 𝒜𝑖 
𝑡 ∈ 𝑇̂ ∖ {0} 

 Boolean var ∶= {

 
 
 
 

 Boolean var ∶= {
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𝒒𝒕
𝒌,𝜽 quantity of 𝜃 on vehicle 𝑘 at instant 𝑡 

𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑘,  
𝑡 ∈ 𝑇̂ ∖ {0}  

𝑳𝒊,𝒕
𝒌,𝜽 number of lots of 𝜃, loaded at 𝑖 by 𝑘 at instant 𝑡 

𝑖 ∈ ℬ𝒮, 𝑘 ∈ 𝒱,  

𝜃 ∈ 𝒜𝑖 ∩ 𝒜𝑘,  
𝑡 ∈ 𝑇̂ ∖ {0}  

Auxiliary variables 

𝝐𝒊,𝒕 ≥ max{0, ∑ 𝑪𝒊,𝒕
𝜽

𝜃∈𝒜𝑖
− 𝐶𝑖}  𝑖 ∈ ℬ, 𝑡 ∈ 𝑇̂ ∖ {0}  

𝝐𝒊,𝒕
𝜽  ≥ max{0, 𝐶𝑖

𝜃 − 𝑪𝒊,𝒕
𝜽 } 

𝑖 ∈ ℬ, 𝜃 ∈ 𝒜𝑖, 
𝑡 ∈ 𝑇̂ ∖ {0}  

5.4.2 DT-Ms²-Mib-MILP model 

The DT-Ms²-Mib-MILP model is formulated as follows: 

                    𝑓 = ∑ ∑ 𝑤𝑖𝝐𝒊,𝒕

𝑡∈𝑇̂∖{0}𝑖∈ℬ

+ ∑ ∑ ∑ 𝑤𝑖
𝜃𝝐𝒊,𝒕

𝜽

𝑡∈𝑇̂∖{0}𝜃∈𝒜𝑖𝑖∈ℬ

 (5.41) 

Subject to: 

𝑪𝒊,𝒕
𝜽 ≥ 0 ∀𝑖 ∈ ℬ, 𝜃 ∈ 𝒜𝑖 , 𝑡 ∈ 𝑇̂ ∖ {0} (5.42) 

𝑪𝒊,𝒕+𝟏
𝜽 = 𝑪𝒊,𝒕

𝜽 − 𝛾𝑖,𝑡
𝜃 − ∑ 𝜆𝜃𝑳𝒊,𝒕+𝟏

𝒌,𝜽

𝑘∈𝒱∩{𝑘′|𝜃∈𝒜𝑘′}

 ∀𝑖 ∈ ℬ, 𝜃 ∈ 𝒜𝑖 , 
𝑡 ∈ 𝑇̂ ∖ {0, 𝑇} 

(5.43) 

𝑪𝒊,𝟏
𝜽 = 𝐶𝑖,0

𝜃 − 𝛾𝑖,0
𝜃 − ∑ 𝜆𝜃𝑳𝒊,𝟏

𝒌,𝜽

𝑘∈𝒱∩{𝑘′|𝜃∈𝒜𝑘′}

 ∀𝑖 ∈ ℬ (5.43') 

𝒒𝒕
𝒌,𝜽 ≥ 0 ∀𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑘 , 𝑡 ∈ 𝑇̂ ∖ {0} (5.44) 

∑ 𝒒𝒕
𝒌,𝜽

𝜃∈𝒜𝑘

≤ 𝑄𝑘 ∀𝑘 ∈ 𝒱, 𝑡 ∈ 𝑇̂ ∖ {0} (5.45) 

𝒒𝒕+𝟏
𝒌,𝜽 = 𝒒𝒕

𝒌,𝜽 + ∑ 𝜆𝜃𝑳𝒊,𝒕+𝟏
𝒌,𝜽

𝑖∈ℬ∩{𝑖′|𝜃∈𝒜𝑖′}

 ∀𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑘 , 𝑡 ∈ 𝑇̂ ∖ {0, 𝑇} (5.46) 

𝒒𝟏
𝒌,𝜽 = 𝑞0

𝑘,𝜃 + ∑ 𝜆𝜃𝑳𝒊,𝟏
𝒌,𝜽

𝑖∈ℬ∩{𝑖′|𝜃∈𝒜𝑖′}

 ∀𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑘 (5.46') 

𝑀𝒙𝒊,𝒕
𝒌 + 𝑳𝒊,𝒕+𝟏

𝒌,𝜽 ≥ 0 ∀𝑖 ∈ ℬ𝒮, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖𝑘 , 𝑡 ∈ 𝑇̂ ∖ {𝑇} (5.47) 

Minimize 
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−𝑀𝒙𝒊,𝒕
𝒌 + 𝑳𝒊,𝒕+𝟏

𝒌,𝜽 ≤ 0 ∀𝑖 ∈ ℬ𝒮, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖𝑘 , 𝑡 ∈ 𝑇̂ ∖ {𝑇} (5.48) 

𝑀(1 − 𝒙𝒊,𝒕+𝟏
𝒌 ) + 𝑳𝒊,𝒕+𝟏

𝒌,𝜽 ≥ 0 ∀𝑖 ∈ ℬ𝒮, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖𝑘 , 𝑡 ∈ 𝑇̂ ∖ {𝑇} (5.49) 

−𝑀(1 − 𝒙𝒊,𝒕+𝟏
𝒌 ) + 𝑳𝒊,𝒕+𝟏

𝒌,𝜽 ≤ 0 ∀𝑖 ∈ ℬ𝒮, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖𝑘 , 𝑡 ∈ 𝑇̂ ∖ {𝑇} (5.50) 

∑ 𝒙𝒊,𝒕
𝒌

𝑖∈ℬ∪{𝕚}

+ ∑ 𝒚𝒊,𝒕
𝒌

𝑖∈ℬ∪{𝕠,𝕚}

= 1 ∀𝑘 ∈ 𝒱, 𝑡 ∈ 𝑇̂ (5.51) 

1 − (𝒙𝒊,𝒕
𝒌 + 𝒚𝒊,𝒕

𝒌 ) −  𝒙𝒋,𝒕+𝟏
𝒌 + 𝒙𝒋,𝝅

𝒌 ≥ 0 
∀𝑖, 𝑗 ∈ ℬ𝕚, 𝑖 ≠ 𝑗, 𝑘 ∈ 𝒱 

∀𝑡 ∈ 𝑇̂ ∖ {𝑇}, 𝜋 ∈ [𝑡 + 2, Π𝑖𝑗,𝑡
𝑘 ] (5.52) 

1 − 𝒚𝕠,𝒕
𝒌 −  𝒙𝒋,𝒕+𝟏

𝒌 + 𝒙𝒋,𝝅
𝒌 ≥ 0 

∀𝑗 ∈ ℬ𝕚, 𝑖 ≠ 𝑗, 𝑘 ∈ 𝒱 
∀𝑡 ∈ 𝑇̂ ∖ {𝑇}, 𝜋 ∈ [𝑡 + 2, Π𝑖𝑗,𝑡

𝑘 ] (5.52') 

𝒙𝒊,𝒕
𝒌 + 𝒚𝒊,𝒕

𝒌 ≥ 𝒚𝒊,𝒕+𝟏
𝒌  ∀𝑖 ∈ ℬ𝒮, 𝑘 ∈ 𝒱, 𝑡 ∈ 𝑇̂ ∖ {𝑇} (5.53) 

𝒚𝕠,𝒕
𝒌 ≥ 𝒚𝕠,𝒕+𝟏

𝒌  ∀𝑘 ∈ 𝒱, 𝑡̂ ∈ 𝑇̂ ∖ {𝑇} (5.53') 

1 − 𝒚𝒊,𝒕
𝒌 ≥ 𝒙𝒊,𝒕+𝟏

𝒌  ∀𝑖 ∈ ℬ𝒮, 𝑘 ∈ 𝒱, 𝑡 ∈ 𝑇̂ ∖ {𝑇} (5.54) 

𝒚𝕠,𝒕
𝒌 = 1 ∀𝑘 ∈ 𝒱, 𝑡 ∈ [0, 𝑡𝕠

𝑘) (5.55) 

∑ 𝒚𝒊,𝑻
𝒌

𝑖∈ℬ∪{𝕠,𝕚}

= 1 ∀𝑘 ∈ 𝒱 (5.56) 

𝝐𝒊,𝒕 ≥ 0 ∀𝑖 ∈ ℬ, 𝑡 ∈ 𝑇̂ ∖ {0} (5.57) 

𝝐𝒊,𝒕 ≥ ∑ 𝑪𝒊,𝒕
𝜽

𝜃∈𝒜𝑖

− 𝐶𝑖 ∀𝑖 ∈ ℬ, 𝑡 ∈ 𝑇̂ ∖ {0} (5.58) 

𝝐𝒊,𝒕
𝜽 ≥ 0 ∀𝑖 ∈ ℬ, 𝑡 ∈ 𝑇̂ ∖ {0} (5.59) 

𝝐𝒊,𝒕
𝜽 ≥ 𝐶𝑖

𝜃 − 𝑪𝒊,𝒕
𝜽  ∀𝑖 ∈ ℬ, 𝜃 ∈ 𝒜𝑖 , 𝑡 ∈ 𝑇̂ ∖ {0} (5.60) 

𝒙𝒊,𝒕
𝒌 ∈ {0,1} ∀𝑖 ∈ ℬ𝒮, 𝑘 ∈ 𝒱, 𝑡 ∈ 𝑇̂ (5.61) 

𝒚𝒊,𝒕
𝒌 ∈ {0,1} ∀𝑖 ∈ ℬ𝒮 ∪ {𝕠}, 𝑘 ∈ 𝒱, 𝑡 ∈ 𝑇̂ (5.62) 

𝑳𝒊,𝒕
𝒌,𝜽 ∈ ℤ0 ∀𝑖 ∈ ℬ𝒮, 𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜𝑖𝑘, 𝑡 ∈ 𝑇̂ ∖ {0} (5.63) 

The objective function min 𝑓 = ∑ ∑ 𝑤𝑖𝝐𝒊,𝒕𝑡𝑖 + ∑ ∑ ∑ 𝑤𝑖
𝜃𝝐𝒊,𝒕

𝜽
𝑡𝜃𝑖  aims at minimizing 

the weighted overstock and stockout for each article at each buffer. Constraints can 

be understood by reading the DT-1ms-MILP model description. 
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5.4.3 DT-Ms²-Mib-MILP with distance minimization  

A few modifications of the model permit to integrate distance minimization in 

the objective function. Even though distance minimization has a secondary role in 

the indoor logistic operation manager problem, it is crucial to effectively solve the 

supply-chain network one. On the other hand, adding this feature to the model can 

sensibly complexify it and result in much longer solving times.  

Let us consider the DT-Ms²-Mib-MILP formulation. Each new transfer from 𝑖 to 

𝑗 begins with a ∗ → do-𝑗 transition. A way to identify these transitions already exists 

at constraint (5.30), and a new set of Boolean auxiliary variables 𝒛𝒊𝒋,𝒕
𝒌  can be used to 

mark any time 𝑡 at which a vehicle 𝑘 at 𝑖 starts a new do-task toward 𝑗: 

𝒛𝒊𝒋,𝒕
𝒌  

1 if vehicle 𝑘 begins 𝑖→𝑗 transfer at 𝑡 

0 otherwise 

𝑖 ∈ ℬ𝒮,  

𝑘 ∈ 𝒱, 𝑡 ∈ 𝑇̂  

The table hereafter reports the conditions to respect.  

∗ → do-𝑗 transition at instant 𝑡+1 𝒙𝒊,𝒕
𝒌 + 𝒚𝒊,𝒕

𝒌  𝒙𝒋,𝒕+𝟏
𝒌   𝒛𝒊𝒋,𝒕+𝟏

𝒌  

no 0 0 

⇒ 

unbound 

No 0 1 unbound 

No 1 0 unbound 

Yes 1 1 1 

The following expression resumes the content of the table. 

(𝒙𝒊,𝒕
𝒌 + 𝒚𝒊,𝒕

𝒌 ) = 1 ∧  𝒙𝒋,𝒕+𝟏
𝒌 = 1  ⟺  

⟺   (𝒙𝒊,𝒕
𝒌 + 𝒚𝒊,𝒕

𝒌 ) +  𝒙𝒋,𝒕+𝟏
𝒌 = 2  ⇒   𝒛𝒊𝒋,𝒕+𝟏

𝒌 = 1,
∀𝑖, 𝑗 ∈ ℬ𝒮, 𝑖 ≠ 𝑗      

∀𝑘 ∈ 𝒱, 𝑡 ∈ 𝑇̂ ∖ {𝑇}
 

The MILP model presents therefore some additional constraints: 

1 − (𝒙𝒊,𝒕
𝒌 + 𝒚𝒊,𝒕

𝒌 ) −  𝒙𝒋,𝒕+𝟏
𝒌 + 𝒛𝒊𝒋,𝒕+𝟏

𝒌 ≥ 0 
∀𝑖 ∈ ℬ𝒮 ∪ {𝕠}, 𝑗 ∈ ℬ𝒮, 𝑖 ≠ 𝑗 

∀𝑘 ∈ 𝒱, 𝑡 ∈ 𝑇̂ ∖ {𝑇} 
(5.64) 

1 − 𝒚𝕠,𝒕
𝒌 −  𝒙𝒋,𝒕+𝟏

𝒌 + 𝒛𝕠𝒋,𝒕+𝟏
𝒌 ≥ 0 

∀𝑗 ∈ ℬ𝒮, 𝑘 ∈ 𝒱 
∀𝑡 ∈ 𝑇̂ ∖ {𝑇} 

(5.64') 

𝒛𝒊𝒋,𝒕
𝒌 ∈ {0,1} 

∀𝑖 ∈ ℬ𝒮 ∪ {𝕠}, 𝑗 ∈ ℬ𝒮, 𝑖 ≠ 𝑗 
∀𝑘 ∈ 𝒱, 𝑡 ∈ 𝑇̂ 

(5.65) 

Finally, the objective function with distance minimization is written as: 

                    𝑓 = ∑ ∑ 𝑤𝑖𝝐𝒊,𝒕

𝑡∈𝑇̂∖{0}𝑖∈ℬ

+ ∑ ∑ ∑ 𝑤𝑖
𝜃𝝐𝒊,𝒕

𝜽

𝑡∈𝑇̂∖{0}𝜃∈𝒜𝑖𝑖∈ℬ

+                                          (5.66) 

 Boolean var ∶= {

 
 
 
 

Minimize 
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+𝛼𝑑 ( ∑ ∑ ∑ ∑ 𝑑𝑖𝑗𝒛𝒊𝒋,𝒕
𝒌

𝑡∈𝑇̂∖{0}𝑘∈𝒱𝑗∈ℬ𝒮𝑖∈ℬ𝒮

+ ∑ ∑ ∑ 𝑑𝕠𝑗
𝑘 𝒛𝕠𝒋,𝒕

𝒌

𝑡∈𝑇̂∖{0}𝑘∈𝒱𝑗∈ℬ𝒮

) 

5.5 DT-1ms-PR-MILP formulation 

The DT-1ms-MILP formulation is a versatile mathematical model that allows a 

flexible operation scheduling with a fine time control. However, its size grows in a 

polynomial fashion with problem size, and it risks becoming impractical with higher 

numbers of buffers, vehicles, articles, and timeframes. 

The Discrete-Time 1-main-stock with Predefined Routes MILP (DT-1ms-PR-MILP) 

aims at reducing the number of variables and constraints by making two assump-

tions:   

1. Vehicle routes are pre-defined, and decision-making does not involve their 

building. This assumption can be particularly reasonable for the ILOM prob-

lem involving some flow-shop manufacturing facilities. In fact, part consump-

tions are generally proportional along a flow-shop, thus supplying and waste 

collection operations can be done with the same frequency. The whole assem-

bly line is thus decomposed in different zones, possibly based on production 

models (open-shop, flow-shop, job-shop), and for each of them a circuit tying 

all buffers is defined. If the manufacturing plant permits it, placing loading 

points after unloading ones could be beneficial for solution optimality. Also, 

the twin-buffers (pair of buffers containing the same subassembly article but 

with opposite consumption sign) must be put in the same route, as their con-

tent cannot be unloaded at the main stock.  

With the predefined-routes assumption, the decision variables are no more 

about how to build pickup-delivery routes, but rather which vehicles launch 

on each route at the beginning of each subperiod. 
 

2. Any pickup-delivery route is completed in a subperiod (discrete 

timeframe). This second assumption is complementary to the first, as it allows 

to avoid trans-period carryover of vehicle contents. I.e., each route begins and 

ends at the main stock during the same subperiod, therefore there is no need 

to stock information about vehicle content when passing from a subperiod to 

the following.  

The solution of the DT-1ms-PR-MILP is clearly suboptimal compared to the route-

building version DT-1ms-MILP. However, under some circumstances it can give good 

results in a much shorter time.  

The DT-1ms-PR-MILP is a discrete-time model in which the scheduling period 

of length 𝑇𝑃 is converted into a discrete set of equal subperiods 𝑃̂ = {𝑝̂0, 𝑝̂1, 𝑝̂2, … , 𝑝̂𝑃}. 
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The exact state of the system within a subperiod is not entirely known, but the 

solution gives to each vehicle a list of pickup-deliveries to do during each subperiod. 

About formulation indexes:  

• Buffers are indexed with letters 𝑖 and 𝑗; routes with letter 𝑤; vehicles with 

letter 𝑘; subperiods with letter 𝑝. 

• The main stock is indicated with symbol 𝕚, and vehicles initial conditions are 

indicated with symbol 𝕠. The set ℬ ∪ {𝕚} is also written ℬ𝕚. 

• For sake of readability, the elements of ℬ, ℛ, 𝒱, 𝑃̂ are directly written as their 

indexes, as reported in the table below at the column ‘Simplified’. 
 

Table 5.11. Sets of DT-1ms-PR-MILP. 

Set Set element notations 

Name Symbol Index Complete Simplified 

Buffers ℬ 𝑖, 𝑗     {𝑏𝑖}𝑖∈{1,2,…,𝐵}  {1,2, … , 𝐵} 

Routes ℛ 𝑤     {𝑟𝑤}𝑤∈{1,2,…,𝑊}  {1,2, … , 𝑊} 

Vehicles 𝒱 𝑘     {𝑣𝑘}𝑘∈{1,2,…,𝐾}  {1,2, … , 𝐾} 

Subperiods 𝑃̂ 𝑝     {𝑝̂𝑝}𝑝∈{1,2,…,𝑃} {1,2, … , 𝑃} 

5.5.1 Route building and subperiod length 

In accordance with the second assumption made above, the length of subperiods 

Δ𝑝̂ must be large enough to grant the completion of any predefined route within its 

duration. To calculate it, the following data is necessary: 

Ω𝑤  ordered set of buffers in route 𝑤, ∀𝑤 ∈ ℛ, 

𝑑𝑖𝑗  travelling distance between each couple of buffers 𝑖, 𝑗 ∈ ℬ𝕚, 𝑖 ≠ 𝑗, 

𝜏𝑖   time required to perform onsite operations at 𝑖, ∀𝑖 ∈ ℬ𝕚, 

𝑠𝑘   speed of vehicle 𝑘, ∀𝑘 ∈ 𝒱, 

𝑠̅   maximum speed of any vehicle = max{𝑠𝑘 | 𝑘 ∈ 𝒱}. 

The minimum subperiod length necessary to fully cover any route is calculated as: 

          Δ𝑝̂ = max
𝑤∈ℛ

   2𝜏𝕚 + 𝑠̅⋅(𝑑𝕚,inf Ω𝑤
+ 𝑑sup Ω𝑤,𝕚) +             (𝜏𝑖 + 𝑠̅⋅𝑑𝑖,𝑖+1) + 𝜏sup Ω𝑤

    (5.67) 

where 𝜏𝕚 is counted twice, once at the beginning, and once at the end of the route. 

The duration of subperiods is also necessary to calculate the consumptions values 

of 𝛾𝑖,𝑝 during each period 𝑝. A fair strategy for calculating 𝛾 has a positive impact 

on scheduling reliability, since a finer content control within a subperiod is not per-

mitted by the DT-1ms-PR-MILP formulation. In other terms, since it is not possible 

to know the exact moment at which a buffer will be visited within a period, content 

{                                                     ∑  

𝑖∈Ω𝑤∖{sup Ω𝑤}

                                      } 
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and consumptions value shall be calculated in a form that grants to really prevent 

stockouts.  

5.5.2 Parameters and variables 

Table 5.12. Parameters of DT-1ms-PR-MILP. 

 Description Index domains 

𝜆𝑖 load units in a lot of the articles at buffer 𝑖   𝑖 ∈ ℬ  

𝐶𝑖 lower content limit of buffer 𝑖 𝑖 ∈ ℬ   

𝐶𝑖 upper content limit of buffer 𝑖 𝑖 ∈ ℬ  

𝐶𝑖,0 initial content of buffer 𝑖 𝑖 ∈ ℬ  

𝛾𝑖,𝑝 consumption of buffer 𝑖 during 𝑝 𝑖 ∈ ℬ, 𝑝 ∈ 𝑃̂  

𝑄𝑘 capacity of vehicle 𝑘, in load units 𝑘 ∈ 𝒱  

𝑝𝕠
𝑘 period from which vehicle 𝑘 is available 𝑘 ∈ 𝒱  

𝑀 sufficiently big number = min { max
𝑘∈𝒱,𝑖∈ℬ

{𝑄𝑘 𝜆𝑖⁄ } , max
𝑖∈ℬ𝕚

{𝐶𝑖 𝜆𝑖⁄ }} 

Route subsets 

Ω𝑤 ordered set of buffers in route 𝑤 𝑤 ∈ ℛ  

𝜔𝑤 
subset of Ω𝑤 containing the buffers that can exchange 

their content with the main stock 𝕚.   
𝑤 ∈ ℛ 

𝜔̃𝑤 
subset of Ω𝑤 containing the buffers that cannot ex-

change their content with the main stock 𝕚. 
𝑤 ∈ ℛ 

As shown in figure 5.1, for all 𝑤 ∈ ℛ the sets 𝜔𝑤 and 𝜔̃𝑤 are disjoint (𝜔𝑤 ∩ 𝜔̃𝑤 = ∅) 

and one the complement of the other with respect to Ω𝑤 (𝜔𝑤 ∪ 𝜔̃𝑤 = Ω𝑤).  

 

Figure 5.1. Visual example of buffer repartition in the DT-1ms-PR-MILP 
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Table 5.13. Variables of DT-1ms-PR-MILP. 

 Description Index domains 

𝒙𝒘,𝒑
𝒌  

1 if 𝑘 covers routes 𝑤 during 𝑝  

0 otherwise 
𝑤 ∈ ℛ, 𝑘 ∈ 𝒱  
𝑝 ∈ 𝑃̂  

𝑪𝒊,𝒑 content of buffer 𝑖 at the end of period 𝑝 𝑖 ∈ ℬ, 𝑝 ∈ 𝑃̂ 

𝑳𝒊,𝒑
𝒌  number of lots loaded at 𝑖 by 𝑘 during 𝑝 

𝑖 ∈ ℬ𝕚, 𝑘 ∈ 𝒱,  
𝑝 ∈ 𝑃̂  

Auxiliary variable 

𝝐𝒊,𝒑 ≥ max{0, 𝑪𝒊,𝒑 − 𝐶𝑖, 𝐶𝑖 − 𝑪𝒊,𝒑} 𝑖 ∈ ℬ, 𝑝 ∈ 𝑃̂ 

5.5.3 DT-1ms-MILP model 

The DT-1ms-MILP model is formulated as follows: 

                    𝑓 = ∑ ∑ 𝝐𝒊,𝒑

𝑝∈𝑃̂∖{1}𝑖∈ℬ

  (5.68) 

Subject to: 

𝑪𝒊,𝒑 ≥ 0 ∀𝑖 ∈ ℬ, 𝑝 ∈ 𝑃̂ (5.69) 

𝑪𝒊,𝒑+𝟏 = 𝑪𝒊,𝒑 − 𝛾𝑖,𝑝+1 − 𝜆𝑖⋅ ∑ 𝑳𝒊,𝒑+𝟏
𝒌

𝑘∈𝒱

 ∀𝑖 ∈ ℬ, 𝑝 ∈ 𝑃̂ ∖ {𝑃} (5.70) 

𝑪𝒊,𝟏 = 𝐶𝑖,0 − 𝛾𝑖,1 − 𝜆𝑖⋅ ∑ 𝑳𝒊,𝟏
𝒌

𝑘∈𝒱

 ∀𝑖 ∈ ℬ (5.70') 

∑ 𝜆𝑖𝑳𝒊,𝒑
𝒌

𝑗

𝑖∈Ω𝑤

≥ −𝑄𝑘 ∀𝑗 ∈ Ω𝑤, 𝑤 ∈ ℛ, 𝑘 ∈ 𝒱, 𝑝 ∈ 𝑃̂ (5.71) 

∑ 𝜆𝑖𝑳𝒊,𝒑
𝒌

𝑗

𝑖∈Ω𝑤

≤ 𝑄𝑘 ∀𝑗 ∈ Ω𝑤, 𝑤 ∈ ℛ, 𝑘 ∈ 𝒱, 𝑝 ∈ 𝑃̂ (5.72) 

∑ 𝜆𝑖𝑳𝒊,𝒑
𝒌

𝑗

𝑖∈𝜔̃𝑤

≥ 0 ∀𝑗 ∈ Ω𝑤, 𝑤 ∈ ℛ, 𝑘 ∈ 𝒱, 𝑝 ∈ 𝑃̂ (5.73) 

∑ 𝜆𝑖𝑳𝒊,𝒑
𝒌

𝑖∈𝜔̃𝑤

= 0 ∀𝑤 ∈ ℛ, 𝑘 ∈ 𝒱, 𝑝 ∈ 𝑃̂ (5.74) 

 Boolean var ∶= {

 
 
 
 

Minimize 
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𝑀𝒙𝒘,𝒑
𝒌 − 𝑳𝒊,𝒑

𝒌 ≥ 0 ∀𝑖 ∈ Ω𝑤, 𝑤 ∈ ℛ, 𝑘 ∈ 𝒱, 𝑝 ∈ 𝑃̂ (5.75) 

−𝑀𝒙𝒘,𝒑
𝒌 − 𝑳𝒊,𝒑

𝒌 ≤ 0 ∀𝑖 ∈ Ω𝑤, 𝑤 ∈ ℛ, 𝑘 ∈ 𝒱, 𝑝 ∈ 𝑃̂ (5.76) 

∑ 𝒙𝒘,𝒑
𝒌

𝑤∈ℛ

≤ 1 ∀𝑘 ∈ 𝒱, 𝑝 ∈ 𝑃̂ (5.77) 

𝒙𝒘,𝒑
𝒌 = 0 ∀𝑤 ∈ ℛ, 𝑘 ∈ 𝒱, 𝑝 ∈ [1, 𝑝𝕠

𝑘) (5.78) 

𝝐𝒊,𝒑 ≥ 0 ∀𝑖 ∈ ℬ, 𝑝 ∈ 𝑃̂ (5.79) 

𝝐𝒊,𝒑 ≥ 𝑪𝒊,𝒑 − 𝐶𝑖 ∀𝑖 ∈ ℬ, 𝑝 ∈ 𝑃̂ (5.80) 

𝝐𝒊,𝒑 ≥ 𝐶𝑖 − 𝑪𝒊,𝒑 ∀𝑖 ∈ ℬ, 𝑝 ∈ 𝑃̂ (5.81) 

𝒙𝒘,𝒑
𝒌 ∈ {0,1} ∀𝑤 ∈ ℛ, 𝑘 ∈ 𝒱, 𝑝 ∈ 𝑃̂ (5.82) 

𝑳𝒊,𝒑
𝒌 ∈ ℤ0 ∀𝑖 ∈ ℬ𝕚, 𝑘 ∈ 𝒱, 𝑝 ∈ 𝑃̂ (5.83) 

Similarly to DT-1ms-MILP, the objective function min 𝑓 = ∑ ∑ 𝝐𝒊,𝒑𝑝𝑖  aims at min-

imizing the overall portion of buffer contents exceeding the desired limits [𝐶𝑖, 𝐶𝑖].  

(5.69) prevents buffer contents from going negative, while the expressions (5.70) 

and (5.70') constrain buffer content evolution.  

The inequations (5.71) to (5.74) limit vehicle content evolution within a period. 

(5.71) and (5.72) impose that vehicle content remains between −𝑄𝑘 and 𝑄𝑘 after 

each visited buffer in Ω𝑤. If ∑ 𝜆𝑖𝑳𝒊,𝒑
𝒌

𝑖∈Ω𝑤
< 0 it means that the vehicle shall load some 

articles at the main stock before starting the route. (5.73) and (5.74) add two addi-

tional rules for the articles that are not exchangeable with the main stock; (5.73) 

imposes that the sum of loaded/unloaded articles at buffers in 𝜔̃𝑤 is always greater 

than zero, as these articles cannot be loaded at the main stock; (5.74) imposes that, 

for each route, the end balance of loaded/unloaded articles in 𝜔̃𝑤 is equal to zero.  

Constraints (5.75) and (5.76) set at zero the 𝑳𝒊,𝒑
𝒌  variables for the subperiods in which 

vehicle 𝑘 does not cover the route containing buffer 𝑖. The following relationships are 

imposed: 

Route 𝑤 covered by 𝑘 during 𝑝 (𝒙𝒘,𝒑
𝒌 = 1?) 𝑖 ∈ Ω𝑤  𝑳𝒊,𝒑

𝒌  

no no 

⇒ 

unbound 

no yes 0 

yes no unbound 

yes yes unbound 

Hence, the following expression must be verified: 

𝒙𝒘,𝒑
𝒌 = 0 ∧  𝑖 ∈ Ω𝑤   ⇒   𝑳𝒊,𝒑

𝒌 = 0, ∀𝑖 ∈ ℬ𝕚, 𝑤 ∈ ℛ, 𝑘 ∈ 𝒱, 𝑝 ∈ 𝑃̂ 
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The 𝑀 parameter is calculated as: 

𝑀 = min { max
𝑘∈𝒱,𝑖∈ℬ

{𝑄𝑘 𝜆𝑖⁄ } , max
𝑖∈ℬ𝕚

{𝐶𝑖 𝜆𝑖⁄ }} 

(5.77) imposes to each vehicle to only cover a single route per subperiod. (5.78) is to 

be used in case some vehicles are only available starting from a period 𝑝𝕠
𝑘. Constraints 

(5.79), (5.80), (5.81) rule the auxiliary variables 𝝐𝒊,𝒑, that must satisfy the inequation 

𝝐𝒊,𝒑 ≥ max{0, 𝑪𝒊,𝒑 − 𝐶𝑖 , 𝐶𝑖 − 𝑪𝒊,𝒑}. Finally, (5.82) expresses the Boolean domain of 

𝒙𝒘,𝒑
𝒌 , and (5.83) the integral domain of 𝑳𝒊,𝒑

𝒌 . 

NB: no constraint is imposed to limit the number of vehicles covering the same route 

during a period; if necessary, more than a vehicle can be simultaneously launched on 

a route. 
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CHAPTER 6 

6Heuristic method: 

minimum penalty algorithm 

The DT-1ms-MILP formulation proposed in the previous chapter demonstrated 

good solving performances for the indoor logistic operations manager. However, hav-

ing the results of another method can help evaluate the performances of DT-1ms-

MILP in a more significant way. To this purpose, an ad-hoc heuristic algorithm called 

Minimum Penalty Algorithm (MPA) was developed, coded, and tested. The input 

data of the heuristic are the same of DT-1ms-MILP, with the same GSVT (Ground, 

Stocks, Vehicles & Tasks) data structure. Solutions are also syntactically similar and 

comparable with MILP ones. In accordance with its heuristic nature, the main ad-

vantage of MPA compared to DT-1ms-MILP is a shorter solving time. 

The MPA finds solutions in a semi-discrete time domain; as for DT-MILP for-

mulations, the scheduling period 𝑇𝑃 is divided into 𝑇 timeframes of the same dura-

tion. However, unlike DT-MILP, the MPA allows some events to happen within a 

timeframe instead of its extremities.  

6.1 Standards and notations 

The notations used in this chapter are mainly the same of the previous one. 

Problem elements are the following: 

ℬ   set of buffers,  

𝒱   set of vehicles,  

𝒜   set of article references, 

𝐶𝑖(𝑡)  content of buffer 𝑖 at time 𝑡 (in continuous domain), 

𝛾𝑖(𝑡)  consumption of buffer 𝑖 at time 𝑡 (in continuous domain), 

𝑑𝑖𝑗  distance from point 𝑖 to point 𝑗, 

𝜏𝑖   duration of onsite operations at 𝑖, 

𝑞𝑘,𝜃  load units of article 𝜃 currently onboard of vehicle 𝑘, 

𝑡𝑘   availability time of vehicle 𝑘, 
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𝓏   task object, with: 𝑛𝓏  task number in a sorted task set 𝒵 

  𝑛𝓏 ∈ [0,1, … , +∞), 

𝑡𝑠,𝓏  start time of 𝓏, 

𝑡𝑒,𝓏  end time of 𝓏 (equal to 𝑡𝑠,𝓏 plus task travel-

ling distance plus 𝜏𝑖𝓏
), 

𝑖𝓏  destination of 𝓏, 

𝑘𝓏  vehicle appointed to perform 𝓏, 

𝐿𝓏
𝜃  lots of 𝜃 charged at 𝑖𝓏 by 𝑘𝓏, ∀𝜃 ∈ 𝒜. 

6.2 Heuristic method design 

The heuristic method shall have the same objective of DT-1ms-MILP formula-

tion, i.e., to grant the satisfaction of system material needs by picking-up and deliv-

ering the required articles. The design of an algorithm directly based on that seems 

complicated, as stock consumptions are not stationary, and shortcomings as a func-

tion of delivery decisions are not easy to forecast. In other terms, there is no direct 

decision parameter (such as distance, delay, etc) that grants objective satisfaction. 

Moreover, the effects of a decision taken upstream can remarkably affect the system 

downstream in a hardly predictable way. 

Despite that, the fleet and the system have some other direct parameters that can 

relate to the fact of ‘being doing a good supporting job’. Since the fleet is composed 

of a limited number of vehicles, it can be logically inferred that fleet efficiency in-

creases if pickup and deliveries are as complete as possible, and useless fleet move-

ments are reduced. 

The Minimum Penalty Algorithm was designed as a direct step-by-step tree-ex-

ploration heuristic, in which a decision is taken at each tree-level. It is not led by 

time progression, but rather system (stocks and vehicles) asynchronous evolution. 

Let us consider a graph 𝐺 = (𝑉, 𝐸, Π), where 𝑉 is the set of vertices representing 

different system states, 𝐸 is the set of edges representing state evolutions (i.e., tasks) 

and Π is the set of penalties associated to each edge. System state 𝑠 is defined by the 

following elements and data: 

                            𝑠 = { 
{(𝐶𝑖,0, 𝑪𝒊(𝑡), 𝛾𝑖(𝑡))     |  𝑖 ∈ ℬ, 𝑡 ∈ [0, 𝑇𝑃]}                   

 

{(𝑞0
𝑘,𝜃, 𝒒𝒌,𝜽, 𝒕𝒌)           |  𝑘 ∈ 𝒱, 𝜃 ∈ 𝒜, 0 ≤ 𝑡𝑘 ≤ 𝑇𝑃}

 }                    (6.1) 

The elements written in bold are manipulated by the MPA, as they are part of 

problem solution once the algorithm is over. Another important data container of 

the MPA is set 𝒵 containing Task objects 𝓏: 

                       𝒵 = {𝔃(𝑡𝑠, 𝑡𝑒 , 𝑖, 𝑘, 𝐿𝜃)   |  (𝑖, 𝑘, 𝜃)𝑇 ∈ (ℬ, 𝒱, 𝒜)𝑇 , 0 ≤ 𝑡𝑠 < 𝑡𝑒 ≤ 𝑇𝑃}          (6.2) 
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Tasks are defined by a start time 𝑡𝑠, and end time 𝑡𝑒, an appointed vehicle 𝑘, a 

destination buffer 𝑖, and a set of article quantities to pick-up (or deliver) 𝐿𝜃. Tasks 

are collected in set 𝒵 as the algorithm progresses. 

As shown in the following, the algorithm ends when time variables 𝑡𝑘 are equal to 

𝑇𝑃 for all vehicles 𝑘 ∈ 𝒱.  

The graph 𝐺(𝑉, 𝐸, Π) is a simply connected graph the origin of which is vertex 

𝑠0 ∈ 𝑉, that represents system initial state. Vertex 𝑠0 is connected to a series of other 

vertices {𝑠1
′ , 𝑠1

′′, … } ∈ 𝑉1 ⊆ 𝑉 by the edges (𝑠0, 𝑠1) ∈ 𝐸1 ⊆ 𝐸. 𝑉1 contains all system 

states reachable from 𝑠0 with the execution of one and only one Task (Task object 

as defined in chapter 4). Namely, the involved task 𝓏 could either be of type go and 

pickup/delivery or wait a Δ𝑡. In graph exploration, each task is associated to an edge, 

and allows the calculation of the associated penalty 𝜋𝓏 ∈ Π. The penalty function 

only considers the current state and the states directly reachable from it – the algo-

rithm is not regret-based. It can feature different terms and shall permit the choice 

of the best task in each circumstance. Therefore, an adapted and well-parameterized 

penalty function is essential to MPA success. 

As stated before, graph exploration is step-by-step, and method visibility is limited 

to the current exploration level. Once the choice of 𝑠1 is made in the minimum-

penalty sense, the algorithm calculates the set of states {𝑠2
′ , 𝑠2

′′, … } ∈ 𝑉2 ⊆ 𝑉 reachable 

by 𝑠1 via the edges (𝑠1, 𝑠2) ∈ 𝐸2. A second task is chosen and added to 𝒵, then the 

procedure is repeated from 𝑠2 until the end condition is reached. A graphic represen-

tation of MPA exploration tree is shown at figure 6.1. 

Figure 6.1. Example of MPA exploration tree. 
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The step-by-step approach makes the algorithm very lean in both runtime and 

memory usage, since it does not calculate the unexplored and useless graph regions, 

children of the non-selected state vertices.  

 MPA solution is contained in the final state 𝑠. System evolution can also be read 

along the elementary path traced by the algorithm in 𝐺(𝑉, 𝐸, Π). Once more, the 

algorithm is not led by system time progression. Time goes on asynchronously for 

every vehicle as the algorithm progresses, and buffer data is consequently modified 

with task creation. Indeed, MPA progression is granted by the step-by-step decision-

making process that adds tasks to 𝒵 and updates system state. 

6.2.1 MPA flowchart 

The Minimum Penalty Algorithm flowchart is shown in figure 6.2.  

First, system objects (buffers and vehicles) are initialized ❶, along with penalty func-

tion Π and its parameter set 𝛼 ❷. The algorithm features two nested loops. The outer 

and main one is charged of vertical exploration of state tree. It starts with the ini-

tialization of a feasible task set f𝒵 ❸ that only exists inside this loop. After that, the 

inner loop begins. It performs the horizontal tree exploration by evaluating the fea-

sibility and the penalty value of all tasks involving each vehicle-buffer combination 
❹…⓫. Once all feasible tasks are explored, the minimum-penalty one is picked ⓬. If 

its penalty is smaller than the maximum allowed penalty ⓭, then the task enters the 

resulting task set 𝒵 ⓮. Otherwise, the picked task is discarded, and a new wait task 

is added to 𝒵 ⓯. In both cases, system state is updated with the evolutions produced 

by the last added task ⓰. Finally, the algorithm checks the arising of the exit-condi-

tion ⓱. If it is verified, the algorithm ends by returning the task list 𝒵, else it goes 

back to ❸ and repeats the outer loop. Generally, the exit-condition consists in the 

fulfilment of all buffer needs over the period, or in the exhaustion of fleet availability 

(i.e., all vehicles are completely scheduled: 𝑡𝑘 = 𝑇𝑃 ∀𝑘 ∈ 𝒱).  

Problem constraints mentioned at ❺ and ❽ are related to loadable/unloadable 

quantities. In general, feasibility conditions of a task 𝓏 are: 

• vehicle 𝑘𝓏 must be able to load/unload at least a lot at time 𝑡𝑒,𝓏 − 𝜏𝑖𝓏
, 

• buffer 𝑖𝓏 must the able to yield/accept at least a lot at time 𝑡𝑒,𝓏 − 𝜏𝑖𝓏
. 
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Figure 6.2. Minimum 

Penalty Algorithm. 
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6.2.2 Penalty function and acceptance conditions 

The choice of a proper penalty function Π and its coefficients 𝛼 is crucial to 

solution quality. The objective of MPA is solving the ILOM scheduling problem by 

granting a set of buffer pickup-deliveries that can effectively cope the provisional 

needs of the supported production system. Given a task 𝓏(𝑡𝑠, 𝑡𝑒 , 𝑖, 𝑘, 𝐿), the function 

used to calculate penalty and set priority order is composed of the following terms. 

1. Gap between completion time and deadline 

𝜋𝓏,𝑑𝑙𝑖𝑛𝑒 = 𝛼𝑑𝑙𝑖𝑛𝑒(𝑡̂𝑖 − 𝑡𝑒,𝓏) (6.3) 

Proportional to the difference between the time 𝑡̂𝑖 at which the buffer reaches 

its content threshold and the earliest time 𝑡𝑒,𝓏 at which the appointed vehicle 

can complete the task. 
 

2. Relative gap between delivered and demanded 

𝜋𝓏,𝑞𝑡𝑦 = 𝛼𝑞𝑡𝑦

𝐷𝑖,𝑡𝑒,𝓏

𝜃 + 𝜆𝜃𝐿𝓏

𝐶𝑖 − 𝐶𝑖

 (6.4) 

𝐷𝑖,𝑡𝑒,𝓏

𝜃  is the demand of buffer 𝑖 at task delivery time 𝑡𝑒,𝓏. 𝜆𝜃 is the lot size of 

article 𝜃, and 𝐿𝓏 is the number of lots that can be delivered by performing 

task 𝓏. The fact that the vehicle cannot fully satisfy buffer demand counts as 

a penalty; as stated above, the aim is maximizing the picked-up/delivered 

quantities. If the weight 𝛼𝑞𝑡𝑦 is equal to 1, 𝜋𝓏,𝑞𝑡𝑦 corresponds to the percentage 

of buffer demand that cannot be satisfied by the vehicle, scaled on the maxi-

mum number of load units that the buffer can exchange (i.e., 𝐶𝑖 − 𝐶𝑖).  

NB, pay attention to signs: 𝐷𝑖,𝑡𝑒,𝓏

𝜃 > 0 if the buffer has a positive content need, 

and 𝐿𝓏 > 0 if the buffer is emptied of some content. The minimum 𝜋𝓏,𝑞𝑡𝑦 is 

reachable when 𝐷𝑖,𝑡𝑒,𝓏

𝜃 = −𝐿𝓏. In addition, it is always true that |𝐷𝑖,𝑡𝑒,𝓏

𝜃 | ≥ |𝐿𝓏|. 
 

3. Distance to destination 

𝜋𝓏,𝑑𝑖𝑠𝑡 = 𝛼𝑑𝑖𝑠𝑡𝑑𝓏 (6.5) 

Proportional to the distance 𝑑𝓏 travelled by the vehicle doing task 𝓏. 
 

4. Flag: task completed late 

𝜋𝓏,𝑙𝑎𝑡𝑒 = { 
1  if 𝐶𝑖,𝑡𝑒,𝓏

∉ [𝐶𝑖, 𝐶𝑖]

0  otherwise         

 (6.6) 

Tasks in advance have the priority over late tasks, and a task is late if its 

completion is achieved when its content is out of the allowed limits. 𝜋𝓏,𝑙𝑎𝑡𝑒 is 

a Boolean flag that stores this information and has an impact on task priority 

order. The developer can choose whether using this parameter on not for pri-

ority definition. Some tests have shown that considering 𝜋𝓏,𝑙𝑎𝑡𝑒 can improve 
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solution quality of mildly constrained problems. In contrast, it seems to dete-

riorate solution quality for more rigid ones (shortage of vehicles). 
 

5. Flag: content runs below zero 

𝜋𝓏,𝑏𝑒𝑙𝑜𝑤0 = { 
1  if 𝐶𝑖,𝑡𝑒

𝓏 < 0

0  otherwise 
 (6.7) 

Since a negative buffer content makes the solution physically unfeasible, the 

tasks that allow a buffer to keep its content above zero have the priority over 

the others. 𝜋𝓏,𝑏𝑒𝑙𝑜𝑤0 is a Boolean flag that stores this information and has an 

impact on task priority order. 

Task priority decisions are based on the five parameters listed above, considered 

in the following order: 

• Tasks with 𝜋𝓏,𝑙𝑎𝑡𝑒 = 0 have the priority, 

• 𝜋𝓏,𝑙𝑎𝑡𝑒 being equal, tasks with 𝜋𝓏,𝑏𝑒𝑙𝑜𝑤0 = 1 have the priority. 

• 𝜋𝓏,𝑙𝑎𝑡𝑒 and 𝜋𝓏,𝑏𝑒𝑙𝑜𝑤0 being equal, the task with the smallest (𝜋𝓏,𝑑𝑙𝑖𝑛𝑒 + 𝜋𝓏,𝑞𝑡𝑦 +

𝜋𝓏,𝑑𝑖𝑠𝑡) has the priority. 

Another important parameter of MPA is the maximum allowed penalty value 𝜋̅. 

Tasks can be added to set 𝒵 if and only if their penalty is smaller than 𝜋̅. In fact, it 

could happen that at some point the most convenient decision is making a vehicle 

wait at its current location rather than starting a do-task. 

The choice of the vehicle to put on hold can follow two strategies: either it will be 

the vehicle with the most advanced timing (𝑘 with the greatest 𝑡𝑘), or the one with 

the least advanced timing (𝑘 with the smallest 𝑡𝑘). Some tests showed that the solu-

tions obtained with these two strategies do not present significant differences in 

quality. Nevertheless, choosing the first strategy (the most advanced timing) causes 

a greater imbalance of vehicles’ activity ratio, while the second strategy allocates 

tasks more uniformly across the entire fleet. 

6.2.3 Visits to main stock 

When a vehicle visits the main stock, the algorithm forces it to unload as many 

articles as possible (every article compatible with the main stock). Then, the vehicle 

is filled of unspecified articles until its capacity is reached. These special unspecified 

articles are later converted either into real ones, or into empty space. After the MPA 

ends, a post-processing algorithm runs back through the sorted task set to specify 

which articles were actually loaded during main-stock visits. This aspect of the MPA 

makes it more effective and introduces some further visibility to task creation. 

Example: an empty vehicle of capacity 5 load units (LU) visits the main stock. 

There it loads 5 LU of unspecified ‘ ’ (𝑞0 = ). Then, it visits a buffer 𝑏1 
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where it loads 2 LU of ◩ (→ 𝑞1 = ◩◩ ); then buffer 𝑏2 where it unloads 2 LU 

of ◨ (→ 𝑞2 = ◩◩ ); finally, 𝑏3 where it unloads 3 LU of ◩ (→ 𝑞3 = ∅). By a 

backward analysis through the sorted task set, the algorithm finds that the real 

vehicle content after visiting the main stock must have been 𝑞0 = ◩◨◨. 

6.3 Post-processing algorithms 

MPA results consist in a vehicle-time-sorted list of tasks. However, articles loaded 

at each main-stock visit are still to be specified. The following algorithm was designed 

to this purpose. 

Algorithm 6.1. Article specification of main stock visits 

1 For each vehicle 𝑘 ∈ 𝒱  

2 Define the subset 𝒵𝑘 ≔ {𝓏 | 𝓏 ∈ 𝒵, 𝑘𝓏 = 𝑘} 

3 Sort tasks in 𝒵𝑘, key : greatest start-time first 

4 Initialize delivered article quantities for vehicle 𝑘: 𝒟𝜃 ← 0, ∀𝜃 ∈ 𝒜 

5 For each task 𝓏 in 𝒵𝑘 

6 If 𝓏 is a do-task and 𝑖𝓏 ≠ 𝕚 

7 𝒟𝜃 ← 𝒟𝜃 − 𝐿𝓏
𝜃, ∀𝜃 ∈ 𝒜 

8 Elsif 𝓏 is a do-task and 𝑖𝓏 = 𝕚 

9 For each article in {𝜃|𝜃 ∈ 𝒜𝕚, ℒ𝜃 > 0} 

10 Calculate real loaded units 𝒰𝜃 = min{𝐿𝓏
𝑢𝑛𝑠𝑝, 𝒟𝜃} 

11 𝐿𝓏
𝑢𝑛𝑠𝑝 ← 𝐿𝓏

𝑢𝑛𝑠𝑝 − 𝒰𝜃  
12 𝐿𝓏

𝜃 ← 𝒰𝜃  

13 𝒟𝜃 ← 𝒟𝜃 − 𝒰𝜃  

14 Next 𝜃 

15 End if 

16 Next 𝓏 

17 Remove any residual 𝐿𝓏
𝑢𝑛𝑠𝑝 for any 𝓏 ∈ 𝒵𝑘 

18 Next 𝑘 

Given any point of algorithm 6.1, 𝒟𝜃 corresponds to the units of 𝜃 already delivered 

by vehicle 𝑘 for which a source was not specified yet. 𝐿𝓏
𝜃 is the loaded quantity of 𝜃 

at the end of task 𝓏. For this reason, they have opposite signs in the expressions at 

line 7. For example, if a vehicle loads in a row 1 and 2 units of 𝜃 at two different 

buffers, 𝒟𝜃 is then equal to –3, which means that a source must be found for them. 

When the algorithm arrives to a main-stock-task (line 9) it can convert the quantity 

𝐿𝓏
𝑢𝑛𝑠𝑝 of unspecified loaded articles into specified 𝐿𝓏

𝜃. 𝒰𝜃 is the number of 𝜃 units that 

can be exchanged with 𝕚, equal to the minimum value between the still unspecified 

units loaded during 𝓏 (𝐿𝓏
𝑢𝑛𝑠𝑝) and the delivered units of 𝜃 that still have not a source 

(𝒟𝜃). Thus, 𝐿𝓏
𝜃 is set equal to 𝒰𝜃, which is also subtracted from 𝐿𝓏

𝑢𝑛𝑠𝑝 and 𝒟𝜃. 
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Once the article-specification algorithm is completed, some tasks may remain 

empty (no loaded/unloaded articles). In that case, the do-task is called useless, oth-

erwise it is said useful. A second post-processing algorithm is required to remove 

useless tasks and adapt the scheduling.  

Algorithm 6.2. Useless-tasks removal 

1 For each vehicle 𝑘 ∈ 𝒱  

2 Define the subset 𝒵𝑘 ≔ {𝓏|𝓏 ∈ 𝒵, 𝑘𝓏 = 𝑘} 

3 Sort tasks in 𝒵𝑘, key : greatest 𝑡𝓏,𝑒 (finish-time) first 

4 Initialize last useful task index 𝑛𝓏̂ ← 0 

5 While 𝑛𝓏 < cardinality(𝒵𝑘) do 

6 If 𝓏 is a do-task and 𝐿𝓏 ≠ 0 (useful task) 

7 New last useful task index 𝑛𝓏̂ ← 𝑛𝓏 

8 Elsif 𝓏 is a do-task and 𝐿𝓏 = 0 (useless task) 

9 While 𝓏 is not a useful do-task do 

10 𝑛𝓏 ← 𝑛𝓏 + 1 

11 Continue  
12 Remove all the tasks between 𝓏̂ and 𝓏 from 𝒵𝑘 (𝓏̂, 𝓏 excluded) 

13 Update the end-time of 𝓏̂: 𝑡𝑒,𝓏̂ ← 𝑡𝑠,𝓏̂ + 𝑑𝑖𝓏̂𝑖𝓏
+ 𝜏𝑖𝓏

  

14 Add a new wait-task to fill the time gap in 𝒵𝑘: 𝓏𝑤𝑎𝑖𝑡(𝑡𝑒,𝓏̂ , 𝑡𝑠,𝓏 , 𝑖𝓏̂ , 𝑘, ∅) 

15 End if  

16 Continue 

17 Next 𝑘 

6.4 MPA parametrization  

MPA results drastically vary depending on the chosen parameters 𝛼𝑑𝑙𝑖𝑛𝑒, 𝛼𝑞𝑡𝑦, 

𝛼𝑑𝑖𝑠𝑡 (called 𝛼1, 𝛼2, 𝛼3 in the following) and 𝜋̅ (𝜋𝑚𝑎𝑥). The choice of considering or 

not 𝜋𝓏,𝑙𝑎𝑡𝑒 impacts on solution quality, too. In general, it has been observed through 

several tests that good solutions are located on a diagonal band of the (𝛼2, 𝜋𝑚𝑎𝑥) 

chart, divided into two main clusters as shown by figure 6.3. Combining high values 

Figure 6.3. Good solution regions on the 𝛼2-𝜋𝑚𝑎𝑥 chart. 
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of 𝛼2 with low values of 𝜋𝑚𝑎𝑥, and vice versa, does not produce good solutions. 

Moreover, increasing 𝛼1 has a down-right stretching effect on the chart. The following 

empirical formula can sometimes find an effective value of 𝛼1 for a good heuristic 

solution: 

                                                            𝛼1 = max {
5.3 ⋅ Δ𝑡

(#𝒱)2.2
 ,   0.5}                                                 (6.8) 

Δ𝑡 is the elementary timeframe duration, and #𝒱 is the cardinality of 𝒱, hence the 

number of available vehicles. 

In conclusion, the relationship between MPA parameters and result quality 

should be further investigated. In fact, a clear dependency pattern was not found; 

nevertheless, a quick and effective parametrizing procedures can have a remarkable 

impact on MPA usefulness and operational speed. 
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CHAPTER 7 

7MILP and heuristic results 

This chapter concerns the side-by-side testing of the Discrete-Time 1-main-stock 

MILP formulation and the heuristic Minimum Penalty Algorithm. First, three test 

instances of growing size are presented. Then, the chapter shows test results for both 

methods, followed by a critical evaluation and some comments. 

7.1 Test instances 

DT-1ms-MILP and MPA were jointly tested on a set of instances based on three 

fictive workshops. Each workshop plant has a different size; it contains a single main 

stock, a set of buffers with a unique allowed article reference, and a directional net-

work of vehicle tracks. Articles are either parts (raw materials or assembly compo-

nents), subassemblies, or waste. Parts are collected at the main stock and delivered 

at buffers; subassemblies are to be moved from a buffer to another (called twin-

buffer); waste is a particular kind of article that is collected at some devoted buffers 

and must be disposed at the main stock.  

For each plant there are nine test instances with different combinations of vehicle 

fleet size and production intensity. Taking up the notation of chapter 4, production 

intensity depends on the values of consumptions 𝛾 along scheduling period. 

 #𝒱0 #𝒱−1 #𝒱−2 

𝛾×1.0       

𝛾×1.5       

𝛾×2.0       

In the following, the three instances used to test the two methods are shown and 

explained in detail. Each instance is scheduled over a period 𝑇𝑃 of 20 minutes, divided 

into a set 𝑇̂ of 20 timeframes of one minute each (Δ𝑡 = 60 seconds). The articles 

allowed in each buffer are identified by minuscule letters. Input data was chosen such 

that the average base-value of 𝛾 is 0.3 load units per minute, absorbed or produced 

by the production line. 
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                                                         𝛾̅𝑏𝑎𝑠𝑒 =
∑ ∑ |𝛾𝑖,𝑡|𝑡𝑖

#ℬ ⋅ (#𝑇̂ − 1)
= 0.3 LU                                      (7.1) 

Each test instance has a devoted subparagraph that shows the graph of stocks (ver-

tices), vehicle tracks (edges) and distances between each pair of knots (weights), as 

well as all the initial and static characteristics of the involved elements. The legend 

of graph elements is shown below; each buffer has its allowed elements written aside, 

and the small bidirectional edges that connect each buffer to the rest of the graph 

have a distance equal to 1. 

 

7.1.1 Instance A - 8 buffers 

The first test instance consists of a single main stock and 8 buffers. Figure 7.1 

shows the disposition of ground elements in test instance A and their connections, 

while the table below contains their characteristics. Δ𝑡 = 60 seconds. 

Main stock 𝕚: 

𝜏𝕚[Δ𝑡] = 1.4; 𝒜𝕚 = {a,b,c,e,w} 

Table 7.1. Buffer data of instance A. 

𝒊 type 𝑪𝒊,𝟎[ ] 𝑪𝒊[ ] 𝑪𝒊[ ] 𝝉𝒊[Δ𝑡] 𝜽𝒊 𝝀𝜽[lot/ ] 

1 Part 3.5 2 5 .7 a 1 

2 Waste 2 0 4 .7 w 1 

3 Part 3.5 2 5 .7 b 1 

4 Part 3.5 2 5 .7 c 1 

5 Subassy 3.5 2 5 .7 d 1 

6 Subassy 3.5 2 5 .7 d 1 

7 Part 3.5 2 5 .7 e 1 

8 Waste 2 0 4 .7 w 1 

 

Figure 7.1. Graph of test instance A. 
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Table 7.2. Vehicle data of instance A. 

𝒌 𝒔𝒌[m/Δ𝑡] 𝒒𝒌,𝟎
𝜽  𝒕𝕠

𝒌[Δ𝑡] notes 

1 60 ⌀ 0  

2 60 ⌀ 0  

3 60 ⌀ 0 Removed on 2nd and 3rd test column 

4 60 ⌀ 0 Removed on 2nd test column 

7.1.2 Instance B - 14 buffers 

The second test instance consists of a single main stock and 14 buffers. Figure 

7.2 shows the disposition of ground elements in test instance B and their connections, 

while the table below contains their characteristics. Δ𝑡 = 60 seconds. 

Main stock 𝕚: 

𝜏𝕚[Δ𝑡] = 1.4; 𝒜𝕚 = {a,b,c,e,g,h,w} 

Table 7.3. Buffer data of instance B. 

𝒊 type 𝑪𝒊,𝟎[ ] 𝑪𝒊[ ] 𝑪𝒊[ ] 𝝉𝒊[Δ𝑡] 𝜽𝒊 𝝀𝜽[lot/ ] 

1 Part 3.5 2 5 .7 a 1 

2 Waste 2 0 4 .7 w 1 

3 Part 3.5 2 5 .7 b 1 

4 Part 3.5 2 5 .7 c 1 

Figure 7.2. Graph of test instance B. 
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5 Subassy 3.5 2 5 .7 d 1 

6 Subassy 3.5 2 5 .7 d 1 

7 Part 3.5 2 5 .7 e 1 

8 Subassy 3.5 2 5 .7 f 1 

9 Subassy 3.5 2 5 .7 f 1 

10 Part 3.5 2 5 .7 g 1 

11 Part 3.5 2 5 .7 h 1 

12 Waste 2 0 4 .7 w 1 

13 Subassy 3.5 2 5 .7 i 1 

14 Subassy 3.5 2 5 .7 i 1 

 

Table 7.4. Vehicle data of instance B. 

𝒌 𝒔𝒌[m/Δ𝑡] 𝒒𝒌,𝟎
𝜽  𝒕𝕠

𝒌[Δ𝑡] notes 

1 60 ⌀ 0  

2 60 ⌀ 0  

3 60 ⌀ 0  

4 60 ⌀ 0  

5 60 ⌀ 0 Removed on 2nd and 3rd test column 

6 60 ⌀ 0 Removed on 2nd test column 

7.1.3 Instance C - 20 buffers 

Figure 7.3. Graph of test instance C. 
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The third and last test instance consists of a single main stock and 20 buffers. 

Figure 7.3 shows the disposition of ground elements in test instance C and their 

connections, while the table below contains their characteristics. Δ𝑡 = 60 seconds. 

Main stock 𝕚: 

𝜏𝕚[Δ𝑡] = 1.4; 𝒜𝕚 = {a,b,c,e,g,h,i,k,l,w} 

Table 7.5. Buffers of instance C. 

𝒊 type 𝑪𝒊,𝟎[ ] 𝑪𝒊[ ] 𝑪𝒊[ ] 𝝉𝒊[Δ𝑡] 𝜽𝒊 𝝀𝜽[lot/ ] 

1 Part 3.5 2 5 .7 a 1 

2 Waste 2 0 4 .7 w 1 

3 Part 3.5 2 5 .7 b 1 

4 Part 3.5 2 5 .7 c 1 

5 Subassy 3.5 2 5 .7 d 1 

6 Subassy 3.5 2 5 .7 d 1 

7 Part 3.5 2 5 .7 e 1 

8 Subassy 3.5 2 5 .7 f 1 

9 Subassy 3.5 2 5 .7 f 1 

10 Part 3.5 2 5 .7 g 1 

11 Part 3.5 2 5 .7 h 1 

12 Part 3.5 2 5 .7 i 1 

13 Waste 2 0 4 .7 w 1 

14 Subassy 3.5 2 5 .7 j 1 

15 Subassy 3.5 2 5 .7 j 1 

16 Part 3.5 2 5 .7 k 1 

17 Part 3.5 2 5 .7 l 1 

18 Waste 2 0 4 .7 w 1 

19 Subsassy 3.5 2 5 .7 m 1 

20 Subassy 3.5 2 5 .7 m 1 

 

Table 7.6. Vehicle data of instance C. 

𝒌 𝒔𝒌[m/Δ𝑡] 𝒒𝒌,𝟎
𝜽  𝒕𝕠

𝒌[Δ𝑡] notes 

1 60 ⌀ 0  

2 60 ⌀ 0  

3 60 ⌀ 0  

4 60 ⌀ 0  

5 60 ⌀ 0  

6 60 ⌀ 0  

7 60 ⌀ 0 Removed on 2nd and 3rd test column 

8 60 ⌀ 0 Removed on 2nd test column 
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7.1.4 Some considerations about test instances 

Before showing test results, here are some considerations about how relevant 

these instances are to the evaluation of DT-1ms-MILP and MPA. In particular, the 

just-in-time aspect is investigated. 

First, some numerical considerations:  

• the average gap between the allowed content limits of all buffers is generally 

around 3.2 LU: 

                                                  𝐶𝑔𝑎𝑝
̅̅ ̅̅ ̅̅ =

∑ (𝐶𝑖 − 𝐶𝑖)𝑖

card(ℬ)
≅ 3.2 LU                                      (7.2) 

 

• as written in (7.1), the average basic consumption value is around 0.3 LU. 

From these two values it can be inferred that, in average, each buffer should be 

visited and totally refilled/emptied every 10-11 minutes (3.2 LU 0.3 LU⁄ ) to respect 

content limits. Also, by applying a gamma-multiplier 𝛾× = 2, visit frequency doubles, 

too, passing from 10-11 minutes to little more than 5 minutes. This quick but mean-

ingful consideration helps to understand the coherence between the proposed test 

instances and the just-in-time approach. 

7.2 Test results  

For each test instance and both methods, nine test cases were carried out with 

decreasing fleet size #𝒱 and increasing consumption multiplier 𝛾×. For practical rea-

sons, MILP solving time was limited to 1200 seconds (20 minutes), which is also 

equal to the length of the scheduling. 

Machine: DELL Vostro 5481, Windows 10 64bit-Professional, Intel(R) Core(TM) 

i7-8565U CPU @ 1.80GHz 1.9) GHz, RAM 8.00 GB. 

Solver: Gurobi Optimizer, version 9.1.2 build v9.1.2rc0 (win64), academic license. 

Programming language: Python (MPA coding and Gurobi’s API). 

7.2.1 Evaluation metrics 

The following metrics were used to evaluate instance results. Their calculated 

values are shown for each test in the tables below.  

• 𝓈𝓉[s]: solving time. 

Concerning the MPA, solving time does not include best-parameters search, 

as it still needs further research and improvement. 

Concerning the DT-1ms-MILP, two solving times are shown. First, the time 

necessary to get to the best solution, then, in brackets, the time after which 

a first feasible solution was found. 
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• 𝒪𝑏𝑗[LU]: value of the objective function to minimize, i.e., the sum of all the 

portions of 𝐶𝑖,𝑡 values exceeding the imposed limits 𝐶𝑖 and 𝐶𝑖. The 𝒪𝑏𝑗 value 

in the cell is referred to the best solution the methods could find. 

• 𝑏0[LU]: sum of all −𝐶𝑖,𝑡 values such that 𝐶𝑖,𝑡 < 0. As stated above, if 𝑏0 > 0 

the solution is impractical. 

• 𝒶𝑟 ∈ [0,1]: average activity rate of the fleet, calculated as the sum of all travel 

and load/unloading times, divided by the overall scheduling period duration. 

This metric quickly points out whether resources are underexploited; however, 

it does not provide any information about the effectiveness of carried-out ac-

tivities. In fact, a scheduling in which vehicles roam around in a poorly effec-

tive way still has a high 𝒶𝑟 value. 

• 𝓉𝑜 ∈ [0,1]: average item turnover on vehicles. This is the most important 

value for evaluating scheduling effectiveness; a higher value of 𝓉𝑜 is a univocal 

sign that the fleet operates in a more effective way. A unitary 𝓉𝑜 value indi-

cates that, at each timeframe, each vehicle of the fleet fully unloads then loads 

a quantity equal to its capacity. E.g., considering a vehicle 𝑘 with 𝑄𝑘 = 4 LU, 

𝓉𝑜 = 1 if 𝑘 unloads 4 LU and loads as many at each timeframe 𝑡 ∈ [1,2, … , 𝑇]. 

Grey text indicates unfeasible test cases. Concerning DT-1ms-MILP, a case is 

unfeasible if no solution was found by the solver in the available time. For MPA, a 

solution is unfeasible if it presents any negative content value. 

7.2.2 Results of instance A 

Table 7.7  #𝒱 (fleet size) 

  4 3 2 

𝛾× metrics MPA MILP MPA MILP MPA MILP 

1.0 

𝓈𝓉[s] 

𝒪𝑏𝑗[LU] 

𝑏0[LU] 
𝒶𝑟— 

𝓉𝑜— 

0.03 

0.1 

- 

0.64 

0.10 

1.3(0) 

0 

- 

0.74 

0.14 

0.03 

0 

- 

0.83 

0.13 

1.3(0) 

0 

- 

0.57 

0.14 

0.01 

12.6 

- 

1.00 

0.21 

2.6(0) 

0 

- 

0.90 

0.17 

1.5 

𝓈𝓉[s] 

𝒪𝑏𝑗[LU] 

𝑏0[LU] 
𝒶𝑟— 

𝓉𝑜— 

0.01 

3.9 

- 

0.78 

0.16 

3.8(1) 

0 

- 

0.88 

0.17 

0.03 

29.8 

2.5 

0.93 

0.18 

11.0(1) 

0 

- 

0.70 

0.18 

0.01 

148.1 

83.5 

0.80 

0.27 

573(2) 

8.55 

- 

1.00 

0.27 

2.0 

𝓈𝓉[s] 

𝒪𝑏𝑗[LU] 

𝑏0[LU] 
𝒶𝑟— 

𝓉𝑜— 

0.02 

54.4 

0.6 

0.84 

0.23 

17.6(1) 

0 

- 

0.95 

0.20 

0.01 

134.5 

54.3 

0.82 

0.22 

798(8) 

4.7 

- 

1.00 

0.25 

0.01 

339.3 

229.5 

0.85 

0.28 

1200 

- 

- 

- 

- 
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7.2.3 Results of instance B 

Table 7.8  #𝒱 (fleet size) 

  6 5 4 

𝛾× metrics MPA MILP MPA MILP MPA MILP 

1.0 

𝓈𝓉[s] 

𝒪𝑏𝑗[LU] 

𝑏0[LU] 
𝒶𝑟— 

𝓉𝑜— 

0.08 

8.0 

- 

0.63 

0.11 

4.41(3) 

0 

- 

0.62 

0.12 

0.07 

1.6 

- 

0.77 

0.14 

4.69(2) 

0 

- 

0.68 

0.13 

0.03 

14.9 

0.6 

0.85 

0.16 

6.97(2) 

0 

- 

0.84 

0.16 

1.5 

𝓈𝓉[s] 

𝒪𝑏𝑗[LU] 

𝑏0[LU] 
𝒶𝑟— 

𝓉𝑜— 

0.06 

74.3 

19.0 

0.86 

0.17 

26.9(14) 

0 

- 

0.75 

0.16 

0.05 

156.6 

55.9 

0.84 

0.17 

51,9(6) 

0 

- 

0.92 

0.20 

0.03 

255.1 

115.6 

0.83 

0.17 

322(7) 

2.22 

- 

0.98 

0.23 

2.0 

𝓈𝓉[s] 

𝒪𝑏𝑗[LU] 

𝑏0[LU] 
𝒶𝑟— 

𝓉𝑜— 

0.05 

285.8 

106.6 

0.78 

0.18 

545(309) 

0.4 

- 

0.95 

0.22 

0.04 

449.0 

200.1 

0.82 

0.18 

1200 

- 

- 

- 

- 

0.03 

530.3 

300.7 

0.65 

0.17 

1200 

- 

- 

- 

- 

7.2.4 Results of instance C 

Table 7.9  #𝒱 (fleet size) 

  8 7 6 

𝛾× metrics MPA MILP MPA MILP MPA MILP 

1.0 

𝓈𝓉[s] 

𝒪𝑏𝑗[LU] 

𝑏0[LU] 
𝒶𝑟— 

𝓉𝑜— 

0.14 

14.3 

- 

0.71 

0.11 

25.1(11) 

0 

- 

0.71 

0.13 

0.11 

4.1 

- 

0.69 

0.12 

10.7(6) 

0 

- 

0.81 

0.15 

0.09 

22.3 

2.1 

0.82 

0.15 

13.7(7) 

0 

- 

0.82 

0.16 

1.5 

𝓈𝓉[s] 

𝒪𝑏𝑗[LU] 

𝑏0[LU] 
𝒶𝑟— 

𝓉𝑜— 

0.18 

41.3 

0.3 

0.88 

0.17 

134(74) 

0 

- 

0.90 

0.19 

0.09 

241.4 

107.7 

0.75 

0.17 

100(28) 

0 

- 

0.94 

0.20 

0.07 

314.9 

131.9 

0.84 

0.16 

1109(162) 

0.15 

- 

0.95 

0.21 

2.0 

𝓈𝓉[s] 

𝒪𝑏𝑗[LU] 

𝑏0[LU] 
𝒶𝑟— 

𝓉𝑜— 

0.14 

606.7 

261.0 

0.70 

0.16 

1200 

- 

- 

- 

- 

0.13 

673.8 

306.8 

0.72 

0.15 

1200 

- 

- 

- 

- 

0.07 

749.8 

370.2 

0.69 

0.16 

1200 

- 

- 

- 

- 
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7.3 Results evaluation and comments 

In the three tables above, the first glance at each cell is to determine if a feasible 

solution was found. Unfeasible test cases can help to determine the capability limits 

of each method in terms of problem size and criticality of resources.  

If a test case was feasible, the first relevant metric is solving time 𝓈𝓉. It gives an 

indication about problem complexity, especially for MILP tests. Other than that, the 

most important metric of each test is the turnover 𝓉𝑜. In fact, it can be considered 

as the scheduling efficiency index, since it is proportional to the number of articles 

picked-up and delivered. 

In the following, a specific test cell is identified with the wording: <instance>(<#𝒱>, 

<𝛾×>, <method>). E.g., A(7, 1.5, MPA) indicates the result of instance A, tested 

with a fleet size #𝒱 = 7, a gamma-multiplier 𝛾× = 1.5, and solved with MPA.  

Comment about Minimum Penalty Algorithm: 

• It could quickly find feasible solutions for all the proposed instances as long 

as production intensity was limited and the number of vehicles was reasonable 

(neither too high, nor too low). 

• The maximum activity rate 𝒶𝑟 is around 85%. Exceptional peak of 100% at 

A(2, 1.0, MPA). 

• Solution turnover 𝓉𝑜 rarely exceeds 17%. As for 𝒶𝑟, the limits on the value of 

𝓉𝑜 are methodological, as they are mainly due to the reduced visibility horizon 

of MPA. Exceptional peak value reached at A(2, 1.0, MPA), where 𝓉𝑜 = 21%. 

• The only advantage of this heuristic method compared to DT-1ms-MILP is 

the smaller solving time, which is of the order of 0.1 seconds (excluding best-

parameters search). 

• On the other hand, a major disadvantage of heuristics is precisely its sensitiv-

ity to parameterization and the still unclear correlation between parameter 

values and the quality of results. 

Comment about Discrete-Time 1-mainstock MILP: 

• It could find a solution in almost all cases, with a resolution time that rises 

very quickly as production intensifies and fleet size decreases. In general, it 

can be inferred that the factor that makes a problem harder is logistic resource 

shortage (too much production and/or too few vehicles) rather than global 

instance size (8 vs. 14 vs. 20 buffers). Even for medium-sized problems (20 

buffers), solving time remains very reasonable if the fleet is sufficiently large. 

• Since DT-1ms-MILP has a visibility horizon that coincides with the whole 

scheduling period, the activity rate 𝒶𝑟 of vehicles can potentially reach 100%. 

𝒶𝑟 = 100% at A(3, 2.0, MILP). 

• For the same reason, the turnover 𝓉𝑜 can reach highest values in MILP solu-

tions. 𝓉𝑜 max was found at A(3, 2.0, MILP), and is equal to 26%.  
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In practice, assuming a capacity 𝑄𝑘 = 4 for all vehicles, a value of 𝓉𝑜 = 26% 

means that, on average, each vehicle exchanges 2.08 LU of its content at every 

1-minute timeframe. 

• Given the discrete-time approximations, DT-1ms-MILP’s limitations are ra-

ther related to the increasing rigidity of the problem (more articles to move, 

less vehicles to do it) which determines a steep growth of solving time. 

In general, it can be concluded that DT-1ms-MILP formulation programmed and 

solved with Gurobi Optimizer shows significantly better performance with respect to 

the heuristic Minimum Penalty Algorithm. When the heuristics was able to find a 

feasible solution, MILP model also found one, of equal or better quality, and in the 

order of a few tens of seconds. However, if a high solving speed is required, the MPA 

can schedule the fleet in less than a second and, in some cases, it proved to give a 

good and feasible solution up to 17 seconds ahead of DT-1ms-MILP. 

Table 7.10. Resume and comparison of results. 

 MPA DT-1ms-MILP Variation 

Solving time 0.01÷0.2 s 5÷600 s +500÷3000% 

Max activity rate 

(excluding except. peaks) 
85% 100% +15% 

Max turnover 17% 26% +9% 

Requires parametrization Yes No  

Hardest problem solved C(7, 1, MPA) C(6, 1.5, MILP) 
–1 vehicle 

+0.5𝛾× 

7.4 Period decomposition 

The instances shown in the paragraphs above present a planning period of 20 

minutes. Nevertheless, the actual planning system should be able to schedule longer 

periods, of the order of 3-4 hours. Thus, it is necessary to define a split strategy to 

divide the planning in subperiods and solve with a sliding horizon approach. Sub-

periods duration is defined upstream, as well as the portion of each subperiod that 

is overlapped to the previous one. The subperiods are scheduled one by one, and the 

results of the previous one are the input data for the next, as shown in figure 7.4. 

Subperiods overlapping is necessary to give a longer horizon of visibility to MILP 

methods. For example, optimization is done by knowing what happens in the next 

20 minutes, but recorded operations are only those planned for the first 15. The 

remaining 5 minutes will be rescheduled with the next subperiod. This allows a more 

fluid transition between a subperiod solution and the next. 
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7.5 Visual representation of the solution  

The outcome of problem resolution and post-processing is a list of instructions 

for vehicles. However, a list of tasks is not the best form for an easy and detailed 

analysis of the outcome. The charts presented below were developed during the in-

ternship to visualize the results in a more understandable and significant way. They 

contain the following information: 

• Usage rate of vehicles, 

• Travelled distances, 

• Buffer content evolution along the period, 

• Scheduling of each vehicle (resource diagram). 

Figures 7.4 to 7.11 contain these charts for test instance A with #𝒱 = 3, 𝛾× = 1.5, 

and 15 timeframes, solved with both MPA and DT-1ms-MILP. 

 
Figure 7.5. Usage rates, instance A (8b|3v|15t), MPA. 

 

Figure 7.4. Example of a problem decomposed in subperiods. 

Average activity rate 
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..  

 
Figure 7.6. Travelled distances, instance A (8b|3v|15t), MPA. 

 

 
Figure 7.7. Buffer content evolution, instance A (8b|3v|15t), MPA.1 

 

Figure 7.8. Task scheduling, instance A (8b|3v|15t), MPA.2 

 

Average distance 
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Figure 7.9. Usage rates, instance A (8b|3v|15t), DT-1ms-MILP. 

 

.. 

Figure 7.10. Travelled distances, instance A (8b|3v|15t), DT-1ms-MILP. 

 

 
Figure 7.11. Buffer content evolution, instance A (8b|3v|15t), DT-1ms-MILP.1 

Average activity rate 

Average distance 
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Figure 7.12. Task scheduling, instance A (8b|3v|15t), DT-1ms-MILP.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1 Format of y-labels in figures 7.7 and 7.11:  

<buffer> [ <lower bound>, <upper bound> ] <supported article> 

The number inside each cell indicates buffer content at the beginning of timeframe. 

2 Format of cell-labels in figures 7.8 and 7.12: 
<task destination> { <article1>.<loaded lots> | <article2>.<loaded lots> | … } 

MS: main stock. 
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0Conclusion 

The thesis ends with a final comment divided into three main parts. First, the 

compliance of developed and tested methods with respect to application cases is 

verified, especially for the indoor logistic operation manager. Scheduling objectives 

are analysed and checked one by one. Second, a quantitative evaluation of ‘how just-

in-time’ these methods are is presented. Last, a list of potential future works closes 

the thesis. This list contains all the complementary aspects that could not be treated 

during the 6-months internship at LAAS-CNRS.  

Compliance of solving methods with application cases 

Objective Compliance 

1. Logistic support to guarantee 

production operability. 

Direct mathematical objective of the devel-

oped methods. Granted by both MPA and 

DT-1ms-MILP if logistic resources are suffi-

cient. 

2. Minimization of on-ground in-

ventory (stock reduction is a major 

aim of the just-in-time approach). 

3. Minimization of logistic resources 

necessary to effectively support the 

production line. 

These two objectives are concurrently satis-

fied prior to direct method resolution. Once 

the lower and upper limits of each buffer are 

fixed, the minimum fleet size necessary to 

support production activities is searched off-

line by analysing the results of several ficti-

tious and representative problem instances. 

In accordance with a robust programming 

approach, it would be appropriate to con-

sider the worst case which could reasonably 

occur. For example, the fleet shall be dimen-

sioned to also cope an unforeseen event or a 

moderate increase of production intensity. A 

slightly over-dimensioned fleet has also some 

advantages: it makes it possible to have a 
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surplus of inactive vehicles during nominal 

operations that can be employed to process 

and satisfy punctual and explicit needs (e.g., 

a production operator that asks for a specific 

item for some unforeseen reason).  

In general, less capacious buffers require a 

larger vehicle fleet to grant system operabil-

ity, and vice versa. 

4. Reactivity to unforeseen events The responsiveness of the system to unfore-

seen events is granted by the solving speed 

of methods, especially the minimum penalty 

algorithm (MPA). This grants an important 

dynamic aspect to the support system, that 

can quickly react to contingencies by selec-

tively adapting or rescheduling operations. 

Just-in-time evaluation 

The following calculus aims at proving that the obtained results are compliant 

with just-in-time principles by making it possible to supply the production line with 

low inventory levels.  

Let us consider the hardest instance solved with DT-1ms-MILP. It is the instance C 

presented in chapter 7, with 20 buffers, 6 vehicles, and an average absolute consump-

tion 𝛾̅ = 0.45 LU per minute. Vehicles have a capacity 𝑄𝑘 = 4 LU, and the average 

allowed content gap of all buffers is equal to 3.2 LU (as calculated in paragraph 

7.1.4). The average survival time of each buffer can be calculated as: 

                av. survival time =
av. allowed content gap

av. absolute consumption
=

3.2 LU

0.45 LU
 ≅ 7.1 min        (C.1) 

Moreover, the number of available vehicles per buffer is equal to: 

                                                          
#𝒱

#ℬ
=

6

20
= 0.3 vehicles buffer⁄                                        (C.2) 

Hence, the average frequency at which each vehicle should visit a buffer and com-

pletely refill or empty it is calculated as the product of the two values above: 

     av. fill-empty frequency = 7.1 min ⋅ 0.3 vehicles buffer⁄ = 2.1
min ⋅ vehicles

buffer
     (C.3) 

To summarize, the hardest instance for which DT-1ms-MILP could find a solution 

presents the following quantitative characteristics: 

• 20 buffers and 6 vehicles 
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• an average buffer content gap of 3.2 load units, equal to 80% of any vehicle 

capacity (4 LU), 

• an average buffer survival time of 7.1 minutes, 

• a fleet of vehicles in which every unit completely refills or empties a buffer 

every 2.1 minutes. 

Similarly, the hardest instance solved with MPA (20 buffers, 7 vehicles, 𝛾̅ = 0.3 

LU/min) has an average buffer survival time of 10.7 minutes, and an average fill-

empty frequency of 3.7 minutes. 

In both cases, but especially for DT-1ms-MILP, it can be concluded that the 

system operates in accordance with just-in-time principles. 

Future works 

Many complementary aspects were left aside during the internship. They are 

enumerated in this paragraph to give some further development prompts. 

1. Adapt the application cases and mathematical models to be more compliant 

with real instances; review the work of this thesis and validate the assump-

tions regarding core aspects and data handling. Applying the developed meth-

ods to real-life instances could provide some important information to improve 

models and algorithms. 
 

2. Search for other evaluation metrics by focusing on more pertinent key aspects 

of a real workshop (distances travelled by vehicles, average rate of deliveries 

and quantities exchanged, adaptability and reactivity demonstrated in simu-

lations, etc.). 
 

3. Concerning the Minimum Penalty Algorithm, investigate the relationship be-

tween problem data, parameterization, and results, and search for quick and 

effective parameterization methods.  

Also, look for a more effective penalty function, possibly with a more direct 

dependency with problem primary objective. 
 

4. Design and develop a metaheuristic to improve the solutions given by the 

MPA. For example, a genetic algorithm or a swarm optimization algorithm to 

improve an existing MPA solution, or even making feasible a solution of MPA 

which is not. A deterministic component could target unfeasible scheduling 

parts, while a second stochastic component modifies them with crossover and 

mutation operations. Moreover, unfeasible test cases show a lower activity 

rate compared to feasible ones (see table at paragraphs 7.2.2 to 7.2.4). A 

metaheuristic algorithm could also aim at adding new do-tasks to improve the 

overall vehicle exploitation.  



104    

Considering search space complexity and the many components involved, a 

population-based metaheuristic would be more suitable to effectively solve the 

problem. In fact, population-based algorithms make a deeper neighbourhood 

search with respect to trajectory-based ones. As such, they often grant a 

quicker convergence in presence of complex search spaces with wide optimality 

regions. 
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