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Abstract

"The Kessler Run" is a competition in which participants would have to find the
best way to reach and remove 123 debris in LEO orbit with a minimum cost.
The starting point of the work was the preliminary solution of a previous project
that aimed to find one solution to the mentioned competition. Such solution in-
volves the use of graph theory to develop the starting sequences of the solution.
Those sequences are, however, uncompleted and require additional processing in
order to get all the 123 debris.
The goal of the work was to optimize such phase, already featured in the first fin-
ished project but needing improvements, in order to obtain better solutions. This
purpose has been achieved via the implementation of 3 new methods of sequence-
filling: a direct debris insertion method, that finds the possible spots in which new
debris can be added to the sequence, a replacement-insertion method, that finds
the best substitution of left debris with placed debris that can lead to a consequent
additional placement, and a generated-spot insertion method, that creates, where
possible, enough space to place a new debris in a sequence. All the starting solu-
tion, as well as the newly developed methods are implemented in MATLAB®. New
results have been found and are discussed at the end of the paper in comparison
with the starting solution, highlighting advantages and potential improvements.
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Chapter 1

Introduction

1.1 Space debris
As of November 9th, 2021, ESA estimated a number of artificial space debris using
statistical models of 36500 debris in orbit around the earth greater than 10 cm, 1
million between 1 cm and 10 cm and 330 million between 1 mm and 1 cm.
We refer to space debris as all the objects in space that don’t serve any useful
purpose, such as abandoned rocket stages and satellites, debris generated from
collisions and micro fragments derived from propellants, waste of human activities
and particles or bodies from earth and outer space of natural origins.
The most concentrated area for orbital debris is in the area of space within 2000
km of the Earth surface, as can also be appreciated from the figure that reports a
view from GEO orbit of space debris, generated by NASA ODPO.

Figure 1.1. View of space debris from GEO, NASA ODPO
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Introduction

Space debris already existed before the start of the space age, but have assumed
more importance in the last decades because of the hazard it may cause to human
activities in space and even on Earth.
About 29600 debris objects are now catalogued and tracked by the Space Surveil-
lance Network, and, looking at the numbers mentioned before, the risk of possible
collisions with small particles is to be taken into account. The mean velocity for
satellites orbiting in LEO is approximately between 7 to 8 km/s, this leads to col-
lisions that can reach up to 15 km/s. Such numbers, even with small particles
could lead to serious damage to unmanned and manned spacecraft: a number of
space shuttle windows have been replaced because of the damage reported by small
particle debris, that are, in fact, the highest risk to robotic spacecraft operating in
LEO. As of today, Space Surveillance Network can track objects as small as 5 cm
in LEO and as small as 1 meter in GEO.
The image represents the damage resulting from a collision at about 6.8 km/s of a
sphere of 1.2 cm diameter with a 18 cm thick block of aluminium.

Figure 1.2. Impact of high velocity small object on aluminium block, ESA experiment

The number of debris kept growing from the first launch of an artificial satellite,
Sputnik 1, into orbit on October 4th, 1957.
The growth is still happening and, without an active reaction by space authorities,
will continue.
Due to new missions and new collisions, in the last decades, the growth of space
debris has been estimated to be about 300 debris/year, as figure 1.3 shows.
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1.1 – Space debris

Figure 1.3. Debris trend from 1957 to 2010

Two big steps are identifiable in the total debris trend are due to two main events
happened in 2007 and 2009:

• 2007: China’s anti-satellite test, which destroyed a weather satellite, resulting
in 3500 debris large enough to be tracked and many more small particles.

• 2009: Iridium satellite collision with an abandoned Russian spacecraft that
resulted in 2300 traceable debris.

1.1.1 The Kessler Syndrome
The constant growth in the number of debris may lead to an exponential trend
resulting in a debris belt around Earth.
In 1978 NASA Astrophysicist Donald J. Kessler proposed a scenario in which Earth
would be surrounded by debris and, therefore, isolated from outer space. The the-
ory, introduced later by John Gabbard from NORAD as "Kessler syndrome", pre-
dicts that the presence of numerous debris would lead to a cascade effect of new
debris generated from already present debris collisions. This mechanism is also
thought to be responsible of the generation of asteroids belts around planets in the
solar system, the difference is that, if other planets’ belts took billions of years to
be created, in Kessler’s theory, a much shorter time would be required because of
the high number of debris around Earth.
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Introduction

In the paper a model describing the debris flux based on known earth satellites
has been developed, and hyper velocity collisions have been examined to better un-
derstand debris generation mechanism concluding that by the year 2000 collisional
breakups of satellites would become a new source of space debris and that, even
without new launches, the process of exponential debris formation will occur in a
shorter period of time than the asteroids belts observed around other planets.

1.1.2 Debris countermeasures
In order to protect human activity in space from orbiting debris, many countermea-
sures have been taken into account, that can be divided in 3 main groups: mitigate
human contribution to space debris, shield spacecraft and/or avoid debris and debris
removal.

Mitigate human contribution to space debris

In the Orbital Debris Mitigation Standard Practices, the US Government introduced
5 objectives and, for each, one or more standard practices to follow in order to
reduce human impact on space debris:

1. Control of debris released during normal operations: where it’s stated that
spacecraft and upper stages should be designed in order to minimize debris
release, and every debris over 5 mm in any dimension that remain in orbit for
more than 25 years must be justified.

2. Minimizing debris generated by accidental explosions: the risk of accidental
explosions should be demonstrated to be less than 0.1% and all on-board
sources of stored energy that could cause additional risk should be safed or
depleted when they are no longer required for mission operations.

3. Selection of safe flight profile and operational configuration: collision with
debris larger than 10 cm must be ensured to have a probability of happening
less that 0.1%, while collision with small debris, smaller than 1 cm with a
probability of 1%.

4. Post-mission disposal of space structures: a spacecraft or an upper stage should
be disposed, with a probability of success not less than 0.9 by: direct reentry
in atmosphere, earth escape or storage in low populated orbits for at least 100
years, depending on the orbit.

5. Clarification and additional standard practices for certain classes of space op-
erations: where guidelines are clarified for particular type of missions, such as:
satellite constellations, cubesat, rendezvous operations, active debris removal
and tether systems.
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1.1 – Space debris

Shield spacecraft and/or avoid debris

Spacecraft are, in order to protect on-board instrumentation and the structure itself,
equipped with debris shield, of various nature and thickness. The ISS, to name one,
is equipped with numerous typologies of shield: 1.5 to 5 cm thick aluminium layers,
10 cm thick Kevlar and Nextel shields, for example, depending on the estimated
exposure to potential damage.
However the shield solution may not be applicable for every type of debris that could
collide with spacecraft, for instance, on the ISS, for the US module, shields can
only be effective against collisions with debris smaller than 1 cm. For this reason,
collision-avoiding techniques have been thought. For the ISS, NASA provided a set
of guidelines, one of which is the so-called "pizza box" because of its shape: a 4 km
× 50 km × 50 km box with the ISS at its center. Whenever a big enough debris
is expected to be too close to the station, avoiding manoeuvres may be actuated:
if the probability is 1 in 100000, the manoeuvre will take place only if it will not
cause significant impact on the mission objectives, if the probability if 1 in 10000
the manoeuvre will take place if it will not cause additional hazard to the station
and the crew members. Since 1999, the ISS has conducted 29 collision-avoiding
manoeuvres, 3 in 2020.
An example of collision with a debris on the ISS is shown in Figure 1.4, the picture
shows a hole on the robotic ISS arm Canadarm2.

Figure 1.4. ISS Canadarm2 debris hole
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Introduction

Active debris removal

It has been estimated that, in order to mitigate the process of debris number growth,
at least 5 debris should be removed every year. Many techniques of active debris
removal have been studied and developed, to mention a few:

• Propellantless systems: in particular for large size debris (more than 10
cm), lasers via ablation or vaporization of the debris, drag enhancement device,
usually inflatable device with the intent to increase atmospheric drag, soar
sails, with the purpose of using solar radiation pressure in order to change the
orbit of the debris or deorbit it, electromagnetic tether, that by interaction
between earth magnetic field and a several km long conductive tether would
generate enough force to redirect the debris to a deposit orbit or to deorbit
and momentum tethers that uses the gravity gradient in order to redirect one
end of the tether to another orbit.

• Active (and passive) sweepers: for medium size debris (between 5 mm and
10 cm), systems that rely on debris collision in order to remove them from
overpopulated orbits. The sweepers, once deployed, will collide with debris
that would be captured or even just decelerated by the collision, resulting in
debris removal.

• Deorbit kit: this technique in particular is the one on which this paper will
apply the methods developed. It consists in specifically developed kits that,
once installed on debris that can have different dimensions, could relocate it
on deposit orbits or deorbit it in atmosphere.

12



Chapter 2

Dynamic model and transfer
cost evaluation

2.1 Dynamic model

Usually space debris dynamics are defined using a set of Two-line Elements (TLE)
and SGP4 Propagator, however, since the accuracy of ephemerids degrades with
time and TLE has to be updated regularly, a simplified propagation model has to
be adopted.
The values of semi-major axis for the space debris of interest is sufficiently high,
atmospheric drag can be neglected and only secular orbit perturbation due to Earth
oblateness (related to harmonic terms of J2) is considered.
Semi-major axis a, orbit eccentricity e and orbit inclination i are considered con-
stant, while right ascension of ascending node Ω, argument of periapsis ω and mean
anomaly M vary as

dΩ
dt

= −3
2

ò
µ

a3
J2 cos i

(1 − e2)2

3
rE

a

42

dω

dt
= 3

4

ò
µ

a3
J2 (5 cos2 i − 1)

(1 − e2)2

3
rE

a

42

dM

dt
=
ò

µ

a3 + 3
4

ò
µ

a3
J2 (3 cos2 i − 1)

(1 − e2)3/2

3
rE

a

42

where µ is Earth’s gravitational parameter and rE is Earth’s equatorial radius.
In case of low eccentricity, small changes of a(δa) and i(δi) will cause a deviation
of RAAN rate (δΩ̇) that can be obtained by the derivative of Ω̇ to a and i:

δΩ̇
Ω̇

= −2
7

δa

a
− tan iδi
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Dynamic model and transfer cost evaluation

2.2 ∆V transfer cost evaluation
In order to calculate the cost of every transfer between debris, it has been used a
simplified model based on the assumption that the RAAN of the chaser is close to
the one of the target. In this way the transfer can take advantage of the J2 pertur-
bation, that modified the RAAN of bodies orbting around earth. This method can
be applied to the studied problem since J2 perturbation has appreciable effect on
low orbits, at which all debris of GTOC 9 are placed.
The model gives 2 different solutions for 2 different problems: the first can be appli-
cable only to transfers where there is no time constraint, and will be only mentioned,
while the second provides solution that depends directly on the transfer duration,
and will be the one used in the problem solution.

Without time constraint Based on the simplification of the Hohmann transfer
cost for negligible radius change, that states that ∆v

v
= 0.5∆r

r
, and adding an

empirical relation to the eccentricity vector change, the model provides the solution

∆v

v
= 0.5

ñ
(∆a/a)2 + ∆i2 + ∆e2)

Where a is the mean semi-major axis value for the two orbits and v is the corre-
spondent circular velocity.

Transfer time is fixed Every transfer is considered do be from debris k to debris
k + 1 and it is assumed that

Ωk+1(t) − Ωk /= 0, ak+1 − ak /= 0, ik+1 − ik /= 0.

The three necessary velocity changes, denoted as x, y and z are

x = (Ωk+1(t) − Ωk(t)) sin i0v0

y = ak+1 − ak

2a0
v0

z = (ik+1 − ik) v0

where a0 = (ak+1+ak)/2, i0 = (ik+1+ik)/2 and v0 =
ñ

µ/a0. In this approximation,
2 impulse velocity change are considered, in order to save fuel. The first impulse is
written as

∆va =
ñ

(sxx)2 + (syy)2 + (szz)2

Since terms sx, sy, sz have no constraints, semi-major axis and inclination changes
may be larger than the actual difference in order to take more advantage of the J2
effect. This occurs when RAAN change is too large, and time wouldn’t be sufficient.
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2.2 – ∆V transfer cost evaluation

The changes in semi-major axis and inclination lead to a change in RAAN, that
can be written as

∆x = msyy + nszz

where m = (7Ω̇0) sin i0t and n = (Ω̇0 tan i0) sin i0t. Those two values are derived
from the dynamic model approximation to which the transfer cost model refers.
The second impulse can be written as

∆vb =
ñ

(x − sxx − ∆x)2 + (y + syy)2 + (z + szz)2

therefore, the total velocity change can be written as

∆va+∆vb =
ñ

(sxx)2 + (syy)2 + (szz)2+
ñ

(x − sxx − ∆x)2 + (y + syy)2 + (z + szz)2

Additional approximations are applied to the formula, ignoring small terms based
on the first assumption that RAAN changes are small, allowing a differentiation
with respect to sx,sy and sz. The equations are therefore set equal to 0 in order to
find minimum sx, sy and sz that minimize velocity change, that are

sx = 2x + my + nz

(4 + m2 + n2)x

sy = 2mx − (4 + n2)y + mnz

(8 + 2m2 + 2n2)y

sz = 2nx + mny − (4 + m2)z
(8 + 2m2 + 2n2)z

For small eccentricity changes, the velocity change is

∆ve = 1
2v0

ñ
∆e2

y + ∆e2
x

where ey = e sin ω and ex = e cos ω. An empirical eccentricity correction to the
formula ∆v = ∆va + ∆vb is introduced:

∆v′ =
ñ

∆v2
a + (0.5∆ve)2 +

ñ
∆v2

b + (0.5∆ve)2

assuming that the ∆v change is divided equally between each impulse.
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Chapter 3

Problem definition

3.1 GTOC9: "The Kessler Run"
The Global Trajectory Optimization Competition is an event that takes place every
one or two years in which aerospace engineers and mathematician compete to find
the best solutions to interplanetary trajectory design problems.
The 9th edition (GTOC9), named "The Kessler Run" is a competition that took
place in 2017. The theme of the competition was active debris removal due to the
growing problem of space debris. The objective of the competition was to find the
best way to reach 123 debris in LEO in order to install on them deorbit kits after
a 5 days rendezvous manoeuvre for every debris. The mission is set in 2060 in a
hypothetical situation where space debris have become such a problem that LEO
missions market size have gone beyond the trillion Euro.
In order to find the best possible solution, participants had to minimize the cost
function

J =
nØ

i=1
Ci =

nØ
i=1

è
ci + α (m0i

− mdry)2
é

where Ci is the total cost of a submission and is composed by a term ci that increases
during mission timeline, and α (m0i

− mdry)2 is a term depending on the spacecraft
mass: m0i

is the spacecraft mass at the begining of the i-th mission and mdry is the
dry mass of the spacecraft. α is set to 2.0 · 10−6[MEUR/kg2] and n is the number
of submission necessary to reach every debris. The term ci is computed as

ci = tsubmission − tend

tstart − tend

(cM − cm)

where tsubmission is the start epoch of the i-th submission tstart is the starting epoch
of the whole mission and is set to tstart = 23467[MJD2000], tend is the ending
epoch of the mission and is set to tend = 26419[MJD2000] and cm and cM are,
respectively 45 MEUR and 55 MEUR.
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Problem definition

The competition states that spacecraft mass must be calculated with the Tsi-
olkovsky equation

mf = mi exp
A

−∆V

ve

B
where ve = Ispg0
All spacecraft have a dry mass of Mdry = 2000kg and the maximum initial pro-
pellant mass is mp = 5000kg, resulting in a maximum total starting mass of
m0imax = 7000kg for each submission. The operational constraints given are:

1. Between successive rendezvous manoeuvre there must be a maximum time of
30 days. And, because the rendezvous manoeuvres take 5 days, 5 days is the
minimum time between successive rendezvous manoeuvres.

2. Between every submission there must be a minimum time of 30 days

3. All mission events must happen between starting epoch tstart = 23467[MJD2000]
and ending epoch tend = 26419[MJD2000].

4. The osculating orbital periapsis rp cannot be smaller than 6600000m.
In the table are shown all the values set for the competition

Value Units
α 2.0 · 10−6 MEUR/Kg2
cm 45 MEUR
cM 55 MEUR
tw 5 days
mde 30 Kg
mdry 2000 Kg
mp 5000 Kg
rpm

6600000 m
µ 398600.4418 · 109 m3/sec2

J2 1.08262668 · 10−3 −
req 6378137 m
Isp 340 sec
g0 9.80665 m/sec2

Day 86400 sec
Y ear 365.25 days

Table 3.1. GTOC9 Values

The list of debris is given in a .csv file, for each debris a list of orbital parameters
is given, all referred to a specific epoch, different for every debris. The parameters
given are:

• Reference epoch

18



3.2 – Starting point

• Major semiaxis, a

• Eccentricity, e

• Orbit inclination, i

• Right Ascension of Ascending Node, Ω

• Argument of periapsis, ω

• Mean anomaly, M.

3.2 Starting point
The goal of the thesis was to optimize asolution to the GTOC9 competition that
used graph theory in order to obtain better solutions. In this section will be briefly
described the method and which points have been modified and optimized.

3.2.1 Graph theory sequence generation
The 8 years time lineset by the competition has been divided into 300 timesteps of
9.8729 days each.
It has been created an oriented graph in which transfers under a threshold of 370
m/s (number that will be discussed in the next section) between debris in every
timestep have been saved. The transfers taken into account are the ones for which
the duration is 5, 15 or 25 days. These values, added to the 5 days necessary for
rendezvous, resulted in total transfer times of 10,20 and 30 days.
Every node in the graph is defined by 2 parameters: the debris ID, that is a number
between 1 and 123 and the temporal frame in which it finds itself, that is a number
between 1 and 300.
Two graphs have been created: for both, as mentioned, the nodes represent the
debris in all timesteps, while the edges represent the transfers: In the "g" graph
the weight of each edge is given by number 1, 2 or 3 depending on the length of
the transfer (respectively 10, 20 or 30 days) while on the graph "DV" the weight is
given by the actual transfer cost in terms of ∆V.
A detail of "g" graph is reported in the following figure.
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Problem definition

Figure 3.1. "g" graph detail

Once the graphs have been created, the sequence-generating algorithm starts:
the sequences are created by the generation of 20 routes through the graph. Every
route is independent from others and will create 20 different sequences from which
only the best one will actually be used as the starting point from the final solution.
The algorithm makes its way into the graph following the constrains given by the
GTOC9. Whenever a route has no more possible continuation, it interrupts and
the sequence continues, starting from another route that must not repeat reached
debris.
The parameters to start the algorithm are: the maximum number of iterations for
every route before the research interrupts and the maximum number of reached
debris for each sequence before the algorithm interrupts. Those values are set to,
respectively 500 and 105, but, as the ∆V parameter, those values will be discussed
in the next section.
Every interruption of the research process will be made to coincide with the end of
a submission and the beginning of the next one.
After the conclusion of this phase, every submission is checked if the constraint on
the submission mass is respected. Since all the submissions will be optimized at
the end of the whole process (including the one discussed in this paper) the limit
on the submission weight is set at 8000 kg. If one submission exceeds this value, it
gets splitted in 2 separate ones at the 30 days transfer closest to the middle of the
submission. It is important to note that once the sequences are completed, not all
the debris are placed and the solutions need additional processing in order to reach
all 123 debris.

Once the starting sequences are ready, all useful mission data is saved in a

20



3.2 – Starting point

structure that will be continuously updated during the next phases. The main
parameters saved in the structure, that will be used to process the solution in the
next phases are:

• Length of every submission

• Reached debris order, position in time and subdivision in submissions

• The cost of every transfer between debris, in terms of ∆V

• The cost of every submission in terms of MEUR

• The cost of every submission in terms of mass

• The total cost of the mission at the point of the processing

• The duration of each time transfer, including the 5 days duration of the ren-
dezvous, saved in a separate array.

In figure 1.6 is reported an example of the struct containing mission data.

n: [13 10 13 12 11 10 8 6 13 6 5 6 5 5]
list: [1×123 uint8]
pat: {1×14 cell }

feas: [14×1 double]
estdV: {1×14 cell}

total_cost: [1×14 double]
costo_medio_min: [1×14 double]

estM: [1×14 double]
massMEUR: [1×14 double]
timeMEUR: [1×14 double]

subm: [14×13 uint8]
TC: 831.5149

patTot: [1×123 uint8]
left: [1×0 double]

timeline: [1×123 double]
interval: [1×123 double]

Figure 3.2. Mission struct example

From this point on, the methods developed during this thesis work were applied,
but for completeness, the methods developed in the previous solution are briefly
described. The first method inserts, where possible, respecting GTOC9 mass and
transfers lengths constraints, left debris at the beginning of the submissions, before
the first debris. The second method creates new additional submissions at the end
of the mission or in a pause long enough between submissions. The new submission
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is created combinatorially inserting new debris in blocks of 7 debris, finding the
best permutation in order to obtain the cheapest new submission possible.

Once all the debris are inserted, a process of overall optimization is applied to
the solution, in order to find a new time disposition of the debris that could ensure
at least a local minimum in the mission cost. This has been implemented by using
the fmincon function in MATLAB®. Given a function to minimize and boundary
condition in which the optimization must be found, fmincon is able to find the
local minimum of the given function.
Since the variable to minimize is the total cost of the mission and the free variables
are the transfer duration of every transfer and the time gaps between the submis-
sions, the lower and upper bounds are arrays with the same length as the time
array that contain, for each transfer or pause between submission, the lowest and
highest possible value.

• The lower bound is an array with 123 elements, built as: 0 [5 ... 5] 30
[5 ...5] 30 ... 30 [5...5], where every sub-array of 5s represent the
lower value for transfers in-submission and each one is as long as the sub-
mission it’s referred to, while the 30s represent the minimum pause between
submissions.

• The upper bound is an array with 123 elements, built as: ∆d [30 ...
30] ∆d [30 ... 30] ∆d ... ∆d [30 ... 30]. Every sub-array of 30s
represents the maximum length possible for transfers in-submission and are as
long as the submission they are referred to, while the ∆ds are the maximum
value for pause between submissions and are set as the longest pause present
in the solution that is going to be optimized with an addition of 1 days.

fmincon also needs two additional values A and B, that are the terms of the
inequality A · x ≤ B meaning that A is a 123 long array of ones, while B is the
time difference between the starting and the ending epochs of the mission set by
the GTOC9 in [days]. In the following figure is shown an example of the fmincon
output of the overall optimization.

Another optimization is then carried on, trying to find possible swaps between
placed debris in the submission using random permutation of a random number
of debris between 2 and 6. After this and additional overall optimization using
fmincon is performed since after some submissions may now contain new list of
debris, the solution might not be still a local minimum.
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3.2 – Starting point

Figure 3.3. Example of fmincon overall optimization

Submission mass evaluation

Since for every rendezvous a deorbit kit is released, the total mass of ever submission
cannot be calculated at the beginning of the submission: the initial mass of every
transfer won’t be equal to the final mass of the previous transfer. The method,
therefore, starts at the end of each submission.
In every submission there will be n − 1 velocity changes: ∆v1, ∆v2, ∆v3, ...∆vn−1.
For every transfer the initial mass is calculated via the Tsiolkovsky equation

mi = mfe
∆v
c

where c = Ispg0, with Isp = 340s and g0 = 9.8067, as stated by the GTOC9. The
mass right after the last rendezvous would be

mf,n−1 = mdry + mde

where mdry is the dry mass of the chaser and is 2000 kg as stated by the GTOC9,
while mde is mass of the deorbit kit, set at 30kg. By applying the Tsiolkovsky
equation for the n − 1 transfer, the mass before the transfer is

mi,n−1 = mfn−1

. The next iteration wuold be the same, with the exception that

mf,n−2 = mi,n−1 + mde /= mi,n−1
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The process is applied n − 1 times.
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Chapter 4

Methods description

As mentioned before, from the point where only starting sequences are found, the
objective was to develop one or more advanced methods to fill those sequences
with the left debris in order to obtain a complete and competitive solution to the
GTOC9 competition.
This goal has been achieved via the development of three main insertion methods,
some of which are divided in smaller sub-methods:

• Direct debris insertion method, divided in:

– 30 days gap
– 20 days gap

• Replacement - insertion method

• Generated - spot insertion method, divided in:

– End of the submission
– In - submission

The last section of this chapter contains the description of the editing that has been
made on the first section of the code that generates the starting sequences.

4.1 Direct debris insertion method
This method, as the title suggests, directly inserts left debris inside the sequences
resulting from the first section of the code. To better explain how it works, the
description will focus on the 30 days gap sub-method since the 20 days gap one
uses the same functions and algorithms with different starting parameters.
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4.1.1 30 days gap
The idea behind this method was to find 30 days transfers inside the already present
sequences in order to fit another debris and, hence, two other transfers of smaller
duration: one transfer from the debris before the 30 days transfer and the inserted
one and another from this last debris to the one where the 30 days transfer ends.
As a first approximation the two shorter transfers were of 15 days each, so that
their sum was exactly 30 days. But, since none of the transfers was exactly 30 days
long (they were, in fact, 29.6187) as described in the previous chapter, it has been
necessary to set the first transfer length to 15 days as before, and the second one
to the time left for it from the gap. In this particular case of 30 days gap method
the two transfers will last respectively 15 and 14.6187 days.
Of course, since transfers happened in certain times during the mission and between
certain debris, not all the left debris were useful for every insertion: only certain
combinations could be used, depending on transfers cost. It has been therefore
necessary to calculate all the possible combinations in order to sort them and find
only the useful ones. This process has been carried out via the implementation of
a function called mat_inserimento.

mat_inserimento function This function has, as outputs, three main matri-
ces called prima_trasf, seconda_trasf and trasf_tot, that contain all possible
combinations of insertion of left debris in all the 30 days transfers present in all
sequences and, for each combination, the cost of the transfer in terms of ∆V. In
particular, prima_trasf and seconda_trasf contain, respectively, the cost of the
first and of the second transfer, while in trasf_tot the sum of the two.

Since this function had to be reused also in the other methods, it has been written
making it as adaptable as possible: putting as input, in addition to time array,
debris orbital parameters and general mission data (such as list of sequences, left
debris, etc.), also the time gap the user is interested in finding inside the sequences
and the duration of the first transfer of insertion. Second transfer duration is not
necessary as input since it depends on the gap and the first transfer.

All terms of prima_trasf and seconda_trasf have then been sorted, following
the order from the cheapest to the most expensive in term of ∆V cost, excluding
all transfers that would cost more than 2000 m/s because it would mean using
calculating capacity of the computer for useless purpose as more than 2000 m/s
for a single transfer would make the whole submission unusable. In order to fit a
larger number of debris, as some insertion might present cheap first transfers and
expensive second transfers or vice versa, the fmincon function has been used to
optimize the time duration of the two new transfers generated after the insertion.
Fixed the sum of the two transfers as the length of the 30 days gap transfer and the
minimum and maximum values of the two transfers at 5 and 30 days (imposed by
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GTOC9 constraints), fmincon returns the optimum duration of the first transfer,
and hence the second. This result was generated finding the minimum of a new
function costins written ad hoc for this optimization. costins is a simple function
that locates the position of the 2 or 3 debris given as input and calculates the cost of
those 2 transfers based on the duration of the first transfer, also given as an input.
In particular, the duration of the first transfer is the free variable in the fmincon
function, while the cost is the variable to minimize. costins is another function
that would be reused in other methods, and is therefore capable of working with
just 2 debris and one transfer, as it will be discussed in the next methods.

A new matrix has then been created called mat_ins that contains all useful data
for insertion.
An example of one matrix written during the final solution is shown in table 4.1.

Total ∆V 1st transfer dur. Left debris Gap 1st transfer ∆V 2nd transfer ∆V
optimized [m/s] optimized [s] position position optimized [m/s] optimized [m/s]
1049.89 10.96 26 11 679.65 370.25
1095.31 5.00 2 10 709.61 385.70
1162.52 10.79 12 9 755.89 406.63
1544.78 5.00 4 3 720.36 824.42
1623.40 5.00 27 5 986.04 637.36
2075.02 5.00 17 6 1059.66 1015.37
3408.40 14.75 8 14 1774.68 1633.72

Table 4.1. mat_ins example.

IDs in 3rd and 4th columns are to be intended as x and y positions in trasf_tot
matrix, as in the code they resulted a lot more useful than the actual debris IDs.
The last step was to try to insert the debris in the submissions, verifying at every
loop that a maximum value of submission mass (8000 kg as final optimization will
reduce this value) was not exceeded.
If the result was positive the code proceeded to actually insert the debris in the
submission, and to give a string as output with necessary information:

Adding debris _ in submission _ at position _
The submission will weigh _ kg

Otherwise, the user would be informed via the output:

Too heavy

To better understand the direct insertion method a visual representation is shown
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in Figure 4.1.

Figure 4.1. Visual representation of Direct insertion method

4.1.2 20 days gap
As mentioned before, the 20 days gap insertion method works the same way as
the 30 days one, except for the inputs in the function mat_inserimento: the first
transfer duration would be 10 days and not 15, and the gap to find in the submission
is between 15 and 25 days. Exactly 20 days were not possible as input because of
two reasons: the first is that gaps are almost never exactly 20 days, but rather
19.7458 for the same reason discussed in the previous paragraph, and also because,
after the optimization in the 30 days gap method, many different values from 15 to
25 days may appear as duration of one of the two transfers.
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4.2 Replacement - insertion method
This second method, as its name suggests, tries to find the best combination of
replacement of a left debris with an already placed one, along with the placement
of the new left debris.

Replacement

In order to reach this goal, the first step has been to find and sort in descending
order of ∆V cost all the possible replacements. This has been done via the function
sost_cost.

sost_cost function The function generates 5 matrices, each one with a specific
purpose: costo_prima, costo_dopo and guadagno all have same dimensions (N
left × N placed) and, respectively, contain the total cost of a debris (intendend
as sum of tansfer before and after that debris) before the replacement, after the
replacement and the difference between before and after the replacement. Other 2
matrices are generated that are simply the cost of the transfer before and the one
after the replaced debris. It is important to note that the matrix guadagno might
contain negative values, that means that the replacement in itself is not convenient,
but may be a good solution if paired with an efficient insertion

Another new matrix has then been created, called mat_sost with all the sorted
replacements that, overall, didn’t exceed a total gain/loss of -2000. In this case
2000 has been considered a reasonable value to stop at since it allows the code to
work with a greater number of combinations without slowing the process too much.
In table 4.2 is shown an example of the replacement matrix mat_sost.

Left debris To replace Total gain Transfer to debris Transfer from debris Total cost
debris [m/s] gain [m/s] gain [m/s] [m/s]

79 26 287.16 287.16 0* 97.28
57 112 117.96 0* 117.96 526.57
79 61 -89.17 -693.39 604.22 967.24
79 6 -137.21 -79.13 -58.08 1234.43
9 64 -465.44 -465.44 0* 563.62
57 43 -623.33 -380.03 -243.31 1566.60
15 94 -684.67 0* -684.67 852.98
57 54 -762.13 -516.10 -246.03 1568.18
57 59 -1096.27 516.62 -1612.90 2633.94

Table 4.2. mat_sost example
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The figure represents the first 9 rows of the matrix generated in the final solu-
tion. The first two columns contain the IDs of respectively the debris that would
replace and the debris that would be replaced. The 3rd column is the sum of the
4th and the 5th that shows the gain in transfer to and from replaced debris, while,
as described in the figure, the last column is the total cost of the replaced debris
(as sum of transfer to and from it).
* Null values in 4th and 5th columns appear in case a replacement happens at
the end or at the beginning of a submission, where the transfer before or after the
debris does not exist.

Insertion

Once this point has been reached, the insertion phase began. For every replacement
a new left debris had to be placed. The procedure applied to find a gap where to
place the new debris is similar to the direct debris insertion method: for every
new left debris the function mat_inserimento has been applied singularly (so that
matrices prima_trasf, prima_trasf and trasf_tot were only one row long) two
different times, one with input parameters for a 20 days gap and the other with
input parameters for 30 days gap. All the involved values, as well as the replacement
values for that particular debris, have been saved in a new matrix called plac_sost.

plac_sost The first version of this matrix contains in every row the same info
contained in the rows of mat_sost but in adddition it also contains all values useful
for the insertion of the replaced debris (the values resulting from mat_inserimento
for both 20 and 30 days gap insertions). Not all rows of mat_sost are present in
plac_sost because if one insertion presents values of total ∆V that exceeds 1000
m/s for both 20 and 30 days transfers, the row gets deleted. A whole paragraph
is dedicated to this specific matrix because it’s the most important matrix of the
method and determines its structure: the whole optimization and actual insertion
part of the method is looped about its length. This is because once a certain combi-
nation is applied to the mission, all the other values in the matrix must be updated
to the new mission data (new time array and presence of new debris that may
appear after a replacement or after an insertion), and it is not possible to know a
priori whether or not a certain combination can be applied to the solution.
The first version of plac_sost was therefore a guideline for the continuation of the
method and would be updated at every iteration with positive result. In fact if a
replacement between a left debris and two or more placed debris appeared two or
more times in the matrix, only the first useful combination would be used (that
should also be the less expensive) and the other would be ignored.
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Optimization

To make this method more effective, every insertion and every replacement have
been optimized using the function fmincon.
As in the direct insertion method, fmincon optimizes times using the function
costins with as inputs 3 debris in the insertion optimization and in the replace-
ment if it happens inside the submission and with 2 debris as inputs only for the
replacement optimization if it happens at the beginning or at the end of the sub-
mission. This is because inside the submission, for both replacement and insertion,
3 debris are involved: the inserted/replaced one, the one before and the one after,
and hence 2 adjacent transfers needed to be optimized, the same way as in the
direct insertion method, while for the beginning or the end of the submission the
involved debris were only the replaced one and the one after or before it, with just
one transfer.

Replacement and insertion attempt

All optimal time values and, hence, updated ∆V values of insertions and replace-
ments have been written in plac_sost matrix.
Once the row has been completed with all the values (divided in 20 columns), the
minimum value between the ones on the 20 days gap insertion and the 30 days
one has been chosen and with it all relative other values (position relative to that
transfer, optimal insertion time) and replacement/insertion was attempted. If the
result was positive the code gave, as output, the string:

Adding debris _ in submission _ at position _
The submission will weigh _ kg
Replacement happened in submission _ at position _.
Debris _ has been replaced with debris _

The result could be negative for three reasons:

• The submission in which there should happen would be too heavy

• The submission in which the insertion would happen would be too heavy

• The submission in which replacement and insertion would happen is the same
and would be too heavy

For those three cases, the code gave three different outputs:

Replacement too heavy
Insertion too heavy
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Insertion and replacement too heavy

It follows a visual representation of replacement - insertion method to better un-
derstand the logical flow.

Figure 4.2. Visual representation of replacement - insertion method
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4.3 Generated - spot insertion method
This third and last method tries to create new time gaps between debris in the
submissions in order to insert new ones. To do that, it translates in time each
debris in the target submission, respecting all GTOC9 requirements. The method
is divided in 2 sub - methods: one that only deals with in-submissions insertion
and the other that only deals with insertions at the end of the submission. This
division has been made since, as it will be described, the two methods have similar
logical processes, but their implementation follows two different strategies.

4.3.1 In - submission method
In order to make a clearer explanation, the method description has been divided in
two steps: optimal combination finding and spot generation and insertion.

Optimal combination finding

Since in this method, differently from the first one where the gaps already existed,
the gaps must be generated, there were no constraints in the position of the inser-
tion and every transfer could be a potential insertion spot. It has therefore been
necessary to calculate the cost of transfers between all placed debris and all left
debris. Those transfer have been calculated with the duration of 10, 20 and 30 days
in order to find possible short cheap transfers.
Once all the combinations have been found, they have been sorted in ascending or-
der of ∆V cost and then divided in Nleft different matrices in a cell, obtaining a list
of ascending cost combinations for each left debris, the cell is called leftgeninfo.
Since each potential insertion has been calculated ignoring all the others, it was
not possible to use just the cheapest combination for all debris: some may find
themselves in the same position as others, so it has been necessary to find the best
combination that ensured the potential insertion of all left debris without overlay
of debris.
To obtain this result it was necessary to cycle at least the first 5 potential insertion
of all left debris with all the other first 5 of the other left debris in order to obtain
all possible combinations and, only then, select the less expensive that would re-
spect the constraint of non - overlaying between left debris. This process has been
done via the utilization of a recursive function since N nested for loops, where N
is the number of left debris, were necessary, and it was not possible to modify the
code based on a variable that changed for every different solution. The recursive
function is called opt_recursion.

opt_recursion As mentioned before, this function has been used to calculate
and save all possible combinations of the first five best potential insertions for each
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left debris. The key characteristic in a recursion function is the fact that inside the
function it calls itself, passing many parameters at the first level of the function, it
is possible to interrupt the loop of recalling itself when needed. In this particular
case, the function recalled itself as many times as there are left debris. Every
time the limit depth is reached, the recursion goes back one step and increases one
parameter, changing the combination with a different last insertion, once all the
first five insertion of the last left debris have been saved, the recursion goes back two
steps, increases the second-to-last parameter and repeats the process just explained.
To better understand the process, in figure 4.3 is represented an example.

1st level 2nd level 3rd level
1st iter A1 B1 C1
2nd iter " " C2
3rd iter " " C3
4th iter " B2 C1
5th iter " " C2

... ... ... ...
Last iter A3 B3 C3

Figure 4.3. opt_recursion example

In the example every left debris is represented with a letter, A, B or C, and
the number associated with each letter represents the potential insertion (1 is the
cheapest and 3 is the 3rd cheapest), as it’s possible to see, the number of the last
debris increases for every iteration, and once the maximum number (3 in the ex-
ample) the left debris that comes before increases.
In the actual function the numbers taken were 5, number that ensures almost cer-
tainly that the best combination will be calculated, and in the final solution the
number of left debris was 6.
All combinations have been saved in a global matrix called mat_comb with 5Nleft

rows, one for every combination.
In order to keep the calculating time in acceptable limits, the recursive function is
called only if, at the point of the code where the generated - spot method is called,
the left debris are less or equal to 7, that means 78125 combinations.

Once the combination matrix has been calculated, it has been sorted on ascending
order of cost, where the cost is the sum of every ∆V for each potential insertion.
Then it has been possible to choose the less expensive that could respect the con-
straint of no overlaying. The result is a saved in a matrix called mat_comb and used
to attempt insertions. The result from the final solution is reported in table 4.3.
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Left ID Insertion cost Before left ID Insertion length
30 994.53 74 30
57 211.94 43 30
77 861.73 36 30
87 1709.93 38 30
93 904.40 79 30
102 1694.29 35 30

Table 4.3. mat_comb

Spot generation and insertion

The space necessary for the debris to be inserted in the target submission is the
fourth column of every plus an additional 20 days to get from the placed debris
to the one after it (20 days has been chose after several attempts, and can be
considered a reasonable trade-off value). In order to create such space, an iterating
process has been carried on, shortening by 1 day every transfer in the submission
until the space is enough. The process shortens all necessary transfers following
this method.

Spot generating algorithm Set the target transfer position in the submission
as i, the shortening order follows the order

i-1 i+1 i-2 i+2 i-3 i+3

for every shortening, the target transfer gains 1 day and the process goes on until
the target length is reached. If the position of the transfer to shorten exceeds the
submission, the shortening starts again from the first transfer before or after the
target transfer. A numerical example is shown in figure 4.4.

Position 0 1 2 3 4 5 6 7 8
Iter 1 0 0 0 -1 +1 0 0 0 0
iter 2 0 0 0 -1 +2 -1 0 0 0
Iter 3 0 0 -1 -1 +3 -1 0 0 0
Iter 4 0 0 -1 -1 +4 -1 -1 0 0
Iter 5 0 -1 -1 -1 +5 -1 -1 0 0
Iter 6 0 -1 -1 -1 +6 -1 -1 -1 0
Iter 7 0 -1 -1 -2 +7 -1 -1 -1 0
Iter 8 0 -1 -1 -2 +8 -1 -1 -1 -1
Iter 9 0 -1 -2 -2 +9 -1 -1 -1 -1
Iter 10 0 -1 -2 -2 +10 -2 -1 -1 -1

Figure 4.4. Spot - generation algorithm example
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The first transfer remains untouched because it represents the time between two
submissions and it’s not an actual transfer. Moreover, by subtracting and adding
the same amount of time in every step doesn’t modify the temporal position of the
submission, leaving untouched all the other submissions. Some constraints, how-
ever, need to be applied in order to respect GOTC9 rules: all transfers must not
be reduced under 5 days, if it happens the code skips to the next shortening, if
all transfer reach 5 days length without having reached the desired length for the
target transfer, then the transfer target is shortened by 5 days, and the process
starts again from the beginning, this will be repeated until even the target transfer
would rich 5 day or less. At that point the debris cannot be placed and the code
skips to the next debris.

Once this point has been reached, a complete optimization of the submission has
been carried on, in order to remove all possible unbalances due to the insertion. In
this case the bounds to the optimization were that each transfer inside the submis-
sion had to be between 5 and 30 days, while the first and the last transfers remain
untouched.
This kind of algorithm allows not to modify the overall structure of the submission,
this feature is important since the submission optimization works with local min-
ima: if the entire structure of the submission (that should be close to the optimum
due to the sequence finding method and the other optimizations) is compromised,
the result after the optimization might not be as good.
This time the mission is update with the modifications only if its total mass is equal
or less than 7300 kg, because, even though a total optimization on the submission
has been conducted,the overall optimization will reduce its mass even more. The
code outputs, if the attempted insertion gives positive results, are:

Adding debris _ after _
The submission will weigh _ kg

Otherwise, if the submission exceeds 7300 kg:

Too heavy

and, if as mentioned before, it is impossible to insert the debris due to time limita-
tions

Not enough space for insertion.

Here is shown a visual representation of the method.
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Figure 4.5. Visual representation of in-submission spot generation method

4.3.2 At the end of the submission method
The process followed in this sub - method is similar to the one described in the
previous section, but, having less combinations to deal with, follows a different
path to reach the insertion phase. The first step, has been to find, once again, all
possible combinations between left and last debris in every submission. Since the
probability of finding shorter but cheaper transfers is a lot lower than in the pre-
vious case, all the combinations have only been calculated with 10 days transfers,
also because the final optimization would find the best transfer duration.
Again, all the combinations are sorted and the first five for each left debris are
saved in a cell called leftfinaliinfo with all necessary insertion values: starting
debris, left debris, transfer cost and transfer duration.
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The insertion phase then starts, attempting the insertion of every possible com-
bination, starting from the first of all left debris, once at a time. Every time an
insertion is attempted, a vector called ins_finale is overwrote with the data of
the insertion. An example of the vector ins_finale is reported in table 4.4.
The spot - generation follows the same algorithm of the previous sub-method, the

Left debris Transfer cost Debris before Transfer
[m/s] insertion duration

30 2271.3 32 10

Table 4.4. ins_finale example

only difference is that the shortening only happens backwards in the position, since
the space to be generated is always at the end of the submission. In this case at
least 30 days are left after the insertion to respect the 30 days between submissions
constraints (the insertion could leave more than 30 days after the last debris if the
gap is already greater than 40 days). Once the spot is generated and the debris is
inserted in the submission, an optimization of the submission is again carried on
with the same constraints as the previous sub-method.

For every iteration, if the result is positive, with the submission mass under 7300
kg, all future iterations will ignore the more expensive insertions for the inserted
debris and keeps iterating the others. The code output is the same as the sub-
method before. A visual representation of the sub-method is shown in figure 4.6.
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Figure 4.6. Visual representation of at the end of the submission spot
generation method

4.4 Parameters editing
Based on the nature of the methods implemented during the work, the best fea-
ture a preliminary solution should have (where preliminary solution is the solution
before the filling phase, just after the graph-method finding phase) is having short,
cheap submissions. Surely, having shorter submissions means also having more
submissions in order to have a reasonable number of already placed debris.
To obtain a result that could respect all those requirements, it has been necessary
to modify some of the parameters responsible of the generation of the preliminary
solution. The modified parameters are: ∆V threshold for graph generation, num-
ber of iterations for sequences generation,∆V weight on time dimension and debris
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number threshold to interrupt sequences generation.

∆V threshold for graph generation

This value has been changed from an initial 370 m/s to a lower 340 m/s. This
choice has been made because by reducing the maximum value of possible links
between nodes, also the number of edges is reduced. This means that less intercon-
nections are possible and therefore finding long submissions becomes harder: with
less links there are less possible combinations from which is possible for the code
to choose.

Number of iterations for sequences generation

From 500 iterations, the value has been modified to 100, so that the code has less
time to analyse combinations and therefore find long submissions.

∆V weight on time dimension

Before the implementation of the described modifications, the solution tended to
have longer submissions, especially at the beginning of the mission, that means hav-
ing less space to insert new debris. This particular modification has been specifically
thought to solve this problem.
The first idea was to modify the weight of ∆Vs used in the generation of the graph
linearly along the development of the mission, meaning that the code would see the
first transfers heavier than they actually were.
The problem with this kind of solution was that the ∆Vs became too low already
in the second or third sequence, meaning that the modification was effective only
in the very first stages of the process.
The final solution has been achieved via an iteration process in order to find the
best weight to give and from which point, this because the latest sequences, with
a weight too high, resulted in submissions too short ( 1 or 2 debris). The solution
sees a multiplication of calculated ∆Vs for a factor that in the beginning of the
mission has a lower decrease ratio than in the end. To do so, a cubic trend has
been chosen, properly multiplied by factors obtained via an iterative process. The
factor decreases until the 225th timestep has been reached. This choice has been
made since the solution never occupies the entirety of the available time and over
225 timesteps it has been observed that the code would struggle too much to find
useful links with a still increased ∆V weight. The factor follows the trend:

f =
3
√

i − 225
7.5 + 1 i = 1, 2, 3, ..., 300

The i represents the position of the ∆V in time dimension, since the time vector
is an equispaced array of 300 terms between the starting moment of the mission

40



4.4 – Parameters editing

(from GTOC9 requirements) and the stopping moment. In figure 4.7 is shown the
curve representing the trend of the factor f.

Figure 4.7. Visual representation of ∆V weight factor f

Debris number threshold to interrupt sequences generation

This value has been changed from 105 to 100. This modification was made because
even with the changes described in this section, the last submissions tended to be
too short, passing from 105 to 100 stops the sequence finding in a way that all
submissions present acceptable lengths with a reasonable amount of starting debris
(the final solutions starts from 94 debris).
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Chapter 5

Results

5.1 Results before debris insertion

Here are shown the results right after sequence finding and before the application
of the methods discussed in the previous chapter. In the table are represented the
list of debris for each submission. The total number of reached debris at this point
was 94, that is less than the totality of debris, with 29 missing. It therefore needed
additional processing.

Submission ID Number of debris Debris ID
1 11 16 115 121 39 104 96 58 17 119 51 24
2 8 31 108 62 86 20 48 42 72
3 9 44 116 3 46 83 8 27 71 64
4 11 53 29 74 65 4 70 67 13 91 11 32
5 9 23 14 33 60 99 18 100 84 47
6 5 112 59 92 61 26
7 7 82 120 105 52 109 38 25
8 5 94 10 78 95 101
9 9 68 41 63 2 37 90 1 36 123
10 4 80 111 98 66
11 4 88 117 21 28
12 5 89 114 106 19 5
13 4 69 34 81 107
14 3 49 7 97

Left debris 6 9 12 15 22 30 35 40 43 45 50 54 55 56 57 73 75 76 77 79 85 87
93 102 103 110 113 118 122

Table 5.1. Solution sequences before debris insertion
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As it is shown in the table, the biggest submission contains 11 debris. This result
is due to the edit of the parameters in the first section of the code also described
in the previous chapter. The submissions are, in general, smaller compared to the
results given without such modification. An example of results is now given: the
table shows the mean values of 20 different sequences given by the code without
the editing. All values given in the table in the non-edited row are to be considered
as a mean of the 20 sequences.

Max debris number Min debris number Number of subm Mean subm length
No edit 14.9474 3.6842 10.2105 9.7248

Edit 11 3 14 6.7143

Table 5.2. Non-edited and edited starting sequence comparison

As mentioned before the edited sequences are, in general, shorter than the non-
edited ones: 6.71 vs 9.72 and, proving that the editing has been successful, the
edited solution presents a higher number of submissions, 14 vs 10.21. In the edited
version the solution leaves more space for the insertion of left debris.

5.2 Results after debris insertion
The methods developed and implemented during the work were then applied.
In order to make the most of the used methods, the order in which they have been
applied to the starting sequence is:

1. Direct debris insertion method, 20 days gap (first application).

2. Direct debris insertion method, 30 days gap.

3. Direct debris insertion method, 20 days gap (second application).

4. Replacement - insertion method (first application).

5. Generated - spot insertion method (at the end of the submission).

6. Generated - spot insertion method (in - submission).

7. Replacement - insertion method (second application).

The choice of the order was made following an iterative trial and error process but
the validity of the result is easy to confirm: the first three sub-methods are applied
firstly because it does not modify the temporal position of the debris that are not
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5.2 – Results after debris insertion

directly involved in the placement (the debris before the one placed, the one placed
and the debris after the one placed). The 20-30-20 sequence is the best one of the
possible combinations due to the weight of the insertions: the 30 days placements
weight less than the 20, so applying the 30 days placement before the 20 days one
leaves less space for those insertions, reaching the maximum mass imposed for the
submission with less insertion. The second application of the 20 days placement
is necessary because new 10 to 20 days gaps have been created after the 30 days
insertions.
The replacement-insertion method has been applied two times because, being highly
sensible to debris mission changes, such as debris order or position in time, after
the application of the generated-spot method, new insertion might be possible. For
each method is shown how many debris were collected.

• Direct debris insertion method, 20 days gap: 7 debris.

• Direct debris insertion method, 30 days gap: 10 debris.

• Direct debris insertion method, 20 days gap: 2 debris.

• Replacement - insertion method: 4 debris.

• Generated - spot method, in - submission: 1 debris.

• Generated - spot method, at the end of the submission: 5 debris.

• Replacement - insertion method: none.

The absence of debris in the last insertion phase is due to the completion of the
solution before this last phase, making it useless in this particular solution. A
complete view of debris insertion and replacement given as the output from the
code can be found in Appendix A - Code Output
The list of debris after the insertion phase is shown in the table below.
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Submission ID Number of debris Debris ID
1 13 16 56 115 121 39 104 96 58 17 119 122 51 24
2 10 31 108 62 75 86 12 20 48 42 72
3 13 44 116 3 46 110 83 8 22 40 6̄4 27 71 9̄
4 12 53 73 29 74 65 4 70 67 13 91 11 32
5 11 23 14 33 60 99 18 100 84 47 87 102
6 10 112 54 43 57 59 50 92 7̄9 6 26
7 8 82 120 105 52 2̄5 109 38 7̄6
8 6 1̄5 10 9̄4 78 95 101
9 13 68 85 41 63 2 37 103 90 1 55 36 123 77
10 6 80 111 98 45 66 93
11 5 88 117 113 21 28
12 6 89 114 106 118 19 5
13 5 69 34 81 6̄1 107
14 5 49 7 35 97 30

Table 5.3. Solution sequences after debris insertion

In the table every underlined ID represents a debris that has been added to
the sequence, the IDs with the cap are the ones which have been replaced during
the replacement-insertion phase and debris underlined and with cap are the ones
placed after being replaced.
It is possible to notice that the number of placed debris is 29 (the number of left
debris before the insertion) and the number of replaced debris is 4, that is the
number of debris placed with the replacement-insertion method.
Here are shown two tables containing time steps and the ∆Vs of transfers between
every debris.

Subm ID ∆t [days]
1 5 24.6 29.6 9.9 9.9 19.7 29.6 9.9 29.6 24.6 5 9.9
2 59.2 9.9 9.9 5 24.6 5 14.7 29.6 19.7 9.9
3 30 9.9 29.6 9.9 5 14.7 29.6 5 5 14.7 4.9 9.9 30
4 39.1 5 14.7 9.9 29.6 9.9 9.9 9.9 29.6 9.9 9.9 9.9
5 59.2 12.7 30 5 5 30 30 5 5 30 25.3
6 68.85 5 5 5 30 5 14.0 5 5 5
7 59.2 9.9 9.9 9.9 24.6 9.9 29.6
8 68.7 29.6 5 24.6 9.9 29.6
9 59.2 17.7 30 29.3 28 30 5 20.4 5 5 17.0 5 5
10 108.5 5 5 5 14.4 30
11 78.9 9.9 5 24.6 9.9
12 118.5 9.9 9.9 24.6 5 9.9
13 148.1 9.9 19.7 5 14.7
14 177.7 30 30 30 30

Table 5.4. Time steps after insertion, before optimization
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5.3 – Final results

Subm. ID ∆V [m/s] Mass [kg]
1 236.1 304.2 128.5 164.7 91.4 132.3 184.2 170.1 183.7 1034.8 1168.5 87.4 7031.6
2 144.2 183.7 312.0 448.5 724.4 829.8 146.2 185.3 150.7 5584.6
3 99.9 179.6 139.2 984.2 669.6 183.2 251.6 187.7 572.5 66.3 157.2 409.6 7175.9
4 1061.5 1029.9 137.1 146.3 93.7 97.5 120.2 174.5 194.6 154.5 191.6 6266.6
5 141.4 120.5 191.4 71.8 190.0 229.6 226.4 220.9 1883.5 592.5 6854.7
6 644.6 161.5 400.8 692.6 332.5 498.7 534.3 95.0 580.1 7077.1
7 136.8 62.6 153.1 175.2 45.5 152.9 973.8 3584.4
8 853.7 291.3 351.5 180.9 187.8 3729.4
9 239.6 272.7 164.7 181.1 260.0 301.5 382.2 78.9 516.9 367.6 155.3 886.9 6896.7
10 160.0 198.1 632.7 712.6 2436.7 7181.8
11 226.5 701.2 597.7 162.4 3486.8
12 261.7 205.4 1216.0 1525.7 256.9 5935.1
13 83.1 280.5 451.1 117.3 2787.2
14 168.2 960.2 610.1 1684.5 5791.1

Table 5.5. ∆Vs and submission masses after insertion, before optimization

Almost all values respect the constraints given by the competition, except for
a 4.9 days present in submission number 3. This result does not mean that the
solution is not consistent, it is, in fact, due to the approximation to 10, 20 and
30 days in the first part of the code: those values are, instead, a little smaller (by
1/10 of unit) and the insertion of exactly 15 and 10 days transfers lead to a 4.9.
This value does not imply great differences in the result (having 5.0 changes the∆V
by only 2 m/s) and it will eventually be increased to a value higher or equal to 5
during the final total time optimization using the fmincon function. As it’s possible
to see, already before optimization, all the masses never go over 7500 kg, value that
would be easy to be reduced under 7000 kg during the final optimization. The
speed changes are, in general, reasonably small, with 9 transfers over 1000 m/s and
29 over 500, but, as it will be shown, almost all these values will be reduced during
the optimization.

At this point of the solution processing, the overall mass of the mission was
79383 kg and the total cost was 1140.9 Million €.

5.3 Final results
Since all the debris were placed, it was then possible to apply the optimization
already implemented in the starting code, applied as follows:

1. Overall time optimization

2. Combinatorial optimization

3. Overall time optimization
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A double overall time optimization has been necessary since the order of the debris
in the sequences had changed and the local optimal time found during the first op-
timization might not have been the same. In fact, during this second optimization
about an additional 3% in terms of total cost has been saved. Further iterations of
this process were not possible since the combinatorial optimization reached satura-
tion and it was no longer possible to find new useful permutations.
This process has been performed several times in order to find a pseudo-optimal
solution since the combinatorial optimization makes use of randomization, meaning
that each run gave a different solution. The final total mission cost was

831.5449 Million €.

In the two following tables are shown the final results of time-step and ∆Vs.

Subm ID ∆t [days]
1 0 5 27.1 23.7 5 14.4 21 30 7.3 30 30 5 30
2 30 5 5 5 15.8 30 28 29.1 5 5
3 30 5 22.4 5.6 16.3 30 30 5 5 23.7 11.2 5 5
4 30 28 19.1 15.1 22.3 5 6.6 16.1 30 30 5 27.9
5 30 21 23.2 5 5 26.1 23.6 5.9 5.0 30 30
6 30 22 5 29.4 30 5 25.6 5 5.0 29.8
7 30 5 6.1 5 26.1 5 5 30
8 30 30 5 28.2 30 30
9 75.1 29.2 21.5 30 30 30 5 25.3 5 5 25.6 23.6 5
10 30 26.2 9.7 5 30 26.2
11 63 15.4 5 30 14.2
12 111.2 22.5 9.6 30 5 30
13 106 29.4 30 5.0 29.9
14 167.5 30 30 30 30

Table 5.6. Final time step solution
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5.3 – Final results

Subm ID ∆V [m/s] Mass [tns]
1 235.1 198.8 151.2 163.6 63.5 119.0 177.7 169.6 159.2 363.8 85.7 557.8 4680.4
2 110.0 149.0 298.6 369.3 173.7 88.8 163.9 135.6 168.0 3651.6
3 71.0 297.8 231.0 51.5 135.0 94.0 346.4 190.1 224.7 88.8 72.0 324.0 4294.9
4 590.0 213.8 127.0 151.3 84.2 98.5 107.9 178.7 117.9 71.0 207.2 4075.2
5 138.3 74.9 128.4 70.5 217.8 271.6 153.4 238.9 1713.6 481.9 6146.0
6 278.4 101.9 320.2 233.6 250.7 431.0 176.7 79.5 283.5 4213.2
7 127.7 99.2 113.0 168.7 44.4 152.0 962.3 3551.0
8 226.0 156.9 180.1 406.8 462.0 3260.3
9 210.5 101.0 161.6 172.0 273.0 259.5 376.6 62.9 365.0 365.7 180.4 170.1 5053.6
10 95.7 55.6 287.6 1751.8 239.7 4362.2
11 177.6 226.3 209.6 153.0 2656.2
12 142.1 204.9 267.6 242.0 496.2 3185.2
13 83.2 195.5 203.6 97.5 2513.7
14 166.0 306.0 563.7 1133.5 3997.7

Table 5.7. Final ∆Vs and submission masses.

All values in the time step table respect the requirements specified in the GTOC9
competition: all time steps at the beginning of the submission are greater or equal
to 30 days, except the first values that equals zero, meaning that the mission will
start exactly at the starting moment of the time window in which the mission
must be performed, while the moment at which the last debris is caught is on
the day 26201 [MJD2000], 217.95 days before the deadline of the mission (26419),
requirement of the competition. All the other values are between 5 (that is exactly
the time necessary for the rendez-vous) and 30 days (the maximum time step for
in-submission time steps). As mentioned before, overall, the ∆Vs have drastically
decreased, showing only 3 values over 1000 m/s and 7 values over 500 m/s.

Figure 5.1 shows that almost the entirety of the mission happens with time steps
less or equal to 30 days, with the exception of the last third of the mission where
peaks are distinguishable: they represent the time steps at the beginning of mission
9,12,13 and 14. This phenomenon is due to the fact that during the first sequence
finding, the first submissions were the easiest to find, despite the editing applied
in that section, therefore those first sequences are more likely next to the optimum
solution and didn’t need great time translation in order to get low speed changes.
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Figure 5.1. Mission time steps

5.4 Results comparison with starting solution
The first noticeable difference with the starting solution is the overall cost of the
mission: this first solution has a cost of 865 Million €, whereas the new one costs
831.54 Million €, with a 3.87% gain. The most important values are shown in the
table below.

Old solution New solution
Shortest subm. length 4 5
Longest subm. length 14 13

Mean ∆V change 285.46 246.94
Mean subm.mass 4285.1 3974.4

Subm. length std dev 3.19 3.26
Mean time-step 21.73 21.10

Table 5.8. Values comparison between old and new solution.

In general, it is possible to say that the results in the new solution are better:
it can be seen from the mean ∆V changes, which show a gain of about 13.5% and
the overall mean submission masses, with a gain of 7.25%. The other values in the
table show that, even though the new solution has maximum and minimum values
of submission length closer to the mean value of 8.79, the standard deviation for all
lengths is smaller in the old solution, meaning that in general submissions lengths
are closer to the mean value. Even the time steps are on average greater in the
old solution with a theoretical smaller ∆V change. Despite those last two results,
the new solutions give a lower cost, meaning that, in fact, it contains better debris
pairing, proving the effectiveness of the developed insertion methods.
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5.4 – Results comparison with starting solution

Here follows a graphic description of ∆Vs trends for old and new solution. As can

Figure 5.2. ∆Vs trends of old and new solutions.

be seen in the graph, in the first half of the mission, the trend is almost equal
for the two solutions, with the exception of one high peak. The main difference is
found in the last part, where higher ∆Vs value are concentrated for the old solu-
tion. This phenomenon is due to the filling method used in the old solution: the
last submissions are less optimized than the others. The yellow and purple lines
follow the mean value of ∆V every seven velocity changes: in the old solution is
present an important increment in the last part of the mission, proving that those
submissions are the heaviest one in terms of mean ∆Vs.

51



52



Chapter 6

Conclusions

The goal of this work was trying to improve a solution that had a promising ap-
proach: the use of graph theory in order to solve a complex time-based problem.
The results obtained can be considered good and competitive if compared to the
results published on the site of GTOC9, potentially placing this final solution in
5-th position.
The differentiation of the sequence filling process in three different methods has
revealed to be a good strategy: it has made possible to exploit several features of
the preliminary solution in different ways, such as the insertion of debris in the long
gaps inside the submission, the substitution of debris in order to obtain additional
gain and the pairing of two unpaired debris, where it was convenient, generating
the optimal time gap.
Surely, confronted to the previous solution, the one developed in this work shows a
general increase in homogeneity, and a decreased tendency to have better starting
submissions. All these features resulted in an considerable gain in overall total cost.
This is because, instead of creating new submissions in order to fit new debris in the
mission, the methods modify already existing ones. This particular characteristic,
however, does not ensure a complete solution for every starting sequence unlike the
previous method: in order to reach all 123 debris it has been necessary to run the
code multiple times and try different starting sequences.
It’s important to note that such solution doesn’t imply great efforts in terms of
computational time, that is the key of the reason behind the choice of the graph
theory application.

Each single method played an important role in the development of the solution
even though some have demonstrated to be more efficient than others, leaving space
for additional improvements:

• Improve the spot generation method in order to run the whole method at once
for every step in order to obtain solution that refers to the update solution
every iteration.
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• Modify the overall optimization at the end of the solution in order to make
the best use of the time available for the mission given by the GTOC9.

• Generalise the three methods and turn them into a single one, capable of
choosing the best solution for every debris, avoiding to leave less debris for the
last methods applied.
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Appendix A

Code output

Here is shown the code output of the insertion phase only, divided by the method
or the sub-method applied.

Direct debris insertion method, 20 days gap
Adding debris 103 in submission 9 at position 6
The submission will weigh 4.489249e+03 kg
Adding debris 6 in submission 6 at position 5
The submission will weigh 3.709252e+03 kg
Adding debris 50 in submission 6 at position 3
The submission will weigh 4.693769e+03 kg
Adding debris 12 in submission 2 at position 5
The submission will weigh 4.666559e+03 kg
Adding debris 110 in submission 3 at position 5
The submission will weigh 4.834577e+03 kg
Adding debris 73 in submission 4 at position 2
The submission will weigh 6.216988e+03 kg
Adding debris 35 in submission 14 at position 3
The submission will weigh 6.652574e+03 kg

Direct debris insertion method, 30 days gap
Adding debris 22 in submission 3 at position 8
The submission will weigh 5.453460e+03 kg
Adding debris 56 in submission 1 at position 2
The submission will weigh 3.975039e+03 kg
Adding debris 85 in submission 9 at position 2
The submission will weigh 5.204420e+03 kg
Adding debris 75 in submission 2 at position 4
The submission will weigh 4.812312e+03 kg
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Code output

Adding debris 55 in submission 9 at position 10
The submission will weigh 6.616972e+03 kg
Adding debris 54 in submission 6 at position 2
The submission will weigh 5.399492e+03 kg
Adding debris 113 in submission 11 at position 3
The submission will weigh 3.504305e+03 kg
Adding debris 45 in submission 10 at position 4
The submission will weigh 3.802879e+03 kg
Adding debris 122 in submission 1 at position 11
The submission will weigh 7.094140e+03 kg
Adding debris 118 in submission 12 at position 4
The submission will weigh 5.991400e+03 kg
Too heavy

Direct debris insertion method, 20 days gap
Adding debris 40 in submission 3 at position 9
The submission will weigh 6.214456e+03 kg
Adding debris 43 in submission 6 at position 3
The submission will weigh 6.763903e+03 kg
Too heavy

Replacement - insertion method
Adding debris 61 in submission 13 at position 4
The submission will weigh 2.780578e+03 kg
Replacement happened in submission 6 at position 7.
Debris 61 has been replaced with debris 79

Adding debris 64 in submission 3 at position 10
The submission will weigh 7.198048e+03 kg
Replacement happened in submission 3 at position 12.
Debris 64 has been replaced with debris 9

Adding debris 94 in submission 8 at position 3
The submission will weigh 3.037593e+03 kg
Replacement happened in submission 8 at position 1.
Debris 94 has been replaced with debris 15

Insertion too heavy
Adding debris 25 in submission 7 at position 5
The submission will weigh 3.554627e+03 kg
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Replacement happened in submission 7 at position 7.
Debris 25 has been replaced with debris 76

Replacement too heavy
Insertion and replacement too heavy
Insertion and replacement too heavy
Insertion and replacement too heavy

Generated - spot method, in - submission
Too heavy
Adding debris 57 after 43
The submission will weigh 7.120177e+03 kg
Too heavy
Too heavy
Too heavy
Not enough space for insertion

Generated - spot method, at the end of the submission
Too heavy
Adding debris 77 after 123
The submission will weigh 6.947280e+03 kg
Adding debris 87 after 47
The submission will weigh 5.373065e+03 kg
Too heavy
Adding debris 102 after 87
The submission will weigh 6.989545e+03 kg
Adding debris 30 after 97
The submission will weigh 5.912012e+03 kg
Adding debris 93 after 66
The submission will weigh 7.110361e+03 kg
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