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RESUME 

I here report a theoretical study about storage and transportation of energy in 
quantum systems. In the thesis, I have learnt the fundamentals of quantum 
physics, which helped me understand the processes involved in quantum 
computing. I have examined and learnt the nomenclature used to represent a 
system's quantum states, the nature of the measurements of a quantum system's 
attributes, and the phenomena of superposition and entanglement. I have 
employed this knowledge to explore the key properties of the fundamental unit 
of quantum information, the qubit. 

I then studied the principles of quantum computing, namely the basics of 
quantum logic. I realized how to understand the basic single qubit gates thanks 
to the visualization of quantum states with the Bloch sphere, where states are 
represented as vectors. I have studied the means of transformation of quantum 
systems: single qubit gates, including Pauli operators, Hadamard gate, and other 
gates that create quantum superpositions. Also, I studied the CNOT gate, which 
allows two qubits to be entangled, and the Toffoli gate, which permits the 
development of basic algorithms such as the practical implementation of the 
half-adder algorithm. 

In the second part of the project, I have learnt the fundamentals of primitive 
algorithm implementation using "IBM Quantum" tools, namely the "Quantum 
Composer" tool and the "Qiskit" Python framework. These tools were used to 
create all of the visuals and algorithms reported in the thesis. 

Following this section of the implementation of fundamental algorithms and 
quantum computing notation, I have delved deeper into several parts of the 
mathematical treatment for the management of mixed-state systems. In contrast 
to pure states, mixed states have the distinction of not being able to be described 
in a unique fashion, hence their representation requires probabilistic treatment 
and is difficult to display using charts such as the Bloch sphere. This section is 
critical for fully comprehending the thesis's last section, which is concerned 
with the creation of a quantum battery prototype. 

The thesis concludes with a definition of a quantum battery, a number of qubits 
in which we store energy, outlining the physical principles of operation and 
modelling the battery using the concepts gained in earlier sections. One can 
show that a quantum system can evolve faster by harnessing entanglement, 
outperforming a system that operates in a "classical" manner. This phenomenon 
is well known and is used here to boost the power of the battery, as seen in the 
thesis conclusions.  



1. GLOBAL PERSPECTIVE 

1.1 ABOVE AND BEYOND CONVENTIONAL COMPUTATION 
The Church–Turing setting is a fundamental statement in computer science that 
says that an algorithm may be calculated efficiently with a Turing machine, 
thereby establishing the top limit for computer power. The primary 
characteristic of digital computers is the discretization of reality using models 
and algorithms. This discretization produces acceptable results due to low 
computational mistakes: they must be quite big in order to be noticed, and 
techniques for identifying and fixing such errors may then be developed. 

Although digital computers are now the most common method of computing, 
they are not the only ones. In the past, analog computers were also widely 
studied and used. Unlike digital computers, which use discrete values, they are 
based on exact manipulations of constantly shifting parameters. It has been 
claimed that such devices could quickly solve problems that are intractable for 
digital computers; however, a major stumbling block for analog computers is 
the inability to build devices with arbitrarily high precision: in analog 
computers, errors can be arbitrarily small and impossible to detect, but their 
effects can still accumulate to ruin a computation. If an ideal model of 
computing were proposed, it may aim to combine the robustness of a digital 
computer with the delicate manipulations of an analog computer. We can use 
quantum mechanics to do this. 

Because the rules of physics are essentially quantum mechanical, we can 
imagine a quantum mechanical computer. The essential component of a 
quantum computer is the qubit, which has a dual nature: it can be a system with 
discrete outputs or a system with continuous parameters. This is an example of 
the well-known concept of 'wave-particle' duality, which is common in quantum 
systems. They are a mix of the two and cannot be properly defined as either 
discrete or continuous. 

Quantum computers can handle problems with far greater complexity than 
digital computers: quantum computing is the only known technology that can 
perform certain operations exponentially faster than classical computers, 
possibly lowering computation times from years to minutes. Coming up with a 
good quantum algorithm appears to be difficult due to two main reasons: the 
first one is the difficulty of thinking in a quantum way, because we are used to 
thinking in terms of classical mechanics; the second one is the requirement for a 
quantum algorithm to be better than any other classical algorithm, which is in 
general very difficult to prove. 



We can create innovative algorithms that are fundamentally different from 
digital and analog conventional algorithms using qubits and quantum gates. 
Following this approach, we aim to solve issues that are intractable for 
traditional computers. For instance, when we have a function for which we wish 
to determine a global property, in order to get adequate knowledge on the global 
property, an algorithm on a digital computer may utilize a procedure in which 
the property is computed for a range of distinct inputs. The fact that we can 
generate superposition states using a quantum computer, on the other hand, 
means that the function may be applied to a large number of potential inputs at 
the same time. This does not imply that we can access all potential outputs, 
because measuring such a state yields just a single result. We can, however, try 
to produce a quantum interference phenomenon, which will disclose the 
required global characteristic. 

The main reason that led us to quantum algorithms is to tackle quantum issues 
using quantum computers. Because of our inherent capacity to express and 
control quantum states, we may research and better comprehend quantum 
systems of interest, such as molecules and fundamental particles. 

  



2 INTRODUCTION TO QUANTUM MECHANICS 

On its own quantum mechanics does not tell you what laws a physical system 
must obey, but it does provide a mathematical and conceptual framework for 
the development of such laws. These postulates provide a connection between 
the physical world and the mathematical formalism of quantum mechanics. 

2.1 POSTULATE 1 – STATE SPACE AND BRA-KET NOTATION 
Every quantum-type physical system, which we will call quantum system, is 
defined by quantum states that are all the possible ways according to particles 
act. All these quantum states belong to a mathematical space called state space. 
The states, which we can think about as configurations, that the system can 
assume are described through a mathematical function called wavefunction, 
which is represented with the symbol 𝜓(𝑥, 𝑡). 

As we said, the system can assume one of the many random states described by 
the wavefunction and the probability of appearing in specific state can be 
evaluated as  

𝜓 ∙ 𝜓∗ = |𝜓|2 

Since this is a probability, it must satisfy the so-called normalization condition: 
the sum of all the probabilities must be one 

∫ 𝜓(𝑟, 𝑡)∗ ∙ 𝜓(𝑟, 𝑡) 𝑑𝜏

+∞

−∞

= 1 

Where 𝑑𝜏  is the volume element located at 𝑟  at time 𝑡 . Quantum mechanics 
does not tell us, for a given physical system, what the state space of that system 
is, nor does it tell us what the state vector of the system is. Figuring that out for 
a specific system is a difficult problem for which physicists have developed 
many intricate and beautiful rules. To express the concepts of state space and 
quantum states according to mathematical rules, we express the state space as 
an Hilbertian vector space and each state that belongs to it as a state vector. The 
states can be therefore expressed as vectors with the ket notation |𝜓⟩. To have a 
brief look at what we will see later, we may consider a qubit, a very simple 
quantum system, and express its states with combinations of the vectorial basis 

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩ 

where |0⟩  and |1⟩  are the vectors that make up the basis and 𝛼  and 𝛽  are 
complex numerical coefficients. We can rewrite normalization condition, as 



|⟨𝜓|𝜓⟩| =  1,   |𝛼|2  +  |𝛽|2  =  1 

Where the bra-ket notation ⟨𝜓|𝜓⟩ expresses the projection of the vector state 
|𝜓⟩ on itself, which result yield 1 because it totally overlaps with itself. 

2.2 POSTULATE 2 – SYSTEM EVOLUTION 
The second postulate tells us how the state can change in time and how this 
change is expressed with the correct mathematical notation. The evolution of a 
system can be described by a unitary operation which is defined by unitary 
matrix multiplications: in linear algebra, a complex square matrix 𝑈 is unitary if 
its conjugate transpose 𝑈 ∗ is also its inverse, that is, if 

𝑈∗𝑈 = 𝑈𝑈∗ = 𝕀, 

where 𝐼 is the identity matrix? The conjugate transpose is referred to as the 
Hermitian adjoint of a matrix and is denoted by a dagger, so the equation above 
becomes 

𝑈†𝑈 = 𝑈𝑈† = 𝕀 

The real analogue of a unitary matrix is an orthogonal matrix. The unitary 
matrices have significant importance in quantum mechanics because they 
preserve norms, and thus, probability amplitudes. All measurable quantities 
(observables) are described by Hermitian linear operators and the new state is 
defined as 

|𝜓′⟩ = 𝑈|𝜓⟩ 

2.3 POSTULATE 3 - QUANTUM MEASUREMENT 
This postulate captures the central point of quantum mechanics: the values of 
dynamical variables can be quantized and evaluated using the mathematical 
tools we used earlier. Let us consider a general observable called 𝐴  for a 
quantum system, the numerical value of this observable can be obtained 
applying the associated Hermitian operator �̂�  to the quantum state of the 
system, 

�̂�|𝜓⟩ = 𝜆|𝜓⟩ 

The resulting value is 𝜆, which is one of the eigenvalues of the operator �̂�. 
Although measurements must always yield an eigenvalue, the state does not 
have to be an eigenstate of �̂�: 𝜓 could be a superposition of eigenfunctions of 
the operator �̂� and it can be expanded using the complete set of eigenvectors 
of �̂�, which form an orthonormal basis, 



𝜓 = ∑𝑐𝑖𝜓𝑖

𝑛

𝑖

, �̂�𝜓𝑖 = 𝜆𝑖𝜓𝑖 

The value of 𝑐𝑖  is a factored associated to the eigenstate 𝜓𝑖  of �̂�  from the 
measurement, and the expression |𝑐𝑖|

2  is the probability of obtaining the 
eigenstate. So, we can evaluate the probability of obtaining the value 𝜆𝑖 and the 
probability as: 

𝑃(𝜆𝑖) =  |𝑐𝑖|
2  = |⟨𝜓𝑖|𝜓⟩|2  

An important second half of the third postulate is that, after measurement 
of  𝜓 yields some eigenvalue 𝜆𝑖, the wavefunction immediately collapses into 
the corresponding eigenstate  𝜓𝑖   and it leads to the conclusion that the 
measurement affects the state of the system. 

2.4 POSTULATE 4 - COLLAPSE OF THE WAVEFUNCTION 
The main issue related to the measurements is the randomness of the results 
which appear following their associated probability. So, if want to have a 
unique numerical value for our observable 𝐴  in some |𝜓⟩ , we say that the 
average, or expectation, value of an observable corresponding to a quantum 
mechanical operator is given by: 

〈𝐴〉 =  
∫𝜓∗ �̂�𝜓 𝑑𝜏

∫𝜓∗ 𝜓 𝑑𝜏
 

Which is a general form for the expectation value expression. If the 
wavefunction is normalized, then the denominator is identically 1 (this is 
assumed to be the case since every valid wavefunction must be normalized). If  
𝜓  is not an eigenfunction of �̂� , as in the case of a superposition of 
eigenfunctions, the value of the observable would simply be: 

〈𝐴〉 =  ∫𝜓∗ �̂�𝜓 𝑑𝜏 =   ∫(∑𝑐𝑖𝜓𝑖

𝑛

𝑖

∗

) �̂� (∑𝑐𝑖𝜓𝑖

𝑛

𝑖

)  𝑑𝜏 = ∑𝑐𝑖
2𝜆𝑖

𝑛

𝑖

  

 

Which is the average of possible values weighted by their probabilities. 

2.5 POSTULATE 5 - SCHRÖDINGER’S EQUATION 
The Schrödinger’s equation expresses the evolution of the quantum system in 
time, and it reflects the deterministic nature of particles/waves. It appears to 
contrast with Postulate 4 (many observations lead to different measured 



observables, each weighted differently, i.e., a probabilistic view of the 
particle/wave), but it allows us to propagate the wavefunction in time (we 
propagate a probabilistic entity). Then, at some future time, if we make another 
measurement, we are again faced with the implications of Postulate 4. 

𝑖ℏ 
𝛿𝜓(𝑥, 𝑡)

𝛿𝑡
= �̂�𝜓(𝑥, 𝑡) 

In this equation, ℏ is a physical constant known as Planck’s constant whose 

value must be experimentally determined. The operator �̂� is a fixed Hermitian 
operator known as the Hamiltonian of the system. In general, figuring out the 
Hamiltonian needed to describe a particular physical system is a very difficult 
problem, we won’t need to discuss Hamiltonians. 

�̂� = ∑𝐸|𝐸⟩⟨𝐸|

𝐸

 

The states |𝐸⟩ are known as energy eigenstates where E is the energy of the 
state |𝐸⟩ . The system's ground state energy is the lowest energy, and the 
associated energy eigenstate is known as the ground state. It is possible to write 
down a time-varying Hamiltonian for a quantum system, in which the 
Hamiltonian for the system is not a constant but varies according to some 
parameter. As a result, the system is not closed, but it does develop according to 
Schrodinger's equation with a time-varying Hamiltonian, to some extent. 

  



3 INTRODUCTION TO QUANTUM COMPUTATION 

The qubit, a quantum version of the classical bit, is our basic variable in 
quantum computers. Qubits are constrained in the same way as regular bits are, 
they can only store a single binary piece of data and can only ever output a 0 or 
1. They can, however, be modified in ways that only quantum mechanics can 
describe. We must first learn how to write down qubit states in order to properly 
comprehend new logical gates derived from quantum physics. 

3.1 QUBIT’S NOTATION 
Classical bits are either 0 or 1, although qubits are exempt from this restriction. 
Their state will be more complicated than a basic binary value, but it will 
collapse to a 0 or 1 when a measurement is taken to extract the output. To 
demonstrate how to express this, let's start with the two simplest instances. As 
we showed in the last section, it is feasible to construct a qubit in such a way 
that when measured, it always yields 0. This is known as the |0⟩ state. Then, 
analogous to this state, there is a qubit state that also is guaranteed to yield 1 
and we will name this state |1⟩. These two states are mutually exclusive: the 
qubit’s output must either be 0 or 1 with no overlap. We can use two orthogonal 
vectors to describe this mathematically, 

|0⟩ = [
1

0
] , |1⟩ = [

0

1
] 

Since the states |0⟩ and |1⟩ form an orthonormal basis, we can represent any 
two-dimensional vector with a combination of these two states. This allows us 
to write the state of our qubit in the alternative forms: 

|𝑞⟩  =  
√2

√3
|0⟩ +  𝑖

1

√3
|1⟩ = [

√2

√3

𝑖

√3
] 𝑇 

3.2 THE MEASUREMENT RULES 
In quantum physics, we generally use the term superposition to denote linear 
combinations like the one above, and the generic form is 

|𝑞⟩ = 𝛼|0⟩ + 𝛽|1⟩, 𝛼, 𝛽 𝜖 ℂ 

Regardless of the fact that our sample state |𝑞0⟩  may be represented as a 
superposition of |0⟩ and |1⟩, it is no less a definite and well-defined qubit state 
than they are: if we measure our qubit as we would in a real quantum computer, 
we will have an equal probability of measuring |0⟩ as we will of measuring |1⟩. 



To understand this, consider Postulate 3, which asserts that the chance of 
measuring |𝑥⟩ as output of the state |𝜓⟩  is equal to 

𝑝(|𝜓⟩) = |⟨𝑥|𝜓⟩|2 

To find the probability of measuring |𝑥⟩, that is a generic qubit state, we take 
the inner product of |𝑥⟩ and the state we are measuring (in this case |𝜓⟩), then 
square the magnitude. If we look at the state |𝑞⟩ from before, we can see the 
probability of measuring |0⟩ is indeed 0.66 

⟨0|𝑞⟩ =
√2

√3
⟨0|0⟩ + 𝑖

1

√3
⟨0|1⟩ =

√2

√3
, |⟨0|𝑞⟩|2 =

2

3
 

We may create a measurement that will cause a qubit to collapse in one of two 
orthogonal states for any orthogonal pair of states, that can be others than 
|0⟩ or |1⟩. The measures we've looked at so far are merely one of an unlimited 
set of bases to measure the state |𝜓⟩. 

3.3 GLOBAL AND RELATIVE PHASE 
A phase influences the amplitude of a complex number but has nothing to do 
with rotation in the complex plane. It is just the additional degree of freedom for 
a given complex number. The observable quantities in quantum computing are 
the probabilities that are proportional to the complex number amplitudes 

|𝑧|2 = |𝑟𝑒𝑖𝜃|
2

= 𝑟2 

which doesn't care about the phase θ. If you compute the amplitude of any 
quantum state with two degrees of freedom (qubit), the component 𝑒𝑖𝜃1 in front 
will vanish according to the preceding reasoning 

|𝜓⟩ = 𝑟1𝑒
𝑖𝜃1|0⟩ + 𝑟2𝑒

𝑖𝜃2|1⟩  →  |𝜓⟩ = 𝑒𝑖𝜃1(𝑟1|0⟩ + 𝑟2𝑒
𝑖(𝜃2−𝜃1)|1⟩) 

|⟨𝜓|𝜓⟩|2 = |𝑒−𝑖𝜃1𝑒𝑖𝜃1(𝑟1⟨0| + 𝑟2𝑒
−𝑖(𝜃2−𝜃1)⟨1|)(𝑟1|0⟩ + 𝑟2𝑒

𝑖(𝜃2−𝜃1)|1⟩)|
2

= |𝑟1 + 𝑟2𝑒
𝑖𝜙|

2
 

This is referred to as a global phase, which is an overall phase in advance, 
instead the relative phase is represented by 𝜙 = 𝜃2 − 𝜃1. The relative phase is 
an observable that varies as a state evolves according to Schrodinger's equation. 
When considering the density matrix for a state, the relative phase is also very 
important: this relative phase appearing in the off-diagonal components of the 
above matrix conveys information about the system's coherence, which is one of 
the most distinctive features of quantum systems. We can analyse a quick 
example, applying a global phase to the state |0⟩ and evaluate the probability of 
measuring |𝑥⟩ 



𝑖|0⟩  =  [
𝑖
0
] , 𝑝(|𝑥⟩) = |⟨𝑥|(𝑖|0⟩)|2 = |𝑖⟨𝑥|0⟩|2 = |⟨𝑥|0⟩|2 

When we take the magnitude of the complex number, we discover that the 
factor of 𝑖 vanishes. Regardless of the measurement, the probability for the state 
𝑖|0⟩ are equal to those for |0⟩. Because measurements are the only method to 
extract information from a qubit, this means that these two states are identical in 
all physically meaningful respects. 

3.4 COLLAPSING NATURE OF OBSERVATION 
As we saw with the state vector notation, the amplitudes carry information on 
the likelihood of us discovering the qubit in a given quantum state, as Postulate 
3 states. We know with certainty what the state of the qubit is once we have 
measured it because of the collapsing phenomenon described in Postulate 4. 
Assume we measure a qubit in the following state: 

|𝑞⟩ = 𝛼|0⟩ + 𝛽|1⟩, 𝛼, 𝛽 𝜖 ℂ 

And locate it in the state |0⟩. Then, if we measure again, we have a 100% 
probability of finding the qubit in the state |0⟩. This means that the act of 
measuring changes the state of our qubits by causing its state to collapse from a 
superposition to the |0⟩ state: if we measure each of our qubits to keep track of 
their value at each point in a computation, they will always be in a well-defined 
state of either |0⟩ or |1⟩. As so, they would be no different from conventional 
bits, and our computation could be simply substituted by a conventional 
computation. Allowing qubits to explore more complicated states is required to 
enable true quantum computing. As a result, measurements are performed at the 
end of our quantum circuit and only when necessary. 

 

3.5 THE BLOCH SPHERE 
As showed earlier, we can express the quantum state of a qubit |𝑞⟩  as 
combination of complex amplitudes and basis 

|𝑞⟩ = 𝛼|0⟩ + 𝛽|1⟩, 𝛼, 𝛽, 𝜖 ℂ 

We can rewrite the complex factors in the exponential form and collect the term 
𝑒𝑖𝜃1, 

|𝑞⟩ = 𝑒𝑖𝜃1(𝑟1|0⟩ + 𝑟2𝑒
𝑖(𝜃2−𝜃1)|1⟩), 𝑟1, 𝑟2𝜖 ℝ, 𝜃1, 𝜃2𝜖[0,2𝜋]  



We consider the 𝑒𝑖𝜃1 factor as a global phase, so that it can be deleted because it 
does not have any physical relevance. Because the qubit state must be 
normalised, the two squared amplitudes must sum up to 1. This condition let us 
rewrite the state amplitudes with the following notation 

𝛼 = cos
𝜃

2
, 𝛽 = sin

𝜃

2
𝑒𝑖𝜙, 𝜃, 𝜙 𝜖[0,2𝜋] 

Using the two new variables 𝜙 and 𝜃, we can rewrite the state of any qubit as 

|𝑞⟩ = cos
𝜃

2
|0⟩ + 𝑒𝑖𝜙 sin

𝜃

2
|1⟩, 𝜃, 𝜙 𝜖[0,2𝜋] 

If we interpret the above notation as spherical coordinates, we may display any 
qubit state on the surface of a sphere, known as the Bloch sphere (𝑟 = 1 , 
because the magnitude of the qubit state is 1 according to the normalization 
condition). We've plotted a qubit in the state |+⟩,  with 𝜃 =  𝜋/2 and 𝜙 = 0 

 
3-1 State vector for \+> state. Image from Qiskit Textbook 

When learning about qubit states for the first time, it's easy to mistake the 
qubit's state vector with its Bloch vector. Remember that the state vector is the 
vector that carries the amplitudes for the two possible states of our qubit; the 
Bloch vector is a visualisation tool that translates the two-dimensional complex 
state vector onto a real three-dimensional space.  



4 SINGLE QUBIT GATES 

We saw that qubits may be represented by two-dimensional vectors and that 
their states can take the form: 

|𝑞⟩ = cos
θ

2
 |0⟩ + 𝑒𝑖ϕ sin

θ

2
 |1⟩, θ, 𝜙 ∈ ℝ 

This section will go over gates, which are the operations that switch a qubit 
between the states. The fact that the actions (gates) between initializing the 
qubits and measuring them are always reversible is a key characteristic of 
quantum circuits. These reversible gates can be represented as matrices or as 
rotations of the Bloch sphere. 

4.1 THE PAULI LOGIC GATES 
The gates are unitary transformations that may be represented in matrix form 
(two-by-two matrices for a single qubit system), and the Pauli logic gates are a 
collection of gates that are identified by their matrix representations, which are 
the Pauli matrices. These transformations are significant because they define 
simple operations on quantum state vectors and can be used as a starting point 
for future gates. These set of operators and related matrices are the X, Y, Z 
gates. 

𝑋 = �̂�𝑥 = (
0 1
1 0

) , 𝑌 = �̂�𝑦 = (
0 −𝑖
𝑖 0

) , 𝑍 = �̂�𝑧 = (
1 0
0 −1

) 

We'll begin by demonstrating that the X gate, like all the other gates we'll see 
later, is a unitary operator that spins the qubit state vector. As we saw earlier in 
the Postulate 2, the square matrix X is unitary if its conjugate transpose, referred 
to as the Hermitian adjoint of a matrix and is denoted by a dagger, 𝑋† is also its 
inverse and the equation beneath is verified 

𝑋†𝑋 = 𝑋𝑋† = 𝕀, [
0 1
1 0

] [
0 1
1 0

] = [
1 0
0 1

] 

To see the effect on a qubit, just multiply the state vector of the qubit by the 
gate. We can observe that the X gate changes the amplitudes of 
states |0⟩ flipping it to the |1⟩ state: 

 
Furthermore, the change in the state vector may be seen as a rotation of the 
corresponding vector in the Bloch sphere: the Bloch vector rotates by 𝜋 radians 



around the x axis. Because of this result, the X gate is also known as the NOT 
gate, after its classical equivalent. 

 
4-1 X gate effect on state vector. Image from Qiskit Textbook 

The Y and Z Pauli matrices in our quantum circuits work similarly to the X gate 
in that they both rotate by 𝜋 around the y and z axes of the Bloch sphere. Their 
matrix forms are 

 

 
You may note that the Z gate has no influence on our qubit whether it is in 
either the |0⟩ or |1⟩ state. This is attributed to the fact that the states |0⟩ and |1⟩ 
are the two eigenstates of the Z gate, which implies that they will be impacted 
by only a stretch equal to the corresponding eigenvalue, which is 1 for both 
eigenstates. In fact, the computational basis (the basis produced by the states 



|0⟩ and |1⟩) is frequently referred to as the Z basis. This is not the only basis: 
there is also the X basis, which is produced by the eigenstates of the X gate. 
These two vectors are denoted by |+⟩ and |−⟩: 

|+⟩ =
1

√2
(|0⟩ + |1⟩) =

1

√2
[
1 

1 
] , |−⟩ =

1

√2
(|0⟩ − |1⟩) =

1

√2
[

1

−1
] 

Another less commonly used basis is that formed by the eigenstates of the Y 
gate. These are called| ↺⟩, | ↻⟩. It is impossible to shift our initialized qubit to 
any state other than |0⟩ or |1⟩, using only Pauli gates — for example we cannot 
accomplish superposition. This indicates that we can't see any behaviour that 
differs from that of a standard bit. 

4.2 THE HADAMARD GATE  
The Hadamard gate is an important quantum gate because it allows us to move 
away from the Bloch sphere's poles and produce a superposition of |0⟩ and |1⟩. 
The matrix form of the Hadamard operator is 

𝐻 =
1

√2
[
1 1

1 −1
] 

We can see that this performs the transformations below: 

 
This can be thought of as a rotation by 𝜋 around the Hadamard axis vector or as 
transforming the state of the qubit between the X and Z bases. This shift 
between bases leads to the conclusion that the Z axis is not particularly 
exceptional and that there are an unlimited number of alternative bases. 
Furthermore, we do not have to measure in the Z basis all the time, but we may 
measure our qubits in any basis. We can use the gates discovered so far to 
change the basis of our qubit: we can build an X gate by wrapping our Z gate 
between two Hadamard gates 



𝑋 =  𝐻𝑍𝐻 
The Hadamard gate changes our qubit to the X basis, the Z gate conducts a 
NOT in the X basis, and the final Hadamard gate restores our qubit to the Z 
basis. By multiplying the matrices and checking the step-by-step operation on 
the Bloch vector, we can see that this operates like an X gate. 

𝐻𝑍𝐻 =
1

√2
[
1 1

1 −1
] [

1 0

0 −1
]

1

√2
[
1 1

1 −1
] = [

0 1

1 0
] = 𝑋 

 
4-2 Effects of HZH gates applied to state vector. Image from Qiskit Textbook 

By changing from the X basis to the Z basis before our measurement, this 
transition yielded an X basis measurement, {|+⟩, |−⟩}. Measuring in multiple 
bases allows us to observe Heisenberg's uncertainty principle: having 
confidence of measuring a given state in the Z basis, {|0⟩, |1⟩}, eliminates all 
certainty of measuring the same state in the X basis, and vice versa. A frequent 
misunderstanding is that uncertainty is caused by limitations in our equipment, 
but as we can see here, uncertainty is inherent in the qubit. The basis change in 
the preceding example demonstrates that the uncertainty is due to the 
superposition between the states, which arises only if we measure the qubit’s 

state in the X basis. If we place our qubit in the state |0⟩, our measurement in 
the Z basis is assured to be |0⟩, but our measurement in the X basis is entirely 
random since it may collapse in both |+⟩ and |−⟩ with a 50% chance in both 
states. Similarly, if we set our qubit to |+⟩, our measurement in the X basis is 
guaranteed to be |+⟩, but any measurement in the Z basis is entirely random. 
Whatever state our quantum system is in, there is always just one deterministic 
outcome. 

4.3 THE IDENTITY GATE  
The identity gate may be placed anyplace in your circuit where it should have 
no influence on the qubit state. There are two primary reasons for this: first, it is 
utilized in calculations to prove that the X gate is its own inverse; second, it is 



frequently beneficial when considering real hardware to describe a do-nothing 
action. The identity matrix is its matrix form: 

𝕀 =  [
1 0
0 1

] 

4.4 THE PHASE GATE AND THE PARAMETRIZED GATES 
The phase gate has a parametrized factor that determines the gate's operation, 
which is the rotation of the state vector around the Z axis by 𝜙 radiant. We may 
think of the Z gate as a subset of the P gate with 𝜙 = 𝜋 (Bloch vector rotates by 
rad around the z axis). The matrix form of the phase gate is 

 

We can visualize the effect of the P gate with an example: consider the case of a 
Bloch vector of the state |+⟩. We can plot it onto the Bloch sphere diagram and 
apply the P gate with fixed 𝜙 = 3

4⁄ 𝜋, the resulting vector is moving only on 
the two-dimensional x-y plane 

 
Beginning with the phase gate, we construct a series of child gates that can be 
differentiated by their parameter value. The S gate (also known as the √𝑍 gate) 
is a P gate with 𝜙 = 𝜋/2 . It is crucial to note that, unlike the other gates 
discussed in this chapter, the S gate is not its own inverse but there is the S† 
gate, which is a P gate with a 𝜙 = −𝜋/2 

 



Because two sequentially applied S gates have the same effect as one Z gate, the 
S gate is also known as the √𝑍 gate. Another similar gate to the phase gate and 
the S gate is the T gate, which is a P gate with 𝜙 = 𝜋/4. As with the S gate, the 
T gate is sometimes also known as the √𝑍

4  gate. 

 

4.5 THE U GATE  
As we previously observed, the I, Z, S, and T gates were all subsets of the more 
generic P gate. Similarly, the U gate is the most generic single-qubit quantum 
gate. It is a parametrized gate of the following form: 

 
Every gate in this chapter could be specified as 𝑈(𝜃, 𝜙, 𝜆), but it is unusual to 
see this in a circuit diagram, possibly due to the difficulty in reading this. As an 
example, we see some specific cases of the U gate in which it is equivalent to 
the H gate and P gate respectively. Every gate in this chapter may be described 
as 𝑈(𝜃, 𝜙, 𝜆), although it is uncommon to see this in a circuit design, probably 
because it is difficult to read. As an example, we can show that the U gate is 
equal to the H gate and the P gate in some specific circumstances. 

 
It should also be emphasized that the Z basis is nothing unique other than the 
fact that it has been chosen as the standard computing basis. All single-qubit 
operations are compiled down to I, X, SX, and Rz before executing on actual 
quantum hardware. As a result, they are frequently referred to as physical gates. 

 

  



5 MULTIPLE QUBITS AND ENTANGLED STATES 

The ability of quantum computers to imitate quantum systems was the initial 
motivation for developing them. A contemporary laptop can readily mimic a 
generic quantum state of approximately 20 qubits, while even the most powerful 
supercomputers struggle to simulate 100 qubits. If we have n qubits, we must 
keep track of 2𝑛  complex amplitudes, thus the amplitude vectors grow 
exponentially with the number of qubits. Therefore, large-scale quantum 
computers with many qubits are so difficult to simulate. Because single qubits 
provide no computing benefit, we will now look at how we can represent 
numerous qubits and how these qubits may interact with one another. 

5.1 MULTI-QUBIT STATES  
We observed that a single bit has two alternative states and two associated 
complex amplitudes, and that a two-qubit system has four possible states and 
four related complex amplitudes. We may use the tensor product to represent 
the collective state of many qubits; below are examples of two and three qubits 
system: 

 
To get a practical understanding of the mathematical notation, examine the 
example of a two-qubit system in states |0⟩ and |1⟩ 

|0⟩ ⊗ |1⟩ = [ 
1 × [

0
1
]

0 × [
0
1
]
 ] = [

0
1
0
0

] = |01⟩ 

An important point to note, which may serve as a shortcut to confirming that 
your result is correct, is that the location of the value 1 in the state vector. Each 
position of the state vector represents the combination of the two qubits 



|00⟩ = [

100

001

010

011

] , |01⟩ = [

000

101

010

011

] , |10⟩ = [

000

001

110

011

] , |11⟩ = [

000

001

010

111

] 

And like single qubit system, the rules of measurement and the normalisation 
condition still applies to the multiple qubits systems 

𝑝(|10⟩)  =  |⟨10|𝑞⟩|2 = |𝑞10|
2, |𝑞00|

2 + |𝑞01|
2 + |𝑞10|

2 + |𝑞11|
2  = 1 

5.2 SINGLE QUBIT GATES ON MULTIQUBIT SYSTEM  
We have seen that an X gate has the effect of rotating the state vector around the 
x axis by 90 degrees. It may be unclear how an X gate would function on a 
single qubit in a multi-qubit system. Fortunately, the rule is straightforward: just 
as we used the tensor product to compute multi-qubit state vectors, we use the 
tensor product to compute matrices that act on these state vectors. But as we can 
see trying to apply the X operator on a generic vector state, the dimensions of 
both the X matrix and the state vector are not suitable 

𝑋(|0⟩ ⊗ |1⟩) = 𝑋2𝑥2|01⟩ 4𝑥1 

So, if we wish to evaluate the effects of the X gate on only one of the system's 
two qubits, we must construct an appropriate operator, which we can 
accomplish using the tensor product of the X gate and the I gate 

(𝑋 ⊗ 𝕀)(|0⟩ ⊗ |1⟩) = [

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

] [

0
1
0
0

] = [

0
0
0
1

] = |11⟩ 

If we want to apply different gates to each of the qubits in the system, we can 
use this system and build a composition of operators with the tensor product 
that results in the following operations (𝐻 and 𝑋) 

𝑋|0⟩ ⊗ 𝐻|1⟩ = (𝑋 ⊗ 𝐻)|01⟩ 

 

(𝑋 ⊗ 𝐻)|01⟩ =
1

√2
[

0 0 1 1
0 0 1 −1
1 1 0 0
1 −1 0 0

] [

0
1
0
0

] =
1

√2
[

0
0
1

−1

] =
1

√2
[

0
0
1
0

] −
1

√2
[

0
0
0
1

] =
(|10⟩ − |11⟩)

√2
 



5.3 MULTI-QUBIT GATES 
We've seen some fascinating results with single qubits and single qubit gates, 
but the actual potential of quantum computing is realized through qubit 
interactions. In this part, we will look at several qubit gates and the unique 
behaviour of multi-qubit systems. The gates that may be directly implemented 
in hardware typically act on just one or two qubits. We may want to utilize 
sophisticated gates that work on many qubits in our circuits. Fortunately, any 
complex gate can be represented as a sequence of single qubit gates and a 
specific two qubits gate: the CNOT. To describe operations on many qubits, we 
will develop an algorithm that can do basic additions starting with two integers. 
This is a basic addition, but it highlights the concepts that underpin all 
algorithms: whether the algorithm is meant to solve mathematical problems or 
analyse text or photos, we always divide large jobs down into tiny and easy 
stages. Algorithms must be reduced to the simplest steps feasible in order to be 
executed on a computer. Let's tackle the addition problem with binary numbers 
digit by digit 

 1 1 0 1 
+ 1 1 0 0 
= ?  +𝟏0 0 1 

We may simplify the calculation of 1+1+1 by breaking it down into smaller 
operations that just need us to add two bits together. For this, we may begin 
with simply the first two 1s and then add the result (10) to the last 1 using our 
regular approach of moving through the columns 

1 
→ 

10 
+1 +01 
10 11 

We can see that there are only four potential outcomes that you would ever need 
to compute 

0 + 0 = 00 (in decimal, this is 0+0=0) 
0 + 1 = 01 (in decimal, this is 0+1=1) 
1 + 0 = 01 (in decimal, this is 1+0=1) 
1 + 1 = 10 (in decimal, this is 1+1=2) 

We can now use these computations as the foundation of our addition method, 
known as a half adder. If our computer can do this and tie numerous 
computations together, it can add anything. 

5.4 THE CNOT GATE 
Let's take a short look at quantum circuit notation and try to build our own half 
adder, which will comprise a portion that encodes the input, a part that runs the 
algorithm, and a part that extracts the output. The first portion must be updated 



anytime we wish to utilize a new input, but the remainder will always be the 
same. 

 
The two bits to be added are encoded in 𝑞0 and 𝑞1. The above diagram shows 
that both the qubits encode a 1 that come from an X gate applied to the starting 
state which is set to 0. The result will be a two-bit string read from qubits 2 and 
3 at the end of the diagram (the 0 and 1 value are the indices of each measured 
qubit not their value). All that remains is to put the actual operation, which is 
housed in the middle blank zone. The dashed lines in the diagram are simply 
used to differentiate between the various circuit components. Let's take a closer 
look at what our half adder needs to do to print out the following results 

0 + 0 = 00 
0 + 1 = 01 
1 + 0 = 01 
1 + 1 = 10 

In all four of these solutions, the rightmost bit is totally determined by whether 
the two bits we are adding are identical or distinct. So, for 0+0 and 1+1, when 
the two bits are equal, the rightmost bit of the response is 0. When we add 
various bit values, the rightmost bit is 1 for 0+1 and 1+0. To get this part of our 
solution properly, we'll need something that can detect whether or not two bits 
are different. In the world of digital computing, this is known as an XOR gate 
whose effect can be summarized by the following table 

Input 1 0 0 

Input 2 0 1 

XOR Output 0 1 



 

In quantum computers, the controlled-NOT gate, also known as the CNOT gate, 
serves as the XOR gate. This is applied to a pair of qubits, one serving as the 
control qubit (the little dot) and the other as the target qubit (the large circle 
with a + within it) 

 
The CNOT compares its two input bits to see if they are the same or different, 
then overwrites the target qubit with the result. If they are the same, the 
objective is set to 0; otherwise, it is set to 1. Another way to phrase it is that if 
the control is 1, the CNOT does a NOT on the target and does nothing else. This 
explanation is just as true as the previous one (in fact, it's the origin of the gate's 
name). Here's an example of a circuit that uses the input 01 to verify the CNOT 

 
When you run this circuit, you will get an output of 11, the gauge symbol 
denotes measurements taken along the Z basis. The CNOT checks to see if the 
input values are different and discovers that they are, implying that it wants to 
output 1. This is achieved by writing over the state of qubit 1, which changes 01 
to 11. When the CNOT detects that qubit 0 is in state 1, it applies a NOT to 
qubit 1: this converts the 0 in qubit 1 to a 1, converting 01 to 11. 

5.5 ENTANGLED STATES  
As we have seen until now, the CNOT gate is a conditional gate that performs 
an X gate on the second qubit (target) if the state of the first qubit (control) 
is |1⟩ 



 
When our qubits are not in superposition of |0⟩ or |1⟩ (behaving as classical 
bits), this gate is very simple and intuitive to understand, but let’s now see how 

it acts on a qubit in superposition. We will put one qubit in the state |0⟩ and one 
in the state |+⟩: 

|0⟩ ⊗ |+⟩ =  |0+⟩  =  
1

√2
(|00⟩ + |01⟩), [

1

√2
   

1

√2
   0   0 ] 

𝐶𝑁𝑂𝑇(|0+⟩)  =  
1

√2
(|00⟩ + |11⟩), [

1

√2
  0    0  

1

√2
 ] 

This state is very interesting to us because it is entangled and the state 

1

√2
(|00⟩ + |11⟩) 

is known as a Bell state. We can see that this state has 50% probability of being 
measured in the state |00⟩, and 50% chance of being measured in the state |11⟩. 
Most interestingly, it has a 0% chance of being measured in the 
states |01⟩ or |10⟩. This combined state cannot be written as a factorized state 
|𝜓⟩ ⊗ |𝜓⟩ , which has interesting implications. Although our qubits are in 
superposition, measuring one will tell us the state of the other and collapse its 
superposition. For example, if we measured the top qubit and got the state |1⟩, 
the collective state of our qubits changes like so: 

 
Even though these qubits are distant by light-years, measuring one collapses the 
superposition and seems to have an instantaneous effect on the other. It is 
critical to note that the measurement result is random, and any activity on one 
qubit has no effect on the measurement statistics of the other qubit. As a result, 
there is no method to communicate via shared quantum states. This is referred 
to as the no-communication theorem. 



5.6 THE Q-SPHERE 
We have seen that this state cannot be written as two factorised states. This also 
means we lose information when we try to plot our state on separate Bloch 
spheres: 

 

5-1 Entangled states represented on Bloch sphere. Image from Qiskit Textbook 

In the single-qubit case, the position of the Bloch vector along an axis nicely 
corresponds to the expectation value of measuring in that basis. If we take this 
as the rule of plotting Bloch vectors, we arrive at this conclusion showed in the 
graphs above. This shows us there is no single-qubit measurement basis for 
which a specific measurement is guaranteed. This contrasts with our single 
qubit states, in which we could always pick a single-qubit basis. Looking at the 
individual qubits in this way, we miss the important effect of correlation 
between the qubits. We cannot distinguish between different entangled states. 
For example, the two states: 

1

√2
(|01⟩ + |10⟩),

1

√2
(|00⟩ + |11⟩) 

will both look the same on these separate Bloch spheres, despite being very 
different states with different measurement outcomes. How else could we 
visualize this statevector? One such visualization is the Q-sphere where each 
amplitude is represented by a blob on the surface of a sphere. The size of the 
blob is proportional to the magnitude of the amplitude, and the colour is 
proportional to the phase of the amplitude. The amplitudes for |00⟩ and |11⟩ are 
equal, and all other amplitudes are 0: 

 



 
5-2 Q-sphere representation. Image from Qiskit Textbook 

 

Here we can clearly see the correlation between the qubits. The Q-sphere's 
shape has no significance, it is simply a nice way of arranging our blobs; the 
number of 0s in the state is proportional to the states position on the Z axis, so 
here we can see the amplitude of |00⟩ is at the top pole of the sphere, and the 
amplitude of |11⟩ is at the bottom pole of the sphere. 

5.7 THE TOFFOLI GATE 
We don't want to overwrite one of our inputs in our half adder, which is what 
happens at the target qubit when we use the CNOT gate. Instead, we wish to 
write the result on a separate pair of qubits, which we can do by using two 
CNOTs. As seen in the image below, in the first section of the circuit, we apply 
two X gates to our qubits, causing them to be in the state 1. We apply a CNOT 
gate to the control qubit 0 and the target qubit 2 to convert its state to 1, and we 
apply another CNOT gate to among 𝑞1 and 𝑞2 and obtain the new state 0 for the 
qubit 2. This procedure is the sum 1+1 on the target qubit 𝑞2. 



 
The qubits 0 and 1 (the order of the qubits is inverted) are in the state, while the 
qubit 2 is in the state, as seen in the histogram below. But, as previously said, 
we do not want to lose information, and the state 0 of the target qubit does not 
tell us whether it is the result of a sum (1+1 = 10) or not. We need a new gate 
that will allow us to save this information, therefore we need a gate that checks 
qubits 0 and 1 and returns a 1 if the state of both qubits is 1. 

 
This gate combined with the result of the two previous CNOTs will build an 
algorithm that can make sums. This new gate is called the Toffoli gate, which is 
the logic operation similar to the Boolean AND gate. 



 

Because the two input bits are both 1, we are computing 1+1 in this case and we 
obtained a final state that is 10, stored in the qubit 2 and 3. The half adder 
provides all you need for addition: we can write programs that add any set of 
integers of any size using the NOT, CNOT, and Toffoli gates. These three gates 
are sufficient to perform all other functions in computing. 

 

  



6 THE DENSITY OPERATOR 

We've been using state vector notation to represent our qubits' states since it's 
easier to work with states that can always be described as linear combinations of 
base states, each with an associated probability amplitude. However, in many 
practical scenarios in quantum computation and quantum communication, the 
state of our qubits cannot be expressed as linear combinations in a given basis 
but must instead be expressed in terms of ensembles (statistical mixtures) of 
multiple states, each with an associated probability of occurrence. Consider the 
following scenario: Alice desires to transmit the state |+⟩ to Bob. Assume that 
there is a chance that the relative phase of the state may flip due to noise in their 
communication path. As a result, Bob might end up with either the "flipped" 
state |−⟩ (with probability  𝑝(|+⟩)) or the desired state |+⟩ (with probability 
𝑝(|−⟩) = 1 − 𝑝(|+⟩)). Bob's state can be either |+⟩ or |−⟩, but not both at the 
same time. As a result, if we want to know what happens to Bob's qubit after, 
say, applying some gates and performing a measurement, we must assess both 
situations separately. This may not be a difficult task when working with only 
two states. However, when the variety of different states increases, keeping 
track of how each of these states changes independently becomes problematic. 
This is where the density matrix representation comes in helpful, as we shall see 
throughout this section. The density matrix provides a broader representation of 
quantum states. Unlike the state-vector representation, this formalism allows us 
to use the same mathematical vocabulary to express both the simpler quantum 
states we've been dealing with so far, known as pure states, and mixed states, 
which are made up of ensembles of pure states. We will now explicitly 
introduce the density matrix notation by examining how it is used to express 
pure and mixed states. 

6.1 PURE STATES 
When we can identify a system's wavefunction, we know it is in a pure state. 
For example, if we set the single qubit |𝑞⟩ to |0⟩  and use a Hadamard gate, we 
know the end state measured in X basis will always be |+⟩ . We recognize that 
if we make a measurement of this condition on the Z basis, the superposition 
will lead results of probabilistic nature: we will measure state |0⟩  with half of 
the times and state |1⟩   the other half. Nonetheless, we can guarantee 
unequivocally that the subsequent quantum state in X base will always be |+⟩ . 
As a result, we may claim that |𝑞⟩  is a pure state since there is no ambiguity 
about what the quantum state will be if measured in the appropriate base. We, 
then, can express a pure state vector as an array of coefficients on the right base: 



|𝑞⟩ = [

𝛼0

𝛼1

. . .
𝛼𝑁−1

] , |𝑞⟩ = 𝛼0|𝑞0⟩ + 𝛼1|𝑞1⟩+. . . +𝛼𝑁−1|𝑞𝑁−1⟩ 

With a N is twice the number of qubits, due to the two possible states that a 
single qubit can have (in Z basis can be |0⟩ and |1⟩, in X basis can be |+⟩ and 
|−⟩). Another method for expressing the quantum state in matrix form is to 
utilize the density operator representation, which is defined as: 

𝜌 ≡ |𝑞⟩⟨𝑞| = [

𝛼0

𝛼1

⋮
𝛼𝑁

] [𝛼0
∗ 𝛼1

∗ ⋯ 𝛼𝑁
∗] =

[
 
 
 
|𝛼0|

2 𝛼0𝛼1
∗ … 𝛼0𝛼𝑁

∗

𝛼1𝛼0
∗ |𝛼1|

2 … ⋮
⋮ ⋮ ⋱ ⋮

𝛼𝑁𝛼1
∗ 𝛼𝑁𝛼1

∗ … |𝛼𝑁|2 ]
 
 
 
 

Let's consider, for example, the following of two qubits maximally entangled 
pure state, we can write his density matrix 

|𝑞⟩ =
1

√2
(|01⟩ + |10⟩) =

1

√2
 [

0
1
1
0

],   𝜌 =[

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

] 

6.2 MIXED STATES AND NON-UNIQUENESS 
Mixed states are statistical ensembles of several quantum states. Mixed states, 
unlike pure states, cannot be represented as linear superpositions of normalized 
state vectors. Let's start with a basic example to illustrate what we mean. 
Consider entangled state formed by two qubits A and B: 

|𝑞𝐴𝐵⟩ = 
1

√2
 (|0𝐴1𝐵⟩ + |1𝐴0𝐵⟩) 

When we conduct a measurement on qubit A, it affects the measurements on 
qubit B. Consider the scenario when the superposition of the qubit A collapses 
in state |1⟩ , and the entanglement between the two qubits binds the 
measurement outcome of the qubit B to the state |0⟩. Because its outcomes are 
reliant on the measurement of another qubit, qubit B is not in a linear 
superposition of |1𝐵⟩ and |0𝐵⟩. To put it another way, the qubit B cannot be 
written as a state vector of the type 

1

√2
 (|0𝐵⟩  + |1𝐵⟩) = 

1

√2
 [
1

1
] 



Instead, we must use a new notation that is an ensemble comprising the 
states |0𝐵⟩  and |1𝐵⟩, the result of which is determined by what we measure on 
qubit A. The state 𝑞𝐵 is therefore referred to as a mixed state, which may be 
represented as an ensemble of states with the accompanying possibility 
spectrum 

{𝑞𝐵} = {|0𝐵⟩, |1𝐵⟩}, {𝑝𝐵} = {0,5;  0,5} 

We can see that the state 𝑞𝐵 is not referred with the ket notation since it refers to 
a pure state with a specified wavefunction and may be expressed as a 
combination of a base and coefficients. In general, a mixed state composed of 
an ensemble of n pure states may be described as a list of outcomes, each with 
its own probability of occurrence 

{𝑞𝑗}𝑗=1
𝑛 = {|𝑞1⟩, |𝑞2⟩, … , |𝑞𝑁⟩}, {𝑝𝑗}𝑗=1

𝑛 = {𝑝1, 𝑝2, … , 𝑝𝑛} 

In this case, 𝑝𝑗 represents the classical probability of the system being in state 
|𝑞𝑗⟩, and the total number of potential states n does not have to be equal to the 
size of the underlying Hilbert space. Although this method of expressing the 
state of qubit B (or any broader mixed state) is entirely correct, it is impractical. 
Because a mixed state might be composed of a variety of pure states, it can be 
difficult to follow how the entire ensemble changes when gates are applied to it, 
so we look at its density matrix. The general matrix form for a mixed state, 
composed of pure states {|𝑞1⟩, |𝑞2⟩, … , |𝑞𝑁⟩}  each with probability of 
occurrence {𝑝1, 𝑝2, … , 𝑝𝑛} is 

𝜌 = ∑ 𝑝𝑗|𝑞𝑗⟩⟨𝑞𝑗|
𝑗

 

It is clear that this broad formulation of the density matrix also applies to pure 
states, where we will only have one |𝑞𝑗⟩ term with 𝑝𝑗 = 1. Consider the new 
following scenario: we start a qubit in the |0⟩ state and then use a Hadamard 
gate to construct a superposition. In contrast to the situation, we outlined for 
pure states, this Hadamard gate is not perfect and results in the following 
reported states: 

|𝑞1⟩ =  
1

√2
(|0⟩ + |1⟩), |𝑞2⟩ =

√2

√3
|0⟩ +

1

√3
|1⟩, |𝑞3⟩ =

1

√3
|0⟩ +

√2

√3
|1⟩ 

With 𝑝 = {0.7, 0.1, 0.2}  as associated probabilities. The figure below shows 
representation for the three possible states of our qubit on the Bloch sphere 



 
Because we do not know the outcome of our qubit every time we measure it, we 
may express it as a mixed state combining the |𝑞𝑗⟩ states and its matrix form: 

𝜌 =
7

10
|𝑞1⟩⟨𝑞1| +

1

10
|𝑞2⟩⟨𝑞2| +

2

10
|𝑞3⟩⟨𝑞3| 

𝜌 =
7

10
[

1

2

1

2
1

2

1

2

] +
1

10
[

2

3

2

√3

2

√3

1

3

] +
2

10
[

1

3

2

√3

2

√3

2

3

] = [

29

60

4√3+7

20

4√3+7

20

31

60

] 

Where the factors in front of the outer products represent the classical 
probability of getting each state. One disadvantage of defining density matrices 
as ensembles of basis states is that the result is not unique. The same density 
matrix can represent several distinct ensembles of quantum states; hence it is 
critical to avoid drawing inferences about a system solely based on its density 
matrix representation. For example, we can consider the following density 
matrix that can be obtained by two different quantum states 

 
1

2
(|+⟩⟨+| + |−⟩⟨−|) =

1

2
[
1 0
0 1

] =  
1

2
(|0⟩⟨0| + |1⟩⟨1|) 

We would acquire different states if we sampled quantum states from the 
system described by the left-hand term than if we sampled from the right-hand 
term. So, while these density matrices accurately represent the outcome 
probabilities of the two states upon measurement, we must be careful when 
employing this representation. 

6.3 STATE PURITY 
A very useful property of the density matrix is that when taking the trace of its 
square, 𝑇𝑟(𝜌2), we obtain a scalar value that is a measure of the purity of the 
state that the matrix represents. The purity describes how the entanglement of 
the qubits in the system causes decoherence, or, to put it another way, how 



mixed the system is. We would have a perfect grade of purity if we had a 
system in superposition between many distinct state bases but without 
entanglement. This number is always less than or equal to one for normalized 
states, with the equality occurring in the event of a pure state. In the above 
example, the on-diagonal elements are the probability amplitudes of the state 
bases (in our case we have |0⟩ and |1⟩); and if we look further into the matrix, 
the off-diagonal elements provide a measure of the coherence between the 
system's distinct base states. They may be used to quantify how a pure 
superposition state might evolve (decohere) into a mixed state 

𝜌 = [

29

60

4√3+7

20

4√3+7

20

31

60

],   𝑇𝑟(𝜌2) = 0.5005̅ 

These matrix elements which are directly tied to the probabilistic character of 
the matrix elements. As a result, all probabilities must be semipositive, and 
those on the diagonal must add up to one. We can formulate these conditions 
with mathematical notation: the first one is that each element must be 
semipositive 

⟨𝜓𝑞|𝜌|𝜓𝑞⟩ = ∑𝑝𝑗⟨𝜓𝑞|𝜓𝑗⟩⟨𝜓𝑗|𝜓𝑞⟩

𝑗

= ∑𝑝𝑗|⟨𝜓𝑞|𝜓𝑞⟩|
2

≥ 0

𝑗

 

 And the second one is that the trace of the matrix must always be equal to one 

𝑇𝑟(𝜌) = ∑𝜌𝑘𝑘

𝑘

= ∑∑𝑝𝑗|𝛼𝑘
(𝑗)|2

𝑗

= ∑𝑝𝑗 ∑|𝛼𝑘
(𝑗)|2

𝑘𝑗𝑘

= 1 

 

Another important aspect of the purity of the quantum state is the unitary 
evolution. The unitary operators are fundamental in quantum mechanics 
because they preserve the purity of the state and the transformations described 
by unitary operators are always reversible.  

 

6.4 THE REDUCED DENSITY MATRIX  
Another feature of using the density matrix notation is that it gives a feasible 
approach to retrieve the state of each subsystem, even if they are entangled, 
when dealing with composite systems. This is accomplished through the use of 
a matrix known as the reduced density matrix. Consider a quantum system that 



is made up of subsystems A and B and it is completely represented by the 
density matrix 𝜌𝐴𝐵. Subsystem A's decreased density matrix is thus provided by 
the partial trace operator, 𝑇𝑟𝐵: 

𝜌𝐴 = 𝑇𝑟𝐵(𝜌𝐴𝐵), 

Consider the pure entangled state as an example: 

|𝜓𝐴𝐵⟩=
1

2
(|0𝐴0𝐵⟩ + |1𝐴1𝐵⟩) 

We know that this system is not separable, nonetheless, we can get a 
comprehensive description for subsystems A and B by utilizing the reduced 
density matrix, as shown below. The density matrix of our state |𝜓𝐴𝐵⟩  may be 
represented in terms of the basis vectors' outer products as 

 
Now, to calculate the reduced density matrix for, let's say, subsystem B, we 
have: 

 
This outcome may appear unusual at first look. We began with the pure 
entangled state and computed that one of its pieces (subsystem B) is in a mixed 
state. However, as we saw in the last example, one of the subsystems of a pure 
state was really a mixed state. We may thus infer that the reduced density 
matrix, 𝜌𝐵, is a technique of describing the statistical outcomes of subsystem B 
after the measurement outcomes of subsystem A have been averaged out.  



6.5 MIXED STATES IN THE BLOCH SPHERE 
It is worth noting that while we have so far explained the idea of partial trace for 
a bipartite (two-part) system, it may be expanded to multipart systems. We 
learnt how to view a qubit's state vector using the Bloch sphere model. Any 
normalized single-qubit state may be described as follows by parameterizing the 
probability amplitudes as a function of polar angle and azimuthal angle: 

|𝑞⟩ = cos
𝜃

2
|0⟩ + 𝑒𝑖𝜙 sin

𝜃

2
|1⟩, 𝜃, 𝜙 𝜖[0,2𝜋] 

Therefore, the qubit may be represented as a vector that extends from the origin 
to the surface of a unit-radius sphere, with its direction given by these two 
angles. This geometrical representation of states can also be expanded to 
include mixed states. This is achieved by taking use of the fact that the density 
matrix of a single-qubit state may be extended in the form 

𝜌 =
1

2
(𝐼 + 𝑟�̂�) =

1

2
(𝐼 + 𝑟𝑥�̂�𝑥 + 𝑟𝑦�̂�𝑦 + 𝑟𝑧�̂�𝑧) =

1

2
[

1 + 𝑟𝑧 𝑟𝑥 − 𝑖𝑟𝑦
𝑟𝑥 + 𝑖𝑟𝑦 1 − 𝑟𝑧

] 

where the 𝑟𝑥,  𝑟𝑦 and 𝑟𝑧 coefficients correspond to the components of the Bloch 
vector 𝑟; 𝐼 is the identity matrix and  �̂�x, �̂�y, �̂�z are the Pauli operators. Let's now 
consider the case discussed previously for the mixed states 

 𝜌 = [

29

30

4√3+7

20

4√3+7

20

31

30

]   →   𝑟𝑥 =(
4√3 + 7

20
),      𝑟𝑦 = 0, 𝑟𝑧 = −

1

30
 

This is a pretty simple way of saying that this state is not pure since it has been 
corrupted by noise. We now have a single Bloch vector representation for our 
noisy state, rather than three independent Bloch spheres to represent each of the 
three potential pure-state outcomes. 
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7 THE QUANTACELL, MODEL OF A QUANTUM BATTERY 

The Quanta-cell is a battery made up of qubits; in fact, the qubit can be 
considered as nature’s smallest battery. We want to look at the phenomenon of 

charging a qubit, how we model the charging and discharging processes, and 
how we may describe them mathematically. We'll start by outlining how energy 
evolves in a quantum system of a single qubit, and what kinds of 
transformations may be applied to it using quantum physics concepts and then, 
translated into quantum computing gates. At the end of this first portion, we'll 
look at a system with several qubits and how entanglement effects can improve 
the performances of the charging and discharging processes. 

7.1 OVERVIEW 
We will establish some fundamental notions such as the maximum amount of 
work that the battery can hold and how energy is related to our quantum states. 
The greatest amount of work that can be taken from our battery is referred to as 
ergotropy, and it is defined as the difference in energy between the highest and 
lowest energetic states. The generic quantum state is denoted by �̂� , and its 
energy may be calculated using its reference Hamiltonian, �̂�0. The Hamiltonian 
operator applied to the density matrix of our quantum state returns the energy 
distribution of the state. The following quantum state is expressed in the basis 
{|0⟩, |1⟩} 

�̂�= |+⟩⟨+| =
1

2
 ([

1

1
] ∙ [

1

1
]
𝑇

) =
1

2
 [
1 1
1 1

] 

The reference Hamiltonian, �̂�0, of eigenstates 𝜖𝑖 and eigen basis |𝜖𝑖⟩ is written 
as 

�̂�0 = ∑𝜖𝑖|𝜖𝑖⟩

𝑖

⟨𝜖𝑖|, 𝜖𝑖+1 ≥ 𝜖𝑖 

From now on we chose the following reference Hamiltonian 

�̂�0 = 0(|0⟩⟨0|) +  1(|1⟩⟨1|) = |1⟩⟨1| = [
0 0
0 1

] 

The value of the energy level is represented by the notation 𝜖𝑖. The Hamiltonian 
is the weighted sum of each energy level and its basis, and it is sorted 
ascendingly: the higher the energy level, the higher the index value. The total 
internal energy may be calculated by multiplying the Hamiltonian by the 
density matrix of the quantum state and applying the trace operator 



𝑇𝑟[�̂��̂�0] =  𝑇𝑟 (
1

2
 [
1 1
1 1

] [
0 0
0 1

]) =
1

2
𝑇𝑟 ([

0 1
0 1

]) =
1

2
 

In order to charge the battery, we must move from a generic state �̂� to a higher 
energy state �̂�′, and the same notion applies to the discharging process, which 
requires moving from a generic state �̂� to a lower energy level �̂�′′. The primary 
constraints for these activities are the differences in energy levels 

𝐸𝑖𝑛𝑡
�̂�′

− 𝐸𝑖𝑛𝑡
�̂�

= 𝑇𝑟[�̂�′�̂�0] − 𝑇𝑟[�̂��̂�0] ≥ 0, 𝐸𝑖𝑛𝑡
�̂�′′

− 𝐸𝑖𝑛𝑡
�̂�

= 𝑇𝑟([�̂�′′�̂�0] − [�̂��̂�0]) ≤ 0 

We assume that both processes are cyclic and unitary. Cyclicity means that we 
may charge and drain the battery several times, and the unitarity is required for 
the conservation of the purity of the quantum state. Because of unitarity, the 
state space a has a fixed spectrum that is invariant to the transformation and is 
ordered ascendingly. Consider the following spectrum as an example 
{𝑝1, 𝑝2, 𝑝3, 𝑝4} 

�̂� = ∑𝑝𝑖  |𝑟𝑖⟩

𝑖

⟨𝑟𝑖|, 𝑝𝑖+1 ≥ 𝑝𝑖 

 
Then we introduce two fundamental states that correspond to the greatest and 
least energy levels 

�̂�  =  ∑𝑝𝑖  |𝜖𝑖⟩

𝑖

⟨𝜖𝑖|, 𝑝𝑖+1 ≥ 𝑝𝑖 

�̂�  =  ∑𝑝𝑖  |𝜖𝑖⟩

𝑖

⟨𝜖𝑖|, 𝑝𝑖 ≥ 𝑝𝑖+1 
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As seen above, the state with the most energy is primarily composed of higher 
energy levels, whereas the state with the least energy is primarily composed of 
lower energy levels. We can use our unitary and cyclic transformations to move 
from one state to another, but there are some physical constraints on this 
transformation: the speed of changing between states must respect quantum 
limits, and the transformation cannot be of the type of a sudden quench; 
otherwise, we do not have a cyclic transformation. 

7.2 CHARGING OF A SINGLE QUBIT 
An external driving factor, which may be characterized as a new operator �̂�𝑡, 
can initiate the charging process. The new Hamiltonian will be the sum of the 
external driving and internal Hamiltonians of the system. 

�̂�𝑡 = �̂�0 + �̂�𝑡 , 𝑤𝑖𝑡ℎ �̂�𝑡 = 0 𝑓𝑜𝑟 𝑡 ∉ (0, 𝑇) 

As previously said, the external driving is delivered to the system over a 
specified time period since it must be cyclic, and we do not want any sudden 
alteration as a quench. The duration of the external drive is not defined, but it is 
part of the optimal solution. As a result, we may proceed to the optimal solution 
issue, which can be broken into two phases. The first seeks to discover the best 
solution for immediate power, because external driving is time-dependent, and 
we must find the best solution at each stage of the charging process. The second 
stage is to determine the best duration for the transformation after we have 
analysed the perfect answer in each instant and have determined the average 
work of the charging transformation. As our goal function, we might begin our 
assessment with the average power (we have average properties due to the 
Postulate 4 quantum collapsing nature) 

〈𝑃〉 =
〈𝑊〉

𝑇
 

We need to move from this notation to something that is related to our quantum 
system, to do so we need to express the energy as a property related to the 
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quantum states. We need to clear that the system energy depends on two factors: 
the first one is the internal energy that keeps evolving due to the external 
driving effect, 

𝐸�̂�𝑡

𝑖𝑛𝑡 = 𝑇𝑟(�̂�𝑡�̂�0), 

Where we have the �̂�𝑡 notation that express that the system state is changing in 
time; the second factor is simply the additional energy supplied by the external 
driving to the system. To evaluate the first factor, we keep in mind that the 
system’s extractable work is the ergotropy and it is expressed as the difference 

between the starting state and the final state internal energies. If we consider 
immediate properties, we can evaluate this difference as the time derivative of 
the internal energy of the system 

𝑃 =
𝑑〈𝑊〉

𝑑𝑡
=  

𝑑 (𝑇𝑟(�̂�𝑡�̂�0))

𝑑𝑡
 

7.2.1 Evaluation of the optimal instant power 

As previously stated, the instant power is the time derivative of the average 
work, hence evaluating the derivative yields 

𝑑 (𝑇𝑟(�̂�𝑡�̂�0))

𝑑𝑡
= 𝑇𝑟 (

𝑑�̂�𝑡

𝑑𝑡
�̂�0) + 𝑇𝑟 (�̂�𝑡

𝑑�̂�0

𝑑𝑡
) = 𝑇𝑟 (

𝑑

𝑑𝑡
�̂�𝑡�̂�0) 

This expression explains the fluctuation of the system's internal energy as a 
result of the time-dependent external drive. The internal Hamiltonian �̂�0 does 
not vary over time (thus the zero derivative), but it is related with the system's 
state, which alters at each stage of the transformation. The Von Neumann 
equation, which is essentially the Schrödinger equation for the density matrix, is 
used to represent this continuous transition in time of the system's state. 

𝑖
𝑑

𝑑𝑡
�̂�𝑡 = [�̂�𝑡 , �̂�𝑡], 

Where we fixed the Planck constant to be 1. To make the aforementioned 
phrases easier to understand, we apply some parametrization. The Pauli 
operators �̂�𝑡 will be used as basis to represent the time-dependent Hamiltonian 
and the quantum state. 

�̂� = (

�̂�𝑥

�̂�𝑦

�̂�𝑧

) , 𝑣𝑡 = (

𝑣𝑡
𝑥

𝑣𝑡
𝑦

𝑣𝑡
𝑧

) , 𝑎𝑡 = (

𝑎𝑡
𝑥

𝑎𝑡
𝑦

𝑎𝑡
𝑧

) = 𝑟 (

𝑠𝑖𝑛𝜃𝑡𝑐𝑜𝑠𝜙𝑡

𝑠𝑖𝑛𝜃𝑡𝑠𝑖𝑛𝜙𝑡

𝑐𝑜𝑠𝜃𝑡

) 



The Hamiltonian's time dependence is only due to the external driving, which is 
parametrized by the vector, 𝑣𝑡 , and the quantum state is described by its 
Cartesian decomposition, 𝑎𝑡. When we plug this form into the Von Neumann 
equation, we get 

𝑖
𝑑

𝑑𝑡
�̂�𝑡 = [�̂�𝑡 , �̂�𝑡] =

1

2
[𝑣𝑡�̂�, (𝕀 + 𝑎𝑡�̂�)] 

The above equation is then tweaked to be more like the derivative form we 
discovered before. We multiply it by the internal Hamiltonian, simplify the 
complex constant, then apply the trace operator to the left-hand term: 

𝑖
𝑑

𝑑𝑡
�̂�𝑡 = [�̂�𝑡, �̂�𝑡]  →  𝑇𝑟 (

𝑑

𝑑𝑡
�̂�𝑡�̂�0) = 𝑇𝑟(−𝑖[�̂�𝑡, �̂�𝑡]�̂�0) = −

𝑖

2
𝑇𝑟([𝑣𝑡�̂�, 𝑎𝑡�̂�]�̂�0) 

The hardest part is now determining the commutator at the far-right term. By 
noting that the commutator of the operator and itself is zero and that the 
commutator of two independent operators yields the third operator multiplied by 
a 2i factor, we may use the commutation relations between the Pauli operators. 
For example, we may do the evaluation for the X and Y operators 

[�̂�𝑖 , �̂�𝑖] =  0, [�̂�𝑖 , �̂�𝑗] = 2𝑖�̂�𝑘   

[�̂�𝑥, �̂�𝑦] = [
0 1
1 0

] [
0 −𝑖
𝑖 0

] − [
0 −𝑖
𝑖 0

] [
0 1
1 0

] = 𝑖 [
1 0
0 −1

] + 𝑖 [
1 0
0 −1

] = 2𝑖�̂�𝑧 

As a consequence, we can plug the commutator assessment results into the last 
equation and get 

−
𝑖

2
𝑇𝑟(2𝑖[(𝑣𝑡

𝑦
𝑎𝑡

𝑥 − 𝑣𝑡
𝑥𝑎𝑡

𝑦
)�̂�𝑧 + (𝑣𝑡

𝑦
𝑎𝑡

𝑧 − 𝑣𝑡
𝑧𝑎𝑡

𝑦
)�̂�𝑥 + (𝑣𝑡

𝑧𝑎𝑡
𝑥 − 𝑣𝑡

𝑥𝑎𝑡
𝑧)�̂�𝑦] �̂�0) = 

= 𝑇𝑟(�̂�𝑧�̂�0)(𝑣𝑡
𝑥𝑎𝑡

𝑦
−𝑣𝑡

𝑦
𝑎𝑡

𝑥) 

+ 𝑇𝑟(�̂�𝑦�̂�0)(𝑣𝑡
𝑦
𝑎𝑡

𝑧 − 𝑣𝑡
𝑧𝑎𝑡

𝑦
) 

+ 𝑇𝑟(�̂�𝑥�̂�0)(𝑣𝑡
𝑧𝑎𝑡

𝑥 − 𝑣𝑡
𝑥𝑎𝑡

𝑧) 

We see that the sole non-zero term is T𝑟(�̂�𝑧�̂�0), with a value of -1, therefore 
the time-derivative equation expressing the quantum state change becomes 

𝑇𝑟 (
𝑑

𝑑𝑡
𝜌�̂��̂�0) = 𝑣𝑡

𝑦
𝑎𝑡

𝑥 − 𝑣𝑡
𝑥𝑎𝑡

𝑦
= 𝑟 𝑠𝑖𝑛𝜃𝑡(𝑣𝑡

𝑦
𝑐𝑜𝑠𝜙𝑡 − 𝑣𝑡

𝑥𝑠𝑖𝑛𝜙𝑡) 

Our goal is to maximize the instant power function, and in order to do so, we 
must determine the appropriate values for 𝑣𝑡

𝑥  and 𝑣𝑡
𝑦 . To maximize our 



quantities, we apply the Lagrange method, where the target function is denoted 
as f and the constraint is denoted as g 

𝑓(𝑣𝑡
𝑥, 𝑣𝑡

𝑦
 ) =  𝑟 𝑠𝑖𝑛𝜃𝑡(𝑣𝑡

𝑦
𝑐𝑜𝑠𝜙𝑡 − 𝑣𝑡

𝑥𝑠𝑖𝑛𝜙𝑡), 𝑔 = (𝑣𝑡
𝑥)2 + (𝑣𝑡

𝑦
)2 + (𝑣𝑡

𝑧)2 − 𝐸𝑚𝑎𝑥
2  

The constraint derives from a physical limitation of optimum case 
circumstances, namely that the norm of the Hamiltonian must equal the 
maximum energy of the system. The partial derivative is then calculated 

𝑑(𝑓 + 𝜆𝑔)

𝑑𝑣𝑡
𝑥 = −

𝑑𝑣𝑡
𝑥

𝑑𝑡
𝑠𝑖𝑛𝜙𝑡𝑟 𝑠𝑖𝑛𝜃𝑡 + 𝜆 (2

𝑑𝑣𝑡
𝑥

𝑑𝑡
𝑣𝑡

𝑥) = 0 

𝑑(𝑓 + 𝜆𝑔)

𝑑𝑣𝑡
𝑦 =

𝑑𝑣𝑡
𝑦

𝑑𝑡
𝑐𝑜𝑠𝜙𝑡𝑟 𝑠𝑖𝑛𝜃𝑡 + 𝜆 (2

𝑑𝑣𝑡
𝑦

𝑑𝑡
𝑣𝑡

𝑦
) = 0 

The first equation yields the value λ to put into the second equation. This 
replacement returns the collection of critical points for the target function, from 
which we may find the maximum as the point with the values of our variables 
as shown below 

𝑣𝑡
𝑦

𝑣𝑡
𝑥 = −

𝑐𝑜𝑠𝜙𝑡

𝑠𝑖𝑛𝜙𝑡
→ 𝑣𝑡

𝑥 = −𝐸𝑚𝑎𝑥𝑠𝑖𝑛𝜙𝑡 , 𝑣𝑡
𝑦
 =  𝐸𝑚𝑎𝑥𝑐𝑜𝑠𝜙𝑡 , 𝑣𝑡

𝑧 = 0 

7.2.2 Evaluation of the optimal average power 

After calculating the immediate optimal power with a given quantum state, we 
can now evaluate the average power. As previously noted, the geodesic in the 
XY plane (𝜃 = 𝜃𝑇) of the Bloch Sphere traversed by the state vector may be 
represented as the instant optimal power. The vector moves on the geodesic 
with a fixed radius and constant speed 𝐸𝑚𝑎𝑥. The value of the 𝜙𝑡 does not affect 
the calculation because even though it changes over time, it is not found in the 
equation of the ideal instant power. Because the 𝜙𝑡 angle has no effect on the 
external drive, we will describe the average power as the shifting between the 
state with 𝜃0 and the geodesic at 𝜃𝑇. 



 
We solve the average power equation using the relation 𝜃𝑡 = 𝜃0 + 𝐸𝑚𝑎𝑥𝑡 

〈𝑃〉 =
〈𝑊〉

𝑇
=

𝑇𝑟[�̂�′�̂�0] − 𝑇𝑟[�̂��̂�0]

𝑇
= 

=
𝑟

2𝑇
(
𝑐𝑜𝑠𝜃0

2
−

𝑐𝑜𝑠𝜃𝑇

2
) = 

=
𝑟

2𝑇
(𝑐𝑜𝑠𝜃0 − 𝑐𝑜𝑠(𝜃0 + 𝐸𝑚𝑎𝑥𝑇)) 

The maximum of the above equation is next evaluated; to do so, we compute 
the time derivative and set it equal to zero. 

𝑟

2𝑇2
(− 𝑐𝑜𝑠𝜃0 + 𝑐𝑜𝑠(𝜃0 + 𝐸𝑚𝑎𝑥𝑇) + 𝑠𝑖𝑛(𝜃0 + 𝐸𝑚𝑎𝑥𝑇)𝐸𝑚𝑎𝑥𝑇) = 0 

𝑐𝑜𝑠𝜃𝑇 + 𝐸𝑚𝑎𝑥 𝑇 𝑠𝑖𝑛𝜃𝑇 =  𝑐𝑜𝑠𝜃0 

( 𝑐𝑜𝑠𝜃0 − 𝑐𝑜𝑠𝜃𝑇) = 𝐸𝑚𝑎𝑥 𝑇𝑠𝑖𝑛𝜃𝑇 

This equation expresses the ideal average power in a geometric way: the power 
is expressed as the difference between the height of the two states. The height of 
the leap is given by the projection of the state vector on the XY plane multiplied 
by 𝐸𝑚𝑎𝑥𝑇 . The orange arrow represents the leap between the starting state 
vector (𝜃 = 𝜃0)  and a generic state lying on the arrival geodesic (𝜃 = 𝜃𝑇). The 
following formula summarizes the notion of optimum power 

∆𝑧𝑇  =  (𝐸𝑚𝑎𝑥𝑇 )𝑝𝑇
𝑥𝑦

  



 

7.3 CHARGING PROCESS FOR MULTIPLE QUBITS WITHOUT ENTANGLEMENT 
After determining the evolution of power for a single qubit system, we may go 
on to a more sophisticated system comprised of N qubits arranged in parallel. 
The notation �̂� represents each qubit state, and the state of the qubits array is the 
tensor product of each qubit's state. 

�̂� ⊗ �̂�. . .⊗ �̂� = �̂�⊗𝑁 = �̂�(𝑁) 

We wish to show that if the qubits in this battery are entangled with each other, 
the charge and discharge processes will perform better than if the qubits were 
viewed as isolated systems working in parallel. To begin, in the situation of not 
entangled qubits, the system's Hamiltonian is just the sum of each qubit's 
Hamiltonian in the system 

�̂�0
(𝑁)

= ∑|1⟩𝑘⟨1|𝑘 ⊗𝑗≠𝑘 𝕀(𝑗)

𝑘

 

The |0⟩  and |1⟩  states represent the lowest and greatest energy states, 
respectively. As a result, the total charge of energy may be written as the shift 
|0(𝑁)⟩ → |1(𝑁)⟩.  We can see that if we apply an external drive to our parallel 
qubit system, the resultant Hamiltonian will be the sum of the driving 
Hamiltonians we have previously discovered for the single qubit charging 
protocol 

�̂�𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
(𝑁)

= ∑𝐸𝑚𝑎𝑥(�̂�𝑥
(𝑘)

𝑐𝑜𝑠𝜙0 − �̂�𝑦
(𝑘)

𝑠𝑖𝑛𝜙0) ⊗𝑗≠𝑘 𝕀(𝑗)

𝑁

𝑘

 



Where the Pauli operators express the state vector's projection onto the XY 
plane. The maximum energy of the battery may be calculated as the sum of the 
energies of each qubit, yielding 

𝐸𝑚𝑎𝑥
(𝑁) = 𝑁𝐸𝑚𝑎𝑥 

Where the energy levels are the Hamiltonian eigenvalues and are dispersed at 
equidistant intervals in the range [0, 𝑁𝐸𝑚𝑎𝑥] . The average work may be 
calculated by multiplying the average work of each qubit in the array by the 
number of qubits in the array. The ideal period for the transformation may be 
calculated using the preceding chapter's expression: the optimal transformation 
is a geodesics at the poles of the Bloch sphere. The whole path is the arc from 
|0⟩ to |1⟩, which is a rotation by π radians of the vector state around the X axis 
at a set speed, 𝐸𝑚𝑎𝑥 

𝜃𝑡 − 𝜃0 = 𝐸𝑚𝑎𝑥𝑡 →  𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =
𝜋

𝐸𝑚𝑎𝑥
 

In the picture below, each qubit is represented as a separate system to which we 
apply our external drive. Because there is no entanglement, the qubit's states 
develop independently under the conditions outlined above. 

 

7.4 CHARGING PROCESS FOR MULTIPLE QUBITS WITH ENTANGLEMENT 
When we consider a system with entangled qubits, the particles function as a 
whole system that is susceptible to a single external drive. We may envision a 
large ensemble of distinct qubits flipping pi radians from state |0⟩  to |1⟩ . 
Because the external drive operates on all the qubits as an entangled system 
rather than as singles, the formulation of the global Hamiltonian differs 
significantly from that of the parallel system 

�̂�𝑔𝑙𝑜𝑏𝑎𝑙
(𝑁)

= 𝐸𝑚𝑎𝑥
(𝑁)

 �̂�𝑥
(𝑁)

= 𝐸𝑚𝑎𝑥
(𝑁)

(|1(𝑁)⟩⟨0(𝑁)| + |0(𝑁)⟩⟨1(𝑁)|)

= 𝐸𝑚𝑎𝑥
(𝑁)

[
0 1
1 0

]
(𝑁)

 



The total energy of the external driving is the sum of the energies of each qubit, 
and it corresponds to the rotation speed, 𝐸𝑚𝑎𝑥

(𝑁) . The period of the transformation 
is calculated in the same way as in the previous chapter, but we must consider 
the entire system spinning  

𝑇𝑔𝑙𝑜𝑏𝑎𝑙 =
𝜋

𝐸𝑚𝑎𝑥
(𝑁)

=
𝜋

𝑁𝐸𝑚𝑎𝑥
 

 
In the figure above, we consider the entangled system as a full object to which 
we apply external drive. 

7.5 CONCLUSIONS 
We have greater power in the second system due to the shorter transition period. 
The quantum speedup observed here can be explained in part by the reduced 
distance that must be traversed through state space when entangling operations 
are permitted. To compute and compare the path length in state space between 
the global and parallel pure state examples, we must first realize that the 
suggested evolution, in the global case, does indeed prescribe a path along a 
geodesic. The difference between the two operations may be shown using a 
chart that reports the ratio of the transformation time for the parallel system, 
𝑡⊥(1), and the transformation time for the entangled system, 𝑡⊥(𝑁) 

 



 
We can see the difference between the solid line, which represents the single 
qubit charging protocol for all N qubits, and the dashed line that represents the 
1/N line. The growing number of qubits will result in a 1 √𝑁⁄  decrease in 
transformation period and an increase in average power value. We proved an N-
fold gain in power per work qubit using a specific exemplary evolution. This 
example was provided with the operational restriction that the purity of the state 
be preserved once more. This underlines the possibility of quantum 
improvement for devices operating in non-equilibrium settings. 
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