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Abstract

Given a physical phenomenon, we mathematically represent this through equations, which
define the so-called "direct problem". By the term "inverse problem", we mean the search
for an input of the direct model that provides a certain output, of which, we have total or
partial observations. Mathematically, these inverse problems can be treated as "optimal
control problems", in which the control is the input of the direct problem which we want
to find minimizing the gap between the observed data and those obtained by varying the
control.

We focus on the inverse problems in fluid dynamics, because there are many appli-
cations in science and engineering. The amount of resources needed to solve them by a
computer, such as time and storage, also called "computational cost", is great. Moreover,
the wanted input can depend on one or more parameters. Then, the computational cost
increases with the number of parameters. For this reason, we want to find a solution
methods that allow us to reduce the computational cost.

To solve inverse problems, we employ a "optimize-then-discretize" approach. At first,
an optimization procedure is defined. Then, it is discretized to solve it by a computer.
To reduce the computational cost of high-fidelity solutions, we investigate the "Reduced
Basis" (RB) method.

Quantifying fluid properties in the governing equations, which are essential for predic-
tive modelling, remains a challenging problem. For this reason, we test the study case of
the viscosity estimation from the data observed in lid-driven cavity flow. We study three
set-ups for our test case, which differ in observed data used: only velocity, only pressure,
or both.

At first, we implement an iterative procedure for the optimization step starting from
an initial guess, also called the "Conjugate Gradient" (CG) method. Then, we use "Finite
Volume" (FV) discretization to approximate the solution of the equations involving in the
CG method. We call the previously described procedures as "Full Order" (FO) method.

We employ the RB method called the "Proper Orthogonal Decomposition" (POD)
which exploits the information obtained from a certain number of simulations with the
FOM, calculated in a typically expensive "offline phase", to construct the reduced approx-
imations of the solutions. With reduced order approximations, for optimization step, we
emulate full-order CG solver, where we replace the FV discretization of involving equa-
tions with a reduced approximation of them, which can be solved in a limited amount of
time, with a lower computational effort, in a so-called "online phase".

From full-order results on the test case, we observe different performances and ac-
curacy changing the type of observed data. Moreover, increasing the viscosity wanted,
its estimation with only velocity data is less accurate and perform in larger amount of
time than with other observation set-ups. Furthermore, the numerical methods employed
are expensive. Finally, we test the RB method in the case with only velocity observa-
tions given, obtaining an accurate estimation of viscosity with low computational cost.
Then, the RB techniques could be a good and viable way to enhance the computational
performances of inverse problem solvers.
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If God has created the world,
his primary worry was certainly not
to make its understanding easy for us.
[February 1954, Quoting Albert
Einstein.]



Introduction and Motivation

The present Master Thesis investigates the numerical solution of inverse problems in fluid
dynamics framework.

Inverse problems in fluid dynamics are widespread in science and engineering. In [33],
the authors determine unknown wall heat flux values using free stream measurements for
laminar forced flow through a parallel duct. Another inverse problem studied is identifi-
cation of flow obstructions, as in [39]. Moreover, application in identification of heat and
contaminant sources, there is in [48]. A possible application sector is aerodynamic design,
for example in [35] which investigates the diffuser with minimal axial deviation at the out-
let and the stage with maximum thrust. In [9] we can see an inverse problem in biomedical
science. In this work, the authors show results obtained on 2D curved domains, retrieving
from the assimilated velocities a flow-related variable of medical relevance, namely the
Wall Shear Stress (WSS). In industrial application, there are some inverse problem in op-
timal shape design, such as in [36] which search shape of nozzle with a desirable lower wall
pressure distribution. In fluid-structure interaction setting, a possible inverse problem is
to identify inflow velocity fields from the knowledge of fluid loads time history on a fixed
solid represented by the 2D section of a bridge deck, as studied in [16]. Finally, but most
importantly, a sector of application is marine science. For example in [6], the authors take
into consideration an inverse problem capable to guess what are the physical conditions
that can represent a desired velocity-height profile with shallow water equations.

For those applications it is very easy to observe a high computational cost deriving
from PDEs solver employed. Moreover, the wanted input of direct problem can be depend
on one or more parameter. Thus, the numerical solution of the corresponding inverse
problem is expensive because the computational cost increases with the dimension of
space parameter. For this reason, we research a way to reduce this cost. For this goal,
we investigate the application of projection - based Reduced Order Methods for inverse
problems in fluid dynamics.

The inverse problem in fluid dynamics, from a mathematical point of view, can be
analyzed as an optimal control problem, with constrained given by Partial Differential
Equations (PDEs). This approach permits us to study the ill-posedness and the stability
of the solutions. In this constrained optimization framework, there are many works that
investigate the regularization of ill-posed inverse problems, the existence and uniqueness
of the solutions and numerical full-order method, such as in [59, 58, 43, 70, 23, 27]. In
particular, optimal control problems can be seen, from the theoretical point of view, as a
minimization of a functional cost representing the difference between the desired data and
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solutions of the problem governed by the control parameter variable. For this reason, at
full-order level, we want to solve these problems with derivative-based methods. By the
use of this approach, we can obtain the so called Karush-Kuhn-Tucker (KKT) optimality
system. This system consists of three blocks of equations:

• Direct Equations, which are given by the equations of state together with boundary
conditions;

• Optimality Equations, which are the sufficient conditions of first order optimality,
dependent on state and adjoint variables;

• Adjoint Equations, that close the system.

This system can be obtained by the application of two different derivative-based methods,
also known as the sensitivity and adjoint approaches, which will be recalled in the next
chapter for the sake of completeness. The second procedure can be obtained by rewriting
the constrained optimal control problem as an unconstrained problem via a Lagrangian
approach. Then, we can derive the Lagrangian with respect to the state variables, under
appropriate hypotheses, to obtain the adjoint equations and with respect to the control
to obtain the optimality condition.

In this Thesis, the Full Order Model (FOM) for direct problem is the incompressible
laminar steady Navier–Stokes Equations (NSE). As well-known, the numerical solution
of the incompressible NSE at Full Order level is particularly expensive in terms of com-
putational cost and CPU time. Instead, Reduced Order Models exploit the information
obtained from a set of full order simulations by a very expensive offline phase, to solve
a lower dimensional problem with a lower computational cost, during the online phase.
Based on such an offline/online paradigm, the Reduced Order Methods (ROMs) have been
widely applied to fluid flow simulations to reduce the computational cost. In particular,
these methods are employed with both physical and geometrical parametrization and/or
turbulent unsteady dynamics, such as in the recent works [65, 31, 29, 30] with finite
volume discretization.

Instead, in this work, we want to solve inverse problems with state equations given by
Navier-Stokes equations. The resolution of the KKT system can be carried out through
both coupled or decoupled approaches. To avoid stability issues due to the saddle-point
structure of this system, we adopted a segregated approach to find the minimizer through
a Conjugate Gradient (CG) method. This procedure is widely used in optimization as a
basic method and also as a regularization technique. For more detail on this, we refer to
[49, 4, 14, 46, 11, 53, 15, 27, 70].

At reduced order level, the parametric optimal control problems (µ-OCP) have been
studied in many different works to obtain real-time solutions, with low computational cost,
varying the parameter. There are application in biomedical engineering [75], environmen-
tal sciences [69], heat inverse problems for industrial requirements [50], in non-linear and
time dependent optimal flow [67, 68]. Usually, the application of ROM for optimal flow
control or inverse problem, is in a finite element framework. In this work, instead, we
want to extend reduced optimal flow techniques in finite volume framework. We adopt
this approximation procedure because finite volume became the standard choice for real
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world applications in several engineering fields (Aeronautics, Industrial flows, Automo-
tive, Naval Engineering) providing high fidelity solutions. Moreover, we have an easier
implementation and the possibility to work on generic polyhedral cells while being locally
conservative. Furthermore, in flow simulations, increasing Reynolds numbers, there are
less issues concerning stability and several turbulence models already available.

In particular, this Thesis focuses on Snapshots-based ROMs constructed with a POD-
Galerkin method (POD-Galerkin ROMs) [62, 28]. These ROMs are built by following the
four steps reported here:

1. Compute a set of solutions (or snapshots) of the Full Order model and store it;

2. Construct a set of basis functions (modes), identified applying the Proper Orthog-
onal Decomposition (POD) on snapshots (see for detail [20, 41, 72]); thus, we can
reconstruct the unknown solution lives as linear span of this modes;

3. Project the FOM optimality equations onto the space spanned by these modes. The
resulting Galerkin ROM (G-ROM) is a system of equations where the unknowns are
the modal coefficients;

4. Solve the reduced order system with a particular reduced optimization algorithm.

Since the ROM exploits the information of FOM stored solutions, it is capable of providing
good accuracy while significantly reducing the degrees of freedom. Thus, the solution of
reduced system require lower computational effort and CPU time with respect to a high
fidelity resolution.

The case study considered to test the efficiency of the approach developed is that
of learning a constant viscosity in a steady laminar lid-driven cavity flow. The reduced
order model for adjoint and state problems is treated with a pressure/velocity coupling
technique, namely the exact supremizer enrichment approach (SUP-ROM) which consists
in the addition of velocity modes — namely supremizer modes — in the velocity POD
space in order to fulfill the inf-sup condition. The inf-sup condition is typical in saddle-
point structure problems, and the treatment at reduced order level is introduced in [61, 8,
60, 17, 64].

For non-homogeneous Diriclet boundary conditions (BCs) treatment we use a lifting
function to homogenize the snapshots, before the application of the POD for the evaluation
of the modal basis, as it has been done in [66, 22].

Furthermore, to solve the reduced optimization problem we adopt a reduced version of
FOM conjugate gradient method. This idea was born to avoid the stability issue related
with the saddle point structure of reduced KKT system and to emulate the full order
solution. We evaluate his effect in terms of accuracy in reduced fields and control, with
respect to their FOM counterparts.

In this work, for the offline phase, Full Order solution are computed making use of the
open source software OpenFOAM 1 for finite volume (FV) approximation of PDEs [51]. We
implemented a non-linear version of the conjugate gradient method to find the minimizer

1https://www.openfoam.com/
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viscosity constant from observed data. Remarking that adjoint equations have the same
pressure-velocity coupling of state equations, we adopted a Segregated Pressure-Based
Solver, the SIMPLE algorithm (Semi-Implicit Method for Pressure-Linked Equation) [51],
for both problems. The used POD algorithms are coded into the ITHACA-FV 2 (In
real Time Highly Advanced Computational Applications for Finite Volumes) package, an
open source C++ library containing several reduced order modelling techniques in a finite
volume framework, based on OpenFOAM and developed at the mathLab3 group in SISSA.
Most of the theoretical aspects behind ITHACA-FV are deeply explained in [64, 66].
Linear and non-linear algebra operations, useful to solve the reduced systems in the online
phase, which are not already implemented in OpenFOAM, are performed with the external
library Eigen [21]. The source code of this library is provided together with ITHACA-
FV. Data visualizations and plots are performed using Paraview, an open-source, multi-
platform data analysis and visualization application [1, 5], and packages numpy [26],
matplotlib [34] in python language [71].

Summarizing, this Thesis has the following structure:

• Chapter 1, Inverse problems as PDEs-constrained optimal control problems. In
this chapter we will recall the general formulation of optimal control problems con-
strained by partial differential equations (PDEs). A brief overview on ill-posedness
of inverse problems and regularization theory will also be included. Finally we will
introduce our test case where the direct problem describes an isothermal, incom-
pressible steady-state flow in a cavity; while, we introduce the inverse problem of
find viscosity from observed data;

• Chapter 2, Full Order Model (FOM). In this chapter, we develop the Full-Order
Model for the inverse problem using a conjugate gradient method to solve the KKT
system in a decoupled way and we recall the finite volume discretization for state and
adjoint equations, which are numerically solved employing a segregate pressure-based
solver;

• Chapter 3, Reduced Order Model (ROM). In this chapter, we study the correspond-
ing Reduced Order Model. A review on the construction of POD modes for state
and adjoint fields is given. The Galerkin projection onto the POD spaces for state
equations, adjoint equations and optimality condition, is separately performed. In
this chapter we also investigate the stability issue of the reduced equations, fixed
by the employment of the supremizer enrichment, and describe non-homogeneous
Diriclet BC treatment with a lifting function method. Finally we develop a reduced
version of the CG method for this particular test case;

• Chapter 4, Numerical Results. In this chapter we show numerical results of the full
order model for the test case inverse problem. A comparison between the results
for velocity data only, pressure data only or both of them is provided while varying

2https://mathlab.sissa.it/ITHACA-FV
3https://mathlab.sissa.it/
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the constant viscosity in a fixed range. Finally we test the reduced order method
previously introduced in both accuracy and velocity terms; the approximated fields
for velocity and pressure are displayed and compared first of all with the Full Order
Model solutions;

• Conclusion and perspectives. In this final chapter we make a comparison between
desired and obtained goals, we critically comment on the results obtained and we
underline the parts requiring a deeper analysis, introducing possible further devel-
opments for this research.
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Chapter 1

Inverse problems like
PDEs-constrained optimal
control problems

The term "inverse problem" does not have a well-defined mathematical definition, since
its meaning is based on notions of physics, but let’s go back to the textbook definition
given in [59]. Suppose there is a known map from the input to the output of our system

t : U → T,

that models a mathematical-physical law or a tech device. Here, U is a set of "causes",
the input to our model, and T is a set of "effects", the consequent output.

The computation of an effect t(u) from a known cause u is called a direct problem.
Finding a cause u ∈ U , which implies a given effect td ∈ T , is called as inverse problem.
Solving an inverse problem therefore means to invert this map t finding a input u such
that equation t(u) = td is satisfied.

Sometimes, we want a certain desired effect td ∈ T and are looking for a certain u ∈ T
which produce it. An inverse problem of this type is called a optimal control problem, where
the control is our unknown cause and the cost functional is given by the difference between
desired data and output of direct problem varying the control. A particular optimization
problem is to identify a parameter of direct model knowing partially or completely the
output. An inverse problem of this type is called an identification parameter problem.

As it will be shown, inverse problems typically are not well-posed in the sense of
Hadamard, i.e., to ill-posed problems. For this reason regularization techniques are re-
quired to lead ill-posed problems in a well-posed formulation. Thus, we recall the definition
of ill-possdness and iterative regularization method used to solve this type of problems.

We assume that inverse problems, treated in this work, can be seen, from the mathe-
matical point of view, as a constrained optimization problem, whose constraints are given
by the particular model used to represent the physical phenomenon. In most cases one
has to deal with constraints given by by Partial Differential Equations (PDEs). For this
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1.1 – Optimal control problems

reason, we will introduce the general formulation of PDEs-constrained optimal control
problems.

This chapter is organized as follows: in the first and second sections, we will discuss
the continuous formulation of optimal control problems and derivative-based optimization
strategies, respectively. In the third section, we will discuss the optimality condition. Sub-
sequently, we will recall the mathematical theory of ill-posed problems and regularization
methods. Finally, we propose a simple test case in which we derive the inverse formulation
from direct problems given by steady state Navier-Stokes equations in laminar regime.

1.1 Optimal control problems
In many application contexts, as already mentioned, the direct model is given by equations.
Usually, these inverse problems can be treated as constrained optimal control problems, in
which the control is input of direct problem that we want to find and the cost functional
to minimize is a gap between the observed data and those obtained by varying the control.
Some aspects on theory of optimal control are presented below. For this section we refer
to [43, 58, 74, 70]. We will limit ourselves to the case of systems represented by Partial
Differential Equations (PDEs). For this goal, we start by introducing the mathematical
entities that come into play in the theory:

• the control function u ∈ Uad, where Uad is the space of admissible controls, appropri-
ately chosen according to constraints imposed on u. Observe that Uad ⊆ U , where U
is the most adequate functional space to describe the role that the control function
u assumes in the equations. If Uad = U the control will be said to be unconstrained;
if instead Uad ⊂ U we are dealing with a constrained control;

• the state of the system s(u) ∈ S (an appropriate functional space), depending on the
value assumed by the control u, which satisfies the linear/non-linear state governing
equations given by

F (s,u) = 0,
where F : S × U → S∗ is the residual of the state equations;

• the observation function, indicated by t(u) which depends on s(u) and an appropri-
ate operator C:

t(u) = C(s(u)),
where t ∈ T (T is the space of the observed functions); t(u) must be compared with
the desired observation function td;

• a cost functional J : S×U → R is a quadratic objective functional to be minimized.
In general, J will depend on td and u (also) through t.

Let us consider Hilbert spaces S and U , the optimal control problem can be summarized
in:
Problem 1.1 Find optimal solution (s,u) ∈ Sad × Uad such that

min
(s,u)∈S×U

J(s,u) subject to F (s,u) = 0, s ∈ Sad, u ∈ Uad.

15



Inverse problems like PDEs-constrained optimal control problems

In particular cases it is possible to prove the existence and uniqueness of the optimal
solution for a general non-linear quadratic problem. For example, in [70], existence and
uniqueness results is established by the following theorem.

Theorem 1.1 The Problem 1.1 has an optimal solution (s,u) ∈ S×U under the following
assumptions:

1. Sad ⊆ S and Uad ⊆ U are convex and closed;

2. The feasible set G = { (s,u) ∈ S × U : F (s,u) = 0 } /= ∅ ;

3. State governing equations are continuous and well-posed;

4. J is weakly lower semi-continuous.

1.2 Derivative-based optimization
In this section we will explore optimization techniques to solve PDEs-constrained optimal
control problems, as in [70, 74]. Essentially, there are two methods to do this:

i. the sensitivity approach,

ii. the adjoint approach.

We consider the optimization problem unconstrained with respect to state and control
variables, that is, Sad = S and Uad = U and F (s,u) to be the residual of state governing
equations. Also, we assume that:

a. J : S × U → R and F : S × U → S∗ are continuously Frèchet differentiable;

b. ∀u ∈ U , ∃!s(u) ∈ S : F (s,u) = 0;

c. Fs(s(u),u) : S → S∗ is bijective.

Then we have an operator u → s(u) which is continuously differentiable thanks to the
Implicit Function Theorem. Also we can rewrite Problem 1.1, with reduced objective
functional J̃(u) := J(s(u),u), and we obtain the following reduced problem:

Problem 1.2 Find optimal solution u ∈ U such that

min
u∈U

J̃(u) subject to u ∈ Ũad := { u ∈ U | (s(u),u) ∈ S × U } .

After having justified this reduced formulation we want to calculate the derivative of
this new objective functional J̃ through a sensitivity analysis or an adjoint approach.
Below we give an outline of both methods for completeness.
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1.2.1 Sensitivity approach
To compute the derivative of the reduced objective function J̃ with the sensitivity ap-
proach, we make the following steps:

Step 1. Calculate the sensitivity δvs = ds(u,v) = s′(u)v (N.B. sensitivities are directional
derivatives) differentiating the state equation F (s(u),u) = 0, for u ∈ U and a
direction v ∈ U

Fs(s(u),u)δvs = −Fu(s(u),u)v. (1.1)

Step 2. Calculate the directional derivative dJ̃(u,v) = ⟨J̃ ′(u),v⟩U∗,U thanks to the chain
rule,

dJ̃(u,v) = ⟨Js(s(u),u), δvs⟩S∗,S + ⟨Ju(s(u),u),v⟩U∗,U . (1.2)

With this method the computational cost to calculate the derivative of this objective
functional increases with the dimension of U , since in Step 1 the sensitivity must be
calculated for a basis B of U .

1.2.2 Adjoint approach
A more efficient way of calculating the derivative of J̃ is via the adjoint approach with
the following three steps:

Step 1. Calculate the adjoint state z = z(u) ∈ S∗∗ = S which solves the following adjoint
equation

Fs(s(u),u)∗z(u) = −Js(s(u),u). (1.3)

Step 2. Calculate the term s′(u)∗Js(s(u) from the equation (1.1) which can be re-written

s′(u)∗Js(s(u) = Fu(s(u),u)∗z(u),

thanks the Step 1.

Step 3. Calculate J̃ ′(u) reformulating the relation (1.2)

⟨J̃ ′(u),v⟩U∗,U = ⟨s′(u)∗Js(s(u),u) + Ju(s(u),u),v⟩U∗,U ,

⇕

J̃ ′(u) = Fu(s(u),u)∗z(u) + Ju(s(u),u).

The adjoint gradient representation can also be derived by a Lagrangian formulation
of Problem 1.1, as shown in [70]. Define the Lagrange function L : S × U × S∗∗ → R,

L(s,u, z) = J(s,u) + ⟨z, F (s,u)⟩S∗∗,S∗ , (1.4)

where z ∈ S∗∗ = S is the Lagrangian multiplier. Thus, the Lagrangian formulation
casts the PDEs-constrained problem into an unconstrained one by introducing additional
variables.
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1.3 Optimality conditions and Karush-Kuhn-Tucker
system

In this section, at first we make a review of the theoretical results on the optimality
equation for Problem 1.2. Next we will deal with the sufficient optimality conditions of
first order. For the theoretical results contained in this section, we refer to [70, 74].

1.3.1 Optimality equation
Considering Problem 1.2, we have the following general result regarding the first order
optimality condition. Its proof can be found in [70].
Theorem 1.2 If ũ ∈ Ũ is a local minimum of reduced objective functional J̃ , then ũ
satisfies the following variational inequality also called optimality condition,

⟨J̃ ′(ũ),v − ũ⟩U∗,U ≥ 0, ∀v ∈ Ũ . (1.5)

Remark 1.1 If J̃ is convex, then the optimality condition is not only necessary but also
sufficient for optimality. Moreover, the local minimum is also global in this case.

If Ũ ≡ U , then the inequality condition becomes equality one.

The optimality constraint (1.5) can be rewritten in an equivalent form using the La-
grangian (1.4). Inserting state of the system s(u), let an arbitrary z ∈ Z = S∗∗, we define
the Lagrangian as,

L(s(u),u, z) = J(s,u) + ⟨z, F (s(u),u)⟩Z,S∗ . (1.6)
Differentiating the Lagrangian (1.6), we have

⟨L′(s(u),u, z),v⟩U∗,U = ⟨Ls(s(u),u, z), s(u)v⟩S∗,S + ⟨Lu(s(u),u, ),v⟩U∗,U .

In particular, we consider z = z(u) ∈ Z solution of the following constraint,
⟨Ls(s(u),u, z), s(u)v⟩S∗,S = 0,

which is the adjoint equation (1.3). Thus, the adjoint gradient representation can be
re-written in the following way,
⟨J̃ ′(u),v⟩U∗,U = ⟨Lu(s(u),u, z(u)),v⟩U∗,U = ⟨Ju(s(u),u, z(u))+Fu(s(u),u)∗z(u),v⟩U∗,U

⇕
J̃ ′(u) = Ju(s(u),u, z(u)) + Fu(s(u),u)∗z(u).

Then, the Theorem 1.2 can be reformulate in terms of Lagrangian, as developed in [74].
Corollary 1.1 If ũ ∈ Ũ is a local solution of reduced Problem 1.1, then the following
optimality constraint is satisfied,

⟨Lu(s, ũ, z),v − ũ⟩U∗,U ≥ 0 ∀v ∈ Ũ ,

⇕
⟨Ju(s, ũ, z) + Fu(s, ũ)∗z,v − ũ⟩U∗,U ≥ 0 ∀v ∈ Ũ .

We observe that,also in this case, if Ũ ≡ U , the optimality inequality becomes equality
one.
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1.3.2 Karush-Kuhn-Tucker optimality system
Now, we show the coupled optimality system for PDEs-constrained optimal flow control
problems composed by state, adjoint and optimality equations, recalled in previous sub-
section. The following Corollary of Theorem 1.2 summarize the teoretical results on this
system, as in [70].

Corollary 1.2 Let us (s,u) ∈ S × U a solution of the Problem 1.1, then ∃z ∈ Z adjoint
variable (or Lagrange multiplier) that it satisfies the following optimality system, also
known as Karush-Kuhn-Tucker (KKT) optimality conditions,

F (s u) = 0,
Js(s,u) + Fs(s,u)∗z = 0,
⟨Ju(s,u, z) + Fu(s,u)∗z,v − u⟩U∗,U ≥ 0 ∀v ∈ Ũ .

(1.7)

Otherwise, with the Lagrangian formulation, we can re-write this system in compact form,
as follows 

⟨Lz(s,u, z),p⟩Z∗,Z = 0 ∀p ∈ Z,

⟨Ls(s,u, z),y⟩S∗,S = 0 ∀y ∈ S,

⟨Lu(s,u, z),v⟩U∗,U ≥ 0 ∀v ∈ Ũ ,

or in equivalent way,
⟨F (s u),p⟩Z∗,Z = 0 ∀p ∈ Z,

⟨Js(s,u) + Fs(s,u)∗z,y⟩S∗,S = 0 ∀y ∈ S,

⟨Ju(s,u, z) + Fu(s,u)∗z,v⟩U∗,U ≥ 0 ∀v ∈ Ũ .

We can use the KKT conditions to find a solution of optimal flow Problem 1.1. For this
goal, we employ Full Order numerical approximations or Reduced Order.

1.4 Ill-posedness and Regularization of inverse prob-
lems

In this Section we exploit the theory of ill-posed inverse problems and regularization
methods.

We define ill-posedness, which is the main issue when we treat inverse problems. We
recall Hadamard’s definition of ill-posed inverse problems. The ill-posedness can be solved
by using appropriate numerical methods which stabilizes the problem, called regularization
techniques. For more theoretical detail on ill-posedness we refer to [59, 37], while, for
regularization theory we refer to [38, 40].

1.4.1 Definition of ill-posed inverse problem
Now, we recall the definition of inverse problem. Given two normed spaces U and T , an
operator t : X → Y and a measurement td, we can formulate the inverse problem as the
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solution of the following equation

t(u) = td ∈ T, (1.8)

for u ∈ U , when td is given. In order to formulate correctly an inverse problem by a
mathematical model point of view, the definition of the operator t, including its domain
and image space, has to be defined. In general, solving inverse problem u = t−1(td)
means inverting direct problem, often, given by a differential equation. Usually, inverse
problems are ill-posed in the sense of Hadamard, but this is not linked to properties
of state equations. In fact, also if the corresponding direct problem is well-posed, the
corresponding inverse problem can be ill-posed.

The inverse problem 1.8 is called well-posed (in the sense of Hadamard), or equivalently
properly posed, if the solution u ∈ U have the following properties:

• ∃t−1 : T → U the inverse operator of direct one t (existence);

• ∀td ∈ T , ∃!u ∈ U such that u = t−1(td) (uniqueness);

• the inverse function t−1 is continuous (stability).

Otherwise, the problem 1.8 is called ill-posed, or equivalently improperly posed [24].
We remark that the existence of a solution for the inverse problem, by a mathematical

point of view, can be enforced by enriching the solution space T . The requirement of
stability condition is more restrictive. In fact, if an inverse problem lacks stability, then
computing its solution is a difficult task, because any measurement or numerical approx-
imation is polluted by unavoidable errors. The direct inversion is not a good strategy
to reconstruct u, due to the amplification of data’s noise caused by ill-posedness. Thus,
we must search a numerical solution. Moreover, we can employ appropriate numerical
methods which stabilize the problem, called regularization methods.

In this Thesis we are interested in inverse problems for fluid flows, because there are
many application.

1.4.2 Solution strategy
In general, to solve optimal flow control problems in CFD, there are two different strategies
[23]:

• optimize-then-discretize, first an optimization procedure is defined, and then it is
discretized;

• discretize-then-optimize, first inverse problem is discretized and then a discrete op-
timization problem is solved.

In this Thesis, we employ the optimize-then-discretize approach to solve inverse problems.
The most used regularization method for ill-posed problems is Tikhonov regularization.

This technique is firstly introduced in a general framework in [73]. The Tikhonov approach
consists in approximating a solution of (1.8) with the following optimization problem

uα = arg min
u∈U

∥t(u) − td∥2
T + α∥u− u0∥2

U ,
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where u0 ∈ U is given by the prior information on the solution and α > 0 is the regular-
ization parameter. As treated in [38], under some assumptions on the operator t, for a
fixed value of α, the solution uα is stable. In general, the convergence rate can be very
small.

A detailed theoretical description of regularization techniques for linear problems could
be found in [38]. Instead, for general nonlinear case, we refer to [40]. Usually, nonlinear
ill-posed problems are numerically solved via iterative regularization methods using an
optimize-then-discretize approach. Suppose that a certain iterative algorithm produce
the following approximate solution’s sequence

uk+1 = Gk(uk, td), k ∈ N, (1.9)

starting from given trial solution u0. In general, for iterative methods the regularization
parameter is the number of iterations k.

The previous algorithm belongs to the regularizing family of operators [3], with param-
eter of regularization k, if for every u0 ∈ U the sequence (1.9) converges to an unknown
solution uT and the map Gk(uk, td) is continuous at u ∈ U \ { uT }. In other words, with
a choice of stable approximations, there exists an index of iteration k = k(σ) such that
∥uk(σ) − uT ∥U → 0 for σ → 0. Under assumption on inverse problem, in [40, 3, 37], the
authors prove that the above statements are satisfied, in particular, for steepest descendent
algorithm

uk+1 = uk + τkJ
′(uk), dk = −J ′(uk)

and the conjugate gradient one

uk+1 = uk + τkd
k, dk = −J ′(uk) + βkd

k−1, β0 = 0, βk = ∥J ′(uk)∥2
U

∥J ′(uk−1)∥2
U

,

where τk is the acceleration parameter, βk the conjugate parameter and dk the descendent
direction. Here J ′(uk) is the gradient of functional J(uk) = ∥t(uk)−td∥2

T . We remark that
the gradient of functional cost can depend on the adjoint variable. For this reason, at each
iteration we have to solve, not only direct problem but also, adjoint problem to compute
J ′(uk) for descendent direction dk and update the solution. It is possible to construct the
regularization algorithm from these iterative procedures.

For more detail about the choice of index iteration k(σ) and proof of the convergence
property for the steepest descent method, we refer to [40]. The theoretical results for non-
linear problem employing the steepest descent method are proof under assumption on the
coefficients τk and βk d. Instead, employing conjugate gradient-type methods for non-
linear ill-posed problems, unfortunately, they don’t satisfy these particular conditions.
Then convergence results don’t exist for these methods when applied to non-linear ill-
posed problems. For more details on these iterative methods to solve ill-posed problems,
we refer to [25, 18].

A very large set of classical regularization methods are based on Landweber iteration,
which usually converges slowly (details could be found in [38]). In literature, there are
developed regularization methods based on faster Newton-type algorithms, such as the
Levenberg-Marquardt regularization procedure [40]. As explained in [40], discretization
schemes are also regularization solution strategies for ill-posed problems.
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1.5 Case study: Learning viscosity in lid-driven cav-
ity flow

Inverse problems in fluid dynamics are widespread with application in aeronautics, geo-
science, meteorology and mechanical engineering, as already mentioned.

One example of an inverse problem is to estimate a spatially-varying viscosity field from
observed data. This example has already been covered in [12] where the authors developed
an approach for solving inverse problems in the steady-state Navier-Stokes equations by
combining deep neural networks and numerical PDE schemes.

In this section, we construct the KKT equations for a case where the direct problem
is given by the Navier-Stokes equations. We develop the adjoint equations thanks La-
grangian formulation method with different observed data. Moreover, we compute the
derivative of cost functional respect to the control not only for optimality condition but
also for numerical simulation with gradient-type methods. Finally, we introduce sensitiv-
ity problem useful for following chapters to solve numerically the inverse problem.

1.5.1 Direct problem
In this subsection, we describe the direct problem involving incompressible steady-state
flow in a two-dimensional square domain Ω ⊂ R2. The geometry is shown in Figure 1.1,
in which all the boundaries of the domain are walls. The top wall moves in the x-direction
with constant velocity, while, the other boundaries are fixed.

The governing equations, considered in this thesis, are the steady-state Navier-Stokes
equations for incompressible flows in Ω. We write these state-constraint in strong form as
below: I

−∇ · (ν∇v) + (v · ∇)v + ∇p = g, in Ω,
∇ · v = 0, in Ω,

(1.10)

where v is velocity of the fluid, p the normalized pressure, ν(x) the spatially-varying
kinematic viscosity field, and g the vector of body accelerations.

We impose a known velocity vN in Dirichlet sense at the top wall Γ. Instead, in the
other walls ∂Ω \ Γ, we assume no-slip conditions. Then, the boundary conditions can be
summarized as: I

v = vN , on Γ,
v = 0, on ∂Ω \ Γ.

(1.11)

We can observe from the boundary conditions (1.11), that

v · n = 0, on ∂Ω,

where n is the outward unit normal vector to ∂Ω. Then, the prescribed Dirichlet data is
compatible with the incompressibility constraint. Indeed,Ú

Ω
∇ · v dΩ =

Ú
∂Ω

v · n dγ = 0 (compatibility constraint).
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Figure 1.1: Geometry of the lid-driven cavity.

From the "Functional Analysis" point of view (see [58]), the direct problem is a semi-
linear elliptic problem. In particular, Ω ∈ R2 is a bounded Lipschitz domain. Moreover,
for each term of equations, we can suppose:

• v ∈ [H1(Ω)]2 ⇒ ∆v, (v · ∇)v ∈ [H−1(Ω)]2;

• p ∈ L2
0(Ω) =

)
p ∈ L2(Ω) :

s
Ω p dΩ = 0

*
; in fact, when only boundary conditions

of Dirichlet type are imposed, the pressure appears merely in terms of its gradient;
if (v, p) is a solution, for any possible constant c, the couple (v, p + c) is a solution
too, since ∇(p + c) = ∇p; then, to avoid such indeterminacy, one can require the
pressure with null average, i.e.,

s
Ω p dΩ = 0.

• g ∈ [H−1(Ω)]2;

• vNχΓ ∈ [H1/2(∂Ω)]2, where χΓ is the indicator function on boundary with non-
homogeneous Diriclet condition, and

s
∂Ω vNχΓ · n dγ = 0 (compatibility constraint)

⇒ ∃V ∈ [H1(Ω)]2 : V|∂Ω = vNχΓ with ∇ · V = 0 in Ω.

From the assumption on the boundary condition, we can write v = v̂ + V with v̂|∂Ω = 0.
Then, we can be reformulated the direct problem 1.3.
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Problem 1.3 Find (v̂, p) ∈ [H1
0 (Ω)]2 × L2

0(Ω) such thatI
−∇ · (ν∇v̂) + (v̂ · ∇)v̂ + (V · ∇)v̂ + (v̂ · ∇)V + ∇p = f̂ , in Ω,
∇ · v̂ = 0, in Ω,

(1.12)

where,
f̂ = −∇ · (ν∇V) + (V · ∇)V + g ∈ [H−1(Ω)]2.

Now, for computation of adjoint equations and gradient of cost functional with respect
to the viscosity, in the next subsection, we recall the weakly form of direct problem. First
of all, we summarize state and control space. Velocity v̂, pressure p and viscosity ν are
considered in the following solution spaces

V = [H1
0 (Ω)]2, P = L2

0(Ω), U = L∞(Ω), (1.13)

respectively. Then, we define the tri-linear form a : U ×V ×V → R and the bilinear form
b : P × V → R are defined as:

a(ν,v,w) =
Ú

Ω
ν∇v : ∇w dΩ, b(q,v) = −

Ú
Ω
q(∇ · v) dΩ,

and the non-linear convection term c : V × V × V → R is defined as follow:

c(v,v,w) =
Ú

Ω
(v · ∇)v · w dΩ.

Finally, we can write the weak formulation of state constraints (1.12) given by Problem
1.4.

Problem 1.4 Find (v̂, p) ∈ V × P such thatI
a(ν, v̂,w) + b(p,w) + c(v̂, v̂,w) + c(v, v̂,w) + c(v̂,v,w) = ⟨g,w⟩, ∀w ∈ V,

b(q, v̂) = 0, ∀q ∈ P.
(1.14)

The weak formulation 1.4 is equivalent to the following more compact one.

Problem 1.5 Find (v, p) ∈ [H1(Ω)]2 × P
a(ν,v,w) + b(p,w) + c(v,v,w) = ⟨g,w⟩, ∀w ∈ V,

b(q,v) = 0, ∀q ∈ P,

⟨v − vNχΓ,h⟩∂Ω = 0, ∀h ∈ [H−1/2(∂Ω)]2.
(1.15)

In our case of study, we want to find the viscosity parameter in direct problem from
different settings of observed data.
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1.5.2 Inverse problem
In this subsection, we summarize the our inverse problem test case. We want to esti-
mate a spatially-varying viscosity field ν(x) from observed data in Ω. In optimal control
framework, we consider the following constrained optimization problem 1.6.
Problem 1.6 Find optimal solution (v, p, ν) ∈ V × P × U such that

min
v,p,ν

J(v, p, ν),

subject to the state equations (1.10) and the boundary conditions (1.11).
We introduce the quadratic objective functional J . In our problem formulation, this

cost functional depends on the observed data. If we observe only the velocity field, the
functional is defined as below:

J1(v, p, ν) = 1
2∥v − vd∥2

Q, (1.16)

which describes the aim of the problem, which is to match v with the observation velocity
vd ∈ Q ⊃ V . Instead, if we observe only the pressure field pd ∈ P , we have the following
cost function,

J2(v, p, ν) = 1
2∥p− pd∥2

P . (1.17)

We can also observe both the velocity and the pressure fields. Then, the cost function
becomes,

J3(v, p, ν) = 1
2∥v − vd∥2

Q + 1
2∥p− pd∥2

P . (1.18)

We assume equivalence between state and adjoint spaces, that is, S = (V ×P ) ≡ Z =
(Zv, Zp). We define the Lagrangian by definition (1.4), where, ⟨z, F (s,u)⟩Z,S∗ denotes
the residual of state constraints in the weak formulation (1.15). As already mentioned,
the control ν is considered in the following functional space U = L∞(Ω). Moreover, we
consider the Hilbert space Q =

#
L2(Ω)

$2 for the desired velocity.
The objective function J(s,u) = J((v, p), ν) can be re-written, in compact form, as:

J1(s,u) = 1
2m(v−vd,v−vd), J2(s,u) = 1

2n(p−pd, p−pd), J3(s,u) = J1(s,u)+J2(s,u),

where, m : V × V → R and n : P × P → R, defined as below:

m(v,w) = (v,w)Q, n(p, q) = (p, q)P .

Then, we define the Lagrangian, L(s,u, z) = L((v, p), ν, (w, q)), as below:

L(s,u, z) = J(v, p, ν) + a(ν,v,w) + b(p,w) + c(v,v,w) − ⟨g,w⟩ + b(q,v).

To compute the adjoint problem, we calculate the Fréchet derivative with respect to
the state variables of the Lagrangian, denoted by ∇sL(s,u, z)[ξ]. At first, we consider
the variation of the Lagrangian perturbing the state variable s → s + δs,

L((v + δv, p+ δp), ν, (w, q)) − L((v, p), ν, (w, q)) = J(v + δv, p+ δp, ν) − J(v, p, ν)+
+ a(ν,w, δv) + c(δv,v,w) + c(δv, δv,w) + c(v, δv,w) + b(q, δv) + b(δp,w).
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Then, the Fréchet derivative of L is obtained by neglecting the second order terms. The
derivative computed depends on the observed data. The different Fréchet derivative is
given by

∇sL1(s,u, z)[ξ] =
3
m(v − vd, ξv) + a(ν,w, ξv) + c(ξv,v,w) + c(v, ξv,w) + b(q, ξv)

b(ξp,w)

4
,

∇sL2(s,u, z)[ξ] =
3
a(ν,w, ξv) + c(ξv,v,w) + c(v, ξv,w) + b(q, ξv)

b(ξp,w) + n(p− pd, ξp)

4
,

∇sL3(s,u, z)[ξ] =
3
m(v − vd, ξv) + a(ν,w, ξv) + c(ξv,v,w) + c(v, ξv,w) + b(q, ξv)

b(ξp,w) + n(p− pd, ξp)

4
,

where ξ = (ξv, ξp) ∈ S.
Now, we can state the adjoint problem in weak form as ∇sL(s,u, z)[ξ] = 0, for all ξ ∈ S.
More explicitly, with only velocity data, we obtain the following adjoint problem.

Problem 1.7 Find z = (w, q) ∈ S such thatI
m(v, ξv) + a(ν,w, ξv) + c(ξv,v,w) + c(v, ξv,w) + b(q, ξv) = m(vd, ξv), ∀ξv ∈ V,

b(ξp,w) = 0, ∀ξp ∈ P.

To compute the strong form of these equations, we integrate by parts each term applying
the state boundary condition (1.11) and the state constraints (1.10). Moreover, the non-
linear convective terms can be reformulated as:

c(ξv,v,w) =
Ú

Ω
(∇v · w) · ξv dΩ,

c(v, ξv,w) =
Ú

∂Ω
((v · n)w) · ξv dγ −

Ú
Ω

(∇ · v + v · ∇)w · ξv dΩ.

Then, we can rewritten the adjoint problem in strong form. For observed data only on
the velocity, we have the following strong formulation.

Problem 1.8 Find z = (w, q) ∈ S such that
−∇ · (ν∇w) + ∇v · w − (v · ∇)w + ∇q = vd − v, in Ω,
∇ · w = 0, in Ω,
w = 0, on ∂Ω.

(1.19)

Instead, in the case of observed data on the pressure, we obtain the following strong form.

Problem 1.9 Find z = (w, q) ∈ S such that
−∇ · (ν∇w) + ∇v · w − (v · ∇)w + ∇q = 0, in Ω,
∇ · w = p− pd, in Ω,
w = 0, on ∂Ω.

(1.20)

Otherwise, if we observe both the velocity and the pressure fields, we have the following
formulation.
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Problem 1.10 Find z = (w, q) ∈ S such that
−∇ · (ν∇w) + ∇v · w − (v · ∇)w + ∇q = vd − v, in Ω,
∇ · w = p− pd, in Ω,
w = 0, on ∂Ω.

(1.21)

Now, we want to compute Fréchet derivative with respect to the control variable u = ν
of Lagrangian L(s,u, z), denoted by ∇uL(s,u, z)[κ]. We derive it by perturbing the
viscosity field ν → ν + δν. Then, we have a variation on the Lagrangian

L((v, p), ν + δν, (w, q)) − L((v, p), ν, (w, q)) = a(δν,v,w),

Thus, the gradient of Lagrangian with respect to is

∇uL(s,u, z)[κ] = a(κ,v,w) =
Ú

Ω
κ∇v : ∇w dΩ, ∀κ ∈ U.

It turns out to be very useful to express this Fréchet derivative of the Lagrangian in terms
of the gradient of the cost functional J(ν) = J(v(ν), p(ν)) with respect to. u = ν. Indeed,
thanks the above representation, the derivative of the cost functional J(ν) is

J ′(ν) = ∇v(ν) : ∇w(ν). (1.22)

Now, we introduce the sensitivity problem related to the direct problem (1.10)-(1.11),
because its is useful in gradient-type optimization method introduced in the next chapter.
We derive it by perturbing in (1.10)-(1.11) the viscosity field ν → ν+δν. This perturbation
cause a variation in the velocity field, v → v + δv, and in the pressure field, p → p+ δp.
Thus, subtracting direct problem from the obtained perturbed problem, we have

−∇ · (ν∇δv) − ∇ · (δν∇(v + δv)) + (v · ∇)δv + (δv · ∇)(v + δv) + ∇δp = 0, in Ω,
∇ · δv = 0, in Ω,
δv = 0, on ∂Ω.

Then, the sensitivity problem is obtained by neglecting the second order terms.

Problem 1.11 Find (δv, δp) such thatI
−∇ · (ν∇δv) − ∇ · (δν∇v) + (v · ∇)δv + (δv · ∇)v + ∇δp = 0, in Ω,
∇ · δv = 0, in Ω,

(1.23)

with boundary conditions
δv = 0, on ∂Ω. (1.24)

Then, we can observe that v(ν+ δν) = v(ν)+ δv(ν,v, δν). Moreover, δv is linear with re-
spect to the control variation δν, therefore δv(ν,v, δν1+δν2) = δv(ν,v, δν1)+δv(ν,v, δν2).
With the same argument δp is linear with respect to the control variation δν.

However, the direct solution of such coupled systems is very difficult and require the
implementation of high-fidelity numerical approximation schemes. Thus, in the upcoming
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Inverse problems like PDEs-constrained optimal control problems

chapter, we solve the optimal flow control problem with optimize-then-discretize strategy,
hence, dividing the solution process into two steps: optimization, that is, deriving coupled
KKT optimality system, and discretization, that is, implementing the numerical methods
to solve the KKT system. At full-order level, we adopt an iterative procedure that solve
the KKT system in a decoupled way. In this work, we discuss its solution by Non-linear
Projected Conjugate Gradient Method.

28



Chapter 2

Full Order Model Formulation

In this Chapter, we present the numerical method used to solve inverse problems, in fluid
dynamics framework. In particular, we show the implementation for our test case, as
introduced before in Section 1.5. We develop the Full Order Model with finite volume
discretization and a gradient-type optimization solver. We recall the finite volume approx-
imation scheme for Navier-Stokes Equations to simulate the direct problem. A modified
version of algorithm used to solve the direct problem is employed also to solve the adjoint
and sensitivity ones. In Numerical Analysis, the classical Conjugate Gradient Method
(CGM) [49, 58] is employed to solve linear system. In this work, we use a non-linear
version of this CG method to solve inverse problem. In our case, this method have also a
projection step. This step is a posteriori correction due to constraints on control.

2.1 Non-linear Projected Conjugate Gradient Method

This Section addresses the solution of KKT system using the segregated approach. We
employ a conjugate gradient-type method. With this method, we solve in a decoupled
way the state and adjont problems using the finite volume method. Then, we update the
control variable at each iteration with descendent direction linked to the functional cost.

Now, thanks to the gradient computed in (1.22), the gradient-type method can be
defined. In particular, we consider the following iterative procedure for the estimation
of the function ν that minimizes the functional J(ν). For a deeper analysis, see [53, 58].
Given an initial guess ν0 ∈ U , for n > 0 a new viscosity field is computed as:

νn+1 = νn + τndn, n = 0,1,2, . . . (2.1)

where n is the iteration number, τn the step length and dn the descendent direction.
For conjugate gradient method, the descendent direction dn, also called conjugate

gradient direction, is given by

d0 = −J ′(ν0), dn = −J ′(νn) + βndn−1 n ≥ 1, (2.2)
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Full Order Model Formulation

where βn is the conjugate coefficient. It can be calculated, for example, using Fletcher-
Reeves expression (see [15]) as follows:

βn = ∥J ′(νn)∥2
U

∥J ′(νn−1)∥2
U

. (2.3)

Once dn is computed, the parameter τn should be chosen in such a way to solve the
following scalar minimization sub-problem

τn = arg min
τ∈R

J(νn + τdn). (2.4)

The optimal step length τn depends on observed data. For example, with only observed
velocity field, thanks to the sensitivity problem (1.23)-(1.24), we can re-write the cost
function at iteration n as

J1(νn + τdn) = 1
2∥v(νn + τdn) − vd∥2

Q = 1
2∥v(νn) + τδv(νn,v(νn), dn) − vd∥2

Q =

= 1
2∥v(νn) − vd∥2

Q + τ 2

2 ∥δv(νn,v(νn), dn)∥2
Q + τ(δv(νn,v(νn), dn),v(νn) − vd)Q.

(2.5)

Then, differentiating with respect to τ , we obtain the critical point equation

dJ(νn + τdn)
dτ

= 0.

From (2.5), we write critical point equation in explicit form as

τ∥δv(νn,v(νn), dn)∥2
Q + (δv(νn,v(νn), dn),v(νn) − vd)Q = 0. (2.6)

Finally, we calculate the optimal step size for the observed data on velocity as below

τn
1 = (δv(νn,v(νn), dn),vd − v(νn))Q

∥δv(νn,v(νn), dn)∥2
Q

. (2.7)

In the other cases, with different observed data, we have the following expressions:

τn
2 = (δp(νn,v(νn), dn), pd − p(νn))P

∥δp(νn,v(νn), dn)∥2
P

, (2.8)

τn
3 = (δv(νn,v(νn), dn),vd − v(νn))Q + (δp(νn,v(νn), dn), pd − p(νn))P

∥δv(νn,v(νn), dn)∥2
Q + ∥δp(νn,v(νn), dn)∥2

P

, (2.9)

for pressure only and pressure-velocity combination respectively.
We recall that, to use this iterative procedure, we have to compute at each iteration

the derivative J ′(ν) by (1.22) which depends on state and adjoint velocity. Thus, we
must solve at each iteration the direct problem (1.10)-(1.11) and the adjoint problem to
compute it.
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2.1 – Non-linear Projected Conjugate Gradient Method

To avoid turbulence effects on our system, we suppose that the viscosity has side
constraint, i.e. ∀x ∈ Ω ν(x) ∈ [ε,+∞]. Due to the presence of this inequality constraint
ν ≥ ε, a projection π[ε,+∞) onto the set of admissible value is needed. At each iteration,
the projection step is given by the formula below,

νn+1(x) = π[ε,+∞)(νn + τndn)(x) =
I
ε, if νn(x) + τndn(x) ≤ ε,

νn(x) + τndn(x), otherwise,
(2.10)

where ε > 0 is a small constant value. For more details about the treatment of constraints
on control variable using a Projection Methods, you can see [23, 27, 4].

For the particular case in which the velocity field is the only observed one, we can
summarize the Non-linear Projected Conjugate Gradient Method in Algorithm 1.

Algorithm 1: Non-linear Projected Conjugate Gradient Method.
Input: Choose ν0 ∈ U , nmax and Jtol, and set n = 0.

1 while n ≤ nmax do
2 Solve the direct problem (1.10)-(1.11) with ν = νn to store v(νn);
3 Compute the cost function J(νn) by (1.16);
4 if J(νn) < Jtol then
5 Stop;
6 end
7 Solve the adjoint problem (1.19) with ν = νn and v = v(νn) to store w(νn);
8 Compute the derivative J ′(νn) by (1.22);
9 if n > 0 then

10 Calculate the conjugate coefficient, βn, by the use of (2.3);
11 end
12 Compute the search direction, dn, by (2.2);
13 Solve the sensitivity problem (1.23)-(1.24) with ν = νn, δν = dn and

v = v(νn) to store δv(νn,v(νn), dn);
14 Calculate the optimal step size, τn, by evaluating (2.7);
15 Update the viscosity field νn by (2.10);
16 n = n+ 1;
17 end
18 return νn.

With the other observed data, we have the same algorithm except for different adjont
equations and formula of optimal step length, as previous described.

For simplicity, we suppose that the viscosity is constant. Then, the control space
becomes U = [ε,+∞). For this assumption, the gradient (1.22) changes in the following
way

J ′(ν) =
Ú

Ω
∇v(ν) : ∇w(ν) dΩ, (2.11)
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Full Order Model Formulation

consequentially the conjugate coefficient (2.3) gets modified in the following way:

βn = |J ′(νn)|2
|J ′(νn−1)|2 . (2.12)

We can solve the KKT-system with a segregate method using the Algorithm 1 except for
the previous changes on the gradient (2.11) and the expression for beta (2.12), caused by
the assumptions on the control space U .

2.2 Finite Volume Discretization
In this section, we will introduce the discretization step, or in other words, Finite Volume
(FV) approximations of the state, adjoint and sensitivity equations. We solve the inverse
problem in fluid-dynamics by applying the iterative optimization procedure, discussed in
the previous Section, which involves these equations.

At first, we study the discretization of state and adjoint equations, together with their
boundary conditions. At full order level, we use a Finite Volume Method (FVM). Here,
we recall, briefly, the finite volume approximation. For more details on FVM, we refer to
[51, 13, 64].

The computational domain Ω is tessellated to obtain a mesh grid T (Ω) = { Ωe }NF V

e=1 .
We suppose that, this mesh is composed by a set of convex and non overlapping polygons,
called finite volume (FV), such that Ω = ∪NF V

e=1 Ωe and Ωi ∩ Ωj = ∅ for i /= j. Then,
the solution is restricted to the finite dimensional space given by the space of functions,
that are piecewise constant functions over each finite volume cell Ωe. The finite volume
approximation of equations is derived starting directly from the integrated form of the
equations.

We first discretize the state equations given by incompressible steady-state Navier–Stokes
equations in (1.10). For sake of simplicity, we assume that no body forces are present, i.e.
g = 0. We write the state momentum balance equation and the state continuity equation
in integral form, for each volume Ωe ∈ T , asIs

Ωe
(v · ∇)v dV −

s
Ωe

∇ · ν∇v dV +
s

Ωe
∇p dV = 0,s

Ωe
∇ · v dV = 0.

(2.13)

The discretization procedure of all terms in the momentum and continuity equations is
explained in what follows.

The gradient terms and, in particular, the gradient of pressure, making use of the
Gauss’s gradient theorem, are discretised as:

Ú
Ωe

∇p dV =
Ú

∂Ωe

p dS ≈
Nf

eØ
f

pf Sf ,

where pf is the pressure value at center of the face, Sf is the area vector of the face f of
the control volume Ωe and Nf

e is the number of faces related to the e-th cell Ωe.
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2.2 – Finite Volume Discretization

The convective term is discretized, exploiting the incompressibility constraint and the
divergence theorem, as follows:Ú

Ωe

(v · ∇)v dV =
Ú

Ωe

∇ · (v ⊗ v) dV =
Ú

∂Ωe

(dS · (v ⊗ v)) ≈

≈
Nf

eØ
f

Sf · (vf ⊗ vf ) =
Nf

eØ
f

(Sf · vf )vf =
Nf

eØ
f

Ff vf ,

where vf indicates the velocity at the centre of the faces and Ff = Sf · vf represents
the mass flux through each face of the control volume. Two considerations have to be
underlined for this procedure. The first one is that velocity values are initially computed
at the cell centres. Therefore, the values at the center of the faces have to be deduced from
the ones calculated at the cell centres. Many different techniques are available to obtain
it. The basic idea behind them all is that the face value is approximated by interpolating
the values at the center of the cells. The second clarification is about fluxes. During
an iterative process to solve the state equations, the mass flux Ff is computed using the
previous converged velocity in the first iteration, that satisfies the continuity equation, to
remove the non-linearity.

Making use of the Gauss’s divergence theorem, the diffusion term is discretised as:

Ú
Ωe

∇ · ν∇v dV =
Ú

∂Ωe

(dS · ν∇v) ≈ ν
Nf

eØ
f

Sf · (∇v)f ,

where the term (∇v)f indicates the gradient of the velocity field at the centre of each
face. This is computed, starting from the cell’s centre values of the neighbouring cells,
using a finite difference scheme that includes a correction in the case of non-orthogonal
tessellations. In case of orthogonal meshes (i.e. the face dividing two cells is orthogonal
with respect to. the line connecting the two cell centers) the above laplacian term could
be calculated employing the following approximation:

Sf · (∇v)f ≈ |Sf |
ve − vf

n
|df

en|
,

where df
en is the vector connecting the centers of cells e and n, ve is the velocity at the

center of the e-th cell Ωe and vf
n is the velocity evaluated at the center of the cell n divided

from the cell e by the face f . When the mesh is not orthogonal, the last expression has
to be corrected as follows:

Sf · (∇v)f ≈ |Λf |
ve − vf

n
|df

en|
+ kf · (∇v)f ,

where Sf has been decomposed into a parallel and an orthogonal component with respect
to df

en, namely Λf and kf , respectively. Then, the term (∇v)f can be approximated by
the use of an interpolation between (∇v)e and (∇v)f

n at the centers of the surrounding
cells. There are different techniques to compute the vectors Λf and kf , such as minimum

33



Full Order Model Formulation

correction approach, orthogonal correction approach and over-relaxed approach. More
details these correction approaches can be found in [51].

Finally, the term originated from the divergence of velocity is discretized as:

Ú
Ωe

∇ · v dV =
Ú

∂Ωe

(dS · v) ≈
Nf

eØ
f

Sf · vf =
Nf

eØ
f

Ff .

The complete discretized state equations then reads
qNf

e

f Ff vf +
qNf

e

f pf Sf − ν
qNf

e

f

1
|Λf |ve−vf

n
|df

en| + kf · (∇v)f

2
= 0, ∀e = 1, . . . , NF V ,qNf

e

f Ff = 0, ∀e = 1, . . . , NF V .

(2.14)

By the use of a similar approach, we discretize the adjoint equations. Since the inverse
problem with both pressure and velocity data is the combination of the two single problems
(pressure only and velocity only), we report here just the discretization process for the
combined case.

Starting from (1.21), we can obtain the integral form of these equations, as:

Is
Ωe

∇v · w dV −
s

Ωe
(v · ∇)w dV −

s
Ωe

∇ · ν∇w dV +
s

Ωe
∇q dV =

s
Ωe

(vd − v) dV,s
Ωe

∇ · w dV =
s

Ωe
(p− pd) dV.

(2.15)

Since these equations are similar to state equations (2.13), then, most of the terms in
(2.15) have the same structure. Summarizing, the diffusive, convective, pressure gradient
and velocity divergence terms are given by

Ú
Ωe

∇ · ν∇w dV ≈ ν
Nf

eØ
f

A
|Λf |

we − wf
n

|df
en|

+ kf · (∇w)f

B
,

Ú
Ωe

(v · ∇)w dV ≈
Nf

eØ
f

Ff wf ,

Ú
Ωe

∇q dV ≈
Nf

eØ
f

qf Sf ,

Ú
Ωe

∇ · w dV ≈
Nf

eØ
f

Ff ,

respectively. Where, the new unknowns have the same meaning of the corresponding
terms into the discretized state equations. While, using the mean value theorem for the
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2.2 – Finite Volume Discretization

integrals,the implicit and explicit source terms in (2.15) are approximated as follows:Ú
Ωe

∇v · w dV ≈ |Ωe|(∇v)e · we,Ú
Ωe

(vd − v) dV ≈ |Ωe|((vd)e − ve),Ú
Ωe

(p− pd) dV ≈ |Ωe|(pe − (pd)e),

where the velocity gradient (∇v)e, at the center of e-th cell Ωe, is pre-computed as the
mean value on the volume. Thanks to the Gauss’s theorem, it is approximated as:

(∇v)e ≈ 1
|Ωe|

Ú
Ωe

∇v dV = 1
|Ωe|

Ú
∂Ωe

(dS ⊗ v) ≈ 1
|Ωe|

Nf
eØ

f

Sf ⊗ vf .

Then, the discretized adjoint equations for velocity and pressure observed data, is given
by 

|Ωe|(∇v)e · we −
qNf

e

f Ff wf − ν
qNf

e

f

1
|Λf |we−wf

n
|df

en| + kf · (∇w)f

2
+

+
qNf

e

f qf Sf = |Ωe|((vd)e − ve), ∀e = 1, . . . , NF V ,qNf
e

f Ff = |Ωe|(pe − (pd)e), ∀e = 1, . . . , NF V .

(2.16)

With the Non-linear Projected Conjugate Gradient Method for KKT system, given
by Algorithm 1, we must solve the Sensitivity problem (1.23). This problem has the
same integral operators with respect to the first discretized equations. We discretize this
problem with the same procedure, as follows:

qNf
e

f δFf vf +
qNf

e

f Ffδvf − (ν + δν)
qNf

e

f

1
|Λf | δve−δvf

n
|df

en| + kf · (∇δv)f

2
+

+
qNf

e

f δpf Sf = 0, ∀e = 1, . . . , NF V ,qNf
e

f δFf = 0, ∀e = 1, . . . , NF V ,

(2.17)

where the unknowns terms are the same of the aforementioned discretized equations.

Remark 2.1 All the above discretized problems, i.e. (2.14)-(2.16)-(2.17), have the same
saddle point structure written in matrix form as5

Av Bp
Bv 0

6 5
v
p

6
=
5
Sv
Sp

6
, (2.18)

indicating by Av the coefficient matrix coming from momentum equation, depending on
the particular problem, by Bp the matrix containing the terms related to the gradient of
pressure, by Bv the matrix representing the incompressibility constraint operator, by Sv
and Sp the vectors of source terms of this equations.
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Full Order Model Formulation

The coupling between velocity and pressure, with a saddle point structure, is usually
not easy to be solved using a coupled approach. For this reason we rely on a segregated
approach. In this approach, the momentum equation is solved with a tentative pressure
and later corrected exploiting the divergence free constraint. In this Thesis we use a
segregate pressure-based strategy, to solve these saddle point problems. This solver recalled
for state, adjoint and sensitivity equations, in the following Section. For more detail on
this solver, we refer to [51].

2.3 Segregate Pressure-Based Solver in FVM

In this Thesis, a segregated pressure-based approach has been selected to solve the velocity-
pressure coupling. With this strategy, we try to overtake the stability issue resulting from
the saddle point structure of these equations. In particular, the Semi-Implicit Method
for Pressure-Linked Equations (SIMPLE) algorithm is here employed in its steady-state
laminar form. To solve numerically the equations, we employ the open source CFD soft-
ware, developed primarily by OpenCFD Ltd 2004, called OpenFOAM [45]. In the following
paragraphs, we will recall the SIMPLE solver developed for the Navier-Stokes Equations,
employed in our case for the resolution of the direct problem. Moreover, we extended its
application to the adjoint and to the sensitivity equations, in a slightly modified version.
For the implementation of the SIMPLE algorithm we refer to the OpenFOAM documen-
tation1 and to [51].

The solver employ a segregated solution procedure. This means that, the equations for
each variable, characterizing the velocity-pressure coupled system, are solved one at a time
in an iterative way, by substituting the last obtained solution as a known variable into the
following equation to be solved. The non-linearity appearing in the momentum equation is
approximated computing it from the velocity and pressure values of the previous iteration.
The link with pressure is introduced to avoid a decoupling between the velocity and the
pressure equations and hence to have not high frequency oscillations in the solution (check
board effect). The first equation to be solved is the momentum one. It returns a velocity
field which, in general, doesn’t satisfy the continuity equation. After that, the momentum
and the continuity equations are employed to construct a Laplacian equation for the
pressure, taking advantage of the divergence of the momentum equation. The aim is to
obtain a correction for the pressure field, which, if inserted in the momentum equation,
satisfy the continuity equation. After, correcting the velocity field, the above iterative
algorithm is repeated until convergence is reached. As already mentioned, the state,
adjoint and sensitive equations share the same velocity-pressure coupling structure. For
this reason, here, we report only a step by step SIMPLE algorithm construction for the
state equations, while, we will remark only the differences needed by the other problems.

1https://openfoamwiki.net/index.php/SimpleFoam
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2.3 – Segregate Pressure-Based Solver in FVM

2.3.1 Momentum Equation
The Navier-Stokes equations into the SIMPLE algorithm are not written in a saddle-point
matrix structure, as in (2.18). In the following, the numerical procedure used to solve the
momentum equation is briefly exploited. The first step, to be performed, is the assembly
of the matrices Av and Bp. Then, we solve this equation for velocity unknown v with
pressure values of the previous iteration, to obtain the velocity estimation v∗. In the usual
semi-discrete matrix form, it can be written as:

APvP +
Ø
N

ANvN = bP,

where AP is the matrix coefficient associated with the centre point of the cell P , AN
contains the matrix coefficients associated with all neighbours around the point P and
bP is the source vector term. The sum

q
N is taken over all neighbours influencing the

computation around the point P .
The next step is the under relaxation of momentum equation. The under relaxation

is required in order to prevent divergent solutions. Even though, the discrete version
of the momentum equation is non-linear, the non-linearity is resolved using the solution
of the previous iteration. This causes a large change of the new velocity leading often
to divergence, see for more details [51]. Employing implicit under-relaxation, the new
semi-discrete momentum equation can be written as follows:

1
αv

APvP +
Ø
N

ANvN = bP + 1 − αv

αv
APvP

n−1.

Here αv denotes the under relaxation factor and vP
n−1 is the solution at the previous

iteration step.
After the under relaxation, the contribution of the pressure gradient is added to the

right hand-side of the matrix and the system gets solved. The equation in semi discrete
form is written as follows:

1
αv

APvP +
Ø
N

ANvN = bP + 1 − αv

αv
APvP

n−1 − ∇pP ,

where ∇pP denotes the contribution of the pressure gradient to the equation of the cell
centre P . The equation is finally solved in order to obtain the estimate u∗ by also con-
sidering the contribution of the pressure equation.

2.3.2 Pressure Equation
In this subsection, we construct the pressure equation solved into the SIMPLE algorithm,
in order to ensure the incompressibility constraint. A good explanation of the derivation
of pressure equation ,involved in the SIMPLE method, can be found in [55].

For the derivation of the pressure equation, we start from the momentum equation in
semi-discrete form after the solution of the momentum equation:

A∗
Pv∗

P = −
Ø
N

ANv∗
N + bP + 1 − αv

αv
APvP

n−1 − ∇pn−1
P = H[v∗] − ∇pn−1

P

37



Full Order Model Formulation

After, dividing the above equation by a∗
P , we obtain:

v∗
P = H[v∗]

A∗
P

− ∇pn−1
P

A∗
P

,

where A∗
P = 1

αv
AP are the modified diagonal coefficients of the matrix after the under-

relaxation.
The goal of the next step is to find a correction for the velocity v′

P and for the pressure
p′ fields in order to find a new velocity vP = v∗

P + v′
P which satisfies the continuity

equation:

vP = H[v∗]
A∗

P
+ H[v′]

A∗
P

− ∇pn−1
P

A∗
P

− ∇p′
P

A∗
P
.

The equation for the velocity correction can be written as:

v′
P = −

q
N ANv′

N
A∗

P
− ∇p′

P

A∗
P

= H[u′]
A∗

P
− ∇p′

P

A∗
P
.

Notice that, here, it is assumed that the diagonal coefficients of the corrector equation
are the same as in the momentum equation previously solved. Taking the divergence of
the above equation (we want to obtain a velocity field vP which satisfies the continuity
equation) we get an equation for the pressure pP = pn−1

P + p′
P . For state, sensitivity and

also adjoint equations without pressure data we set this divergence to zero and obtain the
following pressure equation

∇ ·
3∇pP

A∗
P

4
= ∇ ·

3H[v∗]
A∗

P
+ H[v′]

A∗
P

4
.

The changes for adjoint equations with pressure data only are written at the end of this
Subsection, for completeness.

If we neglect the contribution of the neighbours in the velocity correction (i.e. we set
H[u′] = 0), we obtain the pressure equation solved in the SIMPLE algorithm:

∇ ·
3∇pP

A∗
P

4
= ∇ ·

3H[v∗]
A∗

P

4
.

To stabilize the iterative method, we under-relax the pressure field used for the subse-
quent steps, as follows:

pn+1 = pn + αp(pn+1 − pn),
where αp is smaller than 1. For the SIMPLE method the velocity at point P can be
written:

vP = 1
A∗

P
H[v∗] − 1

A∗
P

∇pP .

Moreover, this relation is used together with the discretized version of continuity equation
to update the mass fluxes Ff , as follows:

Ff = vf · Sf = 1
A∗

P
H[v∗] · Sf − 1

A∗
P

∇pP · Sf .
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Algorithm 2: The SIMPLE Method.
Input: An initial guess for the pressure field p∗ and the velocity field v∗;

Under-relaxation factors αv and αp; A convergence criterion.
1 repeat
2 Momentum predictor step: solve the discretized momentum equation for the

guessed pressure field p∗ as

A∗
Pv∗

P = H[v∗] − ∇p∗,

relaxed with the factor αv;
3 Correct pressure: the new pressure field is computed based on the obtained

velocity field from the last step as

∇ ·
3∇p̃

A∗
P

4
= ∇ ·

3H[v∗]
A∗

P

4
,

then under-relax pressure field with factor αp. The under-relaxed pressure
field is called p∗∗;

4 Correct velocity: using the corrected under-relaxed pressure field from
previous step correct the velocity explicitly by

v∗∗
P = 1

A∗
P

H[v∗] − 1
A∗

P
∇p∗∗,

where v∗∗ is the new corrected velocity field;
5 Update the mass flux as

Ff = 1
A∗

P
H[v∗∗] · Sf − 1

A∗
P

∇p∗∗ · Sf ,

where ∇p∗∗ · Sf is computed with Gauss-linear approximation and
non-orthogonal correction;

6 Set v∗ = v∗∗ and p∗ = p∗∗;
7 until achieving convergence;

Output: The converged solution field (v, p).

We can summarize this strategy with the following SIMPLE Algorithm 2.
Instead, for what regards the adjoint problem with observed pressure data, the adjoint

velocity isn’t divergence free. Then we obtain a different pressure equation:

∇ ·
3∇qP

A∗
P

4
= ∇ ·

3H[w∗]
A∗

P
+ H[w′]

A∗
P

4
+ (pd)P − pP ,

which changes the Algorithm 2 accordingly.

39



40



Chapter 3

Reduced Order Model
Formulation

In this chapter, we present the numerical solution for inverse problems in Computational
Fluid Dynamics (CFD) with reduced order methods in parametrized settings. The prob-
lem, we want to deal with, is a lid-driven cavity flow, where the viscosity field has to be
estimated by exploiting pressure and velocity data.

Numerical methods are capable of approximating the solutions for such a problem with
a reliable accuracy, as we have shown in the previous Chapter. However, as well-known,
the numerical solution, associated to inverse problems in CFD, at the Full Order level, is
particularly expensive in terms of computational cost and CPU time. Moreover, a input
of our direct problem, which we want estimate in inverse problem, can depends on one
or more parameter. Then, in this Chapter, we refer, in this framework, to parametric
optimal flow control problems, or more in particular, in this work, to parametric inverse
problem, with a slight abuse of notation. In this parametrized settings, the computations
are performed in a repetitive way, for many different values of the parameter. Thus, the
computational cost increases rapidly with respect to the dimensions of parameter space.
On the contrary, Reduced Order Models exploit information obtained from a certain
number of full order simulations, calculated in a typically expensive offline phase, to set up
a lower dimensional problem, that can be solved in a limited amount of time, with a lower
computational effort, in an online phase. Based on such an offline/online paradigm, the
Reduced Order Methods (ROMs) have been widely applied to optimal control simulations
to reduce the computational cost of the resulting parametric numerical simulations with
finite element formulations, how it is proven in [42, 69, 75, 67, 68, 7]. In this Thesis we
applied such a technique to finite volume approximation of parametric inverse problems.

Our ROM implementation employs the ITHACA-FV library (In real Time Highly
Advanced Computational Applications for Finite Volumes) 1, an open access C++ library

1https://github.com/mathLab/ITHACA-FV
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based on OpenFOAM2.

In the context of this Thesis, we aim to develop ROMs which are able to approxi-
mate the solution of Parametrized Optimal Flow Control Problems (OFCP(µ)) used , in
particular, for parametric inverse problems. As in [28], we denote with M the solution
manifold composed by all solutions of the parametric problem varying the parameters in
the parameter space P, i.e.,

M = { u(µ) | µ ∈ P } ⊂ V,

where each u(µ) ∈ V corresponds to the solution of the exact problem. In general,
the exact solution is not available in analytic way. Thus, what we look for is a numerical
approximated of the solution uδ(µ) ∈ Vδ. Following the definition for the exact continuous
problem, we also define the discrete version of the solution manifold

Mδ = { uδ(µ) | µ ∈ P } ⊂ Vδ,

where each uδ(µ) ∈ Vδ corresponds to the truth solution of the discrete problem. The
computational cost may be very high since it depends directly on Nδ = dim(Vδ). Reduced
order modelling for parametric problem is based on the assumption that the solution fields
lives in a low dimensional manifold, i.e., that the span of a low number of appropriately
chosen basis functions approximate the solution manifold with a small error between truth
and reduced solutions. We shall call these basis functions the Reduced Basis (RB). It will
allow us to approximate the truth solution uδ(µ), by the use of an N -dimensional subspace
Vrb of Vδ. The assumption of the low dimensionality for the solution manifold implies
that N ≪ Nδ. For more details, from the theoretical point of view, see [28].

Relying on this hypothesis, any element of the solution manifold can be properly
approximated by the linear span of a low number of global reduced basis functions. In
particular, for OFCPs(µ), the state and adjoint fields can be approximated as a linear
combination of the dominant modes (basis functions) multiplied by scalar coefficients. The
modes are assumed to be dependent on space variables only, while, the coefficients only
depend on the parameter value. The last assumption leads to the following approximation

2https://www.openfoam.com/
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of the fields:

v(x;µ) ≈ vr(x;µ) =
NvØ
i=1

ai(µ)ϕi(x), (3.1)

(3.2)

p(x;µ) ≈ pr(x;µ) =
NpØ
i=1

bi(µ)ψi(x), (3.3)

(3.4)

w(x;µ) ≈ wr(x;µ) =
NwØ
i=1

ci(µ)ζi(x), (3.5)

(3.6)

q(x;µ) ≈ qr(x;µ) =
NqØ
i=1

di(µ)ηi(x), (3.7)

(3.8)

where, the (vr, pr), (wr, qr) are the reduced state and adjoint fields, respectively, while
ϕi, ψi, ζi and ηi are the modes for velocity, pressure and their respective adjoint fields.
The reduced order degrees of freedom are denoted by ai, bi, ci and di, while, Nv, Np, Nw

and Nq define the dimension of reduced basis spaces for the corresponding variables.

The reduced basis spaces for state velocity field Vrb = span
î

[ϕi]Nu
i=1

ï
, state pressure

one Prb = span
î

[ψi]Np

i=1

ï
, adjoint velocity one Wrb = span

î
[ζi]Nw

i=1

ï
and adjoint pressure

one Qrb = span
î

[ηi]Nq

i=1

ï
can be generated following several strategies, as reported in the

literature. In this work, we utilize the Proper Orthogonal Decomposition (POD) approach.
We define the snapshots as the high-order solutions of the truth problem for different values
of the parameters. With POD method, we construct the reduced order solution spaces
from the information captured by these snapshots. For an overview on snapshots-based
method you can see to [62].

In this Chapter, we provide a review of POD modes construction for both state and
adjoint fields. Then, a Galerkin projection is performed onto the POD spaces for state
equations, adjoint equations and optimality condition, one at a time. After that, the
stability issue for reduced equations will be analyzed, providing a possible solution given
by a supremizer enrichment. Non-homogeneous Diriclet boundary conditions (BCs) get
treated by employing a lifting function method. Moreover, we will develop a reduced
version of CG method as an optimization solver for our problem. Finally, we will exploit
the offline-online decomposition to perform some reduced solutions.
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3.1 Generation of the reduced basis space with a Proper
Orthogonal Decomposition approach

In this section, we exploit a particular snapshots-based method to construct modal spaces
of reduced solutions: the Proper Orthogonal Decomposition (POD). POD is a method to
compress the information contained into a set of numerical realizations into a reduced
number of orthogonal basis functions (modes). This realizations, or snapshots, are ob-
tained by solving a high fidelity problem for many different values of a parameter, chosen
into the parameter space. The modes obtained with POD are capable of retaining the
most relevant dynamics content when suitably combined. For a general overview on POD
methods for Parametrized Partial Differential Equations (PPDE), see [28, 62, 56]. For
a theoretical point of view about the generation of POD-spaces we refer to [20, 41, 72].
In particular, for finite volume POD-Galerkin applied to fluid dynamics, see [66, 64, 32].
Applications to OFCP(µ) in a finite element setting can be found in [7, 74, 2].

The POD modes are "optimal", in the sense that, for every number of chosen modes,
the error between the L2 projection of the snapshots onto the modes and the snapshots
themselves is minimized. It has to be remarked that, the FOM, presented in Chapter 2, is
solved for each value of the parameter µ ∈ Pm = { µ1, . . . , µm } ⊂ P where Pm is a finite
set of samples inside the parameter space P. The snapshots matrices Sv, Sp, Sw and Sq,
for velocity, pressure, adjoint velocity and adjoint pressure respectively, are then given by
m full-order snapshots:

Sv = { v(x, µ1), . . . ,v(x, µm) } ∈ RNh
v ×m, (3.9)

(3.10)
Sp = { p(x, µ1), . . . , p(x, µm) } ∈ RNh

p ×m, (3.11)
Sw = { w(x, µ1), . . . ,w(x, µm) } ∈ RNh

w×m, (3.12)
Sq = { q(x, µ1), . . . , q(x, µm) } ∈ RNh

q ×m, (3.13)

where Nh
v , Nh

p , Nh
w and Nh

q are the degrees of freedom for the solution fields, respec-
tively. Let X = [L2(Ω)]2 and Y = L2(Ω) be separable Hilbert space endowed with the
inner product (·, ·)X and (·, ·)Y , respectively, and the corresponding induced norm. We
assume that the snapshots are linearly independent (otherwise we decrease m). We set
the snapshot spaces as:

Vm = span { v1, . . . ,vm } ⊂ X, (3.14)
Pm = span { p1, . . . , pm } ⊂ Y, (3.15)
Wm = span { w1, . . . ,wm } ⊂ X, (3.16)
Qm = span { q1, . . . , qm } ⊂ Y. (3.17)

The POD-method consists of properly choosing an orthonormal basis for the snapshot
spaces such that ∀Nv, Np, Nw, Nq = 1, . . . ,m the mean square error between the snapshots
and the corresponding orthogonal projection (3.2)-(3.8) onto the reduced bases is mini-
mized. Then the POD-spaces VP OD = span

î
[ϕi]Nu

i=1

ï
⊆ Vm, PP OD = span

î
[ψi]Np

i=1

ï
⊆
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Pm, WP OD = span
î

[ζi]Nw
i=1

ï
⊆ Wm and QP OD = span

î
[ηi]Nq

i=1

ï
⊆ Qm are the ones

fulfilling the following minimization problems:

min
VP OD

öõõô 1
m

mØ
n=1

∥vn −
NvØ
k=1

(vn, ϕk)Xϕk∥2
X ∀Nv = 1, . . . ,m,

subject to (ϕi, ϕj)X = δij for 1 ≤ i ≤ Nv, 1 ≤ j ≤ i,

(3.18)

min
PP OD

öõõô 1
m

mØ
n=1

∥pn −
NpØ

k=1
(pn, ψk)Xψk∥2

Y ∀Np = 1, . . . ,m,

subject to (ψi, ψj)Y = δij for 1 ≤ i ≤ Np, 1 ≤ j ≤ i,

(3.19)

min
WP OD

öõõô 1
m

mØ
n=1

∥wn −
NwØ
k=1

(wn, ζk)Xζk∥2
X ∀Nw = 1, . . . ,m,

subject to (ζi, ζj)X = δij for 1 ≤ i ≤ Nw, 1 ≤ j ≤ i,

(3.20)

min
QP OD

öõõô 1
m

mØ
n=1

∥qn −
NqØ

k=1
(qn, ηk)Y ηk∥2

Y ∀Nq = 1, . . . ,m,

subject to (ηi, ηj)Y = δij for 1 ≤ i ≤ Nq, 1 ≤ j ≤ i,

(3.21)

where vn, pn, wn and qn are the n-th snapshots which have been computed for a value
of the parameter µ ∈ Pm. Therefore, the construction of the POD-spaces requires the
computation of the POD-basis [ϕi]Nv

i=1, [ψi]Np

i=1, [ζi]Nw
i=1 and [ηi]Nq

i=1 of ranks Nv ≪ Nh
v ,

Np ≪ Nh
p , Nw ≪ Nh

w and Nq ≪ Nh
q , (for the assumption of the low dimensionality of the

solution manifold).

Remark 3.1 Usually, in a standard finite element framework, since the velocity field
belongs to the natural functional space [H1(Ω)]2, to compute its reduced basis functions
minimizing the mean square error, the H1 norm is preferred and the L2 norm is employed
for pressure (the same happens for the adjoint fields). Here, for both velocity and pressure,
the L2 norm is chosen, because using a finite volume method, both the velocity and the
pressure belong to discontinuous finite volume spaces and, the computation of the gradient
of the velocity, necessary for the H1 semi-norm computation, add further computational
cost.

Remark 3.2 The minimization problem can be solved by performing a Singular Value
Decomposition (SVD). For example, for what concerns the velocity snapshots, we have:

Sv = ΞvΣvΥv,

where Ξv ∈ RNv
h ×Nv

h is a square matrix of the left-singular vectors, Υv ∈ Rm×m is a
square matrix of the right-singular vectors and Σv ∈ RNv

h ×m is a rectangular diagonal
matrix of the singular values. The resulting POD modes ϕi are then given by the columns
of the matrix Ξv. This procedure might be however computationally expensive, especially
when a refinement of the mesh turns out to be necessary to properly discretize the domain
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Ω. An equivalent and more efficient way to construct this modes, based on the method of
snapshots, consists in solving the eigenvalue problems related to the correlation matrix of
the fields. This modes construction is exploited in the next Subsection.

3.1.1 Proof on construction of modes
For more details on how the minimization problems is solved, we refer to [41, 72, 20]. We
report here the calculation for the velocity field.

Since the elements ϕi are assumed to be orthonormal in X, we obtain:

∥vn −
NvØ
k=1

(vn, ϕk)Xϕk∥2
X = ∥vn∥2

X −
NvØ
k=1

(vn, ϕk)2
X . (3.22)

Then, the above minimization problem for velocity field is equivalent to:

min J(ϕ1, . . . , ϕNv ) = min
[ϕi]Nv

i=1

−
mØ

n=1

NvØ
k=1

(vn, ϕk)2
X ∀Nv = 1, . . . ,m,

subject to ϵk(ϕ1, . . . , ϕNv ) = 0 for 1 ≤ k ≤ Nv, (3.23)

where

ϵk(ϕ1, . . . , ϕNv ) =


(ϕk, ϕk)X − 1
(ϕk+1, ϕk)X

...
(ϕNv , ϕk)X

 .
Introducing the Lagrange functional L : XNv × RNv × . . . × R → R associated with

problem (3.23)

L(ϕ1, . . . , ϕNv , ωi, . . . , ωNv ) = J(ϕ1, . . . , ϕNv ) +
NvØ
k=1

(ϵk(ϕ1, . . . , ϕNv ), ωk)RNv−k+1 ,

then, the first-order necessary optimality conditions (∇ϕL(ϕ1, . . . , ϕNv , ωi, . . . , ωNv ) =
0) for the optimization problem (3.23) is given by the following operator equation, as
introduced in [72]:

Rϕi = λiϕi, for 1 ≤ i ≤ Nv (3.24)
where, we denote the first components of the vector ωi by λi = ω1

i and the introduced
operator R ∈ B(X) reads:

R =
mØ

j=1
(·,vj)Xvj.

Here B(X) denotes the Banach space of all continuous linear operator on X.
We can prove (see, e.g., [72, 20]) the following properties on the operator R : X → X:

• bounded, ∥Rw∥2
X ≤

qm
i=1∥vi∥2

X∥w∥2
X < ∞ ∀w ∈ X,

• self-adjoint, (Rw, v)X = (w,Rv)X ∀v, w ∈ X,
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• non-negative, (Rw,w)X =
qm

i=1(vi, w)2
X ≥ 0 ∀w ∈ X,

• compact, since the image of R, i.e. Im(R) = span { vi, · · · ,vm }, is finite dimen-
sional and bounded.

Thanks to the eigenfunctions expansion theorem (see, e.g., [63]), with the previous prop-
erties, there exist a complete orthonormal basis { ϕi }∞

i=1 for X and a decreasing sequence
{ λi }∞

i=1 so that

Rϕi = λiϕi, λ1 ≥ λ2 ≥ . . . ≥ 0 and λi → 0 as i → ∞. (3.25)

Moreover, the functions ϕi form an orthonormal basis for the range of R, i.e. Im(R) = Vm,
with the following spectral decomposition for this operator

Rw =
mØ

n=1
λn(w, ϕn)Xϕn =

mØ
n=1

(Rw, ϕn)Xϕn ∀w ∈ X.

This shows us, that exists a solution for the first-order necessary condition (3.24) but
this is not a sufficient optimality condition for (3.23). We can prove, anyway, that { ϕi }Nv

i=1

calculated by solving the eigenvalue problem (3.24), is an optimal solution. Let
î
ϕ̄i

ïNv

i=0
be an orthonormal set in Vm. Since { ϕi }m

i=1 is an orthonormal basis for Vm, we obtain:

ϕ̄k =
mØ

i=1
(ϕ̄k, ϕi)Xϕi for k = 1, . . . , NV ,

which implies (see, e.g., [72])

J(ϕ̄1, . . . , ϕ̄Nv ) ≥ −
NvØ
j=1

λj .

Moreover, we note that condition (3.25) leads to
mØ

n=1
(vn, ϕk)2

X = (Rϕk, ϕk) = λk ∀k ∈ N. (3.26)

Then { ϕi }Nv

i=1 is optimal because ∀
î
ϕ̄i

ïNv

i=1
orthonormal set of Vm we get:

J(ϕ̄1, . . . , ϕ̄Nv ) ≥ J(ϕ1, . . . , ϕNv ). (3.27)

Therefore, we show that, denoting by { ϕi }∞
i=1 and { λi }∞

i=1 the eigenfunctions and corre-
sponding eigenvalues for the operator R, satisfying λ1 ≥ λ2 ≥ . . . ≥ 0 and being Nv ∈ N
with Nv ≤ m, then, { ϕi }Nv

i=1 solves (3.23) with minimum

J(ϕ1, . . . , ϕNv ) = −
NvØ
k=1

λk.
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Moreover, { ϕi }m
i=1 is also a solution to (3.18).

The resolution of the eigenvalue problem (3.24) is more difficult from a practical point
of view. Thus, one can compute the POD-basis of rank Nv solving a finite dimensional
m × m eigenvalue problem (see, e.g., [20, 72, 41]). To find the first Nv strictly positive
eigenvalues { λk }Nv

k=1 and the corresponding eigenfunctions { ϕk }Nv

k=1 ⊂ Vm, we can write
ϕk exploiting the following linear combination of snapshots:

ϕk = πk

mØ
j=1

yk
j vj for k = 1, . . . , Nv,

where the constants πk will be calculated in such a way that ∥ϕk∥X = 1 holds. Our goal
is to determine the coefficients of this expression. Inserting this linear combination in the
eigenvalues problem (3.24) we obtain:

mØ
i=1

 mØ
j=1

(vi,vj)Xy
k
j

vi = λk

mØ
i=1

yk
i vi for k = 1, . . . , Nv.

Since the snapshots are assumed to be linearly independent in X, we determine the
coefficients yk

i from the eigenvector of the following m×m eigenvalue problem:
mØ

j=1
(vi,vj)Xy

k
j = λky

k
i for k = 1, . . . , Nv and i = 1, . . . ,m. (3.28)

Utilizing the correlation matrix for the velocity solutions Cv ∈ Rm×m, being

Cv
ij = (vi,vj)X , (3.29)

the eigenvalue problem (3.28) can be expressed as

CvV = λvV, (3.30)

where V ∈ Rm×m is a square matrix, whose columns are the eigenvectors vk ∈ Rm with
(vk)i = yk

i for k, i = 1, . . . ,m, and λv ∈ Rm×m is a diagonal matrix, whose diagonal
entries are the eigenvalues λv

kk = λk for k = 1, . . . ,m.
We observe that Cv is:

• symmetric, Cv
ij = Cv

ji,

• positive definite, (Cvv, v)Rm = ∥
qm

i=1 viϕi∥2
X ≥ 0 ∀v ∈ Rm and (Cvv, v)Rm = 0 if

and only if v = 0.

Then for this properties Cv has strictly positive eigenvalue { λk }m
k=1 and eigenvectors

{ vk }m
k=1 solving the eigenvalue problem (3.28). Moreover, normalizing the basis functions,

using the properties of Cv and (3.28), we can calculate the coefficient πk as

1 = ∥ϕk∥2
X = π2

k∥
mØ

i=1
viϕi∥2

X = π2
k(Cvv, v)Rm = π2

kλk ⇒ πk = 1√
λk

∀k = 1, . . . , Nv.
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□

Finally, we can summarize the computation of the POD-basis { ϕk }Nv

k=1 of rank Nv for
velocity field as follows:

1. Solve the eigenvalue problem (3.30) to compute the strictly positive eigenvalues
{ λk }Nv

k=1 and the eigenvectors { vk }Nv

k=1 for k = 1, . . . , Nv,

2. determine the POD-basis functions as

ϕk = 1ð
λv

kk

SvVk ∀k = 1, . . . , Nv. (3.31)

Remark 3.3 The m×m eigenvalue problem (3.30) can be solved by a numerical algorithm
but, before that, the correlation matrix Cv has to be computed by a numerical quadrature
formula.

Remark 3.4 From (3.22)-(3.26) it follows the error formula

ñ
ϵ̄P OD

Nv
≡

öõõô 1
m

mØ
n=1

∥vn −
NvØ
k=1

(vn, ϕk)Xϕk∥2
X =

=

öõõô 1
m

mØ
n=1

A
∥vn∥2

X −
NvØ
k=1

(vn, ϕk)2
X

B
=

öõõô 1
m

mØ
k=Nv+1

λkk ∀Nv = 1, . . . ,m. (3.32)

Hence, the decay rate of the positive eigenvalues { λk }m
k=1 plays a fundamental role for an

accurate POD application. If one has to utilize a complete orthonormal basis { ϕk }m
k=1 ⊂

X to represent elements of the snapshots space Vm, this leads to a high-dimensional ap-
proximation scheme. Instead, if the error estimation

ñ
ϵ̄P OD

Nv
is sufficiently small for a

not too large Nv ∈ { 1, . . . ,m }, then elements in Vm can be approximated by using their
projection on the POD-space VP OD = span

î
[ϕk]Nv

k=1

ï
with the following projection

PNv : X → Vm

f → PNv [f ] =
NvØ
i=1

(f, ϕi)Xϕi.

Therefore, it may be useful to define a relative information content of the POD-basis by
the rate (see, e.g. [20])

E(Nv) =
qNv

i=1 λiqm
i=1 λi

∈ [0,1]. (3.33)

We can, for example, utilize this ratio to determine a basis of rank Nv such that it contains
the 99% of the information contained in Vm, i.e., E(Nv) ≈ 99%. Thanks to (3.26), the
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quantity E(Nv) can be determine by the following formula, without knowing the eigenvalues
λNv+1, . . . ,m,

E(Nv) =
qNv

i=1 λiqm
i=1∥vi∥2

X

.

The same procedure has to be repeated also for the pressure, the adjoint velocity and
the adjoint pressure fields, considering the snapshots matrices Sp, Sw and Sq, respectively.
In short, we can compute the corresponding correlation matrices Cp, Cw, Cq ∈ Rm×m as

Cp
ij = (pi, pj)Y , (3.34)

(3.35)
Cw

ij = (wi,wj)X , (3.36)
(3.37)

Cq
ij = (qi, qj)Y , (3.38)

and solve the eigenvalue problems

CpP = λpP, (3.39)
(3.40)

CwW = λwW, (3.41)
(3.42)

CqQ = λqQ. (3.43)

Then, the POD modes for this fields can be computed as follows:

ψk = 1ñ
λp

kk

SpPk ∀k = 1, . . . , Np, (3.44)

(3.45)

ζk = 1ð
λw

kk

SwWk ∀k = 1, . . . , Nw, (3.46)

(3.47)

ηk = 1ñ
λq

kk

SqQk ∀k = 1, . . . , Nq. (3.48)

For more clarity, we recapitulate the Proper Orthogonal Decomposition procedure into
Algorithm 3.

After introducing the POD method, one may perform the projection step in order to
construct the reduced order system. The projection procedure is exploited in the next
Section.

3.2 Galerkin projection onto the reduced spaces
Once the POD functional spaces are set, the reduced velocity, pressure, adjoint velocity
and adjoint pressure fields can be approximated by (3.2)-(3.4)-(3.6)-(3.8). The unknown
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3.2 – Galerkin projection onto the reduced spaces

Algorithm 3: Proper Orthogonal Decomposition Method.
Input: Snapshots matrices Sv ∈ RNh

v ×m, Sp ∈ RNh
p ×m, Sw ∈ RNh

w×m and
Sq ∈ RNh

q ×m for state velocity, state pressure, adjoint velocity and adjoint
pressure, respectively; Relative information content E .

1 Construct the correlation matrices Cv,Cp,Cv,Cq ∈ Rm×m by employing
(3.29)-(3.35)-(3.37)-(3.38);

2 Solve the corresponding eigenvalue problems (3.30)-(3.40)-(3.42)-(3.43) to store
eigenvectors matrices V, P, W and Q, and the corresponding eigenvalues as the
diagonal entries of matrices λv, λp, λw and λq;

3 Compute the modal basis functions [ϕi]mi=1, [ψi]mi=1, [ζi]mi=1 and [ηi]mi=1 as in
(3.31)-(3.45)-(3.47)-(3.48), respectively;

4 Collect the first Nv state velocity basis functions, Np state pressure ones, Nw

adjoint velocity ones and Nq adjoint pressure ones, which have relative
information content at least equal to E .

Output: Basis functions [ϕi]Nv

i=1, [ψi]Np

i=1, [ζi]Nw

i=1 and [ηi]Nq

i=1.

vectors of coefficients a, b, c, d and viscosity constant ν, can be then obtained through
a Galerkin projection of the KKT system onto the POD reduced basis spaces. For appli-
cation of finite volume POD-Galerkin projection in fluid dynamics we refer to [66, 64, 30,
29, 31].

In this Section, we report the building procedure for the reduced order model, i.e.
the projection of the Navier-Stokes equations and adjoint equations onto the POD space
spanned by the velocity-pressure and adjoint velocity-pressure POD modes, respectively.
Moreover, we introduce the first-order optimality condition with a reduced order approach.
For simplicity, we treat only the case of wanted viscosity which is uniform in the domain.

3.2.1 Reduced State Equations
In this subsection, the Galerkin projection of the state equations (1.10) onto the state
POD space is investigated and discussed. The idea here is to employ both the momentum
balance and continuity equation.

The reduced order model of the momentum equation is computed performing an L2−
projection onto the reduced bases space VP OD spanned by the POD velocity modes, by
following what has been exposed previously into Section 3.1. In particular, we obtain the
following projection:

(ϕi, (v · ∇)v − ∇ · (ν∇v) + ∇p)X = 0 ∀i = 1, . . . , Nv. (3.49)

Substituting the POD approximations (3.2)-(3.4) for v and p, respectively, in (3.49), one
obtains the following reduced form of the momentum balance:

νBa − aTCa − Hb = 0, (3.50)
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Reduced Order Model Formulation

where a and b are the vectors of unknowns for reduced state velocity and pressure respec-
tively, while B ∈ RNv×Nv , C ∈ RNv×Nv×Nv and H ∈ RNv×Np are the reduced discretized
differential operators which are computed as follows:

Bij = (ϕi,∆ϕj)X i, j = 1, . . . , Nv,

Cijk = (ϕi, (ϕj · ∇)ϕk)X i, j, k = 1, . . . , Nv,

Hij = (ϕi,∇ψj)X i = 1, . . . , Nv, j = 1, . . . , Np.

Remark 3.5 It is important to mention that the convective non-linear term in the Navier–Stokes
equations is approximated at the reduced order level through a third order tensor C. The
dimension of the C tensor is increasing with the cube of the number of basis functions.
This last approach in treating the non-linear term in the momentum equation could poten-
tially increase the computational cost and may lead to high-storage costs when the number
of reduced velocity modes grows.

Remark 3.6 An important remark is that the system (3.50) has Nv +Np unknowns given
by the velocity coefficient a and the pressure ones b but just Nv equations. Therefore
one must search Np additional equations in order to close the reduced system. In the
reduced framework, the continuity equation can’t be directly exploited because the velocity
modes, which are generated with divergence free snapshots, are in turn divergence free
up to numerical precision. The available approaches to tackle this problem are either the
use of the Poisson equation for pressure [64, 66] or the use of the supremizer stabilization
method [8, 61], which consists into the enrichment of the velocity modal space by employing
the supremizer modes. These modes are computed, such that the reduced counterpart of
the inf-sup condition is fulfilled. The latter approach, usually employed in finite element
framework, has been also extended to a FV formulations [64].

In this work, the supremizer stabilization method has been chosen for this goal. Later
on we will comment the stability issue created by a non-fulfilled inf-sup condition for
a saddle-point configuration, which requires a supremizer enrichment method. This ap-
proach will ensure that velocity POD modes are not all divergence free so one can project
the continuity equation onto the space spanned by the POD pressure modes

(ψi,∇ · v)Y = 0 i = 1, . . . , Np.

This will give the following state reduced system:I
νBa − aTCa − Hb = 0,
Pa = 0,

(3.51)

where the reduced matrix P ∈ RNp×Nv is the matrix associated with the continuity equa-
tion. The entries of this matrix are given by:

Pij = (ψi,∇ · ϕj) i = 1, . . . , Np, j = 1, . . . , Nv.

52



3.2 – Galerkin projection onto the reduced spaces

3.2.2 Reduced Adjoint Equations
In this subsection, the Galerkin projection of the adjoint equations (1.19)-(1.20)-(1.21)
onto the adjoint POD space is obtained with the same procedure employed in the previous
Subsection. Also in this case, we employ a supremizer enrichment technique which ensures
that adjoint velocity POD modes are not all divergence free. We report the calculation for
the inverse problem only with respect to the case where just velocity data vd are observed.

The projection of the adjoint momentum and continuity equations (1.19) reads as
follows:

(ζi,−∇ · (ν∇w) + ∇v · w − (v · ∇)w + ∇q + v)X =(ζi,vd)X i = 1, . . . , Nw,

(ηi,∇ · w)Y =0 i = 1, . . . , Nq.
(3.52)

The adjoint reduced order dynamical system, resulting from inserting the reduced approx-
imations (3.6)-(3.8) into (3.52), is the following:I

νDc + aTEc − Kd − Fa = −g,
Qc = 0,

(3.53)

where c and d are the vectors of reduced order degrees of freedom for adjoint velocity
and pressure, respectively, while, D ∈ RNw×Nw , E ∈ RNw×Nv×Nw , F ∈ RNw×Nv , g ∈ RNw ,
K ∈ RNw×Nq and K ∈ RNq×Nw are either a reduced order vector, matrix or tensor which
are computed as follows:

Dij = (ζi,∆ζj)X i, j = 1, . . . , Nw,

Eijk = (ζi, (ϕj · ∇)ζk − ∇ϕj · ζk)X i, k = 1, . . . , Nw, j = 1, . . . , Nv,

Fij = (ζi, ϕj)X i = 1, . . . , Nw, j = 1, . . . , Nv,

gi = (ζi,vd)X i = 1, . . . , Nw,

Kij = (ζi,∇ηj)X i = 1, . . . , Nw, j = 1, . . . , Nq,

Qij = (ηi,∇ · ζj)Y i = 1, . . . , Nq, j = 1, . . . , Nw.

For what concerns the case of pressure observed data, instead, by the same procedure,
we obtain the following reduced order system for the adjoint equations (1.20):I

νDc + aTEc − Kd = 0,
Qc − Lb = −m,

(3.54)

where we introduced the new reduced matrix L ∈ RNq×Np and reduced vector m ∈ RNq .
The entries of the two additional matrices are given by:

Lij = (ηi, ψj)Y i = 1, . . . , Nq, j = 1, . . . , Np,

mi = (ηi, pd)Y i = 1, . . . , Nq.

Finally, when both velocity and pressure fields are observed, the reduced form for the
adjoint equations (1.21) is the one following:I

νDc + aTEc − Kd − Fa = −g,
Qc − Lb = −m.

(3.55)
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3.2.3 Reduced Optimality Equation
We can observe that, we have Nv +Np +Nw +Nq + 1 unknowns given by the vectors of
degrees of freedom a, b, c and d for the state velocity, state pressure, adjoint velocity and
adjoint pressure fields, respectively, and the viscosity constant ν. Therefore, one more
equation is needed in order to close the system. This equation is given by the optimality
condition of KKT system.

In our case, when we solve the KKT-system with a segregate method using the Algo-
rithm 1 in FOM, we update the viscosity field ν at each iteration, thanks to the solution
fields stored from state and adjoint equations. The converged solution (v, p, ν,w, q), any-
way, satisfies also the optimality condition for the inverse problem, which tries to capture
the viscosity constant from observed data, given by

∇νL(v, p, ν,w, q) = J ′(ν) = 0

where the derivative of the functional cost J(ν) is computed by (2.11). Then, the Opti-
mality Condition for this problem is given byÚ

Ω
∇v : ∇w dΩ = 0. (3.56)

In this subsection, we want to compute the reduced order equation for the optimality
condition (3.56). From inserting the reduced approximations (3.2)-(3.6) into (3.56), we
obtain the reduced form of optimality condition as follows:

aTNc = 0, (3.57)

where the new reduced matrix N ∈ RNv×Nw is given by

Nij = (∇ϕi,∇ζj)X i = 1, . . . , Nv, j = 1, . . . , Nw.

3.3 Stability issues
The state and adjoint reduced problem, as formulated in (3.51)-(3.53), present stability
issues, as analyzed in [8]. In this section, we discuss the case of state problem given by the
incompressible Navier-Stokes equations in steady-state. Instead, for the adjoint equations,
we have the same issues of direct ones because they share the same structure, also called
saddle-point strucure. For more detail on stability issues for problems with this structure,
we refer to [8, 61, 64].

When we use a mixed formulation to solve the Navier-Stokes equations, in order to
have a well-posed problem (i.e. no spurious pressure modes) the approximation spaces
Vh ⊂ V and Ph ⊂ P for state velocity and pressure fields, respectively, must fulfill the
discrete Ladyzhenskaya-Brezzi-Babuska (LLB) Inf-Sup condition

∃β > 0 such that inf
ph∈Ph\{ 0 }

sup
vh∈Vh\{ 0 }

b(ph,vh)
∥vh∥V ∥ph∥P

≥ β > 0, (3.58)

where β is independent from the discretization parameter h.
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3.3 – Stability issues

The solution spaces V and P , defined in (1.13), are equipped with the norm ∥·∥V =
(·, ·)1/2

V and ∥·∥P = (·, ·)1/2
V , where (v,w)V = (∇v,∇w)X for v,w ∈ V and (p, q)P =

(p, q)Y , respectively. At full-order level with a FV method, no attention is paid to this
condition because we employ a segregate procedure. Instead, at reduced order level with
a Galerkin projection method the LBB condition has to be verified for VP OD and PP OD

for a coupled-type solver. The original POD modes (3.31) are a linear combination of the
velocity snapshots which are divergence free. Then, the inf-sup condition isn’t satisfied.
Moreover, the projection of the continuity equation onto the pressure modes is not useful,
since the velocity modes have zero divergence up to numerical precision.

To overcome this issue there are many approach in literature. When, we solve in cou-
pled way the saddle-point problems, we want that the inf-sup condition (3.58) is satisfied.
We can use a reduced version of segregate solver, already used in full-order formulation.
Then, we solve reduced system in decoupled way, in order to avoid saddle point structure,
see e.g. [65]. With this approach, we must not have the fulfillment of inf-sup condition
because we have no stability issues of this kind.

A simpler method is using only a POD base for velocity. Thus, we neglect the con-
tribution of the gradient pressure in the momentum balance at reduced order level. The
pressure field is then a posteriori reconstructed employing the Poisson equation for pres-
sure, as presented in [66]. This choice is justified for some set-up as enclosed flows or in the
case of inlet-outlet problems with outlet far from the obstacle, but in many applications
the pressure term is needed an can not be neglected.

In ROMs exploiting also the pressure modes two different coupled approaches can
be found whether they use only the momentum equation or also the continuity/Poisson
equation. For simplicity, in the first approach, it is assumed that velocity and pressure
at reduced order level share the same coefficient, i.e. a = b, and we make a Galerkin
projection only of the momentum equation (see [44, 32]). This approach shows lack of
accuracy for what regards the reconstruction of the pressure field at reduced order level.
But, an accurate pressure approximation is imperative as many outputs of interest depend
highly on the pressure field. Consequently, stabilization methods have been considered in
order to reproduce the pressure field, in an accurate approximation, given by the second
approach.

There are two different strategies for pressure stabilization during the resolution of the
reduced problem in coupled way. With both procedures, it is assumed that, velocity and
pressure are approximated at reduced order level with different coefficient, i.e. a /= b.
These strategies differ in the equation employed for pressure, i.e. the Poisson equation
or the continuity equation. The first one is based on a Leray-Helmholtz projection, by
exploiting at reduced order level, a Poisson equation for pressure. This approach makes
possible the separation of the pressure reduced degrees of freedom from the ones of the
velocity. The Poisson equation for pressure can be obtained by taking the divergence of
the momentum equation and, then, taking advantage from divergence-free property of
velocity field. This method, denoted as PPE-ROM, is presented in [66, 64, 32].

As already mentioned, in this Thesis, we adopt the second strategy which enrich the
velocity POD-space by velocity-like modes. We obtain these modes by solving a suprem-
izer problem, associated with each of the pressure modes or snapshots, in order to satisfy
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a reduced version of LBB inf-sup condition (3.58). Thus, we enforce the well-posedness
of the reduced problem (3.51). By the same argument, we use a supremizer stabiliza-
tion methods for adjoint reduced momentum and continuity equations. In the following
subsection we discuss this method, denoted as SUP-ROM. For more details with finite
volume formulation, we refer to [64, 32].

3.3.1 Supremizer Enrichment
The supremizer enrichment approach allows the usage of the continuity equation at the
reduced order level for the state and adjoint equations (1.10)-(1.19). This method ensures
the fulfilment of the inf-sup condition (3.58) at reduced order level. Within this approach,
the velocity and adjoint velocity supremizer basis functions are computed and added to
POD-spaces VP OD and WP OD, respectively. We observe that, the new supremizer POD-
spaces, V SUP

P OD and W SUP
P OD, are not any-more composed by only orthogonal basis functions.

In fact, the POD is applied separately onto the velocity snapshots and onto the supremizer
snapshots. This stabilization method is introduced for finite element formulation in [61,
8, 60, 17, 58] and It has been extended for finite volume formulation in [64].

For the construction of supremizer problem, we refer in particular to [60, 64] and, for an
extension to a optimal flow control, to [7]. In order to verify the LBB condition for both
adjoint and state problems, we introduce the following supremizer operators Tv : Ph → Vh

and Tw : Qh → Wh, where, Qh ⊂ P and Wh ⊂ V denote the approximation spaces of
adjoint pressure and velocity fields. These operators are defined with the following Riesz
representation:

(Tvph,vh)V = b(ph,vh) ∀vh ∈ Vh, ph ∈ Ph,

(Twqh,wh)V = b(qh,wh) ∀wh ∈ Wh, qh ∈ Qh,
(3.59)

respectively, called state and adjoint supremizer equations. We note the following property
of supremizer operator

Tvph = arg sup
vh∈Vh\{ 0 }

b(ph,vh)
∥vh∥V

for ph ∈ Ph,

Twqh = arg sup
wh∈Wh\{ 0 }

b(qh,wh)
∥wh∥V

for qh ∈ Qh,

(3.60)

because, applying the Riesz representation theorem (see [63]) to b(qh, ·) ∈ V ′ for qh ∈ Qh

and b(ph, ·) ∈ V ′ for ph ∈ Ph, we obtain

∥Tvph∥V = ∥b(ph, ·)∥V ′ ,

∥Twqh∥V = ∥b(qh, ·)∥V ′ ,

respectively, where V ′ is the dual space of V . Moreover, by definitions (3.59) it follows
that

∥Tvph∥2
V = b(ph, Tvph) for ph ∈ Ph,

∥Twqh∥2
V = b(qh, Twqh) for qh ∈ Qh.

(3.61)
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It is possible to demonstrate [60], thanks to property (3.60) and relation (3.61), that

inf
ph∈Ph\{ 0 }

sup
vh∈Vh\{ 0 }

b(ph,vh)
∥vh∥V ∥ph∥P

= inf
ph∈Ph\{ 0 }

b(ph, Tvph)
∥Tvph∥V ∥ph∥P

= inf
ph∈Ph\{ 0 }

∥Tvph∥V

∥ph∥P
,

inf
qh∈Qh\{ 0 }

sup
wh∈Wh\{ 0 }

b(qh,wh)
∥wh∥V ∥qh∥P

= inf
qh∈Qh\{ 0 }

b(qh, Twqh)
∥Twqh∥V ∥qh∥P

= inf
qh∈Qh\{ 0 }

∥Twqh∥V

∥qh∥P
.

(3.62)
With finite volume discretization, we have a stable truth approximation. Then, there
exist βv, βw > 0 such that

inf
ph∈Ph\{ 0 }

sup
vh∈Vh\{ 0 }

b(ph,vh)
∥vh∥V ∥ph∥P

= inf
ph∈Ph\{ 0 }

∥Tvph∥V

∥ph∥P
≥βv > 0,

inf
qh∈Qh\{ 0 }

sup
wh∈Wh\{ 0 }

b(qh,wh)
∥wh∥V ∥qh∥P

= inf
qh∈Qh\{ 0 }

∥Twqh∥V

∥qh∥P
≥βw > 0.

(3.63)

Finally, we show that the supremizer operators Tv and Tw realize the supremum in LBB
conditions (3.63) at full-order level.

In the cases of reduced order model, even if the snapshots Sv and SW have been
obtained by stable numerical methods, there is not guaranty that the original properties
of the full order system are preserved after the Galerkin projection onto the reduced basis
spaces VP OD and WP OD. To overcome this issue, we add supremizer basis functions

V s = span
î

[σv
i ]N

s
v

i=1

ï
and W s = span

î
[σw

i ]N
s
w

i=1

ï
,

to the reduced basis spaces VP OD and WP OD, respectively, defining the velocity SUP-POD
spaces

V SUP
P OD = VP OD ⊕ V s and W SUP

P OD = WP OD ⊕W s.

These basis functions are chosen solving a supremizer problem which ensures stability of
reduced solution. The supremizer solution sv

i = Tvpi and sw
i = Twqi, for each pressure

basis pi ∈ Ph and qi ∈ Qh, can be found solving the supremizer problems in weak formu-
lation (3.59). Set sv

i = Tvpi for pi ∈ Ph and sw
i = Twqi for qi ∈ Qh, the weak form of

supremizer problems (3.59) are given in the following more explicit form:
Find sv

i ∈ Vh and sw
i ∈ Wh such that

(∇sv
i ,∇vh)X = (∇pi,vh)X ∀vh ∈ Vh and (∇sw

i ,∇wh)X = (∇qi,wh)X ∀wh ∈ Wh.

Using integration by part in V , we obtain the following strong form of supremizer problemsI
∆sv

i = −∇pi in Ω,
sv

i = 0 on ∂Ω,

I
∆sw

i = −∇qi in Ω,
sw

i = 0 on ∂Ω.
(3.64)

The enriched velocity spaces with supremizer solution V SUP
P OD and W SUP

P OD satisfy a reduced
version of inf-sup condition (3.63). In fact, thanks to PP OD ⊂ Ph and QP OD ⊂ Qh, the
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definition of supremizers (3.59), since the velocity space is enriched by supremizers, i.e.
Tvpr ∈ V SUP

P OD for pr ∈ PP OD and Twqr ∈ W SUP
P OD for qr ∈ QP OD, we obtain

inf
pr∈PP OD\{ 0 }

sup
vr∈V SUP

P OD \{ 0 }

b(pr,vr)
∥vr∥V ∥pr∥P

= inf
pr∈PP OD\{ 0 }

∥Tvpr∥V

∥pr∥P
≥

≥ inf
ph∈Ph\{ 0 }

∥Tvph∥V

∥ph∥P
= inf

ph∈Ph\{ 0 }
sup

vh∈Vh\{ 0 }

b(ph,vh)
∥vh∥V ∥ph∥P

≥ βv > 0,
(3.65)

(3.66)

inf
qr∈QP OD\{ 0 }

sup
wr∈W SUP

P OD\{ 0 }

b(qr,wr)
∥wr∥V ∥qr∥P

= inf
qr∈QP OD\{ 0 }

∥Twqr∥V

∥qr∥P
≥

≥ inf
qh∈Qh\{ 0 }

∥Twqh∥V

∥qh∥P
= inf

qh∈Qh\{ 0 }
sup

wh∈Wh\{ 0 }

b(qh,wh)
∥wh∥V ∥qh∥P

≥ βw > 0.
(3.67)

We can summarize that the POD spaces enriched with the supremizer basis function,
V SUP

P OD and W SUP
P OD, ensure that the reduced LBB inf-sup conditions (3.66)-(3.67) is fulfilled.

As introduced in [8, 64], there are two different strategies which can be employed
to enrich the velocity spaces VP OD, WP OD and select the supremizer spaces V SUP

P OD and
W SUP

P OD, such that the inf-sup conditions (3.66)-(3.67) is met.
The first one, called the exact supremizer enrichment, in which one solves the suprem-

izer problems (3.64) for each pressure mode ψi and ηj obtaining at the end the velocity-
like mode sv(ψi) and sw(ηj) for i = 1, . . . , Np and j = 1, . . . , Nq, respectively. Then, the
supremizers [σv

i ]N
s
v

i=1 = [sv(ψi)]N
s
v

i=1 and
è
σw

j

éNs
w

j=1
= [sw(ηj)]N

s
w

j=1 are added to the velocity ba-

sis [ϕi]Nv

i=1 and [ζj ]Nw

j=1, respectively, as presented above. Using such an approach, we prove
that, the resulting ROM, obtained by the Galerkin projection onto the reduced spaces, is
inf-sup stable, as demonstrated above.

In the second approach, called approximate supremizer enrichment, the supremizer
problems (3.64) are solved for each pressure snapshots pi and qj for i, j = 1, . . . ,m. Thus,
given the supremizers sv(pi) and sw(qj) for i, j = 1, . . . ,m, respectively, the snapshots
matrices of supremizer are assembled in Ss

v = { sv(p1), . . . , sv(pm) } ∈ RNh
v ×m and Ss

w =
{ sw(q1), . . . , sw(qm) } ∈ RNh

w×m. Then, a POD is applied on the supremizer snapshots
matrices, that yields the supremizer POD modes [σv

i ]N
s
v

i=1 and [σw
i ]N

s
w

i=1. These modes are
then used to enrich the velocity POD space. This method permits to strongly reduce the
online computational cost. Indeed, the supremizer basis functions do not depend on the
particular pressure basis functions because they are computed starting directly from the
pressure snapshots. However, with such an approach, it is not possible to rigorously show
that the inf-sup condition is satisfied. Therefore, we only check it in post-processing.

In this Thesis, we use an exact supremizer enrichment to have a stable solution of
state and adjoint reduced systems (3.51)-(3.53) because this satisfies the priori inf-sup
condition ad reduced-order level (3.66)-(3.67). Moreover, we compute these modes only
once in offline phase with low computational cost. We can summarize this method for our
problems with the following Algorithm 4.
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Algorithm 4: Exact Supremizer Enrichment Method.
Input: POD basis functions [ϕi]Nv

i=1, [ψi]Np

i=1, [ζi]Nw

i=1 and [ηi]Nq

i=1 for state velocity,
state pressure, adjoint velocity and adjoint pressure, respectively.

1 for i = 1, . . . , Np do
2 Solve I

∆sv
i = −∇ψi in Ω,

sv
i = 0 on ∂Ω,

to obtain the state supremizer σv
i = sv

i (ψi) corresponding to the i-th pressure
basis function ψi;

3 end
4 Add the state supremizer [σv

i ]N
s
v

i=1 to the state velocity basis functions [ϕi]Nv

i=1 and
set N s

v = Np;
5 for i = 1, . . . , Nq do
6 Solve I

∆sw
i = −∇ηi in Ω,

sw
i = 0 on ∂Ω,

to obtain the adjoint supremizer σw
i = sw

i (ηi) corresponding to the i-th
pressure basis function ηi;

7 end
8 Add the adjoint supremizer [σw

i ]N
s
w

i=1 to the adjoint velocity basis functions [ζi]Nw

i=1
and set N s

w = Nq.

Output: State and adjoint supremizer enriched basis functions [ϕi]Nv

i=1 ∪ [σv
i ]N

s
v

i=1
and [ζi]Nw

i=1 ∪ [σw
i ]N

s
w

i=1, respectively.

3.4 Non-homogeneous Diriclet boundary conditions
treatment

The our problem involves non-homogeneous Dirichlet boundary conditions (BCs) on Γ
for the state velocity field in Navier-Stokes equations. The goal here is the treatment
of the non-homogeneous Dirichlet boundary conditions at reduced order level. This goal
is essential to build an accurate model. In literature different approaches to impose the
boundary conditions in the ROM can be found. Here, it is explained how the Dirichlet
boundary conditions are enforced, at the reduced order level. The methods employed, to
enforce non-homogeneous Dirichlet condition, include the penalty method and the lifting
function method.

The penalty method is used in [32, 29, 44]. This approach consists to weakly impose
the boundary conditions, employing a penalty term in the reduced momentum equation.
However, this method depends on a penalty parameter whose value is set by a sensitivity
analysis. In general, a higher value of penalization factor leads to a stronger enforcement
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of the boundary conditions. This might ill-condition the reduced dynamical system. With
this method, the POD is done here directly on the non-homogeneous velocity snapshots,
unlike with the lifting function method.

In this Thesis, in order to enforce the boundary conditions at the reduced order level,
a lifting function method is used. This strategy is firstly introduced in [19, 22, 30, 66, 29].
Within this method, before applying the POD, the in-homogeneous boundary conditions
are removed from the original snapshots. Using such an approach, it is possible to produce
homogeneous basis functions. After, at ROM level, it is possible to deal with any Diriclet
boundary condition. Then, the reduced problem is solved and the lifting function is added
again to the solution. In the following subsection, we present this methodology for the
application in our problems.

3.4.1 Lifting Function Method
In this subsection, we discuss the enforcement of non-homogeneous Diriclet BC thanks
the Lifting Function Method for our state problem. Let Γ ⊂ ∂Ω be the non-homogeneous
Dirichlet boundary, the lifting, or control, function method involves the use of the so-
called lifting function. This function handles the non-homogeneous value vN = (vN ,0)
on the boundary Γ. This is followed by homogenizing the velocity snapshots, subtracting
from each snapshots a suitably scaled version of the lifting function.

We can write the velocity field composed by two term, the homogeneous part ṽ such
that ṽ|∂Ω = 0 and the in-homogeneous one, as follows:

v = ṽ + vNϕL,

where ϕL ∈ RNh
v is the lifting function, which has homogeneous Diriclet boundary condi-

tions in all parts of the Diriclet boundary, except for the x-component at Γ where it has
unitary value. We observe that, to retain the divergence free property of the snapshots,
the lifting function has also to be divergence free.

Each snapshot of the velocity snapshots matrix vi ∈ Sv is then modified as:

ṽi = vi − vNϕL ∀i = 1, . . . ,m. (3.68)

Thus, the new snapshots matrix for velocity is denoted by

Sṽ = { ṽ1, . . . , ṽm } ∈ RNh
v ×m,

that contains only snapshots with homogeneous boundary conditions. This snapshots
matrix will be used for computing the reduced order bases for the velocity POD spaces.

During the online stage, It is sought to approximate the reduced order velocity field
as follows:

v(x;µ) ≈ vr(x;µ) = vNϕL +
NvØ
i=1

ai(µ)ϕi(x). (3.69)

During the projection stage illustrated previously also the above modified approxima-
tion of the velocity has to be considered. The projection of KKT equations produces
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3.4 – Non-homogeneous Diriclet boundary conditions treatment

then some additional terms inside the coupled dynamical system. Since the lifting func-
tion is divergence free, it change only the reduced momentum equations for state and
adjoint problem and the optimality condition but there are not changes for the continuity
equations.

In particular, the reduced state momentum equation (3.50) becomes

ν
1
vN BBC + Ba

2
−
1
vN CBC + aTC

2
a − Hb = v2

N eBC ,

The additional lifting terms BBC ∈ RNv , CBC ∈ RNv×Nv ans e ∈ RNv , involved in this
equation, are given by

BBC
i = (ϕi,∆ϕL)X i = 1, . . . , Nv,

CBC
ij = (ϕi, (ϕj · ∇)ϕL)X + (ϕi, (ϕL · ∇)ϕj)X i, j = 1, . . . , Nv,

eBC
i = (ϕi, (ϕL · ∇)ϕL)X i = 1, . . . , Nv.

With regard to the adjoint equations, the new reduced approximation of velocity (3.69)
changes the adjoint momentum equations for inverse problem with only pressure data
(3.54) as follows:

νDc +
1
vN EBC + aTE

2
c − Kd = 0,

where the boundary matrix EBC ∈ RNw×Nw is computed by

EBC
ij = (ζi, (ϕL · ∇)ζj − ∇ϕL · ζj)X i, j = 1, . . . , Nw.

Instead, for the reduced adjoint problem with velocity data (3.53)-(3.55), the adjoint
momentum equation is modified as

νDc +
1
vN EBC + aTE

2
c − Kd − Fa = vN fBC − g,

where the additional vector fBC ∈ RNw is calculated as follows

fBC
i = (ζi, ϕL)X i = 1, . . . , Nw.

Finally, the reduced optimality condition (3.57) is modified as below

aTNc + vN nBC · c = 0,

where, the boundary vector nBC ∈ RNw is given by

nBC
i = (∇ϕL,∇ζi)X i = 1, . . . , Nw.

Remark 3.7 The way of choosing a suitable lifting function is problem dependent. For
example, in the case of the reduction of unsteady non-parametrized cases, where reduction
aims to reproduce time snapshots and potentially extrapolate in time, a possible choice of
the lifting function could be the average of the offline velocity snapshots (see i.e. [66]).
A more general approach, for the generation of appropriate lifting functions, is to solve
linear potential flow problems with a unitary boundary condition for each non-homogeneous
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boundary condition to be set (see i.e. [30]). These problems are steady ones, therefore,
an iterative procedure with a tentative velocity field is carried out till convergence. While
solving each of these potential flows, the value of the starting guess velocity field at the
Dirichlet boundary has to be zero everywhere except for one scalar entity, where the lifting
function is sought. The converged velocity field will be considered as the lifting function
corresponding to the non-homogeneous boundary condition at the aforementioned entity.
Besides the requirement of having unitary boundary condition, the lifting functions have
to be divergence free fields.

□

Now, we can summarize the Galerkin projection of KKT system onto the velocity
homogeneous SUP-POD spaces by writing the reduced order KKT systems for our test
case. In particular, to reconstruct the viscosity constant with only velocity data, we obtain
the following reduced KKT system

ν
!
vN BBC + Ba

"
−
!
vN CBC + aTC

"
a − Hb = v2

N eBC ,

Pa = 0,
aTNc + vN nBC · c = 0,
νDc +

!
vN EBC + aTE

"
c − Kd − Fa = vN fBC − g,

Qc = 0.

(3.70)

Instead, for the inverse problem with only pressure observed, we have the following
system 

ν
!
vN BBC + Ba

"
−
!
vN CBC + aTC

"
a − Hb = v2

N eBC ,

Pa = 0,
aTNc + vN nBC · c = 0,
νDc +

!
vN EBC + aTE

"
c − Kd = 0,

Qc − Lb = −m.

(3.71)

Otherwise, if we observe both the velocity and the pressure fields, the reduced KKT
system changes as follow:

ν
!
vN BBC + Ba

"
−
!
vN CBC + aTC

"
a − Hb = v2

N eBC ,

Pa = 0,
aTNc + vN nBC · c = 0,
νDc +

!
vN EBC + aTE

"
c − Kd − Fa = vN fBC − g,

Qc − Lb = −m.

(3.72)

There are many ways to solve the previous non-linear systems of equations (3.53)-
(3.54)-(3.55) with unknowns a, ν, b, c and d, in a coupled approach or in segregate
one.
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In the first method, we solve the non linear KKT system through one-shot approach,
which aims at solving the discretized systems arising from the optimality conditions in a
monolithic way, instead than pursuing a partitioned scheme, like in most common iterative
procedures. We directly solve the system for all the unknown variables, for example using
a Newton-Raphson procedure and its variants or other non linear solver for systems. For
more detail on this methods, we refer to [11, 46, 49].

Instead, with a segregate procedure, we decouple the KKT system and update the
control ν thanks a iterative method. For example, with gradient descendent methods, we
use the derivative of the cost functional J ′(ν) at each iteration, which depend on state
and adjoint variables, to update the control. We remark that, the optimality equation,
depending on the solution of state and adjoint equations, is satisfied only when the iter-
ative procedure reaches convergence. For more detail on this procedure, we refer to [53,
58, 14].

Once the system is solved, it is possible to reconstruct the state and adjoint velocity and
pressure fields using the values of the a, b, c and d vectors and the fields approximation
as presented in (3.69)-(3.4)-(3.6)-(3.8).

3.5 Reduced Order Non-linear Projected Conjugate
Gradient Method

In this Section, we discuss a reduced version of optimization solver used in full-order ap-
proximation. For the numerical solution of optimization problems under PDEs constraints
in decoupled way, two different paradigms can be adopted, both relying on iterative proce-
dures [47]: optimize-then-reduce or reduce-then-optimize. With the optimize-then-reduce
approach, we first apply the iterative method to the (continuous) system of optimality
conditions, then we discretize the various steps of the algorithm at reduced order level.
Instead, with the second approach, we first discretize our optimal control problem with
reduced order model, then we apply an iterative algorithm to solve the discrete version of
the system of optimality conditions. For our test case, we follow the first procedure.

As explained in Chapter 2, all high fidelity solutions are obtained by the employment
of a segregated procedure given by non-linear projected gradient conjugate method in
Algorithm 1. Summarizing, at full order level, we iterate state and adjoint system updating
the viscosity parameter, with conjugate gradient direction, until convergence is reached.
We rely on Galerkin projection for the construction of the reduced order model.

It is clear that the resulting reduced KKT systems (3.70)-(3.71)-(3.72) can be solved
by the use of, e.g., a Newton method or any other kind of non-linear iterative solver. With
this method, we solve the reduced KKT system in coupled way. But, we observe that the
reduced coupled KKT system have a saddle-point structure also at reduced order level,
which leads stability issues [52, 68].

For this reason, some efforts have been spent to develop the following algorithm that
emulates the steps of the Full-Order Non-linear Projected Conjugate Gradient Method in
order to avoid this saddle-point structure. Given an initial guess ν0, for step n > 0 we
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update the viscosity constant, as full order model, by

νn+1 = π[ε,+∞)(νn + τndn), (3.73)

where dn is the conjugate gradient descendent direction given by (2.2) and τn the step-
length, that optimize the functional cost in the descendent direction which depend on
solution of sensitivity problem. Moreover, the function π[ε,+∞) projects the new viscosity
value in the range [ε,+∞).

The derivative of cost functional with respect to the viscosity parameter (2.11), at
iteration n > 0, can be computed using reduced coefficient, as follow

J ′(ν) = a(ν)TNc(ν) + vN nBC · c(ν). (3.74)

We observe that, with this iterative procedure, the derivative J ′(ν) depends on the modal
coefficient of direct and adjoint velocity fields, a(ν) and c(ν), respectively. Thus, we must
solve the reduced direct and adjoint systems.

At first, we compute the state velocity and pressure coefficients, i.e. a(νn) and b(νn),
solving for ν = νn the reduced direct non-linear system in a coupled way. As already
introduced, this non-linear system is given by

F(x) = 0,

with vector of unknown y = [aL; a; b] ∈ RNv+Np+1 (aL is the known coefficient of lifting
function, i.e. aL = vN ) and the multivariate function F defined as follow

F(y) =

 1 0 0!
νBBC − aLeBC

" !
νB − aLCBC − aTC

"
−H

0 P 0

aL

a
b

−

vN

0
0

 . (3.75)

To solve this non-linear system, we use the Powell’s dogleg method, also called Powell’s
hybrid method, which attempts to minimize the sum of the squares of the function values.
It does this using a combination of Newton’s method and the steepest descent method.
This is a so-called trust region method. This means that every step moves the current point
to within a finite region. This makes the method more stable than Newton’s method. For
more details, we refer to [57].

After, we solve the reduced adjoint linear system to store the adjoint velocity coefficient
c(νn). For example, for inverse problem with only velocity data, we solve the adjoint
linear system with state velocity coefficient given by solving the previous direct problem
for ν = νn, i.e. a = a(νn). In this case, the adjoint linear system is written as follow

Ax = b

where, the unknown x = [c; d] ∈ RNw+Nq , the matrix A ∈ R(Nw+Nq)×(Nw+Nq) and the
right hand side b ∈ RNw+Nq is given by

A =
5!
νD + vN EBC + aTE

"
−k

Q 0

6
, b =

5
vN fBC + Fa − g

0

6
. (3.76)
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3.5 – Reduced Order Non-linear Projected Conjugate Gradient Method

To solve this linear system, we use a LU decomposition of matrix A with complete pivoting.
For more detail on this solver, we refer to [49].

Now, stored a(νn) and c(νn), we can compute the gradient J ′(νn) at iteration n > 0
with (3.74) to update the conjugate gradient descendent direction dn with formula (2.2).
After, we must compute the step-length τn which optimize the cost functional in this
direction dn. Firstly, we re-write the cost functional J(ν) with reduced coefficient in the
following way

J1(ν) = 1
2
1
a(ν)T

1
Ma(ν) + 2vN MBC − 2ad

2
+ ∥vnϕL − vd∥2

X

2
, (3.77)

(3.78)

J2(ν) = 1
2
1
b(ν)T

1
Rb(ν) − 2bd

2
+ ∥pd∥2

Y

2
, (3.79)

J3(ν) = J1(ν) + J2(ν), (3.80)

where the additional terms M ∈ RNv×Nv , MBC, ad ∈ RNv , R ∈ RNp×Np and bd ∈ RNp

are given by

Mij = (ϕi, ϕj)X i, j = 1, . . . , Nv,

MBC
i = (ϕi, ϕL)X i = 1, . . . , Nv,

ad
i = (ϕi,vd)X i = 1, . . . , Nv

Rij = (ψi, ψj)Y i, j = 1, . . . , Np,

bd
i = (ψi, pd)Y i = 1, . . . , Np.

For iteration n > 0, to compute the optimum step-length τn, we first write the cost
functional for ν = νn + τdn and optimize it with respect to τ . In particular, we analyse
the case with only velocity data observed. In this case, using the reduced coefficients, we
have

J1(νn + τdn) = 1
2
1
a(νn + τdn)T

1
Ma(νn + τdn) + 2vN MBC − 2ad

2
+ ∥vnϕL − vd∥2

X

2
.

(3.81)
To solve this sub-optimal problem, we must analyse how a perturbation on viscosity
constant ν → ν + δν cause a variation on state velocity coefficient a(ν) → a(ν + δν).

As already mentioned in Subsection 1.5.2, a perturbation on viscosity ν → ν + δν
generate a variation on velocity field, v → v + δv, and in the pressure field, p → p + δp.
At reduced order level, it means a perturbation on corresponding reduced coefficients,
[vN ; a] → [vN ; a] + [0; δa] and b → b + δb. Then, subtracting the reduced direct problem
for ν from the same problem with viscosity ν + δν and neglecting the second order terms,
we obtain the following reduced sensitivity problemI

νBδa −
!
vN CBC + aTC

"
δa − δaTCa − Hδb = 0,

Pδa = 0.
(3.82)

We observe that this problem is linear. Then, it can be solved thanks to LU decomposi-
tion with complete pivoting as adjoint problem. Indeed, we can write the reduced linear
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sensitivity system in the following matrix form5!
νB − vN CBC − aTC − (Ca)T" −H

P 0

6 5
δa
δb

6
=
5
0
0

6
. (3.83)

Then, we can observe that a(ν + δν) = a(ν) + δa(ν, a(ν), δν) and b(ν + δν) = b(ν) +
δb(ν, a(ν), δν). Moreover, δa and δb are linear respect to the control variation δν.

Now, we rewrite the cost functional (3.81), as follow

J1(νn + τdn) = 1
2
1

(a(νn) + τδa(νn))T
1
M (a(νn) + τδa(νn)) + 2vN MBC − 2ad

2
+

+∥vnϕL−vd∥2
X

2
= J1(νn)+τδa(νn)T

1
Ma(νn) + vN MBC − ad

2
+τ 2

2 δa(νn)TMδa(νn),
(3.84)

where δa(νn) is pre-computed by the reduced linear sensitivity system for ν = νn and
δν = dn. Then the optimal step-length τn

1 is given by

τn
1 = −

δa(νn)T
1
Ma(νn) + vN MBC − ad

2
δa(νn)TMδa(νn) . (3.85)

Instead, in the other cases with different observed data, we can obtain the following
formulas, with the same arguments,

τn
2 = −

δb(νn)T
1
Rb(νn) − bd

2
δb(νn)TRδb(νn) , (3.86)

τn
3 = −

δa(νn)T
1
Ma(νn) + vN MBC − ad

2
+ δb(νn)T

1
Rb(νn) − bd

2
δa(νn)TMδa(νn) + δb(νn)TRδb(νn) . (3.87)

We remark that, these formula is the same of FOM, but using the reduced coefficient
vectors.

In the particular case of only velocity field observed, we can summarize the Reduced
Non-linear Projected Conjugate Gradient Method in Algorithm 5, as in FOM.

With the other observed data, we have the same algorithm except for different adjont
equations and formula of the optimal step length.

3.6 Offline-Online Decomposition
Now, in this Section, we focus on some crucial assumptions one has to guarantee, in order
to rely on an efficient application of the ROMs. Indeed, one of the main goals of reduced
approaches is to achieve a rapid solution of the problem at hand. This aim can be reached
assuming that the ROMs can be divided in two stages:

• an offline stage, where the snapshots are manipulated and the basis functions are
built. Here, all the quantities that are parameter independent are pre-computed
and stored. This stage is performed only once; this stage is summarized with the
following Algorithm 6;
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Algorithm 5: Reduced Non-linear Projected Conjugate Gradient Method.
Input: Choose ν0 ≥ ε, nmax and Jtol, and set n = 0.

1 while n ≤ nmax do
2 Solve the reduced direct problem (3.75) with ν = νn to store a(νn);
3 Compute cost function J(νn) by (3.78);
4 if J(νn) < Jtol then
5 Stop;
6 end
7 Solve the reduced adjoint problem (3.76) with ν = νn and a = a(νn) to store

c(νn);
8 Compute the derivative J ′(νn) by (3.74);
9 if n > 0 then

10 Calculate the conjugate coefficient, βn, with the formula (2.3);
11 end
12 Compute the search direction, dn, by (2.2);
13 Solve the reduced sensitivity problem (3.83) with ν = νn, δν = dn and

a = a(νn) to store δa(νn, a(νn), dn);
14 Calculate the optimal step-size, τn, with the formula (3.85);
15 Update the viscosity field νn by (3.73);
16 n = n+ 1;
17 end
18 return νn.

• an online stage, where the parameter-dependent quantities are evaluated and the
optimality system is assembled and solved. This stage does not depend on the high
fidelity dimension and assures the solution of the system in a smaller amount of time
with respect to the standard finite volume approach. This phase is given by the
following Algorithm 7.

We remark that, the parameter in our test case is the wanted viscosity constant, i.e.
µ = νd.
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Algorithm 6: The offline procedure.
Input: An abstract truth model with segregate solver given by Algorithm 1 and

finite volume approximation; A minimum relative information content E ;
A discrete training set Pm = { µ1, . . . , µm } ⊂ P.

1 for i = 1, . . . ,m do
2 Compute (v(µi), p(µi), ν(µi),w(µi), q(µi)), as the full-order finite volume

solution with Non-linear Projected Conjugate Gradient optimization solver 1;
3 end
4 Set the snapshots matrices Sv, Sp, Sw and Sq given by the corresponding

full-order solutions;
5 Evaluate the lifting function ϕL;
6 Set the homogeneous snapshots matrix Sṽ for the state velocity from the

inhomogeneous one Sv thanks to the formula (3.68);
7 Compute the basis functions [ϕi]Nv

i=1, [ψi]Np

i=1, [ζi]Nw

i=1 and [ηi]Nq

i=1 thanks to POD
Algoritm 3 with relative information content E ;

8 Enlarge state and adjoint velocity POD spaces with exact supremizer enrichment
methods given by Algorithm 4;

9 Evaluate the reduced matrices and vectors of the KKT reduced system except for
the vector given by Galerkin projection of observed data onto the corresponding
POD space (i.e. g, ad for (3.70), m,bd for (3.71) and g,m, ad,bd for (3.72))
because these are parameter-dependent.

Output: A reduced basis model based on the POD basis space with supremizer
enrichment and lifting function treatment of non-homogeneous Diriclet
boundary condition.

Algorithm 7: The online procedure.
Input: A reduced order KKT system (i.e. (3.70),(3.71) or (3.72) depending on

the different observed data); The pre-computed parameter-independent
reduced matrices and vectors; The reduced approximation of state and
adjoint solution fields (vr, pr) and (wr, qr) by (3.69)-(3.4)-(3.6)-(3.8); A
parameter µ ∈ P.

1 Evaluate the parameter-dependent vectors which is different depending on
observed data( i.e. g(µ), ad(µ) for only velocity data, m(µ),bd(µ) for only
pressure data and g(µ),m(µ), ad(µ),bd(µ) for both);

2 Solve the corresponding reduced KKT system with Reduced Non-linear Projected
Conjugate Gradient Algorithm 5 to store the reduced solution
(a(µ),b(µ), ν(µ), c(µ),d(µ));

3 Use the reduced degree of freedom a(µ), b(µ), c(µ) and d(µ) to reconstruct the
reduced approximations of state and adjoint fields with (3.69)-(3.4)-(3.6)-(3.8).

Output: The reduced solution approximations (vr(µ), pr(µ), ν(µ),wr(µ), qr(µ)).
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Chapter 4

Numerical Experiments

This final chapter contains the results related to the numerical simulations obtained with
full-order and reduced-order approximations for our test case, as already introduced in
Subsection 1.5.2.

As already introduced in Subsection 1.5.1, the direct problem is a incompressible
steady-state flow problem in a two-dimensional square domain Ω. Let the square do-
main Ω = (0,1) × (0,1) as in Figure 1.1. Let ∂Ω be the boundary of the domain Ω. Then,
the different boundaries of the domain to be considered are:

• the top wall Γ := { x ∈ ∂Ω | x = (x,1) };

• the other boundaries ∂Ω \ Γ := { x ∈ ∂Ω | x = (0, y), or, x = (x,0), or, x = (1, y) };

We impose a known velocity vN = (1,0) in Dirichlet sense at the top wall Γ. Instead, in
the other walls ∂Ω \ Γ, we assume no-slip conditions. For simplicity, we suppose that the
viscosity is uniform in the domain, i.e. ν ∈ U = [ε,+∞) where ε > 0, and no body forces
are present, i.e. g = 0. As already mentioned, ε is a small positive constant in order to
avoid the turbulence effects in the direct problem. We set ε = 7.5 × 10−4.

Summarizing, we consider a slight modification of the state equations (1.10) and the
boundaries conditions (BCs) (1.11) that does not change its essential aspects. Then, the
mathematical formulation of the direct problem is given by the following Problem 4.1.

Problem 4.1 Find (v, p) such thatI
−ν∆v + (v · ∇)v + ∇p = 0, in Ω,
∇ · v = 0, in Ω,

(4.1)

with BCs I
v = vN , on Γ,
v = 0, on ∂Ω \ Γ.

(4.2)

The direct problem does not have an analytical solution. Then, we assume that the
direct problem is well solved and focus our attention on the solution of the inverse problem.
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The test case is the viscosity parameter identification from the observed data in a lid-driven
cavity flow. By the observations on the solutions of direct problem in all the domain Ω,
we test the different inverse problem solution methodologies discussed in Chapters 2 - 3.

We begin this chapter by presenting and discussing the results obtained by using the
full-order version of the inverse solver, as already introduced in Chapter 2.

In the second part of the present chapter, we test the POD-Galerkin method, as pre-
viously developed in Chapter 3, to improve computational cost and CPU time with a
reasonable accuracy respect to the full order case.

For each model we will describe the implementation aspects.

4.1 Full Order Approximations
In this section, we will show the numerical results for the application of full-order model
described in Chapter 2. Three settings are considered which differ on the basis of observed
fields:

1. only velocity data;

2. only pressure data;

3. both velocity and pressure data.

At first, we present the results obtained having as input data to the inverse problem only
velocity, only pressure or both. Then, we compare the results obtained with the three
different settings also varying the wanted viscosity.

4.1.1 Description of the full order implementation
At first, we discuss the numerical solver of direct problem 4.1. Due to its simplicity, the
domain Ω is discretized by uniform, structured, orthogonal, hexahedral meshes. In all
tests, we use the same number of edges for the two axes. In Table 4.1, we summarize
the properties of the mesh used in the space discretization of the domain Ω. While, the
Figure 4.1) shows us the computational domain obtained.

Table 4.1: Mesh properties with FV discretization.

Property Value
Type Uniform, structured, orthogonal

Cell shapes hexahedron
Dimension 75 × 75

Degree of freedom 5625

With respect to the FV scheme, since we have a structured orthogonal grid, no correc-
tion is needed when computing the gradient normal to the cells faces. Then, we use linear
method to interpolate the values from cell centers to face centers. The resulting scheme
is second order in accuracy. As already introduced in Section 2.2, from the finite volume
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4.1 – Full Order Approximations

Figure 4.1: Computational mesh.

discretization of direct problem, we obtain the discretized system (2.14). We find the FV
approximation of the velocity and the pressure fields by using the SIMPLE Algorithm 2.

To solve the inverse problem, we employ the Non-linear Projected Conjugate Gradient
Algorithm 1 developed in Section 2.1. Briefly summarizing, we find the viscosity constant
minimizing the functional cost J given by the norm of the error between the observed
data and the solution fields of the direct problem varying the viscosity. We investigate
the three settings of observed data, as previous introduced. This three set-up distinguish
on functional cost to be minimize J1, J2, J3, as previous defined in (1.16), (1.17) and
(1.18), respectively. With the CG method, we minimize the cost function J following an
iterative procedure, in which, we update the viscosity parameter thanks the conjugate
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gradient direction d depends in particular on derivative of cost function J ′, as previous
defined in (2.11). Then, to compute this direction d dependent on state and adjoint
velocity, we must numerically cascade solve the state 4.1 and the adjoint problem, which
is different depending on the chosen setting, i.e. Problem 1.8, Problem 1.9 and Problem
1.10, respectively. To minimize the cost function J in the conjugate gradient direction
d, we compute the step length τ , as analyzed in Section 2.1. The optimal step length
depends also on the sensitivity problem 1.11. We repeat this iterative procedure until the
cost function is minimized.

As previous analyzed, to use this method, we must solve the state, adjoint and sen-
sitivity problem. The solution of the state problem 4.1 is previous discussed. The finite
volume discretization of the adjoint and sensitivity problems are linear systems, as devel-
oped in Section 2.2. To solve the adjoint and sensitivity equations we employ a modified
versions of SIMPLE solver, as discussed in Section 2.3. The parameter set involved in
the SIMPLE solver for the state problem, are summarized in the Table 4.2, as previous
defined in Section 2.3. More precisely, the residual σ is evaluated by substituting the
current solution into the equation and taking the magnitude of the difference between the
left and right hand sides; it is also normalised in to make it independent of the scale of
problem being analysed. We adopt the same parameters in the modified SIMPLE solver
for the adjoint and the sensitivity problems.

Table 4.2: Parameters used in the SIMPLE algorithm.

Parameter Symbol Value
Velocity relaxation factors αv 0.7
Pressure relaxation factors αp 0.3

Residual controls σ 10−6

The linear solver used is the preconditioned conjugate gradient solver called Geometric-
Algebraic Multi-Grid (GAMG) [54]. It uses the principle of: generating a quick solution
on a mesh with a small number of cells; mapping this solution onto a finer mesh; using
it as an initial guess to obtain an accurate solution on the fine mesh. The Table 4.3
summarizes the parameters used for GAMG solver with Gauss-Seidel smoother.

Table 4.3: GAMG parameter.

Parameter Value
n° Cells In Coarsest Level 10

Speed of coarsening or refinement levels mesh 1
Residual control 10−10

Ratio of current to initial residual control (for velocity and pressure) 10−2, 10−4

All the computations are performed in ITHACA-FV 1 (In real Time Highly Advanced

1https://mathlab.sissa.it/ITHACA-FV
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Computational Applications for Finite Volumes) package based on OpenFOAM2 and de-
veloped at the mathLab3 group in SISSA. The open-source C++ library OpenFOAM is
used for the discretization and numerical simulation of PDEs based on a FV approach,
employed in the context of continuum mechanics and especially in computational fluid
dynamics. We refer the interested reader to [51] or [54] for all the details about this
library. While, ITHACA-FV is an open source C++ library containing several reduced
order modelling techniques in a finite volume framework. Most of the theoretical aspects
behind ITHACA-FV are deeply explained in [64, 66]. In particular, we made use of the
steady solver simpleFoam [54], which implements the SIMPLE algorithm for NS equations
simulation, and modified version are developed for adjoint and sensitivity resolution. The
optimization step with Non-linear projected conjugate gradient Algorithm 1 are developed
in C++ code4 with the help of ITHACA-FV library.

4.1.2 Comparison between different observed data
Now, we numerically analyze the performances of the inverse solvers introduced in Section
2.1, with different fields observed from initial guess ν0 = 10−3 in 25 iterations.

At first, we use the velocity data and find the viscosity constant νv. Then, we plug
the estimated viscosity field into direct problem and solve for v and p. The results are
shown in Figure 4.2. We observe that the predictions are very close to the reference, with
better velocity results then pressure one. This is due to the choice of the functional cost
J1 given by (1.16) depending on the velocity field desired.

In the second set up, we use only pressure data to find the viscosity constant νp. Then,
we obtain the results for v and p, as shown in Figure 4.3. We observe that, also in this
case, the predictions are very close to the reference. Obviously, in this set-up, we have
better pressure result than the previous case. Moreover, we observe a small improvement
for the velocity field. For these reasons, we expect better accuracy in the viscosity constant
νp found than in the previous one νv.

Finally, with both velocity-pressure data, we find the viscosity constant νvp. For this
framework, we obtain the difference between velocity-pressure predictions and reference
ones, as shown in Figure 4.4. We observe that, as in the previous cases, the predictions
are very accurate. Moreover, we note that the performances for this case, in term of the
velocity and pressure fields, are between the results with only velocity data and with only
pressure data. This suggests that we have accuracy on viscosity between the previous two
cases.

For a better comparison of these three approaches, we summarize the viscosity constant
found νv, νp and νvp and the relative error with respect the viscosity searched νd = 10−2

in Table 4.4. We can observe, that as we had predicted earlier, with pressure data we
have the best accuracy for viscosity. The worst results are given with only velocity data.

2https://www.openfoam.com/
3https://mathlab.sissa.it/
4https://github.com/cetrangelo96/ITHACA-FV/tree/angelo/tutorials/CFD/

CVinversecavityCG
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Reference Prediction Absolute error
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-1.676e+00
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p

0.00029

0.00058

0.00087

3.000e-09

1.160e-03

Figure 4.2: The reference (left column) velocity (x− component First row, y− component
Second row) and pressure (Third row), the predictions (central column) from the CG method,
and the corresponding error (right column). We note that the cost function only contains the
velocity data.

Table 4.4: Accuracy for νd = 10−2 with difference observed data.

Observed field Viscosity estimation Relative error | ν−νd

νd
|

velocity νv ≃ 1.0006 × 10−2 0.06%
pressure νp ≃ 1.00002 × 10−2 0.002%

velocity-pressure νvp ≃ 1.0003 × 10−2 0.03%

4.1.3 Increasing wanted viscosity
In this subsection, we want to analyze the effects of the viscosity increase have on the
results obtained by the CG method with different observed data.
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Reference Prediction Absolute error
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Figure 4.3: The reference (left column) velocity (x− component First row, y− component
Second row) and pressure (Third row), the predictions (central column) from the CG method,
and the corresponding error (right column). We note that the cost function only contains the
pressure data.

In Figure 4.5, we compare the results at full order level of inverse problem for ν0 = 10−3

and νd = 1. We can see the progress, with respect to iteration i = 1, . . . ,50, of the cost
functional J , the absolute value of the optimal condition |J ′|, the relative error on the
viscosity constant, the relative error field respect to desired data, with different observed
data. In particular, the relative error fields are given by:

εrel
v = |v − vd|

|vd|
, εrel

p = |p− pd|
|pd|

, εrel
ν = |ν − νd|

|νd|
,

for velocity, pressure and viscosity, respectively.
With this first test, we show the accuracy and the performances with different observed

data to find the direct solution for Re = 1, with good results. In particular, from the

75



Numerical Experiments

Reference Prediction Absolute error
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Figure 4.4: The reference (left column) velocity (x− component First row, y− component
Second row) and pressure (Third row), the predictions (central column) from the CG method,
and the corresponding error (right column). We note that the cost function contains both
velocity-pressure data.

behavior of the cost functions with pressure data J2, J3, as functions of the number of
iterations of the algorithm, have a sharp decay in the first 10 iterations. Then, the
convergence rate has a dramatic decrease reaching a plateau after 10 iterations. Instead,
with only velocity data, we observe a decay more smooth and slow than the other cases.
From the gradient plot, we see a rapidly decrease with only velocity data and, after 50
iterations, it stand around 10−10. Instead, with pressure data, we have also a fast decay
but, after 10 iterations, a oscillating behavior around 10−6. For these reasons, we expect
better viscosity accuracy for velocity data only. Instead, we have the opposite behavior.
In fact, the graph of relative error on the viscosity has a plateau around 10−3 for only
velocity data, instead with pressure data, this oscillate around 10−6. We think that, this
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Figure 4.5: Comparison the FOM results with respect to the iteration with only velocity
data (left column), with only pressure data (central column) and with both (right column), for
ν0 = 10−3 and νd = 1. First row: the cost function. Second row: the absolute value of the
gradient. Third row: the relative error on ν. Fourth row: the L2− and L∞− norms of relative
error on given data.

is due a better sensibility of the pressure field, with respect to the viscosity constant,
than the velocity field. Analyzing the L2− and the L∞− norms of the relative error on
observed data, we note a smooth decay for the first set-up. In the second case, we have
an oscillating behaviour for the pressure field, and this features is also with both observed
data. Moreover, in the last case, we can see a sharper decay for the velocity field than the
first case, with a plateau achieved before 10 iterations. Thus, it is faster than first set-up
(25 iterations). This suggests to us that with pressure data, we optimize the velocity data
better than without the pressure observations. This is due, not only to the link between
pressure and velocity solutions in NS equations but also to the best sensibility of pressure
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data to viscosity, in this case.
In Figure 4.6, we compare the results of the FOM with different observed data starting

from the same initial guess ν0 = 10−3. We increase the viscosity searched νd = 10. In
this figure, we will show the small convergence rate with only velocity data does not
comparable with the other choices of the observed fields. We remark that, the Reynolds
number searched is decreased with respect to the previous one, i.e. Re = 0.1. We test this
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Figure 4.6: Comparison the FOM of test case with only velocity data (left column), with
only pressure data (central column) and with both (right column), for ν0 = 10−3 and νd = 10.
First row: the cost function. Second row: the absolute value of the gradient. Third row: the
relative error on ν. Fourth row: the L2− and L∞− norms of relative error on given data.

to see the performance and the accuracy to estimate the viscosity constant corresponding
to Reynolds number Re = 0.1 employing the inverse problem solvers. We note with
pressure data the same behaviour of previous case with smaller viscosity than now, in
term of the cost functional, the absolute of his gradient, the accuracy on viscosity and
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observed fields in 50 iterations. Moreover, the L2− and L∞− norms of relative error
on velocity behave the same. Instead, with only velocity data, the functional J1 has a
very slow decay, instead, the gradient has a initial sharp decay in 100 iterations after
we decrease slowly. The relative error on the control ν also around 1000 iteration drops
below the threshold of 1%. By the computational point of view, this set-up becomes really
uncompetitive achieving the accurate results in a large amount of CPU time (in this test
the solver employs takes approximately 86400s in terms of CPU time for 1000 iterations).
For this reason, this is not a good solver at low Reynolds numbers.

Finally, we test only the solvers with pressure data for a higher viscosity than previous
one. In Figure 4.7, we compare the results with full order solver of inverse problem for
ν0 = 10−3 and νd = 100. We test the performances and the accuracy for high viscosity
wanted with pressure data. All the plots showed have the same behaviour of previous
tests. We can see that, also a low Reynolds number Re = 0.001, the pressure field is
sensitive to the changes in the viscosity. Therefore, the CG methods with pressure data
are a good solvers at higher viscosity.

4.1.4 Final remarks

Now, we can give the conclusion notes on the different full order inverse solvers also
increasing the viscosity νd ∈ { 0.01, 1, 10, 100 }.

Summarizing the accuracy and performance features of different inverse solvers, we
have the best results to find viscosity with pressure data than only velocity data. The
reason of these differences is the greater sensibility of the pressure field with respect to
the viscosity variations than the velocity one.

Increasing the wanted viscosity, this gap grows until the solver with velocity data
becomes useless for low Reynolds numbers. Instead, the CG methods with pressure data
remain a very good solvers at low Reynolds numbers. The performances and the accuracy
for νd = 100 are the same of these for νd = 0.001. This show us that, the sensitivity of
pressure field to viscosity is the same for different range of flows investigated.

To draw the final conclusions on the performances of the tested inverse solvers, we note
their computational cost. This is of particular interest in our research because we want
to achieve real-time estimations. The full order solvers developed with the CG methods
take a long CPU time. In particular, the estimations of viscosity νd = 1 from initial guess
ν0 = 10−3 given in 25 iterations (see Figure 4.5) are obtained in more or less 1200s for
each type of observed data. Notice that, all the computations were performed in serial on
a Intel™Core®i7-4510U CPU processor. For this reason, the employment of these solvers
of inverse problem in a parametric framework, are unsustainable in term of computational
cost. This requires to reduce the computational cost. The results with ROM for a real-
time estimation of viscosity constant in lid-driven square cavity flow are showed in the
following section.
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4.2 Reduced Order Approximations
In this section, we will apply the reduced order methodologies, developed in previous
Chapter 3, for inverse problem in CFD. We test our methodologies on the study case
solved at full order level in the previous Section 4.1. We show the results for case study
with only velocity data at reduced order level. Because the test case is a parameter
identification problem, we choose as parameter for reduced order modelling the viscosity
coefficient which want to find, i.e. µ = νd.

At beginning, we test the sensitivity of reduced solver in different reduced spaces.
Moreover, we compare it with the full-order solver in term of accuracy and performances.

4.2.1 Description of the reduced order implementation
In our case we decided to apply snapshots-based reduced basis method to a real-time
estimation of physical parameter νd, as already discussed in Chapter 3.

Based on an offline/online paradigm, the ROM is employed for inverse problem simu-
lations to reduce the computational cost. The offline and online phase for our test case is
given by the Algorithms 6 and 7, respectively.

For the offline stage, we employ the full order solver to evaluate the full order fields,
as previously developed in Chapter 2. The description of this full order solver for our test
case is widely discussed in Section 4.1.

We only recall the parameters of full order solver. In particular, the computational
mesh employed is shown in Figure 4.1 and his properties are summarized in Table 4.1. The
coefficient for the SIMPLE algorithm and the GAMG solver of the equations, involved in
the CG method 1, are listed in Tables 4.2 and 4.3, respectively.

In the offline phase, m = 50 snapshots are computed, choosing m equispaced value
for the parameter µ in the range [10−3,10−2] (corresponding to Reynolds number range
[100,1000]). Then, we store the solution fields and the viscosity constant at the end of the
full order solver with only velocity data, as previously set up.

To construct the reduced modal basis functions for the state and the adjoint pressure-
velocity fields we employ the POD Algorithm 3 on full-order snapshots matrices, as ex-
ploited in Section 3.1. This step is performed through several reduced order modelling
techniques implemented in ITHACA-FV library with Algorithm 3.

For the optimization step, in the online phase, we employ a reduced version of CG
method used at full-order level, as developed in Section 3.5. This iterative procedure
is implemented in C++ code5 with the help of ITHACA-FV library. This online solver,
summarized in the Algorithm 5, involves the state problem 4.1, the adjoint one 1.8 and the
sensitivity one 1.11. Then, we must construct the reduced state, adjoint and sensitivity
systems in the offline phase.

The reduced order dynamical system is computed, as developed in Section 3.2, with
Galerkin projection of state, adjoint and sensitivity equations onto the POD spaces. In

5https://github.com/cetrangelo96/ITHACA-FV/tree/angelo/tutorials/CFD/
ReducedCVinversecavityCG
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particular, because stability issue deriving by coupled solver of reduced system with
saddle-point structure, we employ the exact supremizer enrichment method 4. This
method is employed to full-fill inf-sup conditions, not only for state modal basis space
but also for adjoint one, as previous discussed in Section 3.3. Instead, for inhomogeneous
Diriclet BC treatment, we use lifting function method, as recalled in Section 3.4. After
this projection step, with the particular considerations on the stability and the BC treat-
ment, we obtain the reduced order direct, adjoint and reduced systems given by (3.75),
(3.76) and (3.83), respectively.

In the online phase, the reduced systems solutions, involved in the Reduced Non-Linear
Projected Conjugate Gradient Algorithm 5, are performed with the external library Eigen
[21], which source code is provided together with ITHACA-FV. In particular, as previously
mentioned in Section 3.5, we employ Powell’s dogleg method6 for state non-linear system
resolution and LU decomposition methods with complete pivoting7 to solve adjoint and
sensitivity linear system. These methods are pre-built in Eigen library.

4.2.2 Results
In this Section we propose some first numerical results on POD-Galerkin applied to the
parametric test case. We will focus on the identification of the viscosity parameter from
the observations of velocity field in lid-driven cavity flow setting.

Figure 4.8a shows the decay of the normalized eigenvalues for each fields. The eigen-
values are normalized by dividing them by the sum of all values, as follow

Λv = λv
iqm

k=1 λ
v
k

, Λp = λp
iqm

k=1 λ
p
k

, Λw = λw
iqm

k=1 λ
w
k

, Λq = λq
iqm

k=1 λ
q
k

,

where m is the total number of eigenvalues. We can see the eigenvalues in a decreasing
order on a logarithmic scale for m modes. Figure 4.8b shows the cumulative energy
of the eigenvalues for the state velocity v, the state pressure p, the adjoint velocity w
and the adjoint pressure q. The i−th cumulative eigenvalue corresponds to the relative
information content of POD-basis computed as in (3.33). In particular, we obtain the
following cumulative eigenvalues formulas:

Ev(i) =
iØ

k=1
Λv

k, Ep(i) =
iØ

k=1
Λp

k, Ew(i) =
iØ

k=1
Λw

k , Eq(i) =
iØ

k=1
Λq

k.

It can be seen that, for i = 10 ≪ m POD modes, the energy captured by the arranged
eigenvalues for the the state fields is decreased to approximately 10−9, for the adjoint fields
to approximately 10−4. In order to retain the 99% of the system energy Nv = Np = 9
for state fields v, p and Nw = Nq = 1 for adjoint fields w, q are selected. We choose this
number of adjoint modes because the estimation is not particularly affected by this.

6https://eigen.tuxfamily.org/dox/unsupported/classEigen_1_1HybridNonLinearSolver.
html

7https://eigen.tuxfamily.org/dox/classEigen_1_1FullPivLU.html
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The reduced order spaces are generated from the corresponding eigenvectors. The
supremizer modes corresponding to the pressure modes are added to the basis velocity
POD-space. The state and the adjoint reduced spaces are enriched by N s

v = 9 and
N s

w = 1 modes, respectively. Thus, the dimension of reduced state problem is NS =
Nv +Np +N s

v + 1 = 28, where an additional basis is for the lifting for non-homogeneous
Dirichlet conditions. While, the adjoint problem has dimension NA = Nw +Nq +N s

w = 3.
As previously analyzed in Section 3.5, the sensitivity variables are in the state POD-spaces
without the lifting function ϕL, i.e. it has dimension Ns = 27.

Figure 4.9 show the performances of the Reduced Non-Linear Projected Conjugate
Gradient (RNLPCG) Algorithm 5 for the estimation of viscosity parameter µ = 1.55×10−2

from initial guess ν0 = 10−3.
In Figure 4.9a, we can see the rapidly decay of cost function J1, computed with the

modal coefficients in (3.78), in 7 iteration, with a plateau in more or less 4 × 10−4. At
iteration 18, the CG method stop because the variation on control give zero variation on
cost function. The online phase is performed in 3.32152 s CPU time.

In Figure 4.9b, we see the behaviour of the absolute value of the gradient, computed
with the modal coefficients in (3.74), with the same trend of the cost function.

In Figure 4.9c, we show the progress of the relative error on the viscosity with a plateau
around 5.8%.

Instead, in Figure 4.9d we can see the L2− and L∞− norms of the relative error between
the observed velocity and the reduced one computed for each iteration. Summarizing, from
Figure 4.9, we conclude that the RNLPCG method is a excellent reduced solver for this
set-up for a real-time (3.32152 s CPU time) estimation of the viscosity parameter with
relative error on viscosity of 5.8%.

To have qualitatively insight on the results, we compare the full order solutions for the
state velocity, vf = ((vf )x, (vf )y), and the state pressure, pf , variables with the reduced
ones, vr = ((vr)x, (vr)y) and pr, respectively, for the parameter µ = 1.55 × 10−2. The
reduced approach gives promising results, as can be noticed in Figure 4.10. Indeed, the
POD-Galerkin projection is able to recover the high-fidelity fields. From the absolute
error plots, we can see at most of order 10−2 for each fields.

To compare FOM and ROM results for parameter µ = 1.55 × 10−2, we summarize
the absolute and the relative error on the state and the control variables between this
two solver in Table 4.5. We observe that, for the velocity and the pressure fields, we
report L2− norm of error. We remark that, the high-fidelity solution with 5625 cells is
computed in 2100 s CPU time, while, the reduced online solver perform in 3.32152 s with
N = NS + NA + 1 = 32 degree of freedom (dof) for state, adjoint and control variables.
From this Table, we can see the good features in terms of the accuracy of reduced solutions

Table 4.5: FOM vs ROM, Error (L2− norm of error for fields) for µ = 1.55 × 10−2.

Field Absolute error Relative error
velocity 0.002 0.03
pressure 0.001 1.7
viscosity 0.0009 5%
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respect to FOM ones, take advantages from a really small CPU time employed.
The accuracy of the online solver is visible in the plots in Figure 4.11. This figure shows

the absolute and the relative log-error referred to different number of the state pressure
and the velocity modes n ∈ { 1, . . . , 9 } and for adjoint ones fixed to Nw = Nq = 1. We
test the online solver over a training set Ξ of uniformly distributed parameters in the
range P = [0.001, 0.02]. The absolute error calculated for each solution variable using the
following norms

Eabs
v = ∥vf − vr∥X , Eabs

p = ∥pf − pr∥Y , Eabs
ν = |νf − νr|

Eabs
w = ∥wf − wr∥X , Eabs

q = ∥qf − qr∥Y ,

while, the relative error are computed by

Erel
v =

..... |vf − vr|
|vf |

.....
X

, Erel
p =

.....pf − pr

pf

.....
Y

, Erel
ν = |νf − νr|

|νf |

Erel
w =

..... |wf − wr|
|wf |

.....
X

, Erel
q =

.....qf − qr

qf

.....
Y

.

These errors are averaged over |Ξ| = 20 uniformly distributed parameters. We notice that
the POD-Galerkin approach is very effective for all the involved quantities reaching, after
n = 9 modes for state fields, absolute error values around 2 × 10−3 for the state variables,
around 6×10−3 for the adjoint variables and around 6×10−4 for the viscosity estimation.
As expected, from average relative error, we can see that the approximations of state fields
and control variable become more accurate as the number of modes generating the POD
space increases. In particular, using Nv = Np = 9 basis function for state velocity and
pressure field, the estimation of viscosity at reduced order level becomes 5.8% accurate
with respect to full-order approximation.

Furthermore, we calculate the difference between FOM and ROM approximations of
objective functional J as below:

EJ = |J(vf ,vd(µ)) − J(vr,vd(µ))|,

and report its average on 20 value of parameter in Figure 4.12b. For 9 POD modes, as
expected, the objective functional approximated by both full order and reduced order
methods differ by 5 × 10−6. In Table 4.12a we summarize the computational parameter
to compare FOM and ROM solver for the last test.

4.2.3 Final remarks
Now, we give the conclusion notes on the reconstruction of the reduced order framework
based upon the POD–Galerkin for the parametrized version of test case.

From the numerical results, it is shown reduction in the dimensions of the spaces from
O(104) to O(101) and reduction in the computational time from O(105) to O(1) seconds.

We remark that, the numerical results show the offline phase to be computationally
expensive. However, it is explainable since the computational cost of this phase depends
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upon the dimension of the sampled set m and the cost of truth solutions linked to mesh
size (in this case dof = 5625).

We reiterate the offline phase, although being costly, needs to carried out only once.
Instead, thanks to the reduced order spaces, for tuning different parameters we only
need to repeat the online phase with the computational cost lower than the high fidelity
methods. For this reason, the online solver developed in Chapter 4, it is a very useful tool
for a computational real-time simulations of the parametric test case.

In terms of accuracy, the identification parameter problem, tested with reduced order
model, gives good results with the relative error on estimation of 6%. Then, we have
analyze a reduced order solver with not only better results in the amount of CPU time
but also the good accuracy with respect to the high-fidelity solutions.
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Figure 4.7: Comparison the FOM of test case with only pressure data (left column) and with
pressure-velocity (right column), for ν0 = 10−3 and νd = 100. First row: the cost function.
Second row: the absolute value of the gradient. Third row: the relative error on ν. Fourth row:
the L2− and L∞− norms of relative error on given data.
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Figure 4.8: Energy of the eigenvalues reduction for the case study.
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Figure 4.9: Performances and accuracy of the reduced CG method for the parameter µ =
1.55 × 10−2, from the initial guess ν0 = 10−3.
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High-fidelity solution Reduced solution Absolute error
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Figure 4.10: Comparison between the Full-order solutions (left column) and the Reduced
ones (central column), with the corresponding absolute error (right column). First row: the x−
component of velocity. Second row: the y− component of velocity; Third row: the pressure.
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Figure 4.11: Averaged absolute (left column) and relative (right column) log-error for the state
(First row), adjoint (Second row) and control (Third row) variables.
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Mesh size (dof) 5625
Range of parameter P [0.001, 0.02]
Snapshots number m 50

Offline phase 65362 seconds
Training set dimension |Ξ| 20

FOM results 2314 seconds
Dimension of reduced space N 32

Online phase 3.5214 seconds
(a) Computational performance of ROM procedure
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Figure 4.12: Comparison FOM vs ROM cost function and computational performances.
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Concluding remarks
In this Thesis, we wanted to investigate the numerical solution of a particular inverse
problem in CFD with low computational cost. Our case of study is on a cavity flow where
the viscosity has to be deduced from velocity and pressure data. We have constructed a
projection-based reduced order framework for parametrized optimal flow control problems
and we have tested its applicability on this case.

First of all, in Chapter 1, we have investigated the mathematical principles of PDEs
constrained optimal control problems to deduce the optimization system given by state,
adjoint and optimality equations. After that, we implemented a full-order solver by relying
on an optimize-then-discretize approach, as shown in Chapter 2. For this scope, we
employed an iterative procedure to also regularize the inverse problem. In particular, we
exploited a CG method to optimize a cost function given by the norm of error between
observations and data while varying the viscosity. To compute the conjugate gradient
descendent direction, a numerical resolution is needed not only for the direct problem,
given by the Navier-Stokes equations, but also for the adjoint problem. At the same time,
for what concerns the step length calculation, a sensitivity problem solution has to be
carried out. To solve the equations involved in CG method, we recalled the finite volume
discretization, then, we employed SIMPLE solver.

Being the CG method an iterative procedure, these problems have to be resolved at
each iteration. Then, we observed a high computational cost. Taking into consideration
the numerical results showed in Section 4.1, it can be noticed that the results appear to
be reliable enough for our scopes but the necessary CPU time is very high. Then, this
full-order solver is not suited for parametric frameworks.

To mitigate the computational effort, we have tried to mimic the reduced methods
developed for optimal control problems in a finite elements framework (see [52, 6]) by
modifying them to perform at their best for finite volume approximations. To achieve
this goal, a data compression strategy has been employed: a POD-Galerkin method, for
both the direct and the adjoint problem, has been exploited to obtain reduced systems.
The optimization at reduced-order level has been performed through a reduced version of
the CG full-order solver. With this online procedure, we were able to estimate parameter
in state problem from observed data with low computational cost. By taking advantage
of this architecture, a considerable reduction for what regards the required CPU time has
been achieved, while, also obtaining good results in terms of accuracy.
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Reduced basis methods can be very versatile in this context, where many parameters
can be involved. In this particular field of application, simulations can be computationally
demanding and costly: RB techniques could be a good and viable way to enhance the
computational performances.

Future perspective

In this Thesis, we introduced the ill-posed inverse problems and regularization theories
which should be more deeply analyzed.

A possible development of this work is observing the fields of direct problem only
in some points. This allows us to analyze the sensitivity of estimation to the number
and position of these observation points. Considering noise in the measurements, we can
analyze the uncertainty quantification on the viscosity estimation, using better regular-
ization methods. These two experiments are already exploited for heat flux estimation,
for example in [50].

In this work, at reduced order level, we employed a optimize-then-reduce approach.
Thus, we can exploit the reduce-then-optimize approach and compare with the other pro-
cedure. This solution strategies allows us to firstly discretize the optimal control problem
with reduced approximations and then apply a optimization procedure, as employed in
heamodynamics applications [47].

The test case of spatial varying viscosity field identification has been studied from a
theoretical point of view. This problem is very ill-posed, what makes is impossible to be
treated by the use of a Conjugate Gradient method, as it has been done for the uniform
case. Different methods should be investigated for the resolution of this problem. A
strategy based on combining deep neural networks and numerical PDE schemes is used
to solve this problem in [12].

In this work, at the reduced order level, we employed a coupled solver for the di-
rect, adjoint and sensitivity reduced systems focusing on a gradient method. Anyway,
a segregate solver would allow us to avoid the saddle point structure characterizing this
reduced problem, without the necessity to rely on stabilization techniques. This approach
is already used in [65] to solve geometrically parametrized incompressible Navier-Stokes
problem.

We have performed a Galerkin-projection of KKT system in reduced spaces. We can
solve the reduced KKT system in a coupled way, typically used for Finite Element meth-
ods, i.e. see [52, 6, 68]. Then, a comparison between the reduced version of the conjugate
gradient and some other reduced coupled solvers could be very interesting.

The natural continuation of this work could be the extension of the developed methods
to more general frameworks for other types of inverse problems, not only for parameter
identification ones, but also, e.g., for parametrized boundary controls or parametrized
source fields in fluid dynamics with finite volume approximation.

For our test case, only a physical parametrization has been taken into consideration,
but another possibility is to test the developed architectures on geometrical parametriza-
tion problems, with applications, for example, in the shape optimization field [10].
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Conclusion and perspectives

Another possible step forward for the results obtained in this thesis, is to extend what
has been done for steady-state flows to time dependent inverse problems.

One more possible future research topic, concerning the arguments analyzed in these
chapters, is related to the effects of non-linearity due to an increasing Reynolds number,
which leads to the presence of turbulence approximations in the state equations. In addi-
tion, for a fluid dynamics framework, we can take into account the effects of compressibility
or even the fluid-structure interactions phenomena.

Finally, it would be useful to extend the numerical studies developed for finite element
optimal flow control applications to a finite volume configuration, to better satisfy the
increasing demand for handy tools from the industrial world.
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