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Abstract

Data-analytics has received a great deal of attention in recent years because it supports in
improving operations and saving time especially in the oil and gas industry. For the time being,
laboratory experiments and numerical reservoir simulators are used to model and discern the
behavior of CO> sequestration. Nonetheless, these methods have high computational cost.
Besides, studies have been done on the use of data-driven statistical techniques, these studies
mainly focused on production optimization in unconventional reservoirs. In this study, a data-
analytics based investigation was carried out to develop insights and analyze the primary
variables that affect CO, sequestration process in unconventional reservoirs. The dataset to be
utilized consists of a large number of numerical-simulation scenarios that were conducted as
part of another study (Kulga, 2014). Basically, two techniques were used: an exploratory data
analysis and predictive modeling. Exploratory data analysis revealed a relationship between
reservoir, operational parameters, and the cumulative CO; injected. A considerable number of
operational parameters displayed a monotonic relationship with the cumulative CO; injected.
Stimulated reservoir volume fracture permeability was the variable which displayed the best
correlation. In addition, statistical and machine-learning based predictive models were
developed to predict the volume of CO; sequestered. Comparison of these predictive models
indicated that random forest was the preferred method due to having the lowest prediction error.
Lastly, variable importance was implemented to determine the most influential parameters of
the CO; sequestration process in unconventional shale-gas reservoirs. Interestingly, the most
influential parameters are the ones affecting the stimulated reservoir volume. According to our
results, operational parameters are more dominant than reservoir parameters in driving high-
performance and stimulated reservoir volume fracture permeability is the most important
parameter in order to get high-performance. Our findings will aid in designing these

sequestration projects sustainably.

Keywords: CO» sequestration, Unconventional reservoirs, Data-analytics, Exploratory data

analysis, Predictive modeling
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Chapter 1 Introduction

1.1 Overview

The global population in the next few decades is predicted to rise by about 1.5 billion people
and reach about 9.2 billion people by 2040 (United Nations Population Division, 2019).
Besides, the gross domestic product (GDP) is proposed to further increase within the same time
frame. This expected rise in global welfare will lift billions of individuals out of poverty and
into the middle class. Many forecasts anticipate a 25% to 30% increment in global energy
demand by 2040 to achieve this tremendous growth in prosperity (BP Energy Outlook, 2019).
Along with providing reasonable, reliable energy to aid growing economies and individuals,
the world must likewise focus on climate change risks and rising greenhouse gas (GHQG)

emissions (Armstrong et al., 2019).

Due to its radiation absorption capacity in the atmosphere, Carbon-Dioxide (CO;) has been
recognized as the most critical GHG that is targeted for emission-reduction activities. To
reduce its impact on the climate, its sequestration and storage have been considered as a
challenging engineering problem and named as one of the Grand Engineering Challenges of
the 21st Century by the U.S. National Academy of Engineering (NAE Grand Challenges For
Engineering ™, 2017). Sequestration into geological formations has been offered as a viable
part of the solution over the years. More recently with the exploration and exploitation of
unconventional resources, these resources have been identified as ideal candidates for this
process due to their deep nature, large areal extent and volume, existing infrastructure for
injection (horizontal wells and hydraulic fractures) and potentially induced fracture network
due to hydraulic fracturing. While considered as a potential solution, the uncertainties related
to its long-term operational, financial and sustainability aspects are still being investigated
through modeling studies. That is why this research addresses these uncertainties and problems
by developing insights regarding the operational aspects of CO» sequestration in

unconventional namely shale reservoirs through a data-analytics based investigation.

1.2 Background of study

In recent years, the terms “big data” and “data analytics” have turned into somewhat of a
buzzword, owing to several alleged uses in fields such as health and life sciences, consumer
marketing and national security. As a result, many people believe that big data analytics has

the potential to revolutionize oil and gas operations (Holdaway, 2014). The oil and gas sector



is looking at the possibility of mining enormous amounts of data on the subsurface, physical
infrastructure, and flows to get new insights into the reservoir and improve operational

efficiency (Mishra & Datta-Gupta, 2018).

The term “big data” is used to describe enormous, multivariate datasets that are described by
the 3 V’s: volume, variety, and velocity (Figure 1.1) (Mishra & Datta-Gupta, 2018). The term
volume refers to the amount of data, that we are dealing with approximately 10> — 10*
independent variables and roughly 10° — 10° observations (Mishra & Datta-Gupta, 2018). Data
is now available in a variety of formats. Structured alphanumeric data is stored in traditional
databases. As the digital oilfield grows its impact in the business, unstructured text documents
as daily drilling reports, video, audio, e-mail, and financial transactions multiply. Governing
and managing many types of these data is a demanding task the majority of Exploration &
Production (E&P) companies still cope with as upstream siloed data explodes with developing

digital oilfield and intelligent wells initiatives (Holdaway, 2014).

Velocity refers to the increasing prevalence of real-time streaming data from surface gauges or
downhole sensors, which increases the quantity of the dataset and causes extra considerations
such as re-sampling, data archival, and redundancy analysis (Mishra & Datta-Gupta, 2018).
While the term “data analytics” as shown in Figure 1.1 relates to analyzing data, recognizing
what the data implies and obtaining insight from the data, and developing predictions that lead
to better judgments based on these data-driven insights (Hastie et al., 2008) as cited in (Mishra
& Datta-Gupta, 2018).

Big data Data analytics
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Understand
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/

Figure 1.1 Big data and data analytics (Mishra & Datta-Gupta, 2018)



Recently the global COVID-19 pandemic has had a notable impact in the oil and gas industry.
The immediate requirement for efficient and safe operations and cost cutting, as well as the
long-term focus on energy transition with emerging technologies into a digital ecosystem, are
inevitably linked. While many organizations began their digital transformations earlier, the
interruption of 2020 has elevated digital transformation from a priority to a must. Our industry
has a big chance to reinvent itself in the digital domain by focusing on integrated business
transformation and discovering more dynamic working method (Feder et al., 2021) eventually

the key to this transformation will be data analytics.

1.3 Structure of the thesis

Chapter 1: in this chapter the overall context of the research has been introduced including

the background of the study, which will serve as an introduction to the thesis.

Chapter 2: in this chapter the literature will be examined in order to identify crucial findings
regarding the application of data-analytics and building predictive models within the context

of unconventional shale reservoirs and oil & gas industry in general.

Chapter 3: in this chapter the problem statement will be addressed in a clear and precise way
along with the research aims, objectives and questions that will need answering by the end of

the study.

Chapter 4: in this chapter the methodology will be reviewed by assessing how the research
was conducted using the two main techniques which are exploratory data analysis and

predictive modeling using statistical & machine learning.

Chapter 5: in this chapter, the results and discussion will be presented by reporting the main

findings concisely and objectively evaluating these findings logically.

Chapter 6: the final chapter will involve the significant conclusions regarding the application
of data-analytics in CO; sequestration process as explained in the previous chapters and

recommendations for future studies will also be mentioned.



Chapter 2 Literature Review

The current development in automation in industrial processes as part of the 4th Industrial
Revolution (4IR) is a key ongoing argument. Data analytics is the pivotal component of 4IR
(Narayanan et al., 2020). To build a familiar literature, it is a good idea to start with basic

definitions.

e Data analytics (DA) is the study and modeling of hidden patterns and correlations in
complex, multidimensional data sets employing extensive data collection and analysis
(Mishra et al., 2021).

e Machine learning (ML) is the process by which a model is constructed between
predictors and response by employing an algorithm (commonly referred to as a black
box) to deduce the underlying input/output relation from data (Mishra et al., 2021).

o Artificial intelligence (AI) is the process of using a predictive model to make
judgments with no human interaction (and with the possibility of evaluation for model

updating) (Mishra et al., 2021).

One of the most significant applications of DA in CO: sequestration processes for
unconventional reservoirs is to optimize the performance of CO; sequestration by developing
data-driven insights and this reduces the computational cost, since reservoir modeling and
simulation in these reservoirs can be costly and infeasible. As a result, the goal of this literature
review is to analyze why numerical modeling in these reservoirs can be impractical to an extent
and the application of data analytics/mining for characterizing the controlling factors of the

CO; sequestration process in shale-gas reservoir.

Firstly, reservoir modeling and simulation will be discussed followed by exploratory data
analysis, then predictive input and output modeling will be investigated, and finally model

evaluation and variable importance will be assessed.

2.1 Reservoir modeling and simulation

Reservoir simulation is a technology that integrates different principles such as physics,
mathematics, reservoir engineering and computer programming to estimate reservoir
performance under a variety of operating situations (Ertekin et al., 2001). Furthermore, in the
reservoir simulation technique, a system of algebraic mathematical equations constructed from
a set of PDE's (Partial Differential Equations) with proper initial and boundary conditions

approximates reservoir behavior (Ertekin et al., 2001). These mathematical equations include



the most significant physical processes occurring in the reservoir system, such as fluid flow
divided into three phases (oil, water, and gas), as well as mass transfer between different
phases. Also, using an extended version of Darcy's law, the effects of viscous, capillary and
gravity forces on fluid flow are taken into account (Ertekin et al., 2001). Likewise, if we
consider CO» sequestration, we have to consider a model that takes into consideration the

chemical composition together with the different behavior of pressure and temperature.
Application of reservoir simulation in CO2 sequestration studies

The major tools used to execute the primary studies related to uncertainty analysis of CO>
sequestration are reservoir simulation models. They allow for the prediction of the injection
and storage process performance under various geological conditions and injection scenarios
(Mohaghegh, 2018). These commercial reservoir simulators are also efficient in capturing the
fluid flow behavior and manage natural gas production from unconventional resources such as

shale (Boosari et al., 2015).

Several researchers have applied numerical reservoir simulation for modeling CO;
sequestration. In their research, Yang et al. (2005) have applied reservoir simulation to model
the properties of COz injection in the Barrow Sub-basin field in West Australia. They observed
that the direction of CO2 migration and geological structure were two essential considerations
in the selection of the optimum well pattern. This met the injection criterion, as well as
demonstrating that CO; geological sequestration in the Barrow Sub-basin is desirable.
Additionally, Ghoodjani & Bolouri (2012) built an analytical model and compared with a
numerical method to estimate project performance and calculate the best rate of injection in
various scenarios of CO2-EOR and sequestration projects. They discovered that using a

numerical simulator to optimize injection rate is a reliable method.

However, the longer the run time, the more sophisticated the simulation model is. Because of
the huge requirements of run time and computational effort, any study involving thousands of
simulation runs, such as uncertainty analysis, optimization study, or history matching, might
become excessively long and impractical. These long execution durations of numerical
reservoir simulation models have long been a challenge in the oil and gas sector (Mohaghegh,
2018). Moreover, for unconventional reservoirs given the requirement to simulate fluid flow
in a network of induced natural fractures coupled with geomechanical effects and other
phenomena, such as water blockage, non-Darcy flow in nanoscale pores, and

adsorption/desorption, reservoir modeling in such systems is a tough project (Cipolla et al.,



2010); (Ding et al., 2014) as cited in (Schuetter et al., 2018). Hence, huge computational cost
is the major challenge with the routine application of comprehensive physics-based simulators

(Schuetter et al., 2018).

For this reason, data-driven techniques to model and understand the key parameters of CO»
sequestration in unconventional reservoirs need to be developed and used in order to

complement the numerical reservoir simulators.

2.2 Exploratory data analysis

The major purpose of Exploratory Data Analysis (EDA) is to gain a preliminary knowledge of
the data in terms of individual variable qualities and the relationships between them. Other
goals include identifying key variables of interest, creating questions for further investigation
of the data, and selecting tools for comprehensive research (Mishra & Datta-Gupta, 2018).
Multiple studies have utilized EDA for production optimization in unconventional reservoirs.
In their research Schuetter et al. (2018) applied EDA by employing a matrix of scatterplots as
shown in Figure 2.1 to demonstrate the relationship between all possible predictor variables
and response variables, together with a histogram for all the parameters along the diagonal.

This graph likewise shows substantial relationships between predictor pairs.
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Likewise, (Zhong et al., 2015) performed EDA by first applying univariate analysis such as
histogram to be able to visualize continuous variables and examine each variable's features and
distributions see Figure 2.2, Along with a scatterplot matrix see Figure 2.3 to be able to discover

pairwise trends between variables, as well as peculiar data points such leverage points and

outliers.
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Figure 2.1 Scatterplot matrix (Schuetter et al., 2018)
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Figure 2.2 Histograms for predictor variables (Zhong et al., 2015)
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Figure 2.3 Scatterplot matrix for predictor variables (Zhong et al., 2015)

However, the EDA methodologies adopted by (Schuetter et al., 2018) and (Zhong et al., 2015)
are an example of the techniques that can be used, and they are graphical in most cases. Several
techniques including, examining variable distributions (for example, to discover severely
skewed or non-normal patterns, such as bi-modal patterns), and assessing enormous correlation
matrices for coefficients that match thresholds are examples of basic exploratory procedures.
EDA for multivariate data sets comprises multivariate exploratory techniques created
specifically to detect patterns in multivariate data sets (Holdaway, 2009). Most of these

techniques will be discussed extensively in the methodology chapter.
2.3 Predictive input and output modeling

Kuhn & Johnson (2013) define predictive modeling as the development of a model or
mathematical tool that achieves an accurate prediction. The model could be as an equation or
algorithm, with one variable to predict (output) and one or more independent known predictors

(inputs) (Lolon et al., 2016).



Although predictive models have been widely employed, Kuhn & Johnson (2013) pointed out
that there are a few conventional reasons predictive models fail and might generate unreliable

predictions and we’ll go over each one in this section. The most common issues are:

e Insufficient data pre-processing
e Model validation is minimal
e Extrapolation that isn’t justified

e Opverfitting the model to the data that already exists

Schuetter et al. (2018) were able to point out that building predictive input/output models is a
typical goal in oil and gas applications. Various empirical studies have applied predictive
modeling for production optimization in unconventional reservoirs (Zhong et al., 2015); (Lolon
et al., 2016); (Schuetter et al., 2018). These studies are relatively recent, with the majority

occurring within the last 10 years.

While a detailed investigation by Schuetter et al. (2018) confirmed the existence of their
relative strengths and weaknesses of these predictive modeling methods, which can be seen in

(Schuetter et al., 2018).

In production optimization, some of the most used predictive modeling techniques for
regression and classification problems will be explained in this section briefly, while a more

detailed analysis will be provided in the methodology chapter.

Ordinary-Least-Squares (OLS) Regression. The response is described as a linear
combination of the predictors or functions of the predictors, often known as multiple linear

regression (Schuetter et al., 2018).

Classification and Regression Trees (CART). The predictor space is divided into nested
rectangular sections, each with a constant value or categorical label for the response in binary

decision trees (Breiman et al., 1984) as cited in (Mishra & Lin, 2017).

Random Forest Regression (RF). In this model each of the simple regression trees in the
ensemble is trained with a different set of observations and predictors (Breiman, 2001) as cited

in (Mishra & Lin, 2017).

Gradient Boosting Machine (GBM). In this method, each new tree aims to fix the
shortcomings in predictions made by earlier trees, which are trained steadily as an ensemble of

regression trees (Friedman, 2001) as cited in (Mishra & Lin, 2017).



Support Vector Machine (SVM). Transforms the data into a space where it may be modeled
using a linear regression or linear classification approach (Vapnik, 1995) as cited in (Mishra &

Lin, 2017).

The predictive models discussed above can have contrasting predictive ability according to
different datasets. For example, in their research Zhong et al. (2015) found that tree-based
approaches, RF, and GBM required less pre-processing time on the raw data, according to
practice on the Wolfcamp dataset. They were also less prone to data quality difficulties and

made better predictions than others.

While a study by Lolon et al. (2016) identified that although the GBM model has the lowest
error when using the training set, it has the poorest prediction ability when using this specific
dataset in this investigation. This is because the GBM is over-fitting and hence not being

suitable as a prediction tool in this circumstance.

Thus, predictive models do not always have the same predictive ability, they can behave
differently according to different datasets. However, in our literature there has been very little
to almost no research done on the application of predictive models on the performance of CO>
sequestration process. Moreover, most of the literature focuses on the application of predictive
models for production optimization. That is why in this study the application of predictive

models on the performance of CO: sequestration process will be investigated.

2.4 Model evaluation and variable importance

The evaluation of the goodness of fit (quality of fit) is an important part of model selection that
is often neglected. Creating a scatterplot comparing actual response values in the training set
against the predicted response using the model is a standard way to evaluate model fit
(Schuetter et al., 2018). If all the scatterplot’s points are near the 45-degree line, the model is
well-fit to the training data see Figure 2.4. This does not, however, guarantee that the model
will work for future data sets. As seen in Figure 2.4 the red curve is placing extreme insistence
on replicating the training set. Nonetheless, this introduces over-fitting to the training data set,

which leads to poor model predictions in the future (Schuetter et al., 2018).
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Figure 2.4 Model fit and evaluation (Schuetter et al., 2018)

Additionally, many other approaches exist in evaluating or quantifying the goodness of fit. A
few studies have applied some common metrics to compare performance of different methods
(Zhong et al., 2015); (Mishra & Lin, 2017); (Schuetter et al., 2018). These common metrics

arc:

e Average absolute error (AAE)
e Mean squared error (MSE)
e Pscudo-R?

These three metrics are quite similar since they try to represent how closely the predictions are
to the assessment of the data overall (Mishra & Datta-Gupta, 2018). In the methodology
chapter, these metrics will be discussed in more details in order to see how they can quantify
the goodness of fit. After model evaluation and selection, the last part is to evaluate which
parameters are influencing the model and response variable, this can be achieved through

variable importance.

For the most part, model-specific variable importance identification is common, and associated
metrics can be expressed in absolute or relative units (Mishra & Datta-Gupta, 2018). For
example, multiple studies have applied the relative importance measured by RF model (Zhong
et al., 2015); (Mishra & Lin, 2017); (Schuetter et al., 2018). In this technique the model
calculates the increase in Root Mean Square Error (RMSE) when a variable is permuted while
the others are left unaffected to determine the strength of each variable’s prediction (Breiman,
2001) as cited in (Mishra & Datta-Gupta, 2018). The reasoning behind the permutation phase

is that, if the predictor variable isn’t crucial to the tree-building process, rearranging its values
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won’t make a significant difference in prediction accuracy (Mishra & Datta-Gupta, 2018). On

the contrary, other methods that can be used include relative importance for GBM and R?- loss.

2.5 Summary

Therefore, this literature review aimed to examine the reason in which numerical reservoir
simulation can be infeasible to provide insights and assessed the applications of DA in
unconventional reservoirs. In summary, there is consistent evidence throughout the literature
that data-driven techniques are becoming more significant in production optimization.
Nonetheless, in an era in which many E&P companies are trying to transition to become net
zero by 2050, application of data-driven methods in production optimization is no longer
adequate. For this reason, understanding and optimizing the performance of CO sequestration
will be critical. Considering there is a need to mitigate climate change and for this to be possible
we need the storage of CO> underground that is at least equivalent to the mass of oil & gas
emissions we produce at this moment in time. Hence, data-driven methods for CO;
sequestration processes should be of paramount importance if we are to transition to net zero

by 2050.
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Chapter 3 Problem Statement

Oil and Gas companies are aware of the challenge on climate change. One of the many things
required to deal with this challenge is to store CO> underground. For a while now, many
organizations have used laboratory experiments and numerical reservoir simulators to model
and understand the behavior of CO> sequestration. However, these methods have high
computational cost and time-consuming. As stated in Chapter 2, a few studies have been done
on the use of data-driven statistical techniques, these studies mainly focused on production
optimization in unconventional reservoirs. This fact emphasizes the need of giving serious
thought on the application of data-driven modeling on characterizing the parameters that
control CO; sequestration in unconventional reservoirs. In addition, if the E&P companies have
the ambition to reach net zero target by 2050, this would require the need for CO2 geologic
storage underground. In order to achieve this, the pathway would involve the urgency to

understand the parameters that control CO> sequestration.

3.1 Research aim, objectives, and questions

Given the inadequacy of research regarding CO; sequestration in unconventional reservoirs,
this study will aim to identify the most important variables that affect this process and whether
reservoir or operational parameters affect more. Including, how to establish predictive models
based on machine learning to predict the volume of CO: sequestered as well as how to create
decision rules that will aid in identifying the primary variables that influence the amount of

CO; sequestered.

A list of research objectives can be included as follows:

e Perform an exploratory data analysis and discover hidden patterns.

¢ Quantify the correlation between volume of CO» sequestered and each input variable.
e Predict the cumulative injected CO2 volume from the numerical simulation scenarios.
e Identify the drivers of CO2 sequestration parameters among the considerable set of

predictors using a variable importance method.
A list of research questions can be included as follows:

e What are the characteristics that are critical to the data and if there are outliers?
e Is there a relationship between two or more variables?

e How accurately the predictive model will correspond to future data?

13



e What parameters, or combinations of parameters, influence the performance of CO>

sequestration?

3.2 Dataset and simulator description

The dataset used to achieve these aims and objectives comprised of an enormous set of
numerical-simulation scenarios (approximately 1400 scenarios) that were run using a state-of-
the-art reservoir simulator which was part of another study by (Kulga, 2014). Furthermore, the
reservoir simulator used was a compositional dual-permeability, dual-porosity, multi-phase
reservoir simulator developed at Penn State University (PSU-SHALECOMP). The simulator
integrates the effects of water presence in the micropore structure together with matrix swelling
and shrinkage. In these simulations, CO2 sequestration was performed with a constant injection
rate constraint after primary gas recovery period until a specified fracturing-pressure limit is
reached. Table 3.1 presents the variables and their specified ranges. These ranges were used to
randomly generate uniformly distributed scenarios for each variable. A combination of these
input variables constitutes a given numerical simulation scenario for which sequestered volume
of CO; is collected. In the numerical model, the network of induced fractures is represented
using the stimulated reservoir volume (SRV) approach in which the fracture network is

approximated as an elliptical area around the horizontal well (Figure 3.1).

/]

h

»

Figure 3.1 Approximation of the induced fracture network in the numerical model using the
SRV approach (Kulga & Ertekin, 2018)
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Table 3.1 Ranges of parameters used as inputs for the numerical simulation scenarios (Kulga,

2014)
Minimum Value Maximum Value Unit
Lw 2,000.86 4,998.36 ft
Ly 202.252 999.351 ft
Ly 1.201* Ly 1.599* L ft
Ly 1.205*Ly 1.997*Ly ft
h 100.226 299.704 ft
Pm 5.0008 9.995 %
or 0.5022 1.9999 %
SRV-¢¢ 1.202%¢r 1.499%¢, %
kem 1.00E-06 1.00E-04 md
ky 0.000101 0.001097 md
SRV-kr 2.00797* ks 11.9926* ks md
Axs 0.902 2.998 ft
SRV-Axs 0.401*Ax; 0.799%* Ax; ft
Swm 5.003 13.998 %
Vi-cra 50.33 248.99 scf/ton
Pr-cry 201.971 998.081 psi
Vi-coz 2.006*V-chy 5.99*V1-cra scf/ton
Pr-coz 201.97 999.08 psi
P 3,004.92 7,997.14 psi
T; 120.016 199.999 F
qsf-prod 1,018,365 4,994,210 scf/d
tprod 7306.09 18,233.0 days
Prrac 1.1*P; 1.499*P; psi
{sf-inj-STOPPING 200,429 597,457 scf/d

3.3 General workflow

The workflow that was used to answer the research problem was a data-analytics based

investigation combined with statistical modeling. This workflow can be summarized in Figure

3.2



Data
Preparation

Exploratory
Data
Analysis

Predictive
Modeling

Variable
Importance

 Imported the dataset in R Statistical Computing Environment then
performed a quality check of the input data

* Performed EDA to uncover hidden patterns and features such as outlier
points and the relationship between reservoir parameters, operational
parameters and the cumulative CO, injected

* Predicted the cumulative CO, injected using the set of reservoir and
operational parameters by utilizing machine-learning approaches

* Then, the models were evaluated using the goodness of fit technique

* Identified the main drivers of the cumulative CO, injected among the
reservoir and operational parameters

Figure 3.2 Workflow followed for data-analytics approach
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Chapter 4 Methodology

4.1 Methodological approach

In this study, the aim was to identify the most important variables that affect the CO;
sequestration process in unconventional shale reservoirs and whether reservoir or operational
parameters affect more. The software used to run all the analysis was R Statistical Computing
Environment (R Development Core Team, 2021). Furthermore, the approach taken to answer
the research problem was a data-analytics based investigation and combining with statistical
modeling. As explained by Mishra & Datta-Gupta (2018), it is more useful to consider DA and
statistical modeling as part of an integrated data analysis cycle (Figure 4.1) for petroleum

geoscience applications.

Exploratory
data analysis

i AN

Data collection Predictive
and management modeling
¢
Visualization
and reporting

Figure 4.1 The cycle of data analysis (Mishra & Datta-Gupta, 2018)

4.2 Exploratory data analysis

Sensor measurements, events, text, photos, and videos are all examples of data sources. The
Internet of Things (IoT) is generating an overload of data. Much of this data is unstructured:
images comprise pixels, each of which contains RGB values (red, green, blue) information on
color (Bruce et al., 2020). Numeric and categorical data are the two main types of structured
data. Continuous data, such as wind speed or time period, and discrete data, such as the number
of times an event occurs, are two types of numerical data. While data such as a type of TV
screen or a state name are categorical data, since they can only take a fixed set of values (Bruce

et al., 2020).
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Bruce et al. (2020) points out that why do we need to be concerned about with a classification
of data types? It turns out that the data type is critical in determining the type of visual display,

data analysis, or statistical model used in data analysis and predictive modeling.

EDA was the first methodological approach taken in which the data was summarized,
visualized and a more detailed analysis was performed. In this study EDA was partitioned into

three main steps:

e Univariate data analysis
e Bivariate data analysis

e Multivariate data analysis

4.2.1 Univariate data analysis

The observed values of a variable are likely to differ from one another, whether we’re dealing
with a population or a sample. It’s useful to quantify the average value, the spread around that
average value, and the overall asymmetry over the entire range of observed values to
investigate this intrinsic variability for a single variable numerically (Mishra & Datta-Gupta,
2018). These univariate metrics, as well as several standard graphical approaches for visually

reviewing and summarizing the data, are explained here (Mishra & Datta-Gupta, 2018).

4.2.2 Measures of central tendency

The mean or expected value is the most popular measure of central tendency. The mean of a
random variable X, where x; are the individual outcomes (Mishra & Datta-Gupta, 2018), is

given in Eq 4.1:

N 1 N
EX|=X=) fay=7) x Eq4.1
i=1 i=1
Where,
fi relative frequency

X random variable

x; 1ndividual outcomes

The weighted average of all values based on relative frequency is called the arithmetic mean

(Mishra & Datta-Gupta, 2018). There are two more helpful measurements of central tendency
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(a) median, this is the distribution’s midpoint, and (b) mode, which is the most frequent
occurring value (Mishra & Datta-Gupta, 2018). For symmetrical (or near-symmetrical)
distributions, the mean, median, and mode are usually the same, but if the distribution is
asymmetrical, they can be substantially different. The extreme numbers have a significant
impact on the mean, whereas the median is more robust and less responsive to outliers (Mishra
& Datta-Gupta, 2018). In Figure 4.2, the median lies between the mode and the mean in two
situations, but the mean and mode swap positions depending on the asymmetry (i.e., left-

skewed or right-skewed) (Mishra & Datta-Gupta, 2018).

—— Probability —

Probability ——

— Probability —

X

Figure 4.2 Position of mode for different category of distribution (Mishra & Datta-Gupta,
2018)

4.2.3 Measures of dispersion

For summarizing a feature, location is only one of many factors to consider. Variability, also
known as dispersion, is a second dimension that determines whether the data values are
clustered or spread out (Bruce et al.,, 2020). The variance, which measures dispersion or
variability around the mean, is the most essential measure of spread (Mishra & Datta-Gupta,

2018). It’s described by Eq 4.2:

N N
1
VIX] = 0% = ) fi(x — EIXD? = 2> (x — E[X])?
i=1 =1 Eq 4.2
Xt

VIX] = =5~ (E[XD* = E[X*] - (E[X])"
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The difference between the mean of the squares and the square of the mean is the variance. The
standard deviation is equal to the square root of the variance and the root-mean-square error

(RMSE) (Mishra & Datta-Gupta, 2018).

4.2.4 Univariate data graphs

In this study, the univariate data graphing approached used was by plotting box plots, and

histograms which are useful to explore data in one dimension.

Box plot. The box plot (Figure 4.3) (also known as the box-and-whisker diagram) is a
standardized technique of depicting data distribution based on five essential features which are
minimum, first quartile, median, third quartile, and maximum. In a box plot, the rectangle
represented at the center spans the first quartile to the third quartile (IQR). A section inside the
rectangle shows the whiskers and median below and above the box shows the position of the

minimum and maximum (Kirkman, 1996).
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Figure 4.3 Box plot (Kirkman, 1996)

Outliers are data points that fall outside the box plot whiskers' maximum or minimum values

(Kirkman, 1996). Figure 4.4 shows how the outliers can be visualized and seen in a box plot.
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Figure 4.4 Outliers representation (Kirkman, 1996)

Histograms. The histogram’s major purpose is to display the relative class frequencies in the
data and, hence, provide information on the data density function. A histogram (Figure 4.5),
which is essentially a bar plot of a frequency distribution grouped in intervals or classes, is a
widely used graphical display of univariate data. Moreover, the central tendency, the
dispersion, and the general shape of the distribution are all essential visual information that
may be gained from histograms (Holdaway, 2009). It is made by splitting the observed range
into many intervals (bins) and plotting the actual frequency of occurrence in each interval. The
number of bins used in histograms is usually determined by trial and error. The following are

some common rules of thumb that have been presented (Mishra & Datta-Gupta, 2018).

e The number of intervals k for a given sample size of N should be the smallest integer,
such that 2k > N (Iman & Conover, 1986) as cited in (Mishra & Datta-Gupta, 2018).

e A suggestion given by Venables & Ripley (1996) is to use the number of bins as {3.3log
(N) + 1} as a default value.
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Figure 4.5 Histogram sample (Bruce et al., 2020)

The histogram’s shape extremely depends on the number of intervals chosen. It will be
sensitive to bin size (Figure 4.6), and hence it might not be a reliable graphic tool. Unless the
analyst performs experiments of multiple bin sizes until a robust indication of shape is reached

(Mishra & Datta-Gupta, 2018).
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Figure 4.6 Sensitivity of bin size (Mishra & Datta-Gupta, 2018)
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4.2.5 Bivariate data analysis

The main goal for bivariate data analysis is to describe the relationship between two variables.
These bivariate measurements, as well as several standard graphical approaches for visually

reviewing and summarizing the data, are explained here (Mishra & Datta-Gupta, 2018).
4.2.6 Correlations

Investigating the correlation among predictors and between predictors and a response variable
is important in EDA and in many modeling projects (Bruce et al., 2020). The correlation
coefficient (CC), often known as the Pearson correlation coefficient, is a measure of the
strength of a linear relationship between two random variables (Mishra & Datta-Gupta, 2018).

it is defined by Eq 4.3:

N
Oy 1 Z x;—X y,—Y
CC = = Eq 4.3
Pxy 6,06, N-—1 < o, o 1

oxy  Covariance
o,  Standard deviation of variable x
oy,  Standard deviation of variable y
X Mean of variable x
Y  Mean of variable y
N — 1 Degrees of freedom
X; Individual outcome for x

y;  Individual outcome for y

23



The CC value ranges between -1 and +1. whereby, a perfect negative correlation is showed by
-1 and a perfect positive correlation is showed by +1. The absolute value measures the
magnitude of the relationship, while the sign shows the trend’s direction. It’s vital to remember
that the term “correlation” only relates to a monotonic relationship (Mishra & Datta-Gupta,

2018).

The rank correlation coefficient (RCC), also known as the Spearman correlation coefficient,
can be employed as a more robust measure of nonlinear association if the variables of interest
are associated in a nonlinear form (Mishra & Datta-Gupta, 2018). It is defined as follows by

Eq 4.4:

6)Y d?
RCC=1-—— _ Eq 4.4
N(N%Z —-1)

Where,

d difference of ranks

4.2.7 Bivariate data graphs

In this study different techniques were used to explore data in two dimensions. Mainly two
graphing techniques were employed which were scatterplots and scatterplots combined with

histograms.

Scatterplot. One of the simplest technique for depicting the relationship between two variables
is to use a scatterplot (Mishra & Datta-Gupta, 2018). The horizontal axis displays the values of
one variable, while the vertical axis displays the values of the other variable. If there is an
explanatory variable (predictor variable), always plot it on the scatterplot’s horizontal axis (x
axis). The explanatory variable (predictor variable) is commonly referred to as x, and the
response variable is referred to as y. Either variables can belong on the horizontal axis if there
is no explanatory-response differentiation (Moore et al., 2018). In order to describe the overall
pattern given by the scatterplot, three strategies are adopted: direction, form, and strength. The
direction of the general pattern specifies whether it moves from lower left to upper right, upper

right to lower left, or none of the two.
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The approximate functional form is referred to as form. Is it, for example, roughly a straight
line, curved, or oscillating? The strength of the plot is determined by how well the points in the

plotline follow the form (Moore et al., 2018).

The absolute value of the Pearson CC (p) reflects the strength of the linear relation, whereas
the sign of p shows whether the correlation is negative or positive. Several examples of scatter
diagrams are provided in Figure 4.7, each depicting a different range of probable behavior
between two generic variables, X and Y. A strong positive trend can be seen in the top-left
panel (A). A very significant negative linear trend can be seen in the top-right panel (B) along
with a modest negative correlation, may be seen in the bottom-left panel (C), while in the

bottom-right panel (D) there is a moderate positive trend (Mishra & Datta-Gupta, 2018).

p=0.734 p=-0.893
350 3
300 o
°* 25 .
250 % e e ) ...
200 ® e e e
e® .. .. e o * 15 o 9. ™
150 ® o g e
100 %o ® ! ot e
® ® ®
50 05 -
® L
0 0
0 20 40 60 80 0 01 02 0.3 04
(A) (B)
o= -0.145 =Nd4R4
0.4 e 14 3 n
0.35 * . - a5 .
03 L ] ] ¢
@ ] 2
0.25 = ® o’ a
0.2 o * 1.5 * e
0.15 e o o o o€ 1 . ®le
0.1 * 9 o I
®
0.05 05 o o
0 0
0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25
(C) (D)

Figure 4.7 Multiple scatterplots with linear trend (Mishra & Datta-Gupta, 2018)

Scatterplot with marginal histogram. Histograms and scatterplots (Figure 4.8) can be used
together to show how individual variables are distributed throughout their ranges. The marginal
(individual) distributions of X and Y are represented by the histograms along the axes, whereas

the scatterplot represents the combined distribution of X and Y (Mishra & Datta-Gupta, 2018).
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Figure 4.8 Scatterplot with histogram (Mishra & Datta-Gupta, 2018)

4.2.8 Multivariate data analysis

Correlation analysis in multivariate data extends the techniques covered earlier for bivariate
data analysis. This requires computing the Pearson or Spearman CC for all variable pairs and
displaying it as a correlation matrix (Figure 4.9). It suffices to show the lower or upper part of
the matrix since the correlation matrix is symmetrical (Mishra & Datta-Gupta, 2018). Likewise,
scatterplot matrix or a pairs plot can be used for data visualization, this is developed by
incorporating different scatterplots of variable pairs to show their interaction (Venables &
Ripley, 1996) as cited in (Mishra & Datta-Gupta, 2018). Each scatterplot can be colored coded
to identify membership of specific data points in different groups and annotated with a
smoothing line to help visualize the underlying trend. The benefit of scatterplot matrix (Figure
4.10) is that it allows you to get a quick overview of the relationships, patterns, and trends
among predictor variables (independent variables) as well as between response variables

(dependent variables) and predictor variables (Mishra & Datta-Gupta, 2018).
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4.3 Predictive modeling

After developing a preliminary understanding and digging deeper into our data by using EDA,
the next step in our methodology was to develop predictive models. Predictive models are
important tools for understanding the relationship between response and predictor variables.
The main focal point of this section is predictive statistical modeling, where statistical and
machine-learning approaches will be used to discover the dependency or relation between
dependent and independent variables. Al-Alwani et al. (2019) point out that the goal of using
predictive analytics (predictive modeling) is to improve operations while cutting down costs
and saving time. In this context, the keywords statistical learning, data mining, knowledge
discovery, and data analytics are all interchangeable. Applying supervised and/or unsupervised
learning, the purpose of such a scheme is to identify relevant patterns and trends and
comprehend “what the data says” (Hastie et al., 2008) as cited in (Mishra & Datta-Gupta,
2018). The goal of supervised learning is to predict the value of an output measure based on a
set of input measurements, while the goal of unsupervised learning is to explain the correlations

and patterns among a set of input measures (Hastie et al., 2008).

This study mainly used supervised learning through techniques such as linear regression and

tree-based methods such as bagging, random forests and gradient boosting machine (GBM).

4.3.1 Linear regression

One of the most extensively utilized strategies for investigating and exploiting the relationship
between dependent (response) and independent (predictor) variables is regression modeling.
Linear regression occurs when a relationship can be described using linear equations. It
involves a single predictor and a response variable (Mishra & Datta-Gupta, 2018). While,
multiple regression, also referred to as OLS, involves over one predictor variable. In this study,
the concept of simple linear regression will be illustrated first then followed by multiple
regression, later model selection and evaluation, and finally choosing the optimal model for

the multiple regression.

4.3.2 Simple linear regression

It’s a fairly simple method for predicting a quantitative response Y based on a single predictor
variable X. It is presumptively assumed that X and Y have a linear relation (James et al., 2013).

This linear relationship can be written mathematically by Eq 4.5:
Y = ﬁ0+ﬁ1X Eq4.5
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Where,

Y Quantitative response variable
X Predictor variable

Bo Intercept

i Slope

In Eq 4.5, the intercept and slope terms are Sy and f;, respectively, which are two unknown
constants in the linear model. The model coefficients or parameters are known as fy and £;.
We can forecast future data based on a particular value of the predictor variable by computing
Bo and B; (Eq 4.6) estimates for the model coefficients after we’ve used our training data to

produce them (James et al., 2013).

y:ﬁo-i_ﬁlx Eq4.6

Where,
y  Prediction of ¥
B, Coefficient estimates

B, Coefficient estimates

x X=x

Lo and f; are unknown in practice. As a result, before we can use Eq 4.5 to generate predictions,

we must first estimate the coefficients using data (James et al., 2013). let

(X1, }/1), (Xz, yZ)f LN (xn' yn)

Denote n observation pairs, each of which comprises an X and a ¥ measurement. For example,
given a dataset for TV advertising which comprises sales of that product for n = 200 markets.
We want to find an intercept S, and a slope 3;that will cause a line that is as near (close) to the

n = 200 data points as possible. Closeness can be measured in a variety of ways.
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The most popular procedure, however, is to minimize the least squares criterion. Figure 4.11
shows that by minimizing the sum of squared errors, the best fit is found. Each grey line

segment denotes an error, and the fit averages their squares as a compromise (James et al.,

2013).

Sales

0 50 100 150 200 250 300

v

Figure 4.11 Least squares fit (James et al., 2013)
The residual sum of squares (RSS) can be defined by Eq 4.7:
RSS = (y1 — Bo — B1x1)* + (2 — Bo — B1x2)* + - E
R R q4.7
+ (yn - ﬂO - ﬁlxn)z

To reduce the RSS, the least squares method chooses S, and f3;. It is possible to show that the

minimizers can be given by Eq 4.8 (James et al., 2013).

Zica(i =00 = y)

31 = p
i=1(x; — x)? Eq 4.8
Bo= 7y~ Bi%
Where,
1 n
y=— Vi Sample mean
Nédi=
1 n
X = —z X; Sample mean
Niédi=
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For simple linear regression, Eq 4.8 defines the least squares coefficient estimates. However,
there is a chance that the genuine relationship is not linear, and that there are other variables
causing variability in Y, and that measurement error exists. Normally, we presume that the error
term is unaffected by X. The approach described by Eq 4.9 illustrates the population regression
line, which is the genuine relationship between X and Y and provides the best linear
approximation. Whilst the least squares line (Eq 4.6) is defined by the least squares regression

coefficient estimates (Eq 4.8) (James et al., 2013).

Y=Bo+BiX+e Eq4.9
Where,
Lo Intercept term
i Slope
€ mean-zero random error term

Furthermore, after determining the least squares coefficient estimates, it’s only logical to want
to know how well the model fits the data. The residual standard error (RSE) and the R’ statistic

are commonly used to evaluate the quality of a linear regression fit (James et al., 2013).

Residual standard error. We know from Eq 4.9 that each observation has an error term ¢, so
even if we had the actual regression line (Bo and 1), we wouldn’t be able to perfectly predict
Y from X. The standard deviation of € is estimated using the RSE. It is expressing the average

deviation of the response from the actual regression line. The Eq 4.10 is used to calculate it

(James et al., 2013).
n
RSE = LRSS = ; Z(y. — 92 Eq 4.10
n—2 n—2 s : Lot
1=

Where,

n
RSS = ) (=9’
i=1
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R? statistic. The RSE is an absolute measure of the Eq 4.9 lack of fit to the data. However,
because it is expressed in the units of Y, it is not always apparent what defines a good RSE.
The R? statistic is another way to assess fit. It is independent of the scale of Y, as well as taking
on a value between 0 and 1. As a result, it is known as the proportion of variance explained

(James et al., 2013). The Eq 4.11 is used to calculate R’ statistic.

_TSS—RSS __ RSS

_ Eq4.11
TSS 1-Tss

RZ

Where,

TSS (total sum of squares) = Z(yi —y)?

4.3.3 Statistical significance

Before moving into multiple linear regression, it is important to understand the concept of
statistical significance. At first, the concept of establishing a null hypothesis that we wish to
uncover evidence against appears unusual. Consider a criminal trial as an example. “Until
proven guilty,” the defendant is presumed innocent. The null hypothesis is innocence, and the
prosecution must strive to disprove this hypothesis with persuasive evidence. That’s exactly
how statistical significance tests operate. Except in statistics, we deal with data-based evidence

and apply a probability to determine how strong it is (Moore et al., 2018).

A P-value is a probability that quantifies the degree of evidence against a null hypothesis. The
P-value of the test is the probability that the test statistic will take a value as severe or more
extreme than that actually observed, given that the null hypothesis (Ho) is true. The lower the
P-value, the stronger the data’s proof against Ho. Small P-values provide evidence against Ho,
since they show that the observed outcome is unlikely to occur if Ho is correct. Large P-values
do not provide proof against Ho. How low of a P-value is striking evidence against Ho? Many

statisticians believe that results less than 0.05 or 0.01 are acceptable (Moore et al., 2018).
4.3.4 Multiple linear regression

For predicting a response based on a single predictor variable, simple linear regression is a
helpful method. In actuality, though, we frequently have over one predictor. Running three

independent linear regressions is one possibility, as the method of fitting a separate basic linear
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regression model for each predictor is not highly recommendable. Rather than constructing a
separate simple linear regression model for each predictor, extending the simple linear
regression model (Eq 4.9) to directly handle multiple variables is a preferable method. In a
single model, we may achieve this by assigning a distinct slope coefficient to each predictor

(James et al., 2013).

Assume we have p unique predictors; the multiple linear regression model then assumes the

following model:

Y=ﬁ0+ ﬁ1X1+ﬁ2X2+”‘+ﬁpo+E Eq4.12
Where,
X Jjth predictor
B quantifies association between that variable and the response

We depict f; as the average effect of a one-unit increase in X; on Y, with all other predictors
held constant. The regression coefficients fo, f1,..., f» in Eq 4.12 must be estimated since they

are unknown, such as it was in the simple linear regression (James et al., 2013). We may use

the Eq 4.13 to generate predictions based on the estimates S, f1,..., ﬁ’p.

y: 30+31x1 +32x2+~--+ﬁpxp Eq4.13

By using the least squares approach that we saw in simple linear regression, the parameters can
be estimated. In order to minimize the sum of squared residuals, we choose o, f51,..., B (James

et al., 2013).

n
RSS = ) (7,90
i=1

. Eq4.14
RSS = Z(J’i — Bo — B1xi1 — Baxiz — -+ — Bpxip)?
i=1

The least squares regression line becomes a plane in a three-dimensional situation (Figure 4.12)
with two predictors and one response. Moreover, the plane is selected so that the total of the
squared vertical distances between each observation and the plane is as small as possible

(James et al., 2013).
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Figure 4.12 Least squares fit for multiple regression (James et al., 2013)

We generally want to find answers to a few key questions when we perform multiple linear

regression (James et al., 2013):

1) Is it possible to predict the response variable using at least one of the predictors X;,
X2y Xp?

2) Is it possible to use all the predictors to explain Y, or is it only possible to use a subset
of them?

3) What is the model’s fit to the data?
Is there an association between the response and the variables that predict it?

We need to check if all the regression coefficients are zero in a multiple regression with p

predictors (in case ff; = 2= - = .= 0) (James et al., 2013).

To address the question, we use a hypothesis test. in particular, we put the null hypothesis into

the test.

Hy:By=Pr==Bp=0

against the alternative

H, : atleast one f§; isnota 0
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The F- statistic is used to do this hypothesis test (James et al., 2013).

_ (TSS—RSS)/p

= Eq 4.15
RSS/n—p—-1)

In simple terms, we should expect F to be greater than 1 if there is a relationship, otherwise
when there is no association between the response and the predictors, the F-statistic should be
near to 1. What is the minimum F-statistic before we can rule out Ho and conclude that there is
a relationship? The solution turns out to depend on the values of n and p. When # is big, even
an F-statistic somewhat larger than 1 can give evidence against Ho. If » is small, however, a

higher F-statistic is required to reject Ho (James et al., 2013).
Variable selection problem

The F-statistic is computed, and the accompanying p-value is examined as the first step in a
multiple linear regression analysis. If we infer that at least one of the predictors is connected to
the response based on that p-value, it’s reasonable to speculate which are the ones that are bad.
It is more often the case that the response is only related to a subset of the predictors. But it is
possible that all the predictors are associated with the response. Variable selection is a
technique used to determine which predictors are associated with the response in order to fit a
single model that associate only those predictors (James et al., 2013). In an ideal world, we’d
test out several models, each including a different subset of the predictors, to conduct variable
selection. We may then choose the best model out of all the models we’ve evaluated after
generating a model with a different selection of predictors. How can we know which model is
the best? A variety of statistics may assess a model’s quality. Among them are Akaike
information criterion (AIC), Bayesian information criterion (BIC), adjusted R’ and Mallow’s
C, (James et al., 2013). The concept of variable selection problem will be assessed more in

detail in the next section of the methodology.
Fit of the model

The RSE and R?, or the proportion of variance explained, are two of the most used numerical
metrics of model fit. These values are calculated and interpreted in the same way as they are
for simple linear regression. Normally, the square of the response and variable is given by the
correlation R’. This R’ value, though, turns out to be equal to Cor(Y,Y)?, the square of the

correlation between the response and the fitted linear model, in multiple linear regression.
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As a matter of fact, among all potential linear models, one feature of the fitted linear model is
that it maximizes this correlation. Moreover, the model explains a substantial amount of the

variance in the response variable if the R? value is near to 1 (James et al., 2013).
4.3.5 Selection of a linear model

It’s not unusual for any or all of the variables included in a multiple regression to be unrelated
to the response. Including such unimportant variables in the model results in needless
complexity. We may get a more readily understood model by eliminating these variables—that
is, by setting the associated coefficient estimates to zero. It’s highly improbable that least
squares will produce any coefficient estimates that are exactly zero (James et al., 2013). In the
next section, we will see a technique for automatically performing a variable selection
procedure in order to eliminate unrelated variables from a multiple linear regression model.
There are many approaches for excluding irrelevant variables, but in the following section, best

subset selection will be illustrated.

4.3.6 Best subset selection

We fit a separate least squares regression for each practical combination of the p predictors to

achieve optimal subset selection. In other words, we fit all p models with precisely one

p
2

We next examine all the resultant models in order to determine which one is the best (James et

predictor, full ( ) = p(p — 1)/2 models that comprise altogether two predictors, and so forth.

al., 2013). The steps involved in the best subset selection are given below as explained by

(James et al., 2013):

1) Let My stand for the null model, which is free of predictors. For each observation, this
model simply estimates the sample mean.

2) Considering k = 1,2, ...p:

a) All (i) models with precisely & predictors must be fitted.

b) Choose the finest of these (Z

having the least RSS or, in other words, the biggest R’.

) models and name it M. The best is defined as

3) Using cross-validated prediction error, C, (AIC), BIC, or adjusted R?, choose a single

best model from among Mo,..., M,.

Now all we have to do is choose between these p+1 alternatives to find the best model. Because

the RSS of these p+1 models drops monotonically and the R’ grows monotonically as the
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number of components included in the models increases, this work must be done with caution.
The difficulty is that a model with a low RSS or a high R has a low training error, but we want
a model with a low-test error. As a result, if these statistics are used to choose the optimal
model, we will always end up with a model that includes all the variables. Hence, we put to
use cross-validated prediction error, BIC, C,, or adjusted R’ in step 3 in order to select the

optimal model among My, M;,..., M, (James et al., 2013).

4.3.7 Deciding on the best model

As seen previously, RSS and R? are ineffective in choosing the best model from a set of models
with varying amounts of predictors. Hence, we must estimate the test error in order to choose
the optimal model in terms of test error. There are two techniques that are commonly used

(James et al., 2013):

¢ By adjusting the training error to account for the bias caused by over-fitting, we may
estimate test error indirectly.
e Using either a validation set or a cross-validation technique, we may directly estimate

the test error.
These approaches will be considered below.

Mallow’s Cp. The C, estimate of test MSE is obtained using the equation Eq 4.16 for a fitted

least squares model with d predictors (James et al., 2013).

1
C, = —(RSS + 2d6?) Eq4.16
n

Whereby, the variance of the error € combined with each response measurement is given by

the estimate 2. Normally, 62

is calculated using the complete model, which includes all
predictors. To compensate because the training error underestimates the test error, the C,
statistic adds a 2d§? penalty to the training RSS. The penalty obviously increases as the
number of predictors in the model grows; this compensates for the associated reduction in
training RSS. As a result, the C, statistic takes on a small value for models with minimal test
error, thus we select the model with the lowest C, value when deciding which of a group of

models is best (James et al., 2013).

37



Akaike information criterion (AIC). For a large class of models fit by maximum likelihood,
the AIC criterion is described. Maximum likelihood and least squares are the same thing with

model Eq 4.12 with Gaussian errors (James et al., 2013).

The AIC is defined by Eq 4.17:

1
AIC = — (RSS +2d3?) Eq4.17
no

As aresult, C, and AIC are proportional to each other for least squares models.

Bayesian information criterion (BIC). BIC is developed from a Bayesian perspective, yet it
resembles C, and AIC in display. The BIC for a least squares model with d predictors is
provided by Eq 4.18 up to irrelevant constants. For a model with a low-test error, the BIC, like
C,, will take on a small value, therefore we choose the model with the lowest BIC value (James

etal., 2013).

1
BIC = — (RSS +1 do? Eq4.18
52 ( og(n) do”)

Adjusted R? statistic. Another frequent method for deciding amongst a collection of models
with varying numbers of variables is to use the adjusted R’. Because the RSS diminishes as
more variables are added to the model, the R? rises. The adjusted R? statistic for a least squares

model with d variables is obtained as follows (James et al., 2013):

RSS/(n—d — 1)

Eq4.19
TSS/(n — 1)

Adjusted R? =1 —

A big value of adjusted R’ suggests a model with a small test error, unlike C,, AIC, and BIC,

where a small value shows a model with a low-test error (James et al., 2013).

Validation set approach. It comprises splitting the set of observations into two halves at
random: a training set and a validation set (or hold-out set). The training set is used to fit the
model, and the fitted model is used to predict the response for the validation set observations
(James et al., 2013). The test error rate is estimated using the validation set error rate, which is
generally measured using MSE in the situation of a quantitative response. The validation set

technique is depicted in a schematic diagram (Figure 4.13). A collection of n observations is
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divided into a training set in blue and a validation set in beige at random. The training set is
used to fit the statistical learning technique, and the validation set is used to evaluate its

performance (James et al., 2013).

123 n

1

7 22 13 91

Figure 4.13 Validation set procedure (James et al., 2013)

The validation set technique is both theoretically and practically straightforward. However,

there are two possible drawbacks (James et al., 2013):

e Depending on which observations are included in the training set and which
observations are included in the validation set, the validation estimate of the test error
rate might be extremely varied.

e Only a subset of the observations is used to fit the model in the validation method—
those that are included in the training set, rather than the validation set. Given that
statistical techniques perform worse when trained on fewer observations, the validation
set error rate may overemphasize the test error rate for the model fit across the complete

data set.

To address these potential drawbacks, a k-fold cross validation will be presented as a

refinement technique.

k-fold cross validation. The training dataset is randomly divided into £ distinct groups or folds
in this method, see Figure 4.14. Following that, each of the k groups is held out one at a time,
and the model is trained on the other k-1 groups before applying to the group that was held out
(Mishra & Datta-Gupta, 2018). There will be a single cross validated prediction for every
observation in the dataset after cycling through all £ groups, through which the predictions
were created by adopting a model for which the training set does not include that observation.
Through repeating the process with a unique set of &k groups at random, the cross-validation
technique may be expanded. Using r repeated runs of k£ randomly selected groups, a repeated

cross validation will provide r distinct predictions for each observation. Not only may these be
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used to generate statistics on goodness-of-fit measures, but they also provide valuable insight

into model prediction variability as a function of the training set’s properties (Mishra & Datta-

Gupta, 2018).
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Figure 4.14 k-fold cross validation (Schuetter et al., 2018)

4.3.8 Goodness of fit

Average absolute error (AAE). The average magnitude of the difference between the real and
predicted response is defined as the AAE (in other words, the average size of the residuals)

given by Eq 4.20 (Mishra & Datta-Gupta, 2018).

n
1
AAE =—Z|yi—yi| Eq4.20
n=
Where,
Vi True response
Vi Predicted response

Mean squared error (MSE). MSE is identical to AAE, except instead of the absolute value,
it measures the average squared difference between observations and their associated

predictions (Mishra & Datta-Gupta, 2018).

n
1
MSE = Ez(yi —9,)? Eq4.21
i=1
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MSE uses the response variable’s squared units, whereas AAE uses the same units as the
response variable. The root-mean-square error, or RMSE, is a popular MSE variation that is
just the square root of MSE. Closer to zero values are preferable since they imply fewer
differences between observations and predictions (i.e., more accurate prediction) (Mishra &
Datta-Gupta, 2018). Because of its well-known distributional characteristics and ability to be
an adequate statistic for normally distributed processes, MSE or RMSE is generally selected

over AAE (Navidi, 2008) as cited in (Mishra & Datta-Gupta, 2018).

4.3.9 Regression diagnostics

Once you’ve completed a regression analysis, you should always check if the model works
properly for the data you’re working with. Additionally, there are several assumptions about
the data at hand made by linear regression. For instance, the response variable and the predictor
variable have a linear relationship. This may not be the case. It’s possible that the relationship
is polynomial or logarithmic. Furthermore, the results of the regression could be affected
because the data might contain outliers which are influential observations (Kassambara, 2017).
As a result, you should do a regression diagnostic on the model you created to identify any
issues and determine if the linear regression model’s assumptions are satisfied or not. In order
to do this, we will first define what are the fitted (predicted) values and residuals and then look

at the regression assumptions (Kassambara, 2017).

Fitted (predicted) values and residuals. According to the built regression model, the fitted
(predicted) values are the y-values you would estimate for the provided x-values (or simply,
the best-fitting regression line). Whereas residual errors are the difference between observed
(measured) values from the predicted values. As seen in Figure 4.15 these residuals are

expressed by red vertical lines (Kassambara, 2017).
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Figure 4.15 Residual errors (Kassambara, 2017)
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Kassambara (2017) points out that there are several assumptions about the data made by linear

regression including:

1) The data’s linearity. The predictor and response variable are considered to have a linear
relationship.

2) Residuals’ normality. It is assumed that the residual errors are normally distributed.

3) Variance of the residuals should be homogeneous. The variance of the residuals is
considered being constant (homoscedasticity).

4) Residual error terms should be independent.

Linearity of the data. The residuals vs fitted (predicted) plot (Figure 4.16) can be used to test
the linearity assumption. Moreover, the red line should be approximately horizontal at zero in
order for the residual plot to show no fitted pattern. Otherwise, it may show a problem with the

linear model (Kassambara, 2017).
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Figure 4.16 Residuals vs Fitted plot (Kassambara, 2017)

Homogeneity of variance. The scale-location plot, also known as the spread location plot, can
test this assumption (Figure 4.17). This graph demonstrates if residuals are distributed evenly
across predictor ranges. If you observe a horizontal line with evenly spaced points, that’s a

positive indicator (Kassambara, 2017).
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Figure 4.17 Scale location plot (Kassambara, 2017)

Normality of residuals. To visually confirm the normality assumption, take advantage of the
QQ plot of residuals (Figure 4.18). The residuals normal probability plot should roughly follow
a straight line (Kassambara, 2017).
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Figure 4.18 Normal QQ plot (Kassambara, 2017)

Outliers and high leverage points. The residuals versus leverage graph (Figure 4.19) may be
used to spot outliers and high leverage points (Kassambara, 2017). Outliers are observations

with standardized residuals higher than 3 in absolute value (James et al., 2013). For high
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leverage points, the leverage statistic can identify this. A value of this statistic greater than

2(P+1)/n implies a high-leverage observation (Bruce et al., 2020).
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Figure 4.19 Residuals vs Leverage plot (Kassambara, 2017)

4.3.10 Tree methods

Classification and Regression Trees (CART). Tree techniques are straightforward
interpretative models that illustrate how predictors influence response (Breiman et al., 1984)
as cited in (Mishra & Datta-Gupta, 2018). The basic concept is to (a) divide the predictor space
into nested rectangular areas, and (b) predict the response using a constant value for a
regression question or a categorical label for a classification question inside each region. As
displayed in Figure 4.20, the resultant binary tree (right panel) may discover structure in data
and to generate prediction rules that split output into groups based on input values (Mishra &

Datta-Gupta, 2018).
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Figure 4.20 Tree based partitioning (Mishra & Datta-Gupta, 2018)
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These methods are known as decision tree methods because the set of splitting criteria used to
divide the prediction space may be described in a tree (James et al., 2013). For this study, a
regression tree was used. In this section, the fundamental process of building regression tree
will be discussed but not for classification since the study used regression trees. There are

mainly two steps (James et al., 2013):

e A set of potential values X;, X>,..., X, which represents the predictor space, will be
branched into non-overlapping and J definite regions, R;, Ro,..., RJ.

e The same prediction will be made for every observation that falls inside the R; area.
This prediction corresponds to the mean response values for the training observations

in R/

How can the regions Rj,..., R; be constructed from step 1 above? For simplicity and ease of
comprehension of the resultant prediction model, we choose to partition the predictor space
into high-dimensional rectangles, or boxes. The aim is to locate boxes Rj,..., Ry that have the

least amount of RSS (James et al., 2013). This is given by Eq 4.22:

J
Z Z (Vi — Vr,)? Eq 4.22
j=1i€R;
Where,
Vr i mean response for training observations

However, considering every conceivable partition of the feature space into J boxes is
computationally impractical. As a result, recursive binary splitting method is used, which is
known as a greedy, top-down method. The method is top down because it starts at the top of
the tree and separates the predictor space sequentially, with each split represented by two new
branches deep down the tree. Besides, the method is greedy because, rather than looking
forward and selecting a split that will lead to a better tree at a later step, this method considers

the best split that is produced at each phase of the tree-building process (James et al., 2013).

If you want to perform recursive binary splitting, choose the appropriate predictor X; and the
cutpoint s so that partitioning the predictor space into the areas {X | Xj <s} and {X | Xj < s}

reduces RSS as much as possible. That is, all potential cutpoint s values for each predictor as
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well as all predictors Xi...., X, and then select the predictor and cutpoint that produces the
minimum RSS tree (James et al., 2013). We define the pair of half-planes for any j and s in
further detail as seen Eq 4.23 below (James et al., 2013):

R1(,s) = {X|X; < s} and R,(j,s) = {X|X; = s} Eq4.23

Then, we’re looking for the j and s values that will make Eq 4.24 as small as possible:

z Vi —Vr)% + 2 (Vi — Vr,)? Eq4.24
i:x;€R1(j,s) i: x;€R2(j,5)
Where,
Vr, mean response for the training observations in Ri(j,s)
Vr, mean response for the training observations in R(j,s)

Then we repeat the procedure, seeking for the optimal predictor and cutpoint to further separate
the data and reduce the RSS within each of the resultant regions (James et al., 2013).
Nonetheless, when you have a large dataset with many predictors, this entire tree, containing
all predictors, seems to be highly complicated and might be difficult to comprehend. Also, it’s
clear that a fully developed tree would overfit the training data, perhaps resulting in poor test
set performance (Kassambara, 2017). In order to avoid and overcome this issue we can reduce
or stop the tree to grow. Growing the tree to nearly full size and then picking the sub-tree that
optimizes some complexity criterion is a popular pruning method (Breiman et al., 1984) as
cited in (Mishra & Datta-Gupta, 2018). This is usually considered comprising a summation
term showing overall node impurity, as well as a penalty term combining a tuning, in other
words cost complexity parameter and the number of terminal nodes (Mishra & Datta-Gupta,
2018). Additionally, the trade-off between tree size and its goodness of fit to the data is
governed by this cost-complexity parameter in which large values of the parameter correspond
to smaller trees and vice versa. For instance, Figure 4.21 shows the pruning chart which

demonstrates this trade-off for a tree (Perez et al., 2005).
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Figure 4.21 Pruning (cost complexity) graph (Perez et al., 2005)

The most significant predictors may be easily spotted at the top of the tree once the optimum
tree has been formed. For example, Figure 4.22 displays a classification problem in which the
most significant well logs are the photoelectric (PEF), density (DT), and neutron porosity
(NPHI) (Mishra & Datta-Gupta, 2018).
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Figure 4.22 Decision tree (Perez et al., 2005)

Bagging. Bagging is a frequently used and particularly useful technique in the framework of
decision trees. In addition, bagging (aggregation) is a strategy for decreasing the variance of a
statistical learning method that may be used everywhere (James et al., 2013). It involves
repeatedly combining several bootstrapped subsets of the data and averaging the models to

create multiple distinct decision tree models from a single training dataset. Each tree is
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constructed independently of the others (Kassambara, 2017). Whereas bootstrap re-sampling
involves choosing a sample of n observations from the original dataset several times and
evaluating the model for each iteration. After that, an average standard error is produced, and

the results show the overall variance in the model’s performance (Kassambara, 2017).

Random Forest. Using a bagging method, random forest regression produces an ensemble of
trees to improve the performance of a single regression tree (Breiman, 2001) as cited in (Mishra
& Datta-Gupta, 2018). Variety is added by using subsets of the input data and/or predictors to
create many trees and therefore see the dataset from various viewpoints as an ensemble or
random forest, because using the whole input dataset would always result in the same

regression tree (Mishra & Datta-Gupta, 2018).

Essentially, each split considers a random subset of the predictors along with each tree in the
ensemble is trained using a bootstrap sample of the training data. The regression tree focuses
on moderately different aspects of the predictor-response relationship because of this
randomization. Thanks to an averaging step that lowers the variation caused by individual
trees’ noisy nature, the trees can integrate this information into a strong prediction tool (Mishra
& Datta-Gupta, 2018). A series of regression trees, each of which is constructed from random
selections of data points and predictors using the regression tree-building approach outlined in
the preceding section, is the starting point for creating an RF regression model (Figure 4.23)

(Mishra & Datta-Gupta, 2018).
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Figure 4.23 Random forest model (Mishra & Datta-Gupta, 2018)
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Likewise, each new observation is run through all the trees in the ensemble for prediction,
resulting in a distinct regression estimate. The average of the individual tree-level estimations
is the final model prediction. The built-in cross validation feature in the RF algorithm makes it
simple to validate the prediction model. Moreover, the remaining observations are referred to
as out-of-bag samples, since each tree only sees a portion of the data. Those out-of-bag samples
may be considered as independent test data and used to produce error rate estimates to assess
model performance for that tree (Mishra & Datta-Gupta, 2018). Further details regarding RF

classifier and construction of the RF model can be found in (Hastie et al., 2008).

Gradient Boosting Machine (GBM). Gradient boosting of regression trees is appropriate for
mining less than clean data, also they produce highly robust, competitive, and interpretable
techniques for both regression and classification (Friedman, 2001). Instead of constructing a
single complicated model, the primary idea behind GBM is to gather prediction power from
many small models. However, unlike the RF model, these trees are built sequentially rather
than in simultaneously. To compensate for the shortcomings of the previous tree, a new tree is
constructed (Mishra & Datta-Gupta, 2018). To put it another way, if the training data is fitted
poorly for certain predictor values, the following tree will place a more focus on observations
in that problematic region, ensuring that the predictions are more accurate. The ultimate model
may be thought of as a thousand-term linear regression model, with each term being a
regression tree. When the outputs of many weak models are coupled to produce a more accurate
prediction, this process is normally referred to as boosting (Hastie et al., 2008) as cited in

(Mishra & Datta-Gupta, 2018).

Starting with a base model (i.e., tree), the general GBM process introduces a correction term
(i.e., new model) to compensate for residuals of the prior tree, as indicated by negative
gradients of a squared-error loss function. The caveat for GBM models is that it models the
noise and overfit when the sequential fitting process is repeated multiple times. This problem

can be addressed in a number of ways (Mishra & Datta-Gupta, 2018):

e Applying a fractional multiplier or learning rate to the correction term so that the
updated model improves the fit more slowly.

e Putting limitations on the fitting parameters, such as the maximum number of iterations.

e Instead of utilizing the whole dataset, employing a bootstrap sample of the data at each

iteration.
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Chapter 5 Results and Discussion

The major purpose of this chapter is to discuss the results obtained for recognition of the main
controlling parameters of CO> sequestration in depleted unconventional shale reservoirs made
by the use of statistical modeling and data-analytics approach. This analysis involved the

following cases:

e Descriptive statistics to understand and describe the data

e Perform a visual analysis through histograms and box plots

e Achieve a visual analysis through scatterplots and scatterplots combined with marginal
histograms

¢ Quantify correlation between the volume of CO; sequestered and each input variable

e Perform a supervised learning approach such as OLS and tree-based methods to predict
the volume of CO> sequestered

e Examine the main drivers of CO; sequestration performance in unconventional

reservoirs

5.1 Descriptive statistics

When studying datasets, you should first gain a sense of the dataset at hand by asking questions
like these (Holdaway, 2009):

e Which values are the smallest and largest?

e For this set of data, what would be a suitable single representative number?

e How wide is the variance or spread?

e s the dataset distributed evenly throughout a range of values or they are clustered

around one or more values?

These questions can be answered through descriptive statistics or summary statistics for the
reason that they describe the data. In this study descriptive statistics was performed for both

the reservoir and operational parameters.

5.1.1 Reservoir parameters

Table 5.1 shows the summary statistics for the reservoir parameters, which contain the
minimum value, maximum value, mean (X), standard deviation (o), variance (0?) and the

skewness which were obtained from this study.
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Initially, note that in Table 5.1 the mean value for fracture porosity is indeed lower than the
matrix porosity (1.29% vs 7.56%), which is sensible and accurate since this is a dual porosity
model which implies that there are two distinct porous media interacting in which the matrix
blocks have high storativity (the fluids are mainly contained in the matrix blocks). The amount
of fluids contained in the fracture is considerably negligible which entails that the fracture

system has low storativity.

Furthermore, note that in Table 5.1 the mean value for fracture permeability is much higher
than matrix permeability (0.00062 md vs 0.0000495 md) this is because the fractures are highly
conductive and provide the total mobility (fracture openings are large than matrix pore throat
dimensions). The matrix blocks supply the storage capacity, so the permeability of the fracture

is high compared to the matrix.

Additionally, it can be seen in Table 5.1 that the standard deviation is larger for matrix porosity
compared to fracture porosity which implies that the values of matrix porosity are more spread
out compared to fracture porosity. Similarly, the standard deviation of fracture permeability is
higher than matrix permeability which indicates that the values of fracture permeability are
more spread out compared to matrix permeability. Finally, the overall skewness of reservoir
parameters is approximately symmetric due to low values of skewness except for Langmuir
Volume CO2 which depicts moderately skewed behavior compared to other parameters. Hence,

reservoir parameters seem to follow a normal distribution.
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Table 5.1 Descriptive statistics for reservoir parameters

Parameter Min Max x c o’ skewness  unit
Thickness (/) 100 300 204 57 3238 -0.08 ft
Matrix Porosity (¢n) 5.001 9.99 7.56 1.44 2.08 -0.05 %
Fracture Porosity (¢/) 0.5007 2 1.29 0.42 0.18 -0.11 %
Water Saturation in Matrix (Swm) 5.002 14 9.52 2.61 6.83 -0.004 %
Matrix Permeability (k) 1.02E-06 1.01E-04 4.95E-05 2.91E-05 8.47E-10 0.05 md
Fracture Permeability (4y) 1.02E-04 1.10E-03 6.20E-04 2.79E-04 7.76E-08 -0.04 md
Fracture Spacing (Axs) 0.901 3 1.98 0.607 0.37 -0.06 ft
Initial Pressure (P;) 3001 8000 5420 1436 2063331 0.06 psi
Initial Temperature (7;) 120 200 160 23 527 -0.007 F
Langmuir Volume CHa4 (Vi-cr4) 50 250 148 58 3324 0.05 scf/ton
Langmuir Pressure CH4 (Pr-cH4) 200 1000 596 232 53607 0.03 psi
Langmuir Volume CO2 (V1-co2) 109 1486 586 293 85730 0.67 scf/ton
Langmuir Pressure CO2 (P-co2) 200 1000 610 231 53362 -0.06 psi
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5.1.2 Operational parameters

Table 5.2 shows the descriptive statistics for the operational parameters which includes the
minimum value, maximum value, mean (X), standard deviation (o), variance (0?) and the

skewness.

First, note that in Table 5.2 the mean value of SRV-kyis higher than the mean value of fracture
permeability in Table 5.1 (0.00439 md vs 0.00062 md) this is sensible because of the formation
being hydraulically fractured, a larger permeability in the SRV-zone should be expected. It is
seen from Table 5.2 that the maximum values of SRV-kr and SRV-¢; are much higher than the
maximum values for the fracture permeability and fracture porosity in Table 5.1, also this is
due to the fact that these high values demonstrate that for formations which are hydraulically

fractured fracture permeability and porosity would be normally high.

Additionally, in Table 5.2 the standard deviation of the length of the reservoir in x direction
(Lx) is larger compared to length of the reservoir in y direction (L,), which illustrates that the
values for L, are more spread out than those for L,. Likewise, note that the SRV-kr1s moderately
positively skewed compared to SRV-Axs which is approximately symmetric (0.77 vs 0.38).
Finally, overall, the operational parameters seem to have high skewness values compared to
reservoir parameters (except for Langmuir Volume of CO2). For the reason that operational
parameters seem to deviate from a normal distribution and display to an extent lognormal
distribution due to being right skewed. Together with the standard deviation, operational
parameters have larger values, which indicate that they are more spread out than reservoir

parameters.
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Table 5.2 Descriptive statistics for operational parameters

Parameter Min Max x c o’ Skewness  unit
Horizontal Wellbore Length (Lw) 2001 4999 3590 847 717335 -0.11 ft
Hydraulic Fracture Length (L)) 201 1000 629 226 50944 -0.12 ft
Length of Reservoir (Lx) 2457 7963 5065 1271 1614276 0.05 ft
Length of Reservoir (L)) 260 1989 1025 400 159795 0.12 ft
SRV Fracture Porosity (SRV-¢y) 0.615 2.97 1.75 0.58 0.34 -0.05 %
SRV Fracture Permeability (SRV-ky) 3.11E-04 1.31E-02  4.39E-03 2.70E-03 7.29E-06 0.77 md
SRV Fracture Spacing (SRV-Axy) 0.366 2.39 1.19 0.44 0.19 0.38 ft
Total Production Time (#yr0q) 7300 18242 12748 3159 9979081 0.01 days
Fracture Pressure (Pfac) 3164 11679 6949 1918 3679291 0.17 psi
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5.2 Univariate data analysis

For univariate data analysis, the fundamental techniques that were used include graphing the
box plots and histograms. The visual analysis of these methods will help us determine if the

data has outliers, analyze its symmetry and the degree of skewness.

5.2.1 Box plots for reservoir parameters

In Figure 5.1, it can be observed that the median is located at the center of the interquartile
range (IQR) for the reservoir parameters box plots. This implies that the sample values are
equally packed between the median and the IQR, which again signifies that the reservoir
parameters sample values are evenly distributed on both sides of the median. Furthermore,
there are no outliers depicted since there are no points which are 1.5 IQR above the third

quartile or higher than 1.5 IQR lower than the first quartile.

However, in Figure 5.2 the Langmuir Volume COz box plot shows the median is at a lower
position from the top half of the box plot (third quartile). The upper whisker is longer than the
lower one, this implies that the data has a longer upper tail than the lower tail. The Langmuir
Volume CO> values are pulling the box plot upward. As a result, there is more variability of
the Langmuir Volume CO: box plot. Moreover, the box plot depicts outliers since there are
points which are 1.5 IQR above the third quartile. But these outliers can be due to the

lognormality behavior of Langmuir Volume COo.

Finally, reservoir parameters box plots for Langmuir isotherms (Figure 5.2) do not display
evenly distributed sample values as compared to reservoir parameters in Figure 5.1, as they

have more variability because of the slight skewness that they possess.
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(a) Fracture Spacing Box Plot (b) Initial Pressure Box Plot (c) Initial Temperature Box Plot (d) Fracture Permeability Box Flot
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Figure 5.1 Reservoir parameters box plots: a) Fracture spacing, b) Initial pressure, ¢) Initial temperature, d) Fracture permeability, ¢) Matrix
permeability, f) Fracture porosity, g) Thickness, h) Water saturation
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(2) Langmuir Pressure CO2 Box Plot (b) Langmuir Volume CH4 Box Plot (c) Langmuir Pressure CH4 Box Plot (d) Langmuir Volume CO2 Box Plot
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Figure 5.2 Reservoir parameters box plots for Langmuir isotherms: a) Langmuir pressure CO», b) Langmuir volume CHg, ¢) Langmuir pressure
CHs4, d) Langmuir volume CO»
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5.2.2 Box plots for operational parameters

It can be observed from Figure 5.3 that the box plots of SRV xs and SRV kf indicate the median
is located at a lower position from the top half of the box plot (third quartile). The upper whisker
is longer than the lower one for both box plots, implying that the sample data has an elongated
upper tail than the lower tail. As a result, these variables are higher since they are pulling the
upper part of the box, which shows more variability as well. The other operational parameters

in Figure 5.3 seem to display an even distribution on both sides of the median.

Moreover, it can be noted from Figure 5.3 that SRV kf box plot depicts outliers since there are
points which are 1.5 IQR above the third quartile. Nevertheless, these outliers can be because
of the lognormality behavior of SRV kf, as shown previously in descriptive statistics, that this
parameter displays a moderately positively skewed nature which causes the lognormal

behavior.

Finally, note that the reservoir parameters in Figure 5.1 do not display any form of variability
and outliers. The reservoir parameters are evenly distributed (except for Langmuir Volume
COy). Nonetheless, for operational parameters (Figure 5.3) it can be observed that they display
slight variability, and some parameters depict outlier points. This difference in variability
between reservoir parameters and operational parameters can be due to the higher standard
deviation values shown by operational parameters as compared to reservoir parameters and this
standard deviation results in values being more spread out and hence the variability in the

operational parameters.
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(a) SRV_xs Box Plot (b) Fracture Length Box Plot () Lx Box Plot (d) Fracture Pressure Box Plot (e) SRV _phi_fBox Plot
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Figure 5.3 Operational parameters box plots: a) SRV _xs, b) Fracture length, ¢) Lx d) Fracture Pressure, €) SRV _phi_f, f) Total production time,
g) Horizontal wellbore length, h) Ly, i) SRV_kf
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5.2.3 Box plot for performance metric

In this study, the main performance metric was the cumulative CO» injected. This variable was
the primary response variable analyzed in this study. It quantifies the volume of CO:

sequestered.

It is seen from Figure 5.4 that the box plot shows the median is lower. This box plot clearly
indicates the effect of variability and the upper half of the IQR is more stretched out because
the values are higher at the upper end of the distribution. It can be realized also that the box
plot shows outlier points, however these points can be because this box plot is highly positively
(right) skewed. This skewness causes the lognormal behavior which displays the points that
are 1.5 IQR above the third quartile. Hence, the performance metric (response) variable
displays more variability than the input variables, which include both the reservoir and
operational parameters. This variability can be because of the spread in values for the

cumulative CO; injected.

Cumulative Injected CO2 Box Plot

_ Curnulative injected CO2 [scf]

Figure 5.4 Cumulative CO» injected box plot

60



5.2.4 Histograms for reservoir parameters

First, note that in Figure 5.5, the reservoir parameters histograms display a nearly symmetric
shape. This was seen in the descriptive statistics summary when the values of the skewness of
reservoir parameters were close to zero. Furthermore, Figure 5.6 for Langmuir volume CO>
histogram displays a right skewed behavior. This was also clear in the descriptive statistics
summary there was a moderately positive value for the skewness. The visual analysis of the
histogram confirms this behavior and verifies the variability observed in the previous box plot,

and hence, the lognormal pattern in the histogram is clearly visible.

5.2.5 Histograms for operational parameters

In Figure 5.7, it can be observed that most of the operational parameters are almost symmetric
in terms of the shape of the histogram. Almost all of them do not exhibit any degree of skewness
except for SRV _kf and SRV xs. These histograms clearly depict that most of the sample values
are at the left and the right side of the tail is longer, hence this is a right skewed histogram and
lognormal behavior. Moreover, the two parameters stimulated reservoir volume fracture
permeability and fracture spacing (SRV_kf and SRV xs) seem to display a similar pattern. The
similarity in the pattern can be since these two parameters are essential to describe the hydraulic

fractures for the SRV zone.

Finally, between reservoir and operational parameters, it can be clearly observed that reservoir
parameters do not display any degree of skewness for their histograms except for Langmuir
volume CO,. Whereas, for operational parameters, SRV kf and SRV xs display moderate
positive skewness and the other operational parameters are almost symmetric. Therefore,
overall, the operational parameters have more degree of skewness and variability as compared

to reservoir parameters.
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Figure 5.5 Reservoir parameters histograms: a) Fracture spacing, b) Water saturation, c) Fracture porosity, d) Matrix porosity, ) Thickness, f)

Matrix permeability, g) Initial pressure, h) Initial temperature, i) Fracture permeability
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(a) Langmuir Volume CO2 Histogram (b) Langmuir Pressure CH4 Histogram (c) Langmuir Pressure CO2 Histogram (_d)langmi:\'ohmeclﬁ Histogram

L E

v ps . Y o -
Langmur Volume [sciton] Langerur Pressuee (psi]

Figure 5.6 Reservoir parameters histograms for Langmuir isotherms: a) Langmuir volume CO2, b) Langmuir pressure CHa, ¢) Langmuir pressure
CO3, d) Langmuir volume CH4
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Figure 5.7 Operational parameters histograms: a) Total production time, b) Ly, ¢) Length of fracture, d) SRV _kf, ) SRV _xs, f) Lx, g) Fracture
pressure, h) Hor. wellbore length, i) SRV _phi f
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5.2.6 Histogram for performance metric

It is seen from Figure 5.8 that the histogram is not symmetric. A histogram in which the tail on
the right-hand side is long is said to be positively skewed (skewed to the right). This histogram
shows that the mean value is higher than the median. Moreover, the sample data points appear
to be more concentrated to the left as displayed and it is unimodal since it has only one peak.
This histogram clearly depicts a lognormal behavior, as seen from previous visual analysis of
reservoir parameters and operational parameters. As a result, there might be a relationship and
dependency between some of the reservoir parameters and operational parameters with the
cumulative CO; injected. Hence, the next part will be to observe this relationship and visualize

the results obtained from bivariate data analysis.

Cumulative Injected CO2 Histogram

count

Occurences
+

2001

0e+00 1e+10 2e+10 3e+10

Cumulative Injected CO2 [scf]

Figure 5.8 Cumulative CO; injected histogram

5.3 Bivariate data analysis

For bivariate data analysis, the most significant methods used were graphing the scatterplots
along with scatterplots with marginal histograms to visualize the relationship between the
volume of CO; sequestered (Cumulative CO; injected) and each input variable (reservoir and
operational parameters). Later, the relationship between these two variables was quantified by
examining the correlation between the two variables (volume of CO2 sequestered and each

input variable (predictors)).
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5.3.1 Reservoir parameters scatterplots and marginal histograms

It can be realized from Figure 5.9 from the shape and pattern of the data points, there is a
positive linear relationship between fracture permeability and cumulative injected CO> (Figure
5.9) and there is a positive linear relationship between thickness and cumulative injected CO»
(Figure 5.9). These two scatterplots display a modest relationship. The other reservoir

parameters show a nonmonotonic relationship with the cumulative injected COo.

It can be observed from Figure 5.11 that the Langmuir isotherms do not seem to display any
visual evidence of a relationship with the cumulative injected CO,. Furthermore, in Figure
5.10, it can be observed that all the reservoir parameters appear to have a symmetric distribution
from their marginal histograms, while the cumulative injected CO; displays the same right
skewed behavior. This visual analysis just confirms the previous analysis of histograms, but

now it is clearer when it is visualized together with the performance metric.

Finally, note that in Figure 5.12 all Langmuir isotherms display a symmetric distribution except
for Langmuir volume COo, it displays a right skewed behavior, like the cumulative injected
CO,. However, the relationship is weak and there is no obvious pattern between the two

variables.
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Figure 5.10 Reservoir parameters scatterplots with marginal histograms: a) Matrix permeability, b) Matrix porosity, ¢) Water saturation, d)
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Figure 5.11 Reservoir parameters scatterplots for Langmuir isotherms: a) Langmuir volume CO3, b) Langmuir volume CH4, ¢) Langmuir
pressure CHy, d) Langmuir pressure CO>
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5.3.2 Operational parameters scatterplots and marginal histograms

First, note that in Figure 5.13 from the shape and pattern of the data points there is a positive

linear relationship between:

e Stimulated reservoir volume fracture permeability (SRV kf) and cumulative injected
CO2
e Horizontal wellbore length (Lhw) and cumulative injected CO»

e Length of reservoir in x direction (edge x) and cumulative injected CO>

The other operational parameters seem to display a nonmonotonic relationship with the
cumulative injected CO2. Moreover, in Figure 5.14, both marginal histograms show a moderate
positively skewed pattern. This behavior confirms the previous analysis made that both
stimulated reservoir volume fracture permeability (SRV_kf) and cumulative injected CO, are
positively skewed. Furthermore, the presence of the previous outlier points can now be clearly
explained that the behavior was mainly because of the dependency between these two
variables, and this causes additional lognormality between the two parameters. Whereas the

other operational parameters in Figure 5.14 show an approximately symmetric distribution.

Finally, it can be observed that, between reservoir parameters and operational parameters,
operational parameters seem to display a more significance to the performance metric as
compared to reservoir parameters, since more operational parameters show a monotonic
relationship with the performance metric. However, the strength of this association will be

elaborated more by quantifying the correlation.
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5.3.3 Correlation test

For the correlation test, two types of correlation coefficients were used, which are the Pearson
correlation coefficient and the Spearman correlation coefficient. As Mishra & Datta-Gupta
(2018) mention that, Spearman correlation coefficient is more robust and considers nonlinear
association, whereas Pearson can be sensitive to data outliers and clusters, hence it is better to

compute both measures.

It is seen from Table 5.3 that there is a modest positive correlation between thickness and
cumulative injected CO> with a Pearson value of 0.303 and Spearman value of 0.333.
Moreover, there is a modest positive correlation between fracture permeability and cumulative
injected CO> with a Pearson value of 0.341 and Spearman value of 0.394. Also, there is a weak

correlation between initial temperature and cumulative injected COo.

Table 5.3 Correlation between reservoir parameters and cumulative injected CO>

Parameter Pearson’s Spearman

Thickness (/) 0.303 0.333

Matrix Porosity (¢m) 0.092 0.093

Fracture Porosity (¢y) 0.030 0.031

Water Saturation in Matrix (Sym) -0.011 -0.010

Matrix Permeability (k) -0.095 -0.066

Fracture Permeability (%) 0.341 0.394

Fracture Spacing (Axs) -0.013 -0.006

Initial Pressure (P;) -0.021 -0.008

Initial Temperature (77) 0.132 0.134

Langmuir Volume CHs4 (Vi-cr4) 0.072 0.058

Langmuir Pressure CH4 (Pr-cr4) 0.012 0.021

Langmuir Volume CO: (Vi-co2) 0.104 0.087
Langmuir Pressure CO2 (Pr-co2) 0.021 0

Furthermore, in Table 5.3, the Langmuir isotherms do not seem to show any modest correlation
with the cumulative injected CO,. However, this does not mean that there are not significant
parameters in explaining the behavior of CO2 sequestration in unconventional reservoirs they
simply do not display a monotonic relationship with the performance metric, hence their

relationship might be nonlinear or quadratic type. In addition, the significance of the variables

74



thickness and fracture permeability to the performance metric will be explained in more details

in the variable importance part of the results section.

It can be observed from Table 5.4 that there is a modest positive correlation between SRV
fracture permeability and cumulative injected CO> with a Pearson value of 0.465 and Spearman
value of 0.536. Moreover, there is a modest positive correlation between length of reservoir
(Lx) and cumulative injected CO> with a Pearson value of 0.270 and Spearman value of 0.307.
Additionally, there is a modest positive correlation between horizontal wellbore length and
cumulative injected CO, with a Pearson value of 0.268 and Spearman value of 0.305. The
significance of these variables SRV fracture permeability, length of reservoir in x direction and
horizontal wellbore length to the cumulative injected CO» will be assessed more clearly in the
variable importance section when the screening will be performed, which will be explained in

this results section.

It is quite clear that a reasonable number of operational parameters display a modest positive
correlation with the cumulative injected COxz. For the reason that, they are vital to describe the
SRV-zone in which nearly all the injected CO2 will be reserved in this zone. Finally, the results
obtained from Pearson and Spearman correlations for both reservoir and operational parameters
are consistent with the visual analysis through cross-plots (scatterplots) made earlier, this

reveals the relevance of performing EDA.

Table 5.4 Correlation between operational parameters and cumulative injected CO»

Parameter Pearson’s Spearman
Horizontal Wellbore Length (L) 0.268 0.305
Hydraulic Fracture Length (Ly) 0.096 0.113
Length of Reservoir (Lx) 0.270 0.307
Length of Reservoir (L)) 0.103 0.119
SRV Fracture Porosity (SRV-¢y) 0.024 0.027
SRV Fracture Permeability (SRV-ky) 0.465 0.536
SRV Fracture Spacing (SRV-Axy) -0.020 -0.024
Total Production Time (£yr04) 0.003 0.002
Fracture Pressure (Pfiac) -0.043 -0.023
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5.4 Multivariate analysis

The last part of EDA in this study comprised presenting a correlation matrix which extends the
ideas discussed previously but now it will involve all variable pairs, including reservoir and

operational parameters, with the performance metric.

Figure 5.15 presents the correlation matrix for all variable pairs (dependent and independent).
One of the distinct features of the correlation matrix is that it is symmetrical. In this correlation
matrix, it can be seen there is a dependency between SRV fracture permeability (SRV_kf) and
fracture permeability (PermF), SRV fracture permeability (SRV_kf) and cumulative injected
COz (cum_inj). Furthermore, SRV fracture spacing (SRV_xs) depends on fracture spacing (xs).
SRV fracture porosity (SRV_phi f) also depends on fracture porosity (PoroF). Likewise,
Langmuir volume CH4 (V1_ch4) depends on Langmuir volume CO; (V1 _co2).

The dependency between independent variables (Predictors), as well as between dependent
(Response) and independent variables is the reason for observing the previous outlier points.
Because this is a dataset developed from numerical simulation scenarios, the outlier points
cannot be because of an incorrect input value into the dataset. Hence, this dependency causes

additional lognormality, which is clear in the histograms of these variables and the box plots.

Thickness
PoroM
PoroF
PermM
PermF

xS
WatSatM
VI_ch4

Pl ch4
Vi_co2
Pl_co2
InitPres
InitTemp
TimeProd_Total
Pfrac

LHW

Lf

edge_x
edge_y
SRV _phi_f
SRV_kf
SRV_xs
cum_inj
cum_adsorp_co2

Figure 5.15 Correlation matrix
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5.5 Predictive modeling

The EDA method performed in the preceding section is an essential technique used in this
study to verify the parameters that have a relationship with the cumulative CO; injected along
with determining patterns and trends in order to perform predictive modeling. In this study two
fundamental techniques were applied to predict cumulative CO> injected which are OLS
regression and tree-based methods. These predictive models are significant to provide accurate

predictions of CO> sequestration performance using the dataset available.

5.5.1 Ordinary Least Squares Regression

In this study, since the input variables involved are over one for both reservoir and operational
parameters, multiple linear regression will be used, which is also another term for OLS
regression. A list of all the variables used in this study is shown in Table 5.5. The response
variable (performance metric) was cum_inj, which measures the cumulative CO> injected in
standard cubic feet (scf). The predictors which contain 22 variables include both the reservoir

and operational parameters.

A typical first step in multiple linear regression is to check if at least one of the predictors
Thickness, PoroM,..., Pfrac is useful in predicting the response variable (cum_inj). In order to
confirm this step, the F-statistic was computed by first fitting a multiple linear regression for
all the variables. It can be seen in Table 5.6 that the residual standard error is 2.742E+09. This
value represents the standard deviation of the residual values in the model. This value shows a
high standard deviation, which would imply that the residuals are not following a normal
distribution. Moreover, the multiple R-Squared value is 0.5074. This value represents the
goodness of fit and the variability explained by the 22-variable model. A value of R?

corresponding to 0.5074 explains a moderate portion of the variance in the response variable.

It is seen from Table 5.6 that the F-statistic is 118.2. This value provides an appealing sign that
at least one of the reservoir or operational parameters must be related to cumulative CO>
injected. Furthermore, the p-value related to the F-statistic is 2.2E-16, which is approximately
zero, hence this is significant evidence that at least one of the reservoir or operational

parameters is associated with the cumulative CO; injected.
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Table 5.5 Variables in the dataset

Description Variable Type
Cumulative CO> Injected cum_inj Response
Thickness (/) Thickness
Matrix Porosity (¢m) PoroM
Fracture Porosity (¢y) PoroF
Water Saturation in Matrix (Swm) WatSatM
Matrix Permeability (k) PermM
Fracture Permeability (k) PermF
Fracture Spacing (Ax;) XS
Initial Pressure (P;) InitPres
Initial Temperature (7;) InitTemp
Langmuir Volume CHy (Vi-ch4) V1 ch4
Langmuir Pressure CH4 (Pr-cr4) Pl ch4 )
Langmuir Volume CO2 (Vz-co2) V1 co2 Predictor
Langmuir Pressure CO2 (Pr-co2) Pl co2
Horizontal Wellbore Length (L) LHW
Hydraulic Fracture Length (L)) Lf
Length of Reservoir (L) edge x
Length of Reservoir (Ly) edge y
SRV Fracture Porosity (SRV-¢)) SRV phi_f
SRV Fracture Permeability (SRV-k)) SRV _kf
SRV Fracture Spacing (SRV-Axy) SRV xs
Total Production Time (#yroq) TimeProd Total
Fracture Pressure (Pfiac) Pfrac
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Table 5.6 Model summary for 22 variables

Quantity Value
Residual standard error 2.742E+09
Multiple R-squared 0.5074
Adjusted R-squared 0.5031
F-statistic 118.2
p-value 2.2E-16

It is quite clear that the results in Table 5.6 are corresponding to the preceding analysis of EDA
that indeed there are parameters which are associated with the response variable. The next part
of the analysis was to determine which subset of the predictors is associated with the response

variable to fit a single OLS model using those predictors.

It can be seen in (Appendix A1) that the asterisk in the findings shows that a certain parameter
is included in the model. For example, this report (Appendix A1) suggests that Thickness,
LHW, and SRV _kf make up the optimal three-variable model. However, we can fit all 22-
variable models and choose the best overall model. RSS and R? are one of the two metrics that
can assess a model that has a low training error. It is observed from (Appendix A1) that the R?
value increases from 22% when only one variable is included in the model, to almost 51%
when all variables are included. Furthermore, Figure 5.16 shows, that as the number of
variables in the model grows, RSS falls monotonically. These two metrics might not be ideal
because a low RSS or high R? suggests a model with a low training error, but we want to choose
a model with a low-test error, RSS and R? are not appropriate for selecting the best model from
a group of models (James et al., 2013). As a result, Cp, BIC, or adjusted R? can be used to
modify the training error to account for overfitting bias. A model with a low value for C, and

BIC is optimal, but a model with a high adjusted R? is acceptable.
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Figure 5.16 RSS plot

It is observed from Figure 5.17 that a 15 variable model would be optimal from the 22-variable

model. An adjusted R? value of approximately 0.5 would correspond to a 15-variable model.
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Figure 5.17 Adjusted R? plot

Moreover, Figure 5.18 shows the C,, with the number of variables. As explained previously, a

low statistic of Cp, will correspond to the optimal model. Here, C, is approximately zero, and
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this value gives an optimal model of 14 variables. Together with Cp, in Figure 5.19 a low value

of BIC will also correspond to an optimal model, in this case an 11-variable model.
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Figure 5.18 C; plot
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Figure 5.19 BIC plot

Therefore, between the three metrics observed, BIC statistic displayed the smallest value and
a reasonable number of variables for the optimal model, which was an 11-variable model. For
this 11-variable model the coefficients were estimated. The corresponding equation shows the

model.
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cum;,; = ag + a;Thickness + a,PoroM + azPermM

+ a4Vl co2 + asInitTemp + agLHW

Eq 5.1
+ a,Lf + agedge_x + agSRV _phi_f
+ al()SRV_kf + a11$RV_xs
The regression coefficients are:
a, = —1.74 x 1010 a, =1.76 x 10° ag = 4.36 x 10°
a; =2.47 x 107 as =2.37 x 107 ay = 4.11 x 108
a, =2.23 x 108 a, = 9.89 x 10° a0 =7.51x 101
a; = —6.28 x 1012 a, =1.57 x 10° a;; = —3.59 x 108

Hence, this OLS regression model should not be considered as a universal model for oil and
gas applications, but its applicability should be in similar circumstances to the ones we have
seen in this study. Another approach that can select among a collection of models is a k-fold
cross-validation method. The k-fold cross-validation can also estimate the test error or model
performance. Because the adjusted R?, C, and BIC are computed based on training data, they
might be prone to overfitting therefore the k-fold cross-validation represents a better
alternative. It can be noted from Figure 5.20 that the k-fold cross-validation selects a 14-
variable model based on the mean cv errors. Finally, best subset selection was performed on

the full dataset to get the 14-variable model and extract its coefficients (Appendix A2).
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Figure 5.20 k-fold cross-validation plot
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cum;,; = ag + a;Thickness + a,PoroM + azPermM

+ a,PermF + asVI_ch4 + agVl1_co2
+ a;InitTemp + agTimeProd_Total

Eq 5.2
+ agLHW + aqoLf + a1edge_x
+ a,SRV_phi_f + a3SRV_kf
+ a4SRV _xs
The regression coefficients are:
a, = —1.8 x 101° as = —3.85 x 10° a0 =1.57 x 10°
a; =2.47 x 107 ag = 2.36 x 10° a;; = 4.15 x 105
a, =2.26 x 108 a, =2.38 x 107 a;; =4.16 x 108
a; = —6.09 x 1012 ag = 4.2 x 10* a;3 =7.19 x 1011
a, =4.91 x 1011 a, =1.03 x 10° a;, = —3.45x 108

This 14-variable model obtained from Eq 5.2 is only valid for the circumstances used in Table
3.1 underlying studies. As a result, this OLS model should not be seen as a general proxy model
that can be used to any unconventional reservoir; rather, its application should be confined to
the conditions described in this work. Finally, this 14-variable model will build a single
predictive model for the full training dataset. At the same time, evaluating the goodness of fit

using AAE and MSE.

Figure 5.21 is the predicted versus observed cumulative injected CO» (scf) for the multiple
linear regression model using 14-variables. The diagonal dashed black line represents the
model fit. It can be observed that not all the points lie near the 45-degree line. This shows a

moderate fit to the training data.
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OLS Prediction on Full Training Data Set
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Figure 5.21 Predicted vs. observed cumulative injected CO; for the OLS model

Moreover, the R? value (Appendix A2) corresponding to the model fit is close to 51%. For the

goodness of fit the corresponding values are:

AAE = 1.89 Bscf
MSE = 7460655 kBscf*

These values will later be compared to tree-based methods to find out which statistical and
machine-learning algorithm is describing the best performance for CO: sequestration in
unconventional reservoirs. Finally, after performing multiple linear regression, the ultimate
step would involve checking for potential problems and if the regression model assumptions

are satisfied. This can be verified through diagnostic plots as seen in Figure 5.22.
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Figure 5.22 Regression diagnostic plots

It can be seen in Figure 5.22 that:

e The residuals display a U-shaped pattern in the residuals vs fitted plot, which provides
an indication of non-linearity

e There is a non-constant variance (heteroscedasticity) observed in the scale location plot

e The residuals are not normally distributed, as seen in the Normal Q-Q plot

e Outlier are observed in residuals vs leverage plot

Since the OLS, regression model did not satisfy the linear regression assumptions by
transforming the response variable and some predictor variables which had high skewness
values will aid in modifying the diagnostic plots as well as improving the regression model.
Therefore, it can be observed Figure 5.23 that after log transformation, the regression
diagnostic plots seem to adhere to the linear regression assumptions. Note that in (Appendix
A2) the R? value has increased from 51% to 67% which shows the importance of log

transformation when you observe a non-linear relationship.
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Figure 5.23 Diagnostic plots after log transformation

5.5.2 Tree-based methods

In the previous analysis which involved OLS regression modeling, the model had assumptions
needed to be followed and it cannot capture nonlinear behavior directly until there is a
transformation performed. However, tree-based methods do not impose any initial assumptions
regarding linearity, hence they can capture nonlinear behavior and they are efficiently

understandable.

It is observed from Figure 5.24 that the regression tree sections the reservoir and operational
parameters into 20 regions of space. These 20 regions represent the terminal nodes for the tree.
Moreover, only 10 of the 22 variables have been used in constructing the tree. The usefulness
of regression trees can be displayed in Figure 5.24. From this regression tree, the main
predictors which are influencing the cumulative injected CO> are the ones located around the
top. These include SRV_kf, Thickness and LHW. The regression tree described in Figure 5.24
contains 20 regions of space and 10 variables used in the tree construction. Regression trees
are normally interpretable. However, in this case, with many regions and many predictor

variables, it's difficult to interpret. Also, this dataset is quite large.
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Moreover, this full regression tree might overfit the training data and this leads to poor test
error performance. Hence, an approach to prune the tree to make it more compact and easily

interpretable would be a pleasant scenario.

A complexity parameter (cp) can be used which prunes the tree by penalizing the tree if it has
too many splits. 0.01 is the default value. A larger cp value generates a smaller tree
(Kassambara, 2017). It can be noted in Figure 5.25 that the cp value which would boost the
accuracy of the model and prune the tree is 0.012. Finally, this value was used to provide the
final version of the regression tree in a more compact form, which can be seen in Figure 5.26.
The regression tree in Figure 5.26 can be interpreted as follows: the regression tree has a section
with a high mean response value of cumulative injected CO; and a section with a low mean
response value. It can be noted in Figure 5.26 that observations with SRV_kf < 0.0054 md are
assigned to the left of the branch in the top split. This group is further subdivided by SRV_kf
and edge x. An example of a low-volume sequestration scenario (low mean response value)
would be SRV _kf < 0.0054 md and SRV_kf < 0.0029 md which gives a mean response value
of approximately 2 Bscf.
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Figure 5.24 Unpruned regression tree
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For instance, in Figure 5.26 a high-volume sequestration case would be when:

e SRV kf >= 0.0054 md, Thickness < 196.2 ft and LHW >= 3927 ft which would

correspond to a mean response value of approximately 6.4 Bscf.

This process can be continued until all the branches are interpreted. Finally, it can be concluded
from the regression tree that the most influential parameters in determining the performance of
CO; sequestration in unconventional shale reservoirs are SRV_kf, Thickness, edge x and
LHW. Also, the model prediction error can be estimated by a cross-plot of actual and predicted

values from the pruned tree. This corresponds to a prediction error of:

MSE = 11005778 kBscf*>
RMSE = 3.32 Bscf
Rsquare = 0.31 = 31%

2e+10 3e+10
1

Cumulative_Injected_CO2 test

1e+10

Oe+00

5.0e+09 1.0e+10 1.5e+10 2.0e+10

Prediction_from_Decision_Tree

Figure 5.27 Predicted vs observed cumulative injected CO; for regression tree

To improve the results of the previous regression tree, more powerful techniques were
employed, such as bagging, random forest and gradient-boosting machine. As explained
previously in the methodology chapter, these methods aid in decreasing the variance of a
statistical-machine learning algorithm as well as improving the performance of these methods.
Three cross-plots were made for these methods to assess the prediction error and check if there
is an improvement from the preceding method. The first cross-plot as seen in Figure 5.28 for

bagging produced the following prediction error:
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MSE = 7484000 kBscf?
RMSE = 2.74 Bscf
Rsquare = 0.52 = 52%

The second cross-plot of random forest can be seen in Figure 5.29 this technique provided the

following prediction error:

MSE = 7382367 kBscf?
RMSE = 2.72 Bscf
Rsquare = 0.54 = 54%

The third and final cross-plot of GBM can be seen in Figure 5.30 this technique produced the

following prediction error:

MSE = 7564000 kBscf*>
RMSE = 2.75 Bscf
Rsquare = 0.45 = 45%
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Figure 5.28 Predicted vs observed cumulative injected CO; for bagging
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Figure 5.30 Predicted vs observed cumulative injected CO; for GBM

Overall, comparing the tree-based methods, it can be observed that random forest produces the
minimum prediction error and hence it is the best among the tree-based techniques for
prediction performance of CO> sequestration. Finally, a comparison of all the data-driven
models to check which is the best model to predict the performance of CO> sequestration in

unconventional shale reservoirs can be seen in Table 5.7.
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Table 5.7 Comparison of data-driven models

Predictive Model MSE (kBscf?) RMSE (Bscf) R? (%)
Multiple Linear Regression 7460655 2.73 51
Regression Tree 11005778 3.32 31
Bagging 7484000 2.74 52
Random Forest 7382367 2.72 54
Gradient Boosting Machine 7564000 2.75 45

It can be noted in Table 5.7 that Random Forest outperforms all other data-driven methods with
the lowest prediction error of 2.72 Bscf and the highest R? value of 54%. These results obtained
are consistent with the theoretical background of RF, as most literature claim that it is one of

the most powerful machine learning algorithms.
5.5.3 Variable importance

The last part of this study was to identify the key drivers of the CO> sequestration process in
unconventional shale-gas reservoirs. This process is mainly managed by analyzing the response
variable among a substantial set of predictor variables. In order to do this, RFs and GBMs have
inbuilt functions for performing such a process to identify the most prominent predictors. For
an RF model, the significance of a predictor is determined by permuting its values and
calculating the percent decrease in RMSE. The notion is that if a random permutation breaks
an essential variable, the accuracy will suffer considerably. Whereas for GBM, the average
prediction improvement across all trees created by the boosting method represents the relative

significance of a variable (Lolon et al., 2016).

It 1s seen from Figure 5.31 that, SRV Fracture Permeability (SRV-kr) is the most influential
predictor and has an immense impact on the performance of CO» sequestration followed by
Thickness, Length of Reservoir (L), Horizontal Wellbore Length (Lsv), and Fracture
Permeability (kr).
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Figure 5.31 Variable importance for random forest model

Furthermore, it can be observed in Figure 5.32 that, SRV Fracture Permeability (SRV-k) is the
most influential predictor and has an immense impact on the performance of CO: sequestration
followed by Thickness, Horizontal Wellbore Length (Lnw), Length of Reservoir (Ly), and
Langmuir Volume CO; (V1-co2). It can be noted that for both RF and GBM models, the top two

decisive predictors (SRV Fracture Permeability and Thickness) for the shale-gas reservoirs are

the same.
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Figure 5.32 Relative influence for GBM model

It can be noted in Figure 5.33 that the models provide different rankings in terms of influence
to COz sequestration performance. However, the other ranking for the predictors is differently
because, for instance RF ranks the most important predictors differently from the GBM and
OLS. But it can be observed that the results are not significantly different between RF and
GBM, as both models are reliable. The main conclusion of the parameters and in terms of their
physical sense should be left to the Petroleum Engineer or Upstream Geoscientists to use the
domain knowledge and interpret the significance of these variables. Nonetheless, in some cases
you don’t have a full understanding of CO; sequestration process, especially in an

unconventional reservoir. We would still have some questions.
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Figure 5.33 Predictor rankings for different predictive models

For this study, the significance of the predictors which drive high-performance will be assessed

to see if these variables make sense from a physical standpoint.

SRV Fracture Permeability (SRV-kf). Since the SRV zone is a stimulated section of the
reservoir, the fracture apertures (openings) have an increased dimension and become more
conductive. The total mobility and fluid flow will be more pronounced. CH4 will be produced,
and CO; can be injected and progress in the SRV zone accordingly. Hence, CO» sequestration
performance would be high and production of CH4 when substantial SRV Fracture Permeability

values are attained.

Thickness, Length of Reservoir (Lx), Length of Reservoir (Ly). Reservoir thickness plays an
important role in terms of the reserve capacity. Moreover, the thickness, length of reservoir
(Lx) and length of reservoir (L,) together are important because they describe the gross bulk

volume of the drainage area.

Horizontal Wellbore Length (Lnw). The horizontal wellbore length is crucial because the well
intersects the fractures which are very conductive, and this would aid in the production of CH4
in order to inject CO». Besides, a long horizontal wellbore length would maximize the contact

area with the SRV zone, and this would clearly influence the productivity index of the well.
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Fracture Permeability (ky). Fracture permeability is a key parameter by reason of the fracture
openings (apertures) are much sizeable in contrast to matrix pore throat dimensions. As well
as being highly conductive, hence it accounts for the overall mobility (transmissivity) inside

the unconventional reservoir.

Langmuir Volume CO:z (Vi-coz2). The Langmuir volume CO; is vital because it aids in
controlling the reserves. The importance of this isotherm is consistent with the literature as Yu
& Sepehrnoori (2019) point out that the gas volume at infinite pressure is referred to as the

Langmuir volume, and it represents the maximum storage capacity for gas.
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Chapter 6 Concluding Remarks

In this study, data-analytics is used to investigate the primary variables that affect CO;
sequestration process. The study focuses on unconventional shale reservoirs. An EDA through
data mining and visualization was performed to understand features and patterns within a
dataset of CO> sequestration scenarios in shale reservoirs. This dataset that was used
constituted of a significant number of numerical-simulation scenarios (close to 1400 scenarios)
that were run using a state-of-the art reservoir simulator that was part of another study by
(Kulga, 2014). After developing insights into the dataset, statistical and machine-learning
algorithms were used to develop predictive models. For evaluating the relationship and
accurately predict the process performance between reservoir parameters, operational
parameters and cumulative COz injected. Then, predictive efficacy of these models was
assessed to see which model captures the cumulative CO; injected more precisely. In addition,
variable importance approach was used to determine which parameters can drive high-
performance for CO» sequestration. Consequently, these variables were checked to see if they

make sense from a physical standpoint.
6.1 Conclusions
The major conclusions from this study are as follows:

1) Operational parameters are more prominent in driving high-performance CO>
sequestration process in unconventional shale reservoirs. SRV Fracture Permeability
(SRV-ky) is the top influential parameter for long-term CO; sequestration process.

2) The most influential parameters that drive CO; sequestration performance according to

RFs are:
e SRV Fracture Permeability (SRV-ky)
e Thickness

e Length of Reservoir (L)
e Horizontal Wellbore Length (L)
e Fracture Permeability (k)

3) The most influential parameters that drive CO; sequestration performance according to

GBMs are:
e SRV Fracture Permeability (SRV-ky)
e Thickness

e Horizontal Wellbore Length (L)
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4)

5)

6)

7)

8)

e Length of Reservoir (Lx)

e Langmuir Volume CO: (Vi-coz2)
Random Forests have the best predictive ability since it gives the lowest prediction error
of 2.72 Bscf and the highest percentage of variance explained with an R? value close to
54%. This result agrees with literature that RFs model is one of the most powerful
machine-learning algorithms.
Regression trees are easily interpretable and can rank, which are the most influential
parameters that influence cumulative CO; injected. These parameters are near the top
of the tree.
The model accuracy of multiple linear regression increased from 51% to 67% after log-
transforming some predictor variables which had high skewness.
It was shown that the optimal model for OLS was selected by k-fold cross validation
based on test error.
The outlier points observed in EDA cannot be because of an incorrect input value in
the dataset but because of the dependency between the predictors and response

variables, which causes additional lognormality and displayed as the outlier points.

6.2 Recommendations

On one hand, this dataset covers a wide range of shale formations with different
characteristics as seen in Table 3.1. As long as the formation is within these ranges,
then the models can be used to generalize the results. On the other hand, the range of
applicability is quite wide based on the ranges of parameters in Table 3.1, this can be
even further expanded with new simulation scenarios if needed.

GBM is a powerful machine-learning algorithm. The tuning parameters, such as
shrinkage factor, can be altered to improve the model accuracy.

The regression tree can be converted to a classification tree in order to simplify the

problem and predict whether the performance would be high or low.
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Appendix

Al. Best subset selection

This R code is used to perform best subset selection. The package used to perform best subset
selection was leaps.

df<- read.csv('Regression.csv')

Next perform best subset selection

library (leaps)

## Warning: package 'leaps' was built under R version 4.0.5

regfit. full=regsubsets(cum_inj~.,df)
summary(regfit.full)

## Subset selection object
## Call: regsubsets.formula(cum_inj ~ ., df)
## 22 Variables (and intercept)

i Forced in Forced out
## Thickness FALSE FALSE
## PoroM FALSE FALSE
## PoroF FALSE FALSE
## PermM FALSE FALSE
## PermF FALSE FALSE
## Xxs FALSE FALSE
## WatSatM FALSE FALSE
## V1 _ch4 FALSE FALSE
## Pl _cha FALSE FALSE
## V1 _co2 FALSE FALSE
## Pl _co2 FALSE FALSE
## InitPres FALSE FALSE
## InitTemp FALSE FALSE
## TimeProd_Total FALSE FALSE
## Pfrac FALSE FALSE
## LHW FALSE FALSE
## Lf FALSE FALSE
## edge_x FALSE FALSE
## edge y FALSE FALSE
## SRV_phi_f FALSE FALSE
## SRV_kf FALSE FALSE
## SRV_xs FALSE FALSE

## 1 subsets of each size up to 8

## Selection Algorithm: exhaustive

H## Thickness PoroM PoroF PermM PermF xs WatSatM V1 ch4 Pl ch4 V1
_co2

## 1 (1) " " " "o " "o nemomn o " "

2 (1) " Ww o mm o wm wm wowowom Wow wa

# 3 (1) " Ww o mm mm wm wowowom Wow wmw

104



HA4 (1) " I Wow mm

## 5 ( 1 ) nwxgn non non non non L LI T T B 11 non non "k

## 6 ( 1 ) nwxgn non non non non L LI T T B 11 non non "k

## 7 ( 1 ) wxn ngn non non non nouonon non non "

## 8 ( 1 ) nwxgn nwxn non non non L LI T T B 11 non non "k

## Pl co2 InitPres InitTemp TimeProd_Total Pfrac LHW Lf edge x e

dge_y
## 1 ( 1 ) n n n n n n n n n n n n n n n n n

#it 2 ( 1 ) " " " D @ non TR T TR TR TR T "

## 3 ( 1 ) " " " o w non nxw owowowom n

## 4 ( 1 ) "o "on nmxn non non LRV LI TR TR T T "

## 5 ( 1 ) "on "on kn non non LS L TR TR T 1] ]

## 6 ( 1 ) "on "on kn non non R LI TR TR TR 1] "

## 7 ( 1 ) "o "on nmxn non non LRV L TROS TR T Tl "

## 8 ( 1 ) " " kM m non Hxn o uxn owow "
## SRV_phi_f SRV_kf SRV_xs

w1 (1)"" ngnowom

#2 (1)"" nEw o wow

#H3 (1)"" mgm o wow

## 4 ( 1 ) " wxn non

## 5 (1) " " " " ou

## 6 ( 1 ) " wxn non

## 7 ( 1 ) " wxn non

#i# 8 ( 1 ) B wxn non

regfit.full=regsubsets(cum_inj~., df, 22)
reg.summary=summary(regfit.full)
reg.summary$rsq

## [1] ©.2162578 0.3195239 0.4420393 0.4608364 0.4783450 0.4873174 0.4939
863

## [8] 0.4975943 0.4997374 0.5019890 0.5036204 0.5048081 0.5059378 0.5065
767

## [15] 0.5069526 0.5070767 0.5071963 0.5073330 0.5073736 0.5073901 0.5073
963

## [22] ©.5074005
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A2. Multiple linear regression

This R code is used to perform multiple linear regression.

First load the dataset and check the head of the file. The dataset name will be regression.
df<- read.csv('Regression.csv")

Next perform multiple linear regression

Im.fit=1lm(cum_inj~Thickness + PoroM + PermM + PermF + V1 _ch4 +
V1 _co2 + InitTemp + TimeProd_Total + LHW + Lf + edge x +
SRV_phi_f + SRV_kf + SRV_xs, df)

summary (1m.fit)

##

## Call:

## Im(formula = cum_inj ~ Thickness + PoroM + PermM + PermF + V1 _ch4 +
it V1 co2 + InitTemp + TimeProd_Total + LHW + Lf + edge_x +

it SRV _phi_f + SRV_kf + SRV _xs, data = df)

H##

## Residuals:

## Min 1Q Median 3Q Max

## -7.217e+09 -1.624e+09 -3.617e+08 1.040e+09 2.601e+10
#it

## Coefficients:

Hit Estimate Std. Error t value Pr(>|t])

## (Intercept) -1.801e+10 7.162e+08 -25.147 < 2e-16 ***
## Thickness 2.467e+07 9.608e+05 25.681 < 2e-16 ***
## PoroM 2.260e+08 3.776e+07 5.985 2.46e-09 ***
## PermM -6.097e+12 1.878e+12 -3.247 0.00118 **
## PermF 4.911e+11 2.712e+11 1.811 ©0.07031 .
## V1 _ch4 -3.849e+06 1.510e+06 -2.549 0.01087 *
## V1 _co2 2.359e+06 2.972e+05 7.937 3.08e-15 **x*
## InitTemp 2.385e+07 2.372e+06 10.053 < 2e-16 ***
## TimeProd_Total 4.224e+04 1.728e+04 2.444 0.01460 *
## LHW 1.029e+06 1.974e+05 5.213 2.01e-07 ***
#it LT 1.575e+06 2.410e+05 6.534 7.71e-11 ***
## edge x 4.150e+05 1.312e+05 3.163 0.00158 **
## SRV_phi_f 4.156e+08 9.344e+07 4.448 9.06e-06 ***
## SRV_kf 7.195e+11 2.814e+10 25.572 < 2e-16 ***
## SRV_xs -3.446e+08 1.241e+08 -2.777 ©.00553 **
#H#H ---

## Signif. codes: © '***' 9,001 '**' ©0.01 '*' @.05 '.' 0.1 ' ' 1
##

## Residual standard error: 2.739e+09 on 2532 degrees of freedom
## Multiple R-squared: ©0.5066, Adjusted R-squared: ©0.5038
## F-statistic: 185.7 on 14 and 2532 DF, p-value: < 2.2e-16

Moreover, we can log transform the variables with high skewness to be able to check if now
the residuals are satisfying the assumptions and to see if there is a development on the global
R? value.
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Im.fit=1Im(log(cum_inj)~Thickness+PoroM+PermM+log(PermF)+V1l ch4+V1l co2+Init
Temp+TimeProd_Total+LHW+Lf+edge_x+SRV_phi_f+log(SRV_kf)+SRV_xs, df)
summary (1m.fit)

#it

## Call:

## Im(formula = log(cum_inj) ~ Thickness + PoroM + PermM + log(PermF) +
## V1 ch4 + V1 _co2 + InitTemp + TimeProd Total + LHW + Lf +
H#it edge_x + SRV_phi f + log(SRV_kf) + SRV_xs, data = df)

#it

## Residuals:

## Min 1Q Median 3Q Max

## -1.38096 -0.32538 -0.02209 0.29819 1.36739

#it

## Coefficients:

#H# Estimate Std. Error t value Pr(>|t])

## (Intercept) 2.144e+01 1.670e-01 128.372 < 2e-16 ***

## Thickness 5.807e-03 1.608e-04 36.106 < 2e-16 ***

## PoroM 4.959e-02 6.317e-03 7.851 6.05e-15 ***
## PermM -6.908e+02 3.141e+02 -2.200 0.027931 *

## log(PermF) -1.826e-02 2.423e-02 -0.754 0.451028

## V1 _cha -9.701e-04 2.526e-04 -3.841 0.000126 ***

## V1_co2 5.126e-04 4.973e-05 10.307 < 2e-16 ***

## InitTemp 5.114e-03 3.969e-04 12.886 < 2e-16 ***

## TimeProd_Total 1.221e-05 2.893e-06 4.220 2.53e-05 ***
## LHW 2.774e-04 3.301le-05 8.402 < 2e-16 ***

## Lf 4.138e-04 4.032e-05 10.262 < 2e-16 ***

## edge_x 8.384e-05 2.194e-05 3.822 0.000136 ***

## SRV_phi f 9.145e-02 1.563e-02 5.851 5.53e-09 ***

## log(SRV_kf) 7.357e-01 1.978e-02 37.191 < 2e-16 ***
## SRV_xs -9.015e-02 2.076e-02 -4.342 1.46e-05 ***
## ---

## Signif. codes: © '***' 9,001 '**' 9.01 '*' ©.05 '.' 0.1 ' ' 1
#it

## Residual standard error: 0.4583 on 2532 degrees of freedom
## Multiple R-squared: 0.6745, Adjusted R-squared: ©0.6727
## F-statistic: 374.7 on 14 and 2532 DF, p-value: < 2.2e-16

We can observe that the R? has improved quite significantly, then we can check the diagnostic

plots to see if the assumptions are now satisfied
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A3. Tree methods

This R code is for predictive modeling using tree methods. The libraries and packages used for

tree methods include randomForest, tree, gbm.

df <- read.csv("Regression.csv")
library(tree)

## Warning: package 'tree' was built under R version 4.0.5
set.seed(10)

train=sample(1:nrow(df),nrow(df)/2)
regressiontree.df=tree(cum_inj~.,df, train)
summary(regressiontree.df)

#it

## Regression tree:

## tree(formula = cum_inj ~ ., data = df, subset = train)
## Variables actually used in tree construction:

## [1] "SRV_kf" "LHW" "Thickness" "edge_x" "LfT "V1_co
2“
## [7] "InitTemp" "PoroF" "PermM" "V1_ch4"

## Number of terminal nodes: 20

## Residual mean deviance: 5.876e+18 = 7.362e+21 / 1253

## Distribution of residuals:

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -7.512e+09 -1.327e+09 -5.449e+08 0.000e+00 1.043e+09 1.295e+10

mean((yhat-df.test)”2)

## [1] 1.153401e+19

library(randomForest)

## Warning: package 'randomForest' was built under R version 4.0.5
## randomForest 4.6-14

## Type rfNews() to see new features/changes/bug fixes.
set.seed(1)

bagging.df=randomForest(cum_inj~., df, train, 22,

TRUE)
bag.df

#i

## Call:

## randomForest(formula = cum_inj ~ ., data = df, mtry = 22, importance =
TRUE, subset = train)

H## Type of random forest: regression
it Number of trees: 500

## No. of variables tried at each split: 22

#it

H#it Mean of squared residuals: 7.297848e+18
H## % Var explained: 52.23
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mean((yhat.bagging-df.test)"2)
## [1] 7.484254e+18

set.seed(10)
rf.df=randomForest(cum_inj~.,
UE)

yhat.rf=predict(rf.df,
mean((yhat.rf-df.test)"2)

## [1] 7.440936e+18

df,

df[-train,])
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