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Abstracts  

Keywords: Robot Localization, Extended Kalman Filter Sensor Fusion, ERMES 

Filter  

 

  This work proposes a localization system for mobile robots using the Extended 

Kalman Filter and compared it to another estimation technique ERMES Filter. 

But due to the EMERGENCY OF COVID19 we have continued the work just 

doing the EKF.  

 

  The Robot navigates in a known environment where the lines of the floor are 

used as natural landmarks and identified by using the odometry mathematical 

model problem and matrix transform by lunching the physical theory behind 

that according to the profile road, whether and friction related to that.  

 

The prediction phase of the Kalman Filter is implemented using odometry 

model of the robot. The updated phase directly uses the parameters of the lines 

detected by algorithm to correct the robot’s pose. As we will compare this 

procedure with our filter ERMES to get a well prediction and answering to the 

robot problems where am I? and how to go to my goal? by using its odometry 

issue.  

So, starting from the robot localization and odometry have described in the first 

chapters we have introduced the kinematics, dynamics and their constraints of 

differential drive robot typing the mathematical model in the 

Simulink/MATLAB, after that we have carefully treated the filters problem and 

its odometry where gave us a feedback simulation results to be able comparing 

more friction according to weather change and its profile road.  

Furthermore, the thesis was inside the development program of BAT-MAN 

projects.  

The project scope is to apply estimation techniques, developed during previous 

BAT-MAN projects, to the odometrical problem of an autonomous  



8 
 

vehicle (BAT-MOB).  

In details, the activities and the studies have been performed are:  

 

- Extension of like-ERMES algorithm to odometry: statement of the problem.  

- Develop a simple dynamic/kinetic model of the vehicle in 

MATLAB/SIMULINK. 

 - Apply the solution in a virtual environment (MATLAB/SIMULINK); - 

Implement the solution using a small vehicle prototype already available. 

 - Testing and data analysis. the result was a data analysis among different 

profiles using the filter needed to get a perfect robot posture to achieve the 

destination and the goal. so, an analysis of friction and weather changes have 

been studied by modifying and tuning some data in MATLAB script. 
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INTRODUCTION  

 

Localization is one of the fundamental problems in mobile robot navigation and 

motion planning. In an indoor environment with a flat floor plan, localization is 

identified as a problem of estimating the pose, i.e., Position and orientation of a 

mobile robot, when the map of the environment, sensor readings and executed 

actions of the robot are provided. Odometry is one of the most popular solutions 

for wheeled mobile robots (WMRs). The encoders mounted on the wheels 

provide robot motion information to update the mobile robot pose. However, 

odometric pose estimation unboundedly accumulates errors due to different 

wheel diameters, wheel-slippage, wheel misalignment, and finite encoder 

resolution. Experiment results have done in the previous studies concur that the 

largest factor in odometry error is due to the resolution of the robot.  

 

The odometry errors can be eliminated using an auxiliary sensor to observe 

landmarks in an environment. Different sensors such as cameras, sonar sensors, 

laser range finders and IMU sensors have been used to detect the landmarks and 

obtain the required measurements. Many solutions have been proposed for the 

pose estimation of mobile robots employing Kalman filtering, particle filtering 

and Markov localization.  

In this Thesis Topic supposed to use the ERMES FILTER and compare it to the 

EKF one, but due to COVID-19 EMERGENCY the work has been done at 

home as a smart working using many researchers in the previous studies using 

the EKF to complete the thesis.  

So, in this research we propose an accurate and low-cost mobile robot 

localization method using odometry and EKF.  

 

The odometry model used here can track any arbitrary robot motion. The 

odometry and its kinetic measurements are fused using EKF to provide more 

accurate localization results.    
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                                                                      First Chapter ❶  

 

Odometry   

Introduction  

The first step is to understand the mobile robot odometry and to review some 

helpful concepts. In a robotic environment the usage of internal sensors to 

estimate the robot pose is called odometry. The classical technique for a 

wheeled robot to calculate its position is to track its location through a series of 

measurements of the rotations of the robot’s wheels. Odometry requires a 

method for accurately counting the rotation of the robot and, with this 

information, estimates the left and right wheel velocities. Therefore, relative 

position estimation is extremely dependent on the measurement of the robot’s 

velocity. Once we have our left and right spinning velocities, we can compute 

the kinematics and obtain our robot pose integrating(𝑥′ , 𝑦′ , 𝜃′).  

Suppose your robot starts at the origin, pointed down the x-axis. Its state is  

(𝑥, 𝑦, 𝜃) = (0, 0, 0). If the robot travels (roughly) straight for three seconds at 1 

m/s, a good guess of your state will be (3, 0, 0). That’s the essence of odometry. 

We’ll assume that the vehicle is differentially driven: it has a motor on the side 

of the robot and another motor on the right side. If both motors rotate forward, 

the robot goes (roughly) straight. If the right motor turns faster than the left 

motor, the robot will move left (we will explain this point in details next 

chapters). 

So, our goal is to measure how fast our left and right motors are turning. From 

this, we can measure our velocity and rate of turn, and then integrate these 

quantities to obtain our position.  

 

Derivation  
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The speeds of our motors give us two quantities: the rate at which the vehicle is 

turning, and the rate at which the vehicle is moving forward. All we must do is 

to integrate these two quantities and we’ll have our robots state (𝑥, 𝑦, 𝜃). 

That sounds a bit scary, but the mathematics end up being very simple. If we 

had analytic expression for the angular rate and forward rate functions, their 

integral probably would be scary. But in a real system, our data comes from real 

sensors that sampled periodically. Every few milliseconds, we get a new 

measurement of our motor velocities. We will numerically integrate our 

solution, which is of course, just a fancy way of saying that we’ll divide time up 

into little chunks and just add up all little pieces. 

Suppose our robot is at(𝑥, 𝑦, 𝜃). Depending on what kind of sensors we have, 

we might get measurements of how much the motors have rotated (in radians), 

or an estimate of how fast they’re rotating (angular rate, radian/sec.) We’ll 

consider the first case, but of course the second case can be handled by just 

multiplying the angular rate by the amount of time that has elapsed since our 

last iteration ( the equations of  this thesis will be adopt the second case but in 

this chapter the first case is chosen just to clarify the odometery concept).  

Given the amount of rotation of the motor and the diameter of the wheel, we can 

compute the actual distance that the wheel has covered.  

Suppose the left wheel has moved by a distance of  𝑑𝑙𝑒𝑓𝑡  and the right wheel 

has moved 𝑑𝑟𝑖𝑔ℎ𝑡. For some small period of time (such that 𝑑𝑙𝑒𝑓𝑡 and  𝑑𝑟𝑖𝑔ℎ𝑡 are 

short), we can reasonably assume that the vehicle trajectory was an arc (see Fig. 

1). 
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Figure 1:  Odometery geometry.  Over a small time period, the robot’s motion can be 

approximated by an arc. The odometery problem is to solve for (𝑥′ , 𝑦′ , 𝜃′) given (𝑥, 𝑦, 𝜃)  

and 𝑑𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒. In the figure, the robot is moving counterclockwise. 

The initial state  (𝑥, 𝑦, 𝜃) defines the starting point, with  𝜃  representing the 

vehicle’s heading. After our vehicle has moved by 𝑑𝑙𝑒𝑓𝑡 and  𝑑𝑟𝑖𝑔ℎ𝑡, we want to 

compute the new position(𝑥′ , 𝑦′ , 𝜃′). 

The center of the robot (the spot immediately between the two wheels that 

defines the robot’s location), travels along an arc as well. Remembering that arc 

length is equal to the radius times the inner angle, the length of this arc is: 

 

                              dcenter =
dleft+dright

2
                                        (1) 

 

  Given basic geometry, we know that:  

                              φ rleft = dleft                                                  (2)       

                              φ rright = dright                                              (3) 

      

If  𝑑𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is the distance between the left and right wheels, we cam write:  
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                             rleft +  dbaseline  = rright                               (4)                         

    

  Subtracting (2) from (4), we see:  

                 φ rright −  φ rleft  = dright −  dleft 

                           φ (rright −  rleft)  = dright −  dleft 

                           φ dbaseline  = dright −  dleft      

                           φ=   
dright− dleft

dbaseline
                                                 (5)                   

  

 

Figure 2: Detailed odometry geometry. We compute the center of the circle P by forcing  
𝑑𝑙𝑒𝑓𝑡 and 𝑑𝑟𝑖𝑔ℎ𝑡 to be two arcs with the same inner angle φ. From this, we can compute 

the new robot position (𝑥′ , 𝑦′ , 𝜃′). 
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At the risk of making the math a bit uglier than necessary, let’s very carefully 

compute the new robot state. All our arcs have a common origin at point P.  

Note that the angle of the robot’s baseline with respect to x-axis is   𝜃 −
𝜋

2
.  

So, we now compute the coordinates of P: 

Px = x − rcenter cos ( θ −
π

2
) 

                                              = x − rcenter sin( θ) 

Py = y − rcenter sin ( θ −
π

2
) 

                                             = y − rcenter cos( θ) 

 

 

 

Now we can compute 𝑥′ 𝑎𝑛𝑑 𝑦′ 

x′ = Px + rcenter cos (φ + θ −
π

2
) 

     =  x − rcenter sin(θ) +   rcenter sin(φ + θ) 

     =  x + rcenter[− sin(θ) +   sin(φ)cos (θ) + sin(θ)cos (φ)]                       (6) 

 

And 

 

y′ = Py + rcenter sin ( φ + θ −
π

2
) 

     =  y − rcenter cos(θ) +   rcenter cos(φ + θ) 

     =  x + rcenter[cos(θ) −  cos(φ)cos(θ) + sin(θ)sin (φ)]                          (7) 

           

If φ is small (as is usually the case for small time steps), we can approximate 

sin(φ) = φ and cos(φ) = 1. This now gives us: 

     x′ =   x + rcenter[− sin(θ) +   φcos (θ) + sin(θ)]     

          =  x + rcenterφcos (θ)    

          =  x + dcentercos (θ)                                                                                     (8)    

 

And 
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     y′ =   y + rcenter[cos(θ) −   cos (θ) + φsin(θ)]     

          =  y + rcenterφsin(θ)    

          =  y + dcentersin (θ)                                                                                      (9)  

 

 

In summary, our odometry equations for (𝑥′ , 𝑦′ , 𝜃′) reduce to:   

 

                              dcenter =
dleft+dright

2
                                                    (10) 

                                     φ    =   
dright− dleft

dbaseline
                                                  (11) 

     

                                     θ′  =  φ + θ                                                          (12) 

                                         x    ′ =  x + dcentercos (θ)                                             (13) 

                                         y   ′ =  y + dcentersin (θ)                                              (14)                                   

Dead reckoning Sensors  

In order to build an odometry system, you must have a way of measuring the 

angular velocity of the motor. This can be accomplished by an encoder sensor 

which is placed on the motor shaft or wheel such that when the shaft rotates, the 

circuitry generates alternating 1’s and 0’s. One way of implementing a simple 

encoder is by attaching a disc with holes to the shaft, and using a break beam 

sensor to detect when a hole passes by. A mono phase encoder cannot determine 

the direction of motion. A serious failure mode occurs when the motor is 

essentially stationary with a hole halfway in front of the sensor: environmental 

noise can cause the encoder to trigger and untriggered, making it appear as 

though the shaft is rotating.        
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Figure 3: Simple Encoder. As a perforated disk rotates, a break beam sensor 

alternates between 1 and 0. The direction of motion is ambiguous. 

 

Odometry error sources  

Odometry can provide good dead reckoning over short distances, but error 

accumulates very rapidly. At every step, we inject error (noise) into not just x 

and y, but also θ. The error in θ is the killer, since every error in θ will be 

amplified by future iterations.  

There are a number of basic noise sources  

✓ Limited resolution during integration  

✓  Unequal wheel diameter  

✓  Variation in the contact point of the wheel  

✓  Unequal floor contact and variable friction can lead to slipping  

 

 Odometry Errors  

-  Deterministic errors can be eliminated through proper calibration  

-  Non-deterministic errors have to be described by error models and 

will always lead to uncertain position estimate.   
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                                                Second Chapter ❷ 

 

 

Kinematics  

 

 In mobile robotics, we need to understand the mechanical behavior of the robot 

both in order to design appropriate mobile robots for tasks and to understand 

how to create control software for an instance of mobile robot hardware.  

  A mobile robot’s workspace is  important because it defines the range of 

possible poses that the mobile robot can achieve in its environment. A mobile 

robot’s controllability defines possible paths and trajectories in its workspace.  

Due to mass and force considerations robot dynamics places additional 

constraints on workspace and trajectory. The mobile robot is also limited by 

dynamics, for instance, a high center of gravity limits the practical turning 

radius of a fast, car-like robot because of the danger of rolling. A mobile robot 

is a self-contained automation that can wholly move with respect to its 

environment. There is no direct way to measure a mobile robot’s position 

instantaneously. Instead, one must integrate the motion of the robot over time. 

Add to this the inaccuracies of motion estimation due to slippage and it is clear 

that measuring a mobile robot’s position precisely is an extremely challenging 

task. 

The process of understanding the motions of a robot begins with the process of 

describing the contribution each wheel provides for motion. Each wheel has a 

role in enabling the whole robot to move. By the same token, each wheel also 

imposes constraints on the robot’s motion, for example refusing to skid 

laterally. In this section, we introduce notation that allows expression of robot 

motion in a global reference frame as well as the robot’s local reference frame. 

Then, using this notation, we demonstrate the construction of simple forward 

kinematic models of motion, describing how the robot as a whole moves as a 

function of its geometry and individual wheel behavior. As we formally 

describe the kinematic constraints of individual wheels, and then combine these 

kinematic constraints to express the whole robot’s kinematic constraints. With 
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these tools, one can evaluate the paths and trajectories that define the robot’s 

maneuverability. 

 

Deriving a model for the whole robot’s motion is a bottom-up process. Each 

individual wheel contributes to the robot’s motion and, at the same time, 

imposes constraints on robot motion. Wheels are tied together based on robot 

chassis geometry, and therefore their constraints combine to form constraints on 

the overall motion of the robot chassis. But the forces and constraints of each 

wheel must be expressed with respect to a clear and consistent reference frame. 

This is particularly important in mobile robotics because of its self-contained 

and mobile nature; a clear mapping between global and local frames of 

reference is required. We begin by defining these reference frames formally, 

then using the resulting formalism to annotate the kinematics of individual 

wheels and whole robots. 

 

Coordinate Systems 

 

In order to describe the position of the WMR in his environment, two different 

coordinate systems (frames) need to be defined 

1. Inertial Coordinate System: This coordinate system is a global frame which is 

fixed in the environment or plane in which the WMR moves in. Moreover, this 

frame is considered as the reference frame and is denoted as {XI ,YI}.  

2. Robot Coordinate System: This coordinate system is a local frame attached to 

the WMR, and thus, moving with it. This frame is denoted as {Xr ,Yr}. 

 

 

The two defined frames are shown in Fig. 4. The origin of the robot frame is 

defined to be the mid-point A on the axis between the wheels.  

The center of mass C of the robot is assumed to be on the axis of symmetry, at a 

distance d from the origin A. 
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As shown in Fig. 4, the robot position and orientation in the Inertial Frame can 

be defined as  

                                                    qI = [ 

xa

ya

 θa

 ]                                                                       (15) 

The important issue that needs to be explained at this stage is the mapping 

between these two frames. The position of any point on the robot can be defined 

in the robot frame and the inertial frame as follows. 

Let    𝑋 𝑟 = [ 
𝑞𝑟

𝑞𝑟

 θ
𝑟
 ]  , and  𝑋 𝑙 = [ 

𝑞𝑙

𝑞𝑙

 θ𝑙

 ]  and be the coordinates of the given point 

in the robot frame and inertial frame, respectively. Then, the two coordinates 

are related by the following transformation:  

 

                                     Xl =  R(θ)Xr                                                                    (16) 

Where R(θ) is the orthogonal rotation matrix  

 

                                  𝑅(θ) =  [
𝑐𝑜𝑠θ −𝑠𝑖𝑛θ 0
𝑠𝑖𝑛θ 𝑐𝑜𝑠θ 0
0 0 1

]                                            (17)  
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                                        Figure 4: Differential Drive Mobile Robot (DDMR)                                                   

This transformation will enable also the handling of motion between frames  

 

                                       𝑉𝑙 =  𝑅(θ)𝑉𝑟                                                                    (18)  

 

It will be seen in the next section that equation (18) is very important in 

deriving the DDMR kinematic and dynamic models as it describes the 

relationship between the velocities in the Inertial Frame and the Robot Frame. 

 

Kinematic Constraints of the Differential-Drive Robot  

The motion of a differential-drive mobile robot is characterized by two non-

holonomic constraint equations, which are obtained by two main assumptions:  

• No lateral slip motion: This constraint simply means that the robot can move 

only in a curved motion (forward and backward) but not sideward. In the robot 

frame, this condition means that the velocity of the center-point A is zero along 

the lateral axis: 
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                                           ẏa
r  = 0                                                    (19) 

                               

Using the orthogonal rotation matrix R(θ), the velocity in the inertial frame 

gives  

                                      -𝑥̇𝑎sinθ + -𝑦̇𝑎cosθ = 0                                 (20) 

                    

• Pure rolling constraint: The pure rolling constraint represents the fact that each 

wheel maintains a one contact point P with the ground as shown in Figure 5. 

There is no slipping of the wheel in its longitudinal axis (𝑥𝑟) and no skidding in 

its orthogonal axis (𝑦𝑟). The velocities of the contact points in the robot frame 

are related to the wheel velocities by:  

                                         vpR = 𝑅φ𝑅̇                                               (21) 

                                         vpL = 𝑅φ𝐿̇                                               (22) 

In the inertial frame, these velocities can be calculated as a function of the 

velocities of the robot center-point A: 

                                      𝑥̇𝑃𝑅 = 𝑥̇𝑎 + Lθcosθ                                    (23) 

                                      𝑦̇𝑃𝑅 = 𝑦̇𝑎 + Lθsinθ                                     (24) 

                                      𝑥̇𝑃𝐿 = 𝑥̇𝑎 + Lθcosθ                                     (25) 

                                     𝑦̇𝑃𝐿 = 𝑦̇𝑎 + Lθsinθ                                       (26) 

Using the rotation matrix R(θ), the rolling constraint equations are formulated 

as follows:  

                                   𝑥̇𝑃𝑅cosθ + 𝑦̇𝑃𝑅sinθ =  𝑅φ𝑅̇                           (27)   

                                   𝑥̇𝑃𝐿cosθ + 𝑦̇𝑃𝐿sinθ =  𝑅φ𝐿̇                             (28)                            
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                                                                  Figure 5: Pure Rolling Motion Constraint 

 

Using the contact points velocities from equation (x, y) and substituting in       

(x, y), the three constraint equations can be written in the following matrix 

form:  

                      (29) 

The above constraints matrix Λ(q) will be used in the next section for the 

DDMR dynamic modeling. 
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Kinematic Model 

Kinematic modeling is the study of the motion of mechanical systems without 

considering the forces that affect the motion. For the DDMR, the main purpose 

of kinematic modeling is to represent the robot velocities as a function of the 

driving wheels velocities along with the geometric parameters of the robot. 

The linear velocity of each driving wheel in the Robot Frame is therefore, the 

linear velocity of the DDMR in the Robot Frame is the average of the linear 

velocities of the two wheels 

                                                              (30) 

And the angular velocity of the DDMR is  

                                                            (31) 

The DDMRs velocities in the robot frame can now be represented in terms of 

the center-point A velocities in the robot frame as follows:  

                                                       (32) 

The DDMR velocities can be obtained also in the inertial frame as follows:  
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                                                (33) 

Equation (33) represents the forward kinematic model of the DDMR. Another 

alternative form for the kinematic model can be obtained by representing the 

DDMR velocities in terms of the linear and angular velocities of DDMR in the 

Robot frame is the equation (34). 

                                                (34) 

 

 

Dynamic Modeling of the DDMR 

 

Dynamics is the study of the motion of a mechanical system taking into 

consideration the different forces that affect its motion unlike kinematics where 

the forces are not taken into consideration. The dynamic model of the DDMR is 

essential for simulation analysis of the DDMR motion and for the design of 

various motion control algorithms.  

 

A non-holonomic DDMR with n generalized coordinates (q1, q2, qn) and 

subject to m constraints can be described by the following equations of motion:   

 

  M(q)q̈ + V(q, q̇)q̇  + F(q̇) + G(q) +τd = B(q)τ - ΛT(q)λ                      (35) 
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M (q) an nxn symmetric positive definite inertia matrix, V (q, q̇) is the 

centripetal and Coriolis matrix, F (q̇) is the surface friction matrix, G (q) is the 

gravitational vector, τd  is the vector of bounded unknown disturbances 

including unstructured un-modeled dynamics, B (q) is the input matrix, τ is the 

input vector, ΛT(q) is the matrix associated with the kinematic constraints, and λ 

is the Lagrange multipliers vector. 

 

Lagrange dynamic approach  

 

Lagrange dynamic approach is a very powerful method for formulating the 

equations of motion of mechanical systems. This method, which was introduced 

by Lagrange, is used to systematically derive the equations of motion by 

considering the kinetic and potential energies of the given system. 

The Lagrange equation can be written in the following form: 

                   
d

dt
 ( 

dL

dqi̇
 ) + 

dL

dqi
 = F − ΛT(q)λ                                        (36)  

 

Where L=T-V is the Lagrangian function, T is the kinetic energy of the system, 

V is the potential energy of the system, qi are the generalized coordinates, F is 

the generalized force vector, Λ is the constraints matrix, and λ is the vector of 

Lagrange multipliers associated with the constraints. 

The first step in deriving the dynamic model using the Lagrange approach is to 

find the kinetic and potential energies that govern the motion of the DDMR. 

Furthermore, since the DDMR is moving in the {XI, YI}. Plane, the potential 

energy of the DDMR is considered to be zero. 

 

For the DDMR, the generalized coordinates are selected as  

                           q = [ xa    ya  θ     φR    φL ]
T                                      (37) 
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The kinetic energies of the DDMR is the sum of the kinetic energy of the robot 

platform without wheels plus the kinetic energies of the wheels and actuators.  

The kinetic energy of the robot platform is 

                             Tc = 
1

2
mcVc

2 +
1

2
Icθ̇

2                                             (38)  

 

While the kinetic energy of the right and left wheel is  

                            TwR = 
1

2
mwVwR

2 +
1

2
Imθ̇2 +  

1

2
Iwφ̇R

2                      (39)  

  

                           TwL = 
1

2
mwVwL

2 +
1

2
Imθ̇2 +  

1

2
Iwφ̇L

2                       (40) 

 

where, mc is the mass of the DDMR without the driving wheels and actuators 

(DC motors), mw is the mass of each driving wheel (with actuator), Ic is the 

moment of inertia of the DDMR about the vertical axis through the center of 

mass, Iw is the moment of inertia of each driving wheel with a motor about the 

wheel axis, and Im is the moment of inertia of each driving wheel with a motor 

about the wheel diameter.   

All velocities will be first expressed as a function of the generalized coordinates 

using the general velocity equation in the inertial frame.   

                                    Vi
2 =  ẋi

2 + ẏi
2                                                      (41)  

The Xi and Yi components of the center of mass and wheels can be obtained in 

terms of the generalized coordinates as follow 

                                  xc = xa + dcosθ  

                                  yc = ya + dsinθ                                               (42) 

                                 xwR = xa + Lcosθ  

                                 ywR = xa + Lsinθ                                             (43) 

                                xwL = xa − Lcosθ  
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                                ywL = ya + Lsinθ                                               (44)           

Using equations (38)-(40) along with equations (41- (44), the total kinetic 

energy of the DDMR is 

𝑇 =
1

2
𝑚( 𝑥̇𝑎

2 + 𝑦̇𝑎
2) − 𝑚𝑐𝑑𝜃̇(𝑦̇𝑎𝑐𝑜𝑠𝜃 − 𝑥̇𝑎𝑠𝑖𝑛𝜃) +  

1

2
𝐼𝑤(𝜑̇𝑅

2 + 𝜑̇𝐿
2) + 

1

2
𝐼𝜃̇2  (45             

 

Where the following new parameters are introduced  

m = mc + 2mw is the total mass of the robot, 

 I =  Ic + mcd
2 + 2mwL2 + 2Im is the total equivalent inertia. 

Using equation (36) along with the Lagrangian function, L=T the equations of 

motion of the DDMR are given by 

                         mẍa − mdθ̈sinθ − mdθ̇2cosθ = C1                               (46)     

                         mÿa − mdθ̈cosθ − mdθ̇2sinθ = C2                                (47) 

                         Iθ̈ − mdẍasinθ + mdÿacosθ = C3                                  (48) 

                         Iθ̈R = τR + C4                                                                   (49) 

                         Iθ̈L = τL + C5                                                                   (50) 

where (C1 , C2 , C3 , C4 , C5 ), are coefficients related to the kinematic 

constraints, which can be written in terms of the Lagrange multipliers vector λ 

and the kinematic constraints matrix Λ introduced in previous section. 

                     ΛT(q) =

[
 
 
 
 
C1

C2

C3

C4

C5]
 
 
 
 

                                                                         (51) 

Now, the obtained equations of motion (46)-(50) can be represented in the 

general form given by equation (35) as 
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                   𝑀(𝑞)𝑞 + 𝑉(𝑞, 𝑞̇)𝑞̇ = 𝐵(𝑞)𝜏 −̈ 𝛬𝑇(q)𝜆                                  (52)       

 

 

Next, the system described by equation (52) is transformed into an alternative 

form which is more convenient for the purpose of control and simulation. The 

main aim is to eliminate the constraint term ΛT(q)λ in equation (52) since the 

Lagrange multipliers λi are unknown. This is done first by defining the reduced 

vector  

                                            𝜂 ̇ = [
𝜗̇𝑅

𝜗̇𝐿

]                                               (53) 
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Next, by expressing the generalized coordinates velocities using the forward 

kinematic model (33). Then we have 

 

                         (54)  
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Wheels velocity VS Robot behavior  

Before we derive the algorithm Extended Kalman Filter (EKF) in order to 

estimate the future pose of our robot, let’s see what the different values of wheel 

velocities can do to our robot. In such way the summary of our kinematics with 

different torque profile 

❖ Here the focus just in the velocities in the section of simulation we will 

see more details about torque and friction).  

❖ The next figures are just summery for what we have discussed before. 

 

        

 

                                                                 Figure 6: Robot Top view model  

 

‘‘… Driving control for differential drive is more complex than for single wheel 

drive, because it requires the coordination of the two driven wheels… If both 

motors run at the same speed, the robot drives straight forward or backward, if 

one motor is running faster than the other, the robot drives in a curve along the 

arc of a circle, and if both motors are run at the same speed in opposite 

directions, the robot turns on the spot.’’ 
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The above driving actions are illustrated in Fig.7 and Fig.8. 

 

 

           Figure 7: Driving forward and driving in a curve of differential drive 
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                             Figure 8: Rotation of differential drive 

So, The kinematics of iRobot Create can be described as the relations among the 

driven wheel velocities 𝑣𝑅,𝐿, linear velocity 𝑣 , and angular velocity  , which are 

illustrated in Fig.9. 

 

 

         Figure 9: Linear Velocity, Angular velocity, and Driven Wheel Velocities 
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Dynamics of Wheels  

By referring to the wheels dynamic equation (49) and (50) we can model the 

first part which is our dynamics   

               

                                           θ̈R =
τR

𝐼
+

C4

𝐼
                          (55)                                                                     

                                           θ̈L =
τL

𝐼
+

C5

𝐼
                          (56) 

If we integrate the wheels angular acceleration  θ̈R,L  we get our control inputs 

𝜗̇𝑅,𝐿  the right and left wheel angular velocities to be able compute the 

odometery by the aid of the kinematic equations seen before, see the matrix 

form (54).  

Again  I =  Ic + mcd
2 + 2mwL2 + 2Im is the total equivalent inertia. τR,L   

Right and Left wheel motor torque according to the profile chosen  C4,5  Our 

target in this section which are the torque that introduced to our system by the 

traction forces on wheels and they include the friction coefficient and the slip 

ratio depending on the road we (wet, dry, snow and ice etc. … )  

 

One must consider the interaction of the wheels with the ground to develop a 

model for this interaction, which will lead to obtain the solution to the motion 

equations of the robot. The models are complex and require several properties 

of the tires and the ground in order to estimate the interaction between the tire 

and the ground. These properties are determined through extensive empirical 

experiments. However, most of the applications in robotics involve rigid wheels 

on a rigid ground. Therefore, the approach of using a friction model is simple 

and reasonable for this type of contact between rigid surfaces. In the following, 

we will describe the traction force model. 

Consider a wheel that is rotating without slip as shown in Fig.12             . 

The equations of motion of the wheel are given by  

                                                  𝑚𝑤𝑎𝑤 = 𝐹𝑙𝑜𝑛𝑔                        (57) 

                                                 𝐼𝜃̈ = 𝜏 − 𝐹𝑙𝑜𝑛𝑔R                      (58) 



36 
 

 

           

Figure 10 Wheel rotating without slip 

 

N.B: r = R   

Where 𝑎𝑤 is the linear acceleration of the wheel.  

Under pure rolling conditions the angular acceleration 𝜃̈ is related to linear 

acceleration as, see also Figure 5 and equation (29) 

                                                      𝑎𝑤 = R𝜃̈                             (59) 

If we consider these equations and express the longitudinal force in terms of 

applied torque, we obtain  

 

                                                  𝐹𝑙𝑜𝑛𝑔 =
𝜏∗𝑚𝑤∗𝑅

𝐼+𝑚𝑤𝑅2
                          (60) 

 

Such a simple relation between longitudinal force and applied torque cannot be 

established when there is slip.  

In the presence of slip, we consider the Coulomb friction model to establish the 

relationship between the normal force and the force exerted by the applied 

torque, due to irregularities of the bodies in contact. A static friction coefficient 

is utilized to determine the value of the maximum force that has to be applied to 

the wheel before the wheel starts to slip.  
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Considering  µ𝑠 to be the coefficient of static friction and N as the normal force 

on the wheel, we have  

                                                  𝐹𝑙𝑜𝑛𝑔 = µ𝑠𝑁                             (61) 

 

If the resultant force due to the applied torque is less than the static frictional 

force, it is completely transmitted to the ground resulting in pure rotation of the 

wheel. If the resultant force exceeds the static frictional force, a portion of this 

force that is above the static frictional force causes the wheel to slip (i.e., to 

rotate without any linear displacement), the remaining force is utilized for the 

forward motion of the wheel. Hence, slip occurs if the value of 𝐹𝑙𝑜𝑛𝑔 given by 

equation (60) is greater than that of equation (61). The force that results in the 

linear motion is determined by the kinetic friction coefficient and is given by 

 

                                            𝐹𝑙𝑜𝑛𝑔 = µ𝑘𝑁                             (62) 

 

Lateral slip of the wheel may occur in conjunction with longitudinal slip. In 

order to determine the 

actual relation between 

the amount of slip and 

the force applied, we 

decompose the total force 

due to the applied torque 

into lateral and 

longitudinal force 

components as shown in 

Fig.13.  Decomposing 

the total force (µ𝑘𝑁) into 

longitudinal and lateral 

forces. 

                                                                                      

  

Figure 11: Longitudinal and lateral slip due to friction forces 
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 We obtain         

                                         𝐹𝑙𝑜𝑛𝑔𝑟 = µ𝑘𝑁 (
𝜌̇𝑟

√𝜌̇𝑟
2+𝜂̇2

)                           (63) 

                                         𝐹𝑙𝑜𝑛𝑔𝑙 = µ𝑘𝑁 (
𝜌̇𝑙

√𝜌̇𝑙
2+𝜂̇2

)                            (64) 

 

We considered the longitudinal forces where the subscript r and l are used to 

refer to the right and left wheel, respectively. And to get the torques we just 

multiply by the wheel radius so,  

                                               𝜏𝑙𝑜𝑛𝑔𝑟 = 𝑅𝐹𝑙𝑜𝑛𝑔𝑟                                (65) 

                                                𝜏𝑙𝑜𝑛𝑔𝑙 = 𝑅𝐹𝑙𝑜𝑛𝑔𝑙                              (66) 

 

In the previous section kinematics and dynamics under pure rolling and without 

lateral slip are derived. However, in practice, there is slip in both lateral and 

longitudinal directions. 

Lateral slip is present when the direction of the movement is different from 

wheel’s plane of rotation, so the wheel must slip in order to reorient itself in the 

desired direction; see Fig.14. 

                                   

Figure 13 : Lateral slip due to difference in robot motion direction and plane of 

rotation of the wheel 
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Longitudinal slip occurs when the input torque is not completely transmitted to 

the ground. As a consequence, the linear speed of the where (ρ̇) is not equal to 

the peripheral speed of the wheel, i.e. ρ̇ < θ̇R. A portion of the applied torque is 

transmitted to the ground resulting in wheel forward motion, the rest is 

consumed by pure wheel rotation causing wheel slip. Longitudinal slip is also 

possible when the wheel stops rotating but the linear velocity is not zero. 

Lateral slip is a phenomenon that has minimal effect on achieving a motion 

objective for the robot at low speeds. It can be observed mainly when the robot 

is in motion along a curved path at high speeds, i.e., when continuous and rapid 

orientation changes are required. Longitudinal slip is more prevalent as it is a 

direct consequence of the application of wheel torques beyond what can be 

supported by the traction between the wheels and the ground.  

It is directly influenced by the value of coefficient of friction along the motion 

path. In the following we provide equations of motion under slip 

In the presence of slip, the non-holonomic constraints are given by 

 

                                   𝜌̇𝑟 = 𝑥̇𝑐 cos 𝜃 + 𝑦̇𝑐 sin 𝜃 +
1

2
𝐿𝜃̇          (67) 

                                  𝜌̇𝑙 = 𝑥̇𝑐 cos 𝜃 + 𝑦̇𝑐 sin 𝜃 −
1

2
𝐿𝜃̇            (68) 

                                  𝜂̇ = 𝑥̇𝑐 sin 𝜃 − 𝑦̇𝑐 cos 𝜃 − 𝑑𝜃̇               (69) 

 

Where   η̇ represents the lateral velocity due to slip andρ̇r, ρ̇l are the linear 

velocities of right and left wheels, respectively. 
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                                                        Third Chapter ❸ 

 

Extended Kalman Filter (EKF)  

 

In the mobile robotic systems, a precise estimate of the robot pose with the 

intention of the optimization in the path planning is essential for the correct 

performance, on the part of the robots, for tasks that are destined to it. Sensors 

data like odometry, compass, and the result of triangulation Cartesian 

estimative, are fused for better position estimative. It uses a mathematical and 

computational tool for nonlinear systems with time-discrete sampling for pose 

estimative calculation of mobile robots, with the utilization of extended Kalman 

filter (EKF). A mobile robot platform with differential drive and non-holonomic 

constraints is used as a base for state space, plants and measurements models 

that are used in the simulations and validation of the experiments. 

 

Kalman Filtering 

Kalman Filter (KF) is a well-known algorithm for estimation and prediction 

especially when data has a lot of noise. KF is used for linear transition functions 

whereas under non-linear transition, Extended Kalman Filter (EKF) is used. A 

brief summary of the basic discrete time linear Kalman Filter as follows. The 

Kalman Filter produces a state estimate of a discrete time linear difference 

equation of the form given in equation (70), where  𝑥𝑘 is the current state of the 

system, 𝐴 is the linear process dynamics matrix, 𝐵 is the matrix that relates the 

control input 𝑢𝑘−1, and 𝑤𝑘−1 is the Gaussian process noise. Equation (71) 

describes how the sensors produce a measurement 𝑧𝑘 of the process given in 

equation (70).where H is the measurement matrix with a number of rows equal 

to the number of sensor inputs and 𝑣𝑘 is the Gaussian measurement noise for 

the sensors 

 

                                      xk = Axk−1 + Buk−1 + wk−1                               (70) 
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                                            zk = Hxk + vk                                                         (71) 

The two fundamental assumptions in the linear Kalman Filter are that the 

estimated discrete time process is linear, and the measurement and process noise 

are Gaussian distributions with zero means. 

The Kalman Filter algorithm is recursive, and runs in two stages. The first stage 

is called the ’predictor’ in which a new state estimate is produced from the 

previous estimate. The second stage is called the ’corrector’ in which the 

estimate produced by the predictor stage is adjusted based on the new sensor 

measurements produced by equation (70). The algorithm only uses data from 

the previous state estimate, and thus requires minimal data storage and 

computation to produce the new state update. 

Extended Kalman Filtering 

As we have noticed before both the kalman filter and the extended kalman filter 

has the same algorithm strategy, based on the predictor stage, innovation and 

correction stage. But the only difference is that the extended kalman filter is 

used in the non-linear system as we will see in our case where the state 

transition and observation models are non- linear functions of the state and 

input.  

The dynamic model of the EKF is given by,  

 

                                        xk = f(xk−1, uk) + wk                                    (72) 

                                              zk = h(xk) + vk                                              (73) 

 

The function f can be used to compute the predicted state from the previous 

estimate and similarly the function h can be used to compute the predicted 

measurement from the predicted state. However, f and h cannot be applied to 

the covariance directly. Instead, a matrix of partial derivatives (the Jacobian) is 

computed. 

❖ 𝑢𝑘 , 𝑤𝑘  𝑎𝑛𝑑 𝑣𝑘 Have been defined before.  
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❖ At each time step the Jacobian is evaluated with current predicted states. 

These matrices can be used in our filter equations. This process 

essentially linearizes the non-linear function around the current estimate.  

EKF algorithm: 

Predict 

Predicted State 

                                                x̂k|k−1 = f(x̂k|k−1, uk−1)                        (74) 

Predicted estimate covariance 

                                              Ck|k−1 = Fk−1Ck−1|k−1Fk−1
T + Wk−1        (75) 

 

Update 

Innovation or measurement residual 

                                              ŷk = zk − h(x̂k|k−1)                                  (76) 

Innovation (or residual) covariance 

                                               Sk = HkCk|k−1Hk
T + Vk                             (77) 

Optimal Kalman Gain 

                                               Kk = Ck|k−1Hk
TSk

−1                                   (78) 

Updated State estimate 

 

                                             x̂k|k = x̂k|k−1 + Kkỹk                                    (79) 

Updated estimate covariance 

                                              Ck|k = (I − KkHk)Ck|k−1                         (80) 

Where the state transition and observation matrices are defined to be the 

following based on the previous discussion of the odometery and the robot 

analysis. 
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In particular our system becomes:  

The function f : 

                                       xk+1 = xk   + 
  R

   2  
Ts (ϑ̇rk   + ϑ̇lk   ) cosθ 

                     f                 yk+1 = yk   + 
  R

   2  
Ts (ϑ̇rk   + ϑ̇lk   ) sinθ                  (81) 

                                       θk+1 = θk   + 
  R

   d  
Ts (ϑ̇rk   − ϑlk   )                          

Where:  

-   𝑋𝑘 = [

𝑥𝑘

𝑦𝑘

𝜃𝑘

]  is the pose of the robot. 

 

- 𝑢𝑘 = [
𝜗̇𝑟𝑘   

𝜗̇𝑙𝑘   

] is the control input, wheels angular velocity. 

- Ts is the sampling time. 

- R is the robot wheel radius. 

- K is the current state  

- K-1 s the previous state  

- K+1 is the future state  

The function h: 

The localization in structuralized environment is helped, in general, by external 

elements that are called of land markers. It is possible to use natural markers 

that already existing in the environment for the localization. Another possibility 

is to add intensionally to the environment artificial markers to guide the 

localization of the robot 

                                      h1 = √(f(x)   −  x)2 + (f(y)   −  y)2     

                      h                                                                                                     (82) 

                                         h2 = arctan2
fy−y

fx−x
 − θ                                

Where: 

-  (x, y ,𝜃)  current state   
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-  (𝑓(𝑥), 𝑓(𝑦)) landmarks 

Jacobians  

 

                           𝐹𝑘−1 =
𝑑𝑓

𝑑𝑋
 |𝑋̂𝑘−1|𝑘−1,𝑢𝑘−1

  

                                                                

                                     =  [

1 0 −
R

2
Ts(ϑ̇rk   + ϑ̇lk   )sinθ 

0 1
R

2
Ts(ϑ̇rk   + ϑ̇lk   )cosθ

0 0 1

]                 (83) 

 

                             𝐻𝑘 =
𝑑ℎ

𝑑𝑋
 |𝑥̂𝑘|𝑘−1

  

                                         =     [
 
𝑑ℎ1

𝑑𝑥
    

𝑑ℎ1

𝑑𝑦
    

𝑑ℎ1

𝑑𝜃

𝑑ℎ2

𝑑𝑥
    

𝑑ℎ2 

𝑑𝑦
 
  𝑑ℎ2

𝑑𝜃

]                                             (84) 
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Modeling and simulation  

 

Modeling is a way to create a virtual representation of a real-world system. We 

can simulate this virtual representation under a wide range of conditions to see 

how it behaves and to test the proposed robot analysis (Kinematics, dynamics, 

sensors and filters) and evaluate the response of the models due to different 

profiles.  

We have discussed in the previous chapters the kinematics and dynamics of the 

differential mobile robot, as we have seen the odometry which comes out from 

an encoder sensor to get up the pose of the mobile robot, but due to the errors of 

this sensor we will advise this sensor by an EKF to estimate a perfect pose of 

our robot. So we will adopt the MATLAB/SIMULINK to model, simulate and 

analyze our mobile robot (Unicycle differential drive mobile robot).  

So, this chapter introduces our robot system by using Simulink/Matlab in order 

to define the physical concepts explained before and test due to different 

scenarios.  

 

Kinematic AND DYNAMIC Model (to get the current pose) 

By having the linear and angular velocity of the robot and use them as inputs to 

the equation (34) that models the kinematic of the DDMR where It has been 

deduced from the geometry and constraints of the pure rolling wheels. So far to 

get the robot pose we must integrate it by adding the block integrator via 

Simulink. Fig.10 and Fig.11 show us how to build or kinematics by the aid of 

Simulink blocks.   
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Figure 14: linear and angular velocity as inputs to the kinematics of the robot  

                                                     Equation ((30), (31) and (34)) 

 

 

                           Figure 15:  Robot’s kinematics / equation (34) 
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Figure 16: is the voltage of the profile road which it is the input to the wheel 

dynamics.   
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                  Figure 17: LEFT WHEEL DYNAMICS AND ITS INPUT  
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Figure 18:  THE Road profile voltage with both wheels’ dynamics left and right 

and their inputs which the important is the friction coefficient the output are the 

left/right angular velocity  
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Figure 19: The Kinematic block where we can get the pose of the robot.  
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                               Figure 20: The speed constraint  
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             Figure 21: EKF FILTER AND ITS HELPER FUNCTION  
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Figure 22: OSCILISCOPE TO interpret and analyse the behaviour between the 

actual and ideal pose.  
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Figure 23: THE INTIER SIMULINK WORK WHERE WE SEE ALL THE 

BLOCKS BEFORE LINKED TOGETHER TO ANALYSE THE RESULT  
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As we notice from the Simulink , the geometry has been used to build our robot 

in the form of signals and Simulink blocks to analyze  the data come from the 

encoder according to the road profile starting from the Voltage signal as an 

input together with friction coefficient to the wheels dynamics in order to have 

the angular velocities according to the Lagrange principle after that we integrate 

the velocities to the kinematic block an by the aid of the  velocity constraints  to 

have our poses where we can link them to the EKF to have a perfect robot 

posture.  

And finally, we can tune our results and interpret it using different profiles 

according to the road and whether.  

In the next section we have interpret just two friction coefficient small one of 

0.01 and a greater one 0.2.  
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                                                              Fourth Chapter ❹ 

 

RESULTS AND INTERPRETATION  

 

we have used the robot visualizer and scopes to interpret our results according 

to three different cases.  

Each case has treated with two different friction coefficient 0.01 and 0.2. 

 

1 –  

 

 

 

2-  

 

 

3-  

 

 

 

 

Driving Straight, Forward 

𝑽𝑳 = 𝑽𝑹  ; 𝑽𝑳 > 0  

Driving in a right curve 

𝑽𝑳 > 𝑽𝑹  ; 𝑽𝑳 > 0;𝑽𝑹 > 0  

Turning in the spot (Clockwise) 

𝑽𝑹 = −𝑽𝑳  ; 𝑽𝑹 > 0   
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𝝁𝒇𝒓 = 0.01  

Driving Straight, Forward 

𝑽𝑳 = 𝑽𝑹  ; 𝑽𝑳 > 0  
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𝝁𝒇𝒓 = 0.2  
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𝝁𝒇𝒓 = 0.01  

Driving in a right curve 

𝑽𝑳 > 𝑽𝑹  ; 𝑽𝑳 > 0;𝑽𝑹 > 0  
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𝝁𝒇𝒓 = 0.2  
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Turning in the spot (Clockwise) 

𝑽𝑹 = −𝑽𝑳  ; 𝑽𝑹 > 0   
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𝝁𝒇𝒓 = 0.01  
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𝝁𝒇𝒓 = 0.2  
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CONCLUSION  

 

This paper presents the modelling approaches of encoder sensor with the EKF 

regarding mobile robot drive dynamics. considers modelling every element of 

mobile robot drive system and corresponding control framework and models 

characteristic velocity change cases. It results in a simpler model that gives 

smaller average velocity error. In this model all dynamic and kinematic 

properties can be included in the model concept. Testing is done in 

MATLAB/SIMULINK simulation and by the aid of previous experimental data, 

research, and papers.  

 

As mentioned, models are tested in MATLAB/SIMULINK environment using 

velocity data obtained from two different real conditions.  test results confirm 

an improvement in comparison to usage of different profiles reference values 

for mobile robot motion prediction. 

We conclude and confirm that the largest factor in odometry error is due to the 

resolution of the robot.  

 ACcording to my point, from this work is better when used by navigational 

system, mobile robot pose prediction could be more accurate and a more precise 

generated trajectory following can be assured. So future work will go into 

direction of including this dynamic model into mobile robot navigational system 

(localization and path planning module) and expanding it with an on-line 

estimation framework. 
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