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Odometry   
Introduction  

The first step is to understand the mobile robot odometry and to review some 
helpful concepts. In a robotic environment the usage of internal sensors to 
estimate the robot pose is called odometry. The classical technique for a 
wheeled robot to calculate its position is to track its location through a series of 
measurements of the rotations of the robot’s wheels. Odometry requires a 
method for accurately counting the rotation of the robot and, with this 
information, estimates the left and right wheel velocities. Therefore, relative 
position estimation is extremely dependent on the measurement of the robot’s 

velocity. Once we have our left and right spinning velocities, we can compute 
the kinematics and obtain our robot pose integrating(𝑥′ , 𝑦′ , 𝜃′).  

Suppose your robot starts at the origin, pointed down the x-axis. Its state is  
(𝑥, 𝑦, 𝜃) = (0, 0, 0). If the robot travels (roughly) straight for three seconds at 1 
m/s, a good guess of your state will be (3, 0, 0). That’s the essence of odometry. 

We’ll assume that the vehicle is differentially driven: it has a motor on the side 
of the robot and another motor on the right side. If both motors rotate forward, 
the robot goes (roughly) straight. If the right motor turns faster than the left 
motor, the robot will move left (we will explain this point in details next 
chapters). 

So, our goal is to measure how fast our left and right motors are turning. From 
this, we can measure our velocity and rate of turn, and then integrate these 
quantities to obtain our position.  

 

Derivation  

The speeds of our motors give us two quantities: the rate at which the vehicle is 
turning, and the rate at which the vehicle is moving forward. All we must do is 
to integrate these two quantities and we’ll have our robots state (𝑥, 𝑦, 𝜃). 

That sounds a bit scary, but the mathematics end up being very simple. If we 
had analytic expression for the angular rate and forward rate functions, their 
integral probably would be scary. But in a real system, our data comes from real 
sensors that sampled periodically. Every few milliseconds, we get a new 
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measurement of our motor velocities. We will numerically integrate our 
solution, which is of course, just a fancy way of saying that we’ll divide time up 

into little chunks and just add up all little pieces. 

Suppose our robot is at(𝑥, 𝑦, 𝜃). Depending on what kind of sensors we have, 
we might get measurements of how much the motors have rotated (in radians), 
or an estimate of how fast they’re rotating (angular rate, radian/sec.) We’ll 

consider the first case, but of course the second case can be handled by just 
multiplying the angular rate by the amount of time that has elapsed since our 
last iteration ( the equations of  this thesis will be adopt the second case but in 
this chapter the first case is chosen just to clarify the odometery concept).  

Given the amount of rotation of the motor and the diameter of the wheel, we can 
compute the actual distance that the wheel has covered.  

Suppose the left wheel has moved by a distance of  𝑑𝑙𝑒𝑓𝑡  and the right wheel 
has moved 𝑑𝑟𝑖𝑔ℎ𝑡. For some small period of time (such that 𝑑𝑙𝑒𝑓𝑡 and  𝑑𝑟𝑖𝑔ℎ𝑡 are 
short), we can reasonably assume that the vehicle trajectory was an arc (see Fig. 
1). 

 

 

Figure 1:  Odometery geometry.  Over a small time period, the robot’s motion can be 

approximated by an arc. The odometery problem is to solve for (𝑥′ , 𝑦′ , 𝜃′) given (𝑥, 𝑦, 𝜃)  
and 𝑑𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒. In the figure, the robot is moving counterclockwise. 
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The initial state  (𝑥, 𝑦, 𝜃) defines the starting point, with  𝜃  representing the 
vehicle’s heading. After our vehicle has moved by 𝑑𝑙𝑒𝑓𝑡 and  𝑑𝑟𝑖𝑔ℎ𝑡, we want to 
compute the new position(𝑥′ , 𝑦′ , 𝜃′). 

The center of the robot (the spot immediately between the two wheels that 
defines the robot’s location), travels along an arc as well. Remembering that arc 
length is equal to the radius times the inner angle, the length of this arc is: 

 

                              dcenter =
dleft+dright

2
                                        (1) 

 

  Given basic geometry, we know that:  

                              φ rleft = dleft                                                  (2)       

                              φ rright = dright                                              (3) 

      

If  𝑑𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is the distance between the left and right wheels, we cam write:  

                             rleft +  dbaseline  = rright                               (4)                         

    

  Subtracting (2) from (4), we see:  

                 φ rright −  φ rleft  = dright −  dleft 

                           φ (rright −  rleft)  = dright −  dleft 

                           φ dbaseline  = dright −  dleft      

                           φ=   
dright− dleft

dbaseline
                                                 (5)                   
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Figure 2: Detailed odometry geometry. We compute the center of the circle P by forcing  
𝑑𝑙𝑒𝑓𝑡 and 𝑑𝑟𝑖𝑔ℎ𝑡 to be two arcs with the same inner angle φ. From this, we can compute 

the new robot position (𝑥′ , 𝑦′ , 𝜃′). 

 

At the risk of making the math a bit uglier than necessary, let’s very carefully 

compute the new robot state. All our arcs have a common origin at point P.  

Note that the angle of the robot’s baseline with respect to x-axis is   𝜃 −
𝜋

2
.  

So, we now compute the coordinates of P: 

Px = x − rcenter cos ( θ −
π

2
) 

                                              = x − rcenter sin( θ) 

Py = y − rcenter sin ( θ −
π

2
) 

                                             = y − rcenter cos( θ) 
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Now we can compute 𝑥′ 𝑎𝑛𝑑 𝑦′ 

x′ = Px + rcenter cos (φ + θ −
π

2
) 

     =  x − rcenter sin(θ) +   rcenter sin(φ + θ) 

     =  x + rcenter[− sin(θ) +   sin(φ)cos (θ) + sin(θ)cos (φ)]                       (6) 

 

And 

 

y′ = Py + rcenter sin ( φ + θ −
π

2
) 

     =  y − rcenter cos(θ) +   rcenter cos(φ + θ) 

     =  x + rcenter[cos(θ) −  cos(φ)cos(θ) + sin(θ)sin (φ)]                          (7) 

           

If φ is small (as is usually the case for small time steps), we can approximate 
sin(φ) = φ and cos(φ) = 1. This now gives us: 

     x′ =   x + rcenter[− sin(θ) +   φcos (θ) + sin(θ)]     

          =  x + rcenterφcos (θ)    

          =  x + dcentercos (θ)                                                                                     (8)    

 

And 

  

     y′ =   y + rcenter[cos(θ) −   cos (θ) + φsin(θ)]     

          =  y + rcenterφsin(θ)    

          =  y + dcentersin (θ)                                                                                      (9)  

 

 

In summary, our odometry equations for (𝑥′ , 𝑦′ , 𝜃′) reduce to:   
 

                              dcenter =
dleft+dright

2
                                                    (10) 

                                     φ    =   
dright− dleft

dbaseline
                                                  (11) 

     
                                     θ′  =  φ + θ                                                          (12) 
                                         x    ′ =  x + dcentercos (θ)                                             (13) 

                                         y   ′ =  y + dcentersin (θ)                                              (14)                                   
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Dead reckoning Sensors  

In order to build an odometry system, you must have a way of measuring the 
angular velocity of the motor. This can be accomplished by an encoder sensor 
which is placed on the motor shaft or wheel such that when the shaft rotates, the 
circuitry generates alternating 1’s and 0’s. One way of implementing a simple 

encoder is by attaching a disc with holes to the shaft, and using a break beam 
sensor to detect when a hole passes by. A mono phase encoder cannot determine 
the direction of motion. A serious failure mode occurs when the motor is 
essentially stationary with a hole halfway in front of the sensor: environmental 
noise can cause the encoder to trigger and untriggered, making it appear as 
though the shaft is rotating.        

  

Figure 3: Simple Encoder. As a perforated disk rotates, a break beam sensor 
alternates between 1 and 0. The direction of motion is ambiguous. 

 

Odometry error sources  

Odometry can provide good dead reckoning over short distances, but error 
accumulates very rapidly. At every step, we inject error (noise) into not just x 
and y, but also θ. The error in θ is the killer, since every error in θ will be 

amplified by future iterations.  

There are a number of basic noise sources  

✓ Limited resolution during integration  
✓  Unequal wheel diameter  
✓  Variation in the contact point of the wheel  
✓  Unequal floor contact and variable friction can lead to slipping  
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 Odometry Errors  

-  Deterministic errors can be eliminated through proper calibration  

-  Non-deterministic errors have to be described by error models and 
will always lead to uncertain position estimate.   
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Kinematics  
 

 In mobile robotics, we need to understand the mechanical behavior of the robot 
both in order to design appropriate mobile robots for tasks and to understand 
how to create control software for an instance of mobile robot hardware.  

  A mobile robot’s workspace is important because it defines the range of 
possible poses that the mobile robot can achieve in its environment. A mobile 
robot’s controllability defines possible paths and trajectories in its workspace.  
Due to mass and force considerations robot dynamics places additional 
constraints on workspace and trajectory. The mobile robot is also limited by 
dynamics, for instance, a high center of gravity limits the practical turning 
radius of a fast, car-like robot because of the danger of rolling. A mobile robot 
is a self-contained automation that can wholly move with respect to its 
environment. There is no direct way to measure a mobile robot’s position 

instantaneously. Instead, one must integrate the motion of the robot over time. 
Add to this the inaccuracies of motion estimation due to slippage and it is clear 
that measuring a mobile robot’s position precisely is an extremely challenging 

task. 

The process of understanding the motions of a robot begins with the process of 
describing the contribution each wheel provides for motion. Each wheel has a 
role in enabling the whole robot to move. By the same token, each wheel also 
imposes constraints on the robot’s motion, for example refusing to skid 
laterally. In this section, we introduce notation that allows expression of robot 
motion in a global reference frame as well as the robot’s local reference frame. 

Then, using this notation, we demonstrate the construction of simple forward 
kinematic models of motion, describing how the robot as a whole moves as a 
function of its geometry and individual wheel behavior. As we formally 
describe the kinematic constraints of individual wheels, and then combine these 
kinematic constraints to express the whole robot’s kinematic constraints. With 

these tools, one can evaluate the paths and trajectories that define the robot’s 

maneuverability. 

 

Deriving a model for the whole robot’s motion is a bottom-up process. Each 
individual wheel contributes to the robot’s motion and, at the same time, 
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imposes constraints on robot motion. Wheels are tied together based on robot 
chassis geometry, and therefore their constraints combine to form constraints on 
the overall motion of the robot chassis. But the forces and constraints of each 
wheel must be expressed with respect to a clear and consistent reference frame. 
This is particularly important in mobile robotics because of its self-contained 
and mobile nature; a clear mapping between global and local frames of 
reference is required. We begin by defining these reference frames formally, 
then using the resulting formalism to annotate the kinematics of individual 
wheels and whole robots. 

 

Coordinate Systems 

 

In order to describe the position of the WMR in his environment, two different 
coordinate systems (frames) need to be defined 

1. Inertial Coordinate System: This coordinate system is a global frame which is 
fixed in the environment or plane in which the WMR moves in. Moreover, this 
frame is considered as the reference frame and is denoted as {XI ,YI}.  

2. Robot Coordinate System: This coordinate system is a local frame attached to 
the WMR, and thus, moving with it. This frame is denoted as {Xr ,Yr}. 

 

 

The two defined frames are shown in Fig. 4. The origin of the robot frame is 
defined to be the mid-point A on the axis between the wheels.  

The center of mass C of the robot is assumed to be on the axis of symmetry, at a 
distance d from the origin A. 

As shown in Fig. 4, the robot position and orientation in the Inertial Frame can 
be defined as  

                                                    qI = [ 

xa

ya

 θa

 ]                                                                       (15) 
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The important issue that needs to be explained at this stage is the mapping 
between these two frames. The position of any point on the robot can be defined 
in the robot frame and the inertial frame as follows. 

Let    𝑋 𝑟 = [ 
𝑞𝑟

𝑞𝑟

 θ
𝑟
 ]  , and  𝑋 𝑙 = [ 

𝑞𝑙

𝑞𝑙

 θ𝑙

 ]  and be the coordinates of the given point 

in the robot frame and inertial frame, respectively. Then, the two coordinates 
are related by the following transformation:  

 

                                     Xl =  R(θ)Xr                                                                    (16) 

Where R(θ) is the orthogonal rotation matrix  

 

                                  𝑅(θ) =  [
𝑐𝑜𝑠θ −𝑠𝑖𝑛θ 0
𝑠𝑖𝑛θ 𝑐𝑜𝑠θ 0
0 0 1

]                                            (17)  

  

 

                                        Figure 4: Differential Drive Mobile Robot (DDMR)                                                   
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This transformation will enable also the handling of motion between frames  

 

                                       𝑉𝑙 =  𝑅(θ)𝑉𝑟                                                                    (18)  

 

It will be seen in the next section that equation (18) is very important in 
deriving the DDMR kinematic and dynamic models as it describes the 
relationship between the velocities in the Inertial Frame and the Robot Frame. 

 

Kinematic Constraints of the Differential-Drive Robot  

The motion of a differential-drive mobile robot is characterized by two non-
holonomic constraint equations, which are obtained by two main assumptions:  

• No lateral slip motion: This constraint simply means that the robot can move 
only in a curved motion (forward and backward) but not sideward. In the robot 
frame, this condition means that the velocity of the center-point A is zero along 
the lateral axis: 

                                           ẏa
r  = 0                                                    (19) 

                               

Using the orthogonal rotation matrix R(θ), the velocity in the inertial frame 

gives  

                                      -�̇�𝑎sinθ + -�̇�𝑎cosθ = 0                                 (20) 

                    

• Pure rolling constraint: The pure rolling constraint represents the fact that each 

wheel maintains a one contact point P with the ground as shown in Figure 5. 
There is no slipping of the wheel in its longitudinal axis (𝑥𝑟) and no skidding in 
its orthogonal axis (𝑦𝑟). The velocities of the contact points in the robot frame 
are related to the wheel velocities by:  

                                         vpR = 𝑅φ�̇�                                               (21) 

                                         vpL = 𝑅φ𝐿̇                                                (22) 
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In the inertial frame, these velocities can be calculated as a function of the 
velocities of the robot center-point A: 

                                      �̇�𝑃𝑅 = �̇�𝑎 + Lθcosθ                                    (23) 

                                      �̇�𝑃𝑅 = �̇�𝑎 + Lθsinθ                                     (24) 

                                      �̇�𝑃𝐿 = �̇�𝑎 + Lθcosθ                                     (25) 

                                     �̇�𝑃𝐿 = �̇�𝑎 + Lθsinθ                                       (26) 

Using the rotation matrix R(θ), the rolling constraint equations are formulated 

as follows:  

                                   �̇�𝑃𝑅cosθ + �̇�𝑃𝑅sinθ =  𝑅φ�̇�                           (27)   

                                   �̇�𝑃𝐿cosθ + �̇�𝑃𝐿sinθ =  𝑅φ𝐿̇                             (28)                            

 

      

                                                                  Figure 5: Pure Rolling Motion Constraint 

 

Using the contact points velocities from equation (x, y) and substituting in       
(x, y), the three constraint equations can be written in the following matrix 
form:  
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                      (29) 

The above constraints matrix Λ(q) will be used in the next section for the 

DDMR dynamic modeling. 

 

Kinematic Model 

Kinematic modeling is the study of the motion of mechanical systems without 
considering the forces that affect the motion. For the DDMR, the main purpose 
of kinematic modeling is to represent the robot velocities as a function of the 
driving wheels velocities along with the geometric parameters of the robot. 

The linear velocity of each driving wheel in the Robot Frame is therefore, the 
linear velocity of the DDMR in the Robot Frame is the average of the linear 
velocities of the two wheels 

                                                              (30) 

And the angular velocity of the DDMR is  

                                                            (31) 
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The DDMRs velocities in the robot frame can now be represented in terms of 
the center-point A velocities in the robot frame as follows:  

                                                       (32) 

The DDMR velocities can be obtained also in the inertial frame as follows:  

                                                (33) 

Equation (33) represents the forward kinematic model of the DDMR. Another 
alternative form for the kinematic model can be obtained by representing the 
DDMR velocities in terms of the linear and angular velocities of DDMR in the 
Robot frame is the equation (34). 

                                                (34) 
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Dynamic Modeling of the DDMR 

 

Dynamics is the study of the motion of a mechanical system taking into 
consideration the different forces that affect its motion unlike kinematics where 
the forces are not taken into consideration. The dynamic model of the DDMR is 
essential for simulation analysis of the DDMR motion and for the design of 
various motion control algorithms.  

 

A non-holonomic DDMR with n generalized coordinates (q1, q2, qn) and 
subject to m constraints can be described by the following equations of motion:   

 

  M(q)q̈ + V(q, q̇)q̇  + F(q̇) + G(q) +τd = B(q)τ - ΛT(q)λ                      (35) 

 

M (q) an nxn symmetric positive definite inertia matrix, V (q, q̇) is the 
centripetal and coriolis matrix, F (q̇) is the surface friction matrix, G (q) is the 
gravitational vector, τd  is the vector of bounded unknown disturbances 
including unstructured un-modeled dynamics, B (q) is the input matrix, τ is the 

input vector, ΛT(q) is the matrix associated with the kinematic constraints, and λ 

is the Lagrange multipliers vector. 

 

Lagrange dynamic approach  

 

Lagrange dynamic approach is a very powerful method for formulating the 
equations of motion of mechanical systems. This method, which was introduced 
by Lagrange, is used to systematically derive the equations of motion by 
considering the kinetic and potential energies of the given system. 

The Lagrange equation can be written in the following form: 

                   d

dt
 ( 

dL

dqi̇
 ) + 

dL

dqi
 = F − ΛT(q)λ                                        (36)  
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Where L=T-V is the Lagrangian function, T is the kinetic energy of the system, 
V is the potential energy of the system, qi are the generalized coordinates, F is 
the generalized force vector, Λ is the constraints matrix, and λ is the vector of 

Lagrange multipliers associated with the constraints. 

The first step in deriving the dynamic model using the Lagrange approach is to 
find the kinetic and potential energies that govern the motion of the DDMR. 
Furthermore, since the DDMR is moving in the {XI, YI}. Plane, the potential 
energy of the DDMR is considered to be zero. 

 

For the DDMR, the generalized coordinates are selected as  

                           q = [ xa    ya  θ     φR    φL ]
T                                      (37) 

 

The kinetic energies of the DDMR is the sum of the kinetic energy of the robot 
platform without wheels plus the kinetic energies of the wheels and actuators.  

The kinetic energy of the robot platform is 

                             Tc = 
1

2
mcVc

2 +
1

2
Icθ̇

2                                             (38)  

 

While the kinetic energy of the right and left wheel is  

                            TwR = 
1

2
mwVwR

2 +
1

2
Imθ̇2 +  

1

2
Iwφ̇R

2                      (39)  

  

                           TwL = 
1

2
mwVwL

2 +
1

2
Imθ̇2 +  

1

2
Iwφ̇L

2                       (40) 

 

where, mc is the mass of the DDMR without the driving wheels and actuators 
(DC motors), mw is the mass of each driving wheel (with actuator), Ic is the 
moment of inertia of the DDMR about the vertical axis through the center of 
mass, Iw is the moment of inertia of each driving wheel with a motor about the 
wheel axis, and Im is the moment of inertia of each driving wheel with a motor 
about the wheel diameter.   



17 
 

All velocities will be first expressed as a function of the generalized coordinates 
using the general velocity equation in the inertial frame.   

                                    Vi
2 =  ẋi

2 + ẏi
2                                                      (41)  

The Xi and Yi components of the center of mass and wheels can be obtained in 
terms of the generalized coordinates as follow 

                                  xc = xa + dcosθ  

                                  yc = ya + dsinθ                                               (42) 

                                 xwR = xa + Lcosθ  

                                 ywR = xa + Lsinθ                                             (43) 

                                xwL = xa − Lcosθ  

                                ywL = ya + Lsinθ                                               (44)           

Using equations (38)-(40) along with equations (41- (44), the total kinetic 
energy of the DDMR is 

𝑇 =
1

2
𝑚( �̇�𝑎

2 + �̇�𝑎
2) − 𝑚𝑐𝑑�̇�(�̇�𝑎𝑐𝑜𝑠𝜃 − �̇�𝑎𝑠𝑖𝑛𝜃) +  

1

2
𝐼𝑤(�̇�𝑅

2 + �̇�𝐿
2) + 1

2
𝐼�̇�2  (45             

 

Where the following new parameters are introduced  

m = mc + 2mw is the total mass of the robot, 

 I =  Ic + mcd
2 + 2mwL2 + 2Im is the total equivalent inertia. 

Using equation (36) along with the Lagrangian function, L=T the equations of 
motion of the DDMR are given by 

                         mẍa − mdθ̈sinθ − mdθ̇2cosθ = C1                               (46)     

                         mÿa − mdθ̈cosθ − mdθ̇2sinθ = C2                                (47) 

                         Iθ̈ − mdẍasinθ + mdÿacosθ = C3                                  (48) 

                         Iθ̈R = τR + C4                                                                   (49) 

                         Iθ̈L = τL + C5                                                                   (50) 
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where (C1 , C2 , C3 , C4 , C5 ), are coefficients related to the kinematic 
constraints, which can be written in terms of the Lagrange multipliers vector λ 

and the kinematic constraints matrix Λ introduced in previous section. 

                     ΛT(q) =

[
 
 
 
 
C1

C2

C3

C4

C5]
 
 
 
 

                                                                         (51) 

Now, the obtained equations of motion (46)-(50) can be represented in the 
general form given by equation (35) as 

                   𝑀(𝑞)𝑞 + 𝑉(𝑞, �̇�)�̇� = 𝐵(𝑞)𝜏 −̈ 𝛬𝑇(q)𝜆                                  (52)       
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Next, the system described by equation (52) is transformed into an alternative 
form which is more convenient for the purpose of control and simulation. The 
main aim is to eliminate the constraint term ΛT(q)λ in equation (52) since the 
Lagrange multipliers λi are unknown. This is done first by defining the reduced 

vector  

                                            𝜂 ̇ = [
�̇�𝑅

�̇�𝐿

]                                               (53) 

     

Next, by expressing the generalized coordinates velocities using the forward 
kinematic model (33). Then we have 

 

                         (54)  
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Wheels velocity VS Robot behavior  

Before we derive the algorithm Extended Kalman Filter (EKF) in order to 
estimate the future pose of our robot, let’s see what the different values of wheel 

velocities can do to our robot. In such way the summary of our kinematics with 
different torque profile 

❖ Here the focus just in the velocities in the section of simulation we will 
see more details about torque and friction).  

❖ The next figures are just summery for what we have discussed before. 

 

        

 

                                                                 Figure 6: Robot Top view model  

 

‘‘… Driving control for differential drive is more complex than for single wheel 

drive, because it requires the coordination of the two driven wheels… If both 

motors run at the same speed, the robot drives straight forward or backward, if 
one motor is running faster than the other, the robot drives in a curve along the 
arc of a circle, and if both motors are run at the same speed in opposite 
directions, the robot turns on the spot.’’ 



21 
 

The above driving actions are illustrated in Fig.7 and Fig.8. 

 

 

           Figure 7: Driving forward and driving in a curve of differential drive 
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                             Figure 8: Rotation of differential drive 

So, The kinematics of iRobot Create can be described as the relations among the 
driven wheel velocities 𝑣𝑅,𝐿, linear velocity 𝑣 , and angular velocity  , which are 
illustrated in Fig.9. 

 

 

         Figure 9: Linear Velocity, Angular velocity, and Driven Wheel Velocities 
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Dynamics of Wheels  

By referring to the wheels dynamic equation (49) and (50) we can model the 
first part which is our dynamics   

               

                                           θ̈R =
τR

𝐼
+

C4

𝐼
                          (55)                                                                     

                                           θ̈L =
τL

𝐼
+

C5

𝐼
                          (56) 

If we integrate the wheels angular acceleration  θ̈R,L  we get our control inputs 
�̇�𝑅,𝐿  the right and left wheel angular velocities to be able compute the 
odometery by the aid of the kinematic equations seen before, see the matrix 
form (54).  

Again  I =  Ic + mcd
2 + 2mwL2 + 2Im is the total equivalent inertia. τR,L   

Right and Left wheel motor torque according to the profile chosen  C4,5  Our 
target in this section which are the torque that introduced to our system by the 
traction forces on wheels and they include the friction coefficient and the slip 
ratio depending on the road we (wet, dry, snow and ice etc. … )  

 

One must consider the interaction of the wheels with the ground to develop a 
model for this interaction, which will lead to obtain the solution to the motion 
equations of the robot. The models are complex and require several properties 
of the tires and the ground in order to estimate the interaction between the tire 
and the ground. These properties are determined through extensive empirical 
experiments. However, most of the applications in robotics involve rigid wheels 
on a rigid ground. Therefore, the approach of using a friction model is simple 
and reasonable for this type of contact between rigid surfaces. In the following, 
we will describe the traction force model. 

Consider a wheel that is rotating without slip as shown in Fig.12             . 

The equations of motion of the wheel are given by  

                                                  𝑚𝑤𝑎𝑤 = 𝐹𝑙𝑜𝑛𝑔                        (57) 

                                                 𝐼�̈� = 𝜏 − 𝐹𝑙𝑜𝑛𝑔R                      (58) 
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Figure 10 Wheel rotating without slip 

 

N.B: r = R   

Where 𝑎𝑤 is the linear acceleration of the wheel.  

Under pure rolling conditions the angular acceleration �̈� is related to linear 
acceleration as, see also Figure 5 and equation (29) 

                                                      𝑎𝑤 = R�̈�                             (59) 

If we consider these equations and express the longitudinal force in terms of 
applied torque, we obtain  

 

                                                  𝐹𝑙𝑜𝑛𝑔 =
𝜏∗𝑚𝑤∗𝑅

𝐼+𝑚𝑤𝑅2                          (60) 

 

Such a simple relation between longitudinal force and applied torque cannot be 
established when there is slip.  

In the presence of slip, we consider the Coulomb friction model to establish the 
relationship between the normal force and the force exerted by the applied 
torque, due to irregularities of the bodies in contact. A static friction coefficient 
is utilized to determine the value of the maximum force that has to be applied to 
the wheel before the wheel starts to slip.  



25 
 

Considering  µ𝑠 to be the coefficient of static friction and N as the normal force 
on the wheel, we have  

                                                  𝐹𝑙𝑜𝑛𝑔 = µ𝑠𝑁                             (61) 

 

If the resultant force due to the applied torque is less than the static frictional 
force, it is completely transmitted to the ground resulting in pure rotation of the 
wheel. If the resultant force exceeds the static frictional force, a portion of this 
force that is above the static frictional force causes the wheel to slip (i.e., to 
rotate without any linear displacement), the remaining force is utilized for the 
forward motion of the wheel. Hence, slip occurs if the value of 𝐹𝑙𝑜𝑛𝑔 given by 
equation (60) is greater than that of equation (61). The force that results in the 
linear motion is determined by the kinetic friction coefficient and is given by 

 

                                            𝐹𝑙𝑜𝑛𝑔 = µ𝑘𝑁                             (62) 

 

Lateral slip of the wheel may occur in conjunction with longitudinal slip. In 
order to determine the 
actual relation between 
the amount of slip and 
the force applied, we 
decompose the total force 
due to the applied torque 
into lateral and 
longitudinal force 
components as shown in 
Fig.13.  Decomposing 
the total force (µ𝑘𝑁) into 
longitudinal and lateral 
forces. 

                                                                                      

  

Figure 11: Longitudinal and lateral slip due to friction forces 
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 We obtain         

                                         𝐹𝑙𝑜𝑛𝑔𝑟 = µ𝑘𝑁 (
�̇�𝑟

√�̇�𝑟
2+�̇�2

)                           (63) 

                                         𝐹𝑙𝑜𝑛𝑔𝑙 = µ𝑘𝑁 (
�̇�𝑙

√�̇�𝑙
2+�̇�2

)                            (64) 

 

We considered the longitudinal forces where the subscript r and l are used to 
refer to the right and left wheel, respectively. And to get the torques we just 
multiply by the wheel radius so,  

                                               𝜏𝑙𝑜𝑛𝑔𝑟 = 𝑅𝐹𝑙𝑜𝑛𝑔𝑟                                (65) 

                                                𝜏𝑙𝑜𝑛𝑔𝑙 = 𝑅𝐹𝑙𝑜𝑛𝑔𝑙                               (66) 

 

In the previous section kinematics and dynamics under pure rolling and without 
lateral slip are derived. However, in practice, there is slip in both lateral and 
longitudinal directions. 

Lateral slip is present when the direction of the movement is different from 
wheel’s plane of rotation, so the wheel must slip in order to reorient itself in the 
desired direction; see Fig.14. 

                                   

Figure 13 : Lateral slip due to difference in robot motion direction and plane of 
rotation of the wheel 
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Longitudinal slip occurs when the input torque is not completely transmitted to 
the ground. As a consequence, the linear speed of the where (ρ̇) is not equal to 
the peripheral speed of the wheel, i.e. ρ̇ < θ̇R. A portion of the applied torque is 
transmitted to the ground resulting in wheel forward motion, the rest is 
consumed by pure wheel rotation causing wheel slip. Longitudinal slip is also 
possible when the wheel stops rotating but the linear velocity is not zero. 

Lateral slip is a phenomenon that has minimal effect on achieving a motion 
objective for the robot at low speeds. It can be observed mainly when the robot 
is in motion along a curved path at high speeds, i.e., when continuous and rapid 
orientation changes are required. Longitudinal slip is more prevalent as it is a 
direct consequence of the application of wheel torques beyond what can be 
supported by the traction between the wheels and the ground.  

It is directly influenced by the value of coefficient of friction along the motion 
path. In the following we provide equations of motion under slip 

In the presence of slip, the non-holonomic constraints are given by 

 

                                   �̇�𝑟 = �̇�𝑐 cos 𝜃 + �̇�𝑐 sin 𝜃 +
1

2
𝐿�̇�          (67) 

                                  �̇�𝑙 = �̇�𝑐 cos 𝜃 + �̇�𝑐 sin 𝜃 −
1

2
𝐿�̇�            (68) 

                                  �̇� = �̇�𝑐 sin 𝜃 − �̇�𝑐 cos 𝜃 − 𝑑�̇�               (69) 

 

Where   η̇ represents the lateral velocity due to slip andρ̇r, ρ̇l are the linear 
velocities of right and left wheels, respectively. 
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Extended Kalman Filter (EKF)  

 
In the mobile robotic systems, a precise estimate of the robot pose with the 
intention of the optimization in the path planning is essential for the correct 
performance, on the part of the robots, for tasks that are destined to it. Sensors 
data like odometry, compass, and the result of triangulation Cartesian 
estimative, are fused for better position estimative. It uses a mathematical and 
computational tool for nonlinear systems with time-discrete sampling for pose 
estimative calculation of mobile robots, with the utilization of extended Kalman 
filter (EKF). A mobile robot platform with differential drive and non-holonomic 
constraints is used as a base for state space, plants and measurements models 
that are used in the simulations and validation of the experiments. 

 

Kalman Filtering 

Kalman Filter (KF) is a well-known algorithm for estimation and prediction 
especially when data has a lot of noise. KF is used for linear transition functions 
whereas under non-linear transition, Extended Kalman Filter (EKF) is used. A 
brief summary of the basic discrete time linear Kalman Filter as follows. The 
Kalman Filter produces a state estimate of a discrete time linear difference 
equation of the form given in equation (70), where  𝑥𝑘  is the current state of the 
system, 𝐴 is the linear process dynamics matrix, 𝐵 is the matrix that relates the 
control input 𝑢𝑘−1, and 𝑤𝑘−1 is the Gaussian process noise. Equation (71) 
describes how the sensors produce a measurement 𝑧𝑘 of the process given in 
equation (70).where H is the measurement matrix with a number of rows equal 
to the number of sensor inputs and 𝑣𝑘 is the Gaussian measurement noise for 
the sensors 

 

                                      xk = Axk−1 + Buk−1 + wk−1                               (70) 

                                            zk = Hxk + vk                                                         (71) 
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The two fundamental assumptions in the linear Kalman Filter are that the 
estimated discrete time process is linear, and the measurement and process noise 
are Gaussian distributions with zero means. 

The Kalman Filter algorithm is recursive, and runs in two stages. The first stage 
is called the ’predictor’ in which a new state estimate is produced from the 
previous estimate. The second stage is called the ’corrector’ in which the 

estimate produced by the predictor stage is adjusted based on the new sensor 
measurements produced by equation (70). The algorithm only uses data from 
the previous state estimate, and thus requires minimal data storage and 
computation to produce the new state update. 

Extended Kalman Filtering 

As we have noticed before both the kalman filter and the extended kalman filter 
has the same algorithm strategy, based on the predictor stage, innovation and 
correction stage. But the only difference is that the extended kalman filter is 
used in the non-linear system as we will see in our case where the state 
transition and observation models are non- linear functions of the state and 
input.  

The dynamic model of the EKF is given by,  

 

                                        xk = f(xk−1, uk) + wk                                    (72) 

                                              zk = h(xk) + vk                                              (73) 

 

The function f can be used to compute the predicted state from the previous 
estimate and similarly the function h can be used to compute the predicted 
measurement from the predicted state. However, f and h cannot be applied to 
the covariance directly. Instead, a matrix of partial derivatives (the Jacobian) is 
computed. 

❖ 𝑢𝑘 , 𝑤𝑘 𝑎𝑛𝑑 𝑣𝑘 Have been defined before.  
❖ At each time step the Jacobian is evaluated with current predicted states. 

These matrices can be used in our filter equations. This process 
essentially linearizes the non-linear function around the current estimate.  
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EKF algorithm: 

Predict 

Predicted State 

                                                x̂k|k−1 = f(x̂k|k−1, uk−1)                        (74) 

Predicted estimate covariance 

                                              Ck|k−1 = Fk−1Ck−1|k−1Fk−1
T + Wk−1        (75) 

 

Update 

Innovation or measurement residual 

                                              ŷk = zk − h(x̂k|k−1)                                  (76) 

Innovation (or residual) covariance 

                                               Sk = HkCk|k−1Hk
T + Vk                             (77) 

Optimal Kalman Gain 

                                               Kk = Ck|k−1Hk
TSk

−1                                   (78) 

Updated State estimate 

 

                                             x̂k|k = x̂k|k−1 + Kkỹk                                    (79) 

Updated estimate covariance 

                                              Ck|k = (I − KkHk)Ck|k−1                         (80) 

Where the state transition and observation matrices are defined to be the 
following based on the previous discussion of the odometery and the robot 
analysis. 

In particular our system becomes:  

The function f : 
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                                       xk+1 = xk   + 
  R

   2  
Ts (ϑ̇rk   + ϑ̇lk   ) cosθ 

                     f                 yk+1 = yk   + 
  R

   2  
Ts (ϑ̇rk   + ϑ̇lk   ) sinθ                  (81) 

                                       θk+1 = θk   + 
  R

   d  
Ts (ϑ̇rk   − ϑlk   )                          

Where:  

-   𝑋𝑘 = [

𝑥𝑘

𝑦𝑘

𝜃𝑘

]  is the pose of the robot. 

 

- 𝑢𝑘 = [
�̇�𝑟𝑘   

�̇�𝑙𝑘   

] is the control input, wheels angular velocity. 

- Ts is the sampling time. 
- R is the robot wheel radius. 
- K is the current state  
- K-1 s the previous state  
- K+1 is the future state  

The function h: 

The localization in structuralized environment is helped, in general, by external 
elements that are called of land markers. It is possible to use natural markers 
that already existing in the environment for the localization. Another possibility 
is to add intensionally to the environment artificial markers to guide the 
localization of the robot 

                                      h1 = √(f(x)   −  x)2 + (f(y)   −  y)2     

                      h                                                                                                     (82) 

                                         h2 = arctan2
fy−y

fx−x
 − θ                                

Where: 

-  (x, y ,𝜃)  current state   
-  (𝑓(𝑥), 𝑓(𝑦)) landmarks 

Jacobians  
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                           𝐹𝑘−1 =
𝑑𝑓

𝑑𝑋
 |�̂�𝑘−1|𝑘−1,𝑢𝑘−1

  

                                                                

                                     =  [

1 0 −
R

2
Ts(ϑ̇rk   + ϑ̇lk   )sinθ 

0 1
R

2
Ts(ϑ̇rk   + ϑ̇lk   )cosθ

0 0 1

]                 (83) 

 

                             𝐻𝑘 =
𝑑ℎ

𝑑𝑋
 |�̂�𝑘|𝑘−1

  

                                         =     [
 
𝑑ℎ1

𝑑𝑥
    

𝑑ℎ1

𝑑𝑦
    

𝑑ℎ1

𝑑𝜃

𝑑ℎ2

𝑑𝑥
    

𝑑ℎ2 

𝑑𝑦
 
  𝑑ℎ2

𝑑𝜃

]                                             (84) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Modeling and simulation  
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Modeling is a way to create a virtual representation of a real-world system. We 
can simulate this virtual representation under a wide range of conditions to see 
how it behaves and to test the proposed robot analysis (Kinematics, dynamics, 
sensors and filters) and evaluate the response of the models due to different 
profiles.  

We have discussed in the previous chapters the kinematics and dynamics of the 
differential mobile robot, as we have seen the odometry which comes out from 
an encoder sensor to get up the pose of the mobile robot, but due to the errors of 
this sensor we will advise this sensor by an EKF to estimate a perfect pose of 
our robot. So we will adopt the MATLAB/SIMULINK to model, simulate and 
analyze our mobile robot (Unicycle differential drive mobile robot).  

So, this chapter introduces our robot system by using Simulink/Matlab in order 
to define the physical concepts explained before and test due to different 
scenarios.  

 

Kinematic Model (in order to get the current pose) 

By the having the linear and angular velocity of the robot and use them as 
inputs to the equation (34) that  models the kinematic of the DDMR where  It 
has been deduced from the geometry and constraints of the pure rolling wheels. 
So far to get the robot pose we must integrate it by adding the block integrator 
via Simulink. Fig.10 and Fig.11 show us how to build or kinematics by the aid 
of Simulink blocks.   
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Figure 14: linear and angular velocity as inputs to the kinematics of the robot  

                                                     Equation ((30), (31) and (34)) 

 

 

                           Figure 15:  Robot’s kinematics / equation (34) 
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