
POLITECNICO DI TORINO

ICT for Smart Societies

Master’s Degree Thesis

Smart Contracts and Solidity Code
Summarization

supervisors:
Ing. GATTESCHI VALENTINA
Prof. LAMBERTI FABRIZIO

candidate:
ID S267461
MATTEO ZHANG

A.Y.2020-2021



Contents

1 Introduction 1
1.1 Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Ethereum Ecosystem . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Ethereum Introduction . . . . . . . . . . . . . . . . . . 5
1.2.2 Smart Contracts . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Notable problems . . . . . . . . . . . . . . . . . . . . . 10
1.2.4 The current state of researches . . . . . . . . . . . . . . 14

1.3 SoliditySummarizer . . . . . . . . . . . . . . . . . . . . . . . . 16

2 State of the Art 17
2.1 Smart Contract Translator . . . . . . . . . . . . . . . . . . . . 17
2.2 Code Summarization . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Data Extraction . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Summary Generation . . . . . . . . . . . . . . . . . . . 22
2.2.3 Evaluation of CS techniques . . . . . . . . . . . . . . . 23
2.2.4 Target Code Artefact . . . . . . . . . . . . . . . . . . . 25
2.2.5 Evaluation of SMTranslator . . . . . . . . . . . . . . . 26

2.3 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.2 Embeddings . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.3 The architecture . . . . . . . . . . . . . . . . . . . . . 33

2.4 NLP metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Comment generation 44
3.1 Solidity Source Code . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.1 Data collection . . . . . . . . . . . . . . . . . . . . . . 45
3.1.2 Data cleaning . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 NLG with NeuralCodeSum . . . . . . . . . . . . . . . . . . . . 52
3.2.1 NeuralCodeSum vs Vanilla Transformer . . . . . . . . . 58

I



4 Evaluations 60
4.1 Quantitative and Qualitative analysis . . . . . . . . . . . . . . 60

4.1.1 The Survey results . . . . . . . . . . . . . . . . . . . . 61
4.2 Code Comment Examples . . . . . . . . . . . . . . . . . . . . 63

5 Conclusions 70

Appendix List of Figures 72

Appendix List of Tables 74

Bibliography 75

II



Summary

Blockchain became a hot topic in the last decade. Blockchain is the underlying
technology enabling Bitcoin transfers. In particular, this technology ensures
the integrity of digital records and enables the transfer of decentralized digital
currency. After the creation of bitcoin, Vitalik Buterin saw the unexpressed
potential of this technology in other fields that go beyond a simple transfer
of value and created Ethereum, an open-source, decentralized blockchain
with smart contract functionality. Consequently, smart contracts became the
centre of the Blockchain economy.

Smart contracts are programs that run on the blockchain. In the Ethereum
case, the most used programming language to code smart contracts is Solid-
ity, a relatively new programming language. One of the main problems in
computer science is source code documentation, and this is remarkably true
for Solidity. When Solidity developers need to understand smart contracts
code, the code generally lacks comments and proper documentation. In
order to provide code documentation to programmers and provide a coherent
summary of the source code in the Blockchain context, this thesis presents a
system to automatically generate comments for Solidity smart contracts code.
The created system "SoliditySummarizer" will significantly help beginners
understand the code, given that the developers spend most of their time
on this task. Furthermore, the system could also be useful for people with
limited coding skills, according to our final survey, since it will help them
understand the source code of smart contracts with detailed summaries.

In the first part of the thesis, the state of the art in solidity code sum-
marization is analyzed. In the second part, the state of the art in general
code summarization techniques are presented. Then, the developed system
is described. Such system relies on transformer models to perform natural
language generation from source code. The thesis also presents the dataset
created to train and test the system, which was created by collecting and
cleaning Solidity smart contracts. Finally, results show that the created tool
provides better results than the current state of the art solidity document
generation tools.

III



Acknowledgements

I would like to thank my supervisors, Professor Fabrizio Lamberti and
Valentina Gatteschi, for guiding me throughout the thesis research questions

and methodology. I also want to thank Taha Zafar who advised me on
research topics and friends who partecipated in the final survey. Finally I

want to thank my family and Huifeng Tan who supported me in my master
years.

IV



Chapter 1

Introduction

Smart contracts are programmed self-executing contracts that run on a
blockchain without the supervision of third parties like lawyers. Smart
contracts are possible thanks to the peer-to-peer computer network that
hosts the distributed ledger called blockchain. There are different types of
blockchains, but they all share a typical structure: blocks of information linked
together by cryptography. The majority of smart contracts are deployed on
the Ethereum blockchain, which is one of the biggest blockchains around
the world. Smart contracts are programmed in Solidity, which is a new
programming language proposed in 2014 and released in 2015 [1]. From one
end research on blockchain technology is very active and on the other end
active attempts of research on readability of smart contracts for non-experts
are ongoing. This thesis is inserted inside this context since the scope is to
automatically generate documentation for the source code. In particular, the
objective of the thesis is to create a system - the SoliditySummarizer - that is
able to automatically generate smart contracts code documentation.

The thesis is structured as follows:

In the first chapter, the blockchain is introduced. The technology be-
came popular starting from the Bitcoin white paper[2]. Then a new major
blockchain, the Ethereum blockchain, is created to exploit smart contracts
potential, unexpressed by the Bitcoin blockchain. At the end of the chapter,
specific problems in smart contract programming are presented and explained,
and a portion of these problems can be solved with SoliditySummarizer.

In the second chapter, tools and techniques belonging to the state of the
art are presented. SMTranslator represents the current state of the art in
solidity code summarization. It is a tool programmed to extract information
from smart contracts source code and combine it with templates to create code
summaries. Other techniques are also available for the code summarization

1



task; in particular, this thesis explore state of the art machine learning
techniques employing transformer models. These models are implemented
later on in this thesis.

In the third chapter, SoliditySummarizer is implemented creating two
code repositories: one is SmartContractDatabase and the other is a fork of
the Transformer model implementation. To train a good Transformer model,
the data are essential. In particular, this chapter will discuss the custom tool
SmartContractDatabase, made for data gathering and cleaning as well as the
Transformer model which is taken from an existing online repository.

The fourth chapter is about the evaluation of the SoliditySummarizer
system. Especially, the generated comments are evaluated in both quantitative
metrics and qualitative opinions of fellow programmers. The opinions are
gathered through an online survey.

The fifth chapter presents the conclusions and highlights some future
works.

1.1 Blockchain
Blockchain is the technology that enables the world most famous cryptocur-
rency, Bitcoin (Natamoto, 2008) [2], as the name suggests, it is a chain
of information blocks linked together using cryptography, the information
written in the blocks are immutable, making blockchain a perfect application
for permanent records.

Digital records are used in every sector in the modern era, particularly
the finance sector, that are in the majority centralized systems meaning only
one central authority can change the ledger of accounts.

For this reason, the person behind the pseudonym "Satoshi Nakamoto"
published the white-paper "Bitcoin: A Peer-to-Peer Electronic Cash System"
[2], building upon the blockchain technology, he created a distributed ledger
system where anyone can participate and join the peer to peer network, which
guarantees the transaction settlement of Bitcoins and the ledger integrity
without centralized institutions.

The integrity of a ledger in a blockchain is intrinsic to the block structure;
the first block is the genesis block (block 0) fig. 1.1, following blocks are
linked backward to it, after a block n is linked to a block n-1 and mined, new
Bitcoins are created as a reward system for the miner. Mining a block means
to validate and register the transactions of the last block to the blockchain.

2



The block structure fig. 1.1 is composed by the Header and Transactions,
the header needs to record: the timestamp of the block creation in Unix epoch;
the Proof of Work (POW) difficulty target (in the Bitcoin and Ethereum
case); Nonce (number only used once) a random string to append to the
current head hash; Merkle root hash.

The header also includes the parent block hash, which is the result of
the SHA-256 algorithm applied on the previous block, the validation of the
current block is done by mining which is solving the hash of the block such
that it starts with a number of zero bits. This method of validation is called
POW, and the time spent mining is proportional to the number of zeros.
Compromising any block means to mine every subsequent block, which is
surely slower than mining only the last block.

Figure 1.1: Block structure and Blockchain structure

The transactions inside a block are all collected inside the Merkle tree,
and then they are hashed to obtain the Merkle Root inside a block; this way,
it is not necessary to store the complete blockchain but only the heads in
order to participate the peer to peer network.

The creation of a block is the process for a miner to listen to the network
and collect the pending transactions. After collecting the transactions from
a transaction pool, the miner proceeds to create a candidate block to insert
in the blockchain, notice that other miners are doing the same, if the miner
finds the POW of the block by mining it, then reward and fees are sent

3



Figure 1.2: Merkle tree after pruning.
A person can check the transaction Tx3 by linking to the Merkle Root. [2]

to the miner’s wallet. Each wallet address is identified with a public key,
and every peer to peer transaction must be signed by the private key of the
corresponding address.

1.2 Ethereum Ecosystem
The Bitcoin blockchain created a new era of electronic payments, where
people can engage in transactions without a central authority. It solved
many problems related to the topic, such as the "double spending" problem,
electronic payment based on POW instead of a third-party institution or
company, non-reversible transactions creating a permanent ledger always
available to the public. However, along with the solutions, there are still
many unexplored areas, such as smart contracts and decentralized web.

Vitalik Buterin in 2013 published the Ethereum white paper [1] to explore
an alternative decentralized protocol for creating decentralized applications
and smart contracts, which has limited application in the Bitcoin blockchain
with Bitcoin Script.

"Bitcoin Script is essentially a list of instructions recorded with each
transaction that describes how the next person wanting to spend the Bit-
coins being transferred can gain access to them" [3]. On top of the Bitcoin
blockchain, simple smart contracts can be built, but they are limited by the
set of instructions called OPCODES.

Bitcoin Script does not support loops, making this set of instructions
not Turing complete; it does not provide hedging contracts which means
transactions of bitcoin cannot be programmed when they are expressed in
other currencies, e.g. send to Alice 100 US dollar worth in Bitcoin tomorrow;
the transactions have no intermediate "states": they are either spent or

4



unspent, the Script cannot access to the block data such as Nonce and
timestamp.

1.2.1 Ethereum Introduction

Ethereum is "a blockchain with a built-in Turing-complete programming
language" [1], it is born with more computational power and more features
than Bitcoin blockchain.

In Bitcoin a state S can be defined as ownership status exactly as a ledger,
each state corresponds to wallet address and amount of Bitcoins, applying a
transaction on state S the result is a new state S’ with different balances or
error message if any balance goes under zero fig. 1.3a.

(a) Bitcoin blockchain
described as transition states [1]

(b) Ethereum states
described as transition states [1]

Figure 1.3: States and State transitions [1]

In Ethereum States are called accounts fig. 1.3b, each account have an address

5



and accounts can be:

• externally owned - controlled by private keys.

• contracts - a smart contract deployed to the network, controlled by
code.

An account contain nonce (differently from Bitcoin is intended to make
transaction be processed only once), ether balance, contract code if present,
account’s storage empty by default.

An externally owned account has no code only ether balance, but from
an externally owned account it is possible to send messages by creating and
signing a transaction; in a contract account instead there is code and ether
balance, every time the contract account receives a message, it activates its
code, allowing itself to read and write from internal storage and to send
messages or to create other contract accounts [1].

The contracts are called smart contracts because they can be seen as
"autonomous agents" [1] while Bitcoin script contract are contracts that
needs only to be fulfilled, e.g. like signing with multiple private key. The
magnitude of operations are different.

Figure 1.4: Ethereum Blockchain Block
header and modified Merkle Patricia Tree roots.

The Ethereum network instead of a distributed ledger, it is a real state
machine, the Ethereum State is a data structure called modified Merkle
Patricia Tree present in every node of the network and linked together by

6



block heads fig. 1.1. The transaction tree is the same of the Bitcoin blockchain,
the state tree represents the current states of the blockchain and the receipts
tree represents the resulting state of each transaction.

The transactions are divided in two types, those which result in message
calls and those which result in contract creation. Whenever an account sends a
message or (internal transaction) to an already created and compiled contract,
it executes its bytecode (compiled contract code). If the execution involve
a state change in the blockchain then fees are required. The execution of
the bytecode is done with the Ethereum Virtual Machine (EVM) which is
implemented in every Ethereum client.

Gas is the measurement of computational complexity required to execute
a specific operation with the EVM, in simple terms it is the fee required to
conduct a transaction. The fee system actually is more complex because the
Gas imply a gas price, the gas price is expressed in Gwei (10−9Eth) and the
total fee is equal to Gas × gasPrice. The fee system discourage attackers
to perform hostile attack loops and prevents accidental code bugs to loop
forever, both loops require Eth and the amout of Eth inside contract account
has a limit.

1.2.2 Smart Contracts

In this thesis the main focus is on Ethereum because its community is one
of the biggest in the cryptocurrency world by market size, only second to
Bitcoin. Solidity, Vyper, Yul/Yul+ and FE are cited in the Ethereum website
[1] as main programming languages for Ethereum smart contracts. Solidity
surpass by far the other 2 [4], empirically on Stack Overflow and Google trends
Solidity is the most commonly used language, this fact is also confermed
by Tiobe index [5] where Solidity is ranked around 90s top programming
language.

In Ethereum a program that runs on the blockchain is called "smart
contract", it is a contract account with its own address and balance, once
deployed it can’t be deleted by default and the transactions to and from the
smart contract are irreversible. On a higher level smart contracts can be seen
as a protocol to execute automatically the contractual terms, the execution
takes place inside the EVM which is on top of the blockchain.

Building on top of the Ethereum blockchain means anyone can deploy
a smart contract, it just need to be coded with one of the programming
language like Solidity. Then the deployed contract is compiled into Ethereum
bytecode in order to be executed. A contract can even deploy other contracts

7



which extends the functionality of a single contract, the only limitation is
that smart contracts can’t send HTTP requests and therefore cannot interact
with other online services, this feature is designed due to security concerns,
directly opening HTTP requests may result in wrong or hacked responses
and this is why oracles are created in order to make the Ehtereum blockchain
aware of reliable data sources like Ether price versus US dollar. Chainlink
and MakerDAO are two blockchain project which provide real time Ethereum
price versus US dollar, they are decentralized oracles that publish real world
data, in this case price data, on Ethereum blockchain.

An interesting development of the smart contracts is the Decentralized
applications (Dapps). It is a combination of User interface and a smart
contract used as back end, this combination effectively introduce a new kind
of applications with following benefits:

• Zero downtime – once deployed smart contracts as back-end can’t be
shut-down by anyone, as long as the Ethereum blockchain is up, attacks
like denial of service is virtually impossible.

• Privacy – only a wallet address is provided to use the Dapp, meaning
that without any association of personal identity to Ethereum account
it is impossible to figure out any personal information.

• Resistance to censorship – Dapps’operations can’t be blocked by any
single entity although with a big number of nodes it is possible fork
before the Dapp creation.

• Complete data integrity – intrinsic to the blockchain, data stored inside
are public and immutable.

• Trustless computation/verifiable behavior – smart contracts can be
audited by anyone and the functioning is guaranteed by the source code.

From the website https://www.stateofthedapps.com/stats currently most
of the Dapps are created on the Ethereum blockchain, even if other blockchains
with smart contract capabilities exist fig. 1.5.

An Example of a use case can provide a better understanding of the smart
contract life-cycle: supposing a real estate entrepreneur, after multiple rounds
of discussion, strike a deal with a client to build a skyscraper with a total
of 10 floors, then a team of Software engineers code the agreement from
natural language to solidity code. Once the creation of the smart contract
is done, it can be tested and validated (the blockchain is immutable). Once

8

https://www.stateofthedapps.com/stats


Figure 1.5: Dapps platform statistics.
In the top 10 blockchain for Dapps Ethereum surpass EOS blockchain (the

second place) by nearly a factor of ×9.

Phase Challenge

Creation Readability
Functional issue

Deployment Contract correctness
Dynamic control flowc

Execution
Trustworthy oracle
Transaction ordering
Execution efficiency

Completion Privacy and Security
Scams

Table 1.1: Challenges in each phase of smart contract [6]

deployed, involved parties sign the contract with their respective wallet, and
the corresponding assets are locked for the entire duration of the deal.

The execution takes place in the blockchain, once programmed conditions
are met or better the contractual condition are satisfied then contractual assets
follow the programmed transfers automatically performing transactions. With
the updated state of the blockchain the assets of both parties are unlocked
and transferred. In Zheng et al. [6] several problems arise during the life-cycle
of the smart contract, the benefits with respect to traditional contracts are
efficiency of the operation, locked assets in case of fraud (this way the client
and supplier have interest to unlock the assets), always verifiable contract.

9



The vulnerabilities are also present in any human activity especially in this
new form of agreement, here in table 1.1 some of the problems are reported.

1.2.3 Notable problems

Along the issues in table 1.1, the Solidity programming language has got some
specific problems (listed also in the official documentation[7]):

1. Unchecked External Call - when performing external calls with transfer,
send or directly call methods, the developer expect a revert to occur
if the method fails but he doesn’t check for the return value, e.g.
if(!addr.send(1)) {revert();}.

2. Costly Loops - computational power are estimated with Gas and paid
in Ethereum, infinite loops and inefficient array manipulation can result
in exhaustion of all available Gas provided to the contract.

3. Overpowered Owner - when the contract functions can be called just
by the owner for example creation of new tokens, the smart contracts
are called overpowered and it lacks of trustless principle. This can be
solved by voting functions.

4. Arithmetic Precision - Solidity doesn’t support natively float divisions,
e.g. divison of two integers 3 and 2 will result in 1 instead of 1.5. In
any equation it is better to mutiply first then divide.

5. Relying on tx.origin - the caller is not always the first account in the call
chain (tx.origin), therefore using tx.origin as authorization to transfer
funds may result in attack from hackers and drained funds, e.g.

1 contract TxUserWallet {
2 address owner;
3 constructor () {
4 owner = msg.sender;
5 }
6 function transferTo(address payable dest , uint amount

) public {
7 require(tx.origin == owner);
8 dest.transfer(amount);
9 }

10 }

Attack contract:
1 interface TxUserWallet {
2 function transferTo(address payable dest , uint amount

) external;

10



3 }
4 contract TxAttackWallet {
5 address payable owner;
6 constructor () {
7 owner = payable(msg.sender);
8 }
9 receive () external payable {

10 TxUserWallet(msg.sender).transferTo(owner ,
11 msg.sender.balance);
12 }
13 }

if the attacker use a contract with calls to bugged function trasferTo()
then the vecification is based on tx.origin (the original external account
that started the transaction) instead of msg.sender (the immediate
account that invokes the function), then the attacked contract verify
and all the funds are drained.

6. Overflow / Underflow - limited memory size 256 bits in EVM imply the
use of "SafeMath" library to throw after performing wrong operations.

7. Unsafe Type Inference - Var declaration may result in unexpected type
dimension, but in Solidity v0.7.0 Var is removed and not supported
anymore.

8. Improper Transfer - using send() instead of transfer() may result in
burned tokens when the transaction is unsuccessful.

9. In-Loop Transfers - transfer() method used inside a loop is dangerous
because one exception can cause the whole transaction to fail and
reverted.

10. Timestamp dependence - the blockchain doesn’t provide a global time
instead smart contracts can only use block.timestamp which is unreliable
and under control of miners.

In the brief history of Ethereum the most notable attack is "The DAO"
attack, reported also on Bloomberg [8], the attack exploited loopholes inside
The DAO smart contract and gained 50 million dollars worth of ethereum.
DAO is an acronym of Decentralized Autonomous Organization, generally
they distributes tokens to participants and unlock funds by voting on project
proposals like MakerDAO. The purpose of "The DAO" instead was to fund
Dapps and grow the Ethereum ecosystem, it was created through a crowd-sale
of tokens and the total raised funds were 150 million US dollars worth of
Ethereum. The smart contract of "The DAO" contained a loophole within

11



the DAO split function, the function was created to withdraw the profits
token holders made [8], but it didn’t accounted for recursive withdraw.

First of all when DAO token holders make a proposal to give funds (in
Ether) to a certain project, the proposal will get voted. If the 20% of the
quorum vote positively the proposal pass and a smart contract containing the
funds will be sent to a "startup" Dapp, but in order to protect the minority
who vote negatively and don’t want their funds to transfer to a project they
don’t believe then they can call a split of the DAO creating a Child DAO and
withdraw the funds inside it. The Child DAO contains the equivalent Ether
of the DAO token received from the crowd sale plus the portion of the profit
that The DAO generated for the token holder.
Here are the codes to sum up the vulnerability fig. 1.6 fig. 1.7 fig. 1.8:

Figure 1.6: SplitDao function code

Figure 1.7: Withdraw function code

The splitDAO() function contains a vulnerability and the hacker success-
fully made an attack using a Proxy contract which call splitDAO() again and
again before the function update its balance: the vulnerability is inside the
withdrawRewardFor() function that call the payOut() which trigger a fallback
function inside the Proxy contract and of course inside the Proxy contract the
splitDAO() is called again making a loop where balance is never updated [9].

12



Figure 1.8: Payout function code

The attack makes withdraw from The DAO contract a re-entrancy problem,
meaning withdrawing more than once the real amount of tokens.

After The DAO attack, the initial response of the Ethereum founder Vitalik
Buterin was to initiate a soft fork by adding a code snippets to blacklist the
attacker and making stolen funds impossible to move, the alternative was a
hard fork which effectively rolls back the previously mined block containing
The Dao attack. Fork means that the network participants collectively follow
new common rules upgrading the client containing the EVM. Not all the
network participants agreed to this fork and so two parallel blockchains were
created: Ethereum with new rules and Ethereum Classic with the old rules.

The Ethereum Classic community strongly believed that blockchain should
be immutable and an error in the smart contract must be payed as it is: this
is also the position of the hacker who claimed that he rightfully claimed the
rewards. The majority of the network still considered The DAO attack too
big and also the team behind the DAO contract supported the hard fork and
subsequently the funds were moved to a recovery address where they could be
exchanged back to Ethereum by their original owners (not in the Ethereum
Classic blockchain). The DAO token was delisted from major exchanges. This
event became a pillar in the early days of the Ethereum blockchain and since
then researches, focused to avoid this problem, were made.

The smart contracts may contains intended or non intended vulnerabilities,
problems like re-entrancy which caused The DAO hack can be found using
tools like Slither and Mythril [7] but other common bugs in general can
be prevented with better code documentation and tools that enable this
process. The goal of this thesis is to support the programmers, beginners and
eventually non programmers to understand and read a source code file of any
smart contract.

13



1.2.4 The current state of researches

Research on problems cited in section 1.2.3 and table 1.1 have already made
progress: regarding the readability problems and creation phase, which are
the main focus of this thesis, many approaches have been suggested. Erays
[10] is one of the tool created to convert compiled code into pseudo code in
order to help auditors to verify smart contracts, in the research of Zhou et al.
[10] they found that around 70% of contracts source code are no released and
these smart contracts involves 30% of transactions in the network. ADICO
grammar proposed by Frantz et al. [11] provide a framework to semi translate
Natural language to ADICO component, ADICO stays for Attribute (actor’s
characteristics and attributes), Deontic (nature of statements, obligation,
permission), aIm (action and outcome of this statement regulates), Conditions
(contextual conditions), Or else (consequences). From table 1.2 it is possible
to write an example: People (A) must (D) vote (I) every four years (C), or
else they face a fine (O).

ADICO component Solidity contruct
Attribute Structs
Deontic Function modifiers
aIm Funcitons, Events

Conditions If statements
Or else throws/alternatives

Table 1.2: Corresponding ADICO components in solidity

ADICO can help the user to code a smart contracts transforming natural
language into a intermediate representations then it can be mapped in Solidity,
this process can be also nested. In the same direction a considerable amount
of researches provides translation from natural language to pseudo-code or
logic representations ready to be used by programmers to code in solidity
language, e.g. tools capable of information retrieval [12] as data extraction
method and then through templates custom smart contracts are created,
another paper (Clack,2016) [13] propose to add also a legal prose inside the
smart contracts templates making de-facto smart contracts legal electronic
documents which can be consulted in any circumstances. Other efforts to
help solidity programmers are represented by Mao et al. [14] and Guida et
al. [15], the former creates visual programming tool by extracting commonly
used functions in solidity source code and create drag and drop custom blocks
while the latter also use visual programming but in a service oriented way,
which is to retrieve and re-use third party contracts stored inside a registry

14



Figure 1.9: Example of visual programming

and use visual editor to compose the actual smart contract fig. 1.9. Visual
programming may help also non programmers to create smart contracts.

The opposite direction regarding readability is to convert source code to
natural language. Attempts like Regnath et al. [16], Li et al. [17] represents
the current state of the art in solidity translation into natural language,
although they are drastically different. Regnath et al. created SmaCoNat
(SMArt COntract in NATural language) which is a domain specific language,
it tries to directly write smart contracts in a more human readable syntax,
the development of SmaCoNat is carried out with Xtext, a domain specific
language framework. The readability of smart contracts is greatly improved
this way as shown in fig. 1.10

Figure 1.10: SmaCoNat example

15



Li et al. [17] instead use a more traditional approach using custom NLP
tools to extract important data from smart contracts and then use templates
to create natural language summary of solidity functions, Li et al. [17]
currently represents the state of the art in solidity code summarization. The
direction taken by Li et al. have still big improvement room using state of
the arts techniques from computer science field.

1.3 SoliditySummarizer
Summary of functions in source code can be directly taken from good quality
comments written above function codes, this is why in this thesis summary
generation and comment generation task are considered the same under
readability point of view. With this in mind the thesis propose a new code
summarization system for solidity source code called SoliditySummarizer.

SoliditySummarizer includes a custom set of scripts to collect and process
raw Solidity smart contracts inside the SmartContractDatabase repository
and the fork of a Transformer implementation to generate Solidity code
summaries.

16



Chapter 2

State of the Art

The first paper to research direct translation from Solidity programming
language to natural language is "Towards Interpreting Smart Contract against
Contract Fraud: A Practical and Automatic Realization"(Li, 2020) [17]. Its
aim is to enable people without computer science background to understand
and operate Ethereum smart contracts, this way there is a possibility to
reduce fraud while operating with smart contracts.

The author of the paper (Li, 2020) [17] built a novel tool named SMTrans-
lator to automatically generate readable document from smart contracts. This
tool is not published yet but according to the paper it transforms the smart
contracts into structured files identifying functions, then using custom natural
language generation techniques, it generates documents that can describe
correctly the smart contract. There is a similar field of study in the broad
coding world, that is called Code Summarization, but in this case the target
audience is of course code maintainers and people with basic programming
skills.

The following sections presents the tool SMTranslator, the research and
advances in Code Summarization field, the Transformer architecture and the
metrics used in NLP.

2.1 Smart Contract Translator
The paper of SMTranslator (Smart Contract Translator) [17] takes into
consideration the following hypothesis on the reason why code summarization
may fail to translate smart contracts:

1. The code summarization is designed for developers who have program-
ming skills and not individuals without computer science background,

17



an example of the final user is the lawyer.

2. The summarization schemes summarize the meaning of a function
according to function name but according to the observation of the
authors the function name may not correspond to the code meaning.

3. The research on documentation generation can’t discover vulnerabilities
and present them.

The list item 1, item 2 and item 3 are legitimate reasons for not using code
summarization, cases of fraud has already happened and it still happens with
new types of smart contract table 1.1 and new token sales as described in
section 1.2.3, however the creation of a smart contract always involves a bona
fide programmer so it is reasonable to create a tool for programmers instead
of general public. The second hypothesis list item 2 also isn’t true entirely
because recent advances in Code Summarization doesn’t take into account
only the function verb or the function name anymore but there is a wide
range of options as described in the next section 2.2.

(a) The architecture of SMTranslator (b) The system design of SMTranslator

Figure 2.1: SMTranslator overview with each component

Based on the paper of the authors (Li, 2020) [17] the architecture of
SMTranslator is as shown in fig. 2.1, the generated smart contract document
should contain 6 or less statements according to the template. The statements
are:

• short description of the function method like a summary;

• return description on type and value;

• modifier description which is special conditions that the method have
to satisfy;

18



• input description on the inserted parameters;

• core description which is the main statement;

• call description if the method have call functions;

A practical example can be synthesized in the pair: "function receiveEther()
returns(bool)" as input and "This method receiveEther() can be used to receive
Ether and returns bool value". This simple example already contradict the
paper hypothesis because the output is the same as a code summarization
tool would do.

The evaluation on the tool is performed using a questionnaire, it use score
from "Strongly agree","Agree","Disagree" and "Strongly disagree". The
questions are:

• Q1 Usability, The tool is easy to use and operate.

• Q2 Accuracy, The explanations and summaries for a method are accu-
rate.

• Q3 Readability The generated summaries are easy to read and I can
totally understand the meaning of each generated sentences.

• Q4 Conciseness The summaries do not contain unnecessary information.

• Q5 Instructiveness I can easily use a specific method under the direction
of the explanations.

• Q6 Core Analysis I feel the tool for core statement analysis of a method
is accurate and does not miss important information.

Ten participants with basic blockchain knowledge answered the questionnaire
and their answer are summarized in table 2.1.

Question Strongly agree Agree Disagree Strongly disagree
Q1 3/10 5/10 2/10 0
Q2 0 6/10 4/10 0
Q3 9/10 1/10 0 0
Q4 9/10 1/10 0 0
Q5 0 3/4 1/4 0
Q6 0 64% 23% 13%

Table 2.1: Questions asked in the questionnaire, and students opinions.

19



The Q1 to Q4 are questions regarding all the methods and generated docu-
mentations, 3 out of 10 participants rated strongly agree and so on, the Q5 is
intended only for computer science students and they are 4 in total while the
Q6 is also intended for the computer science students but each participant
rated 50 randomly chosen methods and the results should be interpreted as
the percentage on all the 200 ratings.

The SMTranslator results are up to now the state of the art for solidity
language documentation generation although it starts with wrong assumptions,
future projects need at least take it into consideration the paper background
motivation. An other weakness of the paper is that the evaluation is based
on an empirical questionnaire which is not objectively verifiable.

2.2 Code Summarization
According to statistical measurements, developers spend 59% of their time in
code understanding, and this percentage is increasing over time due to the
increasing complexity of complex software systems [18], this is the reason why
during software maintenance and development, the readability and compre-
hension of program code is key to success for any programmer. Comments
are essential to understand code better; in new programming languages such
as Solidity, the comments represent an indispensable tool for newcomers and
programmers who wants to add a new language inside their portfolio. Code
summarization (CS) is the field that study the techniques used for getting
information from source code.

The SMTranslator is de-facto a CS tool, it doesn’t generate sentences
that exceed high quality comments which a good programmer would write.
In this section some of the CS methods are explained in order to categorize
SMTranslator. New CS methods are introduced in order to solve the Comment
generation problem which affects most of source code in the Solidity Smart
Contracts ecosystem.

Until now according to Zhu et al. [19] most researches during 2010 to
2019 on CS can be divided in the technique used to extract information from
source code, the generation of comments, the evaluation of the results and
source code artifacts from which it is used to generate descriptions. The total
number of evaluated papers by [19] is 41, they are the most relevant papers
based on Google Scholar data, all of them are taken from the following digital
libraries:

• ACM digital library.

20



• IEEE Explore.

• Science Direct.

• Springer Link.

2.2.1 Data Extraction

The table 2.2 shows the methods used to extract information from source
code; most of them are based on Information Retrieval and Machine Learning
techniques, before describing these methods, it is appropriate to dive into
what compose a source code. Source Code usually are text file written in
programming languages and composed of different parts, the most useful parts
of the source code in CS are comments and code, different CS techniques use
different kinds of code artefacts, that ranges from the whole document to
functions and single variables, obtaining different results.

Method Frequency Rate
Information Retrieval 17 41%
Machine Learning 13 32%

Stereotype Identification 8 20%
Natural Language Process 7 17%
External Description Usage 4 10%

Table 2.2: CS data extraction methods
collected from 2010 to 2019.

Here there is a general description of the extraction methods:

• Information retrieval : it extract information based on the call graph
representation of the source code and assign the call graph to a topic
model. The topic model is a cluster of similar words build to to predict
the class of the comments.

• Machine Learning and Artificial Neural Network : ML and
ANN are divided into two classes: supervised learning and unsupervised
learning. Both supervised and unsupervised learning are data dependent
which means that these models learn from the training input data. The
difference between ML and all other data extraction methods is that
ML can be generalized to understand any programming language, while
classic data extraction methods must be configured to specific use and
then applied.

21



• Stereotype Identification : it categorize methods based on its func-
tion identifying the stereotype of the method, e.g. a method whose
responsibility is to build a class is labelled as a constructor. With the
creation of a set of finite stereotypes, it is possible to define a template
for the extracted words.

• Natural Language Process : NLP is different from previous methods.
It analyzes natural language, exploits the linguistic relationship between
words, and then uses this information for automatic comment generation,
usually creating word tagging techniques based on grammar.

• External Description Usage : it uses external information from
well known websites such as StackOverflow, Github to extract code-
description mappings or existing software repositories to detect similar
codes and their summary, in this case some NLP post process mapping
must be used to find most relevant information.

Data extraction can be seen as a encoder of the source code, which are most of
the method used in CS, even though with different techniques, they carry out
the same function, encoding means an intermediate information are stored
and ready to be used in next steps.

2.2.2 Summary Generation

The comment generation, or better the summary generation described in
table 2.3 shows the dominant research are template-based description of the
source code; this fact is attributed to the timing of important discoveries in
NLP. Machine learning applied to Natural language began to develop in the
new millennia with first probabilistic models, then the Neural language models
with artificial neural networks and finally deep learning models. Meanwhile,
the classic Natural Language Processing is heavily based on linguistic and
grammar theories, which is limited in generation tasks.

Method Frequency Rate
Template based 19 46%

Machine learning based 12 29%
Term based 7 17%

External Description based 4 10%

Table 2.3: CS summary generation methods
collected from 2010 to 2019.

22



• Template-based summarization is the most common natural language
summary generation method. In template-based summarization, re-
searchers predefine a set of summary templates and fill in the templates
based on the type of the target code segment and other information such
as interfaces, packages and parameters. Template based summarization
is still relevant in the Machine Learning and Neural Network era because
it works with any intermediate extracted information.

• Machine learning based summary generation is almost always paired
with ML data extraction methods; this way, it forms an encoder-decoder
paradigm that creates a model based on the training dataset. The early
models were based on statistical machine translation. While after
the rapid development of neural networks in general, the sequence
to sequence models emerged and at present, we have attention-based
models, which are the state of the art of neural machine translation.
translation while after the rapid development of neural networks in
general, the sequence to sequence models emerged and at present we
have attention based models which are the state of the art of neural
machine translation.

• Term-based summarization is generation of a summary that con-
tains the most relevant terms for a specific software code snippets or
code artefact (functions, declarations, loops, ecc...). Most of term-based
methods use information retrieval techniques to extract information and
then generate a keyword list from it in different approaches. The gener-
ated keyword list captures source code semantics on which developers
focus most of their attention.

• External Description based method uses external data such as com-
ment code mappings in other repositories or website forums. It’s a big
data effort, it maps code segment with comment segment found in online
code repositories and it usually generate the summary of code with
minimal change based on relevant comments. It is usually combined
with same technique for data extraction. Inside a coding forum codes
and descriptions are usually paired as questions and answers

2.2.3 Evaluation of CS techniques

CS techniques have different objectives, the main objective is to help program-
mers but there are different methods to help and different shading to obtain
this objective, generally, the evaluation of CS techniques are categorized as

23



online, offline, human involved or not, intrinsic or extrinsic. The table 2.4
show the distribution of the evaluation methods:

Method Frequency Rate
Manual Evaluation 23 56%
Statistical Analysis 16 39%

Gold Standard Summary 7 17%
Extrinsic Evaluation 5 12%

None 4 10%

Table 2.4: CS summary generation methods
collected from 2010 to 2019.

• Manual Evaluation is the most commonly used evaluation technique,
it can be combined with other techniques, it dominates the evaluation
scenery because if a group of expert programmers is found online or
offline, their judgement corresponds to the final user judgement, which is
a direct feedback. The participants can use "strongly agree" to "strongly
disagree" with different intermediate levels to rate the generated doc-
umentation. Some evaluations choose to eliminate intermediate levels
and avoid non-committal answers.

• Statistical Analysis includes statistical measurements such as preci-
sion, recall, F-score, machine translation scores. Statistical Analysis is
based on the comparison between a baseline and the generated com-
ments. Accuracy, precision, recall, and F-score are efficient ways to
quantitatively evaluate the performance of natural language summary
generator, they will be explained later in section 2.4. In artificial neural
network studies, the most used metrics are Machine translation metrics
such as BLEU(Bilingual Evaluation Understudy) score, METEOR (Met-
ric for Evaluation of Translation with Explicit ORdering) and ROGUE
(Recall-Oriented Understudy for Gisting Evaluation), this is because
with an objective score the feedback loop in model training can be
formed.

• Gold Standard Summary refers to human created summary as refer-
ence, the generated keywords list is compared to the human created
to obtain the quality of the results. This method is often used by
researchers in combination with manual evaluation, this way after com-
paring the generated comment and the gold standard one the person
who is asked to evaluate may give a more accurate feedback.

24



• Extrinsic Evaluation is based on extrinsic strategies to evaluate the
influence of the generated summaries on the reader, if the generated
comments improve the reader’s ability to program, such as increasing
productivity, comprehension, typing speed. The evaluator usually is the
researcher who observe online or offline the readers, in this case, readers
become part of the evaluation process as they carry out the experiment
by typing, by programming standard piece of algorithms.

2.2.4 Target Code Artefact

The last category for CS researches is the code artefact. There is a difference
in summarizing the whole story with respect to just one paragraph, this
is the concept behind the code artefact. Summarizing small pieces of code
can drastically improve the comment generation, that’s why the majority
of researches are focused on specific code artefact, in table 2.5 there is the
distribution of researches with respect to the chosen code artefact.

Code Artifact Frequency Rate
Method 13 56%

Code segment 12 39%
Code change 9 17%

Class 5 12%
Test case 2 10%
Package 1 2%
Variable 1 2%

Table 2.5: CS targets distribution.

• Methods and functions are the most popular choice among code
artefacts, in this case usually comments above the methods plus the
methods itself can provide datasets containing pairwise relationships.

• Code segments are code written on notorious websites such as Stack
Overflow and GitHub, which include programmers comments explaining
them, they vary in length.

• Code change are part of software versioning systems, whenever a
portion of code is changed usually the programmer include a commit
message along with the changed code, this way a natural association is
created.

25



• Class usually is the target for power-full Object Oriented Programming
languages like JAVA, the CS method in this case can explain the contents,
responsibility and role of a particular Class.

• Test case documentation are researches focused on generating sum-
maries for unit testing, this is a very specific target and difficult to
generalize on the whole source code.

• Package summarization provides the summary for specific packages
on their provided services, in this case it refers to the Java context.

• Variable summarization is focused on the parameters and different
data types, it is never used alone because it can only be part of a larger
summary like method summary.

Once Provided a general overview on the current research landscape and
defined different possible directions of the thesis it is clear that to solve the
problem described in the introduction a detailed choice must be made. First
of all SMTranslator can be defined with CS categories and then a evaluation
on the advantages and disadvantage can be made.

2.2.5 Evaluation of SMTranslator

Under the framework given by Zhu et al. [19] the SMTranslator can be cate-
gorized as a CS tool using information retrieval plus natural language
processing as data extraction method and template based summarization
as summary generation method. In the SMTranslator manual evaluation
is used as final evaluation because of a specific goal, which is helping non
programmers to read smart contracts. Finally as code artefact the Solidity
functions were used as target to generate their documentation.

The data extraction used in SMTranslator at best of its ability it can
extract limited information, that is smaller or equal to the information needed
for the template based summarization. A example of the template is provided
in table 2.6.

26



Type Template
Short_Description "This method < verb− object > and"
Return_Description "Return < statement >"
Modifier_Description "This method can be called if < condition >"
Input_Description "The inputs are <params>"
Core_Statement "< main− action >"
Call_Description "This method is called by < function >"

Table 2.6: Example Template of SMTranslator.

Given a function like:

1 function add ( uint256 a , uint256 b )
2 internal pure returns ( uint256 ) {
3 uint256 c = a + b ;
4 require (c > a , Safe Math:addition overflow );
5 return c ;
6 }

The generated description is:
This method add two unsigned integers and return c. This method can only
be called if None. The inputs are uint256 a and uint256b. The funciton add
two numbers, throw on overflow. This method is called by addTokenTo.

One of the possible Gold standards:
/***
@dev Returns the addition of two unsigned integers, reverting on overflow.
Counterpart to Solidity’s "+" operator. Requirements: Addition cannot
overflow.
*/

The Gold standard is the human written comment, which can slightly differ
one from another, but it contains high-quality documentation of the function.
At first glance, SMTranslator seems to be better than human-generated
comments, but the core statement has a 13,6% of strongly negative mark on
the generated core documentation. Because not every Solidity method is as
simple as an addition, most of the time, the name of the function does not
describe the function itself, especially for programmers who do not follow
best practices. Another crucial flaw of the SMTranslator is the generation of
the description without human written comments, Core_Statement analysis
of pure source code fails in two cases when the source code is too long failing
the selection of the main action and when there is no human comments to
take as reference. These problems regard all tools that use template-based

27



summarization, templates limit summary generation, it is also true that with
a large number of templates, it is possible to achieve outstanding results, but
it is concentrated only in specific conditions. Lastly, the Solidity language
is a relatively new language, the current version is 0.8.7, it has not reached
the 1.0.0 version yet, which means that keywords and overall programming
language are subject to change if SMTranslator is used in 2021 its performance
may decrease and long configurations are required.

One of the possible solutions proposed by this thesis is to use novel
approaches to CS, the current Machine Learning techniques and Neural Net-
works models are on the rise and they can potentially solve more generalized
CS problems, which is why this thesis proposes the use of state of the art
Neural Network model applied on Solidity Code Summarization problem.
SoliditySummarizer is proposed as a solution to help non programmers or
programmers with basic knowledge of Solidity to improve and speed up the
understanding of source code, for this purpose, CS is the central part of this
thesis given that most smart contract doesn’t provide documentation.

SoliditySummarizer, as described in section 1.3, is composed by Smart-
ContractDatabase and the fork NeuroCodeSum, while the former repository
is a custom data collector and data parser, the latter is a Transformer based
Neural Network model. It is a state of the art model which has never been
applied to Solidity code yet. In the following sections, a detailed analysis of
Transformer architecture is presented with a comparison with the previous
Neural Network architectures.

2.3 Transformers
In recent years Natural Language Processing is more and more associated with
AI since the advances NLP shifted from a heavily linguistic and probabilistic
field to a more computational oriented approach, the linguistic influence
or, in computational terms, the Rule-based system still influence the NLP
researches. However, Machine learning-based systems can now outperform
them in the same given task with better results.

First of all, Machine Learning is the study of algorithms that can improve
with experience and data, it means that the algorithms must perform several
cycles to achieve a good result (either exact or approximate result within the
tolerance range), and data must be provided in order to achieve that. With
this definition, Deep learning is a subset of Machine learning that is based on
Neural Networks as the main framework. A complete training cycle over the
whole dataset is called Epoch.

28



Neural Machine Translation (NMT) is machine translation using Neural
Networks, the input of NMT is a sequence of symbols and the final output of
the NMT is another sequence that best describes the original sequence. In
natural language, the translation from one language to another is complicated,
the context greatly influences the translation and this is one of the reasons
why it is an absolutely challenging task for both humans and machines.

NMT is introduced because CS training models have got small differences
with respect to translation models. They both need the same input and require
an understanding of context, and they can both be studied as Encoder-
Decoder models. In NMT, the state of the art models are all based on
Transformers. Almost every time using statistical evaluations such as BLUE,
Transformer based models tops the charts. For the comment generation task,
SoliditySummarizer employed a Transformer based model, which revealed
pretty solid and consistent over most of the inputs.

2.3.1 Introduction

Transformer based model is a significant milestone in NLP. The original paper
"Attention is All you need" (Vaswani, 2017) [20], opened a research field
that includes Generative Pre-trained Transformer (GPT) and Bidirectional
Encoder Representations from Transformers (BERT). These two models
generated infinite other variations on their own. This thesis will not explore
GPT and BERT, but they represent the cutting edge of NLP technology. At
the start of this thesis, the Transformer was the most promising model for
Code Summarization as [21] was just published, and it was a perfect tool for
Solidity Summarization, future research may involve GPT and BERT applied
on Solidity programming language.

Why does Transformer represent such a revolutionary idea? Furthermore,
how NMT got to this point? In this brief introduction to Transformers, the
following sections will try to explain them.

2.3.2 Embeddings

One of the first thing a person can ask is how can words be represented in
ML models, in statistical models words are discrete and we can just assign
its frequency inside a text, this is precisely the Bag of Words model. This
model can be generalized with n-gram model where n stay for the number of
words you chose to assign their frequency, for n equal to 1 it’s the equivalent
of Bag of Words.

The example sentence "I do not like pizza with pineapples but I like pizza",

29



in Bag of Words or Uni-gram model is shown in table 2.7a and Bi-gram model
is shown in table 2.7b of the same table 2.7.

Uni-gram frequency
I 2
do 1
not 1
like 2
pizza 2
with 1
pineapple 1
but 1

(a) Uni-gram example
also called Bag of words.

Bi-gram frequency
I do 1
do not 1
not like 1
like pizza 2
pizza with 1
with pineapple 1
pineapple but 1
but I 1
I like 1

(b) Bi-gram example

Table 2.7: The n-gram model example

N-gram models are powerful in Statistical Machine Learning algorithms
and they are usually based on probability distribution and statistical analysis,
one of the most important model is the Bayesian estimation.

In Neural Networks models, discrete representation of words are not good
enough, another milestone of NLP indeed is the Word Embedding described in
Word2Vec paper [22] which use both Continuous bag of words (CBOW) and
skip-gram technique to produce a distributed representation of words, with
each vector representing a word, forming a cloud of words. How it is possible
to transform words into vectors? First of all the size of the vocabulary V
and a learning dataset must be provided, then with one-hot encoding it is
possible to encode each word, giving one out of V to the corresponding word
and zero to all other elements table 2.8.

Vocabulary 0 1 2 3
king 1 0 0 0
queen 0 1 0 0
man 0 0 1 0

woman 0 0 0 1

Table 2.8: Example of one hot encoding.

Using the online tool provided by Rong et al. [23] it is possible to see the
input layer x = {x1, x2, ... , xV }, the input weight matrix WV xN , the hidden

30



Figure 2.2: Word2Vec Neural Network

layer h with N features, the output weight matrix W ′
NxV and the output layer

y= {y1, y2, ... , yV } in fig. 2.2.
The word embeddings are just the vectors v connecting the input layer

to the hidden layer, these values at first are randomly initialized, then using
CBOW which means predicting the word given its context or using Skip-gram
which means predicting the context given a word, it is possible to learn the
vector values. In the example with table 2.8 vocabulary if we use CBOW
and as input we give king and we want predict queen or we give input man
and we want to predict woman, the training of the weights starts. With only
one word as context fig. 2.3 is the Word2Vec neural network with layers fully
connected. The hidden layer equation is eq. (2.1), where k is the position
where xk = 1.

h = WTx = WT
(k,·) := vTwI

(2.1)

This is essentially copying the k-th row of W to h, where vwI is the vector
representation of the input word wI. Using the score u given by the output layer
vectors v′Twj

eq. (2.2), it is possible to compute the multinomial distribution
of the posterior distribution of words in our case is p(queen|king), this is
essentially the softmax operation eq. (2.3).

uj = v
′T
wj
h (2.2)

p (wj | wI) = yj =
exp (uj)∑V
j′=1 exp (uj′)

(2.3)

31



Figure 2.3: CBOW model with only one word in the context

where yj is the output of the j-the unit in the output layer. The training
objective is to maximize the probability of the output word wo = queen given
the input word wI = king eq. (2.4). Denoting j∗ index of wO.

max p (wO | wI) = max yj∗

= max log yj∗

= uj∗ − log
V∑
j′=1

exp (uj′) := −E,

E = − log p (wO | wI) Lossfunction

(2.4)

The loss function can be understood as a special case of the cross entropy
function. Now with back propagation techniques it is possible to derive the
update function for both output vectors and input vectors eq. (2.5).

∂E

∂uj
= yj − tj := ej

∂E

∂w′ii
=
∂E

∂uj
· uj
∂w′ii

∂E

∂hi
=

V∑
j=1

∂E

∂uj
· ∂uj
∂hi

∂E

∂wki
=
∂E

∂hi
· ∂hi
∂wki

(2.5)

The update functions for output vectors is eq. (2.6) and for the input vector

32



it is eq. (2.7):

v′( new )
wj

= v′wj
(old) − η · ej · h for j = 1, 2, · · · , V (2.6)

EHi :=
∂E

∂hi
=

V∑
j=1

ej · w′ij , v(new )
wI

= v(old )
wI

− η · EH (2.7)

In conclusion the Word Embeddings enabled the representation of words into

Figure 2.4: Vector representation of words,
in particular the male-female relationship.

vectors and they are fundamental for any Neural Machine Translation models,
the embeddings obtained with the example vocabulary can be shown with
the famous relation king −man+ woman = queen as described in fig. 2.4.
Later on Word Embeddings techniques perform either explicit or implicit
matrix factorization to word co-occurrence matrix.

2.3.3 The architecture

The Neural Machine Translation (NMT) in general (not only Attention-
based models) has essentially two assumptions: the Embedding layer, which
represent the continuous representation of words and a Neural Network
framework for encoding and decoding sequences of symbols.
Recurrent Neural Networks(RNN) and Convolutional Neural Networks(CNN)
are well established state of art in NMT before Transformer models but they
have problems that limit their performances :

• Sequential processing: sentences must be processed words by words.

33



• Past information retained through past hidden states: sequential se-
quence to sequence models follow the Markov property, each state is
assumed to be dependent only on the previously seen state.

• Parallel training: being sequential the training is slow and sentences
can’t be processed as whole, even creating Bi-directional model (making
stronger hidden representation in both direction) the performance lacks
behind Transformer.

• Vanishing and Exploding gradient: in RNN the training of long se-
quences may be biased on most recent inputs.

• Memory access: to learn contextual representations a model should ac-
cess to older inputs, LSTM and RNN are not capable of long contextual
understanding given a limited size of memory cell.

Transformer is a Sequence to Sequence based system, it encodes a input
sequence x = {x1, x2, ... , xn} (n number of words) to an intermediate
sequence z = {z1, z2, ... , zn}, that in its turn is decoded to the final sequence
y = {y1, y2, ... , ym}. Notice that the final sequence may got different
length than the input. In fig. 2.5 some smaller blocks have to be explained:
the Attention, Multi-head Attention, Encoder-Decoder, Positional Encoding.
They are the building blocks of the architecture.

34



Figure 2.5: The transformer architecture

35



Attention

In particular the scaled dot product Attention is used in the original Trans-
former paper (Vaswani,2017) [20], in fig. 2.6a three matrices Q, K, V are used
as input to compute attention values.

(a) Scaled Dot Product Attention (b) Multi-head Attention

Figure 2.6: Transformer Attention

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (2.8)

Attention is computed as in eq. (2.8), the Q(xi) (query), K(xi) (key) and
V (xi) (value) are Matrices respectively composed by qi = Wq ·xi , ki = Wk ·xi
, vi = Wv · xi, where W is a pre-trained embedding matrix. It is useful to
notice that the encoder and decoder are different, while the encoder attention
is focused only on the source symbols, the decoder attention is divided in the
first stage by the first multi-head attention with target symbols as input, then
as second multi-head attention with query and key from the encoder block
and as value the intermediate representation produced from the first stage.

Intuitively the query is the word under examination, the set of keys are
the vectors to compare against and finally the value is the best matched

36



vector. For encoders it is more precise to talk about Self Attention, meaning
that Q=̃K=̃V and the final product is the Self-Attention matrix. In the
Attention matrix the value dk is the dimension of the query and keys, dk is
equal to dv in Self-Attention and different in the decoder Attention, dv is the
dimension of value vectors. The factor

√
dk is used in eq. (2.8) to help the

softmax function in extreme small gradient regions.
Instead of producing only one Attention Matrix fig. 2.6b suggest to project

linearly the Q,K,V matrix and perform attention h times, then the Attention
matrix can be concatenated and then linearly projected. The Attention
matrices are called attention heads eq. (2.9).

MultiHead(Q,K, V ) = Concat ( head 1, . . . , head h)W
O

where head i = Attention
(
QWQ

i , KW
K
i , V W

V
i

) (2.9)

The concatenation of heads have dimension dk×dmodel and the Weight matrix
WO has dimension h · dk × dmodel. The parameter dk is actually equal to
dmodel/h.

Encoder stages

The Encoder have two stages the first stage is splitting the input embeddings
X = xi into three different matrices as described in section 2.3.3 then perform
the Multi-head self attention to obtain a intermediate U = ui matrix and
finally adding it with the input creating a residual connection R. The residuals
are then transformed into the final intermediate representation z which is the
output of the encoder. The Encoder can be described mathematically with
element wise notation of eq. (2.10), eq. (2.11), eq. (2.12), eq. (2.13), eq. (2.14).

αi,j = softmaxj

(
Q (xi)K

T (xj)√
dk

)
· V (xj) (2.10)

ui = WO

N∑
h=1

n∑
j=1

α
(h)
i,j , WO ∈ Rh·dk×dmodel (2.11)

ri = LayerNorm (xi + ui) (2.12)

z′i = W T
2 ReLU

(
W T

1 ri
)
, W1 ∈ Rdmodel×n,W2 ∈ Rn×dmodel (2.13)

zi = LayerNorm (ri + z′i) (2.14)

37



Figure 2.7: Stages in Encoder block

The Transformer encoder architecture fig. 2.7 is a stack of of N identical
layer. The first stage is described by eq. (2.10), eq. (2.11), eq. (2.12) and
the second stage is a fully connected feed forward network (FFN) eq. (2.13)
plus the layer normalization eq. (2.14). In each stage there is a residual
connection [24]. The residual connection is a type of learning based on the
residual function, intuitively given H(x) final mapping of x after any two
layers, and F(x) the output of the first layer, the final mapping should be
equal to H(x) = F (x) + x fig. 2.8. The dimensions of the embeddings are all
equal to dmodel = 512, in detail xi ∈ R1×dmodel , Q ∈ Rn×dmodel , A ∈ Rn×dmodel ,
U ∈ Rh·dk×dmodel , Z ∈ Rn×dmodel . The Feed Forward Network (FFN) is just a
projection of the square matrix into a intermediate representation, a visual
representation of the input with respect to the intermediate representation is
fig. 2.9, where self attention of each layer is different and each attention head
learns different features.

Decoder stages

The decoder also is composed by N identical layers. The first stage is equivalent
to the encoder but as input it has the target embeddings fig. 2.10, the second
stage has got Q and K matrices from the encoder as input (Z) and finally the
third stage is again a FFN sub-layer employing residual connections followed
by LayerNormalization() of the previous sub-layer output and the skipped

38



Figure 2.8: Residual connection H(x) equal to F(x)+x

input. Actually the input of the decoder is a little different than that of the
encoder, the input embeddings are masked and shifted. The shifting on the
input of the decoder ensures that at position i, the predictions are only based
on token with position less than i, while the mask are used to ensure that
during the training the word can’t attend future words in advance. Decoding
involves multiple steps, at first step the <Start> token is used to predict
the target embedding then loss is computed and weights are updated then
given the first token and the second token (which is the first target word) the
second prediction is made and so on until the <End> token of the encoder.

Positional Encoding

In addition to learned input Embedding a Positional encoding is added to
the encoder/decoder input, in this way the relative and absolute positional
information is not lost, the input sequence of words are not always fixed and
so position and dimensionality matters. The pos is the position of the word
inside a sentence and i is the index inside the embedding vector.

PE(pos,2i) = sin
(
pos/100002i/dmodel

)
PE(pos,2i+1) = cos

(
pos/100002i/dmodel

) (2.15)

Final layer

The output of the decoder is actually still a intermediate representation y′
and the final linear layer with n fully connected neurons one for each word
will sum the embeddings weights and compute the softmax of the neurons.
The embedding dimension is dmodel = 512 it needs to be projected to a bigger
vocabulary size n, this operation make sure the softmax is computed on the
whole vocabulary.

39



Figure 2.9: Two attention head are displayed relative to a i-th token
the context of it is both associated with "the animal" and "tired".

Figure 2.10: Decoder stages

Performance

The Transformer in Vaswani et al. [20] resulted better than any previous
architecture in the translating task of English to German, based on the BLUE

40



score of 28. The training is highly parallelizable given the fact that operations
are carried out in matrix form, only the decoding phase require different time
stamps. In table 2.9 the computational complexity and maximum path length
are compared, n is the sequence length, k is the size of kernel in convolutions,
r is the size of the neighborhood for restricted self attention (attention with
context window r) and d the representation dimensions (embedding size).

Layer Type Complexity/Layer Seq Op Max Path Length
Self-Attention O (n2 · d) O(1) O(1)
Recurrent O (n · d2) O(n) O(n)
Convolutional O (k · n · d2) O(1) O (logk(n))
Restricted-Attention O(r · n · d) O(1) O(n/r)

Table 2.9: Computational complexity of self attention respect other models

Clearly for short sequence of symbols RNNs or LSTMs are still the best
solution, but when n is larger than d Self attention is the winner, because it
can access faster the long range dependencies.

41



2.4 NLP metrics
In the NMT world objective metrics are used to evaluate models, this quanti-
tative metric is usually based on statistical analysis of words, one of the most
important metric is BLUE (Bilingual Evaluation Understudy) proposed by
Papineni et al. in 2002 [25].

A simple question arise when comparing translations, if a person don’t
understand the translated language how can the evaluation be possible with-
out human judgment, one of the simplest way is to count the number of
words present in the machine translated sentence over the human translated
sentence with the hypothesis that we are in possess a good data-set of pairwise
translations. The BLUE score is based on this principle but with other deeper
consideration.

First of all it is more accurate to compare the machine translation with a
reference translation, given that it is also possible to compare a ML model
versus another ML model or simply there are many optimal reference trans-
lations. Once the machine translation is presented and the reference is also
given, it is possible to measure metrics such as Precision, Recall, F1, BLUE
and Rogue_L these are the main metrics used in this thesis.

Precision is the number of n-grams present in both the model and reference
over the number of n-grams in the model.

countmatch(n− gram)

countmodel(n− gram)
(2.16)

In eq. (2.16) for n equals to length of sequential words.

Recall is the number of n-grams present in both the model and reference
over the number of n-grams in the reference. In eq. (2.17) this measure is great
for concise generative models where brevity is not considered as a negative
impact.

countmatch(n− gram)

countref (n− gram)
(2.17)

F1 The F1 is a combined formulation equal to 2 times precision times recall
over sum of precision and recall.For eq. (2.18) the formulation can also have
weights multiplied by precision and recall to adjust the importance of one
feature over another.

2 · precision · recall
precision+ recall

(2.18)

42



Rogue or better Rougue_L is used as a special recall oriented score which
measure the longest common sequence (LCS) over the whole sequence. In
eq. (2.19), the Rougue_L takes into account the order of words and usually
for n equal to 4 it is a good parameter for NMT task.

LCS(n− gram)

count(n− gram)
(2.19)

BLEU is one of the most popular metric it was created to ease the human
emulators’ work and accelerate the NMT R&D. The idea behind it is the same
of the n-gram precision but with a brevity penalty, this penalty is a function
in the interval [0,1] it assign lower marks for shorter generated translation
respect to the reference one. The BLEU-n is usually used with n equal to 4.
The Blue score has many variants and the variant used in the thesis is the
smoothed Bleu score expressed in 0-100 scale.

BLEU = min

(
1, exp

(
1− ref-len

out-len

))( 4∏
i=1

precision i

)1/4

(2.20)

2.5 Objectives
The objective of SoliditySummarizer as stated in the introductions is to help
the understanding and readability of smart contracts. Following the analysis
of current research areas, SMTranslator is the first tool to summarize Solidity
source code in natural language. It is a template-base method which lack in
accuracy table 2.1 and flexibility of the generated descriptions. After careful
analysis and study of the state of the art, if NMT is applied to Solidity it can
greatly improve the code summarization task performed by SMTranslator
breaking the boundaries imposed by template based generation of natural
language. For this reason SoliditySummarizer exploits an existing Transformer
based model called NeuralCodeSum.

43



Chapter 3

Comment generation

C++, Python and JavaScript heavily inspired the Solidity programming
language[7]. The comment style is very similar to the last one: // double
slash is used for single-line comment, / ∗ ∗/ slash asterisk and asterisk slash
are used respectively to open multi line comments and to close multi line
comments. As described in section 2.3 pairs of code comment are used to
train the encoder decoder model, and a big data set is needed in order to
produce a valid model.

Unlike NeuralCodeSum project [21], where the data-set is obtained from
previous works. Especially from (Barone, 2017) [26] for python data-set
and (Hu, 2018) [27] for java data-set, there was not any code summa-
rization study on solidity language. Therefore no pre-existing data-set
is available, SmartContractDatabase https://github.com/MatteoZhang/
SmartContractDatabase is a repository created for this thesis. It was built
with different tools: the first one is represented by a web scraper created
by fellow student Fabrizio Trovato, which downloads solidity contracts from
Etherscan.io [28], the second part is a solidity parser tool which divides code
and comments. There are many solidity parsers on GitHub, but the parsed
output contains only the codes and comments are always neglected. More-
over, the parsed code does not highlight the functions which are essential to
understand how the code works. The following sections describe in detail the
parser logic.

3.1 Solidity Source Code
The source code are provided by Etherscan [28], using SmartContractDatabase
is possible to obtain the data and process it. The formatted data is compatible
with the Transformer model input.

44

https://github.com/MatteoZhang/SmartContractDatabase
https://github.com/MatteoZhang/SmartContractDatabase


The bottleneck of the system, described in fig. 3.1, is between Data
collector and the Etherscan website , while the development bottleneck is
inside the Data cleaning scripts where many design iterations are made.

Figure 3.1: Architecture of SmartContractDatabase

3.1.1 Data collection

The data collection can be done with two types of tools one is the web scraper
and the other one is using official APIs (Application Programming Interface)
provided by Etherscan [28]. The web scraper is an automated tool that read
the HTML file of a website and extracts relevant information exploiting the
fact that most of the web pages are machine-generated. This approach is very
slow, after some experimentation, 1 contract per 10 seconds is found to be
the upper limit speed to download Solidity contracts, these automated and
frequent requests to Etherscan.io can be seen as web attacks from the server
side and then it will deny further requests. The easiest and fastest way to
download smart contracts from Etherscan.io is to use the official APIs, which
offer 5 API calls per second with the free plan.

An API call example is:

https://api.etherscan.io/api?module=contract&action=
getsourcecode&address=<ADDRESS>&apikey=<APIKEY>

45



The ADDRESS field represent the smart contract address and APIKEY is an
auto-generated key which the user can create inside its own personal page.
The API request’s response have the following structure:

1 {
2 status:""
3 message:""
4 result :{
5 0:{
6 SourceCode:""
7 }
8 ABI :{...}
9 ContractName:""

10 CompilerVersion:""
11 ...
12 }
13 }

Inside the response, the most important field for this project is the SourceCode
field which is in string format, in the case of multiple library import the
plain string contains a nested json file with multiple source code. Only the
source code is stored and written on files, the nested source code is not used
because the imported libraries heavily increase the number of codes with
same functionality and the most common library is Safe-Math which limits
the overflow of math operations.

The Etherscan website [28] provides also a CSV list of Verified contract
addresses of which the code publishers have provided a corresponding Open
Source license for re-distribution. This list contains the last 10000 smart
contract address with verified code.

"Source code verification provides transparency for users interacting with
smart contracts. By uploading the source code, Etherscan will match the
compiled code with that on the blockchain. Just like contracts, a "smart

contract" should provide end users with more information on what they are
"digitally signing" for and give users an opportunity to audit the code to
independently verify that it actually does what it is supposed to do.[28]"

Although the smart contracts are "verified", displaying the source code
doesn’t mean it is secure but at least there is a degree of transparency.

Another way to download smart contracts is to use GitHub, on GitHub
there are many repositories with solidity language, an advanced search can
be done writing ”language : Solidity” in the search bar, the repositories
containing solidity language is around 1400, unlike Etherscan it is not possible
to verify if the smart contracts are deployed or not and if it is used as smart

46



contracts or not. Downloading all 1400 repositories is not useful at all so only
the most famous and used Solidity libraries are downloaded.

The total number of raw smart contracts collected from Etherscan and
manually from GitHub are 13540, 500MB of raw data.

3.1.2 Data cleaning

The code summarization task: requires precise code comment pairs. A
study on code summarization data-set highlighted that "words in methods
and comments tend to overlap, but in fact a vast majority of words are
different (statistically 70%)" [29]. This observation leads to a difficult problem
because the words in comments represent high level concepts while source
code represent low level implementation details. This problem is also known
as "concept assignment problem" [30].

Identifying comments is an easy task, double slash for single line comment
and slash asterisk for multiple line of comments. The position of the comments
increase the magnitude of this problem: the comments can be above the code,
inside the code and on the same line of the code, usually they are not under
a code piece by convention.

Figure 3.2: Decorations and Copyright notices.
Decoration can be found also between functions.

The division of the code comment pair can be realized in two ways, the
first is to locate the comment, then find the corresponding code, and the

47



the latter consists first in finding the code key, then find the corresponding
comments. The first method has an intrinsic flaw. The comments do not
always explain codes, but they are also used for decoration, copyright notice,
licence, annotation of bugs and TODO lists fig. 3.2, so the natural conclusion is
to start identifying the code keywords needed to find corresponding comments
first. In this thesis, the chosen keywords are function, event, and modifier
because they are the most useful code segments: for example by analysing
100 pairs of code-comment, 95 lines of codes start with function, four start
with an event, and one starts with modifier.

Code Separator

For each solidity document if the document contains solidity code, this code
is pre-processed eliminating the empty lines and empty spaces before the first
keyword of the code, then reading line by line all chosen keywords are located.
Above the keyword, there is a convention to write multiple lines of codes to
explain the function, nowadays semi automated comment generation tools are
used to format the comment, most tool follows NatSpec Format (Ethereum
Natural Language Specification)[7]. It generates tags like @notice, @dev,
@param, @return to guide the developer during the comment generation.

The fig. 3.3 highlights the available options during the writing of the
comments, this reduce in a certain way the "concept assignment problem".
The other type of comments are mostly found inside the curly brackets of
the function and in this case the comments usually don’t follow precisely the
NatSpec format as developers tend to comment the same line of the code to
annotate, write between lines of code to remind bugs. This kind of comments
are considered partially useful.

48



Figure 3.3: Natspec Format comments tags, inspired by doxygen tags

An example of code showing the position of comments is:
1

2 // decorations = = = = = = =
3 /**
4 Natspec format
5 @notice this function ...
6 */
7 function FunctionName (){
8 /*
9 Multi line comments

10 */
11 // single line comments
12 loops and conditional statements
13 variables = ... // inline comments
14 return statements
15 }
16 // decorations = = = = = = =

The solidity compiler "solc" can generate user documentation and developer

49



documentation thanks to NatSpec tags, these documentation are not enough
for code summarization because not all the developer use the suggested
tags and using the generated documentation, the solidity code functions are
partially lost. The Algorithm 1 pseudo code describes the code and comment
separation proposed in this thesis: once a keyword is found, the separation of
code and comment starts, searching the comments above the keyword and
inside brackets of the function returns a list of comments and a flag indicating
the presence of comments. If there are comments then the system store them
and write on an output file the stored code and comments.

Algorithm 1: Code Comment Separator
input directory initialization;
for file in directory do

open file;
if file have solidity extension;
then

read file;
initialize keywords;
create list for each line of the file;
Eliminate empty lines in list;
Eliminate white left space of codes in list;
for line in list do

if line starts with keyword then
search for comments above the function;
search for comments inside the function;
if comments are not present near keyword then

go next line;

else
memorize code without the comments inside;
memorize the comments;

else
remove the file;

Write the memorized code and comments;

50



Pre-process tokens

The codes and comments obtained from the code-comment separator are full
of decorations, composed words (CammelCase and separated_words) and non
English words. In order to have a good data-set it is mandatory to transform
composed words into single words and then eliminate not useful symbols in
the decorations, for the comment side all non ASCII character are filtered.

Filtering

In order to obtain different pairs of code and comment as already described
in section 3.1.1 library functions with its own comment can undermine the
machine learning model and over-fit the results, being an input for code
summarization task the best way to filter duplicates is to store only piece
of code with different comments, this way the uniqueness of comments are
maintained, duplicates will not appear.

Summarizing:

• filtered cases: <same code, same comment>

• allowed cased: <same code, different comment>, <different code, dif-
ferent comment>, <different code, same comment>

51



3.2 NLG with NeuralCodeSum
NeuralCodeSum is a GitHub repository which implements the Transformer
model described in section 2.3, the Solidity code obtained from data-cleaning
and pre-processing is adapted to the input format of this NLG model. The
repository doesn’t contain data and pre-trained models so the first step is to
make sure that this code is debugged and works fine with the programming
environment set up for it.

In this thesis the Colab environment is used as it offer out of box Python
environment with easy to configure libraries and Notebook parameters. There
is a saying that most of Machine learning project spend 80% of time collecting
and preparing the data, well for this project actually most of the time spent is
on the training of the data. Colab parameters: GPU Nvidia K80 / T4, GPU
memory 12GB/16GB, GPU Memory Clock 0.82GHz / 1.59GHz, Performance
4.1 TFLOPS / 8.1 TFLOPS.

In detail, the setup includes creating scripts to run the machine learning
algorithm, setting up the python environment with Pytorch, and running the
training scripts. During the training, a temporary folder is created called
"tmp". Inside the folder, there are training checkpoint files that contain the
trained embedding and all the parameters up to the last valid Epoch. This
way, if any interruptions occurs, the training can resume. At the end of the
training, a model file containing the best embedding is stored inside "tmp"
folder. This is the output of our training. For any generation task, a script
loads the model and translates word by word the input sequence.

Java data-set

The first step after the setup is trying to use the original data-set in Java [27]
and run the scripts to create a java translator model "code2jdoc" (arbitrary
name assigned as model filename with the embeddings), to train the model the
only file to run is the bash file "transformer.sh" where the hyper-parameter
are set and both input files, output directory are provided. The parameters
are described in table 3.1.

The data-set parameters are in fig. 3.4. After 200 epochs of training the
model "code2jdoc" is obtained. Using "code2jdoc" it is possible to generate
comments from functions using the bash script "generate.sh", the fig. 3.5 taken
from the NeuralCodeSum paper shows qualitatively the generated comments
respect to the human written one, now taking the same code comment pair
and using our "code2jdoc" to generate the comment, the predicted output

52



Hyper-parameter Value
Embedding k 16

Model l 6
h 8

dmodel 512
dk, dv 64
dff 2048

Training dropout 0.2
optimizer Adam

learning rate 0.0001
batch size 32

Testing beam size 4

Table 3.1: Hyper parameter used to train the models

Figure 3.4: Java data-set statistics

is "evaluates the xpath expression as a single expression." which means that
"code2jdoc" reproduced perfectly the results obtained in the reference paper.

Knowing the fact that the code works and it can potentially generate
good quality comments in java, it is time to apply the model "code2jdoc" on
solidity code instead, in order to see if pre-trained model on other programming
language can produce same results or it is necessary to train another model on
solidity data-set. On the test set of 13021 code-comment pairs, the generated
comments doesn’t perform well with respect to java comments, the obtained
testing metrics are shown in table 3.2

The results of the model with respect of solidity code are not sufficient
for the comment generation task, because the difference in raw data-set is
too large and in order to generate better results, there is the need to train

53



Figure 3.5: NeuralCodeSum generated code qualitative comparison
between different parameters, code2jdoc is the Full model

Model Blue Rouge_L Precision Recall F1
code2jdoc 43.48 53.86 59.19 57.04 55.64

code2jdoc on solidiy 5.42 10.68 23.09 10.51 12.24

Table 3.2: Code2jdoc model results
and application on solidity test dataset

from scratch another model on the solidity training data-set.

Solidity data-set

The original repository was adapted to generate solidity comments and the
following changes are made: bash script for the training and testing and
input constant files. This minor changes let any user to train and use the
model for any other programming language. The data-set parameters are in
fig. 3.6. The model trained is called "code2sol_XL" fig. 3.7, and in example

Figure 3.6: Solidity data-set statistics

below it is possible to see a qualitative example generated by "code2jdoc"

54



and "code2sol_XL" models:
1 function transfer Any ERC20Tokens(address token Addr , address

to, uint amount) public only Owner {
2 require ((token Addr ! token Address) || (now >admin

Claimable Time));
3 Token(token Addr);
4 transfer(to , amount);
5 }

The function is tokenized substituting CammelCase and snake_case with
unique words as described in section 3.1.2.
The generated comments are:

• code2jdoc : "assigns an address from a string to a purely address and a
kenlm any that is only included in an ip address." with score "bleu":
0.039, "rouge_l": 0.036

• code2sol_XL: "function to allow admin to claim other erc20 tokens sent
to this contract ( by mistake ) with score "bleu": 0.41, "rouge_l": 0.69

• Human Written: function to allow admin to claim other erc20 tokens
sent to this contract ( by mistake ) admin cannot transfer out yfox from
this smart contract till 1 month after staking ends.

This example is very significant the average comment generated in "code2jdoc"
is not trained to explain domain specific concepts instead "code2sol_XL"
perform a better generation on average, which means the training of the latter
model is successful. Other trained models with only one subset of train data
are reported in section 3.2.

The fig. 3.7 shows that after 120 Epoch of training the model starts to
converge and the Blue score rate of change starts to slow, moreover in some
Epochs there are also negative rates.

Other models

Other attempts are made along the way. Before making the repository work
as intended, smaller models were created to test different model parame-
ters. Initial models were trained using different sizes of the data-set, for
example, using only 1 thousand functions for training ("code2sol_M"), while
"code2sol_L" uses 10 thousand as a training dataset. These two models
over-fit during the training they both surpassing 50 as Blue score but when it
is tested against test data, these models obtains low score near to 10 only.

Several hyper-parameters were also changed to verify the impact on the
results. In particular, the changed hyper-parameters were the number of

55



Figure 3.7: Training of the model, Blue score vs Epoch

layers N. They are stacked with 2, 4 and 8 pairs of identical encoders and
decoders. The experiment results are the same as Varswani et al. [20], with
more layers, the number of parameters to train grow and the overall score
increase but not significantly around 0.5 to 1%. If there is no significant
change, why the model is preferred with N equal to 6, which is the default
value? The simple answer is that the perplexity is significantly lower. The
perplexity is defined as the exponential average negative log-likelihood of a
sequence eq. (3.1). With a sequence X = x0, x1, ..., xn, the log pθ (xi | x<i) is
the likelihood of i-th conditioned on all preceding tokens x<i. This metric is
best indicated for auto-regressive causal language model (predictive models
where the output depends linearly on the inputs).

PPL(X) = exp

{
−1

t

t∑
i

log pθ (xi | x<i)

}
(3.1)

The last experiment is based on the suggestion of the NeuralCodeSum
paper. It suggested the use of a different decoder called split decoder taken
from (Kryscinski, 2018) [31]. The aim of Kryscinsky et al. to improve
abstraction in text summarization, most of the summarization techniques
uses extractive methods which are identifying important part of the text and
create a summary while the abstractive method is used to capture human
written summary style using paraphrases, technically with context words.

56



The encoder and decoder in a Transformer is described in fig. 3.8a, while
the alternative implementation in fig. 3.8b. In the split decoder implemen-
tation, the decoder has two different outputs, one for the pair of (context,
attention) and the other is the same output of the transformer decoder with-
out split. The fusion layer computes the outputs and computes a final output
embedding.

(a) Encoder Decoder in Transformer

(b) Network architecture with split decoder
where the context vectors and hidden states are fused to compute the

output distribution.

Figure 3.8: Split Decoder implementation

57



3.2.1 NeuralCodeSum vs Vanilla Transformer

The original paper "Attention is all you need" [20], focused their work on
Natural language to Natural language translation, while the NeuralCodeSum
changed several things, especially on the input, which is code.

In source code many operations are commutative, the relation a + b =
b + a or the if conditions with a > b = b < a are relative. This relative
positional information can be added to the attention mechanism by setting
a maximum action window and letting the vectors add the extra relative
positional encoding. Defining self attention as eq. (3.2) where the simplified
intermediate representation is zi, Shaw et al.[32] proposed relative positioning
changing the original eq. (3.3) and eq. (3.4) into eq. (3.5).

zi =
n∑
j=1

αij
(
xjW

V
)

(3.2)

αij =
exp eij∑n
k=1 exp eik

(3.3)

eij =

(
xiW

Q
) (
xjW

K
)T

√
dz

(3.4)

zi =
n∑
j=1

αij
(
xjW

V + aVij
)

eij =
xiW

Q
(
xjW

K + aKij
)T

√
dk

(3.5)

The termsaVij and aKij are a relative positional representation of i and
j, beyond a certain window Shaw et al. concludes that precise positional
encoding is not useful. The eq. (3.6) shows the window k where 2k+1 relative
positional representation are used. The used clip is in absolute terms, so the
directional data is also ignored. In eq. (3.6), the term wK is the positional
representation to be added to the input embeddings.

aKij = wKclip(|j−i|,k), a
V
ij = wVclip(|j−i|,k)

clip(x, k) = min(|x|, k)
(3.6)

The programming language presents rare tokens, and thus copy attention
must be implemented. Proposed by Nishida et al. [33] it could solve the
problem by adding to the target Vocabulary rare tokens and making it the
extended Vocabulary. The extended Vocabulary is essential for the name of

58



source code functions and technical words, which are not commonly used in
the comment documentation.

59



Chapter 4

Evaluations

Evaluation is divided into two parts. In the first part, models produced by
the fork of NeuralCodeSum are evaluated. The evaluation involves objective
NLP metrics, explained in section 2.4. Then a survey with 7 participants is
carried out. All of them have programming skills.

4.1 Quantitative and Qualitative analysis
From table 4.1, it is possible to observe the results of the trained models’
performances on the test data set. The "code2jdoc" performs better than
"code2sol_XL", but they share the same parameters and same architecture.
From fig. 3.4 and fig. 3.6 it is possible to see the reason. On average, the
documentation length of Solidity source code is far longer than the Java
dataset: 38 words per sequence (Solidity) vs 17 words per sequence (Java).
While the function length is 59 words vs 121 words, this means, during the
training of "code2jdoc", the Transformer model have access to more inputs
and context, which are more helpful during comment generation tasks. With
shorter target sequences, in the Java dataset case, the Bleu score is computed
with less penalty eq. (2.20). While for longer sequences, especially in the
Solidity dataset, the prediction may lose few points.

Model Blue Rogue_L Precision Recall F1
code2jdoc 43.48 53.86 59.19 57.04 55.64

code2sol_XL 32.15 45.34 59.01 47.07 48.32
code2sol_split 32.06 45.06 58.05 47.21 47.92

Table 4.1: Comparison between obtained metrics

In the Solidity dataset, the comments are not only a short summary of the

60



methods, but they also contain extra information such as long instructions to
use a specific function, examples of usage and parameters. The testing results
using the Solidity dataset is more robust than Java. With more records than
the Java test set, it is acceptable to have a lower Blue score.

Model Blue Rogue_L
code2jdoc 43.48 53.86

NeuralCodeSum’s model 44.58 54.76

Table 4.2: Comparison of the java code summarization
between the model trained during the thesis and the original model made by

Ahmad et al. [21]

The "code2sol_split" model does not improve the statistical metrics, but
in table 4.1, it performed better for Recall with respect to "code2sol_XL", the
original hypothesis of Kryscinsky et al. [31] is that the generated summary
with split decoders would increase the Rogue score and surpass standard
decoders but it is not in our case.

Another consideration is that there are fewer unique tokens in the whole
Solidity dataset than the Java dataset, but this fact should only affect the
training speed and not the prediction accuracy.

4.1.1 The Survey results

Finally, a survey was created to evaluate the Quality of the generated sum-
maries. A total of 7 participants answered. The survey created for Solidity-
Summarizer is similar to the survey made by SMTranslator (Li, 2020) [17], the
Q1 is substituted with "Q1.x Comment Analysis: I feel the comment is accu-
rate and does not miss important information." because SoliditySummarizer
has no user interface, which is why the average user is not intended to use the
"tool" as it is. The Q6 is also substituted with "Are the generated comments
useful for non-programmers?" as an ending question. In addition to the survey
for the generated comments also a Survey with personal information is carried
out to understand the background of the participants.

Both this thesis and SMTranslator used "Strongly disagree", "disagree",
"agree" and "Strongly agree" in the answer options, but for SoliditySum-
marizer, "not sure" was added in order to individuate difficult methods to
evaluate.

The Preliminary Questions are:

61



• What is your age?

• What is the highest degree or level of school you have completed?

• What is your programming level (any language)

• What is your experience with Ethereum Blockchain, Solidity and Smart
Contracts?

• What is your main occupation?

The Evaluation Questions are:

• Q1.1-Q1.50 I feel the comment is accurate and does not miss important
information.

• Q2 Accuracy: The explanations and summaries for a method are accu-
rate.(The comments reflect the code)

• Q3 Readability: The generated summaries are easy to read and I can
totally understand the meaning of each generated comments.

• Q4 Conciseness: The summaries do not contain unnecessary information.

• Q5 Instructiveness: I can easily use a specific method under the direction
of the explanations.

• Q6 The generated comments are useful for non programmers.

The preliminary questions are made to understand the participants’ back-
grounds. Six out of Seven have a university degree, and one is a bachelor
student. They all declare to be proficient or expert in one programming
language, with the definition of proficient as "Good understanding of what
the code is doing with occasional code references", and expert as "Can code
with minimal references and understand the inner working of a language".
5 out of 7 have a good understanding of Blockchain concepts, and they are
Beginner in Solidity, while the other one has advanced understanding of smart
contracts and know-how to develop them (proficient in Solidity) and the last
one knows only the Blockchain concepts and don’t know how to program in
Solidity. For the last preliminary question, there are in total 6 workers and 1
full-time student.

After the preliminary questions, the second part of the survey starts. The
first question consists of 50 evaluations of the pairwise code comment snippets.
This question is equivalent to Q6 of SMTranslator section 2.1, the result on Q1

62



is encouraging that more than 70% of methods are accurate for the comment
generation task. Then on the general questions for Accuracy, Readability,
Conciseness, Instructiveness and helpfulness for non-programmers are carried
out (Q2-Q6), the results on Accuracy (Q2), Conciseness(Q4), Instructive-
ness(Q5) are overall positive while Readability(Q3) and Helpfulness(Q6) are
polarized, the 2 participants rated Q3 as Strongly agree while 5 of them
rated with Not Sure or Disagree, while for Q6, 4 participants rated Strongly
agree and 3 Disagree. If compared to SMTranslator [17], the Readability
aspect is a weakness of SoliditySummarizer. The generated comments are
not polished and contain NatSpec tags with typical programmer’s slang. The
SMTranslator received better marks because templates are always readable
and difficult to misinterpret. Under the Accuracy aspect, instead, Solidity-
Summarizer received 1 Strongly agree and 6 Agree marks while SMTranslator
has 6 Agree and 4 Disagree, as already explained in chapter 2, templates not
always are exhaustive and accurate, for too simple or too complex functions
templates may lack flexibility. The results and the comparison of the surveys
are presented in table 4.4.

Question S agree Agree Not sure Disagree S disagree
Q1 38% 35.43% 18% 7.14% 1.43%
Q2 1 6/7 0 0 0
Q3 2/7 0 4/7 1/7 0
Q4 4/7 1/7 2/7 0 0
Q5 1/7 4/7 2/7 0 0
Q6 4/7 0 0 3/7 0

Table 4.3: Questions asked in the questionnaire, and participants opinions.

For the Q1 in table 4.3 if a linear value is assigned to the answer options:
5 for Strongly agree, 4 for Agree, 3 for Not sure, 2 for Disagree and 1 for
Strongly Disagree. The medium mark is 4.01 with a small variance of 0.8, so
in general, the participant agrees with the generated comments.

4.2 Code Comment Examples
The results obtained in chapter 4 can be compared with SMTranslator because
the methods are taken from cited solidity smart contracts fig. 4.1 used in the
authors’ paper (Li, 2020) [17].

In Q1 ( I feel the comment is accurate and does not miss important
information.), Fifty code snippets are shown. Examples of code snippets,

63



Question S agree Agree Not sure Disagree S disagree
Q1 38% 35.43% 18% 7.14% 1.43%
Q6* 0% 64% 0 23% 13%
Q2 1/7 6/7 0 0 0
Q2* 0 6/10 4/10 0 0
Q3 2/7 0 4/7 1/7 0
Q3* 9/10 1/10 0 0 0
Q4 4/7 1/7 2/7 0 0
Q4* 9/10 1/10 0 0 0
Q5 1/7 4/7 2/7 0 0
Q5* 0 3/4 1/4 0 0
Q6 4/7 0 0 3/7 0

Table 4.4: Comparison between the survey of SoliditySummarizer and SM-
Translator (denoted with *).

divided by Strongly Agree to Strongly Disagree, are listed in this section. The
chosen examples have most of one response type, i.e. Q1.7 have 5 Strongly
Agree and 2 Agree marks, so it is very significant as Strongly Agree example.

Strongly Agree examples, these example are simple and basic, very easy to
understand and self explanatory:
Q1.7

1 COMMENT: @ dev emitted when value tokens are moved from one
account ( from ) to another ( to ) . note that value may
be zero .

2 event Transfer(address indexed from , address indexed to ,
uint256 value);

Q1.9

1 COMMENT: @ dev get total supply of token
2 function totalSupply () external override view returns (

uint256) {
3 return _totalSupply;
4 }

Q1.18

1 COMMENT: @ dev returns the account approved for token id
token . requirements : token id must exist .

2 function getApproved(uint256 _tokenId) public view returns (
address _operator);

64



Figure 4.1: All used smart contract for the survey questions

Q1.32

1 COMMENT: @ dev returns the greater of two numbers .
2

3 CODE: function max256(uint256 a, uint256 b) internal constant
returns (uint256) { return a >= b ? a : b; }

Agree examples are, on average, more complex than other code comment pairs,
and the generated comments carry more instructions or just information:
Q1.12

1 COMMENT: @ dev transfer tokens from one address to another .
2 @ param from the address which you want to send

tokens from
3 @ param to the address which you want
4

5 function transferFrom( address _from , address _to , uint256
_value ) external override returns (bool) {

6 _transferByDefaultPartition(msg.sender , _from , _to ,
_value , ""); return true;

7 }

Q1.14

1 COMMENT: @ dev internal function to add a token to this
extension ’ s ownership tracking data structures .

2 @ param to address representing the new owner of the
given token

65



3

4 function addTokenTo(address _to , uint256 _tokenId) internal {
5 require(tokenOwner[_tokenId] == address (0));

tokenOwner[_tokenId] = _to;
6 ownedTokensCount[_to] = ownedTokensCount[_to].add (1);
7 }

Q1.15

1 COMMENT: @ dev tells whether an operator is approved by a
given owner .

2 @ param owner owner address which you want to query
the approval of @ param operator operator

3

4 function isApprovedForAll(address _owner , address _operator)
public view returns (bool) {

5 return operatorApprovals[_owner ][ _operator ];
6 }

Q1.22

1 COMMENT: @ dev extends transfer from method with event when
the callback failed .

2 @ param from the address of the sender .
3 @ param to the address of the recipient
4

5 function transferFrom(address _from , address _to , uint256
_value) public whenNotPaused returns (bool) {

6 return super.transferFrom(_from , _to , _value);
7 }

Q1.26

1 COMMENT: @ dev withdraw ether from contract @ param ether
address uint256 amount of ether transfer

2

3 function withdraw () onlyOwner public { uint256 etherBalance =
address(this).balance; owner.transfer(etherBalance); }

Q1.31

1 COMMENT: @ dev transfer tokens from one address to another
2 @ param from address the address which you want to

send tokens from
3 @ param to address the address which you
4

5 function transferFrom(address _from , address _to , uint256
_value) public returns (bool) {

6 require(_to != address (0));

66



7 require(_value <= balances[_from ]); require(_value <=
allowed[_from ][msg.sender ]);

8 balances[_from] = balances[_from].sub(_value);
9 balances[_to] = balances[_to].add(_value);

10 allowed[_from ][msg.sender] = allowed[_from][msg.
sender ].sub(_value);

11 emit Transfer(_from , _to , _value);
12 return true;
13 }

Not Sure examples are functions that also contains secondary functions, the
generated comments are not intuitive at all, and for beginners, examples
like Q1.4 may be challenging to understand. Other examples instead are
confusing, like Q1.10 where the event is called Manager Registered. However,
the generated comment is "emitted when a manager is changed":
Q1.4

1 COMMENT: @ dev increase the amount of tokens that an owner
allowed to a spender.

2 @ param partition name of the partition.
3 @ param spender the address
4

5 function increaseAllowanceByPartition( bytes32 _partition ,
address _spender , uint256 _addedValue ) external returns (
bool) {

6 _approveByPartition( _partition , msg.sender , _spender
, _allowedByPartition[_partition ][msg.sender ][ _spender ].
add(_addedValue) );

7 return true;
8 }

Q1.8

1 COMMENT: @ dev get collateral occupied value .
2 @ param partition name of the partition .
3

4 function _splitPartition(bytes32 _partition)internal pure
returns (bytes4 ,bytes8 ,address){

5 bytes4 prefix = bytes4(_partition);
6 bytes8 subPartition = bytes8(_partition << 32);
7 address addressPart = address(uint160(uint256(

_partition)));
8 return (prefix , subPartition , addressPart);
9 }

Q1.10

67



1 COMMENT: @ notice emitted when a collateral manager is
changed

2

3 event CollateralManagerRegistered(address collateralManager);

Q1.11

1 COMMENT: @ dev called by an { ierc777 } when need .
2

3 function tokensToTransfer( bytes4 functionSig , bytes32
partition , address operator , address from ,

4 address to, uint256 value , bytes calldata data , bytes
calldata operatorData ) external;

Disagree examples are only a small portion, and the participants never marked
unanimously one question with more than 3 Disagree marks, Q1.48 obtained
3 Disagree, 2 Not sure and 2 Agree, in the specific example, the keyword
super may appear difficult for a beginner to use and they might misjudge the
generated comment:
Q1.48

1 COMMENT: forward erc20 methods to upgraded contract if this
one is deprecated

2

3 function transfer(address _to , uint256 _value) public
whenNotPaused returns (bool) {

4 return super.transfer(_to , _value);
5 }

Strongly Disagree examples, are just short generated comments, the code2sol_XL
model fail to generate useful information: Q39

1 COMMENT: transfer function
2

3 function multiTransfer(address [] _address , uint[] _value)
public returns (bool) { for (uint i = 0; i < _address.
length; i++) {

4 transfer(_address[i], _value[i]); } return true;
5 }

In Strongly Agree examples, usually, the functions are simple, and the
comments are clear. These functions are the most used type of functions for
smart contracts. They are very helpful for beginners. In Agree examples, the
functions start to be longer with more parameters and instructions. These
types are the majority, and the generated summary is pretty long and accurate.
Not Sure examples are borderline useful to the reader because the generated

68



comments start to be shorter and not very descriptive of the functions. Finally,
Disagree and Strongly Disagree examples are the minority. They are of two
types: rare functions with wrong generated comments or very short comments
that are not useful.

These pairs of code and comments are useful for beginners, but they may
be difficult to understand for non-programmers. The gap is still large. An
example can be the domain-specific language that Solidity use, the Ethereum
is moving toward very domain-specific applications such as DeFis and NFTs
the smart contracts will present two challenges for non-programmers: first to
understand Solidity code within blockchain context and second domain-specific
words like collateral, margin, swap, typical of Financial world.

69



Chapter 5

Conclusions

This thesis explored smart contract problems and state of the art Code
Summarization techniques. It proposed a solution for helping the Solidity
programmers to understand source code and annotating existing source code
with comments. Two repositories are created along the way, SmartContract-
Database and the fork of NeuralCodeSum, the first is able to collect and
process Solidity source code, and the second is able to make generative models
for comment creation.

The SoliditySummarizer effectively improved the summary created by
SMTranslator, with state of the art techniques from Code Summarization
models. Based on the comparison between the two surveys (table 4.3 and
table 4.4), the Accuracy of the generated comments, by SoliditySummarizer,
improved considerably from 75% to 65% with respect to SMTranslator. Also,
from the results in the final survey and qualitative examples, it is possible to
distinguish the improvements and weaknesses of SoliditySummarizer:

• Improvements:

– The models produced by SoliditySummarizer are robust. Any piece
of code can be translated. It does not depend on the length of the
input.

– Accuracy of the generated summary depends only on training data,
while SMTranslator is limited by template-based models.

• Weakness:

– The training data can limit the model performance, both in size
and quality. High-quality data are difficult to find. In computer
science, codes are usually reused, so the size of the training set is
limited.

70



– The training time is long and if any major change is applied to the
Solidity language, then a new training dataset must be created.

The comparison made in chapter 4 with SMTranslator underline that in
general SoliditySummarizer is better, but with drawback like Readability of
the generated comments as they are directly learned from source code, so
the writing style is similar to programmers writing style, very concise and
tagged with NatSpec style tags making it very schematic unlike sentences of
templates.

For future development, source code generation may be a direction. Using
these two repositories as basis or creating a user interface like a web app is
another direction.

In conclusion, this thesis achieved its initial objective, which is to improve
the current state of the art represented by Li et al. [17] by researching
Machine Learning methodologies and models, in particular the Transformer
architecture.

71



List of Figures

1.1 Block structure and Blockchain structure . . . . . . . . . . . . 3
1.2 Merkle tree after pruning. . . . . . . . . . . . . . . . . . . . . 4
1.3 States and State transitions [1] . . . . . . . . . . . . . . . . . 5
1.4 Ethereum Blockchain Block . . . . . . . . . . . . . . . . . . . 6
1.5 Dapps platform statistics. . . . . . . . . . . . . . . . . . . . . 9
1.6 SplitDao function code . . . . . . . . . . . . . . . . . . . . . . 12
1.7 Withdraw function code . . . . . . . . . . . . . . . . . . . . . 12
1.8 Payout function code . . . . . . . . . . . . . . . . . . . . . . . 13
1.9 Example of visual programming . . . . . . . . . . . . . . . . . 15
1.10 SmaCoNat example . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 SMTranslator overview with each component . . . . . . . . . . 18
2.2 Word2Vec Neural Network . . . . . . . . . . . . . . . . . . . . 31
2.3 CBOW model with only one word in the context . . . . . . . . 32
2.4 Vector representation of words, . . . . . . . . . . . . . . . . . 33
2.5 The transformer architecture . . . . . . . . . . . . . . . . . . . 35
2.6 Transformer Attention . . . . . . . . . . . . . . . . . . . . . . 36
2.7 Stages in Encoder block . . . . . . . . . . . . . . . . . . . . . 38
2.8 Residual connection H(x) equal to F(x)+x . . . . . . . . . . . 39
2.9 Two attention head are displayed relative to a i-th token . . . 40
2.10 Decoder stages . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Architecture of SmartContractDatabase . . . . . . . . . . . . 45
3.2 Decorations and Copyright notices. . . . . . . . . . . . . . . . 47
3.3 Natspec Format comments tags, inspired by doxygen tags . . . 49
3.4 Java data-set statistics . . . . . . . . . . . . . . . . . . . . . . 53
3.5 NeuralCodeSum generated code qualitative comparison . . . . 54
3.6 Solidity data-set statistics . . . . . . . . . . . . . . . . . . . . 54
3.7 Training of the model, Blue score vs Epoch . . . . . . . . . . . 56
3.8 Split Decoder implementation . . . . . . . . . . . . . . . . . . 57

72



4.1 All used smart contract for the survey questions . . . . . . . . 65

73



List of Tables

1.1 Challenges in each phase of smart contract [6] . . . . . . . . . 9
1.2 Corresponding ADICO components in solidity . . . . . . . . . 14

2.1 Questions asked in the questionnaire, and students opinions. . 19
2.2 CS data extraction methods . . . . . . . . . . . . . . . . . . . 21
2.3 CS summary generation methods . . . . . . . . . . . . . . . . 22
2.4 CS summary generation methods . . . . . . . . . . . . . . . . 24
2.5 CS targets distribution. . . . . . . . . . . . . . . . . . . . . . . 25
2.6 Example Template of SMTranslator. . . . . . . . . . . . . . . 27
2.7 The n-gram model example . . . . . . . . . . . . . . . . . . . 30
2.8 Example of one hot encoding. . . . . . . . . . . . . . . . . . . 30
2.9 Computational complexity of self attention respect other models 41

3.1 Hyper parameter used to train the models . . . . . . . . . . . 53
3.2 Code2jdoc model results . . . . . . . . . . . . . . . . . . . . . 54

4.1 Comparison between obtained metrics . . . . . . . . . . . . . 60
4.2 Comparison of the java code summarization . . . . . . . . . . 61
4.3 Questions asked in the questionnaire, and participants opinions. 63
4.4 Comparison between the survey of SoliditySummarizer and

SMTranslator (denoted with *). . . . . . . . . . . . . . . . . . 64

74



Bibliography

[1] Buterin Vitalik. Ethereum whitepaper. URL:
https://ethereum.org/it/whitepaper/, 2013.

[2] Satoshi Nakamoto. Bitcoin whitepaper. URL:
https://bitcoin.org/bitcoin.pdf, 2008.

[3] Bitcoin wiki. Bitcoin script. URL: https://en.bitcoin.it/wiki/Script,
accessed 2021.

[4] Benjamin Gramlich. Smart contract languages: A thorough comparison.
ResearchGate Preprint, 2020.

[5] Tiobe index. https://www.tiobe.com/tiobe-index/, 2021. [Online;
accessed 1/9/2021].

[6] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Weili Chen, Xiangping Chen,
Jian Weng, and Muhammad Imran. An overview on smart contracts:
Challenges, advances and platforms. Future Generation Computer Sys-
tems, 105:475–491, 2020.

[7] Solidity documentation. https://docs.soliditylang.org/en/v0.8.
6/index.html, 2021. [Online; accessed 1/11/2020].

[8] Bloomberg. https://www.bloomberg.com/features/
2017-the-ether-thief/, 2017. [Online; accessed 1/9/2021].

[9] Hacking distributed. https://hackingdistributed.com/2016/06/18/
analysis-of-the-dao-exploit/, 2016. [Online; accessed 1/9/2021].

[10] Yi Zhou, Deepak Kumar, Surya Bakshi, Joshua Mason, Andrew Miller,
and Michael Bailey. Erays: reverse engineering ethereum’s opaque smart
contracts. In 27th {USENIX} Security Symposium ({USENIX} Security
18), pages 1371–1385, 2018.

75

https://www.tiobe.com/tiobe-index/
https://docs.soliditylang.org/en/v0.8.6/index.html
https://docs.soliditylang.org/en/v0.8.6/index.html
https://www.bloomberg.com/features/2017-the-ether-thief/
https://www.bloomberg.com/features/2017-the-ether-thief/
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/


[11] Christopher K Frantz and Mariusz Nowostawski. From institutions to
code: Towards automated generation of smart contracts. In 2016 IEEE
1st International Workshops on Foundations and Applications of Self*
Systems (FAS* W), pages 210–215. IEEE, 2016.

[12] Olivia Choudhury, Nolan Rudolph, Issa Sylla, Noor Fairoza, and Amar
Das. Auto-generation of smart contracts from domain-specific ontologies
and semantic rules. In 2018 IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data (SmartData), pages 963–970. IEEE, 2018.

[13] Christopher D Clack, Vikram A Bakshi, and Lee Braine. Smart contract
templates: foundations, design landscape and research directions. arXiv
preprint arXiv:1608.00771, 2016.

[14] Dianhui Mao, Fan Wang, Yalei Wang, and Zhihao Hao. Visual and
user-defined smart contract designing system based on automatic coding.
Ieee Access, 7:73131–73143, 2019.

[15] Luca Guida and Florian Daniel. Supporting reuse of smart contracts
through service orientation and assisted development. In 2019 IEEE In-
ternational Conference on Decentralized Applications and Infrastructures
(DAPPCON), pages 59–68. IEEE, 2019.

[16] Emanuel Regnath and Sebastian Steinhorst. Smaconat: Smart contracts
in natural language. In 2018 Forum on Specification & Design Languages
(FDL), pages 5–16. IEEE, 2018.

[17] Ming Li, Anjia Yang, and Xinkai Chen. Towards interpreting smart
contract against contract fraud: A practical and automatic realization.
IACR Cryptol. ePrint Arch., 2020:574, 2020.

[18] Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E Hassan,
and Shanping Li. Measuring program comprehension: A large-scale field
study with professionals. IEEE Transactions on Software Engineering,
44(10):951–976, 2017.

[19] Yuxiang Zhu and Minxue Pan. Automatic code summarization: A
systematic literature review. arXiv preprint arXiv:1909.04352, 2019.

[20] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need. arXiv preprint arXiv:1706.03762, 2017.

76



[21] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei
Chang. A transformer-based approach for source code summarization.
arXiv preprint arXiv:2005.00653, 2020.

[22] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[23] Xin Rong. word2vec parameter learning explained. arXiv preprint
arXiv:1411.2738, 2014.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 770–778, 2016.

[25] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a
method for automatic evaluation of machine translation. In Proceedings of
the 40th annual meeting of the Association for Computational Linguistics,
pages 311–318, 2002.

[26] Antonio Valerio Miceli Barone and Rico Sennrich. A parallel corpus
of python functions and documentation strings for automated code
documentation and code generation. arXiv preprint arXiv:1707.02275,
2017.

[27] Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and Zhi Jin. Summarizing
source code with transferred api knowledge.(2018). In Proceedings of the
27th International Joint Conference on Artificial Intelli-gence (IJCAI
2018), Stockholm, Sweden, 2018 July 13, volume 19, pages 2269–2275,
2018.

[28] Etherscan.io. https://etherscan.io/apis#contracts, 2021. [Online;
accessed 1/12/2020].

[29] Alexander LeClair and Collin McMillan. Recommendations for datasets
for source code summarization. arXiv preprint arXiv:1904.02660, 2019.

[30] Ted J Biggerstaff, Bharat G Mitbander, and Dallas Webster. The concept
assignment problem in program understanding. In [1993] Proceedings
Working Conference on Reverse Engineering, pages 27–43. IEEE, 1993.

[31] Wojciech Kryściński, Romain Paulus, Caiming Xiong, and Richard
Socher. Improving abstraction in text summarization. arXiv preprint
arXiv:1808.07913, 2018.

77

https://etherscan.io/apis#contracts


[32] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with
relative position representations. arXiv preprint arXiv:1803.02155, 2018.

[33] Kyosuke Nishida, Itsumi Saito, Kosuke Nishida, Kazutoshi Shinoda,
Atsushi Otsuka, Hisako Asano, and Junji Tomita. Multi-style generative
reading comprehension. arXiv preprint arXiv:1901.02262, 2019.

78


	Introduction
	Blockchain
	Ethereum Ecosystem
	Ethereum Introduction
	Smart Contracts
	Notable problems
	The current state of researches

	SoliditySummarizer

	State of the Art
	Smart Contract Translator
	Code Summarization
	Data Extraction
	Summary Generation
	Evaluation of CS techniques
	Target Code Artefact
	Evaluation of SMTranslator

	Transformers
	Introduction
	Embeddings
	The architecture

	NLP metrics
	Objectives

	Comment generation
	Solidity Source Code
	Data collection
	Data cleaning

	NLG with NeuralCodeSum
	NeuralCodeSum vs Vanilla Transformer


	Evaluations
	Quantitative and Qualitative analysis
	The Survey results

	Code Comment Examples

	Conclusions
	Appendix List of Figures
	Appendix List of Tables
	Bibliography

