
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Delivering Resilient Virtualized Services
in Smart Grid Environments

Supervisors

Prof. Fulvio RISSO

Candidate

Claudio USAI

October 2021

Summary

Cloud computing is currently a hot topic and the ICT industry is witnessing
migration of legacy application to the cloud. Its advantages such as theoretical
limitless scalability and high reliability of deployed services looks appealing to
every industry that needs an IT infrastructure. The electrical industry is not an
exception, monitoring and control systems profoundly rely on a resilient and reliable
IT infrastructure. In this industry, latency matters since control systems rely on
real time data to work. It is therefore not acceptable to work with data that might
be already old when it reaches the control systems and the cloud might not be
near enough to where measurements are produced to guarantee an efficient control
loop. Edge/Fog computing are paradigms that aim at solving these very issues:
bringing critical services as near as possible to the edge of the network. Placing
services near to the source of data enables earlier analysis and computation, as
well as earlier decisions. In this context technologies like Kubernetes looks very
promising but need to be extended or supported by other tools to allow workloads
to be run on possibly cheap hardware and making possible to manage thousands of
nodes or even clusters that are geographically distributed.

The goal of this thesis work is to present a possible approach to build a resilient
infrastructure that is able to run and orchestrate virtualized services on thousands
peripheral sites. Multi-cluster solution have been analyzed as well as more specific
edge oriented solutions to meet the special needs of the scenario. Particularly,
eventualities such as hardware or software failure and network partitioning have been
considered as critical and possible issues that the infrastructure should withstand.

ii

Acknowledgements

I would like to thank Prof. Fulvio Risso for all he gave me during the last year as
teacher, supervisor and sometimes mentor. It has been a pleasure to work with his
support and guidance.

I would also like to thank my family that has always supported me throughout my
studies, especially my parents Franco and Cecilia and my sister Giulia.

Another special thanks to my friends and colleagues who have always been there
during my ups and downs in the last years and especially in the last few months.
Thanks Marco, Giorgia, Leonardo, Michele, Sara, Valentina, Emanuela, Stefano,
Giulia, Gaia, Federico, Davide, Luca, Francesco, Claudio.

iii

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Power grid resiliency with micro-grids 2
1.2 ICT resiliency in a smart grid 2.0 3
1.3 Overview of service resiliency on power grids 4

2 ICT architecture in an electrical power grid 5
2.1 Production system . 6
2.2 Transmission system . 7
2.3 Distribution system . 10

3 Related work 13
3.1 Kubernetes . 13

3.1.1 Basic concepts . 14
3.1.2 Core modules . 14

3.2 Kubernetes for the edge . 16
3.2.1 k3s . 16
3.2.2 MicroK8s . 17
3.2.3 FLEDGE . 18
3.2.4 KubeEdge . 19

3.3 Multi-Cluster . 20
3.3.1 KubeFed . 21
3.3.2 A decentralized control plane 22
3.3.3 Fog-Atlas . 22
3.3.4 Liqo . 23
3.3.5 Tensile-Kube . 25

3.4 Edge device orchestration . 26
3.4.1 StarlingX . 27

v

3.4.2 Eve-OS . 28
3.4.3 Rancher Fleet . 30

3.5 Considerations . 32

4 Orchestrated architecture for the power grid 34
4.1 Service and infrastructure resiliency 34

4.1.1 Geographically distributed clusters 34
4.1.2 Services . 35
4.1.3 Data resiliency . 36

4.2 Data flow and communication resiliency 37
4.2.1 Reducing distances with the Point of Presence 37
4.2.2 A data-centric architecture 39

5 Implementation 43
5.1 Infrastructure . 43

5.1.1 Orchestrator . 43
5.1.2 Multi-cluster . 44

5.2 Services . 45
5.2.1 OpenPDC . 45
5.2.2 PMUsim . 46
5.2.3 MySQL . 47
5.2.4 Longhorn for resilient data persistency 48

5.3 Demo . 48

6 Results 50
6.1 Evaluation method . 50
6.2 Containerization overhead . 51
6.3 Orchestration overhead . 56
6.4 Orchestrator reaction times . 59
6.5 Further analysis . 60

7 Conclusions and future work 62
7.1 Future work . 63

Bibliography 64

vi

List of Tables

4.1 Number of primary and secondary station over years 2011-2019 [39]. 35

6.1 Relevant specifications of the machine used to carry out the tests. . 51
6.2 Image sizes (ubuntu and alpine given for reference as bae image),

base image in parenthesis. 52
6.3 . 52
6.4 Image sizes for x64 . 52
6.5 . 52
6.6 Image sizes for arm64 . 52
6.7 Resource usage deltas with respect to apps regularly installed in the

OS. 53
6.8 Resource usage deltas with respect to Ubuntu vanilla VMs. 57
6.9 Number of pods running on each node (x64). 58
6.10 Number of pods running on each node (arm64). 58
6.11 . 61

vii

List of Figures

1.1 Temperature anomaly in C◦ from 1850 to 2019 to respect the common
baseline 1951-1980 mean . 1

1.2 Extreme weather events in Italy for each year 3

2.1 Electrical hierarchy overview. 6
2.2 Production systems work in synergy with the transmission system. . 7
2.3 ICT network architecture of the transmission system. 9
2.4 Terna’s transmission system. 9
2.5 Electrical architecture of the distribution system. 11
2.6 ICT network architecture in the distribution system. 12

3.1 Resource utilization for K8s, MicroK8s, and K3s. 17
3.2 Virtual Kubelet use in FLEDGE 3.2a, Network traffic example 3.2b 18
3.3 Memory footprint comparison 3.3a, Storage footprint comparison 3.3b 19
3.4 KubeEdge architecture . 20
3.5 KubeFed’s workflow [22] . 21
3.6 Liqo’s components in an example deployment 25
3.7 Tensile Kube architecture. 26
3.8 StarlingX’s major components . 28
3.9 Eve OS deployment example . 30
3.10 Rancher Fleet workflow . 32

4.1 Distributed clusters with single source of truth for configuration . . 36
4.2 . 37
4.3 Data enters and exits from the power provider network four times . 38
4.4 Data exits a single time from the electricity provider network reaching

the PoP . 39
4.5 Distribution system as a data-centric architecture 40
4.6 Unoptimized traffic caused by subscription to a wrong broker instance 41

5.1 Loading of a configuration file before and after the GUI removal . . 47

viii

6.1 Comparison pdc containerized versions (x64). 53
6.2 Comparison of pdc containerized versions (arm64). 53
6.3 Comparison of apps against their containerized versions (x64). . . . 54
6.4 Comparison of apps against their containerized versions (arm64). . 54
6.5 Resource usage of containerized apps, singularly and as a group (x64). 55
6.6 Resource usage of containerized apps, singularly and as a group

(arm64). 55
6.7 k3s resource usage in mater, worker configuration with/without

longhorn (x64). 56
6.8 k3s resource usage in master, worker configuration with/without

longhorn (arm64). 57
6.9 Resource usage of a demo deployed in a 4 node cluster (x64). 57
6.10 Resource usage of a demo deployed in a 4 node cluster (arm64). . . 58
6.11 6.11a Restart time interval before activation of the backoff.

6.11b restart time with backoff. 59
6.12 . 60

ix

Chapter 1

Introduction

The classical electrical power system architecture, developed over the past 70 years,
had a centralized control. There were big power plants (fossil-fuelled, nuclear power,
or hydropower), producing up to 1000MW. The production system interacted with
the transport system in order to ensure always the same value of frequency and to
receive the required amount of energy. This portion of the power system had an
automatized control while the distribution system was almost completely passive,
with only local real-time monitoring and control for the largest loads, but no
additional interactions between the loads and the power system were performed [1].

1860 1880 1900 1920 1940 1960 1980 2000 2020

1

0.6

0.2

- 0.2

- 0.8

- 0.6

0.8

0.4

0

- 0.4

Figure 1.1: Temperature anomaly in C◦ from 1850 to 2019 to respect the common
baseline 1951-1980 mean

From Legambiente climate report 2020 [2] - Berkeley Earth data combined with sea data from UK Hadley center.

1

Introduction

The climate changes leading to global warming, driven by the human emissions
of greenhouse gases, required the reduction of the produced CO2. According to
NASA, 2020 tie with 2016 was the warmest year on record, with a long-term
record of the last seven years, when recorded temperatures were, on average, 1,02
C◦ higher than the baseline 1951-1980 mean [3]. In order to reduce the carbon
footprint, new renewable, green and clean sources of energy were introduced, with
some consequences in terms of power grid management. For example, the EU
with the Clean Energy Package set the target for the 32% for renewable energy
sources in the EU’s energy mix by 2030, and the goal of carbon neutrality by 2050
[4]. Indeed, the centralized control of the power grid was not enough for a power
system where production was not centralized anymore. There was the need to
increase the grid observability via a network of sensors providing information about
the physical world [5] and allowing the power grid to balance the power supply
and the demand. Thanks to the increase of grid observability, new perspectives of
automatized control, even in the distribution system, are possible [1]. The usage
of the ICT technologies in order to share data from sensors and meters, collect
and process it to control the electrical power system is the concept of smart grid.
However, nowadays, the concept of smart grid 2.0 [6] has been introduced. It refers
to a new design of the smart grid, based on electricity sharing via a plug & play
approach. This means that as soon as a new portion of the grid is attached to the
main grid, it starts exchanging electricity with the rest of the grid, injecting or
absorbing power [7].

1.1 Power grid resiliency with micro-grids
At this point, the concept of micro-grid comes into play, as a portion of the grid
with loads, accumulation systems, and production systems, able to work attached
to the main grid, or as an island, which means autonomously, isolated from the
rest of power grid. The concept of micro-grid is not new, and in the past, intended
as a way of bringing light to remote communities or as a backup system of the
main grid. However, the difference lies in how they are powered. While in the past
micro-grids relied on fossil fuels, the introduction of renewable sources of energy
not only allowed a reduction of costs, but the energy production at the edge of
the power grid, improved the reliability [8]. Coming back to the concept of smart
grid 2.0. Each micro-grid can be plugged to the main grid, and it can exchange
electricity, supporting the main power grid, injecting power, or requiring electricity,
if needed. In any case, if the micro-grid detaches from the rest of the grid, on
purpose or because of unintended events, it can survive, go on working even though
it is isolated. Resiliency, indeed, is nowadays a crucial aspect for power grids,
considering the increase of extreme weather events, due to climate changes. The

2

Introduction

increase of the average temperatures causes a reduction in rainfall, but a consequent
rise of floods, storms, and hydrogeological risk [2, 9]. Figure 1.2 shows the increase
of extreme weather events in Italy for each year. It is evident how the world is
changing, extreme climate events are becoming much more frequent, and people
are called to get used to this new normality. Human infrastructures need to be
redesigned for this new world, to be resistant to the weather pattern of the future.
Even the electrical power system, indeed, should be able to predict, react and
survive these extreme events, and it is crucial for the design of the smart grid 2.0.
250

200

150

100

0

50

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Figure 1.2: Extreme weather events in Italy for each year
From Legambiente climate report 2020 [2] - Osservatorio Cittá Clima, Legambiente 2020

1.2 ICT resiliency in a smart grid 2.0
Smart grid 2.0 requires real-time control for more than 50% of the power demand,
requiring the monitoring of great amount of data coming from sensors and devices.
The analysis and processing of this huge quantity of data and the control of the
grid require the deployment of smart IT technologies and usage of big data analysis
techniques [7]. A practical example of the need for data and their utility is the
post incident analysis carried out after the August 9th 2019 transmission system
frequency event in Great Britain [10], where the authors used phasor data available
to try to reconstruct the different stages of the incident and to learn a lesson from
it. Moreover, the resiliency of the power grid should be provided by a robust ICT
infrastructure.

• Services have to be monitored to launch them again, in case of a failure of the
application itself or the node where it was running.

• As the power grid should be able to support partitioning, even the ICT
must support the partitioning of the infrastructure. Extreme weather events,

3

Introduction

accidental events, or network failures might isolate one or more sites of the
electrical power system. When the site is isolated, its ICT infrastructure
should be able to react, go on working, even though the connection with the
centralized control has been lost.

The ICT of the power grid should handle the complexity due to the widely
geographically distributed infrastructure. The solution scalability is crucial since
it handles hundreds of thousands of sites, and this number can easily grow over
time. Therefore, the solution must allow new sites to seamlessly join the rest of
the infrastructure, according to the concept of plug&play electrical grid. A huge
quantity of devices and sensors of different nature, all over the power grid, some of
them with low computational power, produce data over different physical media.
The role of the ICT of the power grid is allowing this huge amount data to safely
reach all the consumers, according to their requirements in terms of QoS. All the
services running over the smart grid should be able to produce and consume data,
transparently moving across the nodes of the ICT infrastructure, if needed. Data
should be produced and consumed with an asynchronous approach in order to
improve the scalability, maintainability, and simplicity of the applications, still
keeping latencies under control, supporting real-time applications.

1.3 Overview of service resiliency on power grids
This thesis work will focus on the aspect of resilient services in smart grid environ-
ments, leaving the aspects related to resilient communications to be explored in
another thesis work. Chapter 2 presents an overview of the ICT architecture in
power grid environments, this is necessary to give background context to understand
the motivation of choices presented later on. In chapter 3 several technologies are
considered, all based on Kubernetes, to tackle the problem of resiliency at the edge.
First Kubernetes distributions are presented and then multi cluster solutions and
edge oriented solutions. An architecture is then defined in chapter 4 taking into
account the various sides of the problem, including service communication and
latency issues, and explaining the choices made. The developed implementation is
presented in chapter 5, here practical choices are explained as well as the reason
for choosing some technologies or pattern over others. In chapter 6 numerical
results are presented, focusing on resource consumption and comparing results with
equivalent deployment in different conditions and devices. Chapter 7 sums up the
work and points out possible aspects worth to be further explored.

4

Chapter 2

ICT architecture in an
electrical power grid

The aim of this chapter is to provide an overview of the ICT infrastructure in the
electrical power grid. The models to be used in the exchange of information with
distributed energy resources are defined by the IEC-61850 standard. The electrical
grid can be divided into three slices, each of them having a different role:

• Production system: where the electricity is produced, converted with the
right values of current, voltage and frequency and finally introduced in the
transmission system. In the past, this was mostly done in huge production
plants (e.g., hydroelectric, coal), while in recent years this is being integrated
with many small-size production plants (e.g., solar power).

• Transmission system: in charge of collecting the electricity from the power
plants and transporting it to the distribution systems (i.e. Terna in Italy).

• Distribution system: in charge of bringing the electricity to the final users,
typically this part of the network is in charge of the energy providers.

Nowadays, the production system is not anymore the only source of energy, due
to the presence of many small producers closer to the user, such as solar panels,
wind farms and more. This means that even in the distribution systems there is
the need to replicate the mechanism present in the production system, not having
anymore the possibility to have a completely centralized control, but it was needed
to move this control even at the edge.

5

ICT architecture in an electrical power grid

Figure 2.1: Electrical hierarchy overview.

2.1 Production system
The production system is made by energy producers, who produce electricity and
collect it in the transmission system by means of some transformers, regulating
voltage and intensity of the electricity. Producers need to regulate the frequency of
the produced energy according to the values provided by the national controller,
so that generators can always keep the same value of frequency and provide the
required amount of electricity in the electrical grid.

6

ICT architecture in an electrical power grid

Figure 2.2: Production systems work in synergy with the transmission system.

2.2 Transmission system
The transmission system is made of electrical towers of 380kV, 220kV and 130/150kV
all connected with the others, forming an unique grid covering the entire national
surface. This system is controlled by some stations with a set of transformers
converting the ultra-high voltage to the high voltage. Electric substations (often
abbreviated SSE) are located near a production plant, at the point of delivery to
the end user and at the interconnection points between the lines: they therefore
constitute the nodes of the electricity transmission network. Substations perform
one or more of the following functions:

• interconnect multiple High Voltage power lines at the same voltage level,
creating a network node (via crossbars);

• interconnect several HV power lines with each other at different voltage levels
(through transformers);

• re/phase the apparent power of the network (by means of capacitor banks or
power factor correction inductors, also called "reactors" as they absorb reactive
power);

• convert the voltage from AC to DC and vice versa (conversion substations).
[11]

7

ICT architecture in an electrical power grid

Even these transformers have some sensors and actuators, the latter are controlled
by devices called IED (Intelligent Electronic Device). All the devices running locally,
e.g.,in a substation, are connected to each other by means of an Ethernet LAN,
which also includes a Station controller, e.g., a server with the proper controlling
software. Logically, the station controller is connected with the Regional controller,
which is further (logically) connected to a National controller.
The physical network connection between each station and the rest of the ICT
network is usually achieved with dedicated links; in the past, this infrastructure
was completely under the control of the Electrical company (i.e., ENEL), which was
then spinned-out at around 1990-2000 when the Italian telecommunication market
was open to competition, leaving to the creation of the Wind telecommunication
company. Nowadays, the above physical network connections are in part still under
the control of the Electrical company, while others are simply links bought from a
telecommunication provider.
Electricity cannot be stored, therefore there is the need to guarantee the balance
between the produced energy with the demand. This operation is a real time control
called dispatching and it is under the responsibility of the National controller, which
acquires data from a large number of players operating both in production and
demand, performs forecasts about the national electricity requirements and interacts
with producers and remote management centers in order to module the supply and
structure of the grid as require. [12]
In this case, the network is based on optical fibers running through the overhead
protection cables, but still having a satellite network as backup.

8

ICT architecture in an electrical power grid

Figure 2.3: ICT network architecture of the transmission system.

Figure 2.4: Terna’s transmission system.

9

ICT architecture in an electrical power grid

2.3 Distribution system
The distribution system starts from the primary substations where the high voltage
electricity is converted into medium voltage. Here a set of measurement systems
are used in order to track the state of the transformers, and to perform some
adjustments opening and closing them, changing the transformation ratio, in order
to keep the correct working point of the electrical grid. This is the starting point
for the medium voltage lines, each controlled by a switch. These lines arrive at
the secondary substations, where the medium voltage is converted to low voltage.
These are the starting point for the low voltage lines, connected to user loads,
electricity generation systems, accumulation systems, which could also have some
meters and sensors providing information about their working status.
Inside kiosks sensors and actuators are connected via Ethernet LAN, while data
from loads, electricity generation systems, accumulation systems coming from the
outside could reach the controller in charge of handling it, using GSM, 4G or
powerline. The distribution system has three main levels of control:

• Primary Substations: here there could be data coming from the inside of the
substation, but also for the outside world. This data is sent to the station
controller in charge of performing a local control.

• Area control centers: the station controllers of the substations exchange data
with the area control center of the geographical area where they are located,
which could be an entire city or a portion of it.

• ICT control center: it is the remote monitoring center for the ICT of the
electricity provider, its role is configuring all the devices, monitoring the state
of the infrastructure, checking for anomalies, such as failures or intrusions,
trying to recover it from the effects of an incident. This component is also
present in the transmission system.

Typically, data flowing between the control centers is carried over a dedicated WAN
network, which might be made of fiber or equivalent technology. Each section of the
network has a firewall, filtering incoming and outcoming traffic. The overall ICT
system is also protected by an access point which performs some encryption to the
incoming and outcoming traffic. That’s because different distributors and the ICT
of the transmission system, uses different keys, in order to keep them independent.
This means that all the outcoming traffic should be decrypted with the internal key,
then encrypted with the key shared with the destination, and then decrypted again
and encrypted with the key of the destination. The same thing should happen
with communications between the transmission systems of two different nations,
this is needed because, since Europe runs on a single frequency, a variation of the
frequency or a failure of a part of the grid, might affect all the other nations, which

10

ICT architecture in an electrical power grid

should properly react. This makes evident how a good ICT system is crucial for a
properly working power grid. The ICT, indeed, should be in charge of monitoring
the working status of each component and tuning each of them in order to provide
the desired state, but it has also the role of protecting it, for example detaching
from the grid a power plant which goes out of frequency. Even though both control
and protection allow to keep the correct working status of the power grid, they
are totally independent, since they have different requirements even in terms of
reaction time.

Figure 2.5: Electrical architecture of the distribution system.

11

ICT architecture in an electrical power grid

Figure 2.6: ICT network architecture in the distribution system.

12

Chapter 3

Related work

3.1 Kubernetes

During the last decade application development and deployment have seen a
major change with the arrival of Docker and mainstream container technologies
that rapidly took over standard virtual machines due to their ease of use, build,
deploy and to their lightweight nature. Along with that, microservices based
architectures has become increasingly popular and nowadays applications may
include hundreds of them in their architecture. The need for scalability required
the ability to manage thousands of instances in order to keep up with customer’s
request and made hardly feasible to operations engineers to manually manage these
huge numbers. The necessity for this new kind of automation, management and
monitoring lead to the rise of orchestrators, with Kubernetes becoming the de
facto standard due to its being open source and strongly supported by an active
community that is still growing. Kubernetes was originally developed by Google
and then made open source in 2014, inspired by a decade of experience deploying
scalable distributed web applications and with the reliable technology of linux
containers. Its being open source and vendor agnostic are the main reason of
its popularity along with the possibility for the community to always bring new
features both as custom extension or as feature in the main codebase. Kubernetes
allows to define application deployments in a declarative way, giving administrators
the possibility to store configurations in yaml and json files that can be deployed
with few commands and even in full automation using DevOps CI/CD practices.
A brief overview of the basic concepts of Kubernetes will be given including core
resources and some of its main components. [13]

13

Related work

3.1.1 Basic concepts
A Kubernetes cluster is composed of nodes. A node is a resource that abstracts
the concept of hardware (it may be a physical server, a VM or even just fictitious)
and can be a master node or a worker node.
A master node is where the Kubernetes control plane runs, and exposes the API
server which can be used by an administrator to get cluster information or for
applying changes to the cluster (i.e. deploy a new application) as well as by
operators, custom software, to watch resources and apply changes to them.
Kubernetes is made for orchestrating containers, however a user cannot actually
just run a container the same way it is done with docker. The smallest deployable
unit is a Pod, a resource that represents a group of pods and its configuration. For
example, in pod’s manifest can be declared labels to identify the resource, volumes
to be mounted, environment variables, open ports, container restart policy, etc.
Kubernetes will take care of making sure that the app is started once volumes are
available, container images are pulled and other prerequisites.
Configuration in a container environment cannot always be know at time of
deployment, may change during time and the same configuration might be used
many times. For this reason ConfigMaps and Secrets offer the possibility to define
simple key-value pairs that can be either used as strings in pods templates or
mounted as files in pods’ volumes.
However, pods usually are not deployed "as is", applications are mainly deployed as
deployments, a resource that provides a way to specify the number of replicas. The
deployment controller will provide self-healing, making sure the number of running
replicas stays constant, restarting containers or reinstantiating pods, if necessary.
In kubernetes exposing applications can be easily done using services, an abstraction
used to make a pod reachable either at cluster level or from outside the cluster. A
declared service must specify a label selector that should match the target pods,
the ports to be exposed and the target ports of the container in the pods. In case
an application is to be reached only by inside the cluster the type ClusterIP must
be set, otherwise NodePort and LoadBalancer types are available.
Persistence is managed through the PersistentVolume and PersistentVolumeClaim
resources, the first represent the volume that resides in physical drive whereas the
latter represent the request for a persistent volume made by a user. [14]

3.1.2 Core modules
As previously said, a cluster is composed of master nodes, where runs the control
plane, and worker nodes. The control plane, in turn, is composed of several modules:

• kube-apiserver, the component that exposes the kubernetes API. Several
instances can be run in order to perform load balancing.

14

Related work

• etcd is the backing store of kubernetes, it is a consistent and highly available
key-value store. Its high availability mode enables cluster to have more than
one master and reduce outages due to master failures.

• kube-scheduler, a component that watches the pod resources and when a new
one is created takes care of choosing a suitable node and schedule it, based on
taints, affinities and other kind of configurable constraints.

• kube-controller-manager, a component that runs the different controller pro-
cesses. Each controller is, logically, a separate process but simplicity they are
compiled into a single binary. Example of controllers are: Node controller,
deployment controller, Service Account and Token controllers.

There are then a set of components that are common to both master and worker
nodes:

• kubelet, an agent that is responsible of making sure that containers declared
in a Pod are running. The kubelet takes a set of PodSpecs that are provided
through various mechanisms and ensures that the containers described in
those PodSpecs are running and healthy. The kubelet manages only containers
created by Kubernetes.

• kube-proxy, a network proxy that runs on each node in your cluster, im-
plementing part of the Kubernetes Service concept. Kube-proxy maintains
network rules on nodes that network communication to Pods from network
sessions inside or outside of the cluster. It leverages the operating system
packet filtering layer if any, otherwise forwards the traffic itself.

• CNI, Container Network Interface is a CNCF project that defines a specification
and libraries for developing plugins used to configure network interfaces in
Linux containers. If a CNI network plugin is installed in a cluster, it is
automatically done in each node.

• CSI, Container Storage Interface like CNI is a specification for developing
storage drivers plugins used in linux containers. A CNI might bring features
such as volume replication, snapshotting and backup.

• CRI, Container Runtime Interface is defaulted to containerd, but it is possible
to use also Docker (deprecated) or CRI-O.

15

Related work

3.2 Kubernetes for the edge

3.2.1 k3s
K3s is a certified Kubernetes distribution that aims at simplifying the setup and
management as well as reduce the overall load on the host machines. In fact it
has been introduced as the "lightweight kubernetes" due to the removal of several
lines of code from the codebase that are needed only when Kubernetes is run on
a cloud provider environment. As a consequence k3s suits well for deployments
on bare metal with relatively low computational resources (compared to data
center hardware) and especially for development environment and the edge. Due
to some differences on the codebase, especially the lack of kubeadm, setting up a
hybrid cluster with nodes running vanilla Kubernetes and others running k3s is not
supported, even though it is undocumented it should still be possible. K3s comes
packed with a set of dependencies,

• containerd

• CoreDNS

• a local path provisioner CNI is present to give the possibility to mount volumes
from the node’s filesystem without the need to manually install plugins.

• a default ingress controller (traefik [15])

• an embedded load balancer

• an embedded network policy controller

• a default lightweight CNI Flannel [16]

Each of the previous plugins can be disabled in order to give the user the possibility
to customize the cluster behaviour.
The installation script provided gives also the possibility to set all of the options
available on the upstream Kubernetes as well as some specific flags that target k3s
only behaviours. [17]
Its resource consumption has been analyzed in Bohm and Wirtz [18] where a
comparison with the microk8s, which will be presented in the next pages, and with
vanilla Kubernetes. The researchers used four Ubuntu 20.04 Virtual Machines
(VMs) with 2 vCPUs, 4 GB memory and an SSD with a capacity of 50 GB each.
The results showed very similar resource utilization for CPU and Memory, with
k3s that spared the most in disk usage with respect to the two others.

16

Related work

Figure 3.1: Resource utilization for K8s, MicroK8s, and K3s.

3.2.2 MicroK8s
MicroK8s is a production ready Kubernetes distribution that targets edge and IoT
applications as well as CI/CD and development environment. It is based on the
upstream Kubernetes codebase, with minor changes aimed at reducing the memory
footprint, and comes with an additional command line interface microk8s that
can be used to enable its additional features. With respect to vanilla Kubernetes,
Microk8s offers interesting features that can be enabled out of the box through the
cli:

• Self-healing high availability clusters, MicroK8s automatically chooses the
best nodes for the Kubernetes datastore. When a cluster database node is lost,
another node is automatically promoted, never leaving the cluster without at
least one master.

• dqlite: instead of using etcd as backing store dqlite has been chosen offering
more flexibility that is needed by the dynamic promotion of nodes to master.

• LXD: possibility to run microk8s as immutable container.

• configuration defaults: MicroK8s defaults to the most widely used Kubernetes
options, providing also networking, storage and standard services with standard
configuration out of the box.

• multi-vendor compatibility: just like Kubernetes, it is compatible with most
popular cloud provider

• bundled for production: it is already bundled with tracing, metrics, service
mesh and registry add-ons.

17

Related work

3.2.3 FLEDGE

Devices at the edge are powerful enough to be able to run containerized microservices
and keeping a low size and power makes them suitable to be deployed almost
anywhere. They may however not be able to run an orchestrator due to their high
resource requirements. In Extending Kubernetes Clusters to Low-resource Edge
Devices using Virtual Kubelets [19] the authors present FLEDGE, a low-resource
container orchestrator which is capable of directly connecting to Kubernetes clusters
by using Virtual Kubelets, a VPN to secure traffic between nodes and containerd
as container runtime.

FLEDGE aims at being compatible with most Kubernetes API so that other
tools can still be able to extract data as from a standard Kubelet. The API calls
supported by a Virtual Kubelet consist of pod management, pod status, node status,
logging and metrics. Networking is handled differently than in Kubernetes, there is
no CNI installed since the FLEDGE agent takes care also of the networking. The
assumption is that on such devices the number of pods deployed will be relatively low
and it is therefore more appropriate to develop a simple and naive pod networking
handler. Moreover FLEDGE still uses the CIDR defined in Kubernetes, this
approach does not influences the networking in the rest of the cluster. The paper
also analyze the problem of the Virtual Kubelet placement (cloud vs edge) and, in
case of a high number of FLEDGE nodes, points out that the it could saturate the
maximum number of pod deployable in each Kubernetes nodes which is 200.

FLEDGE’s resource usage has been evaluated and compared to Kubernetes and
k3s, showing improvement on the storage and memory footprint, particularly on
ARM64 architectures. A very strong upside is that, even if the comparison with
k3s does not highlight relevant differences, there is possibility to join K8s clusters.

(a) (b)

Figure 3.2: Virtual Kubelet use in FLEDGE 3.2a, Network traffic example 3.2b

18

Related work

(a) (b)

Figure 3.3: Memory footprint comparison 3.3a, Storage footprint comparison
3.3b

3.2.4 KubeEdge
KubeEdge is a Kubernetes native edge computing framework, it is not a kubernetes
distribution and aims at providing a set of tools to run workload at the edge. The
architectures cornerstone is the CloudCore component, which runs as a workload
on a Kubernetes cluster on the cloud and is responsible of managing the various
edge nodes. Each edge node runs an instance of the EdgeCore componenent.
EdgeCore can run containerized workload on demand by the CloudCore component,
using either Docker (default), containerd, CRI-O or kata-containers as container
runtime, and provides different features such as local storage interface, networking,
configmaps and secrets replications.

• Edged: an agent that runs on edge nodes and manages containerized applica-
tions.

• EdgeHub: a web socket client responsible for interacting with the CloudHub
component. This includes syncing cloud-side resource updates to the edge and
reporting edge-side host and device status changes to the cloud.

• CloudHub: a web socket server responsible for watching changes at the cloud
side, caching and sending messages to EdgeHub.

• EdgeController: a controller that manages edge nodes and sets pods metadata
so that the worload can be targeted to a specific edge node.

• EventBus: an MQTT client to interact with MQTT broker (Mosquitto [20]),
offering publish and subscribe capabilities to other components and external
IoT devices.

19

Related work

• DeviceTwin: responsible for storing device status, syncing device status to the
cloud and providing query interfaces for applications.

• MetaManager: the message processor between edged and EdgeHub. It is also
responsible for storing/retrieving metadata to/from a SQLite database.

[21]

Figure 3.4: KubeEdge architecture

3.3 Multi-Cluster
As the cluster topology grows in complexity, different approaches are needed in order
to manage and provide resiliency to the system. In the case of kubernetes clusters,
a possibility is leveraging multi-cluster technologies to manage multiple clusters as
a whole and possibly defining policies for workload offloading and scheduling. In
this section a selected subset of multi-cluster solution will be briefly analyzed to
give the reader an overall view of the possible ways that have been considered to
tackle the problem of managing such a high number of clusters.

20

Related work

3.3.1 KubeFed

Figure 3.5: KubeFed’s workflow [22]

KubeFed (Kubernetes Cluster Federation) allows to coordinate the configuration
of multiple Kubernetes clusters from a single set of APIs in a host cluster that will
then propagate the configuration to member clusters. The concept of federation is
intended as creating a common interface to a pool of clusters, or to types, which can
be used to deploy Kubernetes applications across those clusters. The project aims
at providing low level mechanism to be used as foundations to build more complex
multi-cluster solutions to use cases such as deploying multi-geo applications and
disaster recovery.
KubeFed uses federated types to define which types should be federated across
specified clusters of the pool (i.e. configmaps, namespaces, deployments). A
federated type will include the actual resource inside its template as well as the
clusters where it is desired to be placed, listed in the placement spec.
These previous abstractions provide building blocks that can be used by higher-level
APIs:

• Status, which collects the status of resources distributed by KubeFed across
all federated clusters

• Policy, which determines which subset of clusters a resource is allowed to be
distributed to

21

Related work

• Scheduling, which refers to a decision-making capability that can decide how
workloads should be spread across different clusters

[23]

3.3.2 A decentralized control plane
Devices at edge are by definition geographically dispersed and the number of devices
managed by a single administrative authority could reach thousands. For this
reason KubeFed might not fit well with the scenario. Particularly, having a host
cluster, which can be considered a pro from an administrative perspective, it is
a con since is also a single point of failure. Moreover the project targets clusters
that are distributed across different world regions defined by cloud providers and
therefore targets infrastructure composed of dozens of cluster, whereas in an edge
scenario hundreds or even thousands would be a more realistic reference number.

In Larsson et al. [24], the authors describe a possible approach still based
on KubeFed but with important modifications on its backend, using CRDTs.
Conflict-free Replicated Data Types (CRDTs), are a class of distributed data types
with mathematically provable conflict free properties [25] and that find practical
application in distributed databases.

The main problem of KubeFed is that the host cluster act as "truth" while
member clusters are only passive participants of the federation since is the federation
controller, deployed in the host cluster, that constantly watch a updates resources
in member clusters. The solution proposed is to keep the KubeFed API, in order
to maintain compatibility with what has already been defined, but deploy different
controllers in each cluster that watch a CRDT database storing the distributed
resources. The database analysed in the paper is Riak KV, which implements
CRDTs and has clustering deployment possibility that might span acrosso multiple
Kubernetes clusters. Riak KV gives up consistency in favor of availability in the
case of network partitions and to achieve low latency [26]. The proposal uses than a
"local cluster" backend based on etcd and the the "multi-cluster" backend based on
Riak KV, the federation controller in each cluster would then watch the distributed
resources in Riak and act accordingly in case of any discrepancy i.e. scheduling
new pods. The work explains possible examples of use and also proposes solutions
to problem that might arise in a possible implementation, however the proposal
still remains without an actual implementation.

3.3.3 Fog-Atlas
Fog-Atlas is a framework whose objective is to manage a geographically distributed
and decentralized infrastructure that provides computational resources, storage and
network services following the Fog Computing paradigm. The framework proposes

22

Related work

two different deployment modality: the conventional way with a single cluster with
nodes that span across the geographic region and a multi-cluster way,based on
kubefed, where a cluster act as host cluster while others act as member clusters.
Obviously the latter approach is much more effective in delivering resiliency to the
distributed infrastructure, even though in some cases it might perform well due to
its low complexity.
The concept behind the federated approach is similar to the one used in vanilla
KubeFed, the administrator can apply the desired deployments directly on the host
cluster and the fadepl-controller (Fog Atlas Deployment Controller) will take care
of propagating the desired configuration, apps and services to the specified clusters.
Additionally the framework defines its CRDs that are used to configure the federated
resources and additional constraints that model a distributed infrastructure: Region,
Link, ExernalEndpoint. FogAtlas defines also a set of CRDs that describe the
federated application deployment in order to allow the controller to perform
the application placement based on requirements declared in these resources:
FADepl (Fog Atlas Deployment), FedFAApp (federated application). Trough the
Fadepl is possible to specify the region where an app or service is needed and
other requirements such as the need for a GPU, a given CPU architecture as
well as geographic based constraints and data flow to/from other microservices
(FADeplDataFlow). In case of network partitioning (i.e. a member cluster becomes
isolated from the others) the member clusters maintain their own autonomy and
resilience. However, at the moment of writing, the reinstantiation of a remote
service that is no longer available due to the isolation is not performed automatically
by the framework and must still be performed manually by an administrator. This
limit can be overcame leveraging the operator pattern and writing the software that
takes care of this specific task. Although, the framework might still lack of some
additional information embedded in the CRDs needed to identify which services
should be reinstantiated locally (i.e. some kind of application dependency graph
and priorities) and it would mean that additional complexity is left to the user of
the framework. [27] [28] [29]

3.3.4 Liqo
Liqo is an open source project started at Politecnico of Turin that allows Kubernetes
to seamlessly and securely federate multiple clusters, sharing resources and services
to run workloads across them in a liquid computing fashion.
In contrast with the approaches presented previously, Liqo does not use the KubeFed
framework to achieve cluster federation. Instead it is based on the concept of Virtual
Node, an approach that has already been used by many important projects and
proved to be effective.

Virtual Kubelet is an open source Kubernetes kubelet implementation that

23

Related work

masquerades as a kubelet for the purposes of connecting Kubernetes to other
APIs. The project has been made public by Microsoft and it is known to be used
in cloud providers’ serverless contexts to allow running workloads on a dynamic
environment that might not be a Kubernetes node but instead an entire pool of
servers orchestrated by some external API. Another use case, as in Liqo, is to
masquerade another cluster to allow cluster federation, this way another cluster
can be seen as a (virtual) node from the home cluster point of view, and workloads
can be easily scheduled on them.
Liqo’s main features are:

• dynamic discovery: Liqo can dyanmically discover other liqo clusters in the
same LAN and start a peering

• resource reflections: resources are automatically reflected to the other clusters
participating in the peering. For example a Pod will be seen by the control
plan of each cluster but only one will actually be running, the others will be
just ghost resources.

• multi-cluster networking: Liqo’s network fabric takes care of setting up the
proper rules to enable traffic redirection to the offloaded workloads. This is
done through a wireguard tunnels between cluster and through an overlay
network inside single clusters.

• ease in setup: the project is focused also on making it simple to deploy and
being ready to peer in minutes.

Liqo relies on different CRDs and operators to integrate its custom logic into
Kubernetes. In Figure 3.6 is depicted an example deployment within two cluster,
showing its core components:

• liqo network manager : manages the creation of the networkconfigs CRDs for
the remote clusters and processes the ones received from the remote clusters.
In case remote networks overlaps with any of the address spaces used in
the local cluster, it takes care of remapping them to avoid collisions. When
the networkconfigs have been exchanged between the two clusters the Liqo
Network Manager creates a new tunnelendpoints resource, which describes
the interconnection between the two clusters.

• liqo gateway: is made up by several operators and is responsible for establishing
secure tunnels to other peering clusters and inserting NAT rules for the remote
pod and external CIDRs. The tunnel operator, given a tunnelendpoints
resource, creates a vpn tunnel to the cluster described by the CR and adds a
static route for the remote cluster. The NAT Mapping Operator, given the
customer resource natmappings, configures NAT rules to send the incoming

24

Related work

traffic, destined to an external CIDR IP address, to the right workload. The
liqo gateway is deployed in High Availability, a labeler operator takes care of
making sure that only the elected gateway will have the proper label that
enable traffic redirection to it.

• liqo route: is also made up by several operators and run on each node of the
cluster. It is responsible for creating the overlay network used to communicate
between nodes and to set network rules that redirect outgoing traffic to the
active liqo gateway.

[30] [31]

Figure 3.6: Liqo’s components in an example deployment

3.3.5 Tensile-Kube
Tensile-Kube is a an implementation of Virtual Kubelet provider that enables
multi-cluster management using a centralized approach. It has been developed
by Tencent Games for sharing hardware resources between different clusters in a
data center environments. The overall architecture distinguish a upper cluster and
possibly several lower clusters. It uses the virtual node approach, hiding each lower
cluster behind a virtual node, a virtual kubelet pod running in the upper cluster
that advertise itself to the upper cluster as a worker node and takes care instantiate
and manage the resources in the related lower cluster. The project includes, aside
from the virtual kubelet provider, a multi-cluster scheduler, a descheduler and a
webhook. The multi-cluster scheduler watches all of the lower clusters’ capacity
and call a filter function while scheduling pods, the descheduler is responsible of
enforcing affinities and other placement policies, they can be both deployed or only
the latter in case of very high overall number of nodes. The webhook converts some

25

Related work

fields into annotations that would otherwise create instabilities at scheduling time.
Tensile-Kube was born with the purpose of sharing computing resource from
different clusters in the same data center. For this reason it does not take any
responsibility in the networking side of the infrastructure since the various nodes.
In the example deployment presented in the CNFC blog post, all clusters use a
Flannel CNI using as backend the same etcd instance, making pods and services
addresses automatically synchronized between the different API servers. In a real
scenario this can be an issues since it is not always possible to have a single etcd
backend for all the clusters’ CNI, particularly in an edge environment. [32]

Figure 3.7: Tensile Kube architecture.

3.4 Edge device orchestration
With the rise in popularity of paradigms such as edge and fog computing, an
increasingly number of challenges appeared when tried to be put in place. Edge
devices are per-definition not under strict control of the owning companies, they are
geographically distributed, they might be diverse in hardware and specification, they
must be reliable enough to guarantee a certain level of availability of the provided
services. Application deployed on such hardware should not be aware of these

26

Related work

challenges and business logic should stay somehow the same as if the distributed
system would run on a cutting edge hardware in a data center. Kubernetes alone
cannot offer this kind of features, especially if the infrastructure is comprised of
thousands of nodes. This need has been identified and in the last few years different
approaches have been developed. In this section will be given an overview of such
technologies, in particular StarlingX and Eve-OS try to respond to the need for a
common foundation where to deploy application on the edge. In addition Rancher
Fleet, even if quite different from the previous, might as well address some of these
problems in its own way.

3.4.1 StarlingX
StarlingX is a project supported by the Open Infrastructure Foundation, it is a
software stack that aims at providing an OS bundled with all the necessary software
needed to deploy an edge cloud on up to 100 servers. Its key features include:

• single package that includes an optimized version of the linux distribution
CentOS, storage and networking components, and all the cloud infrastructure
needed to run edge workloads.

• predefined configurations to meet a variety of edge cloud deployment needs.

• optimized for security, ultra-low latency, extremely high service uptime, and
streamlined operation.

• fault management and service management capabilities, which provide high
availability for user applications.

StarlingX puts its focus on the importance of low latency in edge computing
and the ability to run any kind of workload. Its use cases range from mini data-
centers near telecommunication operator towers to on premise clouds for industrial
automation, hospitals and transportation. The project does not state official
hardware requirements but it is clear that is expected to run on servers and not on
low end hardware.
StarlingX relies on Kubernetes to run workload on containerized environments and
on a containerized OpenStack to run workloads on VMs in case of hard requirements
on kernel version or OS.
Different deployments configurations are possible depending on the edge site
dimension:

1. All-In-One server running control plane, storage provisioning and workloads.

2. Highly Available Multi-Server with some servers dedicated to the control plane,
some to storage and other to running workloads.

27

Related work

3. Distributed Cloud: a central cloud and several autonomous subclouds.

The latter implements the OpenStack Edge Computing Groups’s MVP Edge
Reference Architecture, specifically the “Distributed Control Plane” scenario [33].
This scenario is comprised of a centralized datacenter where monitoring and critical
applications are placed and several medium to large sized edge sites called subclouds
where latency critical application are placed. Central cloud and subclouds are
connected through an L3 network, the connection to the central cloud must be
configured at setup time. Subclouds can belong to groups to simplify management in
case several subclouds have configuration or other common traits. The central cloud
provides a RegionOne region for managing the physical platform of the central cloud
and the SystemController region for managing and orchestrating over the subclouds.
Each subcloud is deployed as a set of servers running StarlingX Kubernetes control
plane, each edge site’s control plane is independent of the central cloud. The
result are autonomous subclouds that can schedule and resiliently manage workload
even in case of network partitioning and isolation from the centralized cloud. The
StarlingX distributed cloud configuration offers a set of open REST API that
allows to retrieve and update configuration of subclouds and groups. The API are
currently used by the custom cli and the Horizon dashboard, but it’s obviously
possible to build software logic to leverage the API with a custom controller.

Figure 3.8: StarlingX’s major components

3.4.2 Eve-OS
Eve stands for Edge Virtualization Engine and is a project backed by the Linux
Foundation Edge. Eve’s objective is to be the "Android" for the edge, an open
and vendor-agnostic platform to be used as foundation to application deployment

28

Related work

at the edge. It is in fact an open Linux-based operating system for distributed
edge computing that exposes a set of APIs and security features out of the box.
The project is based on the assumption that application deployed on the edge
should not take care of the additional problems that it involve. Security and device
management should be responsibility of the platform and Eve aims at taking care
of all these additional challenges leveraging cutting edge kernel versions, hardware
root of trust, signed images for EVE-OS and applications, TLS, hypervisors for
strong isolation and distributed firewall for every app.
A device running Eve is identified by a X.509 certificate generated by the TPM
at first boot and used for the management of traffic to the controller [34]. The
controller is identified by its own certificate but each devices is imprinted with the
root CA to verify controller’s identity, At start up Eve automatically connect to
the controller to pull its configuration and or upgrades. The devices targeted by
Eve are smart edge devices such as CPEs and IoT devices but also edge data center
servers, so a wide variety of hardware and architectures is supported.
Eve takes care of virtualizing and separating workloads, at the time of setup,
an hypervisor can be chosen (KVM, Xen or ACRN) which will be used to run
separately each instance. The project tries to generalize the concept of workload
and defined a specification for Edge Containers: an extension of linux containers
that can also describe VM instances. Eve supports both containers and VMs
through Edge Containers and is also compatible with kubernetes workloads, in fact
it is possible to run k3s to orchestrate them. Including all these orchestration tools
and being based on an eventual consistency model, the system continues to run
in the current state if it loses connection to the centralized orchestration service
being able to withstand network partitioning and temporary isolation from the
cloud controller.
Eve’s security features are some of its main strength as zero touch and zero trust
security concept have been applied to the project. This requires an eventual
consistency model in which edge nodes The OS is configured at the moment of
flashing the device storage memory, its initial configuration will include the address
of the cloud controller and its trusted certificate, the device will automatically try
to connect at startup to get its configuration. Eve can avoid physical intrusions
disabling IO ports (i.e. USB ports or network interface) or reserve some of them
only to specific workloads in order to guarantee separation between the different
processes.
A device running Eve is inaccessible, the only way to apply changes to the system
is through the cloud controller, no ssh or remote connection is allowed. Another
important feature is the ability to supporting autonomous operation and remote
management with risk free updates from the cloud, since a series of test will be
performed after the upgrade and in case issues appears it will revert back to the
previous version of the system.

29

Related work

As said earlier, the APIs are completely open and they span from all the different
monitoring features to device configuration and application deployment. The APIs
are also extensible so that anyone can build its own custom controller. However,
since the project is quite young and the community is at an early stage, at the
moment there are only an enterprise (closed source) controller and an open source
example controller named Adam. [35] [36]

Figure 3.9: Eve OS deployment example

3.4.3 Rancher Fleet
Fleet is a set of Kubernetes custom resource definitions (CRDs) and controllers
to manage GitOps for a single Kubernetes cluster or a large scale deployments of
Kubernetes clusters (up to one million). Even though is not a device orchestration
solution its behaviour is somehow similar to what happens in the previously
presented projects: a set of clients have a single source of truth for their state
(running applications) and either constantly poll it o receive updates. Rancher
Fleet offers this same mechanism with the simplicity of git, making possible to
deploy applications to thousands of clusters without having to worry about each
single one. With respect to the previous ones the lack of OS backed device security
is certainly an important downside, however its simplicity make it a good candidate
for managing such a high number of deployments. Fleet’s core component are:

• Fleet Manager : The centralized component that orchestrates the deployments
of Kubernetes resources from git. In a multi-cluster setup this should be a

30

Related work

dedicated Kubernetes cluster. In a single cluster setup the Fleet manager will
be running on the same cluster you are managing with GitOps.

• Fleet controller : The controller running on the Fleet manager orchestrating
GitOps.

• Fleet agent: Every managed downstream cluster run an agent that communi-
cates with the Fleet manager. The agent is a set of Kubernetes controllers
running in the downstream cluster.

• Bundle: An internal unit used for the orchestration of resources from git. When
a git repo is scanned it produces one or more bundles, a collection of resources
that get deployed to a cluster. Bundle is the fundamental deployment unit used
in Fleet, its content may be Kubernetes manifests, Kustomize configuration,
or Helm charts. Regardless of the source they are dynamically rendered into a
Helm chart by the agent and installed into the downstream cluster as a helm
release.

• BundleDeployment: When a Bundle is deployed to a cluster an instance of a
Bundle is called a BundleDeployment.It represents the state of that Bundle
on a given cluster with its cluster specific customizations. The Fleet agent is
only aware of BundleDeployment resources that are created for its cluster.

To install Fleet in a cluster with Helm, certificates from the upstream cluster will
be required since agents will need to access the API server. [37] Then downstream
clusters can be registered using a cluster registration token and a client-id or some
cluster labels. Clusters can then be grouped by labels, this feature is useful in case
of high number of cluster and if some of them have very similar or same deployment
targets. [38]

31

Related work

Figure 3.10: Rancher Fleet workflow

3.5 Considerations
The technologies and approaches mentioned above represents different kind of
solutions to problems similar to the scenario considered or very closely related.
However not every solution presented can actually be used for reason already
cited, such as community support, available documentation, target scenario and
scalability.

There exists no such thing as the Kubernetes for the edge and all of the
technologies analysed have their own strengths. However, k3s stands out for its
simplicity in deployment on field, as well as microK8s. Fledge is an experimental
project that still brings some relevant features but is surely not thought for being
extensively used. KubeEdge is still a promising framework, however its limitations
about the lack of independent edge sites makes it not fit for our scenario.

Multi cluster administration and management are a complex tasks, and each
different situation requires a special approach. The solutions analysed revealed
their strengths in the situation they are born for and the two approaches (KubeFed
and Virtual Kubelet) emerged. On one side KubeFed brings with it all the pros

32

Related work

of being the official solution, although scalability might become an issue. On the
other hand Virtual Kubelet based solution demonstrate to be more flexible even
though they bring more complexities. Of all the solutions, only Liqo takes care of
inter-cluster networking and this appears as an important upside in a geographically
distributed scenario.

At the edge, devices are not always accessible and this makes upgrading and
management an issue. The solutions analysed takes care of different aspects of the
problem. EVE-OS seems the most promising one, even though not yet mature.
StarlingX packages a lot of features and it also seems hungry of resources, this
makes it not suitable for the scenario where devices might be not powerful enough.
Rancher Fleet, even though not oriented to device orchestration, aims at managing
a high number of cluster taking care of updates and selective deployments, very
important features that allow for a centralized configuration while keeping sites
independent, using the same concept as in project EVE.

33

Chapter 4

Orchestrated architecture
for the power grid

4.1 Service and infrastructure resiliency
In a scenario where centralized computations migrate to the edge, the complexity
of a geographically distributed infrastructure comes into play. The infrastructure
may be comprised of heterogeneous hardware and possibly physically insecure sites.
Moreover the number of sites can easily grow and this needs a scalable solution
that gives the possibility to join new sites to the group as seamlessly as possible.

Running workloads at the edge brings in availability problems that were already
solved in a centralized architecture. For example in a cloud environment, if a
physical server has some failures the applications and VMs that were running
on that server will be re-instantiated in another server and it is even possible
that customers will not even notice the incident due to already running replicas.
At the edge resources are not as abundant as in cloud environment and network
partitioning events that isolates one or more sites are a possibility that must be
taken into account. Therefore each site needs to withstand network partitioning
and isolation from the cloud and clearly a fully centralized control plane cannot be
the solution. Kubernetes can be of great help in orchestrating workloads and is
considered as foundation of the architecture presented in this chapter. However
k8s alone cannot be the solution, as will be showed in this section, and in the next
chapter the implementation problems will also be taken into account.

4.1.1 Geographically distributed clusters
Table 4.1 shows the number of primary and secondary stations across the years
reported in the Development plan 2020-2022 of e-distribuzione [39], a company

34

Orchestrated architecture for the power grid

inside the Enel group operating in the electrical distribution sector. The plan
presents an increasing number of stations (secondary and primaries) in their
distribution grid during the last ten years. As reported in the table, hundreds of
thousands of peripheral sites are involved, and each of them should be independent
from a centralized control, since they should be able to go on working even if they
are isolated. Having a unique big cluster is certainly not the right choice. Therefore,
it might be possible to split the distribution grid into areas following the energy
grid hierarchy. In order to minimize the impact of network partitioning, each area
cannot be managed as a unique cluster, but each site of the area will be a cluster.

Site
Year 2011 2012 2013 2014 2015 2016 2017 2018 2019

Primary stations 2.134 2.144 2.159 2.168 2.188 2.195 2.199 2.203 2.200
Secondary stations 432.074 436.204 438.359 439.558 441.056 442.418 443.774 445.159 446.410

Table 4.1: Number of primary and secondary station over years 2011-2019 [39].

Having a cluster per site strongly makes each site autonomous, since each of
them has a control plane guaranteeing that all the deployed services will stay up,
going on performing their computation even if isolated from the rest of the grid.
Each cluster should also be resilient to internal failures, withstand node failures,
control plane failures, storage failures. It is expected a sufficient number of nodes
and replicas of services and data to guarantee that the services will be kept running
even in case of the previously cited failures.

Managing such a high number of clusters is not a trivial and multi-cluster
approaches, originally designed for multi-cloud clusters, might not be the best
choice. Even though a centralized control plane is not convenient, the services to
be deployed are known a priori, since they depend on the kind of site and area.
Scheduling of services inside clusters is in charge of its local control plane. However,
since the services to be deployed and configurations are known a priori, they can be
retrieved from a single source of truth in cloud, via a push or pull fashion (fig 4.1).

4.1.2 Services
The services considered are PMUs and PDCs:

• PMUs (Phasor Measurement Unit) require physical hardware and, being
measurements units (data producers), their location is bounded. Therefore
their placement is considered fixed and might be in each site (Secondary and
Primary stations as well as production sites).

• PDCs (Phasor Data Concentrator) are services that can act both as data
producer and consumer. They are defined in IEEE C37.247 as a set of functions

35

Orchestrated architecture for the power grid

Configuration

source

Area A

Primary station Secondary station Production site

Kubernetes
cluster

Kubernetes
cluster

Kubernetes
cluster

Area B

Primary station Secondary station Production site

Kubernetes
cluster

Kubernetes
cluster

Kubernetes
cluster

Figure 4.1: Distributed clusters with single source of truth for configuration

that produce an order output of the syncrophasors collected by the PMUs.
Each instance can be connected to several PMUs to collect data and can
produce one or more output that can be used by other applications or PDCs
as input. Being software services with no special hardware needs, they can
then be placed anywhere they are needed.

Since services are to be deployed in separate clusters, some of them, data
producers, are going to be exposed to the external network in order to be reachable
from services in other sites. In the case considered, PDCs are the components to
be exposed since they elaborate the data produced by PMUs so that can be used
by consumers.

4.1.3 Data resiliency
Data resiliency is a key requirement for delivering resilient monitoring and comput-
ing services that work with real time data. Historical data persistence is obviously
critical for performing data analysis for statistical meaning or post incident analysis.
What is needed then are mechanism to perform regular backups of disks or volumes
and replication of data in order to withstand hardware and network failure.
A first level of data resiliency should be achieved at cluster level, so that data are
not tied to a single node but rather replicated across different nodes. Another level
of data resiliency should be achieved at bigger scope, performing regular backup,
and possibly incremental, and pushing them to the cloud so that can data can be
accessed by analysts.

36

Orchestrated architecture for the power grid

PDC

PDC PDC

PMU PMU PMU PMU

IEEE C37.118

Second level - Higher level

First level - Lower level

Figure 4.2

4.2 Data flow and communication resiliency
The introduction of renewable energy and new kind of loads, such as electric
vehicles, make the power system a dynamic environment. [5] Its orchestration
can be facilitated via smart grids, allowing the integration of the efforts of the
main actors of the power system (generators, carriers and consumers) [40]. This
is translated in the need of increasing the observability of the power system [5],
which can be achieved via a huge network of sensors, interacting among them and
with the infrastructure in order to provide information about physical world. This
data can be later stored, processed, analysed in order to control the behaviour of
the grid through intelligent actuators [41] or for offline analysis [42]. It is clear that
smart grid networks should manage a great amount of data, delivered over different
physical media, coming from many different types of devices, some of them with
limited computational power, and with different requirements in terms of QoS [41].

4.2.1 Reducing distances with the Point of Presence
Some applications, especially the ones related to the control and stability of the
power system, have strict requirements in terms of data delivery latency [42].
Reducing the distance between the interacting parts could be a way for reducing
latencies. Differently from the transmission systems, where the network follows the
power grid topology, is private, owned and self-managed by the transmission grid
operator, this is not always true with the distribution system, where the electrical
companies might need to rely on telecommunication providers. This means that, it
is likely that the sites of the distribution system are not directly connected through

37

Orchestrated architecture for the power grid

dedicated links, but reaching a site from another requires a transit in the network
of the telecommunication provider.

Secondary substation

Primary sustation

Area control center

ISP network

PMU

PDC

HIgh level
PDC

1

2 3

4

State
estimator

Figure 4.3: Data enters and exits from the power provider network four times

Knowing the path of traffic is extremely important for optimizing it and reducing
latency. For example, let’s imagine having a set of PMUs producing data and
sending it to the PDC located in the closest primary station. The output stream is
then sent to the state estimator inside the area control center. Looking at figure 4.3
and following the traffic, it might be clear how the exchanged data has to enter and
exit from the power provider network to the ISP network and vice versa multiple
times:

1. PMU data exits the electricity provider network and enters the ISP network.

2. From the ISP network, it is routed again to the power provider network in
order to be delivered to the PDC.

3. The output stream of the PDC needs to go back to the ISP network.

4. Finally, the stream reaches the state estimator entering into the electricity
provider network for the second time.

This configuration is clearly not convenient since we are, at least, doubling the
round-trip time. We would like to have a geographical area, in the middle between

38

Orchestrated architecture for the power grid

all these services allowing to terminate the traffic before, without entering and
exiting the electricity provider network. A Point Of Presence might be the perfect
place where to locate the critical services: it stays in the ISP network and there is
a great number of PoPs spread in a geographical area. Therefore, it would be the
closest hop from any site of a distribution system area.

At this point it might be possible to consider a lower level PDC for each site
of the power grid, collecting the data of the local PMUs. Their output stream, is
then sent to the higher level PDC, located inside the ISP, where the ouput can be
sent as input of the local state estimator or other applications performing data
processing or storage of historical data. Figure 4.4 shows the resulting topology. In
this case the output stream of the PDC exists from the private network of the site,
reaching the Point of Presence where the PDC and the local estimator are placed.
This allows to reduce the path followed by the traffic, and consequently even the
transmission latency of the data. That is why we decided to physically move the
services of the area control center to the PoP.

Secondary substation

Primary substation

1 1

Point of Presence

State
estimator

High level
PDC

PMUPMU PDC PDC PMUPMU

Figure 4.4: Data exits a single time from the electricity provider network reaching
the PoP

It is important to notice that even though the ICT network of the distribution
system might use the telecommunication provider network, the traffic of the
distribution system flows on top of an overlay network managed by the ISP or
by the power distribution operator, so that clusters, services and machines of the
electricity provider cannot be reached through the Internet.

4.2.2 A data-centric architecture
A smart grid might be seen as a huge distributed system, with devices and applica-
tions of different natures, producing, consuming, processing data and interacting in
order to provide a coherent service, which is a resilient power grid. In this context a
point-to-point interaction represents a too rigid approach, applications are difficult

39

Orchestrated architecture for the power grid

to be written, the interactions between the components is fixed and introducing
new components or changing the existing ones could represent a problem [43]. The
main idea would be having a data-centric architecture, where the actors don’t need
to know who is in charge of producing some data, where it should retrieved and
who is consuming it. This can be achieved via the publish-subscribe paradigm,
where producers and consumers need only to know how to reach an intermediary
broker, and contacting it in order to consume or produce data. The data should
be accessible from any point of the grid without creating any dedicated channel.

Area 1

Secondary substation

Broker

PoP

Area controlBroker
High level PDC

State estimator

Cloud

sensorsensor

sensorPMU PDC

Primary substation

Broker

sensorsensor

sensorPMU PDC

Area 2

Secondary substation

Broker

PoP

Area controlBroker
High level PDC

State estimator

sensorsensor

sensorPMU PDC

Primary substation

Broker

sensorsensor

sensorPMU PDC

Figure 4.5: Distribution system as a data-centric architecture

A solution might be having a cluster of brokers for each area of the distribution
system. Brokers should be replicated for multiple reasons:

• Scalability: due to the great amount of expected traffic, a single instance of
the broker would not be enough;

• Latency: brokers should be located as close as possible to the data and the
consumers of that data;

• Resiliency: multiple instances of the broker allow to improve the availability
of the service; if any of the broker instances fail, there always will be another
instance able to accept the requests and deliver the data to the subscribers.

Any measure, processed or aggregated data published in a broker inside a
cluster, should be reachable from any broker belonging to the same cluster in

40

Orchestrated architecture for the power grid

a completely transparent way. This enables the services belonging to the same
area, to freely exchange data, and to deploy new applications or data processing
algorithms without changing what already exists. In some cases, different areas
of the distribution system might need to interact, for example, that’s the case of
the inter control center communication between the adjacent areas [42] or other
data useful for offline analysis. Typically this kind of data does not have strict
requirements in terms of latency. The idea is using services aimed to export a
part of the data published in the local cluster of brokers, in some cases performing
some aggregation or local processing, in order to reduce the dimension. Finally this
data is sent to the cloud. From here, it is possible to perform further processing
or aggregation, data can be stored, given to wide-area controllers, or delivered to
other areas of the distribution system or to any other component of the power grid
which might require it.

PMUPMU

Broker -1

Primary substation

PDC-2

...
Point of Presence

PMUPMU

Broker-2

Secondary substation

PDC-1

State
estimator

PDC-2 out
stream

Subscribe PDC-2

2 1

3 4

Figure 4.6: Unoptimized traffic caused by subscription to a wrong broker instance

Another aspect to take into consideration is how the load is balanced over the
different instances of the brokers located over the area. We would like to be able
to connect the client to the closest broker, this has great importance in terms
of optimization of performance. For example, let’s consider the case of a PDC
placed inside a primary substation, this PDC produces the output stream which
is sent to the an instance of the broker located in that primary substation. In
the same location, the state estimator connects to a broker and subscribes to the
output stream of the PDC. However, we are not managing where the clients should
connect, therefore it connects to an instance of a broker in a secondary substation.
Following the path of the data in figure 4.6, the broker located in the secondary
substation should first retrieve the data from the instance of the broker in the
primary substation, where the PDC is sending the data, and then it can forward it
to the state estimator. This shows how selecting the right instance of the broker is

41

Orchestrated architecture for the power grid

crucial when latency matters, otherwise we might have completely unoptimized
paths, with a negative impact on performance.

42

Chapter 5

Implementation

In this chapter a description of specific components and their used configuration
will be provided. In addition it will be stated the reason for such components and
how they have been adapted to be run as container, if necessary.

5.1 Infrastructure

5.1.1 Orchestrator
The Kubernetes distribution chosen for the edge is k3s, as presented in Böhm
and Wirtz [18], it demonstrated performances very close to vanilla Kubernetes
bringing advantages such as setup simplicity and a reduced disk usage footprint.
It is to be noted that new Kubernetes distribution are emerging and k3s, vanilla
Kubernetes and microK8s do not represent the only choices available. The need
for a reliable and easy to setup distribution has been the decisive factors since the
three analysed perform very closely in functionalities and resource need.
K3s has been configured to have master redundancy using the embedded etcd option.
This allowed to have a highly available control plane capable of withstanding a
master node failure due to the takeover of the lead by another one in stand by.
Moreover the default configuration has been changed to reduce the interval between
a node failure detection and the start of new instances of the services deployed in
the failed node. As default, Kubernetes sets this interval to 5 minutes. In our case
it has been considered too long and set to 20 seconds, however it can be further
reduced but keeping in mind that below 10 seconds also other parameters should
be changed and may impact performances. The API server options used are:

• default-not-ready-toleration-seconds set to 20. This configures the
default annotation that is placed in every pod that defines how much time
should be tolerated for a pod to be in node in a NotReady state.

43

Implementation

• default-unreachable-toleration-seconds set to 20. As the previous one
sets the interval tolerated for a pod to be in a node in a Unreachable state.

Experimental results will be shown in the next chapter but it is to be noted that
in Kubernetes a node goes into the NotReady state after 40 seconds of being
unreachable or, better said, at the fourth time that a node’s kubelet is polled and
no response is received. This interval is also configurable and taking also this one
into account brings the restart of pods, in case of node failure, to around a minute
after the failure.

5.1.2 Multi-cluster
To address the multi-cluster management issue, two main approaches have
been considered: a federated multi-cluster architecture based on either Virtual
Kubelets or on KubeFed, a centralized approach with a single source of truth
(Eve-OS, Rancher Fleet).
The first approach gives a single point of management for multiple clusters and a
two-level control plane, one at host/higher cluster level and one at member/lower
cluster level. A single point for managing the cluster from the administrative
perspective is needed because of the high number of clusters. A two-level control
plane is somehow necessary if areas are thought as single “big” clusters, the first
level one is needed to provide the administration entry point, the second one to
provide resiliency to each single site. However, the need for a single “big” cluster
per area exists only if an area level scheduling of workload is needed. In the scenario
we are considering, services are latency critical and need to be close to the source
of the data to be analyzed. Moreover, it is not expected to run dynamic workloads
on edge nodes since services may be tied to hardware requirements (connected to
meters, actuators) and they are expected to be long running workloads rather than
single execution jobs. For the previous reason a two-level scheduling has not been
considered crucial to the scenario considered and source of unnecessary complexity
on the management of the infrastructure.
The second approach still presents the single point of management either as git
repository (Rancher Fleet) or as cloud controller (Eve OS). The latter is considered
a very promising solution given its integration with k3s,its security-first design and
the possibility to manage also different parts of the device at low level. However
the framework is still evolving and not fully documented, creating a new controller
would take a considerable effort since at the moment the only example controller is
still lacking of features. Rancher Fleet appears to be a good compromise providing
the advantages of a single source of truth and still being designed to handle
thousands of clusters. Clusters can be then grouped by area and kind of site (i.e.
primary or secondary station) in order to differentiate the services to be deployed
and the related specifications (configuration, number of replicas).

44

Implementation

Rancher Fleet has been used with the multi cluster configuration: a cluster in
the cloud runs the fleet manager and watches the git repository containing the
configuration while fleet agents, running in peripheral clusters, connect to the fleet
manager to get updates. The configuration considered uses the agent initiated
cluster registration, meaning that the peripheral cluster will poll the central fleet
manager allowing to traverse NATs in case peripheral clusters are in a LAN and not
directly exposed to the public internet. The scenario considered only one region,
divided in several area, although it would be possible to extend the pattern to
several regions too. Each cluster is given the appropriate labels to identify the
region, area and kind of site, so that rancher Fleet can be configured to push only
the configuration for the selected cluster. For example, it is known that every
secondary station will have a PDC, so every cluster matching the label site:
secondary-station will be selected to deploy a PDC. The configuration can be
set selecting configmap and secrets based on region and area. This approach is
however limited due to possible configuration issues, in fact configmap and secret
should be specifically defined for each cluster since configuration might be not
only area specific but also cluster specific. While rancher fleet itself does scale
up to 1 Million of clusters [38], it is obvious that this approach has issues since
configuration should be declared manually and one file per cluster could pollute the
repository. A possible approach would be to have a separate centralized repository
that clusters use to pull their specific configuration dynamically and periodically

5.2 Services
The main components are OpenPDC, PMUsim and MySQL.

• OpenPDC is an open source implementation of the IEEE C37.247-2019 stan-
dard which describes the specifications for PDC functions. It is written in C#
and developed by the Grid Protection Alliance.

• PMUsim is an open source PMU simulator written in C that provides a GUI
to configure the parameters for the output to be produced

• MySQL is a well known DBMS, in this case it is needed since OpenPDC can
store its configuration in DBs. The lightweight option is sqlite, however, being
file based, it would not allow for remote configuration. This reason forced to
go the DBMS way and MySQL has been chosen.

5.2.1 OpenPDC
OpenPDC is a software written in C# but, despite the language ability to produce
cross platform binaries, its main target is the Windows OS. Some versions are also

45

Implementation

POSIX compatible and for this work, version 2.4 has been built to be run on Linux
systems using mono and inside docker containers.
The database used by OpenPDC to get its configuration needs an initial setup. In
non-cloud environment this would be carried out by a system administrator using
the Configuration Setup Utility provided by the Windows installation. However
in a cloud environment this phase should be automated and for this reason an
init container has been built. The openpdc-init container takes care of initialize
the proper user and tables in the MySQL database and parameters can be set at
container startup using environment variables. The configuration of OpenPDC
regarding database connection, node id and exposed ports is done via an XML file
that the application reads at startup and creates a default one if none is present.
This configuration is carried out by a shell script that expects environment variables
to be set and use them to generate a configuration file from a template.

Configuring the PDC connection to PMUs cannot be done declaratively as done
with the database. In fact the OpenPDC manager helper application gives this
possibility through a user interface although available only on Windows systems.
As a consequence, while the PDC application can be started automatically, the
PDC still have to be configured remotely using the Manager and ssh to tunnel
the traffic to the remote instance since the application connects to localhost by
default. An important advantage given by the openPDC Manager is the possibility
to visualize real time graphs of the measurements received by the PMUs connected
and even replay historical data, if connected to an historian.

5.2.2 PMUsim
PMUsim is an open-source, C-based, IEEE C37.118-complaint PMU simulator tool,
allowing to generate random synchrophasors. It comes with the iPDC set of tools
and it provides a graphical interface useful for the PMU configuration. Unfortu-
nately, even though the GUI makes configuration easier when users directly interact
with the tool, this is not true in a cloud environment. However, PMUsim allows to
store a configuration in a binary file so that it is be possible to reload the same
configuration once the application is restarted, or to have multiple configurations
that can be loaded when needed. The idea was performing some modifications to
the application source code, in order to be able to load a configuration file, at the
application startup, without interacting with GUI.

When the PMUsim application starts, the main process forks, and the newly
created process starts the PMU-server, the component in charge of connecting to
the PDC and generating the random synchrophasors. The role of the main process,
instead, is the one of drawing the GUI and interacting with the PMU-server process,
via signals, in order to apply the configurations performed by the user via the
GUI. We stripped off the GUI from the main process and we added a parameter

46

Implementation

./PMU

load conf.bin
PMUsim

PMU-server
start with "conf"

./PMU conf.bin

PMU-server
start with "conf"

Main processload conf.bin

Figure 5.1: Loading of a configuration file before and after the GUI removal

to the main function, containing the path of the configuration file to be loaded at
application startup. When the application starts, it reads the configuration file
passed as parameter, parses it and sends a signal to the server process, in order to
inform it that a new configuration is ready to be loaded. At this point the server
can apply the configuration provided by the user inside the file. This makes really
simple executing the application inside a container, since no graphical interaction
with the application is needed, but only mounting to the container the desired
configuration file.

5.2.3 MySQL

MySQL is a well known open source Database Management System developed,
distributed, and supported by Oracle Corporation. In this case it has not been used
to store data (measurements), instead as said previously it is needed by OpenPDC
software to read and store its configuration.A lightwheight option would have
been sqlite, however being file based makes remote connection, and therefore PDC
configuration, difficult to automate.
In our scenario an instance of MySQL database is run in every cluster so that PDCs
can easily reach their configuration. In the broader scenario a database cluster can
be setup, where a master replica is run in the cloud and on each peripheral site
runs a slave and read-only replica. Again the single source of truth is used, since
the master replica is the only one with writing privileges and the data is replicated
to the edge as soon as a connection to the cloud is available.
An important remark is that the database in this case has only be deployed because
of this peculiar PDC implementation and the storage of the data gathered by the
monitoring infrastructure is taken in consideration with the use of MQTT brokers.
The approach presented appears to be still valid for cases similar to this where
data at the edge should only be read.

47

Implementation

5.2.4 Longhorn for resilient data persistency
Persistence in Kubernetes is managed through built-in abstractions such as Persis-
tentVolumes and PersistentVolumeClaims, however the default driver provides only
basic features and does not take into account data replication. To overcome this
limitation, CSIs are available as plug-in, in this case the CNI Longhorn offered what
was needed in our scenario: data replication, ability to perform regular backups
and a very simple and straightforward setup process. A StorageClass has been
defined to define the policies to be applied to persistence data such as number of
replicas and scheduled backups. An important option specified in the StorageClass
is defaultDataLocality set to best-effort, it enforces a policy so that Longhorn
tries to keep a replica on the same node as the attached volume.
Moreover, additional configuration have been used to allow a quick instantiation
of services using a persistent volume in case of node failure. Particularly, the
option nodeDownPodDeletionPolicy has been set to delete-both-statefulset-
and-deployment-pod enabling the force deletion of StatefulSets and Deployments
in a failed node, so that the volume can be attached to a new running instance.
The Longhorn CNI is not the only one that offers these functionalities, however
being already compatible with k3s and having a simple configuration showed to be
a good match for the use case presented.

5.3 Demo
A short demo have been set up to show the lifecycle of application ported in
Kubernetes and to understand its behavior in case of the previously cited failure.
A cluster of 4 nodes has been set up with 3 masters in high availability mode and
the fourth node set up as worker. This kind of configuration has been chosen to
show the behavior of the orchestrator in its high availability configuration as well
as the additional overhead introduced by it, the worker has been introduced to
show its lower resource usage and the possible different behaviour, with respect to
master nodes, in case of failures.

In the demo, two PDCs have been deployed (1st and 2nd level), 3 PMU simulators
and a MySQL instance used by the two PDCs. The simulated faults are:

• stateless service failure: a stateless service (pdc/pmu) fails, the orchestrator
restart it or creates a new instance of the service.

• stateful service failure: a stateful service (MySQL) fails, the orchestrator
restart or creates a new instance attaching it to the same persistent volume
and thus preserving data.

• worker node failure: a worker node is isolated from the rest of the cluster, the

48

Implementation

control plane notice that and reinstantiate the services on another healthy
node.

• master node failure: a master node is isolated from the rest of the cluster,
another master node is elected as leader and services on the isolated node are
reinstantiated on other healthy nodes.

This setup has then been used as basic module to provide multi cluster deploy-
ment using Rancher Fleet, selecting deployments on label basis. For example PMUs
and low level PDC deployed only on secondary-station labelled clusters, high level
PDC only on primary-station labelled clusters. The use of Rancher Fleet allowed
to seamlessly update the deployments with the only action of pushing new files to
a git repository, with the possibility to specify the rollout strategy.

49

Chapter 6

Results

In this chapter an evaluation of the proposed implementation will be presented. In
the next section an overview of the evaluation method will be given and then a
section will be dedicated to each group of analyzed results. Particularly, resource
consumption (CPU, memory and disk usage) and reaction times in case of the
considered faults have been evaluated.

6.1 Evaluation method
Since the workloads are intended to run in containerized environments, only linux
based operating systems have been considered. To keep the results consistent and
to allow to compare them fairly, Ubuntu 20.04 has been used as base OS for every
measurements taken. The architecture considered are x86 and ARM, both 64-bit
and will be referred respectively as x64 and arm64 in the next pages. Further
information are available in table 6.1.

Moreover complex container orchestration tool such as Kubernetes is not just a
thin software: orchestration means constantly talking with the container runtime
backend, keep track of running resources and and either run the control plane or
communicate with it. Therefore understanding the cost of running the workloads
using an orchestrator is a critical part of the evaluation.

CPU and memory consumption metrics have been collected using the sysstat
tool which automatically collect information using linux primitives and using a
cronjob with a default frequency of 10 minutes. Sysstat docs suggests not to set
the interval below 30 seconds, otherwise it might impact performances. Therefore,
instead of the default 10 minutes interval, it has been set to 1 minute. Every test
case have been set up in a close to real environment, i.e. PDCs connected to a
remote PMU producing an output stream.

CPU usage values represent the time in which the CPU is not in idle state and

50

Results

the system did not have an outstanding disk I/O request. The values considered
are the average value of all CPUs for given moment and are presented as box plots
to show the range of values that have the highest frequency and distinguish them
from outliers. Memory usage values simply represent the non-free memory at a
given time.

Every test case have been carried out for at least 4 hours since the applications
demonstrated to have a consistent behaviour over time and in order to collect
enough data to perform a basic statistical analysis identifying significant average
values and outliers.

Disk usage values have been taken considering the size of images in case of
docker containers whereas, in case of installation as plain linux applications the
size of the dependencies needed and the size of the software has been considered.

Reaction times tests have been carried out using helper bash scripts to poll the
system for the events considered and store their timestamp for later analysis. Each
single case will be explained more in depth in the dedicated section.

Architecture x86 (64-bit) arm (64-bit)
Machine VM Raspberry Pi 4B
linux kernel 5.4.0-48-generic 5.4.0-1042-raspi
CPU model Intel Xeon (Cascadelake) Cortex-A72
CPU cores 4 4
CPU frequency 2.2 GHz 1.5 GHz
Memory size 8 GB 4/8 GB
Disk size 15 GB (SSD) 15 GB (micro SD)
OS Ubuntu 20.04.3 LTS Ubuntu 20.04.3 LTS

Table 6.1: Relevant specifications of the machine used to carry out the tests.

6.2 Containerization overhead
The first step of the evaluation was to collect values about the initial state of the
system, that means cpu and memory consumption of an Ubuntu "vanilla" machine
with no other tool or services installed apart from the ones bundled with the OS.
Another important initial step was to collect measurements on a system running
the docker daemon in order to have reference values to evaluate the consumption
of the containerized version of the applications. Image sizes are reported in tables
6.4 and 6.6 for both x64 and arm64 architectures, base image sizes have been
given for reference in order to highlight the effective size of applications and their
dependencies.

51

Results

Then the applications have been tested both as apps installed on the OS and as
running container. Containers have been deployed individually, as first step, and
then in two different deployments that should reflect possible situations:

• Normal deployment, which is comprised of an instance of MySQL, a PMUsim
and a PDC instance.

• Whole deployment, which represents the whole demonstration: a MySQL
instance, 3 PMUsim and 2 PDCs instances (1st and 2nd level).

Table 6.2: Image sizes (ubuntu and alpine given for reference as bae image), base
image in parenthesis.

Table 6.3

container total size
ubuntu 72.7 MB
alpine 5.61 MB
mysql 556 MB
openpdc-init (alpine) 40.2 MB
openpdc (ubuntu) 633 MB
openpdc (alpine) 408 MB
pmu 264 MB

Table 6.4: Image sizes for x64

Table 6.5

container total size
ubuntu 65.6 MB
alpine 5.34 MB
mysql 497 MB
openpdc-init (alpine) 40.2 MB
openpdc (ubuntu) 595 MB
openpdc (alpine) 406 MB
pmu 251 MB
Table 6.6: Image sizes for arm64

OpenPDC has been containerized in two different images, one using alpine as
base image and the other using ubuntu. This has been done since performance
issues arose depending on architecture and base image. In figures 6.1 and 6.2
CPU and memory usage is shown, particularly CPU shows an additional usage on
alpine x64 and for ubuntu based images on arm64. For this reason in the following
environments, the alpine image has been used for arm64 and the ubuntu image for
x64.

In figures 6.3 and 6.4 a comparison of apps installed as standard applications with
their containerized version is given. The CPU overhead given by the containerized
environment is negligible in case of x64 and arm64 (apart from the case of the pdc
implementation), whereas highlights and additional 5̃3 MB memory usage in case
of x64 and 4̃0 MB in case of arm64. More in depth data about deltas with respect
to vanilla apps are shown in table 6.7.

52

Results

linux vanilla pdc pdc
(alpine)

pdc
(ubuntu)

0

10

20

30

40

CP
U

co
ns

um
pt

io
n

[%
]

CPU usage comparison for OpenPDC on x64

(a)

linux vanilla pdc pdc
(alpine)

pdc
(ubuntu)

0.10

0.15

0.20

0.25

0.30

M
em

or
y

co
ns

um
pt

io
n

[G
B]

Memory usage comparison for OpenPDC on x64

(b)

Figure 6.1: Comparison pdc containerized versions (x64).

linux vanilla pdc pdc
(alpine)

pdc
(ubuntu)

0

5

10

15

20

25

30

35

40

CP
U

co
ns

um
pt

io
n

[%
]

CPU usage comparison for OpenPDC on arm64

(a)

linux vanilla pdc pdc
(alpine)

pdc
(ubuntu)

0.15

0.20

0.25

0.30

0.35

0.40

0.45
M

em
or

y
co

ns
um

pt
io

n
[G

B]
Memory usage comparison for OpenPDC on arm64

(b)

Figure 6.2: Comparison of pdc containerized versions (arm64).

Application arch ∆ CPU ∆ Memory

openpdc (ubuntu) x64 0.29 % 49 MB
arm64 0.11 % 17 MB

openpdc (alpine) x64 25.36 % 15 MB
arm64 -8.64 % 15 MB

pmu x64 0.07 % 35 MB
arm64 -1.34 % 35 MB

mysql x64 0.12 % 52 MB
arm64 0.47 % 40 MB

Table 6.7: Resource usage deltas with respect to apps regularly installed in the
OS.

53

Results

linux vanilla pdc pdc

(ubuntu) pmu

pmu (co
ntainer)

mysql

mysql (co
ntainer)

0

2

4

6

8

10

12

CP
U

co
ns

um
pt

io
n

[%
]

CPU usage apps vs containerized apps on x64

(a)

linux vanilla pdc pdc

(ubuntu) pmu

pmu (co
ntainer)

mysql

mysql (co
ntainer)

0.1

0.2

0.3

0.4

0.5

M
em

or
y

co
ns

um
pt

io
n

[G
B]

Memory usage apps vs containerized apps on x64

(b)

Figure 6.3: Comparison of apps against their containerized versions (x64).

linux vanilla pdc pdc

(alpine) pmu

pmu (co
ntainer)

mysql

mysql (co
ntainer)

0

10

20

30

40

CP
U

co
ns

um
pt

io
n

[%
]

CPU usage apps vs containerized apps on arm64

(a)

linux vanilla pdc pdc

(alpine) pmu

pmu (co
ntainer)

mysql

mysql (co
ntainer)

0.2

0.3

0.4

0.5

0.6

M
em

or
y

co
ns

um
pt

io
n

[G
B]

Memory usage apps vs containerized apps on arm64

(b)

Figure 6.4: Comparison of apps against their containerized versions (arm64).

54

Results

linux vanilla

linux + docke
r

mysql (co
ntainer) pdc

(ubuntu)

pmu (co
ntainer)

normal deployment

whole deployment
0

2

4

6

8

10

12

CP
U

co
ns

um
pt

io
n

[%
]

CPU impact of containerized apps on x64

(a)

linux vanilla

linux + docke
r

mysql (co
ntainer) pdc

(ubuntu)

pmu (co
ntainer)

normal deployment

whole deployment

0.25

0.50

0.75

1.00

1.25

1.50

M
em

or
y

co
ns

um
pt

io
n

[G
B]

Memory impact of containerized apps on x64

(b)

Figure 6.5: Resource usage of containerized apps, singularly and as a group (x64).

linux vanilla

linux + docke
r

mysql (co
ntainer) pdc

(alpine)

pmu (co
ntainer)

normal deployment

whole deployment
0

10

20

30

40

CP
U

co
ns

um
pt

io
n

[%
]

CPU impact of containerized apps on arm64

(a)

linux vanilla

linux + docke
r

mysql (co
ntainer) pdc

(alpine)

pmu (co
ntainer)

normal deployment

whole deployment

0.5

1.0

1.5

M
em

or
y

co
ns

um
pt

io
n

[G
B]

Memory impact of containerized apps on arm64

(b)

Figure 6.6: Resource usage of containerized apps, singularly and as a group
(arm64).

55

Results

6.3 Orchestration overhead
Kubernetes’ impact on computational resources have been studied in case of master
and worker nodes and then with the installation of the Longhorn CSI. As specified
in the implementation, k3s has been used as Kubernetes distribution and it have
been used during these test cases. In the first case, a k3s cluster of a master and
a worker have been setup without any workload. In the second case Longhorn
have been installed, again without additional workloads. An important note is that
Longhorn runs a set of services that in case of a 2 nodes cluster results in a higher
load than one experienced in a 3+ nodes cluster, since not all of them are per-node.

In table 6.8 a numerical comparison shows the deltas of the different setups.
The deltas shown represents the differences between the mean values in the setup
considered and a VM running only the Ubuntu OS. As expected master nodes
result in a higher cpu and memory footprint, the use of Longhorn CSI further
increases the footprint that becomes particularly significant in master nodes on
arm devices (11 % of CPU and 910 MB of memory).

k3s master k3s worker k3s master
+ longhorn

k3s worker
+ longhorn

0

1

2

3

4

5

6

7

8

CP
U

co
ns

um
pt

io
n

[%
]

k3s CPU usage on x64

(a)

k3s master k3s worker k3s master
+ longhorn

k3s worker
+ longhorn

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
em

or
y

co
ns

um
pt

io
n

[G
B]

k3s memory usage on x64

(b)

Figure 6.7: k3s resource usage in mater, worker configuration with/without
longhorn (x64).

A general evaluation of the demo presented in section 5.3 is shown in figures 6.9
and 6.10. Resource usage clearly shows a higher usage in master nodes, system
pods were distributed across all nodes both the ones related to Longhorn and
to Kubernetes system. An important notice is that the node running the low
level PDC, shows the highest CPU usage in both architectures and this result
in a particularly high usage on the Raspberry Pi deployments. However, since
the number of services deployed is relatively low and also the resource usage, the
control plane first seems to take into account the number of pods running on each
node and tries to even that, this is shown in tables 6.9 and 6.10.

56

Results

k3s master k3s worker k3s master
+ longhorn

k3s worker
+ longhorn

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
CP

U
co

ns
um

pt
io

n
[%

]
k3s CPU usage on arm64

(a)

k3s master k3s worker k3s master
+ longhorn

k3s worker
+ longhorn

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

M
em

or
y

co
ns

um
pt

io
n

[G
B]

k3s memory usage on arm64

(b)

Figure 6.8: k3s resource usage in master, worker configuration with/without
longhorn (arm64).

Setup arch ∆ CPU ∆ Memory

k3s master x64 4.84 % 330 MB
arm64 6.33 % 641 MB

k3s worker x64 1.63 % 84 MB
arm64 1.93 % 154 MB

k3s master + Longhorn x64 6.5 % 470 MB
arm64 11.47 % 910 MB

k3s worker + Longhorn x64 3.2 % 200 MB
arm64 8.11 % 383 MB

Table 6.8: Resource usage deltas with respect to Ubuntu vanilla VMs.

master
node 1

master
node 2

master
node 3

worker
node

5

10

15

20

25

CP
U

co
ns

um
pt

io
n

[%
]

Demo deployment - CPU on x64

(a)

master
node 1

master
node 2

master
node 3

worker
node

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

M
em

or
y

co
ns

um
pt

io
n

[G
B]

Demo deployment - memory on x64

(b)

Figure 6.9: Resource usage of a demo deployed in a 4 node cluster (x64).

57

Results

master
node 1

master
node 2

master
node 3

worker
node

20

40

60

80

100

CP
U

co
ns

um
pt

io
n

[%
]

Demo deployment - CPU on arm64

(a)

master
node 1

master
node 2

master
node 3

worker
node

1.4

1.6

1.8

2.0

2.2

2.4

M
em

or
y

co
ns

um
pt

io
n

[G
B]

Demo deployment - memory on arm64

(b)

Figure 6.10: Resource usage of a demo deployed in a 4 node cluster (arm64).

Node running pods demo pods system pods
node 1 (master) 12 2 10
node 2 (master) 12 2 10
node 3 (master) 13 1 12
node 4 (worker) 12 1 11

Table 6.9: Number of pods running on each node (x64).

Node running pods demo pods system pods
node 1 (master) 12 2 10
node 2 (master) 12 1 11
node 3 (master) 13 2 11
node 4 (worker) 12 1 11

Table 6.10: Number of pods running on each node (arm64).

58

Results

6.4 Orchestrator reaction times
Measuring the reaction times of the orchestration is not an easy task. The objectives
were to determine an average reaction time in two specific cases:

1. Container restart after its failure.

2. New Pod instantiation in a healthy node after a node either fails or becomes
unreachable.

For the first case, a Pod running an nginx has been setup and, to simulate the
crash, a bash script that killed the nginx process has been set to run automatically
after 15 seconds the container start. From outside the cluster another bash script
have been written to open a tcp connection to the webserver’s port on a busy loop,
whenever a change in status (up/down) was detected it was saved in log file along
with the timestamp. However Kubernetes has a CrashLoopBackoff status that is
activate whenever a container continuously fails, this status enables an exponential
backoff timeout, capped at 5 minutes. The Kubelet will wait the timeout before
restarting the container again, if it fails the timeout continues to grow.

restart time
1.0

1.2

1.4

1.6

1.8

2.0

2.2

se
c

Kubernetes container restart time

(a)

0
0

2

4

6

8

10

12

14

16

re
st

ar
t i

nt
er

va
l [

se
c]

Nginx container restart time in case of failure

(b)

Figure 6.11: 6.11a Restart time interval before activation of the backoff.
6.11b restart time with backoff.

For the second case two bash scripts have been used. One defined the firewall
rules (iptables) rules in the node (VM) that was going to be isolated from the
others, printing also the timestamp of the event. The second was run in another
node to repeatedly contact the Kubernetes api, checking the status of the node
to register when the failure was detected and checking the pods to register the
new instances of the pods in the isolated node were instantiated. In 6.12 the
three critical reaction intervals are shown: interval for a node to get into the

59

Results

NotReady/Unreachable status, interval for the creation of new pods in place of
the ones running in the failed node, the total interval. While the first might seem
irrelevant at first sight, it is directly related to the second one, since pods are
re-created only if a node is in the NotReady or Unreachable status for the specified
amount of time. Thus an evaluation of the former was necessary to effectively
evaluate the whole reaction time of the orchestrator in the case considered.

not ready interval recreation interval sum

30

40

50

60

70

se
c

Kubernetes reaction times to node fault

Figure 6.12

6.5 Further analysis
An additional view is now presented to evaluate the overall costs of virtualization
and orchestration. As show in section 6.2 the overhead caused by containerization
is in line with the expectations, below 1 % for CPU (apart from some edge cases)
usage and between 20 and 50 MB depending on the application. This shows that
lightweight virtualization can bring several advantages with low computational
overhead.

In section 6.3 the computational cost is shown, however to actually evaluate
it a further analysis is needed. In both the hardware setups evaluated CPUs
had 4 cores, even though the x86 (64-bit) still outperforms the arm64 due to its
high end range (Intel Xeon) and optimizations that are currently available on
x86 machines. Moreover the use of arm64 is not intended to show the differences
between architectures but rather for showing the differences between a general
purpose server or VM and a low end device such as a Raspberry Pi 4. That said
the overhead given can be evaluated in terms of vCPU to define how much the
orchestrator makes use of resources and whether its cost is so significant with
respect to applications deployed. Given the fact that each setup used 4 core CPUs
and the value representing the CPU usage is the mean of the usage on each of the
4 cores at given time, we can translate this data in number of vCPU used by doing:

60

Results

vCPUusage = ∆CPU × Ncpucores = ∆CPU × 4

The result is given in table 6.11. In every case considered the vCPUs needed is
well below 1. In case of master node, and particularly with the use of Longhorn,
the vCPUs needed is not negligible and thus a cluster should be designed according
to these constraints (i.e. more powerful nodes dedicated to masters or a number of
workers adequate to the workload foreseen). In case of worker nodes, the overhead
is very low but again, when using longhorn an additional resource usage comes into
play and this could be a bottleneck especially on Raspberry Pi 4 devices where the
usage appears to be still important.

Setup arch vCPUs ∆ Memory

k3s master x64 0.19 330 MB
arm64 0.25 641 MB

k3s worker x64 0.06 84 MB
arm64 0.07 154 MB

k3s master + Longhorn x64 0.25 470 MB
arm64 0.45 910 MB

k3s worker + Longhorn x64 0.12 200 MB
arm64 0.32 383 MB

Table 6.11

61

Chapter 7

Conclusions and future
work

The work of this thesis analysed several possible approaches to the orchestration
of geographically distributed services and to deliver the resiliency needed in the
industry specific scenario. The definition of Kubernetes clusters on a one per site
fashion still seems to be the best choice, due to the inherent resiliency provided
by local master nodes. The use of Liqo to share critical resources, such as MQTT
brokers, that have to be reachable from sites belonging to the same area allows
for seamless communication inside an area. This simplifies the infrastructure
management and setup, an important upside with the considered number of sites.
The real management of geographically distributed clusters is carried out by Rancher
Fleet that proves to be a valuable component of the architecture, allowing to join
new clusters and classify them with labels and groups so that services can be
declared based on the sites feature and location, instead of declaring services per
each site. This cannot be said for the configuration too, since at the moment each
cluster is expected to receive its own specific configuration (ConfigMaps, Secrets)
and this still needs them to be defined per-site.

The demo produced focused on single cluster resiliency but still carried out
preliminary experimental porting of application to Kubernetes in order to both
prove that could be ported and that lightweight virtualization could fit this scenario
with a limited impact on resource usage. Storage resiliency has been taken into
account and considered critical part of the architecture. The evaluation focused on
the overhead brought by lightweight virtualization and especially by the orchestrator,
as well as storage resiliency and the time taken by Kubernetes to react to simulated
faults. The results brought up relevant information necessary to design edge clusters
both in hardware resources and number of nodes. The analysis on reaction times
gives a general view of the behavior of Kubernetes and highlights where the tuning

62

Conclusions and future work

should be carried out in order to improve the reactions in case of faults.

7.1 Future work
This thesis explored different possibilities for dealing with the problems of the
industry when moving towards edge computing. However it leaves many options
open for future development. Some of the solutions used in the implementation
are not thought for this specific use case and might be adapted in the future to
fully satisfy the needs. In this work, Longhorn CSI has been considered because of
its features and its simplicity, more complex solutions might be more suitable to
this use case and possibly even to the general multi cluster scenario. Liqo has also
this ambition and the feature might come in future releases, however composed
solutions are also possible with the use of CSI such as Rook-CEPH, Minio and
OpenEBS.

The multi cluster management might be carried out and evaluated in different
ways. For example, the pattern of having a centralized repository for configuration
might be brought to next phase when project EVE becomes more mature. The
use of EVE-OS and the development of a custom centralized controller looks like a
natural continuation of this work. Moreover, Liqo can not only be used for resource
sharing between peering clusters, like in our case for the MQTT broker, but also
to schedule dynamic workloads since the central cluster will have the ability to
schedule them in the peered clusters. This could mean that a given workload could
be scheduled, generically speaking, in an area and actually scheduled on clusters
with low loads without having to worry about where the service is nor about its
management.

Another possible continuation could be a work on multi cluster dynamic schedul-
ing, particularly following what has been presented in 3.3.2. An integration could
be developed both with KubeFed as presented in [24] or with Liqo, even though, in
the latter, changes to the framework might be necessary.

All the above mentioned possible paths should then be evaluated in terms of
resource requirements to give an idea to the costs that such additional features
would bring to the systems.

63

Bibliography

[1] R. Bayindir, I. Colak, G. Fulli, and K. Demirtas. «Smart grid technologies
and applications». In: Renewable and Sustainable Energy Reviews 66 (2016),
pp. 499–516. issn: 1364-0321. doi: https://doi.org/10.1016/j.rser.
2016.08.002. url: https://www.sciencedirect.com/science/article/
pii/S1364032116304191 (cit. on pp. 1, 2).

[2] Legambiente. Il clima é giá cambiato. Tech. rep. Nov. 2020 (cit. on pp. 1, 3).
[3] 2020 Tied for Warmest Year on Record, NASA Analysis Shows | NASA.

https://www.nasa.gov/press-release/2020-tied-for-warmest-year-
on-record-nasa-analysis-shows. (Accessed on 09/28/2021) (cit. on p. 2).

[4] Clean energy for all Europeans package | Energy. https://ec.europa.eu/
energy/topics/energy- strategy/clean- energy- all- europeans_en.
(Accessed on 09/28/2021) (cit. on p. 2).

[5] Konstantinos V. Katsaros, Binxu Yang, Wei Koong Chai, and George Pavlou.
«Low latency communication infrastructure for synchrophasor applications in
distribution networks». In: 2014 IEEE International Conference on Smart
Grid Communications (SmartGridComm). Venice, Italy: IEEE, Nov. 2014,
pp. 392–397. isbn: 9781479949342. doi: 10.1109/SmartGridComm.2014.
7007678. url: http://ieeexplore.ieee.org/document/7007678/ (visited
on 08/14/2021) (cit. on pp. 2, 37).

[6] Junwei Cao and Mingbo Yang. «Energy Internet – Towards Smart Grid 2.0».
In: 2013 Fourth International Conference on Networking and Distributed
Computing. 2013, pp. 105–110. doi: 10.1109/ICNDC.2013.10 (cit. on p. 2).

[7] Hossein Shahinzadeh, Jalal Moradi, Gevork B. Gharehpetian, Hamed Nafisi,
and Mehrdad Abedi. «IoT Architecture for Smart Grids». In: 2019 Interna-
tional Conference on Protection and Automation of Power System (IPAPS).
2019, pp. 22–30. doi: 10.1109/IPAPS.2019.8641944 (cit. on pp. 2, 3).

[8] IRENA. Innovation Outlook: Renewable Mini-grids. 2016 (cit. on p. 2).

64

https://doi.org/https://doi.org/10.1016/j.rser.2016.08.002
https://doi.org/https://doi.org/10.1016/j.rser.2016.08.002
https://www.sciencedirect.com/science/article/pii/S1364032116304191
https://www.sciencedirect.com/science/article/pii/S1364032116304191
https://www.nasa.gov/press-release/2020-tied-for-warmest-year-on-record-nasa-analysis-shows
https://www.nasa.gov/press-release/2020-tied-for-warmest-year-on-record-nasa-analysis-shows
https://ec.europa.eu/energy/topics/energy-strategy/clean-energy-all-europeans_en
https://ec.europa.eu/energy/topics/energy-strategy/clean-energy-all-europeans_en
https://doi.org/10.1109/SmartGridComm.2014.7007678
https://doi.org/10.1109/SmartGridComm.2014.7007678
http://ieeexplore.ieee.org/document/7007678/
https://doi.org/10.1109/ICNDC.2013.10
https://doi.org/10.1109/IPAPS.2019.8641944

BIBLIOGRAPHY

[9] Terna. Piano di Sviluppo 2021 (Development plan 2021). https://download.
terna.it/terna/Piano_Sviluppo_2021_8d94126f94dc233.pdf. 2021 (cit.
on p. 3).

[10] Callum MacIver, Keith Bell, and Marcel Nedd. «An analysis of the August
9th 2019 GB transmission system frequency incident». In: Electric Power
Systems Research 199 (2021), p. 107444. issn: 0378-7796. doi: https://doi.
org/10.1016/j.epsr.2021.107444. url: https://www.sciencedirect.
com/science/article/pii/S0378779621004259 (cit. on p. 3).

[11] Wikipedia - Sottostazione Elettrica. url: https://it.wikipedia.org/wiki/
Sottostazione_elettrica (cit. on p. 7).

[12] Terna. Italian National Grid. url: https://www.terna.it/en/about-
us/business/italian-national-grid (cit. on p. 8).

[13] Brendan Burns, Joe Beda, and Kelsey Hightower. Kubernetes Up and Running.
O’Reilly, 2019 (cit. on p. 13).

[14] Kubernetes docs. url: https://kubernetes.io/docs/concepts/ (cit. on
p. 14).

[15] Traefik kubernetes ingress. url: https://doc.traefik.io/traefik/v2.5/
routing/providers/kubernetes-ingress/ (cit. on p. 16).

[16] Flannel CNI. url: https://github.com/flannel-io/cni-plugin (cit. on
p. 16).

[17] k3s. url: https://k3s.io/ (cit. on p. 16).
[18] Sebastian Boehm and Guido Wirtz. «Profiling Lightweight Container Plat-

forms: MicroK8s and K3s in Comparison to Kubernetes». In: Mar. 2021
(cit. on pp. 16, 43).

[19] Tom Goethals, Filip DeTurck, and Bruno Volckaert. «Extending Kubernetes
Clusters to Low-resource Edge Devices using Virtual Kubelets». In: IEEE
Transactions on Cloud Computing (2020), pp. 1–1. doi: 10.1109/TCC.2020.
3033807 (cit. on p. 18).

[20] Mosquitto MQTT Broker. url: https://mosquitto.org/ (cit. on p. 19).
[21] Kube Edge official website. url: https://kubeedge.io/en/docs/kubeedge/

(cit. on p. 20).
[22] KubeFed. url: https://github.com/kubernetes-sigs/kubefed/blob/

master/docs/images/concepts.png (cit. on p. 21).
[23] KubeFed. url: https://github.com/kubernetes-sigs/kubefed (cit. on

p. 22).

65

https://download.terna.it/terna/Piano_Sviluppo_2021_8d94126f94dc233.pdf
https://download.terna.it/terna/Piano_Sviluppo_2021_8d94126f94dc233.pdf
https://doi.org/https://doi.org/10.1016/j.epsr.2021.107444
https://doi.org/https://doi.org/10.1016/j.epsr.2021.107444
https://www.sciencedirect.com/science/article/pii/S0378779621004259
https://www.sciencedirect.com/science/article/pii/S0378779621004259
https://it.wikipedia.org/wiki/Sottostazione_elettrica
https://it.wikipedia.org/wiki/Sottostazione_elettrica
https://www.terna.it/en/about-us/business/italian-national-grid
https://www.terna.it/en/about-us/business/italian-national-grid
https://kubernetes.io/docs/concepts/
https://doc.traefik.io/traefik/v2.5/routing/providers/kubernetes-ingress/
https://doc.traefik.io/traefik/v2.5/routing/providers/kubernetes-ingress/
https://github.com/flannel-io/cni-plugin
https://k3s.io/
https://doi.org/10.1109/TCC.2020.3033807
https://doi.org/10.1109/TCC.2020.3033807
https://mosquitto.org/
https://kubeedge.io/en/docs/kubeedge/
https://github.com/kubernetes-sigs/kubefed/blob/master/docs/images/concepts.png
https://github.com/kubernetes-sigs/kubefed/blob/master/docs/images/concepts.png
https://github.com/kubernetes-sigs/kubefed

BIBLIOGRAPHY

[24] Lars Larsson, Harald Gustafsson, Cristian Klein, and Erik Elmroth. «De-
centralized Kubernetes Federation Control Plane». In: 2020 IEEE/ACM
13th International Conference on Utility and Cloud Computing (UCC). 2020,
pp. 354–359. doi: 10.1109/UCC48980.2020.00056 (cit. on pp. 22, 63).

[25] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. «Conflict-
Free Replicated Data Types». In: Stabilization, Safety, and Security of Dis-
tributed Systems. Ed. by Xavier Défago, Franck Petit, and Vincent Villain.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 386–400. isbn: 978-
3-642-24550-3 (cit. on p. 22).

[26] Riak KV, docs. url: https://riak.com/products/riak-kv/resiliency/
index.html?p=10906.html (cit. on p. 22).

[27] F. Faticanti, D. Santoro, S. Cretti, and D. Siracusa. «An Application of
Kubernetes Cluster Federation in Fog Computing». In: (Mar. 2021) (cit. on
p. 23).

[28] Fog-Atlas. url: https://fogatlas.fbk.eu/ (cit. on p. 23).
[29] Fog-Atlas CRDs. url: https://github.com/fogatlas/crd-client-go

(cit. on p. 23).
[30] Liqo. url: https://github.com/liqotech/liqo (cit. on p. 25).
[31] Liqo Official Documentation. url: https://doc.liqo.io (cit. on p. 25).
[32] Tensile-Kube. url: https://github.com/virtual-kubelet/tensile-kube

(cit. on p. 26).
[33] Edge ReferenceArchitecture. url: https://wiki.openstack.org/wiki/

Edge_Computing_Group/Edge_Reference_Architectures#Distributed_
Control_Plane_Scenario (cit. on p. 28).

[34] TPM - Trusted platform module library. url: https : / / www . iso . org /
standard/66510.html (cit. on p. 29).

[35] Eve OS. url: https://github.com/lf-edge/eve (cit. on p. 30).
[36] Eve OS wiki on LF-EDGE. url: https://wiki.lfedge.org/display/EVE

(cit. on p. 30).
[37] Helm - the package manager for Kubernetes. url: https://helm.sh/ (cit. on

p. 31).
[38] Rancher Fleet. url: https://fleet.rancher.io (cit. on pp. 31, 45).
[39] E-distribuzione. Piano di Sviluppo 2020-2022 (Development plan 2020-2022).

https://www.e- distribuzione.it/content/dam/e- distribuzione/
documenti/e-distribuzione/Piano_di_Sviluppo_2020_22_30giu2020.
pdf. 2020 (cit. on pp. 34, 35).

66

https://doi.org/10.1109/UCC48980.2020.00056
https://riak.com/products/riak-kv/resiliency/index.html?p=10906.html
https://riak.com/products/riak-kv/resiliency/index.html?p=10906.html
https://fogatlas.fbk.eu/
https://github.com/fogatlas/crd-client-go
https://github.com/liqotech/liqo
https://doc.liqo.io
https://github.com/virtual-kubelet/tensile-kube
https://wiki.openstack.org/wiki/Edge_Computing_Group/Edge_Reference_Architectures#Distributed_Control_Plane_Scenario
https://wiki.openstack.org/wiki/Edge_Computing_Group/Edge_Reference_Architectures#Distributed_Control_Plane_Scenario
https://wiki.openstack.org/wiki/Edge_Computing_Group/Edge_Reference_Architectures#Distributed_Control_Plane_Scenario
https://www.iso.org/standard/66510.html
https://www.iso.org/standard/66510.html
https://github.com/lf-edge/eve
https://wiki.lfedge.org/display/EVE
https://helm.sh/
https://fleet.rancher.io
https://www.e-distribuzione.it/content/dam/e-distribuzione/documenti/e-distribuzione/Piano_di_Sviluppo_2020_22_30giu2020.pdf
https://www.e-distribuzione.it/content/dam/e-distribuzione/documenti/e-distribuzione/Piano_di_Sviluppo_2020_22_30giu2020.pdf
https://www.e-distribuzione.it/content/dam/e-distribuzione/documenti/e-distribuzione/Piano_di_Sviluppo_2020_22_30giu2020.pdf

BIBLIOGRAPHY

[40] Nick Jenkins, Janaka Ekanayake, and Goran Strbac. Distributed Generation.
en. Institution of Engineering and Technology, Jan. 2010. doi: 10.1049/
PBRN001E. url: https://digital-library.theiet.org/content/books/
po/pbrn001e (visited on 08/14/2021) (cit. on p. 37).

[41] Agustin Zaballos, Alex Vallejo, and Josep Selga. «Heterogeneous communica-
tion architecture for the smart grid». In: IEEE Network 25.5 (Sept. 2011),
pp. 30–37. issn: 0890-8044. doi: 10.1109/MNET.2011.6033033. url: http:
//ieeexplore.ieee.org/document/6033033/ (visited on 08/14/2021) (cit.
on p. 37).

[42] Prashant Kansal and Anjan Bose. «Bandwidth and Latency Requirements
for Smart Transmission Grid Applications». In: IEEE Transactions on Smart
Grid 3.3 (2012), pp. 1344–1352. doi: 10.1109/TSG.2012.2197229 (cit. on
pp. 37, 41).

[43] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. «The many faces of publish/subscribe». en. In: ACM Computing
Surveys 35.2 (June 2003), pp. 114–131. issn: 0360-0300, 1557-7341. doi:
10.1145/857076.857078. url: https://dl.acm.org/doi/10.1145/
857076.857078 (visited on 08/14/2021) (cit. on p. 40).

67

https://doi.org/10.1049/PBRN001E
https://doi.org/10.1049/PBRN001E
https://digital-library.theiet.org/content/books/po/pbrn001e
https://digital-library.theiet.org/content/books/po/pbrn001e
https://doi.org/10.1109/MNET.2011.6033033
http://ieeexplore.ieee.org/document/6033033/
http://ieeexplore.ieee.org/document/6033033/
https://doi.org/10.1109/TSG.2012.2197229
https://doi.org/10.1145/857076.857078
https://dl.acm.org/doi/10.1145/857076.857078
https://dl.acm.org/doi/10.1145/857076.857078

	List of Tables
	List of Figures
	Introduction
	Power grid resiliency with micro-grids
	ICT resiliency in a smart grid 2.0
	Overview of service resiliency on power grids

	ICT architecture in an electrical power grid
	Production system
	Transmission system
	Distribution system

	Related work
	Kubernetes
	Basic concepts
	Core modules

	Kubernetes for the edge
	k3s
	MicroK8s
	FLEDGE
	KubeEdge

	Multi-Cluster
	KubeFed
	A decentralized control plane
	Fog-Atlas
	Liqo
	Tensile-Kube

	Edge device orchestration
	StarlingX
	Eve-OS
	Rancher Fleet

	Considerations

	Orchestrated architecture for the power grid
	Service and infrastructure resiliency
	Geographically distributed clusters
	Services
	Data resiliency

	Data flow and communication resiliency
	Reducing distances with the Point of Presence
	A data-centric architecture

	Implementation
	Infrastructure
	Orchestrator
	Multi-cluster

	Services
	OpenPDC
	PMUsim
	MySQL
	Longhorn for resilient data persistency

	Demo

	Results
	Evaluation method
	Containerization overhead
	Orchestration overhead
	Orchestrator reaction times
	Further analysis

	Conclusions and future work
	Future work

	Bibliography

