
POLITECNICO DI TORINO
Master’s degree course in Computer engineering

Master’s Degree Thesis

Resilient and Low Latency
Communications in Smart Grid

Environments

Supervisor
prof. Fulvio Risso

Candidate
Claudio Lorina

A.Y. 2020-2021

Abstract

The decarbonization of the power supplies, with the introduction of renewable en-
ergies, new kinds of loads, such as smart vehicles, are making the electric power
system a dynamic environment. The ancient assets, the legacy software, and pro-
tocols used for the control of the power grid are not enough anymore, and the
introduction of new ICT technologies is bringing the concept of smart grid, allow-
ing the orchestration and the integration of the efforts of the main actors of the
power system (generators, carriers, and consumers) [33, 49, 45]. This is translated
in the need of increasing the observability of the power grid [49], which can be
achieved via a huge network of sensors, interacting among them and with the in-
frastructure in order to provide information about the physical world. This data
can be later stored, processed, analysed in order to control the behaviour of the
grid through intelligent actuators [69] or for offline analysis [48]. The smart grid
networks should manage a great amount of data, delivered over different physical
media, coming from many different types of devices, some of them with limited
computational power, and with different requirements in terms of QoS. This thesis
work analyses the usage of a publish-subscribe model in the context of a smart grid
environment, underlining the aspects of data availability, durability and reliability,
keeping latencies under control. Moreover, the design of the ICT of a distribution
system as a data-centric architecture is provided, a place where data can be asyn-
chronously produced, consumed, processed, aggregated, and stored, without the
need of direct interactions between producers and consumers.

2

Contents

1 Introduction 5
1.1 Power grid resiliency with micro-grids 6
1.2 ICT resiliency in a smart grid 2.0 7

1.2.1 Overview of communication resiliency 8

2 ICT architecture in an electrical power grid 10
2.1 Production system . 11
2.2 Transmission system . 11
2.3 Distribution system . 14

3 Publish-subscribe in smart grid environment 18
3.1 A solution for huge distributed systems 18

3.1.1 The three levels of decoupling 18
3.2 Selection of a publish-subsribe-based protocol 20

3.2.1 Advanced Message Queuing Protocol (AMQP) 20
3.2.2 Constrained Application Protocol (CoAP) 21
3.2.3 Message Queue Telemetry Transport (MQTT) 21
3.2.4 Extensible Messaging and Presence Protocol (XMPP) 21
3.2.5 IoT protocols comparison 22
3.2.6 Event streaming platform (Kafka) vs messaging systems . . 23

4 Synchrophasors exchange over publish-subscribe 25
4.1 Current phasors communication protocols 27

4.1.1 IEEE C37.118 . 27
4.1.2 IEC 61850-90-5 . 28
4.1.3 STTP: a new standard for phasor communication 29

4.2 STTP as a solution for synchrophasors exchange 30
4.3 IEEE C37.118 messages over publish-subscribe 31

4.3.1 An intermediate layer between PMUs and PDCs 31

3

5 Performance and resiliency of a distributed MQTT broker 33
5.1 MQTT broker resiliency . 34

5.1.1 Message loss and latencies varying QoS 34
5.1.2 Persistency of the storage 35
5.1.3 Queue mirroring . 36
5.1.4 Data replication overhead 37

5.2 Scalability and performance of an MQTT broker 41
5.2.1 Benefits of the autoscaling 42

6 Proposal of an architecture for a distribution system 45
6.1 Service and infrastructure resiliency 45

6.1.1 Geographically distributed clusters 45
6.1.2 Services . 47
6.1.3 Data resiliency . 47

6.2 Data flow and communication resiliency 47
6.2.1 Reducing distances with the Point of Presence 48
6.2.2 A data-centric architecture 50

7 Implementation 53
7.1 Implementation of the data-centric architecture 53

7.1.1 A cluster of MQTT brokers 53
7.1.2 Brokers clustering and load balancing 55
7.1.3 Organization of topics in the MQTT cluster 57
7.1.4 Data processing with Kafka 58

7.2 Implementation of a solution integrating IEEE C37.118 and MQTT 60
7.2.1 Latency overhead to respect TCP 63

8 Conclusions 65

Bibliography 69

4

Chapter 1

Introduction

The classical electrical power system architecture, developed over the past 70 years,
had a centralized control. There were big power plants (fossil-fuelled, nuclear power,
or hydropower), producing up to 1000MW. The production system interacted with
the transport system in order to ensure always the same value of frequency and
to receive the required amount of energy. This portion of the power system had
an automatized control while the distribution system was almost completely pas-
sive, with only local real-time monitoring and control for the largest loads, but no
additional interactions between the loads and the power system were performed
[33].

1860 1880 1900 1920 1940 1960 1980 2000 2020

1

0.6

0.2

- 0.2

- 0.8

- 0.6

0.8

0.4

0

- 0.4

Figure 1.1: Temperature anomaly in C◦ from 1850 to 2019 to respect the common
baseline 1951-1980 mean

From Legambiente climate report 2020 [53] - Berkeley Earth data combined with sea data from UK Hadley center.

5

1 – Introduction

The climate changes leading to global warming, driven by the human emis-
sions of greenhouse gases, required the reduction of the produced CO2. According
to NASA, 2020 tie with 2016 was the warmest year on record, with a long-term
record of the last seven years, when recorded temperatures were, on average, 1,02
C◦ higher than the baseline 1951-1980 mean [1]. In order to reduce the carbon
footprint, new renewable, green and clean sources of energy were introduced, with
some consequences in terms of power grid management. For example, the EU with
the Clean Energy Package set the target for the 32% for renewable energy sources
in the EU’s energy mix by 2030, and the goal of carbon neutrality by 2050 [4]. In-
deed, the centralized control of the power grid was not enough for a power system
where production was not centralized anymore. There was the need to increase
the grid observability via a network of sensors providing information about the
physical world [49] and allowing the power grid to balance the power supply and
the demand. Thanks to the increase of grid observability, new perspectives of au-
tomatized control, even in the distribution system, are possible [33]. The usage
of the ICT technologies in order to share data from sensors and meters, collect
and process it to control the electrical power system is the concept of smart grid.
However, nowadays, the concept of smart grid 2.0 [35] has been introduced. It
refers to a new design of the smart grid, based on electricity sharing via a plug &
play approach. This means that as soon as a new portion of the grid is attached to
the main grid, it starts exchanging electricity with the rest of the grid, injecting or
absorbing power [60].

1.1 Power grid resiliency with micro-grids
At this point, the concept of micro-grid comes into play, as a portion of the grid
with loads, accumulation systems, and production systems, able to work attached
to the main grid, or as an island, which means autonomously, isolated from the
rest of power grid. The concept of micro-grid is not new, and in the past, intended
as a way of bringing light to remote communities or as a backup system of the
main grid. However, the difference lies in how they are powered. While in the past
micro-grids relied on fossil fuels, the introduction of renewable sources of energy
not only allowed a reduction of costs, but the energy production at the edge of
the power grid, improved the reliability [44]. Coming back to the concept of smart
grid 2.0. Each micro-grid can be plugged to the main grid, and it can exchange
electricity, supporting the main power grid, injecting power, or requiring electricity,
if needed. In any case, if the micro-grid detaches from the rest of the grid, on
purpose or because of unintended events, it can survive, go on working even though
it is isolated. Resiliency, indeed, is nowadays a crucial aspect for power grids,
considering the increase of extreme weather events, due to climate changes. The
increase of the average temperatures causes a reduction in rainfall, but a consequent
rise of floods, storms, and hydrogeological risk [53, 62]. Figure 1.2 shows the increase

6

1.2 – ICT resiliency in a smart grid 2.0

of extreme weather events in Italy for each year. It is evident how the world is
changing, extreme climate events are becoming much more frequent, and people
are called to get used to this new normality. Human infrastructures need to be
redesigned for this new world, to be resistant to the weather pattern of the future.
Even the electrical power system, indeed, should be able to predict, react and
survive these extreme events, and it is crucial for the design of the smart grid 2.0.

250

200

150

100

0

50

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Figure 1.2: Extreme weather events in Italy for each year
From Legambiente climate report 2020 [53] - Osservatorio Cittá Clima, Legambiente 2020

1.2 ICT resiliency in a smart grid 2.0
Smart grid 2.0 requires real-time control for more than 50% of the power demand,
requiring the monitoring of great amount of data coming from sensors and devices.
The analysis and processing of this huge quantity of data and the control of the
grid require the deployment of smart IT technologies and usage of big data analysis
techniques [60]. Moreover, the resiliency of the power grid should be provided by
a robust ICT infrastructure.

• Services have to be monitored to launch them again, in case of a failure of the
application itself or the node where it was running.

• As the power grid should be able to support partitioning, even the ICT must
support the partitioning of the infrastructure. Extreme weather events, acci-
dental events, or network failures might isolate one or more sites of the electri-
cal power system. When the site is isolated, its ICT infrastructure should be
able to react, go on working, even though the connection with the centralized
control has been lost.

The ICT of the power grid should handle the complexity due to the widely
geographically distributed infrastructure. The solution scalability is crucial since

7

1 – Introduction

it handles hundreds of thousands of sites, and this number can easily grow over
time. Therefore, the solution must allow new sites to seamlessly join the rest of
the infrastructure, according to the concept of plug&play electrical grid. A huge
quantity of devices and sensors of different nature, all over the power grid, some of
them with low computational power, produce data over different physical media.
The role of the ICT of the power grid is allowing this huge amount data to safely
reach all the consumers, according to their requirements in terms of QoS. All the
services running over the smart grid should be able to produce and consume data,
transparently moving across the nodes of the ICT infrastructure, if needed. Data
should be produced and consumed with an asynchronous approach in order to
improve the scalability, maintainability, and simplicity of the applications, still
keeping latencies under control, supporting real-time applications.

1.2.1 Overview of communication resiliency
This thesis work will not be about the resiliency of services, but it will focus on
the aspect of resilient and low latency communication in smart grid environments.
Chapter 2 presents an overview of the ICT of a current power grid, giving an idea
of the roles of the three sections of the electrical power system: production system,
transmission system, and distribution system. We will analyse, in chapter 3, the
potentialities of the publish-subscribe communication pattern in the context of the
smart grid environment. A comparison between the publish-subscribe-based IoT
protocols has been performed, underlining which, between the presented solutions,
seem to be the one that best matches with the communication requirements in
a smart grid. Chapter 4 focuses on the synchrophasors exchange between PMUs
and PDCs, in order to improve the observability of the power grid. The current
standards of synchrophasors exchange protocols have been analysed, in order to
understand how this kind of data is currently exchanged. This chapter presents the
Hoefling et al. [42] solution allowing to transport the IEEE C37.118 messages over
a protocol supporting a publish-subscribe interaction pattern, keeping the compat-
ibility with the current PMU and PDC implementations supporting the C37.118
standard. An implementation of this solution supporting the MQTT protocol is
presented in chapter 7, with the aim of evaluating the benefits of the synchropha-
sors exchange through a publish-subscribe protocol and the additional overhead
given by the usage of the MQTT brokers for the interaction and of the adapters,
allowing the usage existing PMU and PDC implementations when synchrophasors
are exchanged over the MQTT protocol. The usage of publish-subscribe typically
requires all messages passing through a broker. If the solution is not correctly de-
signed and configured, the broker might represent a bottleneck or a single point
of failure, with some consequences in terms of performance and availability of the
services. Chapter 5 is about the resiliency, performance, and scalability of commer-
cial implementations of MQTT broker. These lines report investigations about how

8

1.2 – ICT resiliency in a smart grid 2.0

replication of the broker, persistency of the storage, queue mirroring between the
broker instances, and autoscaling affect the reliability, availability and scalability
of the service and the durability of the exchanged messages. This chapter contains
further analysis about benefits and the overhead of the storage replication with
Longhorn, varying the workload and message size. A proposal of an ICT architec-
ture in the distribution system of a smart grid is presented in chapter 6, and its
implementation in chapter 7.

9

Chapter 2

ICT architecture in an
electrical power grid

The aim of this chapter is to provide an overview of the ICT infrastructure in the
electrical power grid. The models to be used in the exchange of information with
distributed energy resources are defined by the IEC-61850 standard. The electrical
grid can be divided into three slices, each of them having a different role:

Distribution system

Transmission system

Production
system

Figure 2.1: Electrical hierarchy overview.

• Production system: where the electricity is produced, converted with the right
values of current, voltage and frequency and finally introduced in the trans-
mission system. In the past, this was mostly done in huge production plants
(e.g., hydroelectric, coal), while in recent years this is being integrated with
many small-size production plants (e.g., solar power).

10

2.1 – Production system

• Transmission system: in charge of collecting the electricity from the power
plants and transporting it to the distribution systems (i.e. Terna in Italy).

• Distribution system: in charge of bringing the electricity to the final users,
typically this part of the network is in charge of the energy providers.

Nowadays, the production system is not anymore the only source of energy, due
to the presence of many small producers closer to the user, such as solar panels,
wind farms and more. This means that even in the distribution systems there is
the need to replicate the mechanism present in the production system, not having
anymore the possibility to have a completely centralized control, but it was needed
to move this control even at the edge.

2.1 Production system

PRODUCTION SYSTEM

TRASMISSION SYSTEM

NATIONAL CONTROLLER

Figure 2.2: Production systems work in synergy with the transmission system.

The production system is made by energy producers, who produce electricity
and collect it in the transmission system by means of some transformers, regulating
voltage and intensity of the electricity. Producers need to regulate the frequency
of the produced energy according to the values provided by the national controller,
so that generators can always keep the same value of frequency and provide the
required amount of electricity in the electrical grid.

2.2 Transmission system
The transmission system is made of electrical towers of 380kV, 220kV and 130/150kV
all connected with the others, forming an unique grid covering the entire national
surface. This system is controlled by some stations with a set of transformers

11

2 – ICT architecture in an electrical power grid

Figure 2.3: Example of a thermoelectric power plant
By Daniel Ullrich Threedots - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=462767

converting the ultra-high voltage to the high voltage. Electric substations (often
abbreviated SSE) are located near a production plant, at the point of delivery to
the end user and at the interconnection points between the lines: they therefore
constitute the nodes of the electricity transmission network.

Figure 2.4: An example of an electric substation in the transmission system
By Terna S.p.A., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=33999303

Substations perform one or more of the following functions:

12

2.2 – Transmission system

• interconnect multiple High Voltage power lines at the same voltage level, cre-
ating a network node (via crossbars);

• interconnect several HV power lines with each other at different voltage levels
(through transformers);

• re/phase the apparent power of the network (by means of capacitor banks or
power factor correction inductors, also called "reactors" as they absorb reactive
power);

• convert the voltage from AC to DC and vice versa (conversion substations).
[27]

Even these transformers have some sensors and actuators, the latter are controlled
by devices called IED (Intelligent Electronic Device). All the devices running lo-
cally, e.g. in a substation, are connected to each other by means of an Ethernet
LAN, which also includes a Station controller, e.g. a server with the proper con-
trolling software. Logically, the station controller is connected with the Regional
controller, which is further (logically) connected to a National controller.

STATION

IED

IED

IED

Station
controller

WAN
REGIONAL

CONTROLLER

NATIONAL
CONTROLLER

Figure 2.5: ICT network architecture of the transmission system.

The physical network connection between each station and the rest of the ICT
network is usually achieved with dedicated links; in the past, this infrastructure
was completely under the control of the Electrical company (i.e., ENEL), which was
then spinned-out at around 1990-2000 when the Italian telecommunication market
was open to competition, leaving to the creation of the Wind telecommunication
company. Nowadays, the above physical network connections are in part still under
the control of the Electrical company, while others are simply links bought from a
telecommunication provider.

13

2 – ICT architecture in an electrical power grid

Electricity cannot be stored, therefore there is the need to guarantee the balance
between the produced energy with the demand. This operation is a real-time con-
trol called dispatching and it is under the responsibility of the National controller,
which acquires data from a large number of players operating both in production
and demand, performs forecasts about the national electricity requirements and
interacts with producers and remote management centers in order to module the
supply and structure of the grid as require. [61]
In this case, the network is based on optical fibers running through the overhead
protection cables, but still having a satellite network as backup.

Figure 2.6: Terna’s transmission system [61]

2.3 Distribution system
The distribution system starts from the primary substations where the high voltage
electricity is converted into medium voltage. Here a set of measurement systems
are used in order to track the state of the transformers, and to perform some
adjustments opening and closing them, changing the transformation ratio, in order
to keep the correct working point of the electrical grid. This is the starting point
for the medium voltage lines, each controlled by a switch. These lines arrive at
the secondary substations, where the medium voltage is converted to low voltage.
These are the starting point for the low voltage lines, connected to user loads,

14

2.3 – Distribution system

electricity generation systems, accumulation systems, which could also have some
meters and sensors providing information about their working status.

Inside kiosks sensors and actuators are connected via Ethernet LAN, while data
from loads, electricity generation systems, accumulation systems coming from the
outside could reach the controller in charge of handling it, using GSM, 4G or
powerline.

WAN

AREA CONTROL CENTER

SUBSTATION

sensors

actuators

Station
controller

PDC PMU

PDC

SECONDARY STATION

ICT CONTROL CENTER

PMU

sensor sensor

Access point

Figure 2.7: ICT network architecture in the distribution system.

The distribution system has three main levels of control:

• Primary Substations: here there could be data coming from the inside of the
substation, but also for the outside world. This data is sent to the station
controller in charge of performing a local control.

• Area control centers: the station controllers of the substations exchange data
with the area control center of the geographical area where they are located,
which could be an entire city or a portion of it.

• ICT control center : it is the remote monitoring center for the ICT of the
electricity provider, its role is configuring all the devices, monitoring the state
of the infrastructure, checking for anomalies, such as failures or intrusions,
trying to recover it from the effects of an incident. This component is also
present in the transmission system.

Typically, data flowing between the control centers is carried over a dedicated
WAN network, which might be made of fiber or equivalent technology. Each section
of the network has a firewall, filtering incoming and outcoming traffic. The overall

15

2 – ICT architecture in an electrical power grid

Figure 2.8: An example of a primary substation
Available at https://www.deaelettrica.it/inaugurazione-nuova-cabina-primaria-recanati/

ICT system is also protected by an access point which performs some encryption
to the incoming and outcoming traffic. That’s because different distributors and
the ICT of the transmission system, uses different keys, in order to keep them
independent. This means that all the outcoming traffic should be decrypted with
the internal key, then encrypted with the key shared with the destination, and
then decrypted again and encrypted with the key of the destination. The same
thing should happen with communications between the transmission systems of two
different nations, this is needed because, since Europe runs on a single frequency,
a variation of the frequency or a failure of a part of the grid, might affect all the
other nations, which should properly react.

Figure 2.9: An example of a secondary substation

16

2.3 – Distribution system

This makes evident how a good ICT system is crucial for a properly working
power grid. The ICT, indeed, should be in charge of monitoring the working status
of each component and tuning each of them in order to provide the desired state,
but it also has the role of protecting it, for example detaching from the grid a power
plant which goes out of frequency. Even though both control and protection allow
to keep the correct working status of the power grid, they are totally independent,
since they have different requirements even in terms of reaction time.

Substation

HV

MV

Secondary
station

meter meter meter meter

PMU

sensors

MV

LV

Secondary
station

MV

LV

sensors

PMU

sensors Secondary
station

MV

LV

sensors
actuators

actuators
actuators

actuators

sensors

actuators

sensors

actuators

Figure 2.10: Electrical architecture of the distribution system.

17

Chapter 3

Publish-subscribe in smart
grid environment

3.1 A solution for huge distributed systems
A smart grid represents a huge distributed system involving devices and pieces of
software of different nature, distributed over a quite large geographical area. In
this context, point-to-point synchronous interaction might be a too rigid approach,
which leads to applications difficult to write and evolve. Publish-subscribe, instead,
could be a more flexible communication model, since it allows a dynamic and de-
coupled interaction between the communicating parts [39]. Subscribers will express
to a broker their interest in a specific event or pattern of events, and they will be
notified as soon as a publisher generates an event of that type.

3.1.1 The three levels of decoupling
It might be possible to identify three levels of decoupling in the interaction between
publishers and subscribers:

• Space decoupling: this means that publishers and subscribers do not need
to know each other. They do not need to know where the others are located,
their addresses and how many publishers or subscribers are interacting at
the same time since they only have to know where the message broker is
[39]. This is an important point, since if a publisher or a subscriber moves to
another location or their IP address changes, all the others are not affected.
Moreover, an arbitrary number of publishers and subscribers can be deployed
in a transparent way, having the possibility to write new services consuming
some data, without the need to change all the existing ones.

• Time decoupling: publishers and subscribers do not have to be up and

18

3.1 – A solution for huge distributed systems

Broker

Subscriber

PublisherSubscriber

Subscriber

Subscribe "alarms"

Subscribe
"measures"

Subscribe "ala
rms

"

Broker

Subscriber

PublisherSubscriber

Subscriber

ALARM!

ALARM!

Publish "ALARM!"
in "alarms"

Figure 3.1: Example of interaction between publishers and subsribers with message
broker

running at the same time: publishers can produce data, and subscribers will
receive it once online again. [39]

• Synchronization decoupling: there is no need for synchronization between
publishers and subscribers. It means that publishers are able to produce data
without blocking, and subscribers can receive it asynchronously [39].

When there are N producers and M consumers, decoupling consumption of data
from production might be really interesting since there is no need to configure and
synchronize NxM channels, having some advantages in terms of scalability. The
result of this communication system is a data-centric architecture, where interacting

19

3 – Publish-subscribe in smart grid environment

parties are only interested in data and not in the address of the services providing
it. [39].

3.2 Selection of a publish-subsribe-based proto-
col

A smart grid is characterized by heterogeneity of physical media and devices and it
is likely to have low-cost devices with low computational power, sending data over
a network with limited bandwidth, such as NB-PLC, UMTS or GPRS. Moreover,
requirements in terms of QoS are increasing over time [69], with many function-
alities requiring real-time data. That’s why this context might need lightweight
protocols allowing low latencies. There is a quite large number of protocols used in
the IoT environment which might be taken into consideration, among them:

• AMQP

• CoAP

• MQTT

• XMPP

3.2.1 Advanced Message Queuing Protocol (AMQP)
AMQP is a broker-based messaging protocol initially designed for the enterprise
environment but then extended to multiple application areas [31]. This protocol is
based on two main concepts:

• Exchange: it is where messages are published, they receive the messages and
forward them to zero or more queues, depending on the type of exchange and
some rules, associated to the queue, called bindings [2, 67]. The exchange type
represents the logic used by the exchange for selecting the queues where to
deliver the message, while the bindings defines the matching rule for a specific
message queue.

• Message queue: this is where messages are stored. Each message queue has
some associated binding rules, and according to them, the Exchange deliver
all the matching messages to that queue. [2, 67]

Publishers, willing to produce a message, send it to an Exchange, which forwards
it to the message queues matching the bindinds. At this point, all the messages
inside the queue should be consumed by someone. This job is done by subscribers,
which perform a subscription to a specific message queue [2]. This mechanism is a
powerful tool allowing to select where messages should be delivered.

20

3.2 – Selection of a publish-subsribe-based protocol

In order to provide reliability, AMQP defines acknowledgements, sent by con-
sumers to the broker and by the broker to the publishers, confirming the delivery
of the message [2]. This means that only two levels of QoS are available: at least
once if acknowledgements are enabled and at most once if not.

3.2.2 Constrained Application Protocol (CoAP)
CoAP is a protocol designed for constrained nodes with limited resources, sending
data over networks with narrow bandwidth and a high level of error rate. That’s
why, differently from the other presented protocols, it is not based on TCP but UDP.
CoAP has been designed to be the HTTP protocol for constrained devices, since it
supports an HTTP-like request/response interaction. However, this protocol also
supports an observe-pattern, meaning that a client can perform a subscription for
a specific resource and it can be notified as soon as that resource changes. This
pattern might enable the usage of the CoAP protocol with a publish-subscribe
interaction, and in 2019 the IETF published a draft, aimed to extend the CoAP
protocol, in order to enable a publish-subscribe interaction through a CoAP broker
[50].

3.2.3 Message Queue Telemetry Transport (MQTT)
MQTT is an OASIS standard publish-subscribe messaging protocol designed for
constrained devices, therefore with minimal requirements in terms of bandwidth
and small code footprint [15, 31]. The MQTT protocol runs over TCP and supports
three levels of quality of services [29]:

• QOS-0 : it provides at most once warranty. In this case, reliability comes only
from TCP, and publishers use a fire and forget approach, no acknowledgements
exchanged, meaning that there is no confirmation for delivered messages [29].

• QOS-1 : this level of reliability provides at least oncewarranty, acknowledge-
ments are exchanged confirming the message delivery, but could be delivered
multiple times [29].

• QOS-2 : in this case messages are delivered exactly once, each message has
an id code allowing the subscribe to discard that messages already received.
Unfortunately, this solution has a large overhead due to the high number of
acknowledgements to be exchanged [29].

3.2.4 Extensible Messaging and Presence Protocol (XMPP)
XMPP is a collection of open technologies for instant messaging based on the
exchange of XML data [28]. Each entity in XMPP is identified by an ID called

21

3 – Publish-subscribe in smart grid environment

JabberID (JID) and it looks like an email address, since it has a name and a
domain, while requested resources are expressed at the end of the JID, with format
name@domain/resource (e.g user1@test.com/measures) [58]. Messages exchange
with the XMPP protocol are called stanzas, there are three types of stanzas:

• message: it contains some information sent by an entity to another, when a
response is not expected [5];

• presence: it is a message containing information about the status of an entity.
Entities can subscribe to the presence messages of a specific entity, receiving
a notification when the status changes, for example, when it goes offline, or it
is back online [58].

• IQ: These kinds of stanzas are sent when an entity requests or modifies a
resource, as it happens with the HTTP GET and POST methods. For each
iq stanza there should be a corresponding iq response, which is associated to
the request through its id [5].

One of the main features of the XMPP protocol is its extendability. There
is a great number of standardized extensions, introducing additional function-
alities to the protocol. For example, the XEP-0060 adds support for the pub-
lish/subscribe messaging. This protocol has been adopted in the IoT environment
when lightweight solutions were introduced, such as µXMPP or XMPP client for
mbed[31]. At the time of writing, only TCP provides reliability to the XMPP pro-
tocol. No additional form of quality of service is provided. However, there are some
proposals of extensions aimed to provide it. For example, [59] is a draft of an ex-
tension adding message acknowledgements, while [64] is a proposal for an extension
introducing the same concept of three levels of QoS of the MQTT protocol.

3.2.5 IoT protocols comparison

AMQP CoAP MQTT XMPP

Initial target Enterprise
applications

HTTP for
costrained devices Telemetry Instant

messaging
Transport TCP UDP TCP TCP

Pub/Sub Depending on exchange
configuration IETF draft no notes Provided by

XEP-0060 plugin
At most once QoS Yes Yes Yes No
At least once QoS Yes Yes Yes No
Exactly once QoS No No Yes No
Payload type Binary Binary Binary XML
Fixed header size 8byte 4byte 2byte -
No. related
documents in 2020 (google scholar) 1410 3310 7230 998

Table 3.1: Comparison between IoT protocols.

22

3.2 – Selection of a publish-subsribe-based protocol

Since AMQP, MQTT and XMPP are protocols running over TCP, they have a
larger data overhead due to the connections establishment and closing [57]. Fur-
thermore, XMPP is not a binary protocol, and an additional overhead is given by
XML. Among them, MQTT is the one with the lower impact both in terms of data
overhead and band consumption. CoAP, instead, is based on UDP, which is not
connection-oriented, and this reduces the transmitted data and the total bandwidth
requirements [32, 57]. However, many studies report similar power consumption of
MQTT and CoAP when they work in similar scenarios: at most once and at least
once transmissions [57]. Considering latency, TCP does not help in this context,
due to the slow start approach used to avoid network congestions and the need to
open and manage the connection between the interacting parts. This is not true
with UDP, and even in this case, CoAP is the protocol guaranteeing the best times
in terms of latency, with MQTT registering the best times in the group of TCP-
based protocols [31, 57]. Moreover, MQTT is the protocol of the group, that, with
QoS-2, guarantees the higher level of reliability, thanks to exactly once delivery of
the messages. Unfortunately, this requires a four-way handshake, causing a large
increase of the transmitted data, which is double than the CoAP one [57].

3.2.6 Event streaming platform (Kafka) vs messaging sys-
tems

The publish-subscribe pattern for message delivery is a common feature of two
different technologies event-streaming platforms and messagging systems. The main
difference between them depends on how messages are stored; while messaging
systems store messages for the needed time for all the interested subscribers to
receive them, with the event-streaming platform, how much time a message is
stored, does not depend on the subscribers, but on an explicit configuration. This
means that, with an event-streaming platform, it could be possible to configure
the broker in order to delete a message after a certain amount of time or even not
to delete messages at all. This difference in how messages are stored, also involve
the way in which subscribers consume messages with the two technologies. While,
in the case of the event-streaming platforms, subscribers are able to access to the
previously sent messages, this is not possible with a messaging system, which can
only receive messages sent after their first subscription. Moreover, with a messaging
system, subscribers are typically able to perform a subscription to more fine-grained
topics, receiving only the messages they are interested in. This is not always true
with an event-streaming platform. Kafka, for example, uses partitions for scaling,
since they allow to split the load of messages consumption to different subscribers.
Unfortunately, creating a partition requires the allocation of some resources, and
since for each topic there is the need of at least one partition, the number of topics
should be limited, resulting in topics with data which is not always strictly related,
and subscribers which need to filter messages. [3, 34]

23

3 – Publish-subscribe in smart grid environment

MQTT broker
MQTT broker Kafka

Data analyser

Control application

Device 1

Device N

...

Figure 3.2: Example of integration of MQTT and Kafka

It might be clear that the two technologies offer completely different opportu-
nities, and one not necessarily exclude the other. For example, as previously seen,
MQTT is a protocol designed for constrained devices, sending data over unsta-
ble and narrow-bandwidth networks. Kafka, instead, as event-streaming platform,
allows to persistently store messages and to retrieve historical data, which is a
suitable solution for applications analysing bunch of data, such as, for example,
machine learning applications for pattern recognition or analytics. Then, these ap-
plications could send back a command to some actuators, according to the result
of the computation. This means that it could be possible to collect data from IoT
devices through an MQTT broker, and then forward the messages to Kafka, where
data could be processed. [14, 43, 47]

24

Chapter 4

Synchrophasors exchange
over publish-subscribe

A way to improve the observability of the network might be the usage of PMUs
(Phase Measurement Units), providing an accurate picture of the state of the grid
[49]. PMUs monitor the value of the intensity of the current, voltage and frequency,
and marks the phasors with a timestamp, obtaining a synchrophasor. The PMUs
located over the grid produce and send the synchrophasors to the PDC (Phasor
data concentrators) of their area, whose role is performing a sort of multiplexing.
They align incoming synchrophasors according to their timestamp and remove the
unnecessary data. The output produced by PDCs is then sent as input of appli-
cations or of a higher level PDC, performing a higher level of aggregation [42].
Protocols currently used for synchrophasors exchange are all based on point-to-
point interaction between PMUs and PDCs [36], this might represent a problem
for multiple reasons:

• PDC and PMUs need to know each other: PDCs need to directly reach
PMUs in order to start receiving data from them. They need to know the IP
addresses of all the PMUs or PDCs from which they want to receive data. If,
for example, a service is moved and its IP address changes, additional methods
are needed in order to make it still reachable.

• PDC and PMUs have to directly synchronize: since the interaction is
point-to-point, a single channel for each connection is needed.

• Data produced during the downtime is lost: when a PDC loses connec-
tion with a PMU, the data produced while it tries to reconnect is lost. However,
this is a problem, since even though data cannot be used for real-time control,
since it is delayed, the historical data has a crucial role for post-mortem anal-
ysis. For example, MacIver at al. [55] performed some investigations about

25

4 – Synchrophasors exchange over publish-subscribe

an incident in Great Britain in 2019, which interrupted the electricity supply
to around 1.1 million of customers. They showed how the PMU data can be
used in order to reconstruct the incident with a high level of precision. This
highlights the importance of the PMU data when the goal is to improve the
reliability of the power grid.

PMU 1

PMU 2

PMU 3

PDC

Application 3

Application 2

Application 1

Figure 4.1: Point-to-point interaction between PMUs, PDC and applications

Figure 4.1 and 4.2 show an example of point-to-point interaction and with a
intermediary broker. The two examples have the same actors exchanging data, the
only difference is how data is transferred. While the actors of the first example
have a direct interaction with the source of the data they are interested in, in the
example with the broker, the interacting parts do not know each other. It means
that:

• PMUs, PDC and applications do not know the IP address of the
others, they only subscribe to the topic of the data they are interested in,
without concerns about who is producing it and what its state is.

• Each of the actors produces and consumes independently: if, for ex-
ample, the PDC disconnects from the broker, PMUs won’t be affected and
can go on producing data, which is received by the PDC once back online.
If instead, a PMU disconnects, the PDC or the applications, listening for the
data coming from it, don’t have to restore the connection with it, but they
will come back receiving data once the PMU is online again.

26

4.1 – Current phasors communication protocols

PMU 1

PMU 2

PMU 3

PDC Application 3

Application 2

Application 1Broker

Figure 4.2: Interaction between PMUs, PDC and applications through publish-
subscribe

• Seamless support for multiple subscribers for the same data: this
allows not to have to synchronize a channel with each of the applications
requiring the same data. Moreover, it is possible to introduce new applications,
for example implementing new data processing algorithms, without the need
to perform any change to what already exists.

4.1 Current phasors communication protocols
4.1.1 IEEE C37.118
In 2005 the definition of the IEEE C37.118 protocol for the synchrophasor exchange
has been completed. The idea was combining the IEEE 1344, the first protocol
defined for exchanging synchrophasors, and the PDCstream defining the way in
which PDC collects data and produces the output stream [36]. With version 2011
the protocol has been splitted into two parts:

• Part 1 : defining measures of synchrophasors, frequency and rate both in
stready state and in dynamic conditions;

• Part 2 : defining the messaging part: how messages should be exchanged and
the messaging format.

This new definition does not introduce any improvement to respect the 2005 ver-
sion, that’s because the idea was facilitating the integration with the IEC 61850,

27

4 – Synchrophasors exchange over publish-subscribe

another protocol for transporting synchrophasors, and keeping the backward com-
patibility with the 2005 version. Moreover, many of the functionalities to be intro-
duced, were already provided by the IEC 61850 [56].

The IEEE C37.118.2-2011 standard, thanks to its simplicity and efficiency, is
the most widely adopted protocol for synchrophasors exchange. It only defines how
data should be represented, but it is independent of what is used for transporting
it. Each of the interacting parts is identified with a 16-bit id code, placed in the
common header of all the messages. Data is sent over binary frames, of 4 different
types:

• Command frame: a frame used to control the behaviour of the node sending
the synchrophasors. Different types of command are available:

– CMD-1 : Stop the transmission of the synchrophasors,
– CMD-2 : Start the transmission of the synchrophasors,
– CMD-3 : Send a header frame.
– CMD-4 : Send a configuration frame CFG-1,
– CMD-5 : Send a configuration frame CFG-2,
– CMD-6 : Send a configuration frame CFG-3.

• Configuration frame: this frame tells the receiver the format of the data
frame, therefore it is needed before start parsing the data.

• Data frame: containing the synchrophasor measures.

• Header frame: a message containing human-readable information about the
sender.

The protocol does not provide any security option; security should be provided
by the underlining levels. About the bandwidth usage, even though no data com-
pression is performed, the IEEE C37.118 protocol is the solution sending the small-
est amount of data [36].

4.1.2 IEC 61850-90-5
The aim of the IEC 61850-90-5 was to standardize the communication protocols
used for synchrophasors, even in those environments where the IEC 61850 protocol
was deployed, such as substations. The idea was to reuse the IEEE C37.118 protocol
for the data measurement and representation, and transport it over the IEC 81650
stack. In this way, it was possible to exploit the native security options already
provided by this protocol. Therefore, the role of the standard is mapping the IEEE
C37.118 elements with the concepts and models of the IEC 61850. In terms of

28

4.1 – Current phasors communication protocols

bandwidth usage, the IEC standard is the one adding the largest overhead, with
an additional header of 45 bytes and a prefix of at least 45 bytes, before the actual
synchrophasor data, in data frames. Moreover, additional data is transmitted if
the repetition of past measures is enabled. [36]

4.1.3 STTP: a new standard for phasor communication
In 2004 a new protocol called Gateway Exchange Protocol was introduced, with
the aim of satisfying the requirements of a secure exchange of real-time data in
smart grids. However, the GEP protocol has never become a standard. In 2017 a
new project started, the ideas was defining a new protocol, called Advanced Syn-
chrophaso Protocol (ASP), whose aim was improving the GEP protocol and making
it a standard. The IEEE working group in charge of defining the new standard was
set up in 2018, and the new protocol candidate for becoming a new standard was
called Streaming Telemetry Protocol. The name of the protocol emphasizes its ca-
pacity to transport any data representable longitudinally, not only synchrophasors.
The STTP protocol is based on a broker-less publish-subscribe pattern. This means
that the client directly performs the subscription to the producer and it is able
to require only the data it is interested in, with full or down-sampled resolution.
Moreover, it is possible to receive historical data, queried through a STTP filter
expression, which is a string, written with a SQL-like languages, allowing the sub-
scriber to specify which data it would like to receive.

The interaction happens through two different channels:

• command channel: used for negotiating a session, performing a subscription,
authenticating, sending commands and so on.

• data channel: used for sending the actual data.

The traffic from both channels could be transported over a single TCP session
or with a TCP session for the command channel and UDP datagrams for the traffic
of the data channel. Since the command channel messages are sent over TCP, it is
possible to secure them through TLS. Moreover, it allows to perform access control
through X.509 certificates. When data are sent over TCP, security could be easily
provided by TLS, while if UDP is used, data can be encrypted through a shared
key exchanged in the command channel. [20, 36]

For each measure transported over the STTP protocol, there is a related times-
tamp. That is the reason why raw binary STTP messages are typically larger
than the ones produced by the previously seen protocols, that have a single times-
tamp for a collection of measures. However, compression allows to overcome this
problem. All data sent through the STTP protocol is compressed, resulting in mes-
sages smaller than the IEEE C37.118, when using TCP, and stateful compression.

29

4 – Synchrophasors exchange over publish-subscribe

With UDP, instead, the amount of sent data is comparable to the IEC 61850-90-5
protocol. [36]

Even though the definition of the STTP protocol as IEEE standard (IEEE-
2664) is still working in progress, some implementations and tools implementing
the protocol are already available [21, 22, 23, 24].

4.2 STTP as a solution for synchrophasors ex-
change

The STTP protocol thanks to the publish-subscribe pattern, security and compres-
sion of the data, might be the solution for synchrophasor exchange in modern smart
grids. It, indeed, might allow to address the previously underlined problems:

• PMUs, PDC and applications do not know the IP address of the
others: according to the STTP protocol specifications [20], the forward con-
nection is the standard one, this means that starting the interaction is the
role of subscribers. That is, each PDC should know IP addresses and port of
each PMU it has to connect to. However, this is not mandatory, thanks to
the reverse connection. This allows the producers (PMUs) to directly reach
the subscribers (PDC), so that only the address of the PDC should be known.
Moreover, this approach allows to set up a connection even when PMUs are
behind a NAT, and cannot be reached by the PDC from the outside.

• Each of the actors produces and consumes independently: the STTP
protocol does not directly address this problem, since the interaction between
producers and consumers is point-to-point, in the specification, there is no in-
termediary broker [20]. However, a solution might be looking at the architec-
ture from another point of view. It might possible to see at the PDC as sort of
broker, receiving the data from sensors and forwarding it to all the subscribers
that perform a subscription to that data. Moreover, the STTP protocol has
some instruments allowing subscribers to query the historical data, sending a
request with a STTP filter expression. However, sensors are typically devices
with low computational power and small amount of memory, therefore, storing
the data and deliver historical data is not the role of a sensor. That is why
thinking the PDC as an intermediary service, which receives data from PMUs,
allows subscriptions from applications, which can receive real-time data and
historical data, could be reasonable and aligned to what already exists. At
this point, the PDC is not a real consumer, but an intermediary. Therefore,
producers and consumers are free to work independently.

• Seamless support for multiple subscribers for the same data: once
the PDC becomes a sort of broker, anyone could perform a subscription to the
data the PDC receives.

30

4.3 – IEEE C37.118 messages over publish-subscribe

PMU 1

PMU N

Application 3

Application 2

Application 1PDC

STTP filter

expression

Historical data

Historical
data

...

Figure 4.3: Example of architecture using the STTP protocol and the PDC as a
broker

The validation of this architecture will not be the aim of this work. What will
be presented in the following paragraphs is a solution addressing these problems
with existing protocols and technologies.

4.3 IEEE C37.118 messages over publish-subscribe
As previously seen, the existing standards provide a point-to-point interaction be-
tween PMUs and PDCs, but this pattern has a set of limitations. A possible idea
could be transporting the standard IEEE C37.118 messages over a protocol sup-
porting the publish-subscribe pattern. This is perfectly possible since the IEEE
C37.118 is independent from what is used for transporting it [42].

4.3.1 An intermediate layer between PMUs and PDCs

Unfortunately, existing PMUs and PDCs implementations do not support a publish-
subscribe protocol. Hoefling et al. [42] already addressed this problem, providing
a solution allowing to transport data over a publish-subscribe-based protocol, still
keeping the existing implementations of PMUs and PDCs, which support the IEEE
C37.118 protocol. The idea is introducing an additional layer, a sort of adapter,
allowing both PMU and PDC to talk with the broker. There should be two different
adapters:

31

4 – Synchrophasors exchange over publish-subscribe

• PMU-adapter : its role is pretending to be a PDC, obtaining the data from the
PMU, and publishing it into a topic in the broker.

• PDC-adapter : this component, instead, pretends to be a PMU. It accepts
connections from PDCs, performs the subscription to the topic related to the
PMU it pretends to be, and forwards this data to the real PDC.

The behaviour of these components varies depending on the operational mode
the PMUS and PDCs use. The standard defines two modes:

• Commanded mode: in this case, the PDC sends commands to the PMU in
order to require the configuration frame and to start and stop the stream of
synchrophasors.

• Spontaneous mode: when this operational mode is used, the PMU sends un-
solicited messages via UDP. In order to allow the PDC to parse the received
messages, the PMU periodically sends a CFG-2 frame. This solution is the
one that best matches with the implementation of an adapter, since no inter-
action between PDC and PMU is required. However, this mode is typically
not supported by off-the-shelf implementations.

In section 7.2 we will see an example of implementation of this solution integrat-
ing the IEEE C37.118 protocol with MQTT.

PDC PMU

CMD-5
(send CFG-2 frame)

CFG-2

CMD-2
(start data stream)

Synchophasors

(a) Commanded mode

PDC PMU

CFG-2

Synchophasors

CFG-2

Synchophasors

CFG-2

(b) Spontaneous mode

Figure 4.4: Exchanged messages in commanded and spontaneous modes. Time
from up to down.

32

Chapter 5

Performance and resiliency
of a distributed MQTT
broker

The centralization of communication due to the usage of the publish-subscribe
pattern might be source of some concerns. All the interactions pass through the
broker, which might become a bottleneck and a single point of failure:

• If the broker is not scalable enough, it might cause many problems in terms
of performance. Messages might be delayed and, in some cases, if the broker
is not able to accept other connections from the clients, communication is not
possible at all. Scalability should not only be a property of the used broker,
but of all the layers the messaging system relies on [39].

• The introduction of an additional layer requires more interactions since pub-
lishers and subscribers have point-to-point channels with the intermediary
broker. It might negatively affect the performance and the scalability of the
system.

• Messages are sent by publishers to the broker, stored, and then forwarded to
the publishers. Having the warranty that messages have correctly reached the
message broker is not enough. Messages should be persisted and eventually
delivered to the destination even when the message broker fails [39].

This chapter is aimed to provide an overview of the reliability, scalability and
performance of some of the MQTT brokers in the market, analysing the investiga-
tions already done in literature [41, 51].

33

5 – Performance and resiliency of a distributed MQTT broker

5.1 MQTT broker resiliency

5.1.1 Message loss and latencies varying QoS
An interesting feature of the MQTT protocol is the possibility to select three differ-
ent levels of QoS, depending on the grade of reliability needed for the transmission:

• QoS-0 : messages are delivered most once,

• QoS-1 : a message is received at least once,

• QoS-2 : each message is delivered exactly once.

Grüner et al. [41] analysed the behaviour of each of these levels of QoS on
different conditions of packet loss. They connected to an instance of Mosquitto
MQTT broker a publisher, publishing 1000 messages, with a rate of 100msg/s,
and two subscribers. They simulated different network conditions, in each test,
increasing the value of message loss, thanks to Chaos Mesh.

0,0

0,5

1,0

1,5

2,0

2,5

3,0

50,0

55,0

60,0

65,0

70,0

75,0

80,0

85,0

90,0

95,0

100,0

0 5 10 15 20 25 30

Pu
bl

is
he

r-
to

-S
ub

sc
rib

er
 L
at

en
cy

 (s
ec

on
ds

, m
ea

n)

M
es

sa
ge

s
su

cc
es

sf
ul

ly
 tr

an
sf

er
re

d
(%

)

Configured Packet Loss of Broker Network Interface (%)

QoS 0 - Messages Delivered (%)
QoS 1 - Messages Delivered (%)
QoS 2 - Messages Delivered (%)
QoS 0: Pub-Sub Latency (sec, mean)
QoS 1: Pub-Sub Latency (sec, mean)
QoS 2: Pub-Sub Latency (sec, mean)

Figure 5.1: © 2021 IEEE - Message loss and latency for each QoS level, increasing
the network loss rate [41]

The result they obtained (Figure 5.1) shows how under a network loss rate of
25% no message loss is registered, this shows how until this value, the reliability
provided by TCP is enough. By further increasing the rate to 30% the value of
delivered messages for QoS-0 decreases to 84%, still having the 100% for QoS-1 and
QoS-2. Looking, instead, to latencies, the overhead given by QoS-1 is irrelevant to
respect QoS-0. However, from the 25% on of loss rate, they start diverging, reaching

34

5.1 – MQTT broker resiliency

a difference of about 0,5s at 30% of message rate. The four-way handshake of QoS-2
becomes a problem with loss rate higher than 15%, from which the curve quickly
grows.

On the whole, QoS-1 is a good solution whenever we need not to lose messages,
due to the limited overhead under the 25% of packet loss. QoS-2 allows to avoid
messages duplication, but the value of latency becomes problematic with higher
value of newtwork loss rate.

5.1.2 Persistency of the storage
The reliability of message delivery can be provided by QoS 1 and 2. However,
once the message is delivered to the broker, it must be able to forward the data
to the subscribers, without any loss, even in case of failures. A way to provide
the durability of the messages is the usage of persistent storage, allowing message
recovery even when the broker crashes and it is restarted.

Grüner et al. [41] investigated on how message persistency allows preventing
message loss in case of a broker failure. They used a K8S deployment with a
publisher and two subscribers connected to the message broker, storing the message
in a PVC with persistency provided by Ceph. Different commercial and open-source
implementations of MQTT brokers have been tested. The idea was to publish with
QoS-1 5000 messages. At message 2000, one of the subscribers s2 was disconnected,
in order to store some messages inside the message queue, then at message 2500
the broker was killed, and the subscriber reconnected.

Publisher Broker

Subscriber 1 (S1)

Subscriber 2 (S2)

Broker
volume

Figure 5.2: Schema of the scenario of the Grüner et al. data persistency experiment

Due to the storage persistency and the usage of QoS-1, the broker, once back on-
line, should be able to restore the messages, delivering the ones not received by the

35

5 – Performance and resiliency of a distributed MQTT broker

subscriber s2, after the disconnection, and going on forwarding the messages pro-
duced by the publisher, once it reconnects. Four different brokers have been tested:
EMQ X, HiveMQ, Mosquitto and VerneMQ, and the experiment was repeated 50
times for each of these brokers. The result of the experiment was unexpected; while
Mosquitto and HiveMQ, actually presented no message loss, EMQ X and VerneMQ
showed respectively an overall loss rate of 1,07% and 5,34%. However, the authors
supposed two different reasons why each of these brokers showed these losses.

• VerneMQ showed message loss in the 19% of runs, when both the subscribers
were unable to reconnect to the restarted instance of the broker. Therefore,
all the messages to be delivered after the broker restart went lost. The authors
supposed it might be related to a VerneMQ bug.

• EMQ X showed message loss in the 33% of the experiments. In most cases
the number of lost messages was around 500, the number of messages queued.
However, the Redis database, used for storing the messages, always contained
all the messages. As pointed out by the authors, this problem might be related
to a bug, which, in some cases, prevents the messages to be transferred from
Redis to the broker instance.

What it is possible to learn from this experiment is that persistency of the
storage is not the single condition allowing to prevent the message loss. While the
persistency allows reducing loss of messages, there are some cases in which it is not
enough, and messages go lost in any case. Moreover, messages stored by the broker
but not yet delivered, due to a broker failure, can be recovered only after the broker
restart, which according to the authors, might be up to 30 seconds. This means
that these messages are delayed by the broker restart time, and, depending on the
application, this data might not be useful anymore, as old.

5.1.3 Queue mirroring
From the previous chapter, we learned that storage persistency allows to prevent
message loss, but still, messages are delayed by the broker restart time. However,
if we could be able to make available this data to multiple instances of the broker,
after a broker failure, subscribers would connect to another instance of the broker,
and they would be able to recover the previous session, receiving all the messages
not yet delivered, without waiting for the failed broker instance restart.

This solution requires all the QoS-1 and QoS-2 messages to be replicated over
multiple instances of the broker, so performing a synchronization between the bro-
ker instances before sending back a PUBACK to the publisher. This increases the
complexity of the solution and might reduce the message throughput for messages
with higher level of QoS. [41] HiveMQ MQTT broker supports the queue mirror-
ing, thanks to its message duplication functionality, which allows to configure the

36

5.1 – MQTT broker resiliency

Publisher Broker 1 Broker 2

Publish X
Store X

Store X
Store X

X stored

PUBACK

Figure 5.3: Interaction between publishers and broker instances with queue mir-
roring enabled. Time from up to down.

broker cluster to replicate the messages over multiple instances of the broker [10].
Grüner et al. [41] tested this functionality by deploying a cluster of two instances
of the HiveMQ broker, without any persistent storage. They connected a publisher
to the first instance of the brokers, publishing 50000 messages, and two subscribers,
one for each broker instances. At message 2500, the second instance of the broker
was ungracefully terminated. As expected, even without persistency of the stor-
age, once the subscriber was able to reconnect, it received almost all the previous
messages (only two messages has been lost in one single run). In conclusion, queue
mirroring is a solution allowing to improve the availability of the messages, if used
in conjunction with storage persistency, might provide an high level of durability
of the data, even without the need to wait for the broker restart for recovering
messages. Unfortunately, this is not for free, since the previous experiment showed
an average difference in latency of about 2ms, probably due to the broker instances
data synchronization.

5.1.4 Data replication overhead
As seen in the previous chapters, the persistency of the storage allows to avoid
data loss when an instance of the broker goes down. However, even the storage
should be resilient, since if there is a hardware failure or a partitioning of the
network which makes the single copy of the data unreachable, data might be not
be accessed or, in the worst case, can go lost. When we work with Kubernetes,
there are storage providers allowing to have multiple replicas of the data in different
physical locations. This increases the availability of the data, since if a replica is
not reachable, there will be other available replicas. Moreover, in case of hardware
failures, other physical replicas of the data are available, minimizing the probability

37

5 – Performance and resiliency of a distributed MQTT broker

of data loss.

Random read Random write
0

10000

20000

30000

40000

50000

60000

70000

80000

IO
PS

Native
1 Replica
3 Replica

(a) IOPS

Read Write
0

100

200

300

400

500

600

700

la
te

nc
y

(m
icr

os
ec

on
ds

)

Native
1 Replica
3 Replica

(b) Latency

Figure 5.4: IOPS and latency of read/write memory access with Longhorn and the
Kubernetes native storage [68]

Storage provides, such as Rook Ceph or Longhorn, allow to have multiple copies
of the data, presenting one single logical volume to the applications. This allows
to replicate the data over the cluster in a completely transparent way. However,
whenever a writing operation is performed on a logical volume, the same operation
should be performed in each single replica of the data, requiring synchronization
between replicas, providing an additional overhead to the memory access. Figure
5.4 shows a coparison between the native Kubernetes storage and Longhorn with 1
or 3 replicas. It is possible to notice how the amount of reading and writing opera-
tion can be performed with Longhorn is lower, due to the need of synchronization
between replicas. Moreover, Longhorn introduces an additional overhead in terms
of latency, which in figure 5.4b goes between 100 to 500 microseonds per each IO
operation depending the number of replicas and the kind of operation. Once data
is replicated over multiple locations, it is possible to perform parallel reading access
to the data, in order to increase the workload. As showed in figure 5.5, a solution
using multiple replicas of the data presentes higher values of bandwidth in reading
operations, since it is able to handle the workload request by sharing the load over
the multiple physical volumes located in the nodes [68].

We wanted to measure the performance overhead provided by the storage repli-
cation in the context of a MQTT broker. In order to do that, we performed an
experiment similar to the one carried out by Koziolek et al. [51], for testing the
performance of different implementations of MQTT brokers. We constructed a
Kubernetes cluster with two VMs:

• Intel Xeon (Cascadelake) 2.2 GHz

38

5.1 – MQTT broker resiliency

Random read Random write Sequential read Sequential write
0

100

200

300

400

500

600

700

800

Ba
nd

wi
dt

h
(M

iB
)

Native
1 Replica
3 Replica

Figure 5.5: Bandwidth of read/write memory access with Longhorn and the Ku-
bernetes native storage [68]

• 4 vcores (50% of the physical core)

• 8GB ram

• Ubuntu 20.04.3 LTS

• Kernel: 5.4.0-48-generic

We deployed Longhorn 1.1.2 as storage provider and two replicas of VerneMQ
MQTT broker (v. 1.12.3). We reserved two cores for each instance of the broker,
in order to avoid any interference given by other services running in the cluster.
We connected to the broker 10 subscribers, consuming the data inside a topic, and
every two minutes we added a publisher, producing 300msg/s, until we reached the
cores saturation. We repeated the experiment two times, one with the Kubernetes
native ephemeral storage and the other with Longhorn, providing 2 replicas of the
data. We generated the requests with a third VM having 8 vcores and 16GB of
RAM in a physical machine with the same specifications.

We sent 150-bytes messages, a dimension close to the typical size of a C37.118
data frame [49]. The results (Figure 5.6) show almost no difference between the
two cases. Looking at the received message rate at figure 5.7, the two curves are
overllaped and both the solutions reach saturation at 1800m/s. In terms of latency,
it is possible to notice the slight difference given by Longhorn for the memory access,
since in all the cases, the solution using Longhorn presented higher latencies.

39

5 – Performance and resiliency of a distributed MQTT broker

300 600 900 1200 1500 1800 2100
mps

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

co
re

s

Longhorn, S1 core usage
Longhorn, S2 core usage
Longhorn, overall core usage
Native, S1 core usage
Native, S2 core usage
Native, overall core usage

(a) Broker cores usage

300 600 900 1200 1500 1800 2100
mps

100

101

102

103

la
te

nc
y

(m
s)

Longhorn storage
Native storage

(b) Message latency

Figure 5.6: 150 bytes messages -performance comparison between native storage
and Longhorn replicated storage (2 replicas)

On the whole, with the condition we tested, we were not able to observe a
real difference in performance between native and Longhorn replicated storage.
However, further investigations can be carried out, by performing some tests at
larger scale. In this case, the CPU was the bottleneck the difference in IOPS
between the two solutions could have an impact with higher message rates with

40

5.2 – Scalability and performance of an MQTT broker

300 600 900 1200 1500 1800 2100
mps (produced)

2000

4000

6000

8000

10000

12000

14000

m
ps

 (r
ec

ei
ve

d)

Longhorn, Message rate
Native, Message rate

Figure 5.7: 150 bytes messages - received message rate comparison increasing pro-
ducers message rate, with native storage and Longhorn replicated storage

brokers with more resources available.
It is possible to notice how in figure 5.7 the workload does not match with the

message rate at the receiving side, that is because in some cases messages went lost
even when the broker did not reach the saturation point. Looking at the VerneMQ
logs, we noticed that occasionally the broker instances randomly disconnected and
took some minutes before reconnecting. During the downtime, the replicas started
discarding the messages directed to the other. This means that all the messages
produced in one of the replicas but directed to a subscriber, connected to the other
broker instance, went lost. This behaviour is not expected and might be related
to a VerneMQ bug. Moreover, with QoS > 0, once the two replicas reconnect, the
messages not yet delivered to the subscriber of the other broker instances should
be eventually sent, but they were dropped.

5.2 Scalability and performance of an MQTT bro-
ker

Performance and scalability are two key features for an MQTT broker, since they
are supposed to work in IoT environments where there might be a great amount of
devices producing data at large scale, sometimes even with some requirements in
terms of latency. Koziolek et al. [51] carried out a comparison between commer-
cial and open-source distributed MQTT brokers, well analysing even the aspect of
performance and scalability. They carried out an experiment deploying in a K8S

41

5 – Performance and resiliency of a distributed MQTT broker

cluster, two instances of the analysed broker, an instance for each node (CentOS
8.1, Intel Xeon CPU E5-2660 v4 @ 2.00 GHz, 16 cores (32 threads) and 8 GB
of RAM), with four core reserved to each broker instances in order to avoid any
interference. They connected ten publishers and ten subscribers to the brokers, so
having a one-to-one configuration for testing. At the beginning, publishers started
publishing with QoS1 at a given publish rate, which was incremented by a con-
stant value every two minutes. This allowed the brokers to reach stability before
increasing the publishing rate. The results shows values of latencies under 10ms
with until 5000msg/s as workload for VerneMQ and EMQX, and higher latencies
for HiveMQ, which remain constant to a value around 100ms. Once reached the
CPU saturation latency increases really quickly. In any case, message latency was
under the 150ms for all the brokers, before reaching the CPU bottleneck.

300 600 900 1200 1500 1800 2100
mps

100

101

102

103

la
te

nc
y

(m
s)

150-bytes messages
1024-bytes messages
5120-bytes messages

Figure 5.8: Message latencies varying the dimension of the payload with QoS-1

Koziolek et al. did not take into consideration the different payload dimensions,
that is why we carried out some additional experiments with VerneMQ and the
configuration reported in section 5.1.4. Figure 5.8 shows the results we obtained.
Until 900 mps all the messages, with any dimension, was sent with latency lower
than 1ms, this value start increasing for the 5120-bytes messages at 1200mps and
for the others at 1500mps. Even though the delivery latency for 150-bytes messages
grows slowly to respect the others, at the end, with the tested conditions, we did
not notice great difference in latency, changing the dimension of the payload.

5.2.1 Benefits of the autoscaling
Multithread MQTT broker implementations seem to exploit all the available cores
of the machines, being able to vertically scale [51]. Horizontal scalability is another

42

5.2 – Scalability and performance of an MQTT broker

aspect to take into consideration. Many studies point out an incredibly high hor-
izontal scalability of distributed MQTT brokers, being able to connect millions of
clients [37, 30]. In the previous lines, we talked about CPU as a bottleneck, but it
is not the only limitation, as the scalability of the broker is the only aspect to take
into consideration. During the North America KubeCon 2018, Doyle et al. [37]
presented the way in which they connected five millions of clients to a VerneMQ
Kubernetes deployment. What comes out from this presentation is how consider-
ing all the dependencies is important when we want to go at scale. The MQTT
brokers rely on many different layers, such as routing, load balancing, storage, and
each of them could have an impact on the scalability and performance of the entire
system. Moreover, performing troubleshooting of these layered architectures and
understanding the source of problems is never easy. That is a reason why setting
up monitoring tools is so much important.

To
ta

l n
um

be
r
of

CP
U

 c
or

es
ut

ili
ze

d

Experiment time1 2 3 4 65 7 8 9 10Publishers:
(eachadding1000 requests/sec)

Initially
2 pods

CPU
threshold
crossed,
newpod(s)
started

New
publishers
assignedto
newpods

Existing
publishers/subscribers
remainon initially
assignedpods

4 CPU core
capreached
bypod-1

8 pods
started

Figure 5.9: CPU usage of VerneMQ instances with Kubernetes autoscaling
Springer Nature Customer Service Centre GmbH: Springer Nature - Heiko Koziolek, Sten Grüner, and Julius Rückert. A

comparison of mqtt brokers for distributed iot edge computing © 2020 - License n. 5143010172160

Koziolek et al. [51] analysed in which terms the Kubernetes autoscaling allows
to improve the scalability of a distributed MQTT broker. They carried out some
tests with the same configuration of the latency experiment we saw at section
5.2, therefore with two instances of the broker running on top of two nodes and
ten subscribers connected to the broker instances. However, this time one single
publisher at a time has been connected, adding 1000msg/s to the overall rate,
reaching a rate of 10000msg/s at the end of the experiment. Moreover, a CPU
threshold has been configured for the Kubernetes autoscaling, so that, once the
instances of the broker reach the threshold, a new one can be automatically spawned

43

5 – Performance and resiliency of a distributed MQTT broker

by Kubernetes, from a minimum of 2 instances to a maximum of 8.
The figure 5.9 shows the results they obtained in terms of core used by each of

the instances spawned by the Kubernetes autoscaling. The blue and yellow areas
show the CPU core consumption of the initial two instances of the broker, which
are much larger to respect the ones of the other instances. That is because, as
pointed out by the authors, once a new instance was spawned, the new connections
were redirected to it. However, all the existing connections (10 subscribers and
1 publisher spread between the two initial brokers) were not shifted to the new
instances. Therefore, the broker cluster can benefit from the Kubernetes autoscaling
when there is the need to support a larger number of publishers and subscribers,
but, since connections are not shifted, if the higher load is due to an increase of the
produced messages by publishers, the autoscaling will not help.

44

Chapter 6

Proposal of an architecture
for a distribution system

6.1 Service and infrastructure resiliency
In a scenario where centralized computations migrate to the edge, the complexity
of a geographically distributed infrastructure comes into play. The infrastructure
may be comprised of heterogeneous hardware and possibly physically insecure sites.
Moreover the number of sites can easily grow and this needs a scalable solution that
gives the possibility to join new sites to the group as seamlessly as possible.

Running workloads at the edge brings in availability problems that were al-
ready solved in a centralized architecture. For example in a cloud environment,
if a physical server has some failures the applications and VMs that were running
on that server will be reinstantiated in another server and it is even possible that
customers will not even notice the incident due to already running replicas. At the
edge resources are not as abundant as in cloud environment and network partition-
ing events that isolates one or more sites are a possibility that must be taken into
account. Therefore each site needs to withstand network partitioning and isolation
from the cloud and clearly a fully centralized control plane cannot be the solution.
Kubernetes can be of great help in orchestrating workloads and is considered as
foundation of the architecture presented in this chapter. However k8s alone can-
not be the solution, as will be showed in this section, and in the next chapter the
implementation problems will also be taken into account.

6.1.1 Geographically distributed clusters
Table 6.1 shows the number of primary and secondary stations across the years re-
ported in the Development plan 2020-2022 of e-distribuzione [38], a company inside
the Enel group operating in the electrical distribution sector. The plan presents

45

6 – Proposal of an architecture for a distribution system

an increasing number of stations (secondary and primaries) in their distribution
grid during the last ten years. As reported in the table, hundreds of thousands
of peripheral sites are involved, and each of them should be independent from a
centralized control, since they should be able to go on working even if they are
isolated. Having a unique big cluster is certainly not the right choice. Therefore,
it might be possible to split the distribution grid into areas following the energy
grid hierarchy. In order to minimize the impact of network partitioning, each area
cannot be managed as a unique cluster, but each site of the area will be a cluster.

Site
Year 2011 2012 2013 2014 2015 2016 2017 2018 2019

Primary stations 2.134 2.144 2.159 2.168 2.188 2.195 2.199 2.203 2.200
Secondary stations 432.074 436.204 438.359 439.558 441.056 442.418 443.774 445.159 446.410

Table 6.1: Number of primary and secondary station over years 2011-2019 [38].

Having a cluster per site strongly makes each site autonomous, since each of
them has a control plane guaranteeing that all the deployed services will stay up,
going on performing their computation even if isolated from the rest of the grid.
Each cluster should also be resilient to internal failures, withstand node failures,
control plane failures, storage failures. It is expected a sufficient number of nodes
and replicas of services and data to guarantee that the services will be kept running
even in case of the previously cited failures.

Configuration
source

Area A

Primary station Secondary station Production site

Kubernetes
cluster

Kubernetes
cluster

Kubernetes
cluster

Area B

Primary station Secondary station Production site

Kubernetes
cluster

Kubernetes
cluster

Kubernetes
cluster

Figure 6.1: Clusters organization with single source of truth

Managing such a high number of clusters is not a trivial and multi-cluster ap-
proaches, originally designed for multi-cloud clusters, might not be the best choice.
Even though a centralized control plane is not convenient, the services to be de-
ployed are known a priori, since they depend on the kind of site and area. Scheduling

46

6.2 – Data flow and communication resiliency

of services inside clusters is in charge of its local control plane. However, since the
services to be deployed and configurations are known a priori, they can be retrieved
from a single source of truth in cloud, via a push or pull fashion (Fig. 6.1).

6.1.2 Services
As previously stated, the services considered are PMUs and PDCs:

• PMUs require physical hardware and, being measurements units (data pro-
ducers), their location is bounded. Therefore their placement is considered
fixed and might be in each site (Secondary and Primary stations as well as
production sites).

• PDCs (Phasor Data Concentrator) are services that can act both as data
producer and consumer. They are defined in IEEE C37.247 as a set of functions
that produce an order output of the syncrophasors collected by the PMUs.
Each instance can be connected to several PMUs to collect data and can
produce one or more output that can be used by other applications or PDCs
as input. Being software services with no special hardware needs, they can
then be placed anywhere they are needed.

Since services are to be deployed in separate clusters, some of them, data pro-
ducers, are going to be exposed to the external network in order to be reachable
from services in other sites. In the case considered, PDCs are the components to
be exposed since they elaborate the data produced by PMUs so that can be used
by consumers.

6.1.3 Data resiliency
Data resiliency is a key requirement for delivering resilient monitoring and comput-
ing services that work with real time data. Historical data persistence is obviously
critical for performing data analysis for statistical meaning or post incident analy-
sis. What is needed is a mechanism to perform regular backups of disks or volumes
and replication of data, in order to withstand hardware and network failures.
A first level of data resiliency should be achieved at cluster level, so that data are
not tied to a single node but rather replicated across different nodes. Another level
of data resiliency should be achieved at a bigger scope, performing regular backups,
and possibly incremental, and pushing them to the cloud so that can data can be
accessed by analysts.

6.2 Data flow and communication resiliency
The introduction of renewable energy and new kind of loads, such as electric vehi-
cles, make the power system a dynamic environment. [49] Its orchestration can be

47

6 – Proposal of an architecture for a distribution system

facilitated via smart grids, allowing the integration of the efforts of the main actors
of the power system (generators, carriers and consumers) [45]. This is translated
in the need of increasing the observability of the power system [49], which can be
achieved via a huge network of sensors, interacting among them and with the in-
frastructure in order to provide information about the physical world. This data
can be later stored, processed, analysed in order to control the behaviour of the
grid through intelligent actuators [69] or for offline analysis [48]. It is clear that
smart grid networks should manage a great amount of data, delivered over different
physical media, coming from many different types of devices, some of them with
limited computational power, and with different requirements in terms of QoS [69].

6.2.1 Reducing distances with the Point of Presence
Some applications, especially the ones related to the control and stability of the
power system, have strict requirements in terms of data delivery latency [48]. Re-
ducing the distance between the interacting parts could be a way for reducing
latencies. Differently from the transmission systems, where the network follows the
power grid topology, is private, owned and self-managed by the transmission grid
operator, this is not always true with the distribution system, where the electrical
companies might need to rely on telecommunication providers. This means that, it
is likely that the sites of the distribution system are not directly connected through
dedicated links, but reaching a site from another requires a transit in the network
of the telecommunication provider.

Secondary substation

Primary sustation

Area control center

ISP network

PMU

PDC

HIgh level
PDC

1

2 3

4

State
estimator

Figure 6.2: Data enters and exits from the power provider network four times

Knowing the path of traffic is extremely important for optimizing it and reducing
latency. For example, let’s imagine having a set of PMUs producing data and
sending it to the PDC located in the closest primary station. The output stream is
then sent to the state estimator inside the area control center. Looking at figure 6.2

48

6.2 – Data flow and communication resiliency

and following the traffic, it might be clear how the exchanged data has to enter and
exit from the power provider network to the ISP network and vice versa multiple
times:

1. PMU data exits the electricity provider network and enters the ISP network.

2. From the ISP network, it is routed again to the power provider network in
order to be delivered to the PDC.

3. The output stream of the PDC needs to go back to the ISP network.

4. Finally, the stream reaches the state estimator entering into the electricity
provider network for the second time.

Figure 6.3: PoPs in Italy of Tiscali network
Available at https://business.tiscali.it/aziende/

This configuration is clearly not convenient since we are, at least, doubling the
round-trip time. We would like to have a geographical area, in the middle between
all these services allowing to terminate the traffic before, without entering and
exiting the electricity provider network. A Point Of Presence might be the perfect
place where to locate the critical services: it stays in the ISP network and there
is a great number of PoPs spread in a geographical area. Therefore, it would be

49

6 – Proposal of an architecture for a distribution system

the closest hop from any site of a distribution system area. For example, figure
6.3 shows a representation of the network of Tiscali, an Italian telecommunication
operator. As it is possible to notice, there is a large number of PoPs located all
over the national surface.

At this point it might be possible to consider a lower level PDC for each site
of the power grid, collecting the data of the local PMUs. Their output stream,
is then sent to the higher level PDC, located inside the ISP, where the ouput can
be sent as input of the local state estimator or other applications performing data
processing or storage of historical data. Figure 6.4 shows the resulting topology. In
this case the output stream of the PDC exists from the private network of the site,
reaching the Point of Presence where the PDC and the local estimator are placed.
This allows to reduce the path followed by the traffic, and consequently even the
transmission latency of the data. That is why we decided to physically move the
services of the area control center to the PoP.

Secondary substation

Primary substation

1 1

Point of Presence

State
estimator

High level
PDC

PMUPMU PDC PDC PMUPMU

Figure 6.4: Data exits a single time from the electricity provider network reaching
the PoP

It is important to notice that even though the ICT network of the distribu-
tion system might use the telecommunication provider network, the traffic of the
distribution system flows on top of an overlay network managed by the ISP or
by the power distribution operator, so that clusters, services and machines of the
electricity provider cannot be reached through the Internet.

6.2.2 A data-centric architecture
A smart grid might be seen as a huge distributed system, with devices and applica-
tions of different natures, producing, consuming, processing data and interacting in
order to provide a cohrerent service, which is a resilient power grid. In this context a
point-to-point interaction represents a too rigid approach, applications are difficult
to be written, the interactions between the components is fixed and introducing
new components or changing the existing ones could represent a problem [39]. The

50

6.2 – Data flow and communication resiliency

main idea would be having a data-centric architecture, where the actors don’t need
to know who is in charge of producing some data, where it should be retrieved and
who is consuming it. This can be achieved via the publish-subscribe paradigm,
where producers and consumers need only to know how to reach an intermediary
broker, and contacting it in order to consume or produce data. The data should
be accessible from any point of the grid without creating any dedicated channel.

Area 1

Secondary substation

Broker

PoP

Area controlBroker
High level PDC

State estimator

Cloud

sensorsensor

sensorPMU PDC

Primary substation

Broker

sensorsensor

sensorPMU PDC

Area 2

Secondary substation

Broker

PoP

Area controlBroker
High level PDC

State estimator

sensorsensor

sensorPMU PDC

Primary substation

Broker

sensorsensor

sensorPMU PDC

Figure 6.5: Distribution system as a data-centric architecture

A solution might be having a cluster of brokers for each area of the distribution
system. Brokers should be replicated for multiple reasons:

• Scalability: due to the great amount of expected traffic, a single instance of
the broker would not be enough;

• Latency: brokers should be located as close as possible to the data and the
consumers of that data;

• Resiliency: multiple instances of the broker allow to improve the availability
of the service; if any of the broker instances fail, there always will be another
instance able to accept the requests and deliver the data to the subscribers.

Any measure, processed or aggregated data published in a broker inside a cluster,
should be reachable from any broker belonging to the same cluster in a completely
transparent way. This enables the services belonging to the same area, to freely
exchange data, and to deploy new applications or data processing algorithms with-
out changing what already exists. In some cases, different areas of the distribution

51

6 – Proposal of an architecture for a distribution system

system might need to interact, for example, that’s the case of the inter control cen-
ter communication between the adjacent areas [48] or other data useful for offline
analysis. Typically this kind of data does not have strict requirements in terms of
latency. The idea is using services aimed to export a part of the data published
in the local cluster of brokers, in some cases performing some aggregation or local
processing, in order to reduce the dimension. Finally this data is sent to the cloud.
From here, it is possible to perform further processing or aggregation, data can be
stored, given to wide-area controllers, or delivered to other areas of the distribution
system or to any other component of the power grid which might require it.

PMUPMU

Broker -1

Primary substation

PDC-2

...
Point of Presence

PMUPMU

Broker-2

Secondary substation

PDC-1

State
estimator

PDC-2 out
stream

Subscribe PDC-2

2 1

3 4

Figure 6.6: Unoptimized traffic caused by subscription to a wrong broker instance

Another aspect to take into consideration is how the load is balanced over the
different instances of the brokers located over the area. We would like to be able
to connect the client to the closest broker, this has great importance in terms
of optimization of performance. For example, let’s consider the case of a PDC
placed inside a primary substation, this PDC produces the output stream which
is sent to the an instance of the broker located in that primary substation. In
the same location, the state estimator connects to a broker and subscribes to the
output stream of the PDC. However, we are not managing where the clients should
connect, therefore it connects to an instance of a broker in a secondary substation.
Following the path of the data in figure 6.6, the broker located in the secondary
substation should first retrieve the data from the instance of the broker in the
primary substation, where the PDC is sending the data, and then it can forward
it to the state estimator. This shows how selecting the right instance of the broker
is crucial when latency matters, otherwise we might have completely unoptimized
paths, with a negative impact on performance.

52

Chapter 7

Implementation

7.1 Implementation of the data-centric architec-
ture

As we have already seen in chapter 6 the main idea is having a data-centric archi-
tecture where sensors and services are able to transparently produce and consume
data without even knowing who is producing and consuming and what is their
state. However, a smart grid consists of a huge amount of devices, many of them
low-cost, with limited resource and computational power, sending data over net-
works with narrow bandwidth, such as NB-PLC, UMTS or GPRS [69]. This is a
fundamental aspect to take into consideration when the infrastructure is designed,
and technologies are chosen.

7.1.1 A cluster of MQTT brokers
The closer to the edge we are, the more is likely to find constrained devices. At this
level, the aim is collecting the produced data and forward it to the destination, there
is no need to persistently store data after it has been received by all the consumers
which subscribed. MQTT is the protocol guaranteeing the best trade-off between
lightness and reliability of the data, and among the TCP-based IoT protocols we
took into consideration, it is the one with the lower data overhead, latencies and
power consumption. That is why we decided to go to an MQTT-based solution.
We analysed different implementations of MQTT brokers, among them:

• Eclipse Mosquitto: it is a really popular MQTT broker, counting more than
5K stars in GitHub. It is a C-based implementation compliant with versions 5,
3.1 and 3. Unfortunately, Mosquitto does not support clusters, which means
that it is not possible to connect multiple Mosquitto broker instances so that
when a client publishes on one of the instances, the subscribers connected to

53

7 – Implementation

all the others are able to receive that data. That is why we couldn’t take into
consideration this solution. [6]

• EMQ X : presented as really scalable solution, EMQ X is a distributed Erlang-
based broker, not only supporting the MQTT protocol from version 3 to 5,
but also the MQTT-SN, CoAP, LwM2M, WebSocket and STOMP protocols.
While the EMQ X core is open-source, some of its functionalities are enterprise
only, among them the possibility to persistently save messages, so that after a
broker instance failure, messages do not go lost. [8]

• Hive MQ: it is a Java-based MQTT broker implementation. As the previous
solution, the Hive MQ core is open-source, leaving many other functionalities
to the enterprise version. That is the open-source version of Hive MQ does
not support the cluster mode. However, among the solutions we considered,
HiveMQ is the only one supporting the queue mirroring, the message repli-
cation over multiple instances over the broker, in order to improve the data
availability. [11]

• VerneMQ: it is a completely open-source distributed Erlang-based MQTT
compliant broker. VerneMQ supports a cluster of brokers and the persistent
storage of messages so that it is possible to recover not delivered messages
after a broker failure. [25]

Mosquitto EMQ X HiveMQ VerneMQ
Stars 5.1K 8.6K 649 2.5K
Contributors 111 72 20 39
Forks 1.7K 1.6K 181 303
Language C Erlang Java Erlang
Cluster mode No Yes Yes (Enterprise) Yes
Message persistency No Yes (Enterprise) Yes Yes

Table 7.1: Comparison between MQTT broker implementations.

We decided to select VerneMQ since it is the most complete open-source solution
among the group we took into consideration.

The aim is being able to connect to a broker and access to all the data sent
to any of the broker instances located in the same area. This can be achieved
by deploying a wide-area VerneMQ cluster. This means that all the VerneMQ
brokers of the area belong to the same cluster. However, it is important to notice
that the concept of Kubernetes cluster and VerneMQ cluster are totally different,
we are not obliged to have a VerneMQ cluster for each Kubernetes cluster, but
we can have a VerneMQ cluster across many different Kubernetes clusters, what
is important, is that each instance of the broker should be able to reach all the

54

7.1 – Implementation of the data-centric architecture

others in order to synchronize. Each of the site belonging to the area can separatly
deploy the VerneMQ instances, choosing the initial number of replicas and being
able to independently scale them. All these instances will eventually belong to the
VerneMQ cluster of their area. Once a VerneMQ broker starts, it can send a join
to any of the brokers of the cluster, and it will be informed about all the other
brokers belonging to that cluster [12].

A single MQTT broker cluster for each area allows to subscribe to any of the
data produced inside the area. However, network partitionings should be taken
into consideration, for example, a failure making a site not reachable from the
rest of the area. The default VerneMQ behaviour is not suitable in this case,
since when it detects the network partition, it will try to keep consistent all the
replicas of the broker, preventing all the clients performing any action (connect,
publish, subscribe, unsubscribe). That is during the time in which the cluster is
splitted, no one in the area is able to exchange data, with obvious catastrophic
outcomes. However, the default behaviour can be changed, it is possible to config-
ure VerneMQ in order to keep the eventual consistency by enabling the follow-
ing parameters: allow_register_during_netsplit, allow_publish_during_netsplit,
allow_subscribe_during_netsplit, and allow_unsubscribe_during_netsplit. This
means that when the VerneMQ cluster splits, all the partitions are able to go
on performing all the actions, finally synchronizing with all the others once the
connection is restored.

7.1.2 Brokers clustering and load balancing
A single cluster of brokers for each area provides a set of advantages in terms of
data availability. However, there are some problems to challenge in order to enable
this mechanism. They involve two aspects:

Inter-broker instances communication

With distributed brokers, each instance needs to directly interact with the others,
in order to synchronize, exchange information about the subscription, and exchange
the data required by the subscribers. However, each Kubernetes cluster indepen-
dently deploys its set of broker instances, and, by default, pods running in different
clusters are not able to talk directly. We found two possible solutions for this
problem:

• Exposing each broker instance with a service: in this case, each broker
instance is exposed to the outside cluster in order to make it reachable from all
the other clusters. This can be achieved by creating and exposing a service for
each pod of the StatefulSet. In order to support the autoscaling, it is possible
to write a controller in charge of assigning a new service to the newly created
pod of a StatefulSet set, and destroying it, when it is removed.

55

7 – Implementation

• Liqo: as a tool for sharing resources between different Kubernetes clusters,
it allows network flattening, automatically setting up all the needed rules and
the VPN tunnels, making reachable pods and services from different clusters.
Since each pod is able to reach all the services of the federated cluster, it
might be possible to use headless services, allowing to discover the existing
broker instances without the need to expose each single instance of the broker
to the outside world. However, something to take into consideration is that
the traffic between two different clusters always passes through a WireGuard
tunnel connecting the ones where the active Liqo gateway runs. This could
represent a bottleneck if there is a great amount of traffic exchanged between
the clusters.
Unfortunately, we were not able to test this solution due to a bug of the
virtual Kuberlet of Liqo. VerneMQ uses StatefulSet in order to launch the
broker instances. Whenever Liqo forwards the request of pod creation to the
child clusters, it adds a random number to the StatefulSet pod name, in order
to avoid conflicts. However, when using the downward APIs in order to obtain
the Pod name, the original name is returned, causing some problems with the
DNS name resolution. At the moment of writing the Liqo team is working on
this problem resolution. Therefore, the bug is going to be fixed in the following
releases.

Exposing the broker to the outside world

As reported in chapter 6, each publisher and subscriber accessing the MQTT broker,
should be redirected to the closest instance, in order to avoid an inefficient path
of the traffic. This could be achieved by exposing a separate entrypoint for each
site. Kubernetes allows the services running over the cluster to access the MQTT
broker, providing load balancing between the running instances. However, since
communication happens through the broker, sensors and devices outside the clusters
need to access it, still keeping the same load over the running instances. Using a
physical load balancer is not the solution due to the high cost of the device and the
need to have a load balancer for each site. Therefore, the broker can be exposed via
virtualized load balancers. Open-source solutions such as Metallb or Purelb, allow
to expose a service with an external IP address, and balancing the load between
the running instances of an application using the service load balancer. Both the
solutions provide two working modes:

• L2 load-balancing: in this case, whenever a service of type load balancer is
created, it receives an external IP address from the configured pool. Then,
one of the physical nodes of the cluster is elected as the leader for that service.
The leader is the node in charge of responding to the ARP requests related to
the associated IP address. This allows service to be reachable from the LAN.

56

7.1 – Implementation of the data-centric architecture

In any case, independently from the working mode, once the traffic reaches one
of the node of the cluster, the kube-proxy will be in charge of redirecting the
request to one of the running instances in the Kubernetes cluster. However,
this solution has some limitations related to the fact that all the traffic directed
to the exposed service always passes through its leader node. Since, in this
case, the major part of the traffic of the network pass through the MQTT
broker, this might becomes a serious bottleneck.

• L3 load-balancing: this solution exploits a routing protocol in order to an-
nounce the service IP addresses to the routers of the network, so making
reachable all the exposed services. While Metallb supports BGP only, Purelb
allows using any routing protocols for the distribution of the routes. However,
this means that the routers of the network should be configured in order to
perform equal cost multipath routing. In this case, the traffic for a service is
not directed to a single physical node, but it is spread over the different nodes
of the Kubernetes cluster, since the routers of the network perform the load
balancing. However, this solution does not gracefully react to the changes of
the nodes serving the requests. That’s because there is the need to redirect
the traffic belonging to the same session to the same node, and this is typically
done by performing the hash of the 5-tuple (protocol, source ip, source port,
dst ip and dst port) and, through it, selecting one of the nodes serving the
requests. However, if one of the nodes goes down or a new node is introduced,
even the way in which the hash is computed changes. Therefore, the traffic
will be redirected to different nodes. This means that a great part of the active
connections are interrupted, because if a node receives traffic from a TCP ses-
sion, which is not in its TCP session table, a TCP RST message is sent back,
closing the connection. In any case, this problem can be mitigated by using a
resilient ECMP hashing algorithm, allowing to keep stable the assignments of
the traffic, even after a change of the members serving the requests. [13, 18]

7.1.3 Organization of topics in the MQTT cluster
The MQTT protocol follows a topic-based publish-subscribe pattern, which means
that data is labelled with topics, that can be used by subscribers in order to select
the data they are interested in. The MQTT protocol uses hierarchical topics, allow-
ing to perform fine-grained or large-grained subscriptions, thanks to the wildcards.
For example, it is possible to perform a subscription to a sensor with id sensor-id
by subscribing to sensors/sensord-id, if the application is interested in all the
data produced by sensors, the wildcard allows to do that sensors/#.

Two types of wildcards can be used:

• Single-level wildcard: expressed with the + symbol, allows to replace an
element from the topic name.

57

7 – Implementation

If, for example, the topic patten is area/location/data-type, a subscription to

area-1/+/temperature

allows to receive all the data about temperature from all the existing locations
in area-1.

• Multi-level wildcard: while the single-level wildcard can be used multiple
times, the multi-level one can be used only at the end of the topic, this allows
the subscriber to receive all the data associated with a topic starting with all
there is before the wildcard. A subscription to:

area-1/location-1/#

allows to receive all the data produced in location-1 inside the area-1. [16]

A good design of the hierarchical structure of the topics allows the clients to
receive only what is needed, reducing the used bandwidth and allowing the sub-
scribers to receive only the data they need.

The architecture of the distribution system consists of many different sites, in
each, different sensors and services produce some data. This information can be
reported in the topic, in order to be able to select the location of the area from
which the subscribers wants to extract data. The pattern used by producers for
topics in this context will be:

{area}/{location-type}/{location-id}/{data-type}/{producer-id}

For example, let’s consider a PMU and a PDC exchanging synchrophasors with
the IEEE C37.118 protocol over MQTT. The PMU is located in a secondary station
with id 1156 and it has ID 765. The PDC will perform a subscription to the topic:
south-italy-113/secondary-station/1156/PMU/765. However, the PDC might
require all the data produced by PMU in that secondary station subscribing to
south-italy-113/secondary-station/1156/PMU/#.
Let’s now consider a high-level PDC located in the PoP of the same area, it is
able to subscribe to the output data stream of the PDC located over the area, by
performing a subscription to the topic south-italy-113/+/+/PDC/#.

7.1.4 Data processing with Kafka
The distributed MQTT broker allows to collect data from producers at the edge of
the power system and provides it to all the services requiring real-time data, which
are close to the data, for example, inside one of the sites of the power system.
However, some of this data require a higher level of processing, data-aggregation
and, then to be stored in operational databases. This can still be achieved using

58

7.1 – Implementation of the data-centric architecture

VerneMQ
MQTT broker

VerneMQ
MQTT broker

VerneMQ
MQTT broker

Kafka Broker

Data
Processing

Data
Aggregation

Kafka-MQTT
connector

Control

Operational
Data

High level
PDC

PDC PDCPMU

Kafka Broker

Data
Processing

Data
Aggregation

Data
warehouse

Offline
analysis

PDC PDCPMU

Control

Operational
data

Secondary station

ISP PoP

Cloud

Actuator

Actuator

Actuator

Actuator

IoT and smart
devices

Load
Balancer

Load
Balancer

Control actions

Real-time data

Historical data

MQTT brokers
sync. data

Control

Primary station

Load
BalancerSensorSensor

SensorSensor

Figure 7.1: Imeplemented architecture: the distributed broker collect data from
the edge, which is then processed in Kafka

59

7 – Implementation

the MQTT broker. However, a more natural way to do so is by using an event
streaming platform. Kafka is a high scalable solution allowing to ingest the great
amount of data coming from the different sites of the area, and it can be integrated
with a Stream data processing systems such as Storm, Spark Streaming, Samnza,
Flink, Kafka streams [66]. These solutions allow to perform data processing on
the fly, by constructing data processing pipelines, whose output can be reinjected
to Kafka, from which applications can consume the processed data, showing it in
dashboards, performing control operation, or it possible to store the result in a
database. This kind of processing should be performed where there is available
computational power and the closest place from all the sites of the area, where the
data is produced. This place is the PoP of the ISP, as seen in section 6.2.1, it is
the closet place from all the data of the area, PoPs indeed are widespread in the
territory, and it is a place where it is possible to have some computational power
available, given by general-purpose servers.

Another Kafka cluster can be placed in Cloud, where it is possible to import
the data coming from all the areas, and perform further processing and data ag-
gregation. Here data can be stored for offline analysis, or, for example, it can be
consumed by applications providing a higher level of control.

The deployment of a Kafka cluster in Kubernetes is simplified by Strimzi, a
set of operators and CRDs allowing the control of Kafka clusters by means of
the Kubernetes APIs, but also automatizing some not trivial procedures (such as
security configuration) [26, 19]. Strimizi allows to explicit the Kafka configuration
with a declarative approach, improving the maintainability and the portability
of the configuration, since replicating the same deployment or performing some
changes to the existing ones can be done by applying the yaml files containing the
configurations. The Strimzi operators will be in charge of applying all the required
changes.

7.2 Implementation of a solution integrating IEEE
C37.118 and MQTT

As seen in chapter 4, current implementations of PDCs and PMUs do not support
any publish subscribe protocol. The idea is to implement a version of the adapters
described by Hoefling et all. [42], supporting MQTT and the commanded mode,
since it is the most widely supported one. Adapters have been implemented in
python, using a python implementation of the IEEE C37.118 protocol [63] and
Eclipse Paho [7] as MQTT client library .

We developed two different components in order to allow the interaction with
the MQTT broker:

• PMU-adapter: This component stays between PMUs and broker, it acts
as PDC, asking the PMU for its data. Once the PMU adapter is able to

60

7.2 – Implementation of a solution integrating IEEE C37.118 and MQTT

PMU-1 PMU-adapter Broker PDC-adapter PDC

CMD-5
(send CFG-2 frame)

CFG-2

CMD-2
(start data stream)

CFG-2
retain

synchrophasors
synchrophasors

CMD-5
(send CFG-2 frame)

subscribe to

pmu_data/pmu-1

CFG-2
CFG-2

CMD-2
(start data stream)

synchrophasors
synchrophasors

TCP[IEEE C37.118] TCP[IEEE C37.118]TCP[MQTT[IEEE C37.118]]TCP[MQTT[IEEE C37.118]]

Figure 7.2: Schema of the interaction between adapters and broker

receive the data from the PMU, it can forward it to a topic in the MQTT
broker (by default the topic is pmu_data/pmu-N where N is the PMU ID). At
the moment each PMU adapter can be configured in order to set up a TCP
connection with a single PMU instance, therefore a PMU-adapter per PMU is
needed. Whenever the PDC requires to start the synchrophasors data stream,
it needs to receive a CGF-2 frame, so that it can be able to parse the received
synchrophasors. This can be achieved by instructing the PMU-adapter to
publish a CFG-2 with the retain flag every time it receives a new one or it
connects to the MQTT broker, so that the PDC is able to receive the CFG-2
frame as soon as it performs the subscription to the broker.

• PDC-adapter: Once synchrophasors are published on the topic of the MQTT
broker, a PDC needs to consume this data. It leverages a set of PDC adapters
in order to consume the data from PMUs. The PDC adapter, indeed, acts as a
PMU, so that the PDC can be configured in order to create a TCP connection
with the adapter, instead of the real PMU, and it will provide all the syn-
chrophasors published by the PMU in the related topic. This implementation
requires an instance of the PDC-adapter for each PMU we want to connect.

We checked the validity of the implementation using PMU connection tester [9],
a tool allowing the validation of the compliance of phasor measurement devices.
We connected the PDC-adapter to the PMU connection tester, receiving the data
forwarded to the broker by a PMU-adapter. It was also possible to interact with the
adapter as if it was a PMU, controlling the data stream, by sending the CMD-1 and
CMD-2 command frames, and requiring the header frame or a specific configuration
frames.

After the validation of the correctness of the implementation, we tested the
capability of this architecture to restore the messages when the connection between
the PDC and the PMU is interrupted. In order to test this scenario we used

61

7 – Implementation

PMU 1-adapter

MQTT broker

PDC-adapter
(PMU 1)PMU 1

PMU 2-adapterPMU 2

PMU 3-adapterPMU 3

PDC-adapter
(PMU 2)

PDC-adapter
(PMU 3)

PDC

Figure 7.3: Example of a deployment of the adapters

a K3s deployment, represented in figure 7.4, with an OpenPDC instance and a
PMU simulator exchanging data through the VerneMQ mqtt broker and the proper
adapters. We simulated a network partition via Chaos Mesh [17], making the broker
unreachable from the PDC-adapter. After a minute, the connection was restored,
and the PDC-adapter was able again to connect to the broker. As soon as it
reconnected, the broker delivered all the messages produced by the PMU during
the downtime.

PDC PDC-adapter

VerneMQ

PMU-adapter PMU

Chaos Mesh

Figure 7.4: Message recovery experiment scenario

The figure 7.5 shows the message rate from the moment of the reconnection. It is
possible to notice the high message rate when the adapter reconnects to the broker,
going down to the 25 msg/s (2.5 msg/100ms) after about 500ms. This means that
before being able to receive all the previous messages and start receiving only real-
time data, 500 ms were needed. This might be the evidence that restoring the
messages is not enough, because:

1. When the connection with the broker is restored, the PDC might be over-
whelmed by the messages received during the downtime.

2. Previous messages delay the real-time data.

62

7.2 – Implementation of a solution integrating IEEE C37.118 and MQTT

200 400 600 800 1000
ms

0

50

100

150

200

250

300

m
es
sa
ge
s/
10

0m
s

Figure 7.5: Message rate from connection restore after 1 minute of disconnection
from the broker

Therefore, smarter strategies should be used in order to be able to restore all
the messages received during the downtime and to handle the real-time data with
the right timing.

7.2.1 Latency overhead to respect TCP
The introduction of an intermediary broker, as previously seen, provides a set
of benefits, but also the introduction of an additional overhead due to the data
processing time of the broker, and the fact that, in the case of MQTT, data traverses
two different TCP connections, one from the PMU to the broker, and the other
from the broker to the PDC. Moreover, if we also consider the adapters, the TCP
connections traversed by the data become four.

Figure 7.6, shows the message latency of IEEE C37.118 data considering three
different cases, represented in figure 7.7:

1. Direct connection between PMU and PDC through a TCP channel,

2. Connection of a PMU and a PDC supporting the MQTT protocol, therefore
without any adapters in between. We measured this latency as the en-
lapsed time between the message sent by the PMU-adapter and its delivery to
the PDC-adapter, using QoS 1.

3. Connection of a PMU and a PDC connected to the broker through the adapters
we implemented, even in this case we used QoS 1.

63

7 – Implementation

TCP (1) MQTT QoS 1
PMU-adapter to PDC-adapter (2)

MQTT QoS1
PMU to PDC with adapters (3)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

m
s

Figure 7.6: Message latency of IEEE C37.118 data transported over TCP and
MQTT QoS 1

The figure shows a difference of 1/1,5ms between the C37.118 over TCP-only
(case 1) and the case without any adapter in between (case 2). This difference
increases of less than 1ms in most cases, when we consider the additional overhead
given by the introduction of the adapters for connecting the PMU and the PDC to
the broker (case-3). This additional time represents the time needed for a message
to reach the PMU-adapter from the PMU, and to reach the PDC from the PDC
adapter. On the whole, the latency introduced by the MQTT protocol and the
adapters does not seem to be relevant in most cases.

PDC

PMU

TCP[C37.118]

PMU

VerneMQ

PDC

(1) (2)

PMU

PMU-adapter VerneMQ PDC-adapter

PMU

TCP[MQTT[C37.118]]

TCP[MQTT[C37.118]]

TCP[C37.118]

TCP[C37.118]
TCP[MQTT[C37.118]]

(3)

Figure 7.7: Latency experiment scenarios

64

Chapter 8

Conclusions

The world is moving forward renewable sources of energy, more resilient and smart
grids are needed, and this can be achieved only being able to collect the data from
the physical world, processing it for real-time control or offline analysis. Data is
a crucial aspect, since not only provides the observability of the power grid but
it enables technologies, such as artificial intelligence, requiring a huge amount of
data. Thanks to the self-learning and the capability to evaluate great collection of
data, the AI allows to forecast the power load, analyse the consumers’ behaviour,
forecast the renewable energy production, power system fault diagnosis and fore-
casting [46]. However, these features can only be provided if all the data produced
by sensors, devices, services across the smart grid are able to safely reach all the
consumers, in compliance with their requirements in terms of QoS. A smart grid
can be seen as a great distributed system located in a huge geographical area,
where devices of different nature, some of them with limited computational power,
exchange huge quantity of data over different physical media. In this context, syn-
chronous point-to-point interaction is a too strict approach, since it makes really
difficult to handle the interaction between producers and consumers, and the so-
lution should cope with services and devices moving across the grid, for example,
changing the IP address. The publish-subscribe pattern seem to simplify the inter-
action between producers and consumers, since they do not have to directly know
each other and the interaction is not synchronous. Therefore, the interacting parts
are able to independently produce and consume data. This lead to a data-centric
architecture, where producers and consumers do not have to concern about IP ad-
dresses, but they deal only with data, simplifying the way in which applications
are written, improving the maintainability of the applications and the availability
of the data. Since anyone is able to listen to the data produced by consumers, inte-
grating new applications or processing algorithms is simpler and might not require
any modification to the rest of the system. The MQTT protocol is the best com-
promise between the current IoT protocols, in terms of data overhead, reliability,
performance and power consumption. However, MQTT relies on TCP, and it is

65

8 – Conclusions

widely known that, in lossy networks, the congestion control have a heavy impact
on performance and end-to-end latency. The solution might be using MQTT-SN,
in these contexts, a version UDP-based version of MQTT designed for lossy net-
works. However with UDP it is not possible to provide reliability, unless it is done
at the application level, and the absence of congestion control could lead to packet
loss and unnecessary power consumption [65]. The performance overhead given
by congestion control and connection establishment could be limited by adopting
QUIC, an application-based alternative of TCP, using UDP under the hood [40].
There is a good number of researches about the deployment of QUIC in IoT en-
vironments. Liri et al. [54] showed how QUIC performance in lossy environments
can be compared to MQTT-SN. Kumar and Behnam [52] showed how MQTT over
QUIC performs much better than the solution using TPC. It reduces the amount
of exchanged packets, the connection overhead, the CPU and memory usage, solves
the problem of the head-of-line blocking and reduces the dropped packets in case
of connection migration. Further investigations could be carried out in order to
understand the benefits and the shortcomings of QUIC in the power grid environ-
ments, where both the reliability given by TCP and the better performance and
lower resource consumption of UDP are needed.

We showed how the publish-subscribe pattern allows to decouple PMUs and
PDCs, to improve the availability of the data, since it is possible to write applica-
tions consuming the data pushed by PMUs and PDCs into the broker. Moreover,
the broker prevents data loss, allowing the subscribers to recover the data that has
been produced while it was down. Even though that data might not be used for
real-time applications, since they could be old, this data can be used for offline
analsys, as showed by MacIver et al. [55] with the Great Britain incident of 2019.
The python implementation of the Hoefling et al. [42] adapters integrating the
IEEE C37.118 standard and MQTT, shows how it is possible to recover messages
after a PDC downtime, but cleaver strategies should be deployed in order to restore
the previous messages, handling the real-time data with the right timing, without
any delay. The performance overhead given by the usage of the MQTT brokers and
the adapters remain still acceptable, with an increase of latency of about 1.5/2ms,
going down to 1/1.5ms considering PMUs and PDCs supporting the MQTT pro-
tocol. The presented adapters are not a solutiton to be deployed in production,
since the protocol should be directly supported by devices, but it is a way to under-
stand the benefits and possible shortcoming given by the adoption of the MQTT
protocol and a publish-subscribe pattern in this context. However, with the proper
optimization, it might be a good instrument supporting the transition to the new
communication pattern.

The broker represents the center of communication in our architecture, this
means that it could represent a single point of failure, as all the messages pass
through it. The reliability of the data, when are in travel, is guaranteed by TCP

66

8 – Conclusions

and the MQTT protocol. However, even the durability of the data should be pro-
vided, so that when the broker receives the messages, they are safely delivered to
all the subscribers requiring it. We saw that the persistency of the storage is a way
to reduce message loss, but in order to recover them, a full broker restart is needed,
requiring tens of seconds. Moreover, it does not completely solve the problem of
loss, since bugs or misconfiguration of the broker could be a cause of messages drop.
Another crucial aspect is scalability. The broker should be able to support the load
given by all the exchanged data. Using a distributed solution, such as VerneMQ,
HiveMQ or EMQX, allows to support larger amount of messages, since the load
is splitted over the different replicas of the broker, but still giving the possibility
to publish and receive the same message performing a subscription to any other
instance of the broker. Many investigations underline both the vertical and hor-
izontal scalability of these solutions [30, 37, 51], allowing even millions of clients
sending and receiving messages. The Kubernetes autoscaling is another instrument
allowing to handle some load variation on the distributed broker, but it is effective
only if the increase of loads depends on an increase of the number of clients, since
connections cannot be moved to the newly launched instances. Another aspect to
be taken into consideration is a proper broker configuration. Without the correct
tuning of the parameters, there might be unwanted messages drop or an increase of
latencies. For example, the VerneMQ distributed broker allows to set the value of
MAX_OFFLINE_MESSAGES or MAX_ONLINE_MESSAGES, which is respectively the maxi-
mum number of messages in the queue, waiting to be delivered to offline clients or to
online clients. These values allow to keep under control the memory consumption,
the pressure on the broker and, in the case of offline messages, to discard mes-
sages that will never be delivered to an offline client, since it will never reconnect.
Unfortunately, if these parameters are too low, we risk too many useful messages
discarding. The value of MAX_INFLIGHT_MESSAGES, instead, controls the maximum
number of messages, with QoS > 0, which can be inflight, which means all that
messages sent but not yet confirmed. This value avoids subscribers overwhelming
when configured in the broker, and to protect the broker when this value is con-
figured in the MQTT client. A too low value of MAX_INFLIGHT_MESSAGES
might cause some unwanted delays, since the message publishing is continuously
interrupted, while, with higher values, it is possible to increase the throughput but
with the risk of receivers saturation.

The presented architecture has been designed in order to achieve the goal of
data-centric architecture, where services, sensors and devices should only concern
about data, but keeping into consideration the huge scale of the power system.
That is the reason why we decided to have a VerneMQ cluster for each area of the
power system. Even though each Kubernetes cluster separately deploys the brokers,
they can join the same VerneMQ cluster, and they can exchange subscriptions and
messages. Even though all the brokers of the area belongs to the same VerneMQ
cluster, the brokers of the same site are separately exposed, so that each client is

67

8 – Conclusions

able to connect to the closest instance of the broker. The communication between
the single broker instances can be transparently enabled by Liqo, this unfortunately
do not work at the moment of writing, due to a Liqo bug preventing the VerneMQ
autoclustering. This bug is going to be fixed, but a workaround could be creating
and exposing a service for each broker to the outside of the cluster, or making
the services accessible via Liqo from the inside cluster. We already analysed the
scalability of the distributed MQTT brokers. Further analysis could be performed
in terms of broker parameters tuning, with the aim of optimizing performance and
efficiency in this large scale deployment. Moreover, this thesis work focused on the
application of synchrophasors exchange, in order to improve the observability of the
power system. Further investigations could be performed focusing on how, in the
context of power system and smart grid 2.0, other use cases fit with the presented
architecture.

68

Bibliography

[1] 2020 tied for warmest year on record, nasa analy-
sis shows | nasa. https://www.nasa.gov/press-release/
2020-tied-for-warmest-year-on-record-nasa-analysis-shows. (Ac-
cessed on 09/28/2021).

[2] AMQP 0-9-1 Model Explained — RabbitMQ.
https://www.rabbitmq.com/tutorials/amqp-concepts.html. (Accessed on
08/19/2021).

[3] Apache kafka. https://kafka.apache.org/intro. (Accessed on 28 Aug.
2021).

[4] Clean energy for all europeans package | energy. https://ec.europa.eu/
energy/topics/energy-strategy/clean-energy-all-europeans_en. (Ac-
cessed on 09/28/2021).

[5] Core stanzas - slixmpp. https://slixmpp.readthedocs.io/en/latest/
api/stanza/. (Accessed on 20 Aug. 2021).

[6] eclipse/mosquitto: Eclipse mosquitto - an open source mqtt broker. https:
//github.com/eclipse/mosquitto.

[7] eclipse/paho.mqtt.python: paho.mqtt.python. https://github.com/
eclipse/paho.mqtt.python.

[8] emqx/emqx: An open-source, cloud-native, distributed mqtt message broker
for iot. https://github.com/emqx/emqx.

[9] Gridprotectionalliance/pmuconnectiontester: Verifies data streams
from synchrophasor measurement devices. https://github.com/
GridProtectionAlliance/PMUConnectionTester.

[10] Hivemq cluster :: Hivemq documentation. https://www.hivemq.com/docs/
hivemq/4.6/user-guide/cluster.html#replication. (Accessed on 08 Sep.
2021).

[11] hivemq/hivemq-community-edition: Hivemq ce is a java-based open source
mqtt broker that fully supports mqtt 3.x and mqtt 5. it is the foundation of
the hivemq enterprise connectivity and messaging platform. https://github.
com/hivemq/hivemq-community-edition.

[12] Introduction - vernemq. https://docs.vernemq.com/clustering/
introduction. (Accessed on 09/19/2021).

69

https://www.nasa.gov/press-release/2020-tied-for-warmest-year-on-record-nasa-analysis-shows
https://www.nasa.gov/press-release/2020-tied-for-warmest-year-on-record-nasa-analysis-shows
https://kafka.apache.org/intro
https://ec.europa.eu/energy/topics/energy-strategy/clean-energy-all-europeans_en
https://ec.europa.eu/energy/topics/energy-strategy/clean-energy-all-europeans_en
https://slixmpp.readthedocs.io/en/latest/api/stanza/
https://slixmpp.readthedocs.io/en/latest/api/stanza/
https://github.com/eclipse/mosquitto
https://github.com/eclipse/mosquitto
https://github.com/eclipse/paho.mqtt.python
https://github.com/eclipse/paho.mqtt.python
https://github.com/emqx/emqx
https://github.com/GridProtectionAlliance/PMUConnectionTester
https://github.com/GridProtectionAlliance/PMUConnectionTester
https://www.hivemq.com/docs/hivemq/4.6/user-guide/cluster.html#replication
https://www.hivemq.com/docs/hivemq/4.6/user-guide/cluster.html#replication
https://github.com/hivemq/hivemq-community-edition
https://github.com/hivemq/hivemq-community-edition
https://docs.vernemq.com/clustering/introduction
https://docs.vernemq.com/clustering/introduction

Bibliography

[13] Metallb, bare metal load-balancer for kubernetes. https://metallb.
universe.tf/concepts/. (Accessed on 09/21/2021).

[14] Mqtt and kafka. how to combine two complementary. https://medium.com/
python-point/mqtt-and-kafka-8e470eff606b. (Accessed on 28 Aug. 2021).

[15] Mqtt: The standard for iot messaging. https://mqtt.org/. (Accessed on
08/19/2021).

[16] Mqtt topics & best practices - mqtt essentials: Part 5. https://www.hivemq.
com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices/. (Ac-
cessed on 09/19/2021).

[17] A powerful chaos engineering platform for kubernetes | chaos mesh®. https:
//chaos-mesh.org/.

[18] Purelb documentation. https://purelb.gitlab.io/docs/how_it_works/.
(Accessed on 09/22/2021).

[19] Strimzi overview guide (0.25.0). https://strimzi.io/docs/operators/
latest/overview.html. (Accessed on 09/23/2021).

[20] Sttp draft specification. https://github.com/sttp/Specification/raw/
master/Output/sttp-specification.pdf. (Accessed on 08/29/2021).

[21] sttp/connection-tester: Sttp connection tester. https://github.com/sttp/
connection-tester. (Accessed on 08/29/2021).

[22] sttp/cppapi: Native c++ api for sttp. https://github.com/sttp/cppapi.
(Accessed on 08/29/2021).

[23] sttp.net 1.0.11. https://www.nuget.org/packages/sttp.net/. (Accessed
on 08/29/2021).

[24] sttp/net-cppapi: Wrapped .net target apis for sttp. https://github.com/
sttp/net-cppapi. (Accessed on 08/29/2021).

[25] vernemq/vernemq: A distributed mqtt message broker based on erlang/otp.
built for high quality & industrial use cases. https://github.com/vernemq/
vernemq.

[26] Why run apache kafka on kubernetes? https://www.redhat.com/en/
topics/integration/why-run-apache-kafka-on-kubernetes. (Accessed
on 09/23/2021).

[27] Wikipedia - sottostazione elettrica. https://it.wikipedia.org/wiki/
Sottostazione_elettrica. (Accessed on 10 Sep. 2021).

[28] Xmpp | an overview of xmpp. https://xmpp.org/about/
technology-overview.html. (Accessed on 20 Aug. 2021).

[29] Mqtt version 3.1.1. http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/
mqtt-v3.1.1.html, 12 2015. (Accessed on 20 Aug. 2021).

[30] 10,000,000 mqtt clients, hivemq cluster benchmark paper, 2017.
[31] Zoran B. Babovic, Jelica Protic, and Veljko Milutinovic. Web Performance

Evaluation for Internet of Things Applications. IEEE Access, 4:6974–6992,
2016.

70

https://metallb.universe.tf/concepts/
https://metallb.universe.tf/concepts/
https://medium.com/python-point/mqtt-and-kafka-8e470eff606b
https://medium.com/python-point/mqtt-and-kafka-8e470eff606b
https://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices/
https://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices/
https://chaos-mesh.org/
https://chaos-mesh.org/
https://purelb.gitlab.io/docs/how_it_works/
https://strimzi.io/docs/operators/latest/overview.html
https://strimzi.io/docs/operators/latest/overview.html
https://github.com/sttp/Specification/raw/master/Output/sttp-specification.pdf
https://github.com/sttp/Specification/raw/master/Output/sttp-specification.pdf
https://github.com/sttp/connection-tester
https://github.com/sttp/connection-tester
https://github.com/sttp/cppapi
https://www.nuget.org/packages/sttp.net/
https://github.com/sttp/net-cppapi
https://github.com/sttp/net-cppapi
https://github.com/vernemq/vernemq
https://github.com/vernemq/vernemq
https://www.redhat.com/en/topics/integration/why-run-apache-kafka-on-kubernetes
https://www.redhat.com/en/topics/integration/why-run-apache-kafka-on-kubernetes
https://it.wikipedia.org/wiki/Sottostazione_elettrica
https://it.wikipedia.org/wiki/Sottostazione_elettrica
https://xmpp.org/about/technology-overview.html
https://xmpp.org/about/technology-overview.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

Bibliography

[32] Soma Bandyopadhyay and Abhijan Bhattacharyya. Lightweight internet pro-
tocols for web enablement of sensors using constrained gateway devices. In
2013 International Conference on Computing, Networking and Communica-
tions (ICNC), pages 334–340, 2013.

[33] R. Bayindir, I. Colak, G. Fulli, and K. Demirtas. Smart grid technologies and
applications. Renewable and Sustainable Energy Reviews, 66:499–516, 2016.

[34] Dale Lane Callum Jackson, Kate Stanley. Why enterprise messaging and
event streaming are different – ibm developer. https://developer.ibm.com/
articles/difference-between-events-and-messages/, 2020. (Accessed
on 27 Aug. /2021).

[35] Junwei Cao and Mingbo Yang. Energy internet – towards smart grid 2.0. In
2013 Fourth International Conference on Networking and Distributed Comput-
ing, pages 105–110, 2013.

[36] J. Ritchie Carroll and F. Russell Robertson. A COMPARISON OF PHA-
SOR COMMUNICATIONS PROTOCOLS. Technical Report PNNL-28499,
1504742, March 2019.

[37] Dylan O’Mahony Dave Doyle. Kubecon + cloudnativecon north america 2018:
Our journey to service 5 million messaging connections on kubernetes. https:
//kccna18.sched.com/event/GrRy. (Accessed on 10 Sep. 2021).

[38] E-distribuzione. Piano di sviluppo 2020-2022 (development plan 2020-2022).
https://www.e-distribuzione.it/content/dam/e-distribuzione/
documenti/e-distribuzione/Piano_di_Sviluppo_2020_22_30giu2020.
pdf, 2020.

[39] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The many faces of publish/subscribe. ACM Computing Surveys,
35(2):114–131, June 2003.

[40] Fátima Fernández, Mihail Zverev, Pablo Garrido, José R. Juárez, Josu Bilbao,
and Ramón Agüero. And quic meets iot: performance assessment of mqtt over
quic. In 2020 16th International Conference on Wireless and Mobile Comput-
ing, Networking and Communications (WiMob), pages 1–6, 2020.

[41] Sten Gruener, Heiko Koziolek, and Julius Rückert. Towards resilient iot mes-
saging: An experience report analyzing mqtt brokers. In 2021 IEEE 18th
International Conference on Software Architecture (ICSA), pages 69–79, 2021.

[42] Michael Hoefling, Florian Heimgaertner, Daniel Fuchs, Michael Menth, Paolo
Romano, Teklemariam Tesfay, Mario Paolone, Jimmie Adolph, and Vidar
Gronas. Integration of IEEE C37.118 and publish/subscribe communication.
In 2015 IEEE International Conference on Communications (ICC), pages 764–
769, London, June 2015. IEEE.

[43] Åsmund Hugo, Brice Morin, and Karl Svantorp. Bridging mqtt and kafka to
support c-its: a feasibility study. In 2020 21st IEEE International Conference
on Mobile Data Management (MDM), pages 371–376, 2020.

[44] IRENA. Innovation outlook: Renewable mini-grids, 2016.

71

https://developer.ibm.com/articles/difference-between-events-and-messages/
https://developer.ibm.com/articles/difference-between-events-and-messages/
https://kccna18.sched.com/event/GrRy
https://kccna18.sched.com/event/GrRy
https://www.e-distribuzione.it/content/dam/e-distribuzione/documenti/e-distribuzione/Piano_di_Sviluppo_2020_22_30giu2020.pdf
https://www.e-distribuzione.it/content/dam/e-distribuzione/documenti/e-distribuzione/Piano_di_Sviluppo_2020_22_30giu2020.pdf
https://www.e-distribuzione.it/content/dam/e-distribuzione/documenti/e-distribuzione/Piano_di_Sviluppo_2020_22_30giu2020.pdf

Bibliography

[45] Nick Jenkins, Janaka Ekanayake, and Goran Strbac. Distributed Generation.
Institution of Engineering and Technology, January 2010.

[46] Jian Jiao. Application and prospect of artificial intelligence in smart grid. IOP
Conference Series: Earth and Environmental Science, 510:022012, jul 2020.

[47] Paul Lysak Kai Waehner. Confluent, mqtt, and apache kafka
power real-time iot use cases. https://www.confluent.io/blog/
iot-streaming-use-cases-with-kafka-mqtt-confluent-and-waterstream/,
2020. (Accessed on 28 Aug. 2021).

[48] Prashant Kansal and Anjan Bose. Bandwidth and latency requirements for
smart transmission grid applications. IEEE Transactions on Smart Grid,
3(3):1344–1352, 2012.

[49] Konstantinos V. Katsaros, Binxu Yang, Wei Koong Chai, and George Pavlou.
Low latency communication infrastructure for synchrophasor applications in
distribution networks. In 2014 IEEE International Conference on Smart Grid
Communications (SmartGridComm), pages 392–397, Venice, Italy, November
2014. IEEE.

[50] Michael Koster, Ari Keränen, and Jaime Jimenez. Publish-Subscribe Bro-
ker for the Constrained Application Protocol (CoAP). Internet-Draft draft-
ietf-core-CoAP-pubsub-09, Internet Engineering Task Force, September 2019.
Work in Progress.

[51] Heiko Koziolek, Sten Grüner, and Julius Rückert. A comparison of mqtt bro-
kers for distributed iot edge computing. In Anton Jansen, Ivano Malavolta,
Henry Muccini, Ipek Ozkaya, and Olaf Zimmermann, editors, Software Archi-
tecture, pages 352–368, Cham, 2020. Springer International Publishing.

[52] Puneet Kumar and Behnam Dezfouli. Implementation and analysis of QUIC
for MQTT. CoRR, abs/1810.07730, 2018.

[53] Legambiente. Il clima é giá cambiato. Technical report, 11 2020.
[54] Elizabeth Liri, Prateek Kumar Singh, Abdulrahman BIN Rabiah, Koushik

Kar, Kiran Makhijani, and K.K. Ramakrishnan. Robustness of iot application
protocols to network impairments. In 2018 IEEE International Symposium on
Local and Metropolitan Area Networks (LANMAN), pages 97–103, 2018.

[55] Callum MacIver, Keith Bell, and Marcel Nedd. An analysis of the august
9th 2019 gb transmission system frequency incident. Electric Power Systems
Research, 199:107444, 2021.

[56] K. E. Martin, G. Brunello, M. G. Adamiak, G. Antonova, M. Begovic, G. Ben-
mouyal, P. D. Bui, H. Falk, V. Gharpure, A. Goldstein, Y. Hu, C. Huntley,
T. Kase, M. Kezunovic, A. Kulshrestha, Y. Lu, R. Midence, J. Murphy, M. Pa-
tel, F. Rahmatian, V. Skendzic, B. Vandiver, and A. Zahid. An overview of
the ieee standard c37.118.2—synchrophasor data transfer for power systems.
IEEE Transactions on Smart Grid, 5(4):1980–1984, 2014.

[57] Nitin Naik. Choice of effective messaging protocols for iot systems: Mqtt, coap,
amqp and http. In 2017 IEEE International Systems Engineering Symposium

72

https://www.confluent.io/blog/iot-streaming-use-cases-with-kafka-mqtt-confluent-and-waterstream/
https://www.confluent.io/blog/iot-streaming-use-cases-with-kafka-mqtt-confluent-and-waterstream/

Bibliography

(ISSE), pages 1–7, 2017.
[58] Ozgur Ozturk. Introduction to xmpp protocol and developing online collabo-

ration applications using open source software and libraries. In 2010 Interna-
tional Symposium on Collaborative Technologies and Systems. IEEE, 2010.

[59] Peter Saint-Andre and Joe Hildebrand. Message delivery receipts. https:
//xmpp.org/extensions/xep-0184.html.

[60] Hossein Shahinzadeh, Jalal Moradi, Gevork B. Gharehpetian, Hamed Nafisi,
and Mehrdad Abedi. Iot architecture for smart grids. In 2019 International
Conference on Protection and Automation of Power System (IPAPS), pages
22–30, 2019.

[61] Terna. Italian national grid. https://www.terna.it/en/about-us/
business/italian-national-grid. (Accessed on 10 Sep. 2021).

[62] Terna. Piano di sviluppo 2021 (development plan 2021). https://download.
terna.it/terna/Piano_Sviluppo_2021_8d94126f94dc233.pdf, 2021.

[63] Stevan Sandi Tomo Popovic, Bozo Krstajic. pypmu - python implementation
of the ieee c37.118 synchrophasor standard. https://github.com/iicsys/
pypmu.

[64] Peter Waher. Quality of service. https://xmpp.org/extensions/inbox/
qos.html.

[65] Chonggang Wang, K. Sohraby, Bo Li, M. Daneshmand, and Yueming Hu. A
survey of transport protocols for wireless sensor networks. IEEE Network,
20(3):34–40, 2006.

[66] Han Wu. Performance and Reliability Evaluation of Apache Kafka Messaging
System. PhD thesis, Freien Universität Berlin, 2020.

[67] Xuandong Xiong and Jiandan Fu. Active status certificate publish and sub-
scribe based on amqp. In 2011 International Conference on Computational
and Information Sciences. IEEE, Oct 2011.

[68] Sheng Yang. Performance and scalability report for longhorn
v1.0 | the longhorn blog. https://longhorn.io/blog/
performance-scalability-report-aug-2020/, 2020. (Accessed on
10/10/2021).

[69] Agustin Zaballos, Alex Vallejo, and Josep Selga. Heterogeneous communica-
tion architecture for the smart grid. IEEE Network, 25(5):30–37, September
2011.

73

https://xmpp.org/extensions/xep-0184.html
https://xmpp.org/extensions/xep-0184.html
https://www.terna.it/en/about-us/business/italian-national-grid
https://www.terna.it/en/about-us/business/italian-national-grid
https://download.terna.it/terna/Piano_Sviluppo_2021_8d94126f94dc233.pdf
https://download.terna.it/terna/Piano_Sviluppo_2021_8d94126f94dc233.pdf
https://github.com/iicsys/pypmu
https://github.com/iicsys/pypmu
https://xmpp.org/extensions/inbox/qos.html
https://xmpp.org/extensions/inbox/qos.html
https://longhorn.io/blog/performance-scalability-report-aug-2020/
https://longhorn.io/blog/performance-scalability-report-aug-2020/

	Introduction
	Power grid resiliency with micro-grids
	ICT resiliency in a smart grid 2.0
	Overview of communication resiliency

	ICT architecture in an electrical power grid
	Production system
	Transmission system
	Distribution system

	Publish-subscribe in smart grid environment
	A solution for huge distributed systems
	The three levels of decoupling

	Selection of a publish-subsribe-based protocol
	Advanced Message Queuing Protocol (AMQP)
	Constrained Application Protocol (CoAP)
	Message Queue Telemetry Transport (MQTT)
	Extensible Messaging and Presence Protocol (XMPP)
	IoT protocols comparison
	Event streaming platform (Kafka) vs messaging systems

	Synchrophasors exchange over publish-subscribe
	Current phasors communication protocols
	IEEE C37.118
	IEC 61850-90-5
	STTP: a new standard for phasor communication

	STTP as a solution for synchrophasors exchange
	IEEE C37.118 messages over publish-subscribe
	An intermediate layer between PMUs and PDCs

	Performance and resiliency of a distributed MQTT broker
	MQTT broker resiliency
	Message loss and latencies varying QoS
	Persistency of the storage
	Queue mirroring
	Data replication overhead

	Scalability and performance of an MQTT broker
	Benefits of the autoscaling

	Proposal of an architecture for a distribution system
	Service and infrastructure resiliency
	Geographically distributed clusters
	Services
	Data resiliency

	Data flow and communication resiliency
	Reducing distances with the Point of Presence
	A data-centric architecture

	Implementation
	Implementation of the data-centric architecture
	A cluster of MQTT brokers
	Brokers clustering and load balancing
	Organization of topics in the MQTT cluster
	Data processing with Kafka

	Implementation of a solution integrating IEEE C37.118 and MQTT
	Latency overhead to respect TCP

	Conclusions
	Bibliography

