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Summary

Spiking neural networks (SNN) are a new paradigm of artificial neural networks
that aims to emulate the human brain’s behaviour more accurately. First of
all, differently from their classical counterparts, as the name itself suggests, they
propagate information through discrete spikes. Secondly the model tries to mimic
the membrane potential dynamics of a biological neuron. Finally the learning
process itself can be chosen in order to be as similar as possible to what today
seems to happen in a human brain.
The biological plausibility of the model however is not the only advantage. Working
with simple spikes, which are representable in numeric terms using a single bit,
avoids the need for complex multiplications and does not involve the computation
of non-linear output functions. This leads to an algorithm that is lighter and more
suitable for the creation of a hardware accelerator.

This thesis aims to the complete development of a model that can be efficiently
translated into an hardware architecture. The main challenge is to minimize the
resources required by the algorithm to maximize the area utilization and obtain
the maximum performances with a fixed hardware.
In this sense the mathematical model that describes the behaviour of the artificial
neuron has a dominant role. For this reason the model chosen is the Leaky Integrate
and Fire (LIF) which treats the neuron as the parallel of a capacitor and a resistor.
It is sufficiently simple but at the same time allows a quite biologically accurate
description of the neuron.
For the same reasons the chosen training algorithm is the Spike-Timing Dependent
Plasticity (STDP). It consists in increasing the weight associated to a specific
synapse if the time difference between when an input spike arrives through it and
when the target neuron itself fires is sufficiently low. On the contrary if the role of
the synapse is negligible, meaning that the input spike traveling through it reaches
the target neuron after it has generated an output spike, its weight is decreased.

The model has been realized from scratch, taking the state of the art solutions as a
reference and trying to make it as light as possible in order to target an hardware
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accelerator. The model has been tested using Brian 2, a simulator for spiking
neural networks written in python. In this phase the parameters of the developed
model have been finely tuned in order to guarantee its correct behaviour and to
obtain acceptable accuracy results. Once the network was ready and completely
defined in terms of the characteristic equations describing the neurons’ behaviour,
the model has been explicitly implemented using python language. Here the first
choices that aimed at the minimization of the required resources have been taken.
First of all the way in which each neuron is updated, for example choosing a step-
based solution instead of an event-based one. Once described the network and the
inner computations performed by it in detail the obtained structure was simulated,
verifying that the results were comparable with the Brain 2 version. The network
has been then further simplified to reduce the complexity to a minimum without
considerably affecting the accuracy. Finally a possible architecture is presented,
considering an offline learning system, and a first estimation of the performance is
provided.

Spiking neural networks represent a relatively new field of research and present a
huge variety of possible choices in terms of the model to describe the behaviour
of the neurons, the learning method, the structure of the network itself, so the
way in which neurons are interconnected one to the other. Different models are
suitable for different applications, so there are versions that allow a very detailed
and faithful description of a real biological neuron, but are not suitable for an
hardware accelerator due to their complexity. Along this thesis work different
alternatives are presented, in particular for what concerns the available models for
the membrane potential, and the reasons for which one solution is preferred over
the others is specified. The goal is to provide an overview of SNN in general, their
behaviour and the possible choices that can be taken along the project. The hope
is that this work could serve as a possible starting point for the ones that approach
spiking neural network for the first time.
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Chapter 1

Introduction

Artificial neural networks represent a first human attempt to emulate his own
brain. In many cases the models take inspiration from the biological organ but
then separate themselves from it, trying to optimize their applicability in real world
situations. Spiking neural networks represent a possible solution to fill this gap
between biological plausibility and effective usefulness of the model in practical
applications, so as pattern recognition, classification and similar tasks.
This chapter provides a brief overview of the reasons that have led to the choice
of spiking neural networks as the target of an hardware accelerator and allows to
better understand the decisions that have been taken along the project.
First of all, a simple model of a biological neuron is presented. This is fundamental
to understand the main characteristics of artificial neural networks and even more so
of spiking neural networks. After this a brief overview on the first ANNs is presented.
Finally, spiking neural networks are introduced and their main characteristics are
explained. They will be examined in more detail in the following chapters.

1.1 Biological neural network model
Human brain is composed by tens of billions of neural cells interconnected among
themselves. In order to better understand how the information is elaborated inside
the brain let’s start by analyzing the structure of these cells, the neurons. Figure
1.1 shows a simple model of a biological neuron. Its main elements are:

1. Body of the neuron, also called soma: this is characterized by a membrane
potential which can be increased by excitatory inputs or decreased by inhibitory
inputs. Since the neuron is not perfectly isolated it presents a certain amount
of leakage that in turns decreases the membrane potential. This means that,
in absence of excitatory inputs and within a time interval that depends from
the discharging time, the membrane potential tends to stabilize itself to a rest
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value. Whenever the membrane potential exceeds a threshold the neuron itself
becomes active, generating an output signal, known as the action potential,
and its membrane potential is reset to the rest value.

2. Dendrites: input extremities of the neuron. These allow the neuron itself to
receive signals from other neurons. As a consequence each neuron presents
many of these dendrites.

3. Axon: output extremity of the neuron. It allows to transmit signals from the
neuron towards other cells. Each neuron presents a single axon.

4. Axon terminals: terminal ramification of the axon that allows to connect it
to multiple neurons.

Figure 1.1: Biological neuron model from Egm4313.s12 at English Wikipedia,
CC BY-SA 3.0, via Wikimedia Commons

It has been observed that the action potential, propagated through the axons and
received by the dendrites takes the shape of short current spikes.
This spike is transferred from the axon terminals to the dendrites through synapses.
Whenever a spike arrives through a specific synapse the membrane potential is
increased or decreased, depending on if the corresponding input is excitatory or
inhibitory. If the membrane potential exceeds a threshold it in turns emits a spike.
In technical jargon it is said that the neuron fires.

Each synapse has its own weight in increasing or decreasing the membrane potential,
meaning that some inputs have a stronger impact on modifying the state of the
neuron. The learning consists in the fine tuning of the weights of different synapses
in order to adapt the neuron response to the received inputs. If for example a
specific input is more likely to make the current neuron fire its weight is increased.
Vice versa if it doesn’t have an active role in making the membrane potential
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exceed the threshold its weight is decreased. This creates paths inside the brain
that interconnect neurons that are frequently active together and this is one of the
main characteristics that allows the human being to learn and to remember. This
capability of strengthen or weaken the synapse is called plasticity.

1.2 Artificial neural networks
Artificial neural networks are in general mathematical models inspired by the
human brain. They are composed by interconnected artificial neurons, each of
which applies a specific mathematical function to its inputs and then propagates
the result towards all the neurons connected to its output. Figure 1.2 shows a
graph representation of a generic ANN. It can be seen that the network is organized
in columns, called layers. Each node represents a neuron, except for the nodes
in the first layer. Each neuron is connected to all the nodes of the previous and
following layer, leading to what is called a fully connected graph.

Figure 1.2: Generic artificial neural network

The network is organised in:

1. Input layer: first group of nodes. The nodes are not associated to physical
neurons, but to the inputs of the network. For example if the network has
been designed to work with real numbers, each node represents the numerical
value of a specific input. If instead it is a spiking neural network each node is
associated to a spike train of a predetermined duration.
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2. Output layer: last group of nodes. It is not connected to any other layer of
neurons and provides the result of the elaboration performed by the network
as an output.

3. Hidden layers: all the layers that stay between the input and the output
layers.

For classical ANN the similarity with the human brain is only vague: the information
exchanged between the neurons is generally represented in form of real numbers
and the neurons themselves apply functions that have nothing to do with the real
behaviour of a biological neuron. Figure 1.3 shows a generic model of an artificial
neuron, that is generally composed by:

1. Weighted sum of the inputs. The neuron is treated as an ideal integrator, that
simply add together the inputs without decreasing the obtained value in any
way with the passage of time. In reality there will always be some leakage and
so a more biologically plausible model should behave as a leaky integrator.

2. Application of a non-linear function, called the activation function, to the
result.

Figure 1.3: Generic artificial neuron

Examples of non-linear functions used in neural network models are the binary
step, the sigmoid function, the hyperbolic tangent, the Rectified Linear Unit (ReLU).

A possible approach to compare this kind of models with the biological structure
presented in the previous section is the following one:

• As said before the type of information exchanged by the neurons is completely
different from the biological case. Here each neuron receives real numbers in
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input and returns a real number as an output, while in the biological model
both inputs and output are represented using trains of spikes. The only way
to correlate the two kind of data encoding is to consider the real number as
a parameter which describes a specific characteristic of the train of spikes,
for example the frequency of the spikes, also called firing rate. In this case
the higher the real value, the higher the number of spikes received from the
specific input within a predetermined time interval.

• The neuron first of all performs a weighted sum of its inputs. The result can
be interpreted as the value of the membrane potential.

• Secondly a non-linear function is applied to the result. In the simplest case in
which this activation function is a binary step it can be seen as the application
of a threshold: if the weighted sum is higher than a threshold the neuron fires,
otherwise it doesn’t. If instead the function is more complex its output can
be again associated with the firing rate of the neuron.

However this is an artifice to find a similarity between the models and has no
practical relevance.

From the learning point of view the most used method in classical ANN is the
backpropagation: the network is provided with both the input and the expected
output and a cost function is computed as the difference between the expected
value and the real output of the network. The learning consists in minimizing this
cost function by changing the weights of the synapses of all the neurons starting
from the output layer and moving towards the inputs, propagating the error in the
backward direction. In this way the network gradually adapts itself to the received
inputs and becomes able to distinguish and classify them.

Even if with the current knowledge of the way in which the human brain learns it is
not possible to exclude a priori a possible role of the backpropagation in the learning
process, it doesn’t seem the most plausible way. Today the most promising method
seems to be the spike timing dependent plasticity, an unsupervised method based
on the temporal difference between the arrival of input and output spikes. The
difference between supervised and unsupervised methods is presented in chapter 6,
while the STDP method is briefly explained in the next section and then investigated
in detail in the next chapters.

Even if ANN are in general quite different from a biological brain they have shown
themselves very useful in many fields, from the data classification to computer
vision, to pattern recognition and so on.

5



Introduction

1.3 Spiking neural networks
Spiking neural networks try to mimic the biological brain more accurately. They
have been called "the third generation of neural network models"[1] thanks to their
biological plausibility. As in more classical ANN the network can be seen as a
group of interconnected neurons. Figure 1.4 shows a schematic model of a spiking
neuron. It can be seen that both the inputs and the output are encoded in form of
spike trains. This implies a first crucial difference with respect to the previously
presented models, that is the introduction of the concept of time.

Figure 1.4: Simple spiking neuron

Spikes intrinsically bring a binary information:

1. A spike arrives through the specific synapse during the current time step.

2. No spike is received from the synapse during the current time step.

SNN use an extra dimension, the time, to encode more complex information. This
implies that the moment in which a spike arrives, the number of spikes that reach a
neuron within a certain time interval and the time distance between two subsequent
spikes all become important parameters that affect the output of the neuron.

Many mathematical models have been created to describe the temporal evolution
of the membrane potential of a biological neuron. They will be analyzed in chapter
4. The common principles on which they are based are:

1. Every time the neuron receives a spike from an excitatory synapse its membrane
potential is increased by a quantity proportional to the synapse weight.
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2. Every time the neuron receives a spike from an inhibitory synapse its membrane
potential is decreased by a quantity proportional to the synapse weight.

3. The membrane potential decreases with the passage of time and, in absence
of excitatory inputs, it tends towards a rest value.

4. Every time the membrane potential exceeds a threshold the neuron fires and
the membrane potential is reset to the rest value.

So to sum up the membrane potential model behaves as a leaky integrator with a
firing threshold that once exceeded causes its reset.

As said before the chosen learning method is the spike timing dependent plasticity,
which seems to be the best model of the biological process of learning. It consists
in modifying the weight of a synapse on the base of its relevance in making the
neuron fire. In particular:

• If an input spike arrives through the synapse shortly before the neuron fires
it probably has a primary role in the generation of the output spike. In this
case the synapse weight is increased.

• If instead the input spike coming from the specific synapse arrives after the
neuron has fired it is probably irrelevant for the generation of the output spike.
In this case the synapse weight is decreased.

So spiking neural networks provide a simplified model of a biological brain, involving
its main features but at the same time allowing to reach an accuracy that is near to
the one of more abstract artificial neural network models. A right balance between
biological plausibility and practical applicability is fundamental to advance in the
understanding of how a human brain works.
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Chapter 2

Brief history of SNN: model
of a biological neuron

This chapter provides a brief overview of the main historical steps that have led to
the models and methods that will be used along the project. Its aim is not to be a
comprehensive historical reference but to analyze the main historical figures that
have allowed to advance the understandings in how the human brain works and
how to mathematically model and emulate it.

2.1 First recorded reference to the brain
The first documented reference to the human brain dates back to the 17th century
BC. It corresponds to a hierogliph, repeated eight times inside an Egyptian manual
of military surgery.

Figure 2.1: Brain hierogliph from Riccardo.metere, CC BY-SA 4.0, via Wikimedia
Commons
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The manual is considered the first medical treatise on trauma and reports 48 types
of injuries, fractures, wounds, dislocations and tumors, with a total length of the
document of 4.68m. Between the various injuries also head wounds are cited: the
papyrus refers to the external surface of the brain, together with the meninges and
the cerebrospinal fluid. The interesting aspect of the document is that it shows
a very rational approach towards medicine, resorting to magic only to explain
mysterious illnesses still not understandable with the science of the time.

The papyrus was named Edwin Smith Papyrus[2] after Edwin Smith, the man that
acquired it in Luxor in 1862 from the Egyptian seller Mustafa Agah.

2.2 Galvani and the animal electricity
Along the path towards the modeling of the behaviour of a biological neuron
one fundamental step has been the discovery of the transmission of electricity in
biological organisms. This opened the way to many studies which demonstrated
that the information is propagated inside the brain, and in the same way from the
brain to the rest of the body, through electricity.

The first who hypothesized the role of the electricity in the movements of ani-
mal muscles was an Italian physician, physicist, biologist and philosopher, Luigi
Galvani[3], together with his wife Lucia Galeazzi Galvani.

Figure 2.2: Experiment De viribus electricitatis in motu musculari, Luigi Galvani,
Public domain, via Wikimedia Commons
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The details of his experiment are reported in De viribus electricitatis in motu
musculari, written by Galvani himself in 1791, in which the main steps that have
led to the discovery of the animal electricity are explained. At the time the most
quoted theory about the mechanism through which muscles were able to contract
and relax was the balloonist theory. The idea was that muscle contraction was
caused by the inflation of air or fluid. The theory had been already questioned by
the discovery that neurons where not hollow and so would not be able to conduct
the fluid towards the muscles, but Galvani’s discoveries finally demolished it.

There is an interesting popular legend about how the Galvani discovered the role
of the electricity in the contraction of the muscles: at the time he and his wife were
working on experiments on the electricity and some of these experiments involved
the skin of the frog, which they rubbed to obtain static electricity. It seems that
Galvani’s assistant, passing near the frog that he was skinning, accidentally touched
an exposed sciatic nerve with a scalpel that has picked up charge. The reaction
was that the legs of the dead frog instantly kicked as if the frog came back to life.

Figure 2.3: Experiments on the frog
legs, Luigi Galvani, Public domain, via
Wikimedia Commons

In any way it has gone Galvani start
to study the response of frog legs to
the application of a current through
two electrodes and discovered that was
the electricity and not an inflated fluid
the cause for the muscle contraction.
The theory that he and his wife derived
stated that the electricity was brought
to the muscle through a fluid of ions,
leading to what they called the animal
electricity. Their idea was that the mo-
tion was allowed by a current intrinsic in
the legs, so as in other part of the body.
The main opposer of this thesis was the
Italian physicist and chemist Alessan-
dro Volta, that rightfully claimed that
the electric current through the legs was
the same that went from one metal elec-
trode to the other. Volta himself coined the term galvanism to refer to the generation
of electric current by chemical action. It is interesting to note that the debate
with Galvani led Volta to develop his famous battery, today known as the Volta’s
battery.

Galvani’s work directly inspired Mary Wollstonecraft Shelley in the writing of
Frankenstein, in which Victor Frankenstein uses electricity to bring back to life the
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corpse of his monster.

2.3 Birth of the neuroscience
In the 19th centuries scientists begin to study the propagation of electric current
along the nervous cells. In particular the Italian physicist and neurophysiologist
Carlo Matteucci, following the work of Galvani, demonstrated that the membrane
of these cells have a voltage across them and can generate a direct current.

The work of Matteucci inspired Emil Du Bois Raimond, who discovered the action
potential in 1843. Few years later his friend Hermann Von Helmoltz measured for
the first time the propagation velocity of this action potential. The work of the
two German scientists sets off the birth of the neuroscience.

2.4 The neuron
At the end of the 19th century the diffused conviction, postulated by the German
anatomist Joseph von Gerlach in 1871, was that everything in the nervous system,
first of all the brain, was composed by a single continuous network[4]. The thesis
was confirmed by the work of the Italian biologist and pathologist Camillo Golgi.

Figure 2.4: Cajal cerebellum, Santiago Ramón, Public domain, via Wikimedia
Commons

In 1873 Golgi was doing research on the human brain structure, sectioning and
analyzing pieces of it. One evening a servant accidentally threw away a piece of
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brain that still needed to be analyzed. As a coincidence Golgi had threw away some
silver nitrate in the same waste basket few hours before. The following day, once
retrieved the piece of brain, Golgi analyzed it and noticed that it had uniformly
absorbed the silver nitrate and that the material highlighted the internal structure
of the brain if watched at the microscope. Starting from there he developed a
method to color the brain cells in order to precisely visualize them, which he
initially named the black reaction, since it caused the brain cells to color in black.
The method was then later named the Golgi stain or Golgi method[5]. Anyway
Golgi’s observations didn’t go against Gerlach’s reticular theory and strengthened
the conviction that the nervous system was composed by a single big network.

It was only fourteen years later, in 1887, that the Spanish neuroscientist, pathologist,
and histologist Santiago Ramón Y Cajal, discovering the method developed by
Golgi and perfecting it, was able to highlight the nervous cells as separated entities,
demonstrating that also the brain, as all the other human organs, can be divided
into elementary units. During this period he made extensive and detailed drawings
of the neural material, directly observing it at the microscope. Figure 2.4 shows
one of these drawings. Cajal and Golgi shared the Nobel prize for the medicine in
1906.

Finally four years later, in 1891,the German anatomist Heinrich Wilhelm von
Waldeyer-Hartz wrote a complete review of the doctrine for which the brain was
composed by separated cells, in which he firstly introduced the term neuron.

2.5 Julius Bernstein and the membrane theory
of electrical potentials

Julius Bernstein was a German physiologist and belonged to the Berlin school of
organic physicists, who played a central role in creating modern physiology and
biophysics during the second half of the 19th century. He trained under Emil Du
Bois Raimond and worked as a researcher with Hermann Von Helmoltz. He his
mainly known for two results, that are the natural continuation of the work of his
two mentors:

1. The first accurate description of the action potential, obtained in 1868.

2. The first plausible psycho-chemical model of bioelectric events, published in
1902 in his Membrane Theory of Electrical Potentials.

During his work on the action potential Emil Du Bois Raimond introduced the
concept of negative variation to indicate a temporary reduction in the current
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propagated towards the muscle under analysis. Few years later Hermann Von
Helmoltz, measuring the propagation time of the action potential concentrated
on the speed of the so called excitatory process along the nerves. However it was
not clear if the two processes were the same thing and whether they propagated
at the same speed. To solve the problem Bernstein developed a new instrument,
called the differential reothome, reported in figure 2.5. The Reothome, that can be
literally translated in "current cutter", was a primitive version of a switch. It can
be seen that it has a plate with a cam on its edge.

Figure 2.5: Bernstein’s differential reothome, from "Julius Bernstein (1839–1917):
pioneer neurobiologist and biophysicist", Ernst-August Seyfarth

By rotating, this plate can close the electrical stimulator loop with a time resolution
below the ms and then close the measurement loop, allowing the recording of the
current with a classical galvanometer. In this way Bernstein demonstrated that
Du Bois’ negative variation and Von Helmoltz’ excitatory process are two different
process that however propagate at the same speed. The experiment allowed him
to obtain what is considered the first accurate description of the action potential,
reported in figure 2.6. Here an excitation is delivered in point p and then the
propagation of the two waves in the two opposite directions is plotted.

Finally Bernstein introduced the first plausible psycho-chemical model of bioelec-
tric events: following the discoveries of Walter Nernst and Wilhelm Ostwald he
developed a chemical model of the membrane of muscles and nerves. Applying the
principles of semi-permeable membranes to ions he discovered that the selective
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Figure 2.6: Bernstein’s action potential, from "Julius Bernstein (1839–1917):
pioneer neurobiologist and biophysicist", Ernst-August Seyfarth

permeability to some specific ions allows the accumulation of charge on one side of
the membrane and so the creation of the potential. [6]

2.6 Louis Lapique and his model of the mem-
brane potential

The work of Luigi Galvani and his wife demonstrated that the nerves could be
excited electrically. Some aspects of the phenomenon however, such as the required
duration and intensity of the stimulation that allowed to effectively reach the
excitation, together with the link between this excitability and the biophysics of
the nerve, was not covered by their study.

Here came Louis Lapique, a French physiologist who was the first to develop a
physical model of the membrane excitability in 1907. The idea was that, in order
to excite the nerve, and so to obtain a movement of the frog’s leg, the membrane
voltage should cross a certain threshold. The research of Lapique was focused on the
characteristics that the input excitation should have had to cause the exceeding of
this threshold. He compared his results with the measurements performed, also in
this case, on a frog leg. The frequent use of frogs for biological experiments should
not surprise since they were largely diffused and practical to use in laboratory.

The model developed by Lapique threated the membrane of the neuron as a leaky
capacitor, that is a capacitor with a resistance in parallel, such as the one reported
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in figure 2.7, where K represents the capacitance and ρ the resistance.

Figure 2.7: Lapique membrane model, from Quantitative investigations of electri-
cal nerve excitation treated as polarization, Mark C. W. Van Rossum

In those years a constant current generator was difficult to obtain. For this reason
Lapique used a constant voltage source, a battery. The resistor R reported in figure
2.7 has a resistance value much higher than ρ and is used to stabilize the current
to an almost constant value, in order to obtain something similar to a constant
current source. This is obtained with a one meter long wire with a slider which
allows to select the resistance value. For this reason the voltages in Lapique’s paper
are reported in centimeters.

In order to analyze the required duration of the input excitation a time resolution
of few ms was required. The instrument that allowed to obtain a current pulse of
the desired duration with such a resolution was the reothome. There were many
versions of it, such as reothomes that used pendulums or rotating discs. Lapique
used an ingenious alternative, called the ballistic reothome. It consisted in a gun-like
equipment that shot towards two subsequent wires. The first wire, when cutted by
the incident bullet, started the current conduction, while the second interrupted
it. By tuning the distance of the two wires the time needed for the bullet to go
from the first wire to the second one, and so the current impulse duration, could
be modified as well. Lapique in his paper says that all the components of the
experiment was put together in a big incubator, "except the ballistic interrupter
with its fulminate rifle, which emits unpleasant smoke in a restricted space". Since
the pulse duration is selected through the distance of the two wires also the time
values analyzed along the paper are reported in centimeters.

The results obtained by Lapique was not satisfying and didn’t correspond to
the experimental one. Part of the fault can be attributed to the rudimentary
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instruments used for the experiments and part to the oversimplicity of the model.
However this is a fundamental step to understand how the neural excitability works.
[7]

Even if in the paper there is no reference to the spiking nature of the current
received and generated by the neurons[8], the link between the neuron excitation
and the generation of such spikes or the reset of the membrane that follows the
spike, this is commonly considered the fundamental research work on which the
leaky integrate and fire model has its roots. It is a simple model of a biological
neuron that describes it simply as the parallel between a capacitor and a resistor,
exactly as Lapique’s model did. The first documented integrate and fire models
started to appear in 1960s. Thanks to its simplicity alongside with its biological
plausibility the model is much diffused nowaday. It will be analyzed in detail in
the next chapters.

2.7 Hodgkin, Huxley and Katz
In 1949 Alan Hodgkin and Sir Bernard Katz refined Bernstein’s ideas on the
semi-permeability of the axonal membrane, considering that it could have different
permeability to different ions, and demonstrated the fundamental role of sodium
permeability in the action potential. During their research they successfully
measured, together with Andrew Huxley, the dependence of the axonal membrane’s
permeability to sodium with respect to the voltage and the time, from which
they obtained a quantitative model of the action potential. The model, known as
Hodgkin-Huxley model[9], has become probably the most important and accurate
model of the action potential and will be described more in detail in chapter 4
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Chapter 3

Brief history of SNN:
learning in the human brain

The other side of the coin in the development of a model of the human brain is
how it is able to learn. In fact a sheer model of biological neurons interconnected
one to the other and able to exchange information by integrating their inputs
and discharging their action potential towards other neurons, however accurate
it is,is not sufficient to explain how it allows humans to perform complex tasks
and to improve their capabilities through the learning. This sections provides a
brief overview of the evolution of the concept of learning[10], while the technical
solutions used to practically implement a working spiking neural network will be
discussed in the next chapters.

3.1 The first philosophers
Human learning has been topic of philosophical discussion for centuries. Plato for
example argued that the human mind was molded before its birth. The learning
process in his opinion is nothing else than anamnesis, a recollection of concepts
already known before the birth and stimulated by a sensory experience.This kind
of view is called innatism and asserts that the brain structure is predefined when
an individual is born.

Aristotle, student under Plato, went against his master’s idea and in 350BC
formulated the famous concept of tabula rasa: the idea was the exact contrary of
what Plato argued, and asserted that the human mind, when an individual is born,
is a tabula rasa, a white board without any previous knowledge in it.

The concept has been revisited in different ways in the following centuries: the
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Persian philosopher Avicenna in 1000 AD developed it, arguing that cerebral
structures are molded by experiences and education; John Locke in 1689 AD recast
the concept comparing the human mind at the birth to a clean blackboard, shaped
along the life by the experience.

3.2 Synapses and plasticity
Alexander Bain in his Mind and Body[11] of 1873 was probably the first to hypoth-
esize a link between the way in which the information flows in the brain and the
learning and memory. He talks about changes in the connections between cells
when the concept of synapse was still unknown.

The American psychologist William James introduced some fundamental concepts
on the strengthening of the junctions between the neurons as a way to learn. In
1890 in The principle of psychology[12] he hypothesized that the association of
objects and events, and so the learning, was associated with a facilitation of the
current flow along paths that it has already followed, thanks to the plasticity of
the organic material that composed the nerves. In his opinion the key elements for
the learning was three:

1. Repetition: the activity of a specific region depends on how many times the
excitation of other points have accompanied the activation of that specific
region.

2. Intensity of excitation of such afferent points.

3. Competition: the activation of a specific region depends on the presence of
other points, disjointed by the region, in which the excitation of the afferent
points can discharge itself.

He highlighted the key role of the association: a stimulus that on its own is not
able to excite a nervous center, working together with other stimuli can cause the
excitation. As a consequence if two processes has happened one near to the other
for many times, the activation of the first causes the excitation of the second and
vice versa. This concept is quite similar to the postulates that Donald Hebb would
formulate about one century later.

The concept of synapse has been introduced some years later, by Sir Charles
Sherrington in 1897[13]. He initially described the structure, referring to it with
the name synapse only in 1909[14]. Working in parallel with Ramon Y Cajal he
argued that the fundamental structural unit of the nervous system was a specialized
cell with unidirectional polarization transmission, the neuron, not continuously
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connected, but barely in contact. However he doesn’t link the modifications of the
synapses to the learning process.

3.3 The Hebbian plasticity
Donald Hebb was a Canadian psychologist, known for his work on the synaptic
plasticity. As he stated many times he didn’t introduced new concepts, the ideas
that he expressed were quite diffused at the time. However he had the merit to
put together the existing theories on the plasticity and to create a unified model,
which for this reason is generally known as Hebbian plasticity. In The organization
of behavior [15], written in 1949 he introduced the key concepts of his theory:

1. The memory is stored in the case in which a repeated joint activity of neuron
groups causes the connection between them to be strengthen.

2. The persistence and repetition of reverberation activity, which he called traces,
induces changes that last in time. The concept of reverberation was not new.
The key idea was that the presence of closed loops inside the brain caused a
stimulus, once entered, to propagate inside it for an amount of time of the
order of some minutes.

3. The memory consists in the creation of phase sequences, that is the ordered
activation of specific neuron groups associated to a given concept or memory.
The same cell can be associated with multiple sequences. The activation
of such sequences does not require the direct presence of the stimulus. As
Hebb himself stated: "You need not have an elephant present to think about
elephants".

Hebb claimed the possibility to form new connections as a consequence of a repeated
stimulus. In this case, if the activation of a neurons group repeatedly activates an
unconnected cell, through the chain propagation through interconnected groups, a
new connection is created.

It is interesting to note that Hebb considered only a enhancement of the connection
between groups if they are active together, not its depression in the opposite case
in which their activation is uncorrelated. This kind of synaptic potentiation from
this work on became known as Hebbian plasticity, while the connection of neuron
groups took the name of Hebbian assemblies.

A famous, even if a bit simplistic, summation of Hebbian’s postulate, created by
Carla Shatz in 1992 is: "cells that fire together wire together".
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3.4 Jerzy Konorski and his concept of plasticity
Jerzy Konorski was a Polish neurophysiologist that deserves a quote. He introduced
a theory on synaptic plasticity that was quite similar to the Hebb’s one, one
year before it[16]. His ideas, originated from the work of Ivan Pavlov, a Russian
physiologist mainly known for his work on the conditioning of behaviour, soon
diverged from it and Konorski went against some of the key concepts expressed
by Pavlov. The Russian scientist at the time benefited of a discrete religious and
political consideration and so Konorski’s work went suppressed for many years. As
a consequence his theories had much less resonance than deserved in the West,
even if his impact on the work of some of the main researchers of the time, such
as Hebb, is unquestionable. For these reasons the Hebbian plasticity is sometimes
called Hebb-Konorski plasticity.

In spite of the similarities with Hebb’s work, Konorski’s theory presents some
differences: he went against the idea of the creation of new connections, arguing
that learning and memories derived from the strengthening of already existing
connections only. He also introduced the concept of inhibitory connections, making
the receiving neuronal center less active after the activation of the transmitting
one.

3.5 First applications of Hebbian plasticity
In 1956 an IBM group including Rochester, Holland, Haibt and Duda tested the
creation of Hebbian assemblies, through the strengthening of their connection, on
one of the biggest computers of the time[17]. They realized that in practice it
didn’t work and developed an alternative formulation. The problems in particular
were:

1. There was no mechanism to weaken the connection between cells that are
rarely active together.

2. The weights of the connection, that in practical applications correspond to
its strength, could grow indefinitely, there was no mechanism that took them
under control.

For this reason they introduced some modifications to the original formulation.
In particular their study postulated the existence of a weakening of the inactive
synapses through a competitive mechanism: the idea is that the total sum of the
weights of the synapses must stay constant. This means that, after every learning
interval, in which active synapses are strengthened, that is their weight is increased,
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a normalization step is performed. In this way inactive synapses are indirectly
weakened in order to keep the total sum constant.

An early lasting mathematical formulation of the synaptic plasticity was developed
in 1958 by Frank Rosenblatt[18], inspired by the work of Hebb and his fellows. He
was the first to introduce the concept of bivalent system, with the possibility of
"rewarding" the active synapses or "punishing" the inactive ones. In his famous
description of the brain as a multilayer perceptron the weight of a synapse can be
incremented or decremented depending on its effect on the output neuron.

In those years many studies on the depression of the synapses, being it a direct math-
ematical decrease or an indirect reduction due to a normalization were performed.
An other research hot topic was the presence of both excitatory and inhibitory
synapses, a concept expressed by Konorski about twenty years earlier[16].

3.6 BCM learning rule

A fundamental step in the development of models for the synaptic plasticity was
carried out in 1970 with the development of the BCM learning rule[19], which takes
its name from the last names of its creators, Eli Bienstock, Leon Cooper and Paul
Munro. The rule unified the existing theories in a mathematical model based on
the frequency of the presynaptic pulses:

1. An high frequency input excitation leads to a strengthening of the connection,
which at the time was already called long term potentiaton (LTP).

2. Vice versa a low frequency stimulation implies a weakening of the connection,
called long term depression (LTD).

Bienstock, Cooper and Munro introduced in this way the concept of homosynaptic
depression. The weakening of the connection in this case does not depend on a
normalization which follows a strengthening of the active synapses, nor it depends
by the inactivity of the connection during a competitive input. The plasticity
depends on a well defined frequency requirement.

The drawback of the method is that the dependence from time is completely
eliminated, so there is no dependence of the strengthening or weakening of the
weights from the arrival time of an input excitation or the output firing.
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3.7 Backward propagation of the action poten-
tial

The BCM rule, together with later studies on the plasticity, didn’t consider the
importance of the reciprocal timing of input and output spikes. This disagreed
with both the original Hebb’s postulate and the observations that more detailed
analysis provided in the following years.

Between 1980 and 1990 it was clear that the strengthening or weakening of the
connection between different cells happened at the synapses level, that is in corre-
spondence of the dendrites. As a consequence William B. Levy and Oswald Steward
hypothesized that there was a way in which a postsynaptic pulse could propagate
backward towards the dendrites to prepare the synapse for the plasticity[20].
In 1994 Greg Stuart unequivocally demonstrated the possibility for the action
potential to actively propagate in the backward direction[21].

3.8 Spike timing dependent plasticity
The first experimental study on the importance of the precise relative timing of the
spikes emitted by pre and postsynaptic neurons was presented by Henry Markram
at the Annual Society for Neuroscience Meeting in 1995[22]. In his analysis the
back-propagating spike could be seen as the integrated sum of all the presynaptic
inputs. In the experiment the postsynaptic spike was obtained through a direct
current injection and so the plasticity demonstrated to be non-heterosynaptic, that
is, it depends only on the specific neuron and not from a normalization which
involves all the synapses in the network.

The study demonstrated that the LTP was induced in presence of a causal pre-
before-post spike timing, while LTD occurred in case of acausal post-before-pre
spike timing with a temporal displacement of 10ms in both cases. A time difference
grater than 100ms showed to be ineffective for the connection plasticity and this
rejects Shatz’ expression: neurons that fire together not always wire together
because also the relative timing is important.[23]

This kind of strengthening/weakening mechanism was then called spike timing
dependent plasticity by Sen Song et al. in 2000 and to this day it seems to be the
most biologically plausible mechanism through which the human brain is able to
learn.
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Chapter 4

Mathematical models of the
membrane potential

4.1 Hodgkin-Huxley model
This is a mathematical model which accurately describes the electrical behaviour of
the neuron’s membrane. It was initially developed to describe the action potential
within a squid giant axon[9] and earned Alan Hodgkin and Andrew Huxley the
Nobel prize in 1963.

The electrical potential is described through the equivalent circuit reported in figure
4.1.

Figure 4.1: Hodgkin-Huxley equivalent circuit
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There are two main mechanisms through which the membrane voltage can be
modified:

1. Charging of the membrane capacitance.

2. Flow of ions through the membrane resistance.

The ionic current that can cross the membrane is divided into different contributes,
two carried by sodium and potassium ions, respectively INa and IK , and one small
leakage current, composed by chloride and other ions, indicated as Il. The sodium
and potassium resistance is variable and depends on the membrane voltage. All the
other components, so Rl, ENa, EK , El and CM , are constant. For the mathematical
analysis is more convenient to work with the conductance instead of the resistance:

gNa = 1
RNa

(4.1)

gK = 1
RK

(4.2)

gl = 1
Rl

(4.3)

Let’s now introduce some notation to simplify the equations. Er identifies the
membrane rest potential.

V = E − Er (4.4)

VNa = ENa − Er (4.5)

VK = EK − Er (4.6)

Vl = El − Er (4.7)
V represents the displacement if the membrane potential from its rest value. The
total current entering the membrane can be described as:

I = CM · dV
dt

+ gNa · (V − VNa) + gK · (V − VK) + gl · (V − Vl) (4.8)

Along the following sections the physical interpretation provided by Hodgkin
and Huxley is provided to explain the conductance variations. However, as they
say in the original paper, this should not be interpreted as a reliable model of
how the membrane really works, it only gives a physical meaning to the developed
mathematical formulas.
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4.1.1 Potassium conductance
In order to interpolate the measured dependence of the potassium conductance
from the displacement voltage a fourth-order exponential equation is needed. To
simplify the notation gK is computed as the fourth power of a variable which obeys
a first-order relation.

gK = gK · n4 (4.9)

dn

dt
= αn · (1 − n) − βn · n (4.10)

where gK is a constant value and n is a dimensionless value varying between 0 and
1. αn and βn are instead rate constants that depend on the membrane voltage, but
not on time. They have dimension [s−1].

The physical meaning of the expression can be interpreted as follows: the transition
of a potassium ion is allowed only if there are four similar molecules, called activating
molecules, in the same position, for example inside the membrane. The quantity n
represents the probability to find one of these molecules inside the membrane and
(1-n) becomes the probability to find it outside the membrane. So the variation of
the probability to find one molecule inside the membrane, with respect to time, is
given by the probability to have it outside the membrane, multiplied by the rate of
transfer between outside and inside, αn, minus the probability to have it inside the
membrane, multiplied by the rate of transfer from inside to outside. To consider
the presence of four molecules the fourth power of n is considered.

4.1.2 Sodium conductance
A similar result can be obtained for the sodium. Also in this case the conductance
is considered to be proportional to the quantity of ions contained inside the
membrane. The condition for a sodium ion to cross the membrane is that there are
three activating molecules inside the membrane. Differently from before however
there is a second mechanism, called inactivation, that is caused by the presence of
a specific molecule inside the membrane and blocks the transport of sodium. In
this case the modification of the conductance, given by the transition of a sodium
ion from inside to outside, is given by:

gNa = gNa ·m3 · h (4.11)

where m and h can assume values between 0 and 1 and respectively represent the
probability to have an activating molecule inside the membrane and the probability
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to have an inactivating molecule outside the membrane. As before the temporal
evolution of m and h is described by:

dm

dt
= αm · (1 −m) − βm ·m (4.12)

dh

dt
= αh · (1 − h) − βh · h (4.13)

4.2 Integrate and fire
The integrate and fire model is a very simple model of the temporal evolution of
the membrane potential. It can be traced back to Louis Lapique[8], though he
considered a resistive term in his analysis, so it would be better to say that he
worked on a leaky integrate and fire model (see section 4.3). The first documented
true integrate and fire model dates back to 1936[24]. Since then many variants and
implementations have been studied, mainly thanks to the simplicity of the model.

The IF model treats the neuron’s membrane as an ideal capacitor, perfectly isolated,
as shown in figure 4.2. The current source represents the input from all the synapses.
It will be better analyzed in chapter ... For now let’s consider it as a constant
current source for simplicity.

Figure 4.2: Integrate and fire equivalent circuit

The name of the model directly comes from its behaviour: equation 4.14 shows the
relation between the input current and the voltage across the capacitor. First of
all, inverting the expression in order to find the temporal evolution of the voltage
leads to equation 4.15. It can be seen that the input current is integrated by the
capacitor.

CM · dV
dt

= I(t) (4.14)
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Secondary, whenever the voltage exceeds a fixed threshold it is reset to a rest value
and an output current spike is generated.

V (t) = 1
CM

Ú t

t0
I(t)dt (4.15)

Figure 4.3 shows the temporal evolution of the membrane potential in presence
of two different inputs:

1. Constant current source, figure 4.3a.

2. Current spikes, figure 4.3b.

Let’s start analysing figure 4.3a. With a constant input current the voltage
increases linearly, being it the integral of a constant value. When it reaches the
threshold voltage, reported in red it is reset to its rest value, in this case zero. In
correspondence of this event an output current spike is generated by the neuron.

This is useful to understand how the model works, but in real applications the input
source, corresponding to the input synapses, brings current spikes. The behaviour
of the membrane potential in this case is reported in figure 4.3b. Iin(t) reports the
spikes coming from all the input neurons. It would be better to separate the inputs
in different plots but being this a simple example, for the sake of visualization, they
are condensed into a single plot. Whenever a spike arrives the membrane potential
is incremented by a quantity that corresponds to the weight of the specific synapse.
It can be seen that the reported spikes belong to different input neurons because
the increments in the membrane potential in correspondence of them are not all
equal. In particular it is sure that the second spike comes from a neuron different
from the ones that have generated the other three. For what concerns these last
elements, they can either come from a single neuron or from different neurons with
the same synaptic weight. However this is not important for the current example.

The reset in figure 4.3b is delayed with respect to the excess of the threshold. The
reason is that in practice there will be a control system that checks the value of the
membrane potential at every computational cycle. In this case the control system
checks the potential after it has exceeded the threshold due to the arrival of an
input spike.

One feature that can be added to the model is the refractory period. In this case
whenever the threshold is exceeded and an output spike is generated the neuron
remains in a quiet state for a certain amount of time, called the refractory period.
All the input spikes received within this time window are ignored and the neuron
starts to be reactive to its inputs again only at the end of the time interval.

27



Mathematical models of the membrane potential

(a) Constant current input (b) Spiking current input

Figure 4.3: Membrane potential temporal evolution

4.3 Leaky integrate and fire

The integrate and fire model provides a first approximation of how the membrane
potential evolves. Its simplicity is its main advantage, but it is also its main
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weakness and makes the IF too rough as a model. In particular the ideal isolation
hypothesized for the membrane is not coherent with its physical counterpart. As
for every real system in fact, the membrane experiences a certain amount of leakage
that tends to discharge its capacitance if it is not stimulated with any input. The
leaky integrate and fire model includes this feature, modeling it with a resistor in
parallel to the membrane capacitance, as shown in figure 4.4. The first studies on
such a model can be traced back to Louis Lapique and his work on the frog legs[8].

Figure 4.4: Leaky integrate and fire equivalent circuit

Figure 4.5 shows the temporal evolution of the membrane potential when it is
stimulated by input current spikes. In this case the behaviour of the membrane
has been simulated using a python script and the two inputs are represented on
two separated plots. It can be seen that the potential decreases exponentially after
input spike arrival, due to the finite resistance of the membrane.

Figure 4.5: Membrane potential temporal evolution
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Finally the rest potential has been supposed to be 0V. This means that, in absence of
any input the membrane potential exponentially tends towards 0V. It is interesting
to consider instead a rest potential with an arbitrary value because this allows to
consider more realistic systems with voltage values that are more coherent with
the real brain. Figure 4.6 shows the equivalent circuit in this specific case.

Figure 4.6: Leaky integrate and fire equivalent circuit with arbitrary rest potential

4.4 Izhikevich
Finally let’s present an alternative model developed by Eugene M. Izhikevich in
2003[25]. It tries to combine the biological plausibility of the Hodgkin-Huxley
model and the simplicity of the integrate and fire model. Here the model is briefly
presented, but the complete mathematical derivation is reported in a dedicated
book written by Izhikevich himself[26].

Using bifurcation methodologies the biologically accurate Hodgkin-Huxley model
can be reduced to a two-dimensional system of ordinary differential equations:

dv

dt
= 0.04 · v2 + 5 · v + 140 − u+ I (4.16)

du

dt
= a · (b · v − u) (4.17)

All the variables in the equation are dimensionless and represent:

• v: membrane potential of the neuron

• u: recovery variable that accounts for the activation of potassium K+ and the
inactivation of sodium Na+, providing a negative feedback to v.

• a: modifies the time scale of the recovery variable u. A smaller value of a
corresponds to a slower recovery.
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• b: sensitivity of the recovery to the membrane potential. Grater values of b
couple v and u more strongly, possibly leading to subthreshold fluctuations of
the potential and low threshold firing dynamics.

• I: contains all the input contributes, being them spikes brought by the synapses
or a simple dc-current.

The quadratic part of equation 4.16, that is 0.04 · v2 + 5 · v + 140, has been derived
in order to cover the evolution of different types of biological cells for large groups
of neurons.

The part dv
dt

= 0.04 · v2 + I is sometimes called the quadratic integrate and fire part.

The after-spike reset instead is performed as follows:

v = c (4.18)

u = u+ d (4.19)

where c and d represent the after-spike reset value of respectively the membrane
potential and the recovery variable.
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Chapter 5

Synapses

One of the most important characteristics of the mathematical models of the
membrane potential of the neuron is the synapse, that directly affects the way in
which the potential is updated when an input spike is received. There are two main
types of synapses:

1. Current-based

2. Conductance-based

Let’s analyze the two models separately. A simple leaky integrate and fire model
with a rest potential Vrest will be used in the following sections to describe the
membrane of the neuron.

5.1 Current-based synapse
In the current-based model each of the input neurons can be represented as a current
generator. Each neuron generates the correspondent current in form of a train
of spikes, that can be mathematically modeled as ideal Dirac deltas. The impact
that these spikes have on the target neuron’s membrane potential depends on the
synapse that connect each source neuron to one of its inputs. To better visualize
such a situation figure 5.1 can be considered. It represent each input neuron as a
current source which generates a current in form of spikes, with a specific temporal
pattern. The common characteristic between the different generators is the shape
of the spikes, all identical in terms of their area.
The area of the spikes is given by the integral of the current with respect to time,
as shown in equation 5.1, where t0 and t1 are two generic time instants such that
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the current pulse is located within the two.

A =
Ú t1

t0
I(t)dt (5.1)

What is interesting is that 5.1 corresponds to the charge carried by the current.
So in other words each current spike brings the same charge to the membrane
capacitance. As said before, what modifies the amount of charge that finally reaches
the membrane is the synapse. In this sense each synapse can be seen as a charge
amplifier with a gain corresponding to the weight of the synapse.

Figure 5.1: Equivalent circuit of the current based model

Appendix A reports a complete mathematical analysis of the model. The final
result allows to describe the evolution of the membrane potential after the arrival
of the input spikes, is reported in equation A.30. This suppose that the starting
value of the membrane potential is equal to Vrest. More in general:

V (t) = V (t0) +
A

NØ
i=1

si · wi − Vrest

B
· e− t−t0

τ (5.2)

where t0 is the time instant in which one or more input spikes are received. Equation
5.2 leads to the temporal evolution of the membrane potential reported in figure
4.5.

5.2 Conductance-based synapse
The equivalent circuit for the conductance-based synapse model is shown in figure
5.2. In this case each synapse is modeled as a variable conductance. Whenever
a spikes arrives to the synapse it increases its conductance. All the inputs are
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connected to the same input voltage Vin, and so the amount of current that reaches
the membrane capacitance depends on the conductance of the specific synapse.
Increasing it increases the total current Iin and so the membrane potential V (t).

Figure 5.2: Equivalent circuit of the conductance based model

Generally the equation that describe the temporal evolution of the generic conduc-
tance gi is:

dgi
dt

= −gi
τi

(5.3)

which simply represents a decreasing exponential function with steady state value
equal to 0 and time constant τi. In other words, in absence of spikes the conductance
of each synapse is null and so it brings no current to the membrane capacitance.
As a consequence at the equilibrium this tends to stabilize itself at the value Vrest.
When a spike is received the conductance is increased as:

gi = gi + wi (5.4)
For simplicity all the conductances are considered to have the same time constant
τ . This allows to easily compute the parallel between them and to put them all
together in a single conductance of value:

gin =
NØ
i=0

gi (5.5)

where N is the total amount of input synapses. The equivalent circuit becomes the
one reported in figure 5.3.

Adding together the temporal evolutions of the different synapses gives:

NØ
i=0

dgi
dt

= −
NØ
i=0

gi
τ

(5.6)
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Thanks to the linearity of the derivative and to the unique value of τ the expression
can be rewritten as:

d

dt

NØ
i=0

gi = −1
τ

·
NØ
i=0

gi (5.7)

=⇒ dgin
dt

= −gin
τ

(5.8)

Also the contribute of the synapses’ weights is linear and so the increment of the
conductance in correspondence of the arrival of an arbitrary amount of spikes is:

gin = gin +
NØ
i=0

si · wi (5.9)

where si represents the presence or absence of an input spike on the synapse i. See
appendix A for more details.

Figure 5.3: Equivalent circuit of the conductance based model with condensed
synapses

The model of the conductance is very similar to the one obtained for the membrane
potential and can be written as:

gin(t) = gin(t0) +
A

NØ
i=1

si · wi
B

· e− t−t0
τ (5.10)

where t0 represents the time instants in which one or more spike arrive on the input
of the neuron.
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Computing the temporal evolution of the membrane potential:

CM · dV (t)
dt

= gM · Vrest + gin(t) · Vin (5.11)

and substituting the expression of gi(t) reported in equation 5.10 it is clear that
the model becomes non-linear and much more complex if compared to the current
based synapse one.

The Hodgkin-Huxley model, reported in section 4.1 is an example of conductance-
based model, in which an additional degree of complexity is included by considering
the dependence of the conductance from the concentration of sodium and potassium
activating and inactivating molecules inside and outside the membrane of the
neuron.

Finally another example of conductance based model is the one developed by Peter
U. Diehl and Matthew Cook[27] and used as a starting point and as a reference for
this work. Appendix C reports the details of the model.
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Chapter 6

Learning through Spike
Timing Dependent
Plasticity

6.1 Supervised and unsupervised learning

Now that both the membrane potential and the synapses models have been explained
in detail, the last problem to consider is how to make the network learn to recognize
an input pattern and to separate it from different ones. Nowadays the most diffused
method to train a neural network on such a task is the backpropagation.

Backpropagation is an algorithm made famous by an historic article written by
David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams in 1986[27]. The
techniques described in the article were already known and present in the scientific
literature, but this specific article had the power to unify and diffuse the methods
in form of a single elegant algorithm.

The method consists in providing the network with the input data, reading its output
and, knowing in advance the expected result, trying to minimize the difference
between it and the obtained one by back-propagating the errors computed on the
output. This means to provide the network with both the input and the output
data and make the network fit the output as faithfully as possible.

This kind of learning is called supervised because the training consists in imposing
from outside a correction of the network hyperparameters, in particular the synaptic
weights, in order to make its output similar to the desired one. At the moment
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it doesn’t seem to be the way in which the human brain learns. Not completely
at least. To cite Geoffrey Hinton himself, if the backpropagation is such a good
method to make a neural network learn, the natural evolution of the human brain
should have developed it independently. So backpropagation, or a slightly modified
version of it, should not be excluded a priori as a possible way in which the human
brain learns. Nowadays the knowledge of the human brain is still too rough to
make sure assumptions on the topic.

However the most promising and biologically plausible method at the moment
seems to be the spike timing dependent plasticity[21][28][29].This is an unsupervised
method in which therefore the network is provided with the input data and is left
free to adapt to them, which is intuitively more similar to what happens in the
human brain. When a visual stimulus, a dog for example, is received, the eyes
translate it into proper pattern of electrical pulses that are then provided to the
brain. The brain for its part analyzes the spikes and learns to associate them to
a concept, the concept of dog in this case, in an autonomous way. There is not
an external supervisor which tries to minimize the difference between the concept
elaborated by the brain and the label "dog" by directly modifying the synaptic
weights. This at least is the more diffused idea at the moment.

Spike timing dependent plasticity is only one of the many existing unsupervised
methods. Section 3.6 for example presented a method based on the frequency with
which the spikes are received. However STDP seems to be the most faithful model
of the human brain learning process and is sufficiently simple to be practically used
in an efficient way.

6.2 Spike timing dependent plasticity
As the name itself says the method is based on the arrival time of the spikes and
in particular on the difference between the instant in which a spike is received on
the input of the neuron and the instant in which a new spike is generated by the
neuron itself. In particular:

1. If an input spike arrives a little before the generation of a new output spike
the synapse weight is increased. The shorter the time difference between the
two the higher the increment. In other words the synapse is rewarded if it is
likely to make the neuron fire. This is called long term potentiation.

2. If vice versa the input spike arrives after the generation of the output one it
means that the synapse had no role in making the neuron fire and so it is
punished with a reduction of its weight. This is called long term depression.
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The mathematical function that describes the two operations is reported in equation
6.1 and plotted in figure 6.1.

∆w =

ALTP · e− ∆t
τltp if ∆t > 0

−ALTD · e
∆t
τltd if ∆t < 0

(6.1)

where

∆t = tout − tin (6.2)
So for positive time differences the synapse weight is increased. The decreasing
exponential in this case imposes lower increments for higher time differences. This
is because the farther in time the input spike is, the lower is the probability of its
direct role in making the membrane potential exceed the threshold. For negative
time differences instead the input has no role in the generation of the output
spike.In this case the smaller is the time difference the higher is the reduction of
the synapse weight.

Figure 6.1: Plot of the STDP equation

Figure 6.1 shows a symmetric characteristic, that is the long term potentiation and
the long term depression have exactly the same impact. In mathematical terms:

ALTP = ALTD (6.3)
This is generally not true in practice. The characteristic can be asymmetric

both in terms of amplitude and exponential time constants.
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6.3 Synaptic traces
The STDP method is quite light as an algorithm but a direct implementation of it
is not so efficient, in particular working with an hardware accelerator. In particular
the algorithm require to know, for each neuron, the time instants corresponding to
each input spike and to the output spike and it requires the the computation of an
exponential function.

In order to simplify the computation the synaptic traces can be used. In particular
for each input synapse there is a variable, the pre-synaptic trace apre, and for each
output, so for each neuron, a second variable, the post-synaptic trace apost, that
track the arrival of the spikes. The update of the weights is performed as follows.

1. When an input spike is received:
apre = ALTP

w = w − apost
(6.4)

2. When an output spike is generated:
apost = ALTD

w = w + apre
(6.5)

The pre- and post-synaptic traces are then updated following an exponential trend,as
shown in equations 6.6 and 6.7.

dapre
dt

= −apre
τpre

(6.6)

dapost
dt

= −apost
τpost

(6.7)

As appendix B shows the method is mathematically equivalent to the more classical
STDP equations. With such an alternative formulation however the exponential
functions, characteristics of the STDP updating rule, can be computed in an
iterative way, following the same method used for the membrane potential. Section
... shows the mathematical details. This makes the algorithm more suitable for a
practical implementation, in particular with an hardware accelerator.
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Chapter 7

Chosen model and structure
of the neural network

Now that all the various parts of the model have been presented in their main
different variants, the choices oriented to the realization of an hardware accelerator
can be explained more in detail. All the parameters of the model are reported in
section D.

7.1 Structure of the network
Let’s start with the analysis of the general structure of the network. Figure 7.1
shows a simple graph representation of it. The main components of the network
are:

1. Input layer: this doesn’t correspond to a layer of physical neurons, but
represents the input data provided to the network.

2. Excitatory layer: this is a layer of neurons, each implementing the chosen
model. The "excitatory" adjective comes from the fact that the connections
that start from these neurons all have a positive weight, leading to an increment
in the target neuron’s membrane potential.

3. Inhibitory layer: again this is a layer of neurons as described by the chosen
model. The connections starting from them have a negative weight, leading
to a reduction in the target neuron’s membrane potential, and so to the
"inhibitory" adjective. The layer has exactly the same amount of neurons of
the excitatory one.

4. Synapses that connect the input layer to the excitatory one, or more in general
two consecutive excitatory layers: here is where the learning takes place. The
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weights of the network are initialized to random values and then increased or
decreased following the spike-timing dependent plasticity method. The two
layers in this case are fully connected. The connections are shown in green.

5. Synapses that connect the excitatory layer to the inhibitory one. Each
excitatory neuron is connected to a single inhibitory neuron. The weight
of the synapse is set to a constant positive value sufficiently high to make the
neuron immediately fire. The connections are reported in red.

6. Synapses that connect the inhibitory layer to the excitatory one. In this case
each neuron is connected to all the neurons of the excitatory layer, except to
the one for which there is a connection in the opposite direction. The weight of
the synapse is set to a constant negative value. The connections are reported
in blue.

Figure 7.1: Structure of the network

So to sum-up the models consists of an arbitrary amount of excitatory layers, fully
connected one to the other and to the input layer. This would lead to the general
structure presented in figure 1.2. In addition however each neuron is connected to
all the other excitatory neurons of the same layer through an inhibitory connection.
The practical implementation of this leads to an additional layer of neurons, each
connected to the corresponding excitatory element with a weight sufficiently high
to make it fire whenever an excitatory spike is generated. In this case the spike
leads to the reduction of the potential of all the other neurons in the excitatory
layer through the inhibitory connections.
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Note that this reference structure, with this specific number of neurons will be used
in the following sections as a reference for the descriptions of the data structures
and for the plot of the input and output of the various neurons.

The chosen structure has a single layer of excitatory and inhibitory neurons. The
grater is the number of such neurons, the higher is the accuracy of the network.
The goal is to find a total amount of neurons which allows to reach a sufficiently
high accuracy, being at the same time small enough to fit into the target hardware
platform.

7.2 Model of the neuron and synapses
The target of the whole project is an hardware accelerator able to reach a degree of
parallelism sufficient to outperform its software counterpart. The main challenges
in this sense are:

1. The limited hardware resources available for the design. Being the target of
the accelerator an FPGA or an ASIC the amount of components is inevitably
not infinite.

2. The computations required by a single neuron are quite complex, as shown in
the previous chapter, depending on the chosen model. The expectation is to
need a quite large amount of neurons to obtain an acceptable accuracy, so the
overall resources requirements will surely be high.

As a consequence, the simpler is the neuron model the larger can be the network
itself. Supposing then the requirements of the network, in terms of the total amount
of neurons needed, to be sufficiently low to use only part of the available hardware
components, the remaining resources can be used to further increase the parallelism
of the neurons themselves, leading to faster computations. So in general a lighter
algorithm is preferable.

For this reason the chosen model is the leaky integrate and fire with current-based
synapses. The model is explained in detail in sections 4.3, 5.1 and A. Its equivalent
circuit is reported in figure 4.6. I(t) in this case represents the weighted sum of the
current generated by all the input neurons.

Now that the model is defined the temporal evolution of the membrane potential
and of the output spikes can be analyzed more in detail. The reference structure for
the following plots is the one reported in figure 7.1. The network has been provided
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with random input spikes and its evolution has been monitored for 150 milliseconds.
The parameters used for the simulation are the ones reported in section D. The
neurons are numbered starting from the upper ones and going downward, starting
from zero. Figure 7.2 shows the membrane potential and output spikes evolution
of the first excitatory neuron, together with the input spikes, both from the input
and the inhibitory layers. The threshold is plotted in orange.

Figure 7.2: Input spikes with membrane potential and output spikes

To better visualize the evolution of the membrane potential figure 7.3 shows it
isolated from the input and output spikes.

The membrane potential has been initialized to the reset potential, that is grater
than the rest one. So the first thing to observe is that, in the first part of the
evolution, in absence of input spikes the mmebrane tends towards its rest value.
Whenever a spikes arrives from one of the two inputs the potential is increased and
then starts again to decrease exponentially. If instead it exceeds the threshold it is
reset to the reset value and then tends again toward the rest voltage. Finally when
a spike arrives from one of the two inhibitory neurons the potential is decreased
and then exponentially tends towards the rest value. If the potential goes below
the rest value after the inhibitory spike exponential trend is inverted, as shown in
figure 7.3.

Finally figure 7.4 shows the same kind of plot for the inhibitory neuron. In this case
there is a single input, corresponding to the single excitatory neuron connected.
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Figure 7.3: Membrane potential of the first excitatory neuron

It can be observed that a single spike is sufficient to make the potential exceed the
threshold.

Figure 7.4: Membrane potential of the first inhibitory neuron

As a consequence the output spikes pattern faithfully follows the input one, sending
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an inhibitory spike to neurons one and two whenever neuron zero generates an
output spike. Again the reset voltage is higher that the rest one and this explains
the decreasing exponential both at the beginning and after the reset.

7.3 Homeostasis

The risk in working with inhibitory spikes between the neurons of the same layer
is that if a specific neuron is frequently active it can completely mask the others,
impeding them to generate output spikes. To avoid this an additional characteristic
is added to the model: the homeostasis.

Figure 7.5: Homeostasis

The homeostasis is the natural tendency, which characterize all the living organisms,
to reach a relatively stable state independently from the output environment. In
this specific case the stability is represented by a uniform spiking activity for all the
neurons within a layer, avoiding dominating nodes that block all the others. The
parameter through which such a uniformity can be achieved is the firing threshold.
The more frequently a neuron fires the more its threshold is increased. If however
it becomes too high the neuron is no more able to generate new output spikes and
so the problem persists. For this reason the threshold is exponentially decreased up
to a rest value in absence of output spikes. The temporal evolution of the threshold
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is reported in equations 7.1 and 7.2.

dθ

dt
= − θ

τθ
(7.1)

Vthresh = V rest
thresh + θ (7.2)

Whenever an output spike is generated:

θ = θ + θ+ (7.3)

Figure 7.5 graphically shows what explained up to now. In this case the parameter
θ+ has been increased to 0.5, an higher value with respect to the one used in the
real model, in order to better visualize it.

7.4 Learning
The learning method used to train the network is the spike timing dependent
plasticity, in its version with the synaptic traces, explained in sections 6.3 and B.

Let’s again analyze the method in a graphical way. Figure 7.6 shows the pre-
synaptic trace evolution. In this case whenever an input spike is received the trace
is set to ALTP . In absence of new spikes it is then exponentially decreased.

Figure 7.6: Pre-synaptic trace
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The same behaviour is true for the post-synaptic trace in presence of output
spikes. In this case the value of ALTD is forced to be negative in order to make
the visualization clearer. In this case the post-synaptic trace will be added to the
corresponding weight. In practice ALTD is positive and the post-synaptic trace is
subtracted from the weight, leading to a mathematically equivalent result.

Figure 7.7: Post-synaptic trace

Also in this case the parameters have been slightly modified to make the represen-
tation clearer. In particular the exponential time constant has been set to 80ms
instead of the 20ms used in practice.

7.5 Normalization of the weights
The unsupervised learning method described in the previous section reveals too
slow to be used in practice. To avoid the problem a normalization step is included
along the training. This is a weak point of the model for two main reasons:

1. There isn’t a biological demonstration of such a process. Each synapse is
increased or decreased by itself, without having a shared mechanism that
keeps the various weights limited through normalization.
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2. It is computationally heavy because it requires a division and a subsequent
multiplication.

The normalization allows also to keep the weights limited, avoiding their uncon-
trolled growth along the training.
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Chapter 8

Generation of the input
spikes

Up to now the model has been described supposing to work with generic spikes trains
as input. One last point to analyze, before proceeding with the practical simulation
of the model, is how to convert the input data into such format. Generally in
fact the data are not natively encoded into binary spikes, unless for example the
sensor used to obtain them is designed to directly generate an output in this form.
They are usually represented in form of numbers, being them integer, fixed point
or floating point.

The goal is to obtain an encoding of the input spikes that reflects the input data
and at the same time is coherent with the typical stimuli of a biological system.
Poisson processes come in handy in this sense[28].

8.1 Poisson processes
A Poisson process is a particular type of stochastic process which simulates the
succession, continuous in time, of events that are independent one from the other[29].
Moreover, such events have a probability distribution called a Poisson distribution.

A Poisson distribution is a discrete probability distribution which describes the
probability for a certain number of independent events to happen within a deter-
mined time window, knowing that λ events take place on average within a known
time interval[30].

In practice the input data, are directly associated to the parameter λ. In other
words each input number is treated as an average spiking rate. So the higher is the
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number the higher will be the amount of spikes within a fixed time interval. The
spikes are then randomly generated within such an interval following a Poisson
distribution with λ as a parameter.

8.2 Generation of spikes trains with a Poisson
distribution

As said before each input number is interpreted as the input firing rate, that is
the average frequency with which the spikes are presented to that specific input.
The question now is: how to convert such a frequency into a train of randomly
distributed binary spikes?

Both the python simulation and the hardware accelerator work in a discrete-time
domain. This means that the time dimension is divided into small intervals of fixed
duration and the elaboration is performed at the end of each of these intervals.
The maximum amount of spikes that can be received within a single interval, being
it the smallest possible temporal resolution, is one. On the contrary the minimum
amount of spikes is obviously zero. So in general the probability to have a spike
within a single time interval can assume any value between zero and one.

The input frequency can be normalized by the duration of the time step, in order
to find the average amount of spikes generated within the interval.

Spikes per interval = (Input frequency) · dt (8.1)

At this point the input numeric data has been translated into the average number
of spikes per time step. If the probability to have a spike within the time interval
has a uniform distribution between zero and one the average number of spikes
can be directly interpreted as the probability for a spike to arrive within the time
interval. This is true supposing:

(Input frequency) · dt < 1 (8.2)

This means that if the frequency is grater than the maximum achievable with the
chosen time step the conversion cannot be performed, which is quite an obvious
requirement.

So in practice the conversion is performed as follows:

1. Normalize the input data multiplying it by the time step duration.
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2. Generate a series of random numbers with uniform distribution between zero
and one. The length of the series corresponds to the duration of the spike
train in time steps. This can be obtained as:

Time steps = Time duration of the train

dt
(8.3)

3. Compare the input number with each generated value. If the input is grater
than the random number then generate a spike, that is set the output to
boolean True. If instead it is lower set the output to boolean False. The uniform
distribution of the random number makes the probability to generate a spike
exactly equal to the input number.

Chapter 9 presents the format of the input data. In the analyzed case each input
data is associated with a pixel and represents its position onto a grey scale, going
from total black to total white. The described method however can be used also
with different kinds of data, being them audio samples coming from a digital
microphone or temperature values read from a proper sensor. In general it can be
applied for any kind of data that can be represented in a numerical form.
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MNIST dataset

The dataset used to train and test the developed model is the MNIST [31] (Modified
National Institute of Standards and Technology). It is a database of handwritten
digits, frequently used to benchmark machine learning applications. It has been
chosen because of its simplicity and the large amount of projects that use it and
that can be used as a reference for the accuracy and performances obtained with
the developed model.

9.1 Dataset content and charateristics
The MNIST, as the name itself highlights, is a modified version of the NIST, a
database of handwritten digits and characters. The data consist in black and
white images with a resolution of 28 · 28 pixels. Each image correspond to an
handwritten number between 0 and 9 and is associated with a label, that indicates
the represented number. The data are organized as follows:

1. 60000 images, half of which taken from the training part of the NIST and half
taken by the test part.

2. 10000 images, organized in the same way, that is half from the training set
and half from the test set of the NIST.

The choice to split the NIST training and test data depends from the fact that the
training set was collected among Census Bureau employees, and so it is composed
by much clearer and easier to recognize data. On the contrary the test set was
collected among high-school students and so its data are harder to interpret. In
order to make the learning algorithm independent from the choice of the training
and test sets the data have been mixed. Figure 9.1 shows some examples of the
images contained in the MNIST dataset.
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Figure 9.1: Example of mnist images, Josef Steppan, CC BY-SA 4.0, via Wiki-
media Commons

As said before both the training and the test data consist of images and labels
associated to them. These are organized in four different files, two for the training
and two for the test:

1. train-images-idx3-ubyte: training set images

2. train-labels-idx1-ubyte: training set labels

3. t10k-images-idx3-ubyte: test set images

4. t10k-labels-idx1-ubyte: test set labels

9.2 IDX file format
The four files containing the entire database of handwritten digits are stored in
IDX format, commonly used to store vectors and multidimensional matrices of
various numerical types. It is worth to note that the bytes inside the file are stored
in high-endian order (MSB first), suitable for non-Intel processors. Working on
an Intel platform groups of bytes, for example forming a 32 bit integer, must be
reversed in order to be correctly interpreted. The file is composed by an header
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part, which describes the characteristics of the data, and by the data themselves,
as follows:

magic number
size in dimension 0
size in dimension 1

...
size in dimension N

data

9.2.1 Magic number
The magic number is a 4 byte (32 bit) integer, with the first two bytes fixed at 0
and the second two bytes respectively encoding:

1. The type of the stored data. It uses a specific encoding for each data type:

• 0x08: unsigned byte
• 0x09: signed byte
• 0x0B: short (2 bytes)
• 0x0C: int (4 bytes)
• 0x0D: float (4 bytes)
• 0x0E: double (8 bytes)

2. The number of dimensions of the data structure. The simplest way to store
the data is in form of a single dimension array, that is a sequence of data
in the specified format. In this case the dimension is 1. A dimension of 2
corresponds to an array of arrays, which is a matrix, and so on.

9.2.2 Data dimensions
These are again four bytes integers, expressing the dimensions of the data structure
stored into the file. They count a number of elements which corresponds to what
reported in the magic number.

In order to better understand how the information is encoded in the header and
how data are organized in the MNIST database, tables 9.1 and 9.2 report the
the first section of the training images and labels files. It can be seen that the
images are stored in form of a three dimensions data structure: this consists of an
array of images, each image stored as a two-dimensional matrix with 28 rows and
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28 columns. Each pixel corresponds to an unsigned byte with a value between 0,
complete white, and 255, complete black. Figure 9.2 shows the 28 · 28 pixels image
corresponding to the number 5, with the numerical values of the pixels reported.

Figure 9.2: Mnist number with numerical values of the pixels[32].

The information about the data type and the number of dimensions can be seen
encoded in the magic number as 0x08 (unsigned byte) and 0x03 (three dimensions).

offset type value description
0000 32 bit integer 0x00000803 magic number
0004 32 bit integer 60000 dimension 0
0008 32 bit integer 28 dimension 1
0012 32 bit integer 28 dimension 2
0016 unsigned byte first byte data
0017 unsigned byte second byte data
... ... ... ...

Table 9.1: MNIST images file initial section
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The situation is similar for the labels, but here each label is stored in form of an
unsigned byte, sufficient to represent values between 0 and 9. For this reason the
dimension is one, information encoded in the less significant byte of the magic
number (0x01).

offset type value description
0000 32 bit integer 0x00000801 magic number
0004 32 bit integer 60000 dimension 0
0008 unsigned byte first label data
0009 unsigned byte second label data
... ... ... ...

Table 9.2: MNIST labels file initial section

9.3 Algorithm to load the MNIST dataset
In order to be able to use the data to train the model they need to be loaded from
the file in which they are stored into a proper data structure. For this aim the
python numpy (numerical python) library is used. This comes with a useful data
structure, the numpy array, that is a classical array with the desired number of
dimensions, particularly suitable for the task at issue.

The flow followed to load the data is the following one:

1. First of all the entire content of the file is loaded into a memory buffer as row
bytes.

2. The magic number is then read and decoded in order to extract the number
of dimensions of the data structure, and so the number of four bytes integers
to read, and the data type.

3. The proper amount of dimensions is read and stored in form of a numpy array.

4. At this point, with all the information needed, the data are read in block and
loaded into a single-dimensional numpy array.

5. Finally the image block is reshaped in form of a two-dimensional numpy array.
In this way the images are stored as entries of a numpy array, in form of
single-dimensional arrays with 28 · 28 = 784 elements. This is a shape that is
suitable for the training or test of a neural network: the input layer of the net
will be composed of 784 elements, one for each pixel, as shown in figure 9.3.

57



MNIST dataset

Reshaping the images in their original format with 28 rows and 28 columns
would be less effective.

Figure 9.3: Example of a neural network with a single input layer with 784
elements.

Appendix F shows the flowcharts with the detail of the algorithm used.
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Chapter 10

Python interface

The spiking neural network can be seen from the outside as a black box which
receives spikes as an input and returns spikes as an output, as shown in figure 10.1.
As said before however traditional systems do not work with binary spikes but
with numbers. For this reason, before opening the black box and analyzing the
implementation of the neural network at different levels of abstraction a proper
way to interface it must be define.

Figure 10.1: Spiking neural network as a black box

To develop such an interface python language has been chosen. Sections 10.1 and
10.2 briefly explain some of the main reasons for this choice, while next sections
explains the main implementation details. Finally appendix G and H report the
complete algorithms used to train and test the network, treating the neural network
as a black box.
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10.1 Why python
Python is an interpreted programming language, first in the ranking of the most
used programming languages in 2021. It is well documented and, thanks to its
interpreted nature, it works at a quite high level of abstraction, allowing the
programmer to perform quite complex tasks with few instructions and without the
need to worry about the low level implementation details. This characteristic will
be better clarified in section 10.2. It is portable over about any platform and this
makes it very versatile.

Nowadays there are lots of Python libraries that simplify the programmer’s work
by providing high level functions that unburden him/her from the technical imple-
mentation details. To stay on the machine learning topic, for example, there are a
lot of frameworks, so as TensorFlow, Keras, Torch, Theano and so on, that allows
to create, train, optimize and test a neural network without the need to manually
implement all the mathematical details on which the network is based. Libraries
like these can save a lot of programming time during the development of a model
and this is only a specific example: there are libraries to do almost everything and
this makes the difference in the choice of Python over other programming languages.
One of these library is Brian 2[33], specifically designed for spiking neural networks.
So in the development phase having an external interface developed in the same
language of the model itself makes the interaction between the two easier and
reduces the design time.

Last but not least Python is completely open source.

The version used to simulate the model is Python 3.8.5, that is the most recent
one available with Anaconda 3 in July 2021. Anaconda 3 is used because of the
simplicity in the installation of new libraries and for its portability.

10.2 NumPy and vectorization
NumPy is a python mathematical library, the name of which stays for Numerical
Python. It has a lot of high level mathematical functions available. For example
an exponential function with the Neper’s number e as a base can be performed as
follows:

1 import numpy as np
2

3 np . exp ( x )
4

Listing 10.1: Python NumPy example
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One of the most useful features of NumPy is what is called vectorization. To
understand what it means let’s first briefly analyze how Python code is executed.

In section 10.1 it has been said that Python is as interpreted language. This means
that there is an external program, called the interpreter, that reads the Python
script and executes the instructions contained in it one by one. This allows to
perform complex instructions at an higher abstraction level, the interpreter will
simply translate it in a sequence of simpler instructions, long as needed, that the
computer’s processor is able to understand. This translation however implies a
computation overhead which makes performance poor with respect to compiled
languages. To overcome the problem NumPy provides the array data structure.
This is a NumPy specific implementation of the classical array data structure. It
can have multiple dimensions and so allows to create single-dimensional arrays,
two-dimensional matrix and in general multi-dimensional vectors.

Figure 10.2: Example of NumPy boolean addressing

The vectorization consists in the possibility to apply a specific function to an entire
array of the above type. So for example in listing 10.1 x can be a multi-dimensional
array and is not required to be a pure number. The big advantage is that in this
way the interpreting step is performed only once for all the elements of the array,
and then the required operation is executed in loop over the whole data structure.
The bigger is the input array the smaller is the relative impact of the interpreting
overhead.
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Vectorization can be also used to obtain a parallel addressing of the arrays, called
boolean addressing. Instead of explicitly looping over the whole array and manually
select the elements that respect some predetermined criteria, NumPy allows to use
a boolean array as an index. Schemes like the one reported in figure 10.2 will be
used along this chapter to better visualize the parallel access or operations applied
to an array.
It is worthwhile to note that figure 10.2 does not mean that the operation is
executed in parallel on the entire array in practice. The loop is simply moved to a
lower level of abstraction and executed in a faster language, generally C. If then
the processor makes a certain degree of parallelization available, NumPy tries to
optimize the execution by using it. However this kind of scheme can be useful to
understand what is going on at Python level.

10.3 Interfacing the network from the input side:
encoding the input data into proper spikes
trains

Chapter 8 presents a complete way to convert a real number into a train of spikes.
The practical implementation of the method is the same used by Peter Diehl and
Matthew Cook[27].
The rate of each spikes train is set equal to a normalized version of the pixel’s
value, following equation 10.1

rate = pixelÍs value

8 · inputIntensity (10.1)

Where inputIntensity is a variable parameter initialized by default to

inputIntensity = 2 (10.2)
The obtained values is interpreted as a frequency, so is expressed in Hertz. The
pixels can assume values between 0 and 255. So, with the initial value of the
inputIntensity reported in 10.2 the input firing rate is limited between 0Hz and
63.75Hz.
In order to effectively interpret the output provided by the network a minimum
spiking threshold is set. If the total count of spikes generated by the network as
an output is lower than the threshold the input data are presented again, with
the intensity increased by one. The process is repeated until the minimum output
spikes count is reached. By default the minimum firing threshold is set to:

countThreshold = 5 (10.3)
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10.4 Interfacing the network from the output side:
interpreting the output spikes

The other aspect of the interface regards the interpretation of the spikes generated
by the network as an output. Also in this case the conversion from spikes to real
numbers consists in considering the average firing rate of each output neuron. To
do this the output interface simply counts the number of spikes generated by each
neuron in the output layer. In order to obtain the corresponding firing rate it is
sufficient to divide the obtained values by the total duration of the temporal window
along which the output is analyzed. This corresponds to the time duration of the
input spikes trains. Since this quantity is the same for each neuron normalizing
the spike count by such duration does not bring any additional information. For
this reason the computation is not performed and the spikes counts are directly
used to interpret the output of the network.
So the complete structure, with the input and output interfaces becomes the one
reported in figure 10.3

Figure 10.3: Spiking neural network with input and output interfaces

10.5 Training cycle over a single image
Now that information can be exchanged with the spiking neural network a training
procedure can be defined. Figure G.2 shows the steps performed to train the
network over a single image of the dataset. In order to make the training over
a new image independent from the precious one the network is run for a resting
period with its input forced to zero. In this way no input spike is provided to the
network and the membrane potential tends towards its resting value, without being
affected by the previous training cycle.
As said before the training method used within the network is the spike timing
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dependent plasticity, which is an unsupervised method. This means that the input
labels are not directly used during the training to modify the network hyper-
parameters. However a method to interpret the output spikes counts and to use
them to evaluate the accuracy of the network must be set.

10.6 Output classification
First of all each neuron must be associated with a label. In the ideal case when a
specific image is presented at the input of the network only the neurons associated
with the label corresponding with such image fire, while the others remains silent.
The real situation is obviously less perfect than this, there will be neurons that will
fire when an image different from their label is presented, and neurons associated
with the right label that will not fire. So it would be better to say that each neuron
is associated to the label for which the firing probability is the highest.

At the beginning of the training there is no way to estimate the output classification
and so each neuron in the output layer is associated with a label that is different
from all the ones available within the dataset. So by default all the outputs are
associated with the label -1.

Figure 10.4: Update the assignments of the output layer

Along the training the number of spikes generated by each neuron is monitored
and each of them is associated to the label for which the count is the highest. The
label update is performed periodically after a fixed amount of input images. In
this way vectorization can be used to improve the performance by analyzing the
history of the network during a certain amount of cycles as a whole.

Figure 10.4 shows the procedure used to associate the neurons to the label zero,
while figure G.8 reports all the steps required for the computation. The label zero
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is used only as a reference but the update loop is obviously repeated for all the
labels.

It can be seen that the maximum count associated to each neuron is reset before
performing the classification. In this way the update is not affected by possible
errors performed at the previous iteration. It is possible in fact that a neuron
generates an anomalous amount of spikes in correspondence of one specific image
and is therefore associated with the corresponding label. It could be however
that this is not the correct label for which the neuron will generate the maximum
amount of spikes on average. Updating the maximum counts along the images
without periodically reset it would cause the anomalous spikes count to mask the
subsequent iterations, implying a wrong classification.

10.7 Accuracy evaluation
Now that the output classification is determined it can be used to estimate the
accuracy of the network.

Figure 10.5: Find the instants for which the spikes count is grater than the
maximum for label 0

Again the evaluation is performed periodically both to exploit vectorization and to
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keep trace of the evolution of the accuracy along the training/test. The accuracy
is estimated by monitoring the classification performed by the network for a fixed
amount of images and by comparing it to the known sequence of correct labels
associated to such images. The result is expressed in percentage as:

correctly classified labels

total number of labels
· 100% (10.4)

Figure 10.5 shows the vectorized implementation of method, while figure G.6 reports
all the steps required for the computation.

10.8 Store the hyper-parameters of the network
Finally, once the network has been trained all its hyper-parameters are stored into
proper files in order to be used later on in case the network is run in test mode.
Figures K.1 and K.2 for example show how, during the initialization of the network
hyper-parameters, these can be loaded from file in test mode.
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Chapter 11

Simulation of the network
using Brian 2

11.1 Brian 2 simulator

Brian 2 [33] is a simulator for spiking neural networks written in Python. It is the
second version of the Brian simulator [34]. Nowadays there are lots of available
simulators for spiking neural networks[35], such as NEURON[36], GENESIS[37]
and NEST[38]. All of them are optimized to efficiently simulate SNN and are
widely used for large-scale modeling and complex biophysical models but they
generally use a dedicated language. This implies a relatively long time overhead to
learn how the simulator works and to practically write the required code. Machine
learning is generally a quite iterative process, in which the developer tries an idea,
models it in using a certain coding language and then simulates it to evaluate
the results. This loop is repeated many times in order to tune the network’s
hyperparameters, to test different architectures and so on. An optimization in
the development procedure should involve all the steps of such a process. If for
example the simulator is perfectly optimized to run the code at the maximum
possible speed but then requires the programmer weeks to learn how to use it and
many days to develop the code it is not optimal. The complete review of the most
used simulation tools written by Roman Brette and others[35] can be used as a
reference. Brian 2 (and Brian before it) has the big advantage of being written in
Python. It can be directly integrated into a script and used together with other
useful libraries such as NumPy, matplotlib and similar. This makes the work of
the programmer much easier. In addition it tries to optimize whenever possible,
for example by running functions at a lower level of abstraction, C or C++, if the
system supports the compilation of the code in such languages.
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11.2 Network data structure
Brian 2 makes a lot of data structure available for the simulation of a spiking
neural network. In particular the ones used to simulate the developed model are:

1. NeuronGroup: object associated with an arbitrary numerous group of spiking
neuron. This can be provided with the equations that describe the behaviour
of the neurons.

2. Synapse: object which represents the connection between two NeuronGroup
elements. It allows to specify the way in which the neurons belonging to the
two groups are connected.

3. PoissonGroup: group of pseudo-neurons which convert the input firing rates
in trains of spikes with a Poisson distribution.

4. SpikeMonitor : object which allows to monitor the spikes generated by a certain
NeuronGroup. It allows to record the temporal evolution of the spikes, useful
for the plot. However this feature is quite memory hungry and so is disabled
through the flag record = False. This is used to keep trace of the counts of
the spikes generated by the output layer.

5. Network: allows to enclose all the previously mentioned elements in a single
object, that can be then passed to the functions for the update.

All these elements together allow to obtain the structure shown in figure 10.3,
which corresponds to a Brian 2 network object, containing all the other objects.
Sections from I to I shows the complete algorithm used to create and initialize the
data structure following the user requirements.

11.3 Select training or test mode
The Synapse object, as the NeuronGroup, accepts in input the description of the
temporal evolution of its state variables, in form of differential equations. This
allows to specify, when the network is created, a learning rule to apply to the
desired synapses. So in this phase it is possible to decide if the network will be
run in training or test mode: if in fact no equation is specified the weights of the
synapses will not be modified along the evolution of the network, that in this way
is used in test mode.
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11.4 Convert the image into spikes trains
The block that is in charge of the conversion of the input numerical data into trains
for spikes is associated with a dedicated object in Brian 2. As a consequence the
only detail to worry about in the conversion is to set the firing rates associated
with each input to the pixels values. The two operations needed are reported in I.7.

11.5 Make the network evolve over the input
spikes trains

Finally sections from I to I shows the steps followed to run the network, being it in
training or test mode. It can be observed that in general a dedicated instruction is
used whenever an access to the internal variables is required. This is due to the
encapsulation provided by the Network class: the internal state variables are not
directly readable or modifiable but they must be accessed through two internal
functions, get_states() and set_states().

As said before, the chosen data structure modifies also the output evaluation
functions. In particular the SpikeMonitor object keep trace of the spikes generated
along the whole training. The count relative to a specific image can be obtained
subtracting the total amount of spikes generated up to the previous image, so this
is an additional operation that in the handmade implementation is not required.
The alternative would be to reset the monitor at every iteration.

It can be seen that no details on the internal computations regarding the temporal
evolution of the network are provided. This is because at this level all the cal-
culations are performed internally by Brian 2. It is possible to select the way in
which equations will be solved choosing between event-based and step-based. Next
chapters will explain the difference in detail. The event-based solution is selected
to improve the performance. Also the mathematical method used to solve the
differential equations can be set. In this case, being the model linear the exact
method is selected. Both of the choices are different from the practical solutions
used within the more detailed model first and the hardware accelerator later, but
at this level the model is being simulated without care for the internal details, so
all the choices are oriented towards the fastest possible simulation.
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Chapter 12

Manual simulation of the
network using python

Now that the model is well defined and simulated a new step towards a lower level
of abstraction can be performed. In particular, instead of having all the internal
equations solved by a simulator the detailed required computations are now made
explicit. The methods used at this level will be then hardwired within the hardware
accelerator, so some design choices must be taken at this point. Let’s in particular
analyze the difference between an event-based method and a step-based one.

12.1 Event-based solution
The event-based solution, as the name itself suggests, is based on the arrival of an
input event for the computation of the evolution of its state variables. This means
that the network is updated only if at least one input spike is received in input. In
particular the exponential evolution of the membrane potential, the threshold and
the synaptic traces is computed in an exact way only when a spike arrives at the
inputs. The result is then increased or decreased due to the arrival of the spike
itself.

This is an optimum solution in terms of efficiency, because it avoids useless compu-
tations when the only update consist in an exponential decrease. When the spike
is received the arrival time is stored. It is then used in correspondence of the next
spike to compute the elapsed time and so the exponential decrease. This is also
the method used in Brian 2 and in fact the two settings regarding the solution of
the state equations are:

1. Event-based: this is what has been just described.
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2. Exact: the integral is exactly computed along the interval between two spikes.

Thinking to the hardware acceleration this is only optimum for the power con-
sumption. In fact no computations are performed if no spikes are received, so the
network is run only for the strictly required time. However all these advantages
imply some costs:

1. The network requires to manage an event queue, ordering the spikes on the
basis of their arrival time. This is quite a complex task to perform in hardware
and requires additional resources.

2. Being the interval between two spikes unknown the exponential must be
explicitly computed. This requires a dedicated circuit or an approximated
solution based on LUTs, that in both cases require again additional resources.

There are a lot of hardware accelerators that use such a solution. One example is
Minitaur [39].

12.2 Step-based solution
The goal of this thesis project is to design an hardware accelerator that is as small
as possible, in order to maximize the number of neurons that can be integrated
with equal hardware resources available, or to leave space for an higher degree
of parallelization, with a consequent performance improvement. For this reason
the chosen updating alogorithm is the step-based. This strongly simplifies both
the control part, avoiding the use of an ordered queue, and the elaboration part,
removing the necessity to precisely compute the exponential functions.

The step-based solution implies to solve the differential equations that characterize
the model in an iterative way, updating all the state variables at every cycle. It
allows to use the methods reported in sections A.2 and B.1, strongly simplifying
the required computations.

The drawback is that the network is always active, also in absence of input spikes.
A possible solution to reduce the power consumption that derives from this consists
in updating the state variables until they are grater than a fixed threshold. After
this quantity their variation can be considered sufficiently small to approximate
them with their steady state value. The neuron in this case can enter in a wait
state in which it is no more updated until a new spike is received[40].

There are also hybrid models which are able to select between step-based and
event-based depending on the workload. In this particular case the model used to
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develop such an accelerator[41] is very similar to the one presented in this thesis
and applied to the same problem of digits recognition on the MNIST, so it could
be interesting to take it as a reference.

12.3 Network data structure
Also in this case before analyzing the updating algorithm it is worthwhile to look
at the data structures used to describe the network.

12.3.1 Input Poisson layer
First of all the Poisson layer is treated as a distinct element. The data structure
associated with it is simply a NumPy two-dimensional Boolean array containing
the temporal evolution of the spikes. In particular it has a number of rows equal
to the duration of the spikes trains, expressed in number of temporal steps, and a
number of columns that corresponds to the total amount of input data, so in this
case to the dimension of the image expressed in pixels:

28x28 = 784 (12.1)

12.3.2 Neural network
All the network components are described using dictionaries.

Figure 12.1: Network dictionary
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The choice of this particular data structure depends on the possibility to explicitly
label each element, which makes the code self-explanatory and more readable.

Figure 12.1 shows the complete dictionary used to describe the network, supposing
as always to work with the structure shown in figure 7.1. Each element is associated
with a dedicate dictionary, which completely describes it. Here for the sake of
visualization only the dictionaries of the inter-layer synapses are made explicit.
These correspond to the connections between the excitatory layer to the inhibitory
one and vice versa. The only parameter that characterize them is the weight of the
connection, equal for all the neurons.

(a) Excitatory layer dictio-
nary

(b) Inhibitory layer dictio-
nary (c) Synapse dictionary

Figure 12.2: Detailed data structures

Figure 12.2 shows the details of the inner dictionaries describing the different
components of the network. A possible improvement in the data structures could
be to make all the elements coherent in terms of shape. This means in particular
to modify v, outSpikes and theta to make their shape equal to the one of post. In
this way each layer would be associated with a column vector, that would also be
easier to visually associated with the network abstract structure. Sections from J
to J shows the required steps to initialize the described structure.
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12.4 Convert the image into spikes trains
Differently from what seen with the Brian 2 simulation, the conversion must be
performed manually. Figures J.5 and J.6 show the details of the computations
required. Again vectorization is used to reduce to a minimum the interpreting
overhead.

First of all a NumPy two-dimensional array of values uniformly distributed between
zero and one is created. Its dimension are the same of the data structure that will
be used to store the temporal evolution of the spikes associated to each pixel, as
described in section 12.3.1. Such array is used following the algorithm explained in
section 8.2.

12.5 Make the network evolve over the input
spikes trains

The complete algorithm used to perform the inner computations necessary to
update the network following the developed model is reported in sections from J to
J. All the updates are performed in a step-based way, using the equations explained
in sections A.2 and B.1. Also in this case vectorization is used and all the neurons
belonging to a layer are updated with a single instruction. This implies the use of
boolean addressing, shown in figure 10.2 to select only the desired neurons. Since
the spikes are intrinsically binary they are stored in form of boolean arrays and so
they can be directly used to perform such an addressing.

12.6 Choice of the temporal step
Once defined all the parameters of the network, including the time constants of
the exponential functions, the temporal step must be set. This was not required
in Brian 2 because ∆t was included within the network object, even if it was
modifiable from outside. In order to make the manual simulation coherent with
what has been obtained with Brian 2 the chosen value for the time step is the same
used by default by the simulator, that is:

∆t = 100µs (12.2)

This value affects the update of all the states variables within the network since
the computations are step-based.
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Chapter 13

Simplification of the
network for the hardware
acceleration

At this point the developed model is completely described and simulated in detail
and so it is ready to be translated into a dedicated hardware component. However
there are some simplification that can be applied in order to make the integration
onto an hardware platform more efficient without remarkably modifying the model
itself.

13.1 Remove the inhibitory neurons
The inhibitory neurons are a simplified version of the excitatory one, with a
constant threshold that does not depend on the output spiking activity. Each
of them presents a single input connection, originated from the correspondent
excitatory neuron. The weight of such connection is set to a value that is sufficient
to make the membrane potential exceed the threshold when a single spike is
received, as explained in section D.5. This means that, whenever an excitatory
neuron generates a spike the corresponding inhibitory node responds generating in
turn a new spike that is then brought to all the other excitatory neurons in the
layer. As a consequence the output of each inhibitory element is the exact copy of
its excitatory counterpart. Therefore it is useless to dedicate a physical component,
with its own temporal evolution, to the generation of the inhibitory spikes, it is
sufficient to directly connect each excitatory output to all the others nodes in the
layer.
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The update of the membrane potential at this point is computed considering the
input spikes and the ones generated by the layer itself in the previous update cycle.
In this way, speaking about the python simulation, the inhibitory layer is reduced
to a NumPy array which simply stores the spikes generated by the excitatory
neurons in order to use them in the next iteration. This almost halves the required
resources.

13.2 Homeostasis
The problem of the homeostasis is that it requires a very high time constant.
The exponential decay of the threshold is in fact much slower if compared to the
membrane potential. See sections 7.3 and D.1 for more details.
Looking at how the differential equations are iteratively solved it can be seen that
the result depends from the quantity:

∆t
τθ

(13.1)

Section 12.6 reports the chosen value for the time step and substituting the value
of τθ the result is:

∆t
τθ

= 100µs
107ms

= 10−1ms

107ms
= 10−8 (13.2)

In order to evaluate what does this means in terms of the target hardware architec-
ture let’s convert the result using 2 as a base:

10−8 = 2log2(10−8) = 2−8·log2(10) Ä 2−27 (13.3)

Working with a fixed point architecture with a single integer bit this means that the
parallelism must be at least 28 bits, but even higher to obtain acceptable results in
terms of representation of an exponential decay.

Let’s now analyze the impact of the exponential decrease on the threshold. With
an exponential function of the type

e− t−t0
τ (13.4)

τ represents the time difference t − t0 for which the magnitude is reduced by a
quantity:

e− τ
τ = e−1 Ä 0.37 (13.5)
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so in other words for which the magnitude is reduced down to the 63% of its value.
In the analyzed case the time required for such a reduction is τθ = 107ms.

The default duration of an elaboration cycle over a single image is 350ms, while
the rest period lasts 150ms. So the amount of images required for the homeostasis
parameter to reach the 63% of its magnitude is:

107ms

350ms+ 150ms = 20000 (13.6)

Being the exponential decreasing so slow a possible alternative is to remove it. In
this case the homeostasis only consists in an increment of the threshold when an
output spike is generated.

In order to avoid to analyze each image two or more times due to the growing
threshold the θ+ parameter is reduced a bit with respect to the value reported in
section D.1. So in this case:

θ+ 0.05mV

Table 13.1: Modified value of the homeostasis parameter

An interesting consequence of such modification is that the accuracy of the network
starts from lower values and then tends to grow more regularly, with reduced
oscillations. More studies should be conducted to investigate the phenomena, at
the moment it is only reported as a curiosity.
The result is that the parallelism of the architecture can be much smaller and no
iterative updates are required for the threshold, which requires an update only if
an output spike is generated.

13.3 Bring the network into a rest state
The method used to bring the network to rest before analyzing a new image consists
in running it for a fixed period, by default 150ms, with its inputs at zero, so without
any input spike. Working with a step-based architecture and with a time step of
0.1ms means that the network is forced to perform

150ms
0.1ms = 1500 (13.7)

cycles only to make the membrane potential tend towards its rest value. So in order
to avoid such a waste of time and accepting a small approximation the membrane
potential is simply forced to its rest value at the end of each image.
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13.4 Results
Since the model has been slightly modified, even if the reasoning presented up
to now shows that this has a negligible effect the network is simulated again and
the results are presented in a separate section, in order to be compared with the
original ones.
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Chapter 14

Design of the hardware
accelerator

Now that the model has been exhaustively simulated it is ready to be translated
into an hardware accelerator. As repeatedly said in the previous chapters, the goal
is to minimize the area occupied by the circuit in order to leave space to a large
amount of neurons or to an higher level of parallelism. For this reasons the neuron
is realized with the minimum possible resources. This sets a lower boundary to the
performance.

The two main methods with which the circuit can be trained are:

1. Offline training: the model does not dynamically learn while it is running.
There is a dedicated phase in which the training happens, being it on a
dedicated hardware accelerator or using a software version of the model. The
obtained parameters are then loaded into the accelerator and used to evaluate
the input data. If a new training is required the accelerator is stopped and
then restarted with the new parameters.

2. Online training: in this case the learning happens while the accelerator itself
is working. This means that the circuit can dynamically learn from new input
data and implies the presence of a training system on board.

The design of the circuit is performed gradually. First of all a structure able to run
a pre-trained network is developed. In this case the training is performed offline
using the software simulation and the weights are then loaded into the accelerator.
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14.1 Parallelization degree and performance im-
provement

The goal of the hardware accelerator, as the name itself suggests, is to reduced
the time required to evaluate the model by performing the required computations
with a certain degree of parallelization. The ways in which this can be achieved
are mainly two:

1. All the neurons belonging to a specific layer are independent one from the
other, so they can be updated in parallel.

2. All the input spikes increase or decrease the membrane potential and all of
them must be considered before evaluating if the potential has exceeded the
threshold. This means that there is not an order that the weights belonging
to the active synapses must follow to be added to the current value of the
membrane potential. As a consequence in the extreme case all the weights
can be added together in parallel, requiring a single updating cycle.

Being the usable hardware resources limited, a solution in which all the neurons
work in parallel, elaborating all their inputs in parallel is probably not feasible. The
first solution consists in updating all the neurons in parallel, computing the weights
sum in sequence. As a consequence the time required for a complete update of the
network, if compared with the software solution in which all the computations are
performed in parallel is:

Tacc = Tsw
Nneurons

(14.1)

This is obviously an approximate result which doesn’t consider the interpreting
overhead present in the python version, the possible degree of parallelization made
available by the processor and other possible details, but it works well as a first
approximation.

Another interesting feature is that, one determined the time required by a single
neuron to be updated, it remains constant with the number of neurons within a
layer, differently from a sequential solution.

Let’s now analyze the design details that characterize the developed accelera

14.2 Circuit to test the model: offline training
The key points in this first phase are the model of the membrane potential and the
way in which it is translated into a dedicated circuit. The synapses are represented

80



Design of the hardware accelerator

through static weights that modifies the potential when a spike arrives on the
relative connection.

The network is composed by three hierarchical levels:

1. Neuron: core of the accelerator. This is where the developed model is imple-
mented.

2. Layer: group of neurons working in parallel.

3. Network: group of layers working as a pipeline.

14.2.1 Neuron
Figure L.2 shows the datapath used to perform the required computations. The
features to notice are:

1. The presence of a single adder. This represents the minimum resources
solution.

2. The absence of a multiplier, substituted with a shift operation.

The single adder choice implies that a basic operation as the exponential decay of
the membrane potential is split into two steps, one to subtract the quantity

∆t
τ

· V [n] (14.2)

from V[n] and the other to shift the result up by adding

∆t
τ

· Vrest (14.3)

As a consequence, since the neurons are updated in parallel and so they must
be synchronized one with the other, a pause step, in which the network does not
perform any computation, is required after the generation of an output. This is
because the reset of the membrane and the homeostatic increase of the threshold
can be computed in parallel and require a single step. The details about the control
part are reported in figure L.3.

The only multiplication operation is the one required by equation 14.2. In this case
τ is a parameter of the model and cannot be modified, but ∆t can be chosen in a
quite free manner. With a proper choice of its value the quantity

∆t
τ

(14.4)
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becomes a negative power of two and can be computed with a simple bit-shift
instead of requiring an explicit multiplication. With ∆t = 100µs the result is:

∆t
τ

= 10−4s

10−1s
= 10−3 (14.5)

The nearest power of two is 2−10 = 0.977 ·10−3, which corresponds to a 10 bits right
shift. This also sets a minimum boundary to the parallelism of the architecture.

Finally each neuron has its own control unit. This is required because each neuron
must be checked separately to evaluate if its membrane potential has exceeded the
threshold or not, and since all of them work in parallel a single control unit cannot
be used. Each neuron is driven through two start signals:

1. EXP_EXC_START

2. REST_INH_START

These are used in two different phases along the membrane potential update. In
particular:

1. To start the network. In this case there are two distinct operations that the
neuron can perform:

• Update its membrane, resetting it if it exceeds the threshold and expo-
nentially decreasing it otherwise.

• Reset the membrane to its rest value at the end of an image before starting
with the next one.

The two start signals can be used to select the desired operation, following
the truth table shown below.

EXP_EXC_START REST_INH_START Operation
1 - Update the mem-

brane potential
0 1 Reset the mem-

brane potential
to its rest value

0 0 Return in idle

Table 14.1: Truth table of the two starts in the first phase

2. To update the membrane with the input spikes. In this case the neuron gives
the possibility to:
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• Update the membrane with the weights of the excitatory synapses and
then with the inhibitory ones.

• Update the membrane only with the weights of the excitatory synapses.
• Update the membrane only with the weights of the inhibitory synapses.
• Avoid the update of the membrane and return in idle.

In this way if there are no input or inhibitory spikes no useless update cycles
are performed. The truth table is reported also in this case:

EXP_EXC_START REST_INH_START Operation
1 1 Both excitatory

and inhibitory
1 0 Only excitatory
0 1 Only inhibitory
0 0 Return in idle

Table 14.2: Truth table of the two starts in the second phase

14.2.2 Layer of neurons
Now that the neuron architecture is defined it can be used to create one layer of
the network. Sections from L.4 to L.8 show all the components of an example layer
of three neurons.

What is important to notice is that the layer is not a simple group of neurons put
in parallel, but it has additional elements and its own control unit. The reason is
that a system to manage the neurons update is required, since the parallelism is
not complete and the inputs are elaborated sequentially.

Figure L.5 shows the circuit used to select the inputs. It computes the logical
OR of all the input spikes. If the result is zero, that means that there is no input
spikes the proper start code is provided to the neurons to avoid the update on
those specific inputs, being them excitatory or inhibitory. If instead at least one
spike is present the inputs are provided to the neurons one at a time through the
use of the multiplexer. Here the selection is managed through a counter, that is
updated until it reaches the total number of inputs.

The same counters used to select the excitatory or inhibitory spikes are used also
by the control unit to run the update of the neurons until all the elements have
been considered.
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The excitatory counter has also a third use, that is the selection of the correct
weight related to the currently considered input. This is explained more in detail
in subsection 14.2.3 For the inhibitory part this is not necessary because all the
connections have the same weight.

14.2.3 Synapses
Figure L.9 shows the architecture of the synapses block. It is a simple register file
with one input port and one output port. All the synapses corresponding to a layer
are put together and treated as a single component, as shown in figure L.10.

First of all a loading phase is necessary, since the accelerator uses the weights
obtained through an offline training. All the synapses belonging to a layer can be
updated in parallel, writing a single weight for each synapse. So a number of cycles
equal to the number of inputs is required for each layer.

Once the weights are loaded the desired one can be selected by simply providing
the address of the corresponding input. In this way the weights can be accessed
sequentially using the input counter.

14.2.4 Network
Finally multiple layers can be put together to form a network. An example structure
with two layers is shown in figure L.11. Each layer has its own group of synapses
from which it reads the weights. The layers are connected sequentially one to the
other. All of them are connected in parallel to the signals:

1. RST_N: asynchronous reset that affects all the layers at the same time.

2. REST: synchronous signal to reset the network to its rest state before analyzing
the next image.

Looking at image L.7 and at how the input and output signals are managed by the
control unit in figure L.8 it can be seen that the input and output protocol are the
same for the signals:

1. START and NEXT_LAYER_START

2. PREV_LAYER_END and END

When receiving an active START the layer updates the membrane potentials,
generating the spikes where necessary, and then gives the start to the next layer.
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In this way the spikes are quickly propagated along the network and most of the
computations, corresponding to the elaboration of the input spikes, are performed
in parallel.

At the end of the elaboration each layer enters into a wait state and remains in it
until the previous layer has finished in turn. This guarantees a synchronization
between layers that can have different dimensions and different elaboration flows,
that depend on the presence of spikes on their inputs. The first layer has a constant
’1’ in input since there is not a previous layer able to provide the ending signal.
The last layer has both its NEXT_LAYER_START and END signals connected
to the output of the network. They can be used to interface the network as follows:

1. Start the network, giving it an active START and providing the required
spikes sequence as an input.

2. Each time the NEXT_LAYER_START becomes active, meaning that the
network has completed the elaboration over a single cycle of input spikes,
increment the counter of the active neurons.

3. When the network has finished the elaboration, so when the END signal
becomes active provide the REST signal to reset the network to its rest state.
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Chapter 15

Future work

15.1 Test of the developed circuit
Now that the design is ready it can be implemented using VHDL language and
tested in order to compare its performance to the one obtained with the python
simulation. This part is not present in the thesis work but will be published in a
dedicated paper.

15.2 Online training
As said before the architecture developed up to now is able to run a pre-trained
model. It would be interesting to consider also the second alternative, the online
training, in order to evaluate the performance improvement also in this case. To
do this a further study on possible alternatives to weight normalization should
be considered, in order to keep the area as limited as possible. One promising
possibility seems to be the insertion of random delays in the input and inter-layer
excitatory connections.

15.3 FPGA implementation
Once the accelerator is tested and ready it can be synthesized into a netlist which
targets an FPGA platform. In this way the designed circuit can be truly tested,
going beyond the simple simulation. A possible target for the accelerator could be
an evaluation board which includes an FPGA, a microprocessor and a rough version
of Linux. In this case a small driver could be used to interface the accelerator.
Instead of performing the network inner computations using python or leaving it
to some dedicated library functions, as done using Brian 2, the accelerator can
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be used in this case. In such a scenario there are many possibilities that can be
tested. In particular there are three possible levels in which the various parts of
the interface can be implemented:

1. From the input point of view the conversion of the image into trains of spikes
can be performed within the python, which then sends the spikes towards the
board; by the Linux driver, which then sends it to the hardware accelerator;
with a dedicated hardware. In this case the image is simply sent to the FPGA
and then converted step by step for the desired number of cycles. This implies
to generate random values with an hardware component so it would probably
involve the use of LFSR or similar components, that must be hosted within
the FPGA.

2. From the output point of view the count of the output spikes could be again
performed through dedicated counters within the FPGA, by the processor or
by the python program.

3. The evaluation part, including the computation of the accuracy and the
classification update, again could be performed by the on board processor or
using the python program.

In general there are many possibilities that can be tested and it would be interesting
to evaluate the optimal solution, considering also the transmission overhead due to
the necessity to send data from the computer to the board, from the board memory
to the hardware accelerator and back in the opposite direction. In this way the
performance of the the various solutions, the python manual simulation, the Brian
2 version and the hardware accelerator can be truly compared, taking in account
all the possible delays introduced along the computation chain.

15.4 Python framework
Finally, once the accelerator is tested, together with all the possibilities mentioned
above, the last step could be to realize a python framework able to create the
accelerator by directly writing the VHDL code, following the user’s requests and
to interface it in the best possible way. This would allow the possibility to test
different architectures, with different numbers of layers of different size without the
necessity of redesigning the accelerator every time.
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Appendix A

Current based synapse:
mathematical analysis

This appendix reports the detailed mathematical analysis of the current-based
synapse and of its impact on the membrane potential. All of the calculations have
been developed independently from any verified text or resource, so its correctness
is not completely guaranteed. Take it only as a reference.

Figure 5.1 shows the equivalent circuit of the model, used as a reference for the
following computations.

A.1 Continuous time
Let’s start by computing the total current that flows through the membrane
capacitance:

Itot = Iin + Irest (A.1)

Irest = Vrest − V (t)
RM

(A.2)

Itot = CM · dV (t)
dt

(A.3)

Iin =
NØ
i=1

Ii (A.4)

CM · dV (t)
dt

= Vrest − V (t)
RM

+
NØ
i=1

Ii (A.5)
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Current based synapse: mathematical analysis

This implies that the equation which describes the temporal evolution of the
membrane potential is given by the following first order differential equation:

dV (t)
dt

+ 1
τ

· V (t) = 1
τ

· Vrest + 1
Cm

·
NØ
i=1

Ii (A.6)

The general solution of a first order differential equation in the form

dx(t)
dt

+ a0(t) · x(t) = g(t) (A.7)

can be obtained as follows:

x(t) = e−A(t) ·
5
c1 +

Ú
g(t) · eA(t)dt

6
(A.8)

or alternatively:

x(t) = e−A(t) ·
Ú t

t1
g(t) · eA(t)dt (A.9)

where

A(t) =
Ú t

t0
a0(t)dt (A.10)

a0(t) = 1
τ

(A.11)

A(t) =
Ú t

t0

1
τ
dt = t− t0

τ
(A.12)

g(t) = 1
τ

· Vrest + 1
Cm

·
NØ
i=1

Ii (A.13)

As a consequence the general solution for the membrane potential is:

V (t) = e−A(t) ·
Ú t

t1

A
1
τ

· Vrest + 1
Cm

·
NØ
i=1

Ii

B
· eA(t)dt (A.14)

Thanks to the linearity of the integral the expression can be rewritten as:
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V (t) = e−A(t) ·
AÚ t

t1

1
τ

· Vrest · ·eA(t)dt+
Ú t

t1

1
Cm

·
NØ
i=1

Ii · eA(t)dt

B
= (A.15)

= e−A(t) · [V1(t) + V2(t)] (A.16)

Let’s now analyze the two components of V (t) separately.

A.1.1 Computation of the first part of the expression

V1(t) =
Ú t

t1

1
τ

· Vrest · eA(t)dt = (A.17)

= Vrest
τ

· e− t0
τ

Ú t

t1
e
t
τ dt (A.18)

V1(t) = Vrest · e
t0
τ ·
3
e
t
τ − e

t1
τ

4
= Vrest ·

3
e
t−t0
τ − e

t1−t0
τ

4
(A.19)

A.1.2 Computation of the second part of the expression

V2(t) =
Ú t

t1

1
Cm

·
NØ
i=1

Ii · eA(t)dt (A.20)

Again thanks to the linearity of the integral:

V2(t) = 1
Cm

·
NØ
i=1

Ú t

t1
Ii · eA(t)dt (A.21)

At this point the expression of the generic current Ii can be expanded. Here the
current spike is treated as an ideal Dirac delta with area equal to the weight wi.
The index i simply represent a generic input synapse. In the example reported in
figure 5.1 there are three input synapses, so three different currents I1, I2 and I3,
each with its own weight w1, w2 and w3.

V2(t) = 1
Cm

·
NØ
i=1

Ú t

t1
wi · δ(ti − t) · eA(t)dt (A.22)

It is known that the Dirac delta can be used to sample a generic function f(t)
through the convolution operation, as shown in equation A.23. The convolution
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returns the value of the function in the sampling point if the delta belongs to the
integration interval and zero otherwise.

Ú t

t1
δ(t0 − t) · f(t)dt =

f(t0) if t1 < t0 < t

0 if t0 < t1 and t0 > t
(A.23)

So applying equation A.23 to equation A.22 leads to:

V2(t) = 1
Cm

·
NØ
i=1

si · wi · e
ti−t0
τ (A.24)

where si = 1 if t1 < t0 < t

si = 0 if t0 < t1 and t0 > t
(A.25)

A.1.3 Computation of the complete membrane potential
expression

Finally, substituting the two computed parts into equation A.16 the complete
expression of the temporal evolution of the membrane potential can be computed.

V (t) = e− t−t0
τ ·

A
Vrest · e

t−t0
τ − Vrest · e

t1−t0
τ + 1

Cm
·
NØ
i=1

si · wi · e
ti−t0
τ

B
(A.26)

V (t) = Vrest +
A

1
Cm

·
NØ
i=1

si · wi · e
ti−t0
τ − Vrest · e

t1−t0
τ

B
· e− t−t0

τ (A.27)

For ti −→ t0, so supposing that all the spikes arrive in the same instant t0, and for
ti = t0, so integrating from t0 over, the expression becomes:

V (t) = Vrest +
A

1
Cm

·
NØ
i=1

si · wi − Vrest

B
· e− t−t0

τ (A.28)

Finally, in order to simplify the expression CM can be considered equal to 1. As
a consequence all the other values, like RM or the generic weight wi, are set to
values that allow to keep the model unchanged. Another possible way to remove
the CM contribute is to include it within the weights. In this way both RM and
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CM are kept to biologically plausible values and the weights are modified to keep
their contribute unchanged, as reported in equation A.29

w
Í

i = wi
CM

(A.29)

In both cases the membrane potential expression becomes:

V (t) = Vrest +
A

NØ
i=1

si · wi − Vrest

B
· e− t−t0

τ (A.30)

A.2 Discrete time
Equation A.30 provides an expression that allows to explicitly compute the temporal
evolution of the membrane potential. Working with a python simulation or with an
hardware accelerator all the computations are performed in a discrete-time domain.
This means that the time does not vary in a continuous way, but can only assume
fixed values, equally spaced one from the other. The possible solutions to compute
the membrane potential evolution in this case are two:

1. Explicit computation of V(t) using equation A.30. In this case t0 becomes the
last instant in which one spike was received and t will assume discrete values.

2. Iterative computation starting from equation A.6. All the following equations
explain in detail this last solution.

Working with a sufficiently short time interval ∆t the voltage derivative can be
well approximated by its difference quotient, as shown in equation A.31.

V (t+ ∆t) − V (t)
∆t + 1

τ
· V (t) = 1

τ
· Vrest + 1

Cm
·
NØ
i=1

Ii (A.31)

The equation allows to find the value of V (t+ ∆t), that is the membrane potential
variation with respect to its value V(t) after a short time increment ∆t.

V (t+ ∆t) = V (t) − ∆t
τ

· V (t) + ∆t
τ

· Vrest + ∆t
Cm

·
NØ
i=1

Ii (A.32)

Again the properties of the Dirac delta can be used to proceed in the computations.
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In particular the ideal delta can be defined as an impulse with infinite amplitude
and zero base and with unitary area. As a consequence:

lim
∆t→0

∆t · δ(t− t0) =

1 if t0 ∈ ∆t
0 if t0 /∈ ∆t

(A.33)

So, for a sufficiently small interval ∆t the quantity ∆t · δ(t− t0) represents the area
of the delta, supposing that the delta belongs to the interval itself. Otherwise the
result of the expression becomes zero. Multiplying the delta for a constant value
wi means to impose a value wi to its area, and so:

V (t+ ∆t) = V (t) ·
C
1 − ∆t

τ

D
+ ∆t

τ
· Vrest + 1

Cm
·
NØ
i=1

si · wi (A.34)

where again si is used to identify the presence or absence of the delta within the
interval. The same suppositions made at the end of section A.1 can be now applied
to the capacitance CM .

V (t+ ∆t) = V (t) ·
C
1 − ∆t

τ

D
+ ∆t

τ
· Vrest +

NØ
i=1

si · wi (A.35)

Finally, working with elaboration steps instead of explicit time values, equation
A.35 can be rewritten as:

V [n+ 1] = V [n] ·
C
1 − ∆t

τ

D
+ ∆t

τ
· Vrest +

NØ
i=1

si · wi (A.36)
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Appendix B

Synaptic traces.
Mathematical analysis

Section 6.3 presented the synaptic traces as a possible practical implementation of
the STDP learning rule. This section aims to demonstrate that the two methods
are coincident.

Let’s start by integrating the temporal evolution of the synaptic traces:
Ú t

t0

dapre
apre

= −
Ú t

t0

dt

τpre
(B.1)

log[apre(t)] − log[apre(t0)] = −t− t0
τpre

(B.2)

log

C
apre(t)
apre(t0)

D
= −t− t0

τpre
(B.3)

apre(t) = apre(t0) · e− t−t0
τpre (B.4)

Supposing t0 = tin to be the instant in which an input spike is received, and
knowing from the updating rule reported in equation 6.4 that apre(tin) = ALTP :

apre(t) = ALTP · e− t−tin
τpre (B.5)

So when an output spike is generated the equation is evaluated in tout. Imposing
tout − tin = ∆t:

apre(t) = ALTP · e− ∆t
τpre (B.6)
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In the same way apost(t) can be computed. The final result leads to:

apost(t) = ALTD · e
∆t
τpost (B.7)

B.1 Iterative computation of the synaptic traces
Working in a discrete-time domain, with a sufficiently short time step, the charac-
teristic equations of apre and apost can be rewritten as:

apre(t+ ∆t) − apre(t)
∆t = −apre(t)

τpre
(B.8)

apost(t+ ∆t) − apost(t)
∆t = −apost(t)

τpost
(B.9)

So to find the value of apre and apost in the iteration t + ∆t it is sufficient to
compute:

apre(t+ ∆t) = apre(t) − ∆t
τpre

· apre(t) (B.10)

apost(t+ ∆t) = apost(t) − ∆t
τpost

· apost(t) (B.11)
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Appendix C

Unsupervised learning of
digit recognition using stdp

The model used to describe the membrane potential is the conductance based leaky
integrate and fire model. The "conductance based" attribute identifies the variable
conductance that characterizes the synapses. This is an alternative for the current
based model, in which the input current spike, multiplied by the weight of the
synapse, directly increases the membrane potential. In this case instead the input
event modifies the conductance of the synapse which, connected to a constant
potential, let a larger current pass through it.

C.1 Electrical equivalent and model of the mem-
brane potential

Figure C.1: Equivalent circuit of the conductance based model
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Figure C.1 shows the electrical equivalent of the system. In static conditions the
conductance of the excitatory and inhibitory connections is zero. In this situation
the capacitor is charged or discharged, depending on the voltage between the
two terminals of Cmem, through grest and tends to a steady state voltage Erest.
Whenever an input spike arrives through the excitatory or inhibitory connections it
increases the relative conductance and connects the capacitor to the corresponding
voltage source. Eexc is positive and tends to increase the capacitor’s voltage,
while Einh is negative and tends to decrease it. Equations C.1 to C.11 show the
mathematical details of the membrane potential model.

Iexc = gexc · (Eexc − V ) (C.1)

Iinh = ginh · (Einh − V ) (C.2)

Irest = grest · (Erest − V ) (C.3)

Itot = Iexc + Iinh + Irest (C.4)

Itot = Cmem · dV
dt

(C.5)

Cmem · dV
dt

= gexc · (Eexc − V ) + ginh · (Einh − V ) + grest · (Erest − V ) (C.6)

Normalizing by grest:

Cmem
grest

· dV
dt

= gexc
grest

· (Eexc − V ) + ginh
grest

· (Einh − V ) + (Erest − V ) (C.7)

At this point to simplify the notation the following quantities are defined:

τV = Cmem
grest

= Cmem ·Rrest (C.8)

gndexc = gexc
grest

(C.9)

gndinh = ginh
grest

(C.10)
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Finally, imposing grest = 1nS the values of gndexc and gndinh are equal to gexc and
ginh, but without unit of measurement. To furtherly simplify the notation the
superscript nd (which stays for no dimensions) is removed.

τV · dV
dt

= gexc · (Eexc − V ) + ginh · (Einh − V ) + (Erest − V ) (C.11)

C.2 Temporal evolution of the synapses’ conduc-
tance

As said before the conductance of the excitatory and inhibitory connections is
increased when an input spike arrives and then decreases exponentially if no other
pulses are received.

dgexc
dt

= −gexc
τge

(C.12)

dginh
dt

= −ginh
τgi

(C.13)

This makes the dependence of the membrane potential from the time non-linear.
For this reason when solving the equations within Brian 2 the attribute euler is
used instead of exact. See the Brian 2 documentation for more details.

C.3 Dependence of the threshold voltage from
the spiking activity (homeostasis)

In order to keep the activity of each neuron constant and to avoid a frequently
active node to reduce the contribute of the others a threshold control mechanism
is used. This is a negative feedback mechanism in which the threshold voltage is
increased every time a spike arrives. In this way the more frequent the output
firing rate the higher the threshold becomes, reducing in turns the output firing
rate. Again in absence of further output spikes the threshold is exponentially
decreased with respect to time towards a steady state value, until a new spike is
generated. Equation C.14 reports the temporal evolution of the θ parameter, that
is used to dynamically modify the threshold voltage, while equation C.15 shows
the dependence of the threshold voltage from θ

dθ

dt
= − θ

τθ
(C.14)

Vthresh = Vthresh_0 + θ (C.15)

98



Appendix D

Model parameters

The model parameters are very similar to the ones used by Peter U. Diehl and
Matthew Cook[27]. The chosen values try to be coherent with the ones measured
in a biological brain, with few exceptions, given by the different size of a real brain
and the developed model.

D.1 Excitatory neurons
The membrane potential model of the excitatory neurons represents the main
example in which the parameters have been modified with respect to the biological
ones in order to improve the network accuracy. In this case the exponential time
constant has been increased from the typical 10ms or 20ms to 100ms. This allows
to better estimate the input spiking rate, which is lower if compared to the one
measured within a biological brain, but only because the amount of neurons involved
in the computation is in turns much lower. See Peter Diehl and Matthew Cook’s
article for more details[27].

Reset potential -60.0mV
Rest potential -65.0mV

Threshold voltage -52.0mV
θ+ 0.1mV

θ starting value 20mV
τV 100ms
τθ 107ms

Table D.1: Excitatory neurons parameters
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D.2 Inhibitory neurons

Reset potential -45.0mV
Rest potential -60.0mV

Threshold voltage -40.0mV
τV 10ms

Table D.2: Inhibitory neurons parameters

D.3 Connection between excitatory layers
The parameters presented in this section are valid both for the connection of the
input layer to the first excitatory one and for the connection between consecutive
excitatory layers. These are the only two synapse types on which the learning is
applied. It can be noticed that the STDP is asymmetric, with a higher value for
the long term potentiation.

ALTP 10−3mV
ALTD 10−4mV
τLTP 20ms
τltd 20ms

Table D.3: STDP parameters

D.4 Connection from excitatory to inhibitory layer
All the connections between the excitatory and inhibitory layers are one-to-one
connections. Each excitatory neuron has an inhibitory one associated to it. The
weight of this single connection is the same for all the neurons and is chosen to be
sufficiently high to make the membrane potential immediately exceed the threshold.
In particular, for the inhibitory neuron:

vThresh− vRest = −40.0mV − (−60.0mV ) = 20mV (D.1)

Weight 21mV

Table D.4: Excitatory connection parameters
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D.5 Connection from inhibitory to excitatory layer
The connection between the inhibitory neurons and the excitatory ones is instead
of the type one-to-others, in the sense that each inhibitory neuron is connected to
all the excitatory ones except from the one that presents an excitatory connection
with it. Again all the weights are set to a constant value, equal for all the neurons.
In this way the generation of an excitatory spike has the same inhibitory effect on
all the other neurons.

Weight -15mV

Table D.5: Inhibitory connection parameters

D.6 Other parameters
Two other parameters that deserve to be cited are:

Scale factor 0.3
Shift factor 0.01mV

Normalization factor 78.4mV

Table D.6: Weights parameters

1. The scaling factor used in the generation of the weights: the weights are
obtained through a random initialization during the creation of the network.
In the most general case random numbers are generated in a range between 0
and 1 and then scaled within the desired interval. This interval, once fixed
the voltage parameters of the neurons, depends on how many input the each
neuron receives. If the values weights are too low no output spike is generated,
while if they are too high too many spikes can be produced and this can
negatively affect the learning or the performance of the network. The scale
factor is a parameter that needs to be finely tuned along the design. The
value reported in table refers to the connection of the input layer to the first
excitatory one, but could not be valid for the other layers.

2. Shift factor: together with the scale factor this decides the range in which
the weights are generate. In particular the scale factor decides the width of
the range, while the shift factor modifies its lower and upper bounds. It can
for example guarantee that no null weights are present after the initialization.
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Again the reported value refers to the connection between the input layer and
the first excitatory one.

3. Normalization factor: the training process includes a normalization step which
guarantees limited values of the weights. The normalization should keep
the weights at values that are coherent with the ones obtained during the
initialization, without increasing or decreasing them too much. As before the
reported value is valid for the input connection.
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Appendix E

Results

The architecture studied during the development of the software simulation is
characterized by four-hundred neurons. So first of all the results obtained with
such structure are reported. The accuracy and its evolution along the training
are the same for the Brian 2 simulation and for the handmade model and so they
are unified in a single section. The time required for the computation is different
in the two cases and so a comparison between the two is presented. The results
obtained after the simplification of the model are presented in a separated section
because the accuracy evolution results slightly modified in that case. Finally an
estimation of the performance that can be obtained with the hardware accelerator
is presented.

E.1 Accuracy of the model on the training set

(a) 250 images update (b) 1000 images update

Figure E.1: Evolution of the training accuracy
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The final accuracy that can be reached with the developed model on the training
set is around 86%. Figure E.1a and E.1b show the temporal evolution of the
accuracy along the training evaluated respectively every 250 and 1000 images. The
parameters of the model are the ones reported in chapter D. It can be observed that
the increase in the accuracy is quite slow after about 10000 images, but still present.
In addition its growth is not smooth but characterized by many oscillations. This is
normal considering that the training is unsupervised and the output classification
is gradually adapted.

E.2 Accuracy of the model on the test set
The average accuracy reached on the training set is around 82.0% and this is
compatible with the training accuracy so there is not a relevant overfitting of the
training data.

E.3 Training and test duration
One other relevant parameter to evaluate is the duration of both the training and
the test procedures over the complete datasets. The measurements have been
performed on a MacBook Pro 2016, with an Intel Core i5 dual-core processor. The
obtained results are:

Version Training Test
Brain 2 20h 32min 1h 30min
Manual 24h 10min 1h 45min

Simplified manual 15h 24min 1h 06min

Table E.1: Training and test time

Let’s now analyze the obtained data:

1. Difference between the Brian 2 and the manual versions: a relevant difference
in the time required for both the training and the test can be observed between
the two versions. This depends on how the code is executed in the two cases: as
explained in section 11.1 Brian 2 tries to optimize the computations whenever
possible, accelerating them using C and C++. If compared with the pure
python implementation this avoids the interpreting overhead and reduces the
required time.

2. Reduction of the training and test time in the simplified manual version. Here
the modifications that allow for a faster execution are many:
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• The absence of inhibitory neurons, which reduces the needed computations.
• The direct reset of the membrane to its rest potential instead of waiting

for a full rest period.
• The simplified homeostasis update also brings a little advantage, but it is

not so significant.
• The reduction of the homeostatic increase of the threshold implies that

fewer images require to be analyzed multiple times.

E.4 Estimation of the performance of the hard-
ware accelerator

Since the designed accelerator for the moment allows only an offline training the
evaluation is performed considering a test cycle over a single image. Table E.2
reports the results obtained on the different software versions as a comparison.

Version Duration
Brain 2 0.23s
Manual 0.27s

Simplified manual 0.16s

Table E.2: Test time for a single image

Working with a training interval of 350ms and with a step duration of 0.1ms the
total amount of cycles is

Ntrain = 350ms
0.1ms = 3500 (E.1)

In order to estimate the number of clock cycles required by the update of each
neuron figure L.3 can be considered. It can be seen that the exponential decay
and the membrane reset both require two clock cycles. In the worst case in which
each single cycle presents at least one active spike, all the input excitatory and the
inhibitory spikes must be considered. In this case, considering a structure with a
single layer of 400 neurons, the total amount of clock cycles needed for a compete
update is:

Nupdate = 2 + 784 + 400 = 1186 (E.2)
In order to consider the propagation of the signals from the layer’s control unit to
the neurons, and being this an estimation the value can be rounded to

Nupdate = 1200 (E.3)
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So, since the neurons work in parallel, the overall amount of cycles required to
update the network on a single image is:

Ntot = Ntrain ·Nupdate = 3500 · 1200 = 4.2 · 106 (E.4)

In order to compare this quantity with the software versions, let’s consider the
minimum time required to test an image in python, obtained with the ... version.
The goal of the accelerator, as the name itself suggest, is to reduce te elaboration
time. So with the upper limit of 0.16s the required clock period is:

Tmaxclk = 0.16s
4.2 · 106 = 3.8 · 10−8s (E.5)

which corresponds to a clock frequency of:

fminclk = 1
Tmaxclk

= 26MHz (E.6)

So a platform with a clock frequency of at least 26MHz is required to outdo the
software performance.

An analysis of the input and inhibitory spikes distribution shows that around the
60% of the time steps do not present any active spike. In this case the network
update is reduced to the elaboration of one of the spikes set between the excitatory
and the inhibitory one, or, in the best case in which there are no spikes on both
sides, to the simple exponential decay or membrane reset, operations that require
two clock cycles.

All this analysis does not consider the overhead introduced by the transport of the
data from the computer to the evaluation board, from the processor to the FPGA
and the two same path in the opposite direction.
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Appendix F

Load MNIST

Load dataset

START

Load the entire con-
tent of the file of images
into a memory buffer

Create the array of images

Load the entire con-
tent of the file of labels
into a memory buffer

Create the array of labels

Return the two arrays

END

Figure F.1: Load the entire dataset in two arrays of labels and images. Function
loadDataset().
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Load MNIST

Load the entire content of the file

START

Open the file in bi-
nary read mode

Read the entire con-
tent of the file and store
it in a buffer of bytes

Close the file

END

Figure F.2: Load the entire content of the file into a memory buffer. Function
readFile().

Create the array of images/labels

START

Read and decode
the magic number

Read and store all
the dimensions of
the data structure

Read the data and
store them in a

proper data structure

Return the data array

END

Figure F.3: Convert the memory buffer into a numpy array. Function idxBuffer-
ToArray().
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Load MNIST

Read and decode the magic number

START

Read the first four bytes
from the idx buffer

Decode the data type byte

Decode the data
dimensions byte

END

Figure F.4: Read and decode the magic number. Function magicNumber().

Read the data and store them in a proper data
structure

START

Read all the data us-
ing the tyoe decoded

from the magic number

Reshape the data array into
a two-dimensional array

END

Figure F.5: Read the entire data buffer and store it into a numpy array. Function
loadData().
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Load MNIST

Reshape the array of data into a two dimensional
array

START

Length of the
dimensions
array > 1?

Reshape the array

END

YES NO

Figure F.6: Reshape the data if necessary. Function reshapeData().
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Appendix G

Training algorithm

START

Initialize train-
ing parameters

Load the MNIST dataset

Create the network

End of
images?

Run the network in training
mode over a single image

Create the directory
in which to store pa-
rameters and results

Store the perfor-
mance results on file

Store the network
parameters on file

END

NO YES

Figure G.1: Complete training algorithm. Main script.
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Training algorithm

Run the network over a single image

START

Convert the image
into spikes trains

Run the network with the
spikes sequences associated
to the pixels as an input

Bring the network
into a rest state

END

Figure G.2: Function singleImageRun()
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Training algorithm

Run the network with the spikes sequences asso-
ciated to the pixels as an input

START

Run the network

Spikes count
< threshold?

Prepare the training
over the same image

Prepare the training
over the next image

END

YES NO

Figure G.3: Function runNetwork()
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Training algorithm

Prepare the training/test over the next image

START

Update the temporal
evolution of the spikes

Print the training progress

Compute the accu-
racy of the network

Training
mode?

Update the out-
put classification

Reset the input intensity

Increase the im-
age index by one

END

YES NO

Figure G.4: Function nextImage()
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Training algorithm

Print the training/test progress

START

End of print
interval?

Measure the cur-
rent time instant

Format the output
message and print it

END

YES NO

Figure G.5: Function printProgress()
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Training algorithm

Compute the accuracy of the network

START

End of update
interval?

Initialize the max-
imum counts to 0

Initialize the output
classification to a value

different from all the labels

End of labels?

Add all the spikes counts as-
sociated to the current label

Find where the spikes count
is grater than the maximum

Associate the instants
to the current label

Update the maximum num-
ber of spikes for the label

Compute the accu-
racy and add it to the
list of the accuracy

END

YES

NO

YES

NO

Figure G.6: Function computePerformance()
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Training algorithm

Compute the accuracy and add it to the temporal
evolution of the accuracy

START

Find the number of time
steps in which the classifica-
tion matches the input label

Compute the percent-
age dividing the result
by the total amount
of provided labels

Format the per-
centage string

Append the percentage
string to the accuracy list

Print the accuracy list

Return the accuracy list

END

Figure G.7: Function updateAccuracy()
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Training algorithm

Update output classification

START

End of update
interval?

Initialize the max-
imum counts to 0

End of labels?

Add all the spikes generated
into the instants associ-
ated to the current label

Find where the spikes
count exceeds the
current maximum

Update the assignments

Update the maximum
count for the current label

END

YES

NO

YES

NO

Figure G.8: Function updateAssignements()

118



Training algorithm

Prepare the training/test over the same image

START

Print a message to say that
the training will be repeated

Increase the pixel’s intensity

END

Figure G.9: Function repeatImage()

Bring the network into a rest state

START

Reset to zero
the spikes trains

Run the network
for a resting period

END

Figure G.10: Function rest()
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Training algorithm

Create the directory

START

Does the
directory
exist?

Create the directory

END

YES NO

Figure G.11: Function createDir().

Store the performance results on file

START

Compute the to-
tal elapsed time

Convert the accuracy
list into a proper string

Store time and
accuracy on file

END

Figure G.12: Function storePerformance()
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Training algorithm

Store the network parameters on file

START

End of layers?

Store the weights of the
connections with the

previous excitatory layer

Store the θ parameter
of the current layer

Store the out-
put assignments

END

NO YES

Figure G.13: Function storeParameters()
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Appendix H

Test algorithm

START

Initialize train-
ing parameters

Load the MNIST dataset

Create the network

End of
images?

Run the network in test
mode over a single image

Store the perfor-
mance results on file

END

NO YES

Figure H.1: Complete test algorithm. Main script.
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Appendix I

Brian 2 simulation

Create the network

START

Create the Pois-
son input layer

Create the excitatory
and inhibitory layers

Interconnect the
various layers

Create the monitor
for the output spikes

Create the complete net-
work putting together
all the components

END

Figure I.1: Function createNetwork()
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Brian 2 simulation

Create the excitatory and inhibitory layers

START

End of layers?

Create the excitatory layer

Create the inhibitory layer

END

NO YES

Figure I.2: Function createLayersStructure()
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Brian 2 simulation

Create the layer

START

Create the layer

Initialize the mem-
brane potentials

Excitatory
layer?

Initialize the home-
ostasis parameter

END

YES NO

Figure I.3: Function createLayer()
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Brian 2 simulation

Interconnect the various layers

START

End of layers?

Connect the excitatory
layer to the previous one

Connect the excitatory
layer to the inhibitory one

Connect the inhibitory
layer to the excitatory one

END

NO YES

Figure I.4: Function connectLayersStructure()
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Brian 2 simulation

Connect the excitatory layer to the previous one

START

Initialize the con-
nection weights

First layer?

Connect to the Pois-
son input layer

Connect to the previ-
ous excitatory layer

Initialize the STDP pa-
rameters pre and post

END

YES NO

Figure I.5: Function exc2excConnection()
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Brian 2 simulation

Connect layers

START

Create the synapse between
origin and target groups

Connect the two ele-
ments through the created
synapse with the desired
association between ori-
gin and target neurons

Set the weights to
the initialized values

END

Figure I.6: Function connectLayers()
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Brian 2 simulation

Convert the image into spikes trains

START

Normalize the pixels
using the input intensity

Set the firing rate of
the Poisson layer to
the obtained values

END

Figure I.7: Function imgToSpikeTrains()

Train the network over the pixels spikes trains

START

Run the network training
over the input spikes trains

Update the count
of the spikes gener-
ated by the network

Normalize the
network weights

END

Figure I.8: Function run()
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Brian 2 simulation

Update the count of the spikes generated by the
network

START

Get the total spikes
count from the be-
ginnning up to now

Compute the spikes count
relative to the current image

Update the total count

END

Figure I.9: Function updatePulsesCount()

Normalize the network weights

START

End of layers?

Normalize the layer weights
END

NO YES

Figure I.10: Function normalizeNetWeights()
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Brian 2 simulation

Normalize the layer weights

START

Extract the state vari-
ables of the network

Select the weights
and normalize them

Store the normal-
ized weights into a

proper data structure

Update weights
of the network

END

Figure I.11: Function normalizeLayerWeights()
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Brian 2 simulation

Normalize the weights

START

Reshape the array in
order to have one sub-
array for each neuron

Compute the sum of the
weights for each neuron

Set to one the zero sums
to avoid division by zero

Compute the nor-
malization factor

Normalize the weights

Reshape the array back
to its original shape

END

Figure I.12: Function normalizeWeights()
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Appendix J

Custom implementation

Create the network

START

End of layers?

Create the excitatory layer

Create the inhibitory layer

Create the synapse
to connect the previ-
ous excitatory layer

Create the synapse to
connect the excitatory

layer to the inhibitory one

Create the synapse to
connect the inhibitory

layer to the excitatory one

END

NO YES

Figure J.1: Function createNetwork()
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Custom implementation

Create the layer

START

Initialize the membrane po-
tentials at the reset voltage

Initialize the thresh-
old potential

Initialize the rest potential

Initialize the reset potential

Initialize the output spikes

Excitatory
layer?

Initialize the home-
ostasis parameter

Initialize the dy-
namic homeostasis

END

YES NO

Figure J.2: Function createLayer()
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Custom implementation

Create the synapse to connect the previous exci-
tatory layer

START

Initialize the
synapses weights

Initialize the pre-
synaptic trace

Initialize the post-
synaptic trace

END

Figure J.3: Function intraLayersSynapses()

Create the synapse to connect the excitatory layer
to the inhibitory one and vice versa

START

Initialize the
synapses weight

END

Figure J.4: Function interLayerSynapses()
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Custom implementation

Convert the image into spikes trains

START

Create a two-dimensional
array of random values

Poisson conversion using the
generated random values

END

Figure J.5: Function imgToSpikeTrains()

Poisson conversion using the generated random
values

START

Convert the time
step in seconds

Create the boolean
array of spikes with
Poisson distribution

END

Figure J.6: Function poisson()
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Custom implementation

Run the network over the pixels spikes trains

START

Set the spikes counts to zero

End of
temporal
steps?

Update the network
on the specific step

Update the out-
put spikes counts

Normalize the
network weights

Return the out-
put spikes counts

END

NO YES

Figure J.7: Function run()
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Custom implementation

Update the network on the specific step

START

Update the first
excitatory layer

Update the first
inhibitpry layer

Update the weights of the
first excitatory connection

End of layers?

Update the cur-
rent excitatory layer

Update the cur-
rent inhibitory layer

Update the weights
of the current exci-
tatory connection

END

NO YES

Figure J.8: Function updateNetwork()
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Custom implementation

Update the excitatory layer

START

Generate an output spike
for all the neurons whose po-
tential exceeds the threshold

Reset the potential of
all the neurons that
have fired a spike

Exponentially decrease
the membrane potential

Update the mem-
brane potential with
the excitatory spikes

Update the mem-
brane potential with
the inhibitory spikes

Homeostasis

END

Figure J.9: Function updateExcLayer()
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Custom implementation

Update the inhibitory layer

START

Generate an output spike
for all the neurons whose po-
tential exceeds the threshold

Reset the potential of
all the neurons that
have fired a spike

Exponentially decrease
the membrane potential

Update the mem-
brane potential with
the excitatory spikes

END

Figure J.10: Function updateInhLayer()

Update the membrane potential with the inhibitory
spikes

START

Update the potential of
the excitatory neurons

that are directly connected
to the inhibitory neurons
that have generate a spike

Update the membrane po-
tential of all the other
excitatory neurons

END

Figure J.11: Function all2othersUpdate()
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Custom implementation

Total number of connected active inhibitory neu-
rons

START

Find the total amount of
active inhibitory neurons

Zero active
neurons?

Decrease the count
of neurons by one

Return the total amount of
active inhibitory neurons

END

NO YES

Figure J.12: Function unconnectedSpikes()
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Custom implementation

Homeostasis

START

Exponentially de-
crease the θ parameter

Increment the θ parameter
for the firing neurons

END

Figure J.13: Function homeostasis()

Update the weights of the excitatory connection

START

Train mode?

Update the weights
through STDP

END

YES NO

Figure J.14: Subportion of updateNetwork(), this has not a dedicated function.
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Custom implementation

Update the weights through STDP

START

Update the weights of the
active neurons through LTP

Update the weights
of the inactive neu-
rons through LTD

Set the negative
weights to zero

END

Figure J.15: Function stdp()

Update the weights of the active neurons through
LTP

START

Exponentially decrease
the post-synaptic trace

of all the neurons

Reset the post-synaptic
trace to its starting value
for the active neurons

Increase the weights with
the pre-synaptic trace
for the active neurons

END

Figure J.16: Function ltp()
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Custom implementation

Update the weights of the active neurons through
LTD

START

Exponentially decrease
the pre-synaptic trace
of all the neurons

Reset the pre-synaptic
trace to its starting value
for the active neurons

Decrease the weights with
the post-synaptic trace
for the inactive neurons

END

Figure J.17: Function ltd()

Normalize the network weights

START

End of layers?

Normalize the layer weights
END

NO YES

Figure J.18: Function normalizeNetWeights()
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Custom implementation

Normalize the layer weights

START

Compute the sum of the
weights for each neuron

Set to one the zero sums
to avoid division by zero

Compute the nor-
malization factor

Normalize the weights

END

Figure J.19: Function normalizeLayerWeights()
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Appendix K

Common functions

Initialize the homeostasis parameter

START

Train mode?

Initialize θ to a
starting value Test mode?

Load the θ values from file Invalid mode, print
error and exit

END

YES NO

YES NO

Figure K.1: Function initializeTheta()
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Common functions

Initialize the weights

START

Train mode?

Randomly initial-
ize the weights Test mode?

Load the weights from file Invalid mode, print
error and exit

END

YES NO

YES NO

Figure K.2: Function initializeWeights()
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Appendix L

Architecture

L.1 Neuron complete architecture

Figure L.1: Complete architecture of the neuron
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Architecture

L.2 Neuron datapath

Figure L.2: Datapath of the neuron
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Architecture

L.3 Neuron control unit

Figure L.3: Neuron ASM chart
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Architecture

L.4 Layer datapath

Figure L.4: Datapath of a layer of neurons
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Architecture

L.5 Input selection circuit

Figure L.5: Input selection circuit
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Architecture

L.6 Complete layer datapath

Figure L.6: Complete layer datapath
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Architecture

L.7 Complete architecture of the layer

Figure L.7: Complete architecture of the layer
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Architecture

L.8 Layer control unit

Figure L.8: Layer ASM chart
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Architecture

L.9 Synapse

Figure L.9: Synapses
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Architecture

L.10 Synapse layer

Figure L.10: Synapses layer
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Architecture

L.11 Network

Figure L.11: Network
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