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Summary

Spiking neural networks (SNN) are a new paradigm of artificial neural networks
that aims to emulate the human brain’s behaviour more accurately. First of
all, differently from their classical counterparts, as the name itself suggests, they
propagate information through discrete spikes. Secondly the model tries to mimic
the membrane potential dynamics of a biological neuron. Finally the learning
process itself can be chosen in order to be as similar as possible to what today
seems to happen in a human brain.

The biological plausibility of the model however is not the only advantage. Working
with simple spikes, which are representable in numeric terms using a single bit,
avoids the need for complex multiplications and does not involve the computation
of non-linear output functions. This leads to an algorithm that is lighter and more
suitable for the creation of a hardware accelerator.

This thesis aims to the complete development of a model that can be efficiently
translated into an hardware architecture. The main challenge is to minimize the
resources required by the algorithm to maximize the area utilization and obtain
the maximum performances with a fixed hardware.

In this sense the mathematical model that describes the behaviour of the artificial
neuron has a dominant role. For this reason the model chosen is the Leaky Integrate
and Fire (LIF) which treats the neuron as the parallel of a capacitor and a resistor.
It is sufficiently simple but at the same time allows a quite biologically accurate
description of the neuron.

For the same reasons the chosen training algorithm is the Spike-Timing Dependent
Plasticity (STDP). It consists in increasing the weight associated to a specific
synapse if the time difference between when an input spike arrives through it and
when the target neuron itself fires is sufficiently low. On the contrary if the role of
the synapse is negligible, meaning that the input spike traveling through it reaches
the target neuron after it has generated an output spike, its weight is decreased.

The model has been realized from scratch, taking the state of the art solutions as a
reference and trying to make it as light as possible in order to target an hardware
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accelerator. The model has been tested using Brian 2, a simulator for spiking
neural networks written in python. In this phase the parameters of the developed
model have been finely tuned in order to guarantee its correct behaviour and to
obtain acceptable accuracy results. Once the network was ready and completely
defined in terms of the characteristic equations describing the neurons’ behaviour,
the model has been explicitly implemented using python language. Here the first
choices that aimed at the minimization of the required resources have been taken.
First of all the way in which each neuron is updated, for example choosing a step-
based solution instead of an event-based one. Once described the network and the
inner computations performed by it in detail the obtained structure was simulated,
verifying that the results were comparable with the Brain 2 version. The network
has been then further simplified to reduce the complexity to a minimum without
considerably affecting the accuracy. Finally a possible architecture is presented,
considering an offline learning system, and a first estimation of the performance is
provided.

Spiking neural networks represent a relatively new field of research and present a
huge variety of possible choices in terms of the model to describe the behaviour
of the neurons, the learning method, the structure of the network itself, so the
way in which neurons are interconnected one to the other. Different models are
suitable for different applications, so there are versions that allow a very detailed
and faithful description of a real biological neuron, but are not suitable for an
hardware accelerator due to their complexity. Along this thesis work different
alternatives are presented, in particular for what concerns the available models for
the membrane potential, and the reasons for which one solution is preferred over
the others is specified. The goal is to provide an overview of SNN in general, their
behaviour and the possible choices that can be taken along the project. The hope
is that this work could serve as a possible starting point for the ones that approach
spiking neural network for the first time.
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Chapter 1

Introduction

Artificial neural networks represent a first human attempt to emulate his own
brain. In many cases the models take inspiration from the biological organ but
then separate themselves from it, trying to optimize their applicability in real world
situations. Spiking neural networks represent a possible solution to fill this gap
between biological plausibility and effective usefulness of the model in practical
applications, so as pattern recognition, classification and similar tasks.

This chapter provides a brief overview of the reasons that have led to the choice
of spiking neural networks as the target of an hardware accelerator and allows to
better understand the decisions that have been taken along the project.

First of all, a simple model of a biological neuron is presented. This is fundamental
to understand the main characteristics of artificial neural networks and even more so
of spiking neural networks. After this a brief overview on the first ANNs is presented.
Finally, spiking neural networks are introduced and their main characteristics are
explained. They will be examined in more detail in the following chapters.

1.1 Biological neural network model

Human brain is composed by tens of billions of neural cells interconnected among
themselves. In order to better understand how the information is elaborated inside
the brain let’s start by analyzing the structure of these cells, the neurons. Figure
1.1 shows a simple model of a biological neuron. Its main elements are:

1. Body of the neuron, also called soma: this is characterized by a membrane
potential which can be increased by excitatory inputs or decreased by inhibitory
inputs. Since the neuron is not perfectly isolated it presents a certain amount
of leakage that in turns decreases the membrane potential. This means that,
in absence of excitatory inputs and within a time interval that depends from
the discharging time, the membrane potential tends to stabilize itself to a rest

1



Introduction

value. Whenever the membrane potential exceeds a threshold the neuron itself
becomes active, generating an output signal, known as the action potential,
and its membrane potential is reset to the rest value.

2. Dendrites: input extremities of the neuron. These allow the neuron itself to
receive signals from other neurons. As a consequence each neuron presents
many of these dendrites.

3. Axon: output extremity of the neuron. It allows to transmit signals from the
neuron towards other cells. Each neuron presents a single axon.

4. Axon terminals: terminal ramification of the axon that allows to connect it
to multiple neurons.

Dizrfirie:

Axon benmina

Outputs

Myelin sheat

Myelinated axon

— = =

Figure 1.1: Biological neuron model from Egm4313.s12 at English Wikipedia,
CC BY-SA 3.0, via Wikimedia Commons

It has been observed that the action potential, propagated through the axons and
received by the dendrites takes the shape of short current spikes.

This spike is transferred from the axon terminals to the dendrites through synapses.
Whenever a spike arrives through a specific synapse the membrane potential is
increased or decreased, depending on if the corresponding input is excitatory or
inhibitory. If the membrane potential exceeds a threshold it in turns emits a spike.
In technical jargon it is said that the neuron fires.

Each synapse has its own weight in increasing or decreasing the membrane potential,
meaning that some inputs have a stronger impact on modifying the state of the
neuron. The learning consists in the fine tuning of the weights of different synapses
in order to adapt the neuron response to the received inputs. If for example a
specific input is more likely to make the current neuron fire its weight is increased.
Vice versa if it doesn’t have an active role in making the membrane potential

2
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exceed the threshold its weight is decreased. This creates paths inside the brain
that interconnect neurons that are frequently active together and this is one of the
main characteristics that allows the human being to learn and to remember. This
capability of strengthen or weaken the synapse is called plasticity.

1.2 Artificial neural networks

Artificial neural networks are in general mathematical models inspired by the
human brain. They are composed by interconnected artificial neurons, each of
which applies a specific mathematical function to its inputs and then propagates
the result towards all the neurons connected to its output. Figure 1.2 shows a
graph representation of a generic ANN. It can be seen that the network is organized
in columns, called layers. Each node represents a neuron, except for the nodes
in the first layer. Each neuron is connected to all the nodes of the previous and
following layer, leading to what is called a fully connected graph.

Figure 1.2: Generic artificial neural network

The network is organised in:

1. Input layer: first group of nodes. The nodes are not associated to physical
neurons, but to the inputs of the network. For example if the network has
been designed to work with real numbers, each node represents the numerical
value of a specific input. If instead it is a spiking neural network each node is
associated to a spike train of a predetermined duration.
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2. Output layer: last group of nodes. It is not connected to any other layer of
neurons and provides the result of the elaboration performed by the network
as an output.

3. Hidden layers: all the layers that stay between the input and the output
layers.

For classical ANN the similarity with the human brain is only vague: the information
exchanged between the neurons is generally represented in form of real numbers
and the neurons themselves apply functions that have nothing to do with the real
behaviour of a biological neuron. Figure 1.3 shows a generic model of an artificial
neuron, that is generally composed by:

1. Weighted sum of the inputs. The neuron is treated as an ideal integrator, that
simply add together the inputs without decreasing the obtained value in any
way with the passage of time. In reality there will always be some leakage and
so a more biologically plausible model should behave as a leaky integrator.

2. Application of a non-linear function, called the activation function, to the
result.

fly) ——2

Figure 1.3: Generic artificial neuron

Examples of non-linear functions used in neural network models are the binary
step, the sigmoid function, the hyperbolic tangent, the Rectified Linear Unit (ReLU).

A possible approach to compare this kind of models with the biological structure
presented in the previous section is the following one:

o As said before the type of information exchanged by the neurons is completely
different from the biological case. Here each neuron receives real numbers in
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input and returns a real number as an output, while in the biological model
both inputs and output are represented using trains of spikes. The only way
to correlate the two kind of data encoding is to consider the real number as
a parameter which describes a specific characteristic of the train of spikes,
for example the frequency of the spikes, also called firing rate. In this case
the higher the real value, the higher the number of spikes received from the
specific input within a predetermined time interval.

e The neuron first of all performs a weighted sum of its inputs. The result can
be interpreted as the value of the membrane potential.

e Secondly a non-linear function is applied to the result. In the simplest case in
which this activation function is a binary step it can be seen as the application
of a threshold: if the weighted sum is higher than a threshold the neuron fires,
otherwise it doesn’t. If instead the function is more complex its output can
be again associated with the firing rate of the neuron.

However this is an artifice to find a similarity between the models and has no
practical relevance.

From the learning point of view the most used method in classical ANN is the
backpropagation: the network is provided with both the input and the expected
output and a cost function is computed as the difference between the expected
value and the real output of the network. The learning consists in minimizing this
cost function by changing the weights of the synapses of all the neurons starting
from the output layer and moving towards the inputs, propagating the error in the
backward direction. In this way the network gradually adapts itself to the received
inputs and becomes able to distinguish and classify them.

Even if with the current knowledge of the way in which the human brain learns it is
not possible to exclude a priori a possible role of the backpropagation in the learning
process, it doesn’t seem the most plausible way. Today the most promising method
seems to be the spike timing dependent plasticity, an unsupervised method based
on the temporal difference between the arrival of input and output spikes. The
difference between supervised and unsupervised methods is presented in chapter 6,
while the STDP method is briefly explained in the next section and then investigated
in detail in the next chapters.

Even if ANN are in general quite different from a biological brain they have shown
themselves very useful in many fields, from the data classification to computer
vision, to pattern recognition and so on.

5
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1.3 Spiking neural networks

Spiking neural networks try to mimic the biological brain more accurately. They
have been called "the third generation of neural network models'[1] thanks to their
biological plausibility. As in more classical ANN the network can be seen as a
group of interconnected neurons. Figure 1.4 shows a schematic model of a spiking
neuron. It can be seen that both the inputs and the output are encoded in form of
spike trains. This implies a first crucial difference with respect to the previously
presented models, that is the introduction of the concept of time.
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Figure 1.4: Simple spiking neuron

Spikes intrinsically bring a binary information:

1. A spike arrives through the specific synapse during the current time step.

2. No spike is received from the synapse during the current time step.

SNN use an extra dimension, the time, to encode more complex information. This
implies that the moment in which a spike arrives, the number of spikes that reach a
neuron within a certain time interval and the time distance between two subsequent
spikes all become important parameters that affect the output of the neuron.

Many mathematical models have been created to describe the temporal evolution
of the membrane potential of a biological neuron. They will be analyzed in chapter
4. The common principles on which they are based are:

1. Every time the neuron receives a spike from an excitatory synapse its membrane
potential is increased by a quantity proportional to the synap