POLITECNICO DI TORINO

Master’s Degree in Electronic Engineering

W

Y 4

) i

i

\Q i

W M
-\ p
‘\e\ *‘“«0

Master’s Degree Thesis

Design of an hardware accelerator for a
Spiking Neural Network

Supervisors Candidate

Prof. Stefano DI CARLO Alessio CARPEGNA
Prof. Alessandro SAVINO

October 2021

Summary

Spiking neural networks (SNN) are a new paradigm of artificial neural networks
that aims to emulate the human brain’s behaviour more accurately. First of
all, differently from their classical counterparts, as the name itself suggests, they
propagate information through discrete spikes. Secondly the model tries to mimic
the membrane potential dynamics of a biological neuron. Finally the learning
process itself can be chosen in order to be as similar as possible to what today
seems to happen in a human brain.

The biological plausibility of the model however is not the only advantage. Working
with simple spikes, which are representable in numeric terms using a single bit,
avoids the need for complex multiplications and does not involve the computation
of non-linear output functions. This leads to an algorithm that is lighter and more
suitable for the creation of a hardware accelerator.

This thesis aims to the complete development of a model that can be efficiently
translated into an hardware architecture. The main challenge is to minimize the
resources required by the algorithm to maximize the area utilization and obtain
the maximum performances with a fixed hardware.

In this sense the mathematical model that describes the behaviour of the artificial
neuron has a dominant role. For this reason the model chosen is the Leaky Integrate
and Fire (LIF) which treats the neuron as the parallel of a capacitor and a resistor.
It is sufficiently simple but at the same time allows a quite biologically accurate
description of the neuron.

For the same reasons the chosen training algorithm is the Spike-Timing Dependent
Plasticity (STDP). It consists in increasing the weight associated to a specific
synapse if the time difference between when an input spike arrives through it and
when the target neuron itself fires is sufficiently low. On the contrary if the role of
the synapse is negligible, meaning that the input spike traveling through it reaches
the target neuron after it has generated an output spike, its weight is decreased.

The model has been realized from scratch, taking the state of the art solutions as a
reference and trying to make it as light as possible in order to target an hardware

11

accelerator. The model has been tested using Brian 2, a simulator for spiking
neural networks written in python. In this phase the parameters of the developed
model have been finely tuned in order to guarantee its correct behaviour and to
obtain acceptable accuracy results. Once the network was ready and completely
defined in terms of the characteristic equations describing the neurons’ behaviour,
the model has been explicitly implemented using python language. Here the first
choices that aimed at the minimization of the required resources have been taken.
First of all the way in which each neuron is updated, for example choosing a step-
based solution instead of an event-based one. Once described the network and the
inner computations performed by it in detail the obtained structure was simulated,
verifying that the results were comparable with the Brain 2 version. The network
has been then further simplified to reduce the complexity to a minimum without
considerably affecting the accuracy. Finally a possible architecture is presented,
considering an offline learning system, and a first estimation of the performance is
provided.

Spiking neural networks represent a relatively new field of research and present a
huge variety of possible choices in terms of the model to describe the behaviour
of the neurons, the learning method, the structure of the network itself, so the
way in which neurons are interconnected one to the other. Different models are
suitable for different applications, so there are versions that allow a very detailed
and faithful description of a real biological neuron, but are not suitable for an
hardware accelerator due to their complexity. Along this thesis work different
alternatives are presented, in particular for what concerns the available models for
the membrane potential, and the reasons for which one solution is preferred over
the others is specified. The goal is to provide an overview of SNN in general, their
behaviour and the possible choices that can be taken along the project. The hope
is that this work could serve as a possible starting point for the ones that approach
spiking neural network for the first time.

II1

Acknowledgements

v

Table of Contents

List of Tables X1
List of Figures XI1
Acronyms XVII
1 Introduction 1
1.1 Biological neural network model 1
1.2 Artificial neural networkso 3
1.3 Spiking neural networkso 6
2 Brief history of SNN: model of a biological neuron 8
2.1 First recorded reference to the brain. 8
2.2 Galvani and the animal electricity 9
2.3 Birth of the neuroscience 0oL 11
2.4 Theneuron 11
2.5 Julius Bernstein and the membrane theory of electrical potentials . 12
2.6 Louis Lapique and his model of the membrane potential 14
2.7 Hodgkin, Huxley and Katz 16
3 Brief history of SNN: learning in the human brain 17
3.1 The first philosophers 17
3.2 Synapses and plasticity oL 18
3.3 The Hebbian plasticity 19
3.4 Jerzy Konorski and his concept of plasticity 20
3.5 First applications of Hebbian plasticity 20
3.6 BCM learningrule 21
3.7 Backward propagation of the action potential 22
3.8 Spike timing dependent plasticity L. 22

VI

4 Mathematical models of the membrane potential

4.1 Hodgkin-Huxley model
4.1.1 Potassium conductance L.
4.1.2 Sodium conductance
4.2 Integrate and fire L
4.3 Leaky integrate and fire
4.4 lIzhikevich
5 Synapses
5.1 Current-based synapse
5.2 Conductance-based synapse
6 Learning through Spike Timing Dependent Plasticity
6.1 Supervised and unsupervised learning
6.2 Spike timing dependent plasticity L.
6.3 Synaptic traces
7 Chosen model and structure of the neural network
7.1 Structure of the network L.
7.2 Model of the neuron and synapses
7.3 Homeostasis
74 Learning
7.5 Normalization of the weights
8 Generation of the input spikes
8.1 Poisson processes
8.2 Generation of spikes trains with a Poisson distribution
9 MNIST dataset
9.1 Dataset content and charateristics
9.2 IDX file format
9.2.1 Magicnumbero
9.2.2 Data dimensions L.
9.3 Algorithm to load the MNIST dataset
10 Python interface
10.1 Why python
10.2 NumPy and vectorization
10.3 Interfacing the network from the input side: encoding the input data
into proper spikes trainso
10.4 Interfacing the network from the output side: interpreting the output

spikes . ..o

23
23
25
25
26
28
30

32
32
33

37
37
38
40

41
41
43
46
47
48

50
50
51

53
53
54
%)
5}
57

10.5 Training cycle over a single image
10.6 Output classification
10.7 Accuracy evaluation
10.8 Store the hyper-parameters of the network

11 Simulation of the network using Brian 2
11.1 Brian 2 simulator oo
11.2 Network data structure
11.3 Select training or test mode
11.4 Convert the image into spikes trains
11.5 Make the network evolve over the input spikes trains

12 Manual simulation of the network using python

12.1 Event-based solution L.
12.2 Step-based solution
12.3 Network data structure

12.3.1 Input Poisson layer

12.3.2 Neural network,
12.4 Convert the image into spikes trains
12.5 Make the network evolve over the input spikes trains
12.6 Choice of the temporal step

13 Simplification of the network for the hardware acceleration
13.1 Remove the inhibitory neurons
13.2 Homeostasis
13.3 Bring the network into a rest state
13.4 Results

14 Design of the hardware accelerator
14.1 Parallelization degree and performance improvement
14.2 Circuit to test the model: offline training
1421 Neuron
14.2.2 Layer of neurons
14.2.3 Synapseso
14.2.4 Network

15 Future work
15.1 Test of the developed circuit
15.2 Online training o
15.3 FPGA implementation
15.4 Python framework

67
67
68
68
69
69

70
70
71
72
72
72
74
74
74

75
75
76
7
78

79
80
80
81
83
84
84

= Q=

-

Current based synapse: mathematical analysis 88
A1 Continuous time 88
A.1.1 Computation of the first part of the expression. 90
A.1.2 Computation of the second part of the expression 90
A.1.3 Computation of the complete membrane potential expression 91
A.2 Discrete time 92
Synaptic traces. Mathematical analysis 94
B.1 Tterative computation of the synaptic traces 95
Unsupervised learning of digit recognition using stdp 96
C.1 Electrical equivalent and model of the membrane potential 96
C.2 Temporal evolution of the synapses’ conductance 98
C.3 Dependence of the threshold voltage from the spiking activity (home-
ostasis) 98
Model parameters 99
D.1 Excitatory neuronso 99
D.2 Inhibitory neurons 100
D.3 Connection between excitatory layers 100
D.4 Connection from excitatory to inhibitory layer 100
D.5 Connection from inhibitory to excitatory layer 101
D.6 Other parameters 101
Results 103
E.1 Accuracy of the model on the training set 103
E.2 Accuracy of the model on the test set 104
E.3 Training and test duration 104
E.4 Estimation of the performance of the hardware accelerator 105
Load MNIST 107
Training algorithm 111
Test algorithm 122
Brian 2 simulation 123
Custom implementation 133
Common functions 146

IX

L Architecture 148

L.1 Neuron complete architecture 148
L.2 Neuron datapath 149
L.3 Neuron control unit 150
L.4 Layer datapath 0. 151
L.5 Input selection circuit. 152
L.6 Complete layer datapath 153
L.7 Complete architecture of the layer 154
L.8 Layer control unit L oL 155
L.9 Synapse 156
L.10 Synapse layer 157
L.11 Network 158
Bibliography 159

List of Tables

9.1 MNIST images file initial section 56
9.2 MNIST labels file initial section 57
13.1 Modified value of the homeostasis parameter 7
14.1 Truth table of the two starts in the first phase 82
14.2 Truth table of the two starts in the second phase 83
D.1 Excitatory neurons parameters. 99
D.2 Inhibitory neurons parameters L. 100
D.3 STDP parameters 100
D.4 Excitatory connection parameters 100
D.5 Inhibitory connection parameters 101
D.6 Weights parameters oo 101
E.1 Training and test time 0L 104
E.2 Test time for a single image 105

XI

List of Figures

1.1

1.2
1.3
1.4

2.1

2.2

2.3

24

2.5

2.6

2.7

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2

Biological neuron model from Egm4313.s12 at English Wikipedia,

CC BY-SA 3.0, via Wikimedia Commons 2
Generic artificial neural network 3
Generic artificial neuron L. 4
Simple spiking neurono oL 6

Brain hierogliph from Riccardo.metere, CC BY-SA 4.0, via Wikime-

dia Commons 8
Experiment De viribus electricitatis in motu musculari, Luigi Galvani,
Public domain, via Wikimedia Commons 9
Experiments on the frog legs, Luigi Galvani, Public domain, via
Wikimedia Commons, 10
Cajal cerebellum, Santiago Ramoén, Public domain, via Wikimedia
Commons 11
Bernstein’s differential reothome, from "Julius Bernstein (1839-1917):
pioneer neurobiologist and biophysicist", Ernst-August Seyfarth . . 13
Bernstein’s action potential, from "Julius Bernstein (1839-1917):
pioneer neurobiologist and biophysicist', Ernst-August Seyfarth . . 14

Lapique membrane model, from Quantitative investigations of elec-
trical nerve excitation treated as polarization, Mark C. W. Van

Rossum 15
Hodgkin-Huxley equivalent circuit 23
Integrate and fire equivalent circuit 26
Membrane potential temporal evolution 28
Leaky integrate and fire equivalent circuit 29
Membrane potential temporal evolution 29

Leaky integrate and fire equivalent circuit with arbitrary rest potential 30

Equivalent circuit of the current based model 33
Equivalent circuit of the conductance based model 34

XII

https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/4.0
https://www.researchgate.net/publication/262233643_Quantitative_investigations_of_electrical_nerve_excitation_treated_as_polarization_Louis_Lapicque_1907_Translated_by
https://www.researchgate.net/publication/262233643_Quantitative_investigations_of_electrical_nerve_excitation_treated_as_polarization_Louis_Lapicque_1907_Translated_by
https://www.researchgate.net/publication/262233643_Quantitative_investigations_of_electrical_nerve_excitation_treated_as_polarization_Louis_Lapicque_1907_Translated_by

5.3

6.1

7.1
7.2
7.3
7.4
7.5
7.6
7.7

9.1

9.2
9.3

10.1
10.2
10.3
10.4
10.5

12.1
12.2

C.1
E.1

F.1

F.2

F.3

FA4
F.5

F.6

Equivalent circuit of the conductance based model with condensed

SYIADPSES .+« v v e e e e e e e e e e e 35
Plot of the STDP equation 39
Structure of the network oo 42
Input spikes with membrane potential and output spikes 44
Membrane potential of the first excitatory neuron 45
Membrane potential of the first inhibitory neuron 45
Homeostasis 46
Pre-synaptic trace L Lo 47
Post-synaptic traceo Lo 48
Example of mnist images, Josef Steppan, CC BY-SA 4.0, via Wiki-

media Commons 54
Mnist number with numerical values of the pixels[32]. 56
Example of a neural network with a single input layer with 784

elements. 58
Spiking neural network as a black box 59
Example of NumPy boolean addressing 61
Spiking neural network with input and output interfaces 63
Update the assignments of the output layer. 64
Find the instants for which the spikes count is grater than the

maximum for label 0 65
Network dictionary Lo 72
Detailed data structures o0 73
Equivalent circuit of the conductance based model 96
Evolution of the training accuracy 103

Load the entire dataset in two arrays of labels and images. Function

loadDataset(). 107
Load the entire content of the file into a memory buffer. Function
readFile(). 108
Convert the memory buffer into a numpy array. Function idxBuffer-
ToArray(). 108
Read and decode the magic number. Function magicNumber(). . . . 109
Read the entire data buffer and store it into a numpy array. Function
loadData(). 109
Reshape the data if necessary. Function reshapeData(). 110

XIII

https://creativecommons.org/licenses/by-sa/4.0

G.1 Complete training algorithm. Main script. 111

G.2 Function singlelmageRun() 112
G.3 Function runNetwork() 113
G.4 Function nextImage()o 114
G.5 Function printProgress() oo 115
G.6 Function computePerformance() 116
G.7 Function updateAccuracy() 117
G.8 Function updateAssignements() 118
G.9 Function repeatImage()o 119
G.10 Function rest() 119
G.11 Function createDir(). 120
G.12 Function storePerformance() 120
G.13 Function storeParameters() 121
H.1 Complete test algorithm. Main script. 122
[.1 Function createNetwork() 123
1.2 Function createLayersStructure() 124
[.3 Function createLayer() 125
[.4 Function connectLayersStructure(). 126
[.5 Function exc2excConnection() 127
[.6 Function connectLayers() 128
1.7 Function imgToSpikeTrains() 129
[.8 Function run() 129
1.9 Function updatePulsesCount() 130
[.10 Function normalizeNetWeights() 130
[.11 Function normalizeLayerWeights() 131
[.12 Function normalizeWeights() 132
J.1 Function createNetwork(). 133
J.2 Function createLayer() 134
J.3 Function intraLayersSynapses() 135
J.4 Function interLayerSynapses() L. 135
J.5 Function imgToSpikeTrains() 136
J.6 Function poisson() o 136
J.7 Function run() 137
J.8 Function updateNetwork() 138
J.9 Function updateEzcLayer() 139
J.10 Function updatelnhLayer() 140
J.11 Function all2o0thersUpdate() 140
J.12 Function unconnectedSpikes() 141
J.13 Function homeostasis() Lo 142

J.14 Subportion of updateNetwork(), this has not a dedicated function. . 142
J.15 Function stdp() 143
J.16 Function ltp() 143
J17 Function ltd() 144
J.18 Function normalizeNetWeights() 144
J.19 Function normalizeLayerWeights() 145
K.1 Function initializeTheta() 146
K.2 Function initialize Weights() 147
L.1 Complete architecture of the neuron. 148
L.2 Datapath of the neuron 149
L.3 Neuron ASM chart 150
L.4 Datapath of a layer of neurons L. 151
L.5 Input selection circuit 152
L.6 Complete layer datapath 153
L.7 Complete architecture of the layer 154
L.8 Layer ASM chart 155
L.9 Synapses 156
L.10 Synapses layero 157
L.11 Network o o 158

XV

Acronyms

ANN
Artificial Neural Network

ASIC
Application Specific Integrated Circuit

FPGA
Field Programmable Gate Array

IF

Integrate and Fire

LFSR
Linear feedback shift register

LIF
Leaky Integrate and Fire

LSB
Least Significant Bit/Byte

LTD

Long Term Depression

LTP

Long Term Potentiation

LUT
Look-Up Table

XVII

MSB
Most Significant Bit/Byte

SNN
Spiking Neural Network

STDP

Spike Timing Dependent Plasticity
VHDL

VHSIC Hardware Description Language

VHSIC
Very High Speed Integrated Circuits

XVIII

Chapter 1

Introduction

Artificial neural networks represent a first human attempt to emulate his own
brain. In many cases the models take inspiration from the biological organ but
then separate themselves from it, trying to optimize their applicability in real world
situations. Spiking neural networks represent a possible solution to fill this gap
between biological plausibility and effective usefulness of the model in practical
applications, so as pattern recognition, classification and similar tasks.

This chapter provides a brief overview of the reasons that have led to the choice
of spiking neural networks as the target of an hardware accelerator and allows to
better understand the decisions that have been taken along the project.

First of all, a simple model of a biological neuron is presented. This is fundamental
to understand the main characteristics of artificial neural networks and even more so
of spiking neural networks. After this a brief overview on the first ANNs is presented.
Finally, spiking neural networks are introduced and their main characteristics are
explained. They will be examined in more detail in the following chapters.

1.1 Biological neural network model

Human brain is composed by tens of billions of neural cells interconnected among
themselves. In order to better understand how the information is elaborated inside
the brain let’s start by analyzing the structure of these cells, the neurons. Figure
1.1 shows a simple model of a biological neuron. Its main elements are:

1. Body of the neuron, also called soma: this is characterized by a membrane
potential which can be increased by excitatory inputs or decreased by inhibitory
inputs. Since the neuron is not perfectly isolated it presents a certain amount
of leakage that in turns decreases the membrane potential. This means that,
in absence of excitatory inputs and within a time interval that depends from
the discharging time, the membrane potential tends to stabilize itself to a rest

1

Introduction

value. Whenever the membrane potential exceeds a threshold the neuron itself
becomes active, generating an output signal, known as the action potential,
and its membrane potential is reset to the rest value.

2. Dendrites: input extremities of the neuron. These allow the neuron itself to
receive signals from other neurons. As a consequence each neuron presents
many of these dendrites.

3. Axon: output extremity of the neuron. It allows to transmit signals from the
neuron towards other cells. Each neuron presents a single axon.

4. Axon terminals: terminal ramification of the axon that allows to connect it
to multiple neurons.

Dizrfirie:

Axon benmina

Outputs

Myelin sheat

Myelinated axon

— = =

Figure 1.1: Biological neuron model from Egm4313.s12 at English Wikipedia,
CC BY-SA 3.0, via Wikimedia Commons

It has been observed that the action potential, propagated through the axons and
received by the dendrites takes the shape of short current spikes.

This spike is transferred from the axon terminals to the dendrites through synapses.
Whenever a spike arrives through a specific synapse the membrane potential is
increased or decreased, depending on if the corresponding input is excitatory or
inhibitory. If the membrane potential exceeds a threshold it in turns emits a spike.
In technical jargon it is said that the neuron fires.

Each synapse has its own weight in increasing or decreasing the membrane potential,
meaning that some inputs have a stronger impact on modifying the state of the
neuron. The learning consists in the fine tuning of the weights of different synapses
in order to adapt the neuron response to the received inputs. If for example a
specific input is more likely to make the current neuron fire its weight is increased.
Vice versa if it doesn’t have an active role in making the membrane potential

2

https://creativecommons.org/licenses/by-sa/3.0

Introduction

exceed the threshold its weight is decreased. This creates paths inside the brain
that interconnect neurons that are frequently active together and this is one of the
main characteristics that allows the human being to learn and to remember. This
capability of strengthen or weaken the synapse is called plasticity.

1.2 Artificial neural networks

Artificial neural networks are in general mathematical models inspired by the
human brain. They are composed by interconnected artificial neurons, each of
which applies a specific mathematical function to its inputs and then propagates
the result towards all the neurons connected to its output. Figure 1.2 shows a
graph representation of a generic ANN. It can be seen that the network is organized
in columns, called layers. Each node represents a neuron, except for the nodes
in the first layer. Each neuron is connected to all the nodes of the previous and
following layer, leading to what is called a fully connected graph.

Figure 1.2: Generic artificial neural network

The network is organised in:

1. Input layer: first group of nodes. The nodes are not associated to physical
neurons, but to the inputs of the network. For example if the network has
been designed to work with real numbers, each node represents the numerical
value of a specific input. If instead it is a spiking neural network each node is
associated to a spike train of a predetermined duration.

3

Introduction

2. Output layer: last group of nodes. It is not connected to any other layer of
neurons and provides the result of the elaboration performed by the network
as an output.

3. Hidden layers: all the layers that stay between the input and the output
layers.

For classical ANN the similarity with the human brain is only vague: the information
exchanged between the neurons is generally represented in form of real numbers
and the neurons themselves apply functions that have nothing to do with the real
behaviour of a biological neuron. Figure 1.3 shows a generic model of an artificial
neuron, that is generally composed by:

1. Weighted sum of the inputs. The neuron is treated as an ideal integrator, that
simply add together the inputs without decreasing the obtained value in any
way with the passage of time. In reality there will always be some leakage and
so a more biologically plausible model should behave as a leaky integrator.

2. Application of a non-linear function, called the activation function, to the
result.

fly) ——2

Figure 1.3: Generic artificial neuron

Examples of non-linear functions used in neural network models are the binary
step, the sigmoid function, the hyperbolic tangent, the Rectified Linear Unit (ReLU).

A possible approach to compare this kind of models with the biological structure
presented in the previous section is the following one:

o As said before the type of information exchanged by the neurons is completely
different from the biological case. Here each neuron receives real numbers in

4

Introduction

input and returns a real number as an output, while in the biological model
both inputs and output are represented using trains of spikes. The only way
to correlate the two kind of data encoding is to consider the real number as
a parameter which describes a specific characteristic of the train of spikes,
for example the frequency of the spikes, also called firing rate. In this case
the higher the real value, the higher the number of spikes received from the
specific input within a predetermined time interval.

e The neuron first of all performs a weighted sum of its inputs. The result can
be interpreted as the value of the membrane potential.

e Secondly a non-linear function is applied to the result. In the simplest case in
which this activation function is a binary step it can be seen as the application
of a threshold: if the weighted sum is higher than a threshold the neuron fires,
otherwise it doesn’t. If instead the function is more complex its output can
be again associated with the firing rate of the neuron.

However this is an artifice to find a similarity between the models and has no
practical relevance.

From the learning point of view the most used method in classical ANN is the
backpropagation: the network is provided with both the input and the expected
output and a cost function is computed as the difference between the expected
value and the real output of the network. The learning consists in minimizing this
cost function by changing the weights of the synapses of all the neurons starting
from the output layer and moving towards the inputs, propagating the error in the
backward direction. In this way the network gradually adapts itself to the received
inputs and becomes able to distinguish and classify them.

Even if with the current knowledge of the way in which the human brain learns it is
not possible to exclude a priori a possible role of the backpropagation in the learning
process, it doesn’t seem the most plausible way. Today the most promising method
seems to be the spike timing dependent plasticity, an unsupervised method based
on the temporal difference between the arrival of input and output spikes. The
difference between supervised and unsupervised methods is presented in chapter 6,
while the STDP method is briefly explained in the next section and then investigated
in detail in the next chapters.

Even if ANN are in general quite different from a biological brain they have shown
themselves very useful in many fields, from the data classification to computer
vision, to pattern recognition and so on.

5

Introduction

1.3 Spiking neural networks

Spiking neural networks try to mimic the biological brain more accurately. They
have been called "the third generation of neural network models'[1] thanks to their
biological plausibility. As in more classical ANN the network can be seen as a
group of interconnected neurons. Figure 1.4 shows a schematic model of a spiking
neuron. It can be seen that both the inputs and the output are encoded in form of
spike trains. This implies a first crucial difference with respect to the previously
presented models, that is the introduction of the concept of time.

w1

t wo

i ol || |

t i t

t

wN

Figure 1.4: Simple spiking neuron

Spikes intrinsically bring a binary information:

1. A spike arrives through the specific synapse during the current time step.

2. No spike is received from the synapse during the current time step.

SNN use an extra dimension, the time, to encode more complex information. This
implies that the moment in which a spike arrives, the number of spikes that reach a
neuron within a certain time interval and the time distance between two subsequent
spikes all become important parameters that affect the output of the neuron.

Many mathematical models have been created to describe the temporal evolution
of the membrane potential of a biological neuron. They will be analyzed in chapter
4. The common principles on which they are based are:

1. Every time the neuron receives a spike from an excitatory synapse its membrane
potential is increased by a quantity proportional to the synap