
POLITECNICO DI TORINO
DEPARTMENT OF CONTROL AND COMPUTER ENGINEERING (DAUIN)

Master Degree in Computer Engineering

Master Degree Thesis

Asymmetric Verification for Control-Flow
Integrity in Multicore Embedded Systems

Author: Marco Meloni

Supervisor: Paolo Ernesto Prinetto

October, 2021

Abstract

Embedded systems play an increasingly central role in modern society, thanks to the spread
of the Internet of Things (IoT) and the use of smart control systems in the automotive
and aeronautical domains. Their use in mission-critical or safety-critical systems makes
them attractive targets for attackers. Nowadays, several of these are mixed-criticality
systems, meaning that they run both high-criticality tasks (e.g., a car control system)
and low-criticality ones (e.g., infotainment). High-criticality routines often employ Real-
Time Operating Systems (RTOS) to enforce hard real-time requirements, while the tasks
with lower constraints can be delegated to more generic operating systems. Right now,
security solutions for real-time embedded systems are not as mature as the ones for general-
purpose systems, which often make assumptions that do not hold in the embedded domain.
Control-Flow Integrity (CFI) is a powerful security technique to protect against many
kinds of binary attacks, such as Arbitrary Code Execution (ACE) like Return-Oriented
Programming (ROP). Through static analysis of the application, a Control-Flow Graph
(CFG) is created, describing all the allowed branches and their valid targets. At runtime,
control-flow transfers are checked against the graph and possible deviations are stopped.

The aim of this thesis is to investigate CFI application in the RTOS domain, first taking
a picture on what is currently under experimentation in the embedded world, and then
identifying the critical issues which are still unsolved. Finally, the thesis proposes a possi-
ble solution for multicore systems running mixed-criticality tasks. By using an embedded
hypervisor, predefined cores could be dedicated to only high or low-criticality tasks. This
way, the complete CFI monitoring will be offloaded to the lower-criticality core, which
makes it possible to implement a solid defense for high-criticality tasks while not compro-
mising on their tight deadlines. In this proposal, the high-criticality core sends a request
for CFI verification, along with the necessary information, whenever a vulnerable opera-
tion is about to happen, and stops the task only if a violation is detected. The work also
presents theoretical results about a possible implementation for ARM platforms running a
minimal RTOS, along with the computation of the estimated performance penalties.

2

Contents

List of Tables 5

List of Figures 6

1 Introduction 7
1.1 Outline . 8

2 Background 11
2.1 Security in the Embedded Domain . 11
2.2 Binary Attacks . 12

2.2.1 Code Injection . 12
2.2.2 Code Reuse Attacks . 12
2.2.3 Mitigations . 13

2.3 Control-Flow Integrity . 14
2.3.1 Main Principles . 14
2.3.2 CFI Variants . 15
2.3.3 Hardware-assisted CFI with ARM Pointer Authentication 16

2.4 Embedded Systems Issues . 17
2.4.1 Real-Time Operating Systems . 17
2.4.2 Hypervisors in the Embedded Domain 19

3 Current State of the Art and Open Issues 23
3.1 Characteristics of an Ideal Solution . 23
3.2 Current State of the Art . 24

3.2.1 RECFISH . 24
3.2.2 TrackOs . 26
3.2.3 FINE-CFI . 27
3.2.4 Camouflage . 29
3.2.5 PATTER . 30
3.2.6 Open Issues . 32

4 Proposed Solution for Mixed-criticality Systems 35
4.1 The FPGA Monitor Idea . 35

4.1.1 Basic Model . 36
4.1.2 Protection Mechanism . 38

4.2 Design Goals . 38

3

4.3 Threat Model . 39
4.4 Approach . 39

4.4.1 Branch Protection . 40
4.4.2 Protection of the interrupt context 42
4.4.3 Scheduler Awareness . 43
4.4.4 Monitor Data Structures . 43

5 Theoretical Evaluation 51

6 Conclusions and Future Work 57

Bibliography 59

4

List of Tables

3.1 Summary of analysed solutions and their coverage of the main issues. . . . 32

5

List of Figures

2.1 Execution example of a ROP attack. First, the attacker fills the stack with
the gadgets’ addresses in (a) and then in (b) the attack can be seen unfolding
[61]. 13

2.2 Basic example of CFG (on the right) built from the code on the left [2]. . . 15
2.3 Example of task handling by the scheduler. vControlTask is the highest

priority task, which is why when a key press event happens between t3 and
t4 vKeyHandlerTask still has to wait for vControlTask to finish, and at t7
vControlTask preempts vKeyHandlerTask [42]. 19

2.4 Scheme exemplifying how the context is saved in the task’s stack whenever
a context switch happens [43]. 20

2.5 Hardware partitioning for a system with a dual-guest configuration, running
an RTOS along a general-purpose OS [59]. 22

3.1 Instrumentation through the use of trampolines [76]. 25
3.2 View of the tasks running on TrackOS. The monitoring task is represented

as overlapping TrackOS to represent the privileged mode it runs in [64]. . . 26
3.3 Model of the hypervisor intercepting incoming interrupts and saving the

CS/IP couple in its interrupt stack before passing the interrupt to the VM
[53]. 28

3.4 Schematic representation of the two stages of PATTER protection [79]. . . 31
4.1 CFI monitor block diagram [61]. 37
4.2 Workflow of the analysis, instrumentation and programming process [61]. . 38
4.3 CPU-FPGA interaction for monitoring [61]. 38
4.4 Model of the general system definition. 40
4.5 Simplified model of the workflow for each edge type. The timer operation

has been omitted for brevity. 48
4.6 Internal memory subdivision of the CFI monitor. 49

6

Chapter 1

Introduction

The modern world is becoming increasingly dependant on embedded systems in pretty
much every aspect of life. Real-Time Operating Systems (RTOS), designed for these plat-
forms, can be found everywhere, from common household appliances, domotics, and en-
tertainment systems, to more critical applications in transportation, industry, and several
highly critical fields. Ensuring that the released products are not faulty is of utmost impor-
tance, especially for systems that can put human life in danger, like braking controllers in a
car or industrial machine controllers. Failures can occur not only for faults in the operating
code, but also for code vulnerabilities that could be exploited by an attacker. The more
critical the system, the higher the chance of being a target for some attackers. One of the
most extreme examples of this are the attacks carried out in the past few years to electric
grids [19] and nuclear plants [34] [24] in cases of cyber-terrorism and cyber-warfare.

There are several classes of attacks to be aware of, especially because of the major use of
C/C++ in embedded platforms [47], with their memory vulnerabilities [75]. Some of them
are dangling pointers [5], which are mistakenly freed pointers whose use could generate
unpredictable effects, and buffer overflows [65] [33], which are out-of-bounds writes to
buffers that can write data in the adjacent stack or heap data. Some of the most dangerous
attacks are the ones that allow the attacker to execute arbitrary code. This kind of exploits
is usually carried out through the exploitation of buffer overflow vulnerabilities, which
might be used to overwrite the original return addresses and redirect control-flow transfers
to some injected code (e.g., stack smashing [63]). Although, code injection attacks have
been rendered fairly ineffective thanks to the widespread implementation of Write XOR
Execute policies [71]. A more effective application of control-flow redirection is presented
by Code-Reuse Attacks (CRA) [58] (e.g., Return Oriented Programming [15] [39] [22] [21]
[50]), which instead use sequences of code already present in the original program to execute
their attack. In response to this, in 2005, Abadi et al. presented the concept of Control-
flow Integrity [1], a solution which is expected to protect against all kinds of attacks based
on the idea of control-flow redirection. The basic idea is to monitor each control-flow
transfer by checking it against a predefined model of allowed transfers obtained through
static analysis of the code/binary.

A large number of CFI solutions exist for general-purpose systems. For example, Reins
[77] introduces CFI functionalities to Windows on an x86 platform, while O-CFI [62]

7

Introduction

provides a proof of concept for 32-bit Windows, but their approach is applicable to 64-
bit Windows as well as Linux and OS X. Works in [80] [10] [78] are just a few examples
of solutions developed for Linux running on x86 platforms. Unfortunately, the scientific
proposal for such solutions in the embedded world is not this rich. In fact, embedded
systems often lack the same support for process and memory protection. RTOSes also
have some specific challenges that need to be addressed, e.g., the possible presence of a
preemptive scheduler. A scheduler introduces the same problem brought by interrupts,
i.e., the possibility of unexpected control-flow transfers that fall outside of a statically-
created model. Another challenge is represented by the reduced resources present in most
embedded systems, which could be an hindrance for some CFI techniques (as for example,
replication techniques like shadow stacks). Finally, the strict timing requirements imposed
by real-time systems, especially in highly critical applications, make it imperative to reduce
the performance overhead as much as possible.

This thesis goes through a massive research into the current panorama for the appli-
cation of CFI in the RTOS world. An analysis of the current state of the art has been
done, and through that, a definition of the main principles for an ideal solutions have been
defined. The most important issues that still need to be solved are also presented.

The core of the thesis is a proposal for a solution for the case of mixed-criticality sys-
tems. These are systems that handle both high-priority or high-risk tasks, which could
potentially have serious consequences on safety, and lower-criticality ones, which generally
have laxer requirements. An example could be represented by an automotive application,
where it is possible to have, on the same platform, both the car control system (which
could be responsible for the braking system, ABS, etc) and the infotainment system. The
first one need to be extremely reliable and respect strict deadlines, while the second one
can accept some possible performance loss. For these kind of situations, a solution for
multicore systems has been hypothesised, which assigns the workloads of different critical-
ities to different cores, and make the lower-criticality core handle the CFI verification for
the higher-priority ones. This architecture has the main goal of reducing the impact on
schedulability created by the overhead needed by the CFI checks. All of this is done by
using an embedded hypervisor implementing static partitioning, which makes it possible
to assign cores and memory to selected systems and making them able to communicate
through interrupts and a configurable shared memory space. In this way, the RTOS run-
ning the high criticality task would instead be able to operate with tight deadlines, with
just the overhead from sending the necessary information to the monitoring core.

The proposed solution is theorised for ARM processors, as this is the most common
family the embedded field [26], and by using the Bao hypervisor [59] alongside FreeRTOS
[41]. Of course, the same theoretical principles could be applied to different RTOSes or
hypervisors.

1.1 Outline
The remainder of the thesis is organized as follows. Chapter 2 briefly introduces the
basics of security in the embedded domain and goes into details for laying down the basis
needed for this thesis, by explaining the concepts of Control-Flow Integrity, Real-Time
Operating Systems and Embedded Hypervisors. Chapter 3 presents our research done on

8

1.1 – Outline

the current state of the art relating CFI solutions for embedded systems, defining the ideal
characteristics and the open issue in the current research. Chapter 4 describes our proposal
for a solution aimed at mixed-criticality systems. In Chapter 5, a theoretical evaluation
of the introduced overheads and timings is presented. Finally, in Chapter 6 the work is
concluded, summarising the results and introducing ideas for future work.

9

10

Chapter 2

Background

2.1 Security in the Embedded Domain
The security of embedded systems is a very popular topic nowadays, as everyday billions
of these devices collect and exchange data about our lives. The limited resources they have
put the community up against the challenge to adopt anyway secure protocols to handle
every level of operations. Embedded systems often lack proper security protocols regarding
authentication, communication, and privacy protection. Some examples of this are the
widespread use of standard passwords and the lack of protected firmware updates. The
adoption of strong authentication, secure updates, encrypted data transfer/communication
and physical hardening are thus paramount to ensure safety on embedded platforms [67].
Accurate selection of components is also important, since the inclusion of outdated or
insecure software/hardware components could potentially compromise the security of the
whole system.

Still nowadays, most of the embedded software, especially at the low level, is written
in C or C++ [47]. This is because of the powerful features of these languages, which
allow very low-level management of resources and memory. Unfortunately, they do not
implement any native protection of memory, making systems vulnerable to several attacks
[65] [5] [70]. Historically, the most common kind of exploited vulnerability is the possibility
of a buffer overflow [20]. Since the C language does not offer any native mechanism for
boundary checks, writing data to an input buffer can turn in going over its limits, ending
up with overwriting the subsequent data on the memory, e.g., the stack. When done
deliberately as an attack, this is called stack smashing [63].

The reduced resources and possible real-time requirements of embedded systems pose
even further limits, by making the use of very secure and powerful but resource-heavy OSes
and memory protection techniques sometimes undesirable or unacceptable. Embedded
platforms often do not have the same kind of hardware security functionalities that general-
purpose systems have. For example, most embedded systems do not have a Memory
Management Unit (MMU) and thus they are not able to use Virtual Memory as a way to
isolate adequately the address spaces of their processes. A Memory Protection Unit (MPU)
is becoming more common in some embedded platforms (like the most recent ARM series),
which does allow improved memory protection potentiality. Still, not all RTOSes support
them correctly and are making use of them to the fullest yet.

11

Background

2.2 Binary Attacks
The term binary exploitation refers to the process of exploiting the vulnerabilities in a
compiled application to generate maliciously unexpected results from the program. This
can translate to several classes of attacks, but in our case the focus will be on the case of
memory corruption. By abusing vulnerabilities in the program that allow an attacker to
read or write data that should be protected, it becomes possible to get higher privileges,
obtain sensible data, damage important data, and so on. Among the various possible
effects, the investigation of this thesis is mostly interested about the possibility of hijacking
a program’s control-flow to execute malicious code.

2.2.1 Code Injection
The real danger of memory corruption and buffer overflows relates not just to the possibility
to leak memory content or overwrite user data. By using vulnerable functions like scanf
or gets, an attacker could perform a stack smashing attack to overwrite sensitive control
data on the stack. If this happens, the return address of the function can be overwritten
to redirect it towards a different code location. This attack paradigm takes the name of
Arbitrary Code Execution (ACE), i.e., the ability to execute arbitrary code that is not part
of the normal program code. One way to do this is to embed this code inside of the data
passed to the buffer itself through buffer overflow, and then redirect the return address to
the start of this code inside the buffer. To make this easier, sometimes a NOP sled is used,
i.e., several NOP instructions are put at the start of the buffer before the desired injected
code. In this way, the address can also be not the right one: as long as it falls inside of
this series of NOPs, it will eventually reach the start of our malicious code, by basically
“sliding down” the NOP instructions, like a sled down a mountain. This technique is called
Code Injection, as the attacker injects the code in the form of a payload into the memory.
The payload injection and the control-flow redirection do not necessarily need to happen
in a single operation. As long as the attacker is able to do both, even in different stages,
the attack will be successful.

These kind of attacks have been mostly defeated thanks to the widespread adoption of
Write XOR Execute policies [69], which make sure (usually though hardware enforcement)
that a given memory page can never be both executable and writeable. This is not a
complete solution against buffer overflows and control-flow hijacking per se, since it is still
possible to overwrite the return address and redirect the control-flow, but it gets to stop
the execution of the injected code.

2.2.2 Code Reuse Attacks
As a way to counteract these defences, attackers came up with new classes of attacks
that, instead of injecting malicious code into the memory, use the existing code to their
advantage. These are generally called Code-Reuse Attacks (CRA).

This extends to the libraries used by the application, giving the attackers a huge code-
base to work with. One common example is return-to-libc attacks [32], which exploit buffer
overflows to redirect the control-flow towards sensitive functions part of the C standard
library, possibly passing arguments by pushing them in the stack as well.

12

2.2 – Binary Attacks

Return Oriented Programming

One of the most common examples of CRA is Return-Oriented Programming (ROP) [15]
[39] [22] [21] [50]. In this exploit, the attacker finds inside the executable code a series of
segments referred to as gadgets, made up of very few instructions and all ending with a
return instruction. Then, he corrupts the stack through a buffer overflow and fills up the
memory with the list of gadget addresses. Once the function returns, the gadget chains
activates, and one after the other, all gadgets are executed. (Figure 2.1). It has been
proven that, for programs with a big enough codebase, it is possible to achieve a Turing-
complete execution in this way, i.e., the attacker gets to execute an arbitrary malware on
the victim machine. Similar variants of this attack principle have been investigated, such as
Jump-Oriented Programming (JOP) [11] [23] or Call-Oriented Programming (COP) [68],
which make use of the same concept but using jump or call instructions instead of return
ones.

(a) (b)

Figure 2.1: Execution example of a ROP attack. First, the attacker fills the stack with the
gadgets’ addresses in (a) and then in (b) the attack can be seen unfolding [61].

2.2.3 Mitigations
To counteract stack smashing, both for code injection and for code reuse, several solutions
involving the use of a stack canary have been studied [28]. This implies inserting in the stack
a canary value right above the return address. Before performing any return operation,
the program checks the canary value against its expected value and will abort operation
if there is a mismatch. In this way, when smashing, the attacker has to guess the canary
value to have the attack succeed.

Another technique employed is Address Space Layout Randomization (ASLR) [9]. When-
ever a process is created, the address space positions of several key data areas are rearranged

13

Background

randomly. This includes randomising the base address of the main memory sections, such
as the heap, the stack and the code libraries. The security of this approach depends on
the size of the address space. Brute-force attacks can still permit a successful attack, so in
the case of particularly small address spaces ASLR could be bypassed with relative ease.

To date, the most promising technique to protect against CRAs is Control-Flow Integrity
(CFI), which will be described in detail in the next Section.

2.3 Control-Flow Integrity
Control-flow Integrity (CFI) [2] is one of the most effective defence schemes against control-
flow hijacking by an attacker. The basic principle behind it is the idea that by checking at
run-time every control-flow transfer against a predefined model, it is possible to block any
hijacking attempt and prevent the execution of arbitrary code. There are several variants
of CFI, which will be discussed along with details on the basic implementation of CFI, in
the following.

2.3.1 Main Principles
The main principles behind the operation of CFI are the creation of a static model of our
code and then the verification of every control-flow transfer at run-time. These are referred
to as the offline phase and the online phase respectively. In the original implementation of
CFI [1], this was done through the creation of a model in the form of a Control-Flow Graph
(CFG) and the instrumentation of the code to protect, by inserting special instructions to
check the branching operation against the CFG. To do this, labels are inserted to identify
the code sections that are going to be the possible targets of control-flow transfers, and
they are used to recognize the different nodes in the CFG. The operations that are going to
be instrumented are the indirect control-flow transfers, i.e., the ones with a target address
computed at run-time, since they are the only ones that could be tampered with. In
particular, these are:

• Branch instructions with a register operand;

• Return instructions;

• Any other instruction that alters the value of the PC register.

The generation of the CFG is done through static analysis of the code or binary: the
nodes of the graph are the basic blocks in the source program, and the edges represent the
control-flow transfers that will be considered as valid. A good part of these transfers are
not actually of interest from a security perspective, being either direct calls or conditional
branches, which are not subject to hijacking risks.

Each relevant basic block is identified with a label, and every time an indirect branch
is about to be taken, special code is inserted to see whether the intended destination is
actually contained in the branch operand.

An issue appears when interrupts are considered. CFI works on the premise that all
code is static and all control-flow transfers can be represented by a CFG, but interrupts
are an exception to this premise. A sudden exception can be raised at almost any point in

14

2.3 – Control-Flow Integrity

Figure 2.2: Basic example of CFG (on the right) built from the code on the left [2].

the program execution, and will return to that same point. From the CFG standpoint, this
can be compared to the appearance of two new, temporary edges that connect the node
for the current basic block and the one for the interrupt, disappearing after the interrupt
is handled and the program resumes normal operation. Interrupt Service Routines (ISR)
thus need a way to be made safe from a CFI perspective, for example through dedicated
instrumentation at entry and exit points [61].

2.3.2 CFI Variants
Several variants of CFI exist. They mostly differ in their granularity and depending on
whether memory of past control-flow transfers is considered or not.

Coarse-grained Control-flow Integrity

One of the main drawbacks of using a complete CFG is the possible overhead. If there
are a lot of relevant labels, the CFG can become very large. Another big problem is
the fact that obtaining a fully precise CFG is often extremely difficult, if not unfeasible.
Complex pointer analysis is sometimes required. For that reason, some solutions instead
implement a simplified CFG, that groups nodes with similar characteristics in a single
node, which means assigning the same label to a group of basic blocks. How exactly these
groupings are made depends on the specific implementation. Unfortunately, such coarse-
grained CFI policies have been proven to be ineffective in providing adequate protection
against attackers [44] [27] [17] [30].

Fine-grained Control-flow Integrity

Because of the security limitations of coarse-grained CFI, fine-grained CFI is the preferable
choice to adequately protect against malicious actors. In this case, the objective is to
provide a fully-precise CFG, complete with every possible valid target of every indirect

15

Background

branch. A fully-precise CFG needs to be both complete and sound, meaning that it is
required to eliminate all false positives and all false negatives, which cannot be guaranteed.

Shadow Stack

In [18], it has been shown how even solutions implementing fine-grained CFI can potentially
be subject to ROP and other kinds of control-flow hijacking if the backward branches are
treated the same way as the forward branches, meaning that they are only verified against
the CFG. This is because there may be some functions, named by the researches dispatcher
functions, that are called from several places in the code. Having a large number of valid
return addresses means that an attacker could potentially use that as a way to string
a series of gadgets together to achieve ACE, create loops inside the code and so on, all
while respecting the CFG and thus remaining undetected. For this reason the concept of
a shadow stack was introduced [74] [40] [25] [14] [13]. The idea behind a shadow stack is
that when entering a dispatcher function, the correct return address gets saved inside of a
secondary protected stack. When the function returns, the return value is compared to the
one on top of the shadow stack to make sure it is still the same and no control-flow hijacking
was attempted. There are both hardware and software implementations of shadow stacks.
The downside of this approach is that there is an overhead imposed by writing and reading
from the shadow stack.

Stateless vs. Stateful CFI

The basic implementation of CFI is stateless, meaning that previous operations are not
tracked and the checks against the statically-generated CFG are the only way to verify
the validity of a control-flow transfer. The addition of a shadow stack already introduces
an element of dynamic verification, but is only applicable for return instructions. Calling
functions can still be considered as dispatcher functions, if a high enough number of valid
targets exist for the same indirect transfer. In that case, stateful solutions [73] which, for
example, record a number of past transfers to analyse if a valid path inside of the CFG
is being taken or not, could be applied. The problem here is that they still need enough
information to be reliable (e.g., they are still vulnerable to attacks during the early stages
of recording) and will most likely generate significant overhead. For these reasons, the most
interesting application of CFI still remains fine-grained CFI with a shadow stack, offering
good security with acceptable overhead, both for performance and complexity.

2.3.3 Hardware-assisted CFI with ARM Pointer Authentication
With ARMv8.3, Pointer Authentication (PA) [12] has been introduced. This new feature
adds an hardware-assisted way to sign pointers with a unique code, that will be used for
authentication before consuming them. This code (called Pointer Authentication Code or
PAC) is generated using the QARMA algorithm [6], which takes (i) the pointer, (ii) a key,
and (iii) a modifier to generate a value that will get truncated and inserted in the unused
bits of the pointer. This is possible since 64-bit pointers are oversized for the address space
they usually refer to, and thus have unused bits. There are 5 different keys that can be
used, and the modifier depends on the developer’s choice.

16

2.4 – Embedded Systems Issues

In 2017, a white paper by Qualcomm [46] introduced the idea of using PA for CFI,
by possibly using context and/or location information as modifiers for signing function
pointers at run-time. PA is resistant against memory disclosure attacks, since the PAC is
generated through a cryptographically strong algorithm, meaning that obtaining the keys
from the generated codes is infeasible. The paper introduced the possible issue of pointer
substitution, which is the most likely kind of attack to be used against PA. This attack
works by substituting an authenticated pointer with another authenticated pointer, which
could be obtained for example through a memory disclosure vulnerability. To combat this,
the use of appropriate modifiers can be of help, for example by using the local context, as a
way to make sure that authenticated pointers coming from different contexts could not be
exchangeable. The issue of possibly repeating contexts is still present, and the authors talk
about this by describing how an application using the stack pointer as context for return
addresses could be exploited to collect several authenticated pointers for different values
of the stack pointer and reuse them in the program to string together a series of gadgets
to execute a ROP attack. Therefore, accurate and smart choices need to be made when
deciding the modifiers for the PAC generation, to reduce as much as possible the threat of
pointer substitution.

Another possible attack could be to just try to guess the PAC through brute force.
The feasibility of this depends on the system, since the size of the PAC depends on how
many unused bits are leftover in the pointer, which depends on the addressing space size.
It could go from as low as 3 bits (a 1 in 8 chance) to up to 31 bits, so some consideration
needs to be done if one wants to use PA.

2.4 Embedded Systems Issues
As already mentioned, the above security needs have to deal with the peculiarities of em-
bedded systems, which typically have a limited amount of resources, and are originally
designed to meet low consumption requirements or dependability on the timing of execu-
tion. In this Section, some glimpses of the characteristics of the embedded systems to be
protected are presented.

2.4.1 Real-Time Operating Systems
Quite often embedded systems are required to meet certain timing deadlines. This is
especially true of system controlling complex and safety critical physical systems, like an
industrial control system or an aeronautical one. In these cases, it is necessary to develop
real-time platforms, which are supposed to perform certain operations in a predictable
amount of time to respect certain deadlines. The various operations that can happen are
divided into tasks, and every task has to produce a result inside of a set deadline. There
are three main categories of real-time systems:

• Hard real-time: the system needs to respect the deadlines, a failure to do so means
a failure for the whole system and can potentially have disastrous consequences. For
example: automotive braking system not stopping the car in time.

17

Background

• Firm real-time: if a deadline is missed the result is worthless, but the system keeps
working and no grave consequences are expected to happen. This translates to just
the single task failing and not the whole system.

• Soft real-time: if a deadline is missed the result can potentially still be useful, but
generally its usefulness degrades over time after the deadline is missed.

Sometimes the distinction between firm and soft real-time is not made and real-time
systems are just divided into hard and soft real-time.

In order to make the development of real-time systems easier, several specific operat-
ing systems have been created, introducing the concept of Real-Time Operating Systems
(RTOS). These can vary depending on their complexity, hardware requirements, scheduler
policies and so on.

Regarding the scheduler, the most important difference between them is if they are
preemptive or non-preemptive. In the first case, the tasks can be switched out for a different
one at any point in time, while non-preemptive systems need the tasks to do a yield
operation to give control back to the scheduler. The non-preemptive case, while limiting,
can be a good option for use cases that need a very predictable/deterministic behaviour.
Scheduling tasks in a way that always follows predictable timings becomes significantly
easier. There exist a lot of different scheduling policies: some assign a priority to the tasks
and order their scheduling based on that (priority-based scheduling), some others instead
opt for a simpler approach like just scheduling them depending on the time they request to
be executed (e.g., First-In-First-Out policies), or they can be all just given a fixed amount
of time and be switched out periodically (Round Robin policy). If it is possible to predict
the duration of the tasks, more complex policies are possible as well.

Linux itself can be made into a real-time system with acceptable timings by using tools
like Preempt RT [37] or LITMUSRT [16] (respectively a real-time patch and an extension
to the standard kernel). As one would expect, though, this is not advisable for severely
resource-constrained systems, because of the large codebase and relatively large memory
requirements, when compared to more minimal solutions. Lightweight alternatives exist,
a few examples being RIOT [7], Micrium’s µC/OS-III [51] and FreeRTOS. The last one is
the one that is going to be considered for this proposal, so a closer look at it is provided.

FreeRTOS

Among the various existing lightweight RTOSes, one of the most popular is FreeRTOS
[41]. FreeRTOS is an open-source RTOS made especially for embedded applications, man-
aging to be both light on resources and feature-rich, with a very active community behind
it. Depending on the configuration, the minimum requirements can go as low as 10MHz
processing speed, 16kb of RAM and 128kb of program Flash.

The FreeRTOS scheduler is a preemptive scheduler implementing priority-based schedul-
ing, meaning that whenever a task wants to execute, it checks if the currently active task
has higher or lower priority, and preempts it to do a context switch immediately if it is a
lower priority task. An example can be seen in Figure 2.3.

A Task Control Block (TCB) is assigned to each task. This contains the task’s priority,
stack pointer, stack size along with other information necessary for its usage. Task state
(Idle, Running, Ready, Suspended or Blocked) is also saved in the TCB. When the scheduler

18

2.4 – Embedded Systems Issues

Figure 2.3: Example of task handling by the scheduler. vControlTask is the highest priority
task, which is why when a key press event happens between t3 and t4 vKeyHandlerTask still
has to wait for vControlTask to finish, and at t7 vControlTask preempts vKeyHandlerTask
[42].

is started the Idle task is created, which is a lowest priority task put in place to make sure
that at least one task is always running; this task will be preempted by any other incoming
task. The only active function this task has is to free the memory previously allocated to
now deleted tasks. Each task is assigned dedicated stack space, while the heap memory is
shared among all tasks.

Whenever a context switch happens, the scheduler has to save the context of the running
task before switching in the new task. This means saving all the registers and the Program
Counter (PC), to be able to return to the right point in the code. The scheduler does this
by pushing all of this onto the task’s stack, saving a copy of the stack pointer into the
kernel and using that to restore context when the task will be scheduled again, by simply
retrieving the registers in order and putting the correct value into the PC register before
resuming operation. A visual summary of these operations is represented in Figure 2.4.

2.4.2 Hypervisors in the Embedded Domain
Hypervisors are a powerful tool for OS isolation and managing multiple OSes on a single
platform. Their use in the embedded domain is still fairly limited compared to general-
purpose systems, often because of the overhead usually imposed by these tools. There exist
two main categories of hypervisors:

• Type 1 hypervisors: known also as native or bare-metal hypervisor, they run
directly on top of the hardware. One notable example could be Xen [36].

• Type 2 hypervisors: known also as hosted hyperviors, they run inside of an Op-
erating System. The hypervisor will then run the wanted OSes as guests. QEMU
[8] and VirtualBox are a couple notable examples. Some solutions that are kind of a
hybrid between type 1 and type 2 also exists, like KVM [49] (which works as a kernel

19

Background

Figure 2.4: Scheme exemplifying how the context is saved in the task’s stack whenever a
context switch happens [43].

module “converting” the host kernel into a type 1 hypervisor), but they are usually
categorised as type 2 hypervisors since they still need the support of an operating
system to work.

Some of the hypervisors for general-purpose systems also support use on embedded
systems, but there are some limitations in that sense. Both Xen and KVM have been
expanding their support for ARM platforms in recent years, but in real-time applications
while KVM provides acceptable overhead, Xen brings a much more significant performance
penalty [4]. At the same time, KVM is limiting as well because it still requires the Linux
kernel to run, with its impact on resources.

There are however some embedded-specific hypervisors out there. They usually have
stricter requirements when it comes to performance and size overhead, both because of the
limited resources and the support for real-time computing. Hypervisors also need some
kind of memory protection functionality, which rules out a lot of very basic embedded

20

2.4 – Embedded Systems Issues

microcontrollers, but makes them still usable on platforms that, even if lacking a full
Memory Management Unit (MMU), at least have a Memory Protection Unit (MPU) for
enforcing memory protection and the possibility of definition of a privileged and user mode.
Most modern ARM systems support these functionalities, which means that embedded
hypervisors still have a wide array of possible applications. A notable example is PikeOS
[45] [48], which is an RTOS providing the support of a type 1 hypervisor, making it possible
to run several different systems each with a different level of security and reliability. It has
been developed with high-safety, high-security applications in mind, trying to abide by the
various certification needs for application in the fields of defence, automotive, medical, etc.
The matter of certifications is very important in a lot of fields, for example automotive,
where compliance with standards (e.g., MISRA) is often required. All software running on
automotive vehicles has to adhere to these standard and this is usually done thanks to the
use of static analysis tools. For example, Xen tries to achieve MISRA compliance by using
Helix QAC [38].

Bao

In [59], Bao is presented. The aim of the researchers was to create a lightweight embedded
hypervisor with real-time use in a mixed-criticality environment in mind. Bao is a type 1
static partitioning hypervisor, meaning that the hardware resources are allocated statically
by the hypervisor to each guest once before they boot up (Figure 2.5). The interesting
characteristic of this hypervisor is its minimal approach that results in low overhead while
providing solid security guarantees. It also has ways to allow inter-VM communication
between the different guest Virtual Machines (VM), through the use of interrupts (that
can be used as a doorbell mechanism) and the possibility of defining a shared memory
space. The guest VMs can contain bare-metal software or host a variety of OSes, both
real-time and general purpose. The architecture support at the moment is limited to
ARMv8 platforms and RISC-V. Every VM only sees what the hypervisor exposes it to,
usually in the form of virtualised hardware, such as virtual CPU cores and interrupts,
which are directly mapped to the physical ones.

The reason this tool has been chosen for the theoric implementation of our solution is
the ease of use, availability and perfect fit for low resource mixed-criticality application.
It is an open source project that is already available on GitHub [66], with a constantly
expanding list of supported platforms.

Use in Mixed-criticality Systems

One of the most interesting usecases for embedded hypervisors is their application in mixed-
criticality systems. This has become increasingly common thanks to the evolution of
embedded platforms, now able to handle the functionality of a wide variety of OSes while at
the same time providing stronger security and memory protection functionalities. This has
made it possible to centralize the operation of something like the control and infotainment
systems of a vehicle on the same platform, which means easier planning and a possible cost
reduction for the manufacturers. The availability of powerful and inexpensive multicore
SoCs has thus made the need for appropriate hypervisors all the more relevant. As said
before, PikeOS is one of the commercial tools created with mixed-criticality in mind, and

21

Background

Figure 2.5: Hardware partitioning for a system with a dual-guest configuration, running
an RTOS along a general-purpose OS [59].

Bao is an interesting project with a similar mission that could gain traction in the future,
thanks to its open nature.

22

Chapter 3

Current State of the Art and
Open Issues

At the moment, the available solutions for CFI in the RTOS domain proposed in the sci-
entific literature are quite limited. During the work for this thesis, a statement paper
by me and my group has been accepted: Control-Flow Integrity for Real-Time Operating
Systems: Open Issues and Challenges. This work was presented at the IEEE East-West
Design and Test Symposium 2021 [72] conference in September of 2021, and will be pub-
lished and become publicly available soon. The paper analyses the proposed software-based
CFI solutions for RTOSes or approaches that seems to be most promising, if they were
appropriately modified. First, the basic characteristics of an ideal solution were defined,
and then used to analyse several works. A few of them have been selected on the basis of
the presence of interesting features, to have a clear picture of the current state of the art
in this field. Also, the issues that are still unsolved and how to possibly improve on them
are outlined.

3.1 Characteristics of an Ideal Solution
The requirements of a security solution for a RTOS are different from the ones of a general-
purpose system, since the impact on schedulability has to be addressed as well. Thus, for
our analysis, our ideal solution is defined as having these characteristics:

• Complete CFI coverage, which is comprised of:

– Full forward and backward branches protection;
– Protection of the interrupt context, which is not predictable from the CFG

analysis only [60].

• Uncompromised workload schedulability: this means having ideally negligible
overhead. This is evaluated depending on the specific system and workload. Most
embedded platforms running real-time applications are usually resource-constrained,
which makes this a significant issue. Overhead should be considered both for perfor-
mance and code size.

23

Current State of the Art and Open Issues

All the examinated solutions incurred in the trade-off between security and overhead,
although in different ways and to different degrees. One or the other is usually given pri-
ority, at the cost of the other one, making obtaining a complete, all-encompassing solution
still an open issue. A deeper look at the various solutions examined is below.

3.2 Current State of the Art
From the available research, five solutions have been selected, as they were the most relevant
and interesting at the time of the paper’s writing.

3.2.1 RECFISH
In [76], a solution called RECFISH is proposed. This solution is a RTOS-specific solution
that implements fine-grained CFI with a shadow stack by taking advantage of the MPU
functionalities of the ARM platform. Support for use with FreeRTOS was also introduced
by making appropriate modifications to its code.

CFI scheme

The CFI validation is implemented through binary instrumentation for forward branches
and the use of a shadow stack for backward branches. A CFG is generated through static
analysis of the binary. The solution chooses to use binary and not source code instrumen-
tation in an effort to be able to retrofit this to existing devices for which the source code
may not be available. Forward branch protection works in a traditional way, by using la-
bels to identify each section of code and doing the appropriate comparisons with the CFG.
Since this is done on the binary and not the source code, to make sure there is no problem
regarding relative addressing because of instruction insertion, a separate memory section
.cfi is dedicated to the CFI instrumentation, and the original instructions inside the .text
section are replaced with trampolines (i.e., direct branches). For each existing function, the
instrumentation adds trampolines to an instrumented prologue, branch operation (when
present), and epilogue, all inside of their dedicated memory (Figure 3.1), which correspond
to the original prologue, indirect branch and epilogue of the instrumented function.

• Instrumented Prologue: in this section, the registers normally pushed on the
regular stack are still pushed there with the exception of the link register, which
is instead pushed onto the shadow stack. The shadow stack is accessed through a
supervisor call.

• Instrumented Jump: here the actual CFI check for forward branches happens, by
comparing the expected label with the target of the indirect branch.

• Instrumented Epilogue: before returning, the previously pushed registers are
popped from the regular stack, and the link register is retrieved from the shadow
stack. Finally, the program branches to the address inside the link register.

24

3.2 – Current State of the Art

Figure 3.1: Instrumentation through the use of trampolines [76].

FreeRTOS Modification

In order to make use of these functionalities in conjunction with FreeRTOS, some modifica-
tions were applied to the RTOS. The presence of multitasking/multithreading and context
switching makes some adjustments necessary. In RECFISH, the adopted solution is to
save the context not in the regular stack (as described in the last paragraph of subsection
2.4.1) but in the shadow stack. Since the scheduler already runs in privileged mode, no
overhead from the supervisor call execution occurs. To do this, three main modifications
were implemented:

• Task Control Block extension: the TCB was modified to add an extra field for
the shadow stack.

• Task creation modifications: the functions handling the creation of a task were
modified, adding the assignment of a shadow stack region to each task along with the
changes necessary to interact seamlessly with the shadow stack.

• Scheduler modifications: to be able to use the already existing instructions for
context saving and restoration, the necessary changes to make those point to the
shadow stack were put in place.

Issues

This solution differs from our ideal solution on two points:

• Protection of the interrupt context: there is no protection for interrupts, which
run in privileged mode and are thus a possible vulnerability. The researchers consider
this to be a non-issue since usually real-time interrupts are very short and could be
designed to avoid having any memory writes. This imposes limitations on the design
of interrupts, and is especially a problem when retrofitting already existing binaries.

• Schedulability: the researchers tested a wide array of workloads, with mixed results
depending on their composition. Around 15% of workloads were not schedulable

25

Current State of the Art and Open Issues

anymore after the instrumentation, with an overhead of 30% for the worst cases. A
proposed mitigation to this issue was the possibility to mark tasks as safe or unsafe
and just apply CFI checks to the unsafe ones. This has proven to be a successful
strategy in their tests, but introduces the new problem of needing to either mark by
hand the tasks (introducing human error in the mix) or create a tool able to analyse
and mark the tasks automatically.

3.2.2 TrackOs
TrackOS [64] is a RTOS based on FreeRTOS that implements a CFI scheme with schedu-
lability and time determinism at its core. It generates a CFG from static analysis of the
binaries and stores it in program memory. A monitoring task is created and scheduled
along with all the other “normal” tasks. The CFI checks, instead of happening at every
vulnerable control-flow transfer, happen only when scheduled, depending on the workload
definition.

Figure 3.2: View of the tasks running on TrackOS. The monitoring task is represented as
overlapping TrackOS to represent the privileged mode it runs in [64].

The way the monitoring task works is by analysing the stack of a task (or several
tasks at once) and comparing it with the CFG to detect any violation. To be able to do
this, the task is allowed to run in privileged mode, since it needs to access others tasks’
stacks (Figure 3.2). This approach mostly solves the schedulability problem, because the
monitoring task can be scheduled in such a way to avoid missing deadlines.

Issues

While TrackOS does provide security improvements with potentially no compromise on
workload schedulability, it is still not a completely secure solution. As long as a task is
executing, no control flow violation will be detected as long as no context switch to the
monitoring task happens. If an attacker were able to also clean up before returning to the
scheduler, no trace of the attack would be detected. A possible approach to solve this would
be to instrument all the monitored tasks with yield instruction before an indirect branch
instruction, but that would completely defeat the whole point of TrackOS’s approach,
making it just an even more inefficient standard CFI solution. Furthermore, with the
monitoring task being, in the end, just a task like the others, the possibility of task starving

26

3.2 – Current State of the Art

exists in the presence of higher priority tasks in the workload. It is not always possible to
put the monitoring task as the highest priority one, as shown in the testing done by the
researchers. They tested TrackOS on a drone using ArduPilot, an open source autopilot.
In this case, there are several tasks handling communication and controls that need to have
higher priority than the CFI task, making it possible to starve the task indefinitely.

3.2.3 FINE-CFI
Among the solutions for general purpose operating systems, FINE-CFI [53] has an in-
teresting approach. The purpose of FINE-CFI is to secure an OS kernel with CFI. Full
fine-grained CFI is implemented, along with protection of the interrupt context. For the
last part, virtualisation is employed.

CFI scheme

As the name implies, this solutions implements fine-grained CFI, in contrast with similar
past solutions like KCoFI [29]. Both forward and backward branches are handled using
indexed hooks [54], which is a CFI scheme proposed by the same authors of FINE-CFI.
With this approach, a jump table and a return table are generated for handling forward and
backward branches, respectively. Then, through instrumentation, the program is modified
in such a way to use the indexes of said tables instead of the actual addresses, making it
impossible for an attacker to jump to a certain part in the program by writing an arbitrary
address in the stack, because now only indexes are used, making it possible to only use
allowed addresses.

For the CFG generation, an algorithm using a particular data structure called a struct
location vector is implemented. The struct location vector of a function pointer is used to
identify the position of a function pointer inside of a nested struct. This information is
then used to implement the complex pointer analysis needed to generate the fine-grained
CFG of the kernel, complete with all the valid point-to sets for each function pointer or
return operation.

Interrupt context protection

In FINE-CFI, the interrupt context is protected thanks to the use of KVM. The kernel
to be protected is running inside of a VM and all the incoming interrupts have to go
through the hypervisor first. The hypervisor keeps an interrupt stack where it stores the
Code Segment/Instruction Pointer (CS/IP) couples for each interrupt. This memory, being
managed directly by the hypervisor, cannot be compromised by an attacker. The order of
action whenever an external interrupt arrives is as follows:

1. The interrupt is raised

2. The hypervisor receives it and saves the CS/IP couple in its interrupt stack

3. The hypervisor sends the appropriate virtual interrupt to the VM

4. The VM executes the interrupt handler

27

Current State of the Art and Open Issues

5. Before returning with the iret instruction, it uses the vmcall instruction to exit the
VM and execute an hypercall handler

6. The hypervisor compares the CS/IP pair in the kernel stack with the one in its
interrupt stack

7. If they are the same, the topmost element in the interrupt stack gets popped, other-
wise an error handler is executed

A visual representation of this operation can be seen in Figure 3.3.

Figure 3.3: Model of the hypervisor intercepting incoming interrupts and saving the CS/IP
couple in its interrupt stack before passing the interrupt to the VM [53].

Issues

The use of virtualisation adds a powerful ally to the mix, but since this is a solution
for GPOSes there are some considerations to be done if one wants to adapt this to the

28

3.2 – Current State of the Art

embedded world. While KVM has gained much more support for operation on ARM
platforms in recent years, the problem of needing the Linux kernel to operate is still a
potential problem. Not only is there a considerable size overhead, but the introduction of
a very large Trusted Computing Base is also worrying. The decision not to use a shadow
stack but instead depend on indexing hooks also introduces the problem of the exploitation
of dispatcher functions as described in 2.3.2.

There is also the issue of compromised schedulability. The researches tested several
benchmark suites, and found average overheads going from 7.46% to 9.89% depending on
the suite, with several single benchmarks going over 15%. It is not clear how this would
translate for real-time workloads, but it is still a non-negligible amount of overhead that
could potentially have an impact on schedulability.

3.2.4 Camouflage
Among the analysed solutions, two are making use of ARM Pointer Authentication (de-
scribed in 2.3.3). The first one is Camouflage [31]. This is also a solution for securing
kernel code. PA is leveraged to sign function pointers and return addresses. In particular:

• Forward branch protection: forward branches can appear in two forms, either
as regular function pointers or as function pointers inside of static operations tables
in the form of structures, which are stored on read-only memory. While in the last
case the function pointers themselves are not at risk of being modified, the pointers
to the operations structures themselves could be, and thus need protection. The
modifier used for the generation of the PACs for both cases (function pointers and
pointers to operations tables) is comprised of 16 bits identifying the combination of
the containing type and compound type member, together with the 48-bits address of
the containing object. Appropriate setter and getter functions are used to implement
signature and authentication of the pointers

• Backward branch protection: to avoid the vulnerability to replay attacks that
the original implementation of PA had, thanks to possibly repeating Stack Pointer
(SP) values, a more complex modifier is used here. To protect backward branches,
functions are instrumented with a prologue and epilogue. In the prologue the LR is
signed using as a modifier the low order 32 bits of the SP concatenated with the low
order 32 bits of the function address.

Camouflage also uses an hypervisor to protect the keys used for PA, by only using
them through functions inside of a XOM (eXecution Only Memory) at the kernel level,
which interacts with the hypervisor in a way that makes sure the keys are never exposed.
The keys are generated by the bootloader which then updates the kernel functions before
booting. The setter in the XOM will do its work all before interrupts are enabled, to stop
possible key leakage, and all the registers involved are zeroed out before starting normal
operation.

Issues

Camouflage has some issues that need to be solved, especially if one wants to use its
approach in a real-time system.

29

Current State of the Art and Open Issues

From the benchmarks ran, the overhead goes from 10% to 30%, which the researchers
argue is not reflective of the actual impact on normal operation, since the instrumentation
is on the kernel and the use of system calls is usually fairly limited. This means that, in
the case of a RTOS, depending on system call usage in the workload, the overhead could
go from moderate to very significant. This also poses a problem if someone were to try to
apply the same approach not only to kernel code but to the tasks as well. There is also
the issue of the heavy involvement of the hypervisor, which handles all the key operations,
meaning extra overhead for the system.

There is also not protection of the interrupt context. The authentication and branching
are not done as an atomic operation, but are instead executed by separate instructions,
creating the possibility of time-of-check-to-time-of-use (TOCTOU) [3] attacks.

As a last point, Camouflage needs some modifications to the C library functions to
function properly, thus not achieving ISO C compliance, which could be an issue for appli-
cations that need to adhere by certain standards and certifications, which is commonplace
in several safety-critical systems.

3.2.5 PATTER
The second solution using PA for CFI that was analysed is PATTER [79], which stands for
Pointer AuThenTication for kERnels. As the name implies, this is another solution that
aims at introducing CFI to the kernel of an operating system. PATTER works together
with Clang/LLVM [52] to insert instrumentation right at the Intermediate Representation
level and protect both forward and backward branches. There are two main phases (Figure
3.4), the one at compile-time and the one at run-time:

• Compile stage: the kernel is first compiled to LLVM IR (Intermediate Representa-
tion) with Clang. At this point static analysis is ran on the kernel IR and all function
pointers are identified. After this, instrumentation for forward and backward branches
is inserted:

– Forward branches: for forward branches, the modifiers is chosen after making
an observation. All the function pointers in memory are stored in the same
address space, which means that their relative address can be used as the modifier
for their signing and subsequent authentication, making a pointer substitution
attack very difficult to pull off. Past solutions used the pointer type, but that was
significantly more likely to leave openings for pointer substitution. All pointers
are signed and then stored in memory, and when they need to be used they
are loaded from memory and then authenticated. When branching, the blraa
instruction is used to guarantee atomicity. That instruction authenticates the
pointer before a branch and link, making TOCTOU attacks impossible to be
executed.

– Backward branches: for return addresses, the stack pointer value is used as
the modifier for PAC generation. Prologues to sign the return value are put at
the start of each function, and to return the atomic retaa is used, to authenticate
and branch in a single time to stop the possibility of TOCTOU attacks.

30

3.2 – Current State of the Art

• Run-time stage: at run-time, several operations happen in order. During kernel
boot-up, PA is initialised, the keys and registers are set. Then the case of stati-
cally initialised function pointers is handled, they are signed and saved in memory.
There are also some dynamically assigned function pointers that needed to be first
initialised before the PA initialisation, so those are signed as well. After this, the
booting operation is complete and PATTER can protect the kernel during its normal
operation.

Figure 3.4: Schematic representation of the two stages of PATTER protection [79].

The authors created their own algorithm for function pointer detection and classifica-
tion, which manages also the problem of pointer propagation with some changes to the

31

Current State of the Art and Open Issues

PAC generation.

Issues

The approach of PATTER cannot completely stop possible TOCTOU attacks, since at the
moment there are no instructions to atomically sign and store or load and authenticate.
This is not something that can be solved by the authors themselves, which argue that it is
an hardware limitation, and also point out how correct authentication will still be needed
before any branching operation, strongly limiting the possible impact of these attacks.

There is also the problem of the possible presence of several corner-cases regarding
function pointer generation, like the use of pointer arithmetic, pointers holding physical
addresses, and pointers inside of unions. All of these cases are not correctly handled
by their algorithm, so they need specific workarounds. The researchers implemented the
solution for the Linux kernel, and in that case these occurrences were fairly rare, making
it possible to patch manually the first two cases and use a simple protocol for the last one.
In particular, they used the 64-bit alignment property of pointers as a way to recognize the
element type for the case of function pointers inside unions, which works fine for the Linux
kernel. These workarounds are not a structured solution that can necessarily be applied
to every kernel, so depending on the OS it would be ideal to have a more solid approach.

Regarding overhead, the researchers decided to use Unixbench to run several tests. The
system call intensive ones noticed overhead from 10% to 20%, while some user-space tests
denoted a much more acceptable overhead. This is a similar situation as Camouflage, where
the kind of workload on a RTOS could significantly influence the overhead depending on
the system call usage frequency, and possible adoption of this CFI scheme to the task code
itself could result in some very significant overhead.

Solution F&B coverage Int. awareness Schedulability
RECFISH [76] Yes No Compromised
TrackOs [64] No No Uncompromised with

appropriate scheduling
FINE-CFI [53] Yes Yes Compromised
Camouflage [31] Yes No Compromised
PATTER [79] Yes Yes Compromised

Table 3.1: Summary of analysed solutions and their coverage of the main issues.

3.2.6 Open Issues
To summarise the results from our analysis, there are still no real software-based solutions
to the problem of CFI for RTOSes. A summary of the results of our analysis with respect
to the metrics defined for our ideal solution is presented in Table 3.1. There is not enough
work on RTOS-specific solutions, and even solutions that could possibly be adapted to
the real-time domain still have some issues that could limit their usability. The trade-off
between security and performance is always present, and while that may be acceptable
for general purpose systems, the desired solution for RTOSes is something that could be

32

3.2 – Current State of the Art

able to introduce minimal overhead (as to not impede the schedulability of workloads with
very tight deadlines) but without sacrificing security. The only solution that solves the
schedulability problem, TrackOS, has security flaws that in the author’s opinion are not
considered acceptable. Unfortunately, solving this problem is not an easy task, and some
compromises on the possible applications may need to be made. In the next Chapter it
will be introduced our proposal for a solution in the case of multicore, mixed-criticality
systems, that aims to solve both the security and overhead issues of other solutions at least
for this class of systems.

33

34

Chapter 4

Proposed Solution for
Mixed-criticality Systems

Taking into account all the analysis of the existing state of the art done in the previous
Chapter, our proposal can be advanced. A software solution that can respect all the re-
quirements described in 3.1 is unfortunately difficult to obtain, if not impossible, depending
on the system. For that reason, some research was done to find a subset of systems for
which a compliant solution could be implemented. A possibility was found in multicore
systems running mixed-criticality workloads. The idea came partly from the works using
hypervisors for CFI protection analysed in the previous Chapter, and from the principle
behind the work described in [61], which will be briefly described in the following Section.
Several notions regarding this solution have been taken from the thesis of Valentina Forte,
Automatic Binary Analysis and Instrumentation of Embedded Firmware for a Control-Flow
Integrity Solution [35], who developed the static analysis tool for this solution together with
Prof. Prinetto and his team. This work goes more in depth regarding the implementation
details compared to the paper alone, which is why it was a very valuable support when
writing this Section.

4.1 The FPGA Monitor Idea
In the paper A FPGA-based Control-Flow Integrity Solution for Securing Bare-Metal Em-
bedded Systems [61], authored by Prof. Paolo Prinetto and his PhD students Gianluca
Roascio and Nicolò Maunero here at Politecnico di Torino, a clever solution to the CFI
problem is presented. By using an FPGA present on board, all the CFI checks can be
demanded to it instead of having the processor execute all the needed operations. This
makes it possible to incur in a much smaller overhead while having solid security, guaran-
teed by the isolation of the FPGA. This solution is able to handle security for bare-metal
application by protecting both forward and backward branches, while at the same time
taking care of the interrupt context. In our proposed solution, some additions and changes
needed to be made to adapt these principles to operation in the presence of an RTOS, but
it is beneficial to take a look at the inner workings of the existing solution.

35

Proposed Solution for Mixed-criticality Systems

4.1.1 Basic Model
There are three 3 building blocks of this solution: (i) the binary instrumentation, (ii) the
static analysis tool, and (iii) the architecture synthesized on the FPGA.

Binary Instrumentation

The instrumentation is applied only to select branches which are considered vulnerable,
and to interrupt routines. The instrumented forward branches send information to the
FPGA depending on their classification.

The classification is made on a few factors, which are:

• whether the forward branch is secure or not. In particular:

– a branch is secure when it is a direct branch or an indirect branch whose target(s)
depends on a value that never enters data memory;

– a branch is insecure if it is an indirect branch whose targets(s) depends on a
value coming as combination from vulnerable memory which could be modified
through memory vulnerabilities [61];.

• whether the forward branch has a single or multiple possible targets.

• whether the forward branch’s target has multiple or a single return target.

Depending on the various combinations of these factors, the appropriate functionalities
have been implemented in the FPGA, and the binary is instrumented both at the source
and the destination(s). Backward branch instrumentation also has appropriate handling
by the CFI monitor and are instrumented appropriately.

To provide protection of the interrupt context, the register saved automatically by ARM
are also saved inside of a secure data structure in the FPGA every time an exception is
triggered and then retrieved before returning to the normal operation, as way to preserve
the program context. The registers interested by this are register R0 to R3, R12, LR, PC,
xPSR [56].

Static Analysis Tool

To conduct the static analysis on the binary file, a Python script has been developed. It
goes through several stages, by first disassembling the binary file, parsing it to recreate an
assembly file, then examining it creating the CFG. It then analyses all the paths traversed
by the values of indirect branch targets and based on that classifies the edges on the CFG.
Finally, based on these classifications, the code instrumentation is applied.

FPGA Monitor Architecture

The design of the FPGA is comprised of a central Control Unit (CU), which handles
appropriately all incoming requests, and three data structures, used to support the CFI
operations:

36

4.1 – The FPGA Monitor Idea

• Secure Edge Table: a table containing the information about the CFG needed to
enforce CFI;

• Secure ID Stack: used to implement shadow stack functionalities for function calls;

• Secure Register Stack: a stack used to store all the registers needed to protect
program context in case of an ISR execution.

Figure 4.1: CFI monitor block diagram [61].

The CU receives all the requests from the CPU with a specific opcode, and depending
on that performs some action interacting with the data structures previously described
and using the value passed to ID/Register appropriately. Depending on the outcome of
the operation, an interrupt can be sent to the CPU to signal a CFI violation, so that the
program can take whatever measures are set in place to handle the situation, that being
completely stopping operation, restarting, or whatever else the security policy decides. A
visual representation of the FPGA design and its interaction with the system can be seen
in Figure 4.1.

37

Proposed Solution for Mixed-criticality Systems

4.1.2 Protection Mechanism
When put together, the previously described parts of the solution define the complete
workflow and operation for the offline operations (summarised workflow is in Figure 4.2)
and the run-time ones (Figure 4.3).

To prepare the system, the binary is first analysed with the static analysis tool; after
that, the code is instrumented and the CFG information is used to generate the design for
the FPGA. When all of that is done, the system is initialised, by programming both the
program memory and the FPGA. At this point, the system is ready to run.

Figure 4.2: Workflow of the analysis, instrumentation and programming process [61].

When the system is running, the instrumented code will send requests to the FPGA.
This is done by doing STORE operations on certain addresses, which serve as the opcode,
in which the value that is to be checked will be passed as the STORE argument. This is
the ID/Register argument for the FPGA. The FPGA can write on an interrupt line to the
CPU, which it will raise if a violation is detected.

Figure 4.3: CPU-FPGA interaction for monitoring [61].

4.2 Design Goals
The aim of this thesis is to create a solution that uses some of the principles from the
previously presented solutions to make an all-encompassing solution tailored for the needs
of mixed-criticality systems.

For our proposal, a system that uses a hypervisor to assign different cores of a multicore
platform to the high and low criticality parts of our system is used. Our priority is securing

38

4.3 – Threat Model

the high-criticality portion of it, which will run a hard real-time RTOS, while keeping per-
formance overhead to a minimum. The FPGA-based solution demonstrates how delegating
the bulk of CFI monitoring to an external monitor is an effective strategy, but this means
having the extra hardware needed for that. At the time of writing, a lot of commercially
available solutions do not have a FPGA on board, but multicore embedded SoCs have
become increasingly cheap and common. From this, the idea of using the resources of the
lower criticality portion of our system to protect the high-criticality RTOS came to be.

While the high-criticality system is a hard real-time system, the low-criticality one
could be a soft or firm real-time system, or just a general-purpose one. This means that
the added overhead from the CFI monitoring is tolerable, since it does not have to strictly
adhere to set deadlines.

4.3 Threat Model
It is assumed the presence of a powerful attacker that can exploit several vulnerabilities in
the code to read and write on the memory. Separate considerations have to be made for
the high and low criticality subsystems, assuming the attacker can exploit vulnerabilities
in both of them.

For the high-criticality core, the objective is to secure the insecure edges. This means
creating the CFG of the tasks and then instrumenting the code. Our system takes inter-
rupts and context switches into consideration as well, so appropriate instrumentation for
them is also necessary. All the actual CFI verification will happen in the low-priority core,
which holds the CFI monitor and all the data necessary for its operation.

For the system containing the monitor, only protecting the memory by limiting its
access to privileged code is not enough. For this purpose, the monitor will make use of
the MPU on the platform as well, to lock the memory and unlock it only when necessary.
The sensitive data of the monitor will always be inaccessible from userspace, and outside
of a set of secure routines it will be read-only for privileged code. The attacker can
still potentially read the sensitive data by exploiting for example vulnerable ISRs, but,
especially in embedded systems, most exploitable vulnerabilities lie in the userspace code,
with interrupt handlers being pretty short and secure. But, even if that were not the case,
our solution still makes it so that the attacker has no way to influence the protected regions
anyway, as just explained.

4.4 Approach
For our solution, it is needed to use an embedded hypervisor which is tailored for real-
time support. It was decided to base our solution on Bao (previously described in 2.4.2),
because it is an hypervisor created for application in mixed-criticality environments and it
is available as an open-source project.

On its official project page [66], there is a repository containing a few demos, including
a demo that shows the operation of FreeRTOS together with Linux on the same quad-core
platform, by assigning one core to FreeRTOS and 3 to the Linux system. In this demo, the
two VMs communicate through the interrupt system guaranteed by the hypvervisor and
send data to one another by writing on a shared memory section. Bao uses a configuration

39

Proposed Solution for Mixed-criticality Systems

file to assign the physical resources to each image, defining the optional shared memory
section and the interrupt(s) to create for inter-VM communication inside of it. This basic
structure is the basis of our solution (two VMs interacting through interrupts and a shared
memory region). A model can be seen in Figure 4.4, using a dual-core architecture for the
sake of simplicity. This hypothetical dual-core system will be the one considered for all the
model definitions from here on.

Figure 4.4: Model of the general system definition.

What needs to be defined now is exactly how this structure will be used to implement
our design.

4.4.1 Branch Protection
Branch protection has to be applied only to the insecure branches, as per definitions in
4.1.1. This means that all the insecure edges can be classified in different groups, each one
needing their own dedicated handling:

• Type 1:

– Insecure forward branches (with a single or multiple targets) to a routine ending
with a secure backward branch;

– Insecure forward branches (with a single or multiple targets) to a routine ending
with an insecure backward branch with a single target;

– Insecure backward branches with a single target;

• Type 2:

40

4.4 – Approach

– Insecure forward branches (with a single or multiple targets) to a routine ending
with an insecure backward branch with multiple targets;

• Type 3:

– Secure forward branches to a routine ending with an insecure backward branch
having multiple targets;

• Type 4:

– Insecure backward branches with multiple targets;

Each group will be handled in a different manner, both regarding their instrumentation
and the function performed by the CFI monitor. A different interrupt is defined for each
one of them to request the right behaviour to the monitoring core.

• Type 1: in this case, both the source and the destination(s) will be marked with a
unique label identifying them, and instrumentation is inserted at both ends. At the
source instructions are inserted right before the branch instruction to write the source
label on the shared memory before raising the right interrupt and branching. At the
destination (or destinations in the case of multiple targets) instructions are added at
the very start to write the destination label on the shared memory and then raise
an interrupt to the monitor. When the monitor has received both values, it will use
them to check if this is a valid edge of the CFG. If it is not, it will raise an interrupt
to signal a violation.
After the first interrupt from the source instrumentation is received by the monitor,
the monitor starts a timer, if it does not receive the second interrupt in due time
(which will be the expected time for the branch and instrumented instructions to be
executed) it will send an interrupt to signal a violation. This is because in this case
the program has jumped to a destination which is not instrumented and thus not a
valid target.

• Type 2: in this case, both the source and the destination will be marked with a
unique label identifying them, and instrumentation is inserted at both ends. The
instrumentation is the same as Type 1, with a different interrupt line for the first
interrupt.
The important difference with the previous group is that in this case the monitor will
also save the source label for later use when returning from the destination routine.
Since this routine can have multiple targets for its backward branch, it is necessary to
make sure that the routine returns to its caller and not to another valid target. This
is made possible by saving the caller’s label and comparing it with the destination
of the backward branch when necessary. The same timer functionality as Type 1 is
present here as well.

• Type 3: in this case there is not any instrumentation at the destination, since there is
no need to actually check the branch itself. The only instrumentation is at the source,
where the source label is written to the shared memory and a specific interrupt is
raised. The monitor will just save this label for later use to make sure that the

41

Proposed Solution for Mixed-criticality Systems

backward branch inside the routine will return to the right caller, like in the case of
Type 2 instructions.

• Type 4: in this case the instrumentation is the same as Type 1, with the monitor
receiving both the source and destination labels and activating a timer inbetween
them to make sure a valid branch is taken. In addition to that, the monitor also
checks the received destination label against the previously saved caller label (the
label of the routine that called the one the program is returning from) to make sure
that not only a valid branch was taken, but the single right one.

To summarise the workflow needed for each type, some simplified diagrams can be
seen in Figure 4.5. It is important to notice that, to keep the models simpler and more
immediate, the timer feature is omitted in that representation, but it is of course still an
integral part of our real design.

4.4.2 Protection of the interrupt context
Our proposal is modelled for ARM platforms, which means that the way exceptions are
handled automatically for ARM was taken into consideration. To ensure maximum security
in the event of an interrupt, the same idea presented as presented in 4.1.1 has been adopted,
which means saving all the 8 registers automatically saved by ARM in the stack into the
monitor as well, and then retrieving them before the ISR returns control to the program.
In our model, this is accomplished by 8 STORE operations to the shared memory followed
by an interrupt to signal the transfer to the monitor. To retrieve them an interrupt is sent
to request them to the monitor, which will write them on the shared memory to allow the
high-criticality core to receive them.

The problem with this is the possibly significant overhead introduced by this. For
applications that have frequent interrupts with very short ISRs, the introduced latency
could be a problem and severely impact real schedulability of a workload. A possibility to
mitigate this could be to only secure a few select registers. Right now, the registers that
are saved are, in order:

• PC (Program counter)

• xPSR (Processor Status Register)

• R0 to R3

• R12

• LR (Link Register)

To potentially reduce the overhead, a choice could be made to only secure two registers,
LR and PC, because these are the ones that, if modified, could be used to perform control-
flow hijacking attacks, while the other registers are significantly less dangerous in that
sense. Depending on the situation, reducing the saved registers to just these 2 could be an
acceptable compromise.

42

4.4 – Approach

4.4.3 Scheduler Awareness
As explained previously in 2.4.1, when working on a CFI implementation for a RTOS,
compared to a bare-metal application there is the added issue of context-switching and
how to protect the task context when other tasks are running. In FreeRTOS the scheduler
saves a total of 34 registers, namely:

• Register R0 to R31

• SREG (Status Register, xPSR in ARM platforms)

• PC

They are used to save the task context and are pushed onto the task’s stack. The
scheduler only saves the final stack pointer for every task, to be able to restore context later.
The problem with this is that vulnerable privileged code (e.g., ISRs) could potentially now
access the stack memory of a suspended task and modify it, making control-flow hijacking
possible by changing the PC value inside the stack.

To combat this, the strategy from 3.2.1 is adopted. All the context register are sent to
the low-criticality core, which saves them inside of an appropriate data structure, making
this information not reachable by the RTOS. To do this, some modifications have to be
made to FreeRTOS, which are very similar to the ones employed in RECFISH.

• Task Control Block: the TCB is extended by adding two fields, one to save the
position on the low-priority core memory used to save the context between context
switches, and the other one to keep their shadow call stack pointer (this data struc-
ture is introduced in 4.4.4). For this to be effective, the functions that handle the
initialization of a task and its stack need to be modified as well.

• Scheduler: the scheduler runs its own routines to save and restore context. These
routines are modified to make the scheduler send and receive data to the monitor
instead of using the task’s stack. The task’s stack pointer, which is used to restore
context and is kept by the scheduler for each suspended task, will also be saved in the
monitoring core, and a verification will happen when restoring context. If the saved
stack pointer and the one retrieved from the monitor differ in any way, a violation
will be detected.

4.4.4 Monitor Data Structures
To implement all the functionalities presented up to here, the monitor needs some specific
data structures, which will be hosted on the private memory of the low-criticality core.

• Edge Table: this is a table that contains all the edges part of the computed CFG.
To access the table, the monitor makes a XOR between the source and destination
labels, the result of which is used as the index to access the table. Each label is 13
bits long, for a total number of 8192 possible edges. Every entry on the table is a
half-word (16 bits), the first 3 bits (which are equal to 0 in the half-words used for
the labels) are used to signal if the edge exists in the CFG or not, while the last 13
are the expected source label. This is so that the monitor can unequivocally verify
the edge. The first 3 bits can assume the values:

43

Proposed Solution for Mixed-criticality Systems

– 000: No Edge
– 100: Existing Edge

For the size of the labels 13 bits is just a proposed value to have a reasonable amount
of available labels and an Edge Table that is moderate in size, but it could go up to
15 bits to still keep treating them as half-words while maintaining the edge validity
check, which needs only one dedicated bit.
The edge table will be set as a Read-Only memory accessible only to privileged code
(which includes interrupts) before starting the system. At boot time, the bootloader
will use the MPU functionalities of the ARM platform to do that after the table is
populated.

• Shadow Call Stack: this is the memory used to store the caller label during the
ISR for type 2 and type 3 routines, that will be used to do the caller verification for
type 4 edges. The size can be decided depending on the expected maximum number
of stacked calls. Each task will have its own shadow stack sector, to avoid possible
collisions caused by context switching. To do this, the stack pointer used by the
Shadow Call Stack will be updated at every context switch, to operate on the correct
subregion. The relative field on the TCB of the task that is being switched out will
be updated by writing its current value in the monitor to it. After that, the monitor
will take the value from the task’s TCB that is being switched in to update its own.
All of this is managed by the scheduler.

• ISR Registers Stack: in this memory sector, the registers saved for protecting
the interrupt context are pushed upon entering the ISR and popped before exiting it.
Since ISRs can be nested, the size needs to be able to handle multiple sets of registers.
The expected number of nested interrupts can vary depending on the application, but
if a maximum value of 5 is supposed, this would mean needing the space to save a
total of 40 registers, meaning just 160bytes of memory for the whole stack.

• Task Context Memory: in this memory sector, the information needed to restore a
task’s context is kept. Each task gets its own subsector, dimensioned to hold exactly
the needed registers. When a task is running, all the other suspended tasks will have
their context stored inside this data structure, meaning that, supposing all tasks have
been started already, at every given moment only a subsector will be unused, while
the other ones will hold the data necessary to restore their context whenever the
scheduler will set them as running.

Data Protection

While the hypervisor ensures that the RTOS has no way to access the memory of the
monitor, this is not true for the low-criticality OS. To be able to operate the monitor, the
system needs to be able to write and read from the monitor data structures (except for
the Edge Table, which is always read-only). Even if they were set as accessible only to
privileged code, this would still make possible attacks that use ISRs vulnerabilities to write
data on that address range.

44

4.4 – Approach

While the ideal solution would be to just have minimal ISRs with no external interaction
at all, basically eliminating any vulnerability, this is unfortunately not something that can
be guaranteed. Another solution would be to just have the low-criticality system run with
interrupts disabled, but this is clearly unacceptable for the vast majority of usecases.

Instead, it was decided to make use of the MPU on the ARM platform. The MPU
allows the developer to set a number of memory regions to be protected by regulating
their accessibility. They can be made so that only privileged code can access the protected
memory, with different attributes defining the read-write permissions. In our model three
MPU regions are defined, one for each of the data structures that the monitor needs write
access to. Whenever the monitor is not active, they are all set to Read-Only (RO) for
privileged code exclusively. When a request arrives, the monitor sets the needed memory
region(s) as writable for privileged code, writes to it and then sets it back to RO. During
all of this interrupts are disabled, to avoid attacks that could exploit a well timed interrupt
to access the now unprotected memory regions.

To use the MPU regions, one needs to set the correct values inside the dedicated regis-
ters. A region can have its properties updated only when it is disabled, so since they are all
enabled the first time during boot, this means that each subsequent update needs to first
disable the region, then modify the permissions and finally enable it again. To do this, one
needs to modify the values into the MPU_RNR (Region Number Register), MPU_RBAR (Region
Base Address Register) and MPU_RASR (Region Attribute and Size Register) registers. An
example taken from the ARM documentation [57] is present in Listing 4.1.

; R1 = region number
; R2 = size/enable
; R3 = attributes
; R4 = address
LDR R0,= MPU_RNR ; 0xE000ED98, MPU region number

register
STR R1, [R0, #0x0] ; Region Number
BIC R2, R2, #1 ; Disable
STRH R2, [R0, #0x8] ; Region Size and Enable
STR R4, [R0, #0x4] ; Region Base Address
STRH R3, [R0, #0xA] ; Region Attribute
ORR R2, #1 ; Enable
STRH R2, [R0, #0x8] ; Region Size and Enable

Listing 4.1: Basic example of MPU region update. Note that this is the procedure for a
region that was previously enabled hence the disable at the start.

For all uses of the MPU functionalities after the initial setup it is only needed to modify
the MPU_RASR and MPU_RNR registers. The first one is the one that enables/disables the
region, as well as controlling the permissions, while the latter is used to select to which
region the MPU_RASR and MPU_RBAR registers are referring to. This one is important since
three different regions were defined, and the monitor has to write on the right one depending
on the operation.

Special routines are made to update each MPU region defined. There are routines for
pushing and popping from the shadow call stack(s), the ISR register stack and the task
context memory. The routines handling the shadow call stack(s) do not add any extra

45

Proposed Solution for Mixed-criticality Systems

latency to the violation detection for type 2, type 3 and type 4 edges, since they are always
done at the end of the ISR that handles them. The data on them can still be read to do
the CFI evaluation, and only after that will it be modified. Examples of possible code to
handle these push and pop from these stacks are presented in 4.2 and 4.3 respectively.
push_shadow_stack :

PUSH {r0, r1, r2, r3}
LDR r1, SS_POINTER ; load address of the shadow stack

pointer
SUB r1, r1, #0x2 ; decrement stack pointer value

LDR R0, = MPU_RNR ; load MPU_RNR address
MOV R3, #0x0 ; prepare the region number to access
STRH R3, [R0, #0x0] ; set the region number

LDR R0, = MPU_RASR ; load MPU_RASR address

LDRH R3, [R0, #0x0] ; load Region Size and Enable
BIC R3, R3, #1 ; unset enable bit
STRH R3, [R0, #0x0] ; disable region

LDRH R2, [R0, #0x2] ; load attributes
BIC R2, #0x200 ; change permissions value in R2
STRH R2, [R0, #0x2] ; set permissions as RW for privileged

mode

STRH r0, [r1] ; store new value on top of stack
STR r1, SS_POINTER ; push a value on top of the shadow

stack by
; changing the stack pointer

ORR R2, #0x200 ; change permissions value in R2
STRH R2, [R0, #0x2] ; set permissions as RO for privileged

mode

ORR R3, R3, #1 ; set enable bit
STRH R3, [R0, #0x0] ; enable region
POP {r0, r1, r2,r3}
RET

Listing 4.2: Code example of routine for pushing new data on a task’s shadow stack.

pop_shadow_stack :
PUSH {r0, r1, r2, r3}
LDR r1, SS_POINTER
ADD r1, r1, #0x2

46

4.4 – Approach

LDR R0, = MPU_RNR ; load MPU_RNR address
MOV R3, #0x0 ; prepare the region number to access
STRH R3, [R0, #0x0] ; set the region number

LDR R0, = MPU_RASR ; load MPU_RASR address

LDRH R3, [R0, #0x0] ; load Region Size and Enable
BIC R3, R3, #1 ; unset enable bit
STRH R3, [R0, #0x0] ; disable region

LDRH R2, [R0, #0x2] ; load attributes
BIC R2, #0x200 ; change permissions value in R2
STRH R2, [R0, #0x2] ; set permissions as RW for privileged

mode

STR r1, SS_POINTER ; remove a value from top of shadow
stack by

; changing the stack pointer

ORR R2, #0x200 ; change permissions value in R2
STRH R2, [R0, #0x2] ; set permissions as RO for privileged

mode

ORR R3, R3, #1 ; set enable bit
STRH R3, [R0, #0x0] ; enable region
POP {r0, r1, r2, r3}
RET

Listing 4.3: Code example of routine to remove the topmost element of a task’s shadow
stack. This is not an actual pop operation since it only changes the stack pointer value
the value is read directly from the ISR that later calls this function.

Similar routines are present for the handling the contents of the ISR Registers Stack
and the Task Context Memory. The only real differences will be the amount of data saved
and which MPU region is accessed.

47

Proposed Solution for Mixed-criticality Systems

(a) Type 1.

(b) Type 2.

(c) Type 3.

(d) Type 4.

Figure 4.5: Simplified model of the workflow for each edge type. The timer operation has
been omitted for brevity.

48

4.4 – Approach

Figure 4.6: Internal memory subdivision of the CFI monitor.

49

50

Chapter 5

Theoretical Evaluation

The proposed solution still has no real implementation, so there are not actual benchmarks
to analyse. Instead, a theoretical evaluation of the monitor timings is provided, based on
the available information (e.g., the clock cycle cost of the ARM instructions). There are
two categories that have to be considered:

1. The overhead introduced by the instrumentation on the RTOS

2. The timings needed for the monitor operations, which correspond to the timing in-
between a possible a violation happening and its detection

Every type of edge is instrumented following the same two patterns for the source and
destination routines, which are presented in Listings 5.1 and 5.2. Type 3 edges differ from
the other ones in the sense that instrumentation happens only at the source, since it is a
secure edge (at the destination only interrupts are re-enabled). The basic instrumentation
stays the same, though, since the RTOS is still sending the label to the monitor to save
it in the shadow call stack. Each type will of course raise a different interrupt, to let the
monitor know which actions to take to handle the incoming data.
source_routine :

...
[CODE]
...
CPSID if ; disable interrupts
PUSH {R0,R1}
MOV R0, SH_MEM_SOURCE_ADDRESS
MOV R1, SOURCE_LABEL
STRH R1, [R0]
POP {R0,R1}
[FIRST INTERRUPT]
[BRANCH INSTRUCTION]

Listing 5.1: Pseudoinstructions for the source instrumentation.

51

Theoretical Evaluation

destination_routine :
PUSH {R0,R1}
MOV R0, SH_MEM_DESTINATION_ADDRESS
MOV R1, DESTINATION_LABEL
STRH R1, [R0]
POP {R0,R1}
[SECOND INTERRUPT]
CPSIE if ;enable interrupts
...
[CODE]
...

Listing 5.2: Pseudoinstructions for the destination instrumentation.

The cost of the various instructions (in CPU clock cycles) can be taken from the ARM
instruction set documentation [55]. The instructions that interest us and their cost is
reported below.

• CPSID, CPSIE: 1 cycle

• STRH: 2 cycles

• PUSH, POP: 1+N cycles, with N being the number of registers in the push/pop list

• MOV: 1 cycle

From that it can be calculated that:

• For type 1, 2, and 4 edges, that need full instrumentation at both ends, the overhead
is:

Overhead = (1 + 3 + 1 + 1 + 2 + 3 + INT) ∗ 2 = 22 + 2 ∗ INT (5.1)

• For type 3 edges, which have full instrumentation only at the source and just add the
re-enabling of interrupts at the destination, the overhead is:

Overhead = 1 + 3 + 1 + 1 + 2 + 3 + 1 + INT = 12 + INT (5.2)

The value of INT is the time it takes for the hypervisor to generate and transfer the
virtual interrupt used to make the high-criticality and low-criticality cores notify eachother.
In Bao, this is made through a hypercall. The specific operation is defined as a Virtual Inter
Processor Interrupt (vIPI). Unfortunately, the overhead introduced by the hypercall varies
greatly depending on the platform and the hypervisor, with some solutions differing a few
orders of magnitudes from one another. More recent architectures have hardware support
for virtualisation which can help significantly decrease the overhead of these operation,
but at the moment there is no information available for Bao specifically, so benchmarks
on a real implementation are needed to accurately evaluate the impact of the hypervisor
on this solution. Depending on the results, some changes may be advisable. For example,
instead of using a second interrupt at the destination, it could potentially be less costly to
zero out the shared memory after each operation and use a polling mechanism instead of

52

Theoretical Evaluation

the interrupt to wait for the second label. Future work and tests need to be done in this
regard.

Another area of the RTOS that is impacted by our changes is the scheduler. The
overhead introduced by the instrumentation itself is minimal, since the operations to save
the context are basically the same, with the difference that the scheduler is storing and
loading the values to/from the shared memory, to interact with the context memory in
the monitor. Only two extra STORE instructions are needed, one to save the exiting task’s
stack pointer together with the context and one to verify the entering task’s one against the
saved one, for verification. This introduces an overall very limited overhead of just 4 cycles.
The other source of possible overhead are the modifications done to the code handling the
tasks, because of the modified TCB. This, like the hypercall overhead, cannot be quantified
without running benchmarks on an implemented version of our solution, which once again
reiterates the importance of future work and testing.

As for the CFI monitor, the overhead itself does not concern us as much. What is more
important is understanding how many clock cycles have elapsed since the arrival of the
second label when a possible violation is noticed and notified. Since Type 3 edges cannot
trigger any violation (their routine just pushes the source label on the shadow stack) they
are not subject to this analysis.

The instructions used by the monitor and their cost are:

• CPSID, CPSIE: 1 cycle

• LDR, LDRH: 2 cycles

• EOR, AND, TST: 1 cycle

• CMP, 1 cycle

• BEQ, BNE: 1 cycle if the branch is not taken, 3 if it is taken. For our evaluation, the
cost when the branch is not taken is what is important, so it will be considered to be
equal to 1

Here is the pseudocode for the interested edges:
type1_handler :

CPSID if ; disable interrupts
LDRH r0 source ;load source label from shared memory
LDRH r1 dest ;load destination label
EOR r1 r0 r1 ;xor labels to get edge table index
LDRH r1 table[r1] ;access edge table
TST r1, #0x8000 ;test the validity bit
BEQ error ;if branch not valid
BIC r1, #0x8000 ;delete validity bit
CMP r0, r1 ;check if source label same as value in edge

table
BEQ success ;if equal, jump over interrupt
error:
[SEND INTERRUPT]

53

Theoretical Evaluation

success :
CPSIE if ;enable interrupts

Listing 5.3: Pseudoinstructions for the Type 1 monitor routine.

type2_handler :
CPSID if ; disable interrupts
LDRH r0 source ;load source label from shared memory
LDRH r1 dest ;load destination label
EOR r1 r0 r1 ;xor labels to get edge table index
LDRH r1 table[r1] ;access edge table
TST r1, #0x8000 ;test the validity bit
BEQ error ;if branch not valid
BIC r1, #0x8000 ;delete validity bit
CMP r0, r1 ;check if source label same as value in edge

table
BEQ success ;if equal, jump over interrupt
error:
[SEND INTERRUPT]
B out ;do not push to shadow stack if it was a violation
success :
BL push_shadow_stack
out:
CPSIE if ;enable interrupts

Listing 5.4: Pseudoinstructions for the Type 2 monitor routine.

type4_handler :
CPSID if ; disable interrupts
LDRH r0 source ;load source label from shared memory
LDRH r1 dest ;load destination label
EOR r1 r0 r1 ;xor labels to get edge table index
LDRH r1 table[r1] ;access edge table
TST r1, #0x8000 ;test the validity bit
BEQ error ;if branch not valid
BIC r1, #0x8000 ;delete validity bit
CMP r0, r1 ;check if source label same as value in edge

table
BNE error ;if true, jump over interrupt
LDR r0, SS_POINTER ;load shadow stack pointer
LDRH r0, [r0] ;load label on top of shadow stack
CMP r0, r1 ; compare with destination
BEQ success ;if equal, jump over interrupt
error:
[SEND INTERRUPT]
B out ;do not push to shadow stack if it was a violation
success :
BL pop_shadow_stack

54

Theoretical Evaluation

out:
CPSIE if ;enable interrupts

Listing 5.5: Pseudoinstructions for the Type 4 monitor routine.

It can be noticed that the routines for Type 1 and Type 2 edges behave the same way,
except for pushing the value of the source onto the shadow stack. This means that, for the
purpose of this evaluation, they incur in the same overhead. From that it can be calculated
that:

• For type 1 and 2 edges, the time needed to detect a violation and notify it is:

Overhead = 1 + 2 + 2 + 1 + 2 + 1 + 1 + 1 + 1 + 1 = 13cc (5.3)

• For type 4 edges, which have to not only check the Edge Table, but also check the
source label against the value on top of the shadow stack, the cost is:

Overhead = 1 + 2 + 2 + 1 + 2 + 1 + 1 + 1 + 1 + 1 + 2 + 2 + 1 + 1 = 19cc (5.4)

These numbers can be considered to be a positive result, since it is extremely unlikely
to be able to pull off any kind of meaningful attack in this time frame. The longer time
needed to evaluate Type 4 edges originates from the fact that it is going through a double
verification, using both the Edge Table and the Shadow Call Stack. In order to reduce
the delay, it could potentially be decided to just check the destination label against the
value on top of the call stack, without going through the Edge Table. This should hold
the same security guarantees, since there is trust in the memory holding the Shadow Call
Stack (which is protected thanks to the MPU) and it can be supposed that the control-flow
until this point has been kept safe, meaning that the backward edge is starting from the
right place. To implement these changes, the instrumentation would be slightly different
and this could end up saving up to 9 clock cycles. The different instrumentation could
also reduce the overhead imposed on the RTOS: if the system can be trusted to have
been kept safe up to this point, this means that the backward branch can start from only
one point, making sending the source label unnecessary. Right now the decision made
is to keep both verifications to have a double layer of security as a fail-safe in case of
unknown vulnerabilities or new attacks. If this were to be proved as a problem during real
applications and benchmarking, the described changes could be implemented.

55

56

Chapter 6

Conclusions and Future Work

This thesis aims to provide an analysis of the current state of Control-flow Integrity solu-
tions for embedded Real-Time Operating Systems, defining their strength and weaknesses
and laying down the basis for an “ideal" solution. It then proposes a solution for a subset
of embedded RTOSes, in particular mixed-criticality multicore systems.

The analysis of the current state of the art has looked at software-based solutions in the
available, most recent research. Since specific research in this field is still scarce, the search
has extended to include solutions that, while not strictly implemented for RTOSes, could
be a starting point for a specific solution. From this research a paper titled Control-flow
integrity for real-time operating systems: open issues and challenges has been presented
in the IEEE East-West Design and Test Symposium 2021 [72] conference in September of
2021, and will be published and become publicly available in November of 2021.

The proposed solution takes inspiration from both the analysed solutions and the so-
lution presented in the work A FPGA-based Control-Flow Integrity Solution for Securing
Bare-Metal Embedded Systems [61] by Prof. Paolo Prinetto and his research team here at
Politecnico di Torino. It applies virtualisation as a way to isolate the sensitive memory
areas needed to implement CFI and decrease the performance impact on the RTOS, adapt-
ing the hardware-assisted idea of the FPGA-based solution to easily available multicore
platforms.

To create this isolation, the low-criticality part and the high-criticality one are split
onto different cores through the use of an hypervisor. For this work the hypervisor of
choice was Bao, an open-source embedded hypervisor tailored for mixed-criticality systems
with real-time needs. The CFI monitoring is done by a custom monitor built into the
OS running on the low-criticality core, which will bear most of the overhead from this
implementation. The high-criticality core will just be impacted by the instructions needed
to send the data to the monitor. The way the two cores are able to communicate is through
a shared memory and a virtual interrupt system, all guaranteed by the hypervisor. After
sending the data, the RTOS keeps operating, while the monitor verifies the validity of
the control flow transfers. If a violation is detected, the monitor will quickly signal the
violation to the high-criticality core through an interrupt, to possibly stop the system or
handle the violation otherwise. This operation has to be as quick as possible to reduce the
feasibility of attacks during the verification phase.

The solution aims to provide complete CFI coverage with minimal overhead to the

57

Conclusions and Future Work

high-criticality subsystem. At the moment only a theoretical evaluation of the overhead
and monitor timings is provided. Future work should concentrate on implementing this
solution and running a series of benchmarks to extract real performance metrics on actual
hardware. This is necessary especially because part of the involved overhead is dependant
on both the hardware and its interaction with the hypervisor, a factor which could not be
accurately be accounted for in the evaluation in this work. Some of the changes introduced
to FreeRTOS also need real benchmarks to be adequately estimated. Depending on the
results, possibly further optimizations could be needed, for example by reducing the number
of virtual interrupts needed (if they were to prove too performance-heavy) or researching of
ways to optimize the FreeRTOS modifications. Future expansion of this solution could also
work on adding CFI protection to the low-criticality core as well, by for example making
use of supervisor calls instead of hypercalls to interact with the CFI monitor, similarly to
3.2.1.

58

Bibliography

[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. «Control-flow integrity». In:
Proceedings of the 12th ACM conference on Computer and communications security.
ACM. 2005, pp. 340–353.

[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. «Control-flow integrity princi-
ples, implementations, and applications». In: ACM Transactions on Information and
System Security (TISSEC) 13.1 (2009), pp. 1–40.

[3] Robert P Abbott, Janet S Chin, James E Donnelley, William L Konigsford, S Tokubo,
and Douglas A Webb. Security analysis and enhancements of computer operating
systems. Tech. rep. NATIONAL BUREAU OF STANDARDS WASHINGTONDC
INST FOR COMPUTER SCIENCES AND . . ., 1976.

[4] Luca Abeni and Dario Faggioli. «Using Xen and KVM as real-time hypervisors». In:
Journal of Systems Architecture 106 (2020), p. 101709.

[5] J. Afek and A. Sharabani. Dangling pointer: Smashing the pointer for fun and profit.
2007.

[6] Roberto Avanzi. «The QARMA block cipher family. Almost MDS matrices over rings
with zero divisors, nearly symmetric even-mansour constructions with non-involutory
central rounds, and search heuristics for low-latency s-boxes». In: IACR Transactions
on Symmetric Cryptology (2017), pp. 4–44.

[7] Emmanuel Baccelli, Cenk Gündoğan, Oliver Hahm, Peter Kietzmann, Martine S
Lenders, Hauke Petersen, Kaspar Schleiser, Thomas C Schmidt, and Matthias Wäh-
lisch. «RIOT: An open source operating system for low-end embedded devices in the
IoT». In: IEEE Internet of Things Journal 5.6 (2018), pp. 4428–4440.

[8] Fabrice Bellard. «QEMU, a fast and portable dynamic translator.» In: USENIX
annual technical conference, FREENIX Track. Vol. 41. Califor-nia, USA. 2005, p. 46.

[9] S. Bhatkar, D. DuVarney C, and R. Sekar. «Address Obfuscation: An Efficient Ap-
proach to Combat a Broad Range of Memory Error Exploits.» In: USENIX Security
Symposium. Vol. 12. 2. 2003, pp. 291–301.

[10] T. Bletsch, X. Jiang, and V. Freeh. «Mitigating code-reuse attacks with control-
flow locking». In: Proceedings of the 27th Annual Computer Security Applications
Conference. ACM. 2011, pp. 353–362.

[11] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. «Jump-oriented programming:
a new class of code-reuse attack». In: Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security. ACM. 2011, pp. 30–40.

59

BIBLIOGRAPHY

[12] ARM Connected Community Blog. ARMv8-A architecture – 2016 additions. https:
/ / community . arm . com / groups / processors / blog / 2016 / 10 / 27 / armv8 - a -
architecture-2016-additions. 2016.

[13] C. Bresch, D. Hély, A. Papadimitriou, A. Michelet-Gignoux, L. Amato, and T. Meyer.
«Stack Redundancy to Thwart Return Oriented Programming in Embedded Sys-
tems». In: IEEE Embedded Systems Letters 10.3 (2018), pp. 87–90. issn: 1943-0663.
doi: 10.1109/LES.2018.2819983.

[14] C. Bresch, A. Michelet, L. Amato, T. Meyer, and D. Hely. «A red team blue team
approach towards a secure processor design with hardware shadow stack». In: 2017
IEEE 2nd International Verification and Security Workshop (IVSW). 2017, pp. 57–
62. doi: 10.1109/IVSW.2017.8031545.

[15] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. «When good instructions go
bad: Generalizing return-oriented programming to RISC». In: Proceedings of the 15th
ACM conference on Computer and communications security. ACM. 2008, pp. 27–38.

[16] John M Calandrino, Hennadiy Leontyev, Aaron Block, UmaMaheswari C Devi, and
James H Anderson. «Litmusˆ rt: A testbed for empirically comparing real-time mul-
tiprocessor schedulers». In: 2006 27th IEEE International Real-Time Systems Sym-
posium (RTSS’06). IEEE. 2006, pp. 111–126.

[17] N. Carlini and D. Wagner. «ROP is Still Dangerous: Breaking Modern Defenses».
In: 23rd USENIX Security Symposium (USENIX Security 14). 2014, pp. 385–399.

[18] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R
Gross. «Control-flow bending: On the effectiveness of control-flow integrity». In: 24th
{USENIX} Security Symposium ({USENIX} Security 15). 2015, pp. 161–176.

[19] Defense Use Case. «Analysis of the cyber attack on the Ukrainian power grid». In:
Electricity Information Sharing and Analysis Center (E-ISAC) 388 (2016).

[20] CCWE-120: Buffer Copy without Checking Size of Input (’Classic Buffer Overflow’).
https://cwe.mitre.org/data/definitions/120.html. [Online; accessed 21-July-
2021]. 2021.

[21] S. Checkoway, L. Davi, A. Dmitrienko, A.R. Sadeghi, H. Shacham, and M. Winandy.
«Return-oriented programming without returns». In: Proceedings of the 17th ACM
conference on Computer and communications security. ACM. 2010, pp. 559–572.

[22] S. Checkoway, A. J. Feldman, B. Kantor, J.A. Halderman, E. W. Felten, and H.
Shacham. «Can DREs Provide Long-Lasting Security? The Case of Return-Oriented
Programming and the AVC Advantage.» In: EVT/WOTE 2009 (2009).

[23] P. Chen, X. Xing, B. Mao, L. Xie, X. Shen, and X. Yin. «Automatic construction of
jump-oriented programming shellcode (on the x86)». In: Proceedings of the 6th ACM
Symposium on Information, Computer and Communications Security. ACM. 2011,
pp. 20–29.

[24] Thomas M Chen and Saeed Abu-Nimeh. «Lessons from stuxnet». In: Computer 44.4
(2011), pp. 91–93.

[25] N. Christoulakis, G. Christou, E. Athanasopoulos, and S. Ioannidis. «Hcfi: Hardware-
enforced control-flow integrity». In: Proceedings of the Sixth ACM Conference on Data
and Application Security and Privacy. ACM. 2016, pp. 38–49.

60

https://community.arm.com/groups/processors/blog/2016/10/27/armv8-a-architecture-2016-additions
https://community.arm.com/groups/processors/blog/2016/10/27/armv8-a-architecture-2016-additions
https://community.arm.com/groups/processors/blog/2016/10/27/armv8-a-architecture-2016-additions
https://doi.org/10.1109/LES.2018.2819983
https://doi.org/10.1109/IVSW.2017.8031545
https://cwe.mitre.org/data/definitions/120.html

BIBLIOGRAPHY

[26] P Clarke. «ARM RISC leads the 32-bit embedded market.» In: Electronic Engineering
Times 1100 (2000), pp. 49–49.

[27] Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Marco Ne-
gro, Christopher Liebchen, Mohaned Qunaibit, and Ahmad-Reza Sadeghi. «Losing
control: On the effectiveness of control-flow integrity under stack attacks». In: Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. 2015, pp. 952–963.

[28] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle, Q.
Zhang, and H. Hinton. «StackGuard: Automatic adaptive detection and prevention
of buffer-overflow attacks». In: 98 (Jan. 1998), pp. 5–5.

[29] John Criswell, Nathan Dautenhahn, and Vikram Adve. «KCoFI: Complete control-
flow integrity for commodity operating system kernels». In: 2014 IEEE Symposium
on Security and Privacy. IEEE. 2014, pp. 292–307.

[30] L. Davi, A. Sadeghi, D. Lehmann, and F. Monrose. «Stitching the gadgets: On the
ineffectiveness of coarse-grained control-flow integrity protection». In: 23rd USENIX
Security Symposium (USENIX Security 14). 2014, pp. 401–416.

[31] Rémi Denis-Courmont, Hans Liljestrand, Carlos Chinea, and Jan-Erik Ekberg. «Cam-
ouflage: Hardware-assisted CFI for the ARM Linux kernel». In: 2020 57th ACM/IEEE
Design Automation Conference (DAC). IEEE. 2020, pp. 1–6.

[32] Solar Designer. «Getting around non-executable stack (and fix)». In: http://ouah.
bsdjeunz. org/solarretlibc. html (1997).

[33] Common Weakness Enumeration. CWE entry for stack-based buffer overflow. https:
//cwe.mitre.org/data/definitions/121.html. 2021.

[34] Nicolas Falliere, Liam O Murchu, and Eric Chien. «W32. stuxnet dossier». In: White
paper, Symantec Corp., Security Response 5.6 (2011), p. 29.

[35] Valentina Forte. Automatic Binary Analysis and Instrumentation of Embedded Firmware
for a Control-Flow Integrity Solution. https://webthesis.biblio.polito.it/
18099/. 2021.

[36] The Linux Foundation. Official website of the Xen project. https://xenproject.
org/. 2021.

[37] The Linux Foundation. PREEMPT_RT: The Linux Kernel real-time patch. https:
//wiki.linuxfoundation.org/realtime/start. 2021.

[38] The Linux Foundation. Xen: Embedded and Automotive. https://xenproject.org/
developers/teams/embedded-and-automotive/. 2021.

[39] A. Francillon and C. Castelluccia. «Code injection attacks on harvard-architecture
devices». In: Proceedings of the 15th ACM conference on Computer and communica-
tions security. ACM. 2008, pp. 15–26.

[40] Aurélien Francillon, Daniele Perito, and Claude Castelluccia. «Defending embedded
systems against control flow attacks». In: Proceedings of the first ACM workshop on
Secure execution of untrusted code. ACM. 2009, pp. 19–26.

61

https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/121.html
https://webthesis.biblio.polito.it/18099/
https://webthesis.biblio.polito.it/18099/
https://xenproject.org/
https://xenproject.org/
https://wiki.linuxfoundation.org/realtime/start
https://wiki.linuxfoundation.org/realtime/start
https://xenproject.org/developers/teams/embedded-and-automotive/
https://xenproject.org/developers/teams/embedded-and-automotive/

BIBLIOGRAPHY

[41] FreeRTOS. FreeRTOS - Market Leading RTOS (Real Time Operating System) for
embedded systems with Internet of Things extensions. https://www.freertos.org/.
[Online; accessed 27-July-2021]. 2021.

[42] FreeRTOS. Real Time Scheduling in FreeRTOS. https : / / www . freertos . org /
implementation/a00008.html. 2021.

[43] FreeRTOS. RTOS Context Switch. https://www.freertos.org/implementation/
a00022.html. 2021.

[44] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis. «Out of Control: Over-
coming Control-Flow Integrity». In: 2014 IEEE Symposium on Security and Privacy.
2014, pp. 575–589. doi: 10.1109/SP.2014.43.

[45] SYSGO GmbH. PikeOS RTOS & Hypervisor. https://www.sysgo.com/pikeos.
2021.

[46] Qualcomm Technologies Inc. Pointer authentication on ARMv8.3. Tech. rep. 2017.
[47] Interactive: The Top Programming Languages 2021 - IEEE Spectrum. https : / /

spectrum.ieee.org/top- programming- languages/. [Online; accessed 07-June-
2021]. 2020.

[48] Robert Kaiser and Stephan Wagner. «Evolution of the PikeOS microkernel». In: First
International Workshop on Microkernels for Embedded Systems. Vol. 50. 2007.

[49] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. «kvm: the
Linux virtual machine monitor». In: Proceedings of the Linux symposium. Vol. 1. 8.
Dttawa, Dntorio, Canada. 2007, pp. 225–230.

[50] T. Kornau et al. «Return oriented programming for the ARM architecture». PhD
thesis. Master’s thesis, Ruhr-Universität Bochum, 2010.

[51] Silicon Laboratories. Micrium Software and Documentation. https://www.silabs.
com/developers/micrium. 2021.

[52] Chris Lattner and Vikram Adve. «LLVM: A compilation framework for lifelong pro-
gram analysis & transformation». In: International Symposium on Code Generation
and Optimization, 2004. CGO 2004. IEEE. 2004, pp. 75–86.

[53] Jinku Li, Xiaomeng Tong, Fengwei Zhang, and Jianfeng Ma. «Fine-CFI: fine-grained
control-flow integrity for operating system kernels». In: IEEE Transactions on Infor-
mation Forensics and Security 13.6 (2018), pp. 1535–1550.

[54] Jinku Li, Zhi Wang, Tyler Bletsch, Deepa Srinivasan, Michael Grace, and Xuxian
Jiang. «Comprehensive and efficient protection of kernel control data». In: IEEE
Transactions on Information Forensics and Security 6.4 (2011), pp. 1404–1417.

[55] ARM Limited. Instruction set summary. https://developer.arm.com/documentation/
ddi0432/c/CHDCICDF. 2021.

[56] ARM Limited. Stacking in ISR. https://developer.arm.com/documentation/
ddi0337/e/Exceptions/Pre-emption/Stacking?lang=en. 2021.

[57] ARM Limited. Updating an MPU Region. https://developer.arm.com/documentation/
dui0552 / a / cortex - m3 - peripherals / optional - memory - protection - unit /
updating-an-mpu-region. 2021.

62

https://www.freertos.org/
https://www.freertos.org/implementation/a00008.html
https://www.freertos.org/implementation/a00008.html
https://www.freertos.org/implementation/a00022.html
https://www.freertos.org/implementation/a00022.html
https://doi.org/10.1109/SP.2014.43
https://www.sysgo.com/pikeos
https://spectrum.ieee.org/top-programming-languages/
https://spectrum.ieee.org/top-programming-languages/
https://www.silabs.com/developers/micrium
https://www.silabs.com/developers/micrium
 https://developer.arm.com/documentation/ddi0432/c/CHDCICDF
 https://developer.arm.com/documentation/ddi0432/c/CHDCICDF
 https://developer.arm.com/documentation/ddi0337/e/Exceptions/Pre-emption/Stacking?lang=en
 https://developer.arm.com/documentation/ddi0337/e/Exceptions/Pre-emption/Stacking?lang=en
 https://developer.arm.com/documentation/dui0552/a/cortex-m3-peripherals/optional-memory-protection-unit/updating-an-mpu-region
 https://developer.arm.com/documentation/dui0552/a/cortex-m3-peripherals/optional-memory-protection-unit/updating-an-mpu-region
 https://developer.arm.com/documentation/dui0552/a/cortex-m3-peripherals/optional-memory-protection-unit/updating-an-mpu-region

BIBLIOGRAPHY

[58] Bingbing Luo, Yimin Yang, Changhe Zhang, Yi Wang, and Baoying Zhang. «A survey
of code reuse attack and defense». In: International Conference on Intelligent and
Interactive Systems and Applications. Springer. 2018, pp. 782–788.

[59] José Martins, Adriano Tavares, Marco Solieri, Marko Bertogna, and Sandro Pinto.
«Bao: A lightweight static partitioning hypervisor for modern multi-core embedded
systems». In: Workshop on Next Generation Real-Time Embedded Systems (NG-RES
2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik. 2020.

[60] N. Maunero, P. Prinetto, and G. Roascio. «CFI: Control Flow Integrity or Control
Flow Interruption?» In: 2019 IEEE East-West Design Test Symposium (EWDTS).
2019, pp. 1–6. doi: 10.1109/EWDTS.2019.8884464.

[61] Nicolò Maunero, Paolo Prinetto, Gianluca Roascio, and Antonio Varriale. «A FPGA-
based Control-Flow Integrity Solution for Securing Bare-Metal Embedded Systems».
In: 2020 15th Design & Technology of Integrated Systems in Nanoscale Era (DTIS).
IEEE. 2020, pp. 1–10.

[62] Vishwath Mohan, Per Larsen, Stefan Brunthaler, Kevin W Hamlen, and Michael
Franz. «Opaque Control-Flow Integrity.» In: NDSS. Vol. 26. 2015, pp. 27–30.

[63] A. One. «Smashing the stack for fun and profit». In: Phrack magazine 7.49 (1996),
pp. 14–16.

[64] Lee Pike, Pat Hickey, Trevor Elliott, Eric Mertens, and Aaron Tomb. «Trackos: A
security-aware real-time operating system». In: International Conference on Runtime
Verification. Springer. 2016, pp. 302–317.

[65] J. Pincus and B. Baker. «Beyond stack smashing: recent advances in exploiting buffer
overruns». In: IEEE Security Privacy 2.4 (2004), pp. 20–27. issn: 1540-7993. doi:
10.1109/MSP.2004.36.

[66] Bao Project. Offial Bao Project GitHub. https://github.com/bao-project. 2021.
[67] Open Web Application Security Project. OWASP Top 10 IoT vulnerabilites 2018.

https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project.
2019.

[68] AliAkbar Sadeghi, Salman Niksefat, and Maryam Rostamipour. «Pure-Call Oriented
Programming (PCOP): chaining the gadgets using call instructions». In: Journal of
Computer Virology and Hacking Techniques 14.2 (2018), pp. 139–156. issn: 2263-
8733. doi: 10.1007/s11416- 017- 0299- 1. url: https://doi.org/10.1007/
s11416-017-0299-1.

[69] Microsoft Support. A detailed description of the Data Execution Prevention (DEP).
https://support.microsoft.com/en-us/help/875352/a-detailed-description-
of- the- data- execution- prevention- dep- feature- in. [Online; accessed 18-
June-2019].

[70] L. Szekeres, M. Payer, T. Wei, and D. Song. «SoK: Eternal War in Memory». In:
2013 IEEE Symposium on Security and Privacy. 2013, pp. 48–62. doi: 10.1109/SP.
2013.13.

[71] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. «Sok: Eternal war in
memory». In: 2013 IEEE Symposium on Security and Privacy. IEEE. 2013, pp. 48–
62.

63

https://doi.org/10.1109/EWDTS.2019.8884464
https://doi.org/10.1109/MSP.2004.36
https://github.com/bao-project
https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project
https://doi.org/10.1007/s11416-017-0299-1
https://doi.org/10.1007/s11416-017-0299-1
https://doi.org/10.1007/s11416-017-0299-1
https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in
https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1109/SP.2013.13

BIBLIOGRAPHY

[72] East-West Design & Test. Official website of the IEEE East-West Design and Test
Symposium. https://conf.ewdtest.com/. 2021.

[73] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar Erlings-
son, Luis Lozano, and Geoff Pike. «Enforcing forward-edge control-flow integrity in
{GCC} & {LLVM}». In: 23rd {USENIX} Security Symposium ({USENIX} Security
14). 2014, pp. 941–955.

[74] Tzi-Cker Chiueh and Fu-Hau Hsu. «RAD: a compile-time solution to buffer overflow
attacks». In: Proceedings 21st International Conference on Distributed Computing
Systems. 2001, pp. 409–417. doi: 10.1109/ICDSC.2001.918971.

[75] Morteza Verdi, Ashkan Sami, Jafar Akhondali, Foutse Khomh, Gias Uddin, and
Alireza Karami Motlagh. «An empirical study of c++ vulnerabilities in crowd-sourced
code examples». In: IEEE Transactions on Software Engineering (2020).

[76] Robert J Walls, Nicholas F Brown, Thomas Le Baron, Craig A Shue, Hamed Okhravi,
and Bryan C Ward. «Control-flow integrity for real-time embedded systems». In:
31st Euromicro Conference on Real-Time Systems (ECRTS 2019). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik. 2019.

[77] Richard Wartell, Vishwath Mohan, Kevin W Hamlen, and Zhiqiang Lin. «Securing
untrusted code via compiler-agnostic binary rewriting». In: Proceedings of the 28th
Annual Computer Security Applications Conference. 2012, pp. 299–308.

[78] Yubin Xia, Yutao Liu, Haibo Chen, and Binyu Zang. «CFIMon: Detecting violation
of control flow integrity using performance counters». In: IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN 2012). IEEE. 2012, pp. 1–12.

[79] Yutian Yang, Songbo Zhu, Wenbo Shen, Yajin Zhou, Jiadong Sun, and Kui Ren.
«ARM Pointer Authentication based Forward-Edge and Backward-Edge Control
Flow Integrity for Kernels». In: arXiv preprint arXiv:1912.10666 (2019).

[80] Mingwei Zhang and R Sekar. «Control Flow Integrity for COTS Binaries». In: Pre-
sented as part of the 22nd USENIX Security Symposium (USENIX Security 13). 2013,
pp. 337–352.

64

https://conf.ewdtest.com/
https://doi.org/10.1109/ICDSC.2001.918971

Acknowledgements

This thesis is the termination of my university career, which the people close to me know
how stressful has been at times. I am thankful for all the wonderful people that stayed by
my side during the most difficult periods.

I would like to thank Prof. Paolo Prinetto for the opportunity to work on this thesis
and introducing me to the field of cybersecurity, which has proven to be very stimulating
for me. Huge thanks go to Gianluca Roascio, who gave me a lot of support during the
writing of my thesis, and who has been of great help during the formulation of the solution
itself.

Special thanks, then, have to go to all the people that have supported me through the
years, from my Bachelor’s up to here. I want to thank my family and my parents, for
having been extremely patient with me and always being there when I needed them. I
want to thank Giulia, for having been an incredible support through the years and helping
me be able to get here in one piece. I want to thank all of my friends: the childhood
friends that have been there for me since we were little, the ones I’ve met here in Torino
and the ones that live not here nor there, but even when distant have managed to have an
important role in my life.

Thank you to all of you.

65

	List of Tables
	List of Figures
	Introduction
	Outline

	Background
	Security in the Embedded Domain
	Binary Attacks
	Code Injection
	Code Reuse Attacks
	Mitigations

	Control-Flow Integrity
	Main Principles
	CFI Variants
	Hardware-assisted CFI with ARM Pointer Authentication

	Embedded Systems Issues
	Real-Time Operating Systems
	Hypervisors in the Embedded Domain

	Current State of the Art and Open Issues
	Characteristics of an Ideal Solution
	Current State of the Art
	RECFISH
	TrackOs
	FINE-CFI
	Camouflage
	PATTER
	Open Issues

	Proposed Solution for Mixed-criticality Systems
	The FPGA Monitor Idea
	Basic Model
	Protection Mechanism

	Design Goals
	Threat Model
	Approach
	Branch Protection
	Protection of the interrupt context
	Scheduler Awareness
	Monitor Data Structures

	Theoretical Evaluation
	Conclusions and Future Work
	Bibliography

