
POLITECNICO DI TORINO

Master’s Degree
in Ingegneria Informatica
(Computer Engineering)

Master’s Degree Thesis

Modeling and classifying textual data through
Transformer-based architecture: a comparative approach

in Natural Language Processing

Supervisor Candidate
Prof.ssa Tania Cerquitelli Valentina Margiotta
. .
Company Supervisors
Alessio Bosca
.
Gianpiero Sportelli
.

Academic Year 2020-2021

Ai miei genitori, a mio
fratelllo e alla mia
famiglia tutta, grazie per
esserci sempre stati.

Summary

In the scenario of deep learning models applied to Natural Language Processing (NLP),
the Transformer architecture has brought great interest thanks to its attention mecha-
nism, which helps models to focus on specific parts considering the relationship between
words, independently of where they are placed in a sentence.

Many models based on this type of architecture have been developed by the research
communities. In my Master Thesis I examined the following language models:

• Bidirectional Encoder Representations from Transformers (BERT)

• Efficiently Learning an Encoder that Classifies Token Replacement Accurately (ELEC-
TRA)

• Generative Pre-Trained 2 (GPT-2)

These models have been applied to the NLP text classification task on different datasets
both in English and in Italian in order to evaluate and compare the performances obtained
with the models pre-trained on an English corpus rather than with a multilingual model.

Specifically, two types of classification have been considered in this Master Thesis,
multi-class and multi-label. They differ in that in a multi-label classification problem, the
training set is composed of sentences, each of which can be assigned to multiple categories
instead of a single label.

In this context, therefore, the above models have been trained and fine-tuned with the
aim of assessing their reliability and accuracy in predicting the correct labels associated
with the text given as input to the models.

Following the various experiments carried out, it was observed that all the used models
were able to correctly predict with high accuracy the label associated with a textual input
and it was possible to carry out a textual classification task in a short time thanks to the
architecture of the transformers, which are models already intensely pre-trained on a large
corpus of data and therefore they can be fine-tuned in an inexpensive way on numerous
downstream NLP tasks.

4

Acknowledgements

Ed eccomi qui, dopo questi quasi sei anni per nulla scontanti e non sempre semplici, oggi
sono arrivata al termine del mio percorso universitario. Chi se lo sarebbe aspettato? Si-
curamente la mia famiglia, da sempre fonte di supporto, ma di certo non io. Se sono qui
oggi lo devo soprattutto al sostegno ricevuto in questi anni da parenti e amici più stretti,
a chi ci è sempre stato ma soprattutto lo devo alla mia tenacia che, nonostante i momenti
di sconforto, mi ha permesso di fronteggiare a testa alta gli ostacoli incontrati durante
questo percorso e di proseguire sino a tale traguardo.

Un sentito grazie a tutti coloro che mi hanno permesso di arrivare fin qui e di portare
a termine questo lavoro di tesi.

Ringrazio la mia relatrice, la Prof.ssa Tania Cerquitelli, e i miei tutor aziendali, Alessio
Bosca e Gianpiero Sportelli, per avermi dato fiducia e avermi dato la possibilità di lavorare
a questa tesi ampliando il mio bagaglio di conoscenze.

Vorrei ringraziare i miei amici, quelli veri, che dopo tutti questi anni sono rimasti al
mio fianco. Un grazie speciale a Salvo e Giulio, colleghi, amici che hanno dovuto assorbire
tutte le mie ansie pre-esami, a voi un caro grazie per avermi sempre ascoltata e "sop-
portata". Un caloroso ringraziamento lo devo alla mia migliore amica Silvia I. per essere
rimasta tale dopo quasi venti anni di amicizia, grazie per l’autostima che riesci ad infon-
dermi e per essere sempre la mia fedele confidente. Ringrazio anche in particolar modo
Silvia F. perche’ la nostra amicizia è rimasta salda dopo questi anni di distanza geografica.

In più vorrei ringraziare tutti gli amici che il Collegio Einaudi mi ha permesso di
conoscere e in particolare Arianna, Savino e Salvo.

A mamma e papà, al loro costante sostegno e ai loro insegnamenti senza i quali oggi
non sarei ciò che sono. Vi dico grazie perche’ senza di voi, tutto questo non sarebbe stato
possibile. A mio fratello Alessio, grazie per essere il mio costante supporto e per credere
sempre in me. Ringrazio di cuore i parenti più stretti, Janmanuel per essere più di un
semplice zio, nonna Dora che mi è sempre stata vicina nonostante la distanza e mi ha
trasmesso il suo grande amore e i nonni Franco ed Elena che da lassù oggi mi staranno
guardando, a voi tutti, che vorrei foste qui oggi per abbracciarvi, mando un grosso bacio.

5

Grazie a tutti voi, Valentina

6

Contents

List of Tables 9

List of Figures 11

I Background and used architectures 15

1 Introduction 17
1.1 Natural Language Processing (NLP) . 17
1.2 Pre-Transformer Models: RNN and LSTM 18
1.3 Transformer Model . 20

2 Transformer-based architectures 25
2.1 Transformer bidirectional encoder models 26

2.1.1 BERT . 26
2.1.2 ELECTRA . 31

2.2 Transformer unidirectional decoder models 34
2.2.1 GPT-2 . 34

3 Environment and libraries used 37
3.1 Pytorch and HuggingFace . 37
3.2 Kaggle and Google Colab . 38

II Experimental Results 39

4 Models application on NLP text classification tasks 41
4.1 Multi-Label Text Classification . 41

4.1.1 Dataset (English): GoEmotions Dataset 41
4.1.2 Dataset (Italian): AMI Dataset . 43
4.1.3 Fine-Tuning Models . 45
4.1.4 Loss Function and Optimizer . 47
4.1.5 Evaluation Metrics and Results . 48

4.2 Multi-Class Text Classification . 57
4.2.1 Dataset (English): Covid19 Tweets Dataset 57

7

4.2.2 Dataset (Italian): SardiStance Dataset 57
4.2.3 Fine-Tuning Models . 59
4.2.4 Loss Function and Optimizer . 59
4.2.5 Evaluation Metrics and Results . 60

5 Conclusions 75
5.1 Future developments . 76

Appendices 77

A Implemented scripts for fine-tuning the pre-trained models 79

8

List of Tables

2.1 GLUE Test results for BERT models . 30
2.2 SQuAD Test results for BERT models . 30
2.3 GLUE Test results for ELECTRA models 32
2.4 SQuAD Dev and Test results for ELECTRA models 33
2.5 GPT-2 zero-shot results on many datasets.[21] 36
4.1 GoEmotions labels distribution Train/Dev/Test datasets 42
4.2 GoEmotions baseline results using Ekman’s taxonomy 42
4.3 AMI dataset labels distribution Train/Dev/Test datasets 43
4.4 Pre-trained models from HuggingFace library 45
4.5 Data examples for GoEmotions and AMI datasets 46
4.6 Hyperparameters (GoEmotions Dataset) 49
4.7 Results on dev set (GoEmotions Dataset) 50
4.8 Results on test set (GoEmotions Dataset) 50
4.9 Results of the loss function (GoEmotions Dataset) 51
4.10 Results on Test set using Bert-English Model (GoEmotions Dataset) 52
4.11 Results on Test set using Bert-Multilingual Model (GoEmotions Dataset) . 52
4.12 Results on Test set using Electra Model (GoEmotions Dataset) 52
4.13 Results on Test set using GPT-2 Model (GoEmotions Dataset) 52
4.14 Hyperparameters (AMI Dataset) . 53
4.15 Results on dev set (AMI Dataset) . 53
4.16 Results on test set (AMI Dataset) . 54
4.17 Results of the loss function (AMI Dataset) 54
4.18 Results on Test set using Bert-English Model (AMI Dataset) 56
4.19 Results on Test set using Bert-Multilingual Model (AMI Dataset) 56
4.20 Results on Test set using Electra Model (AMI Dataset) 56
4.21 Results on Test set using GPT-2 Model (AMI Dataset) 56
4.22 Coronavirus tweets NLP dataset labels distribution Train/Dev/Test datasets 57
4.23 SardiStance dataset labels distribution Train/Dev/Test datasets 58
4.24 Data examples for Covid19 Tweets and SardiStance dataset 59
4.25 Hyperparameters (Covid19 tweets Dataset) 62
4.26 Results on dev set (Covid19 tweets Dataset) 62
4.27 Results on test set (Covid19 tweets Dataset) 63
4.28 Results on Test set using Bert-English Model (Covid19 Tweets Dataset) . . 68
4.29 Results on Test set using Bert-Multilingual Model (Covid19 Tweets Dataset) 68

9

4.30 Results on Test set using Electra Model (Covid19 Tweets Dataset) 68
4.31 Results on Test set using GPT-2 Model (Covid19 Tweets Dataset) 68
4.32 Hyperparameters (SardiStance Dataset) 69
4.33 Results on dev set (SardiStance Dataset) 69
4.34 Results on test set (SardiStance Dataset) 69
4.35 Results on Test set using Bert-English Model (SardiStance Dataset) 70
4.36 Results on Test set using Bert-Multilingual Model (SardiStance Dataset) . 70
4.37 Results on Test set using Electra Model (SardiStance Dataset) 70
4.38 Results on Test set using GPT-2 Model (SardiStance Dataset) 70

10

List of Figures

1.1 RNN Architecture . 19
1.2 LSTM Architecture . 20
1.3 Seq2Seq encoder-decoder model overview 20
1.4 Transformer model architecture [26] . 22
1.5 Scaled Dot-Product Attention and Multi-Head Attention [26] 24
2.1 Transfer learning approaches: Feature-based (left) and Fine-Tuning (right) 25
2.2 BERT input representation . 28
2.3 Model sizes for BERT . 29
2.4 RTD in ELECTRA [13] . 31
2.5 Model sizes for ELECTRA . 32
2.6 Model sizes for GPT-2 . 35
3.1 Pytorch logo [11] . 37
3.2 Hugging Face logo [25] . 37
4.1 Results with baseline for AMI task [18] . 44
4.2 Loss and accuracy plots (GoEmotions) . 51
4.3 Loss and accuracy plots (AMI) . 55
4.4 Results with baseline for SardiStance task [12] 58
4.5 Confusion Matrix example . 61
4.6 ROC curve, Precision/Recall curve and Confusion Matrix for Bert-English

Model (Covid19 Tweets Dataset) . 64
4.7 ROC curve, Precision/Recall curve and Confusion Matrix for Bert-Multilingual

Model (Covid19 Tweets Dataset) . 65
4.8 ROC curve, Precision/Recall curve and Confusion Matrix for Electra Model

(Covid19 Tweets Dataset) . 66
4.9 ROC curve, Precision/Recall curve and Confusion Matrix for GPT-2 Model

(Covid19 Tweets Dataset) . 67
4.10 ROC curve, Precision/Recall curve and Confusion Matrix for Bert-English

Model (SardiStance Dataset) . 71
4.11 ROC curve, Precision/Recall curve and Confusion Matrix for Bert-Multilingual

Model (SardiStance Dataset) . 72
4.12 ROC curve, Precision/Recall curve and Confusion Matrix for Electra Model

(SardiStance Dataset) . 73
4.13 ROC curve, Precision/Recall curve and Confusion Matrix for GPT-2 Model

(SardiStance Dataset) . 74

11

5.1 Example of classification, translation and Q&A tasks with T5 model 76

12

Your time is limited, so don’t waste it living
someone else’s life. Don’t be trapped by
dogma - which is living with the results of
other people’s thinking. Don’t let the noise
of others’ opinions drown out your own
inner voice. And most important, have the
courage to follow your heart and intuition.
They somehow already know what you truly
want to become. Everything else is
secondary.
[Steve Jobs, Commencement speech at
Stanford University in 2005]

14

Part I

Background and used
architectures

15

Chapter 1

Introduction

1.1 Natural Language Processing (NLP)
In the field of machine learning and linguistics world, Natural Language Processing is
focused on understanding the interaction with the human language. With the respect
to the formal language, which includes the computer language, the natural one is more
complex due to the intrinsic characteristics of ambiguity of human language, which make
the process of automatic processing of information by a computer, written or spoken in a
certain language, more difficult. The main idea behind NLP is to be able to understand
words with the whole context and not just considering them individually.

Thanks above all to the contribution of increasingly advanced Artificial Intelligence
techniques, NLP finds many application areas both in the written and spoken language
processing sectors. Machine question answering, automatic translation, speech recog-
nition, named entity recognition and virtual assistants such as Amazon Alexa, Google
Assistant or Siri by Apple are just some examples of NLP application tasks.

In this Master Thesis, text classification task will be explored taking into account two
sub-tasks, Multi-Label and Multi-Class (also named Intent Recognition) text classifica-
tion.

There are many interesting applications for text classification such as sentiment anal-
ysis, stance detection and spam detection. The former, which helps the natural language
processing algorithm to determine the sentiment or emotion behind a text, can analyze
language used in social media posts, reviews and responses to extract attitudes and emo-
tions in response to events, daily facts, products and more. Stance Detection is instead a
classification task aiming at determining the position of the author of a given text con-
cerning the topic treated in the text itself and this automatic system can be useful in the
politic and social analysis. The latter is used by companies like Google and Yahoo to scan
and classify emails analyzing the text inside them stopping spam or phishing before they
even enter in our inbox.

17

Introduction

1.2 Pre-Transformer Models: RNN and LSTM

As previously mentioned, in NLP the role of context in a sequence is very important.
Considering a sample, each word can indeed be related more or less from the other words
in the sentence. For this reason, a neural network has to take into account tokens that
have been preceded by the current one.

Therefore, a convolutional neural network (CNN) is not a good solution for data that
come in a sequence or when data in different parts of a sequence can affect each other.
This kind of networks also fail interpreting temporal information and have no memory
about its previous states. In order to deal with sequential data, like sentences, recurrent
neural networks are used. RNNs are ideal for solving problems where the sequence is more
important than individual item themselves.

Let’s suppose, for example, to have a sentence in which the model has to predict the
last word. RNN propagates information from the beginning of the sentence through to
the end, starting with the first word of the sentence, the hidden value at the far left, thus
the first value is computed. Then, it propagates the computed information, considering
the second word in the sequence and the previous hidden state in order to get new values.
So, the computations made at the last step have information from all the words in the
sentence and at the final step the RNN is able to predict the word.

The main advantage of RNNs is that they propagate information within the sequence
and the computations share most of the parameters.
Furthermore, RNNs have an internal memory (state) that allows the previous inputs to
affect the future predictions. Knowing what the previous words were, leads to predict the
next word in a sentence with more accuracy.
At each time-step, RNN takes as input, aside from previous outputs, also the hidden states
of neurons and makes a prediction. Then, it propagates a new hidden state to the next
time-step. So, hidden states propagates information though time and the basic recurrent
units have two inputs at each time, respectively the previous hidden state and the current
input (as shown in Figure 1.1).

However, there are two main disadvantages with RNNs. The first one is that the RNNs
architecture, optimized for recalling the immediate past, has some problems with longer
sequences. The second issue that affects the power of RNNs is the vanishing (gradients
can tend to zero) or exploding (gradients can tend to infinity) gradients that can cause the
model training to fail. This can arise due to the fact that RNNs propagates information
from the beginning of the sequence through to the end. In fact, the gradients are cal-
culated during backpropagation when the weights receive an update that is proportional
to the gradients with respect to the current weights of that time step. The exploding
gradients consists, in a network with many layers, in a large update of weight that cause
the instability of the whole network, situation that can lead to numerical overflow.

18

1.2 – Pre-Transformer Models: RNN and LSTM

There are some different solutions to the vanishing problems such as the use of an iden-
tity matrix with a ReLU activation or it can be possible to perform the gradient clipping
in order to limit the magnitude of the gradients to the specified value chosen. However,
the best known solution to the vanishing gradient problem is obtained with LSTMs.

Long short-term memory (LSTM) is an evolution of RNN which learn when to remem-
ber and when to forget. Unlike RNN, LSTM has a cell state (as shown in Figure 1.2),
representing the memory, and the hidden state, where computations are performed during
training in order to decide what changes to make. An LSTM has three gates: the forget
gate decides what to keep, the input one decides what to add and finally the output gate
decides the next hidden state. Due to the fact that the gates regulate how much data
can get into next time-step and how weights can be optimized, the vanishing problem no
longer persists.

Figure 1.1: RNN Architecture

19

Introduction

Figure 1.2: LSTM Architecture

1.3 Transformer Model

In 2014 Google introduced the traditional sequence-to-sequence model (Seq2Seq) for ma-
chine translation [24]. This model was a revelation at that time. In fact, before that, the
translation was based on a very basic procedure, each typed word was converted into the
target language without taking grammar or the overall sentence structure into account.
Seq2Seq, using deep learning, has therefore revolutionised the translation process by con-
sidering not only the current input during the translation phase but also the neighbouring
context.

Essentially, Seq2Seq maps variable-length sequences to fixed-length memory, turning
one sequence into another sequence of words. This is referred to as sequence transforma-
tion. The model, as illustrated in Figure 1.3, is composed of two components, an encoder
and a decoder, both of them are typically a LSTM cell. The former takes the input se-
quence one step at a time, storing it in its internal hidden states which are then passed
into the decoder network that will use them to predict the sequence. As a consequence,
the encoder transforms each element into a corresponding hidden vector containing the
item and its context, while, the decoder reverses the process, it transforms the vector into
an output element, using the previous output as the input context.

Figure 1.3: Seq2Seq encoder-decoder model overview

20

1.3 – Transformer Model

However, since traditional Seq2Seq model is based on the use of fixed length memory,
in fact encoder hidden state is of a fixed sizes, its big limitation is given by the information
bottleneck, a situation that occurs having long sequences. Furthermore, the sequential
and recurrent nature of models previously explained such as RNNs and LSTMs doesn’t
allow parallel computation, which becomes a problem at longer sequence lengths. Pro-
cessing very long sequences brings also to the loss of information and vanishing gradients
problems.

In order to overcome all these problems with sequential networks, in 2017 a new net-
work architecture was proposed with the paper "Attention Is All You Need" [26]: the
Transformer. The new concept introduced with transformer-based architecture is the
"Attention". This model, not implying any recurrent networks, is entirely based on self-
attention to compute representations of its inputs and output without using aligned se-
quence as RNNs.

The mechanism of self-attention, called also intra-attention [26], relates different posi-
tions of a single sequence for the purpose of calculating a representation of the sequence
itself and it has been applied with great success in many tasks such as textual entailment
and learning task-independent sentence representations.

The goal of attention mechanism is to assign a score to each word in a segment based
on its relevance within the segment itself. There are three components used for calculating
attention weights and all of them are vectors: keys, queries and values. The attention
function can be seen as a mapping of query and set of key-value pairs to an output which
is computed as a weighted sum of the values where the weight of each value is obtained
as output of a function that associate the query with the corresponding key. The atten-
tion mechanism therefore allows the model to focus on the most important parts of the
sequence for each step, thus allowing to take into account also the context of the word in
the sentence. In this sense, attention mechanisms allowed the modelling of dependencies
without considering their distance in the input or output sequences.

Another important characteristic of transformers is that they do not require any se-
quential computational per layer but only one single step is required. Another difference
with respect to RNNs is that with transformers the number of gradient steps that need
to be taken from the last output to the first input is just one. Furthermore, the Trans-
former overcomes the biggest problem of the recurrent networks related to the length of
the sequence by no longer suffering from vanishing gradients problems.

21

Introduction

Figure 1.4: Transformer model architecture [26]

Analyzing in detail the architecture of Transformer, this is represented by an encoder-
decoder stacked structure. As shown in Figure 1.4 both encoder and decoder modules are
composed of a block repeated Nx times (Nx equals to 6). That layer has a multi-head self-
attention mechanism and a position-wise fully connected feed-forward network. Around
each of these, there is a residual connection followed by a normalization layer.

Moreover, the decoder has a third sub-layer that performs multi-head attention over
the output of the encoder stack. Another difference to the encoder stack is that in the de-
coder the multi-head attention mechanism is masked. Since the decoder is auto-regressive
and it generates the sequence word by word, this masking prevents the decoder from
looking at future tokens and from computing attention score for them. As a result, it is
ensured that the prediction for the i-th position can only depend on the known outputs
at position below i.

22

1.3 – Transformer Model

The particular self-attention mechanism introduced with transformer model is based
on a scaled dot-product. Considering as input the matrix Q (representing queries), the
matrix K (representing keys of dimension dk) and the matrix V (representing values of
dimension dv), the attention function gives as output the result of softmax function ap-
plied on the dot product of the query with all keys, divided each by

√
dk.

Attention(Q, K, V) = softmax(QKT

√
dk

)V (1.1)

Therefore, from the dot product multiplication of Q and K, a score matrix is computed
which determines how much importance should be placed on one word compared to the
others. The higher the score, the greater is the focus. Subsequently, the scores are scaled,
dividing them by the square root of the size of the keys and queries, in order to obtain
more stable gradients. The attention weights are obtained applying the softmax of the
scaled scores, which gives the probability values between 0 and 1. Higher softmax scores
therefore indicate the value of the words which the model associates more importance.
Finally, the output vector is obtained by multiplying the attention weights by the matrix
V.

Instead, the multi-head attentions is performed running the attention of the scaled
dot-product several times in parallel. The multi-head model jointly attends to informa-
tion from different representations at different positions over the projected versions of Q,
K and V. Then, the attention function described above is applied in parallel, reaching
different output values which are then concatenated and weighted. The projection oper-
ation of Q, K and V is shown in equation 1.2

MultiHead(Q, K, V) = Concat(head1, ..., headh)W O

where headi = Attention(QW Q
i , KW K

i , V W V
i)

(1.2)

The two most commonly used attention functions analyzed above are shown in Figure
1.5.

23

Introduction

Figure 1.5: Scaled Dot-Product Attention and Multi-Head Attention [26]

Transformers also incorporate a positional encoding stage which encodes each inputs
position in the sequence since the words order and the position is very important for
any language. Since, unlike the recurrent layer, the multi-head attention layer computes
the outputs of each inputs in the sequence independently, allowing the computational
parallelization, there is the need to incorporate the positional encoding stage into the
Transformer in order to model the sequential information for a given sequence.

Therefore, to add information about the position of the tokens within the sequence,
positional encodings are added to the input embedding at the beginning of the encoder
and decoder stacks and this is done using sine and cosine functions of different frequencies.

24

Chapter 2

Transformer-based
architectures

The great success of the Transformer in a wide variety of NLP related tasks has led to the
development of many pre-trained models. In this Master Thesis, three different models
will be explored such as BERT, ELECTRA and GPT-2.

Transfer Learning

Figure 2.1: Transfer learning approaches: Feature-based (left) and Fine-Tuning (right)

Before going into more details with the transformer models, it is important to un-
derstand what is Transfer Learning (TL) in natural language processing. The main idea
behind TL is to use the knowledge of an already trained machine learning model, that
has learned from a task with a lot of available labeled training data, by applying it to a
different task. As a consequence, instead of starting the learning process from scratch,
we solve a related task through learned patterns. There are two approaches to transfer
learning (as shown in Figure 2.1): "feature-based", which consists in extracting features

25

Transformer-based architectures

from a pre-trained model and then feeding them into a new model to get predictions and
"fine-tuning" the pre-trained model keeping learnt weights as initial parameters and then
fine tune them on downstream tasks such as translation, summarization, Q&A and text
classification.
Reduction of training time, predictions improvement, allows you to use smaller datasets.
These are the main advantages to transfer learning.

2.1 Transformer bidirectional encoder models
These models are non auto-regressive (autoencoding), that is, they can incorporate the
context on both side of a word to gain better results. Being autoencoding models, they
are based on the encoder part of the original Transformer architecture and they do not use
mask in order to look at all the tokens in the attention heads. Usually, for pre-training,
the inputs are corrupted by masking some tokens in order to then reconstruct the original
sentence.

2.1.1 BERT
One of the most common and powerful pre-trained unsupervised natural language pro-
cessing model proposed in 2018 by the Google AI Language team is BERT [17].
BERT, which stands for Bidirectional Encoder Representations from Transformers, is a
famous transformer used for learning text representations and it makes use of transfer
learning and pre-training.

BERT is designed to pre-train deep bidirectional representations from unlabeled text
by jointly taking into account both the left and right context in all layers. As a conse-
quence, the pre-trained BERT model can be fine-tuned with just one additional output
layer on a wide range of tasks without any specific task architecture modifications. Dur-
ing the fine-tuning, the model is first initialized with the pre-trained parameters and then
those parameters are fine-tuned using labeled data from the downstream tasks. Minimal
differences exist between the pre-trained architecture and the final downstream one.

For the pre-training procedure, a corpus of 3.3 billion of words has been used by the
researchers. In particular, they used the BookCorpus of about 800M words and 2,500M
words from text passages of English Wikipedia. The BookCorpus is a dataset consisting
of 11,038 unpublished free books from 16 different genres.

BERT overcomes the unidirectionality constraint of previous models as OpenAI GPT
by using a "Masked Language Model" (MLM) pre-training objective enabling the repre-
sentation of both the left and the right context, which allows you to pre-train a deep
bidirectional Transformer. In particular, this technique consists in replacing randomly
15% of the input tokens with [MASK]. Then, the BERT model is pre-trained in order to
predict with cross entropy loss those masked tokens rather than reconstructing the entire
input. As a result, the MLM objective is to predict the original id of the masked word

26

2.1 – Transformer bidirectional encoder models

based only on its context.

However, while MLM allows a bidirectional pre-trained model to be obtained, it has
the disadvantage of having a mismatch between pre-training and fine-tuning, as the token
[MASK] does not appear during the fine-tuning. This problem was solved by not always
replacing the masked words with the [MASK] token but by choosing only 15% of the
tokens and if the i-th token is chosen, it is replaced with the [MASK] token 80% of the
time, with a random token 10% of the time and in the remaining 10% of the time the i-th
token remains unchanged.

BERT makes use also of "Next Sentence Prediction" (NSP) to jointly pre-trains text-
pair representations. With this strategy, during the training process, the model receives
pairs of sentences as input and learns to predict if the second sentence in the pair is the
subsequent sentence in the original document. Only 50% of the time the second sentence
in the pair is actual the next sentence in the original document, while 50% of the time
it is a random sentence from the corpus. The next sentence prediction task is useful in
many downstream tasks such as question answering and natural language inference which
are based on understanding the relationship between two sentences.

So with the BERT model, MLM and NSP are trained together during the unsuper-
vised learning pre-training phase with the goal of minimizing the combined loss of the two
strategies. Instead, fine-tuning is implemented as supervised learning and no masking
or prediction of the next sentence takes place. As a result, fine-tuning is very fast and
requires a relatively small number of samples.

As far as input representation concerned, before entering the model the input is pro-
cessed following a specific procedure of 3 steps:

• A special classification token ([CLS]) is inserted at the beginning of the first sentence.

• In order to distinguish the sentence pairs that are packed together into a single
sequence, it is used a special token separation ([SEP]) and it is also added to each
token a sentence embedding indicating whether it belong to sentence A or sentence
B.

• A positional embedding is added to each token to indicate its position in the sequence.

So, at the end, as shown in Figure 2.2, given a token, its input representation is com-
posed by summing the corresponding token, the sentence and the position embeddings.

27

Transformer-based architectures

Figure 2.2: BERT input representation

28

2.1 – Transformer bidirectional encoder models

Model Architecture

BERT’s model architecture is a Transformer encoder stack based on the original Trans-
former implementation described in Transformer Model section.

Figure 2.3: Model sizes for BERT

As showed in Figure 2.3, denoting the Transformer blocks, i.e. the number of layers
as L, the hidden size as H and the number of self-attention heads as A, two BERT model
sizes have been proposed.

Fine-Tuning BERT and experimental results

Applying BERT to a specific task is relatively straightforward. In fact, the model can be
used for a wide variety of language tasks just plugging in the task-specific inputs and out-
puts into BERT and then fine-tune all the parameters [17]. For example, for classification
tasks such as sentiment analysis, a layer on top of the transformer output is added for the
[CLS] token like is done for Next Sentence classification.
Moreover, compared to pre-training, the fine-tuning procedure is relativity computation-
ally inexpensive, in fact, the results obtained can be replicated, starting from the pre-
trained model, in few hours using a GPU.

Fine-tuning BERT, the researcher team has achieved state-of-the-art results on dif-
ferent natural language tasks, in particular 11 NLP tasks are taken into account for the
experiments. The average of results obtained on the GLUE1 benchmark, a collection of

1General Language Understanding Evaluation

29

Transformer-based architectures

different natural language understanding tasks, are shown in the following Table 2.1.

The General Language Understanding Evaluation (GLUE) benchmark contains a va-
riety of tasks covering textual entailment (RTE and MNLI), question-answer entailment
(QNLI), paraphrase (MRPC), question paraphrase (QQP), textual similarity (STS), sen-
timent (SST) and linguistic acceptavility (CoLA).

System Average GLUE score
Pre-OpenAI SOTA 74.0 -

BiLSTM+ELMo+Attn 75.1 -
OpenAI GPT 75.1 72.5

BERTBASE 79.6 78.3
BERTLARGE 82.1 80.5

Table 2.1: GLUE Test results for BERT models. The "GLUE score" is taken from the
evaluation server [16]. The "Average" score is different than the official GLUE score, since
the BERT researchers exclude the WNLI set [17].

As shown in [17] the official paper, both BERTBASE and BERTLARGE outperforms pre-
vious systems, obtaining 4.5% and 7.0% respective average accuracy improvement over
the prior state of the art (OpenAI GPT). These results were obtained by using a batch
size of 32 and fine-tuning for 3 epochs over the data for all GLUE tasks. Specifically, for
each task, they selected the best fine-tuning learning rate.

Different experiments were also done on the SQuAD v1.1 and v2.02, a collection of
100K crowd-sourced question/answer pairs. The results, taken from the paper [17], are
shown in Table 2.2. We can observe that BERT pushes SQuAD 1.1 question answering
Test F1 score to 93.2 and SQuAD v2.0 Test F1 score to 83.1.

System SQuAD 1.1 Test F1 SQuAD 2.0 Test F1
BERTBASE - -

BERTLARGE 93.2 83.1

Table 2.2: SQuAD v1.1 and v2.0 Test results for BERT models. [17].

2Stanford Question Answering Dataset. SQuAD v2.0 task extends the first version by allowing for
the possibility that no short answer exists in the provided paragraph

30

2.1 – Transformer bidirectional encoder models

2.1.2 ELECTRA

Even if the BERT model achieves good results in different supervised learning tasks, the
(MLM) objective that permits to "see" the text to both the left and right of the token
during the prediction allowing the bidirectionality of the model itself, it has a limitation.
In fact, the MLM disadvantage consists in predicting only a small subset, 15% of masked
tokens, reducing the amount learned from each sentence. Instead of using MLM objective,
with ELECTRA model [13] a new efficient pre-training task called "Replaced Token De-
tection" (RTD) was proposed and it looks to be more efficient as it considers every input
token, rather than just a small number of masked tokens, and produces better results.

ELECTRA stands for Efficiently Learning an Encoder that Classifies Token Replace-
ment Accurately [13]. Instead of masking the input, the RTD approach corrupts it by
replacing some input token with plausible alternatives sampled from a small generator
network. Moreover, in place of training a model that predicts original identities of the
masked tokens as MLM does, a discriminative model is trained which predicts whatever
each token in the corrupted input was replaced by a generator sample or not. So, the key
benefit of this kind of discriminative task is that the model learns from all input tokens,
making the computation more efficient.

As a consequence, given the same model size, data and compute, the contextual rep-
resentations learned by this kind of approach outperform the ones learned by BERT [13].

Model Architecture

ELECTRA is a bidirectional encoder model made of two neural networks, a generator G
and a discriminator D as showed in Figure 2.4. The generator can be any model that
produces an output distribution over tokens, but usually it is used a MLM that is jointly
trained with the discriminator. So, the G is trained to perform MLM and then learns to
predict the original identities of the masked tokens. While, the D is trained to distinguish
tokens in the data from tokens that have been replaced by generator samples [13].

Figure 2.4: RTD in ELECTRA [13]

31

Transformer-based architectures

Although this training setup is similar to a Generative Adversarial Network (GAN),
there are some differences. In fact, the generator is trained with the maximum likelihood
rather than adversarially due to the difficulty of applying GANs to text. Moreover, if the
generator generates the correct token, that token is considered "real" instead of "fake".

Fine-Tuning ELECTRA and experimental results

After pre-training, the generator is dropped and the discriminator (the ELECTRA model)
is fine-tuned on downstream tasks. For experiments, as shown in Figure 2.5, three
model sizes have been proposed and they are currently English-only: ELECTRASMALL,
ELECTRABASE and ELECTRALARGE.

Figure 2.5: Model sizes for ELECTRA

The pre-training is done on the same data as BERT with the difference for large model
which is pre-trained on a bigger dataset of about 33B tokens. For fine-tuning on GLUE,
a simple linear classifier is added on top of ELECTRA.

ELECTRA outperforms the BERT model by 9 points on GLUE average score. Results
obtained on GLUE benchmark are shown in Table 2.3.

System Average GLUE score
BERTLARGE 79.8 80.5

ELECTRASMALL 79.7 77.4
ELECTRABASE 85.7 82.7

ELECTRALARGE 88.6 85.2

Table 2.3: GLUE Test results for ELECTRA models. The "Average" score excludes QNLI.
(Sources [13] and [14]).

32

2.1 – Transformer bidirectional encoder models

ELECTRA scores also better than MLM based methods on SQuAD. The model gener-
ally performs better at SQuAD 2.0 than 1.1 due to the fact that with RTD, distinguishing
real tokens from plausible fakes, it can distinguish better answerable questions from fake
unanswerable ones [13]. This model achieves a new state-of-the-art for a single model on
the SQuAD 2.0 Q&A dataset. Results are shown in Table 2.4.

Another difference with respect to the BERT model in terms of performance concerns
the loss calculation. In fact, loss in the discriminator model is defined over all input to-
kens instead of only masked tokens. The difference in terms of obtained score on GLUE
benchmark was highlighted by the authors of the paper [13] who compared the original
ELECTRA model with an ELECTRA 15% model which only calculates the discrimina-
tor loss over the masked tokens. It is shown that the original ELECTRA approach gets
a 85.0 score while ELECTRA 15% gets 82.1, however better than BERT’s score 82.2
(considering for all the model the base version). These results leads to affirm that ELEC-
TRA’s improvement can be due to learning from all tokens and to the reduction of the
pre-train/fine-tune mismatch of MLM in BERT.

System SQuAD 1.1 Dev SQuAD 2.0 Dev SQuAD 2.0 Test
BERTBASE 88.5 - -

BERTLARGE 90.9 81.8 83.1
ELECTRABASE 80.8 83.3 -

ELECTRALARGE 94.9 90.6 91.4

Table 2.4: SQuAD v1.1 and v2.0 Dev and Test F1 score results for ELECTRA models.
[13].

33

Transformer-based architectures

2.2 Transformer unidirectional decoder models
Unlike the previously analyzed encoder-based models, the Transformer unidirectional de-
coder models are auto-regressive. Typically, these models are pre-trained on the classic
language modeling task in which the key is to predict the next token having read all the
previous ones. They are based on the decoder part of the original Transformer architec-
ture and they use an attention mask on top of the full sentence in order to look only what
was before in the attention heads.

2.2.1 GPT-2
Successor of GPT, OpenAI Generative Pre-Trained 2 (GPT-2) is a casual unidirectional
transformer-based language model with 1.5B parameters pre-trained on a very large cor-
pus of 40GB of Internet text called WebText [20]. The WebText dataset contains the text
subset of 45 million links taken from Reddit, a social media platform [21]. Particularly, all
Wikipedia documents were removed from this dataset in order to avoid overlap of training
data with test evaluation task, as these are common data source for other datasets.
Proposed in 2019 in Language Models are Unsupervised Multitask Learners [21], its main
purpose is to predict the next word, given all of the previous words within some text. With
respect to his predecessor, GPT-2 has more than 10x the parameters and it is trained on
more than 10X the amount of data.

GPT-2 is able to automatically generate texts with a credible, consistent and very
similar style to that processed by humans. For this reason, that model finds its maximum
use in the Natural Language Generation (NLG) field for the texts generations rather than
for text classification areas as it will also highlight in the experiments carried out later in
this Master Thesis.

Model Architecture

Unlike BERT and ELECTRA, GPT-2’s model architecture is a Transformer decoder stack.
Another difference with the previously explained models is that GPT-2 outputs one token
at time, then that token is added to the sequence of inputs which becomes the input to
the model in its next step. This is the functional mechanism of auto-regression models.
GPT-2 has an architecture like that of the first GPT version but with a normalization
layer to the input of each sub-block and after the final self-attention layer.

Being a decoder-only blocks model, in GPT-2 there is also a different self-attention
mechanism with respect to BERT, in fact, the model doesn’t change the word to [MASK]
like BERT but it uses a masked self-attention preventing a position to peak at tokens to
its right. So, this kind of self-attention mechanism blocks information from tokens that
are to the right of the position being calculated. Each decoder block is therefore composed
by masked self-attention layer and by a feed forward layer.

34

2.2 – Transformer unidirectional decoder models

Four different size variants of OpenAI GPT-2 has been developed depending on the
number of transformer decoder blocks staked up (as shown in Figure 2.6).

Figure 2.6: Model sizes for GPT-2

Fine-Tuning GPT-2 and experimental results

Unlike the BERT model that learns the sentence separator [SEP], the classifier token [CLS]
and sentence A/B embeddings during the pre-training, GPT-2 uses the [SEP] and [CLS]
tokens only during the fine-tuning phase. Another difference with respect to the BERT
model is that, GPT-2 uses the same learning rate of 5e-5 for all fine-tuning experiments,
while BERT chooses a task-specific fine-tuning learning rate which obtains the best result
on the development set.

GPT-2 basically combines the unsupervised pre-training and the supervised fine-tuning
approaches in a multi-task manner. Like any other auto-regressive model, it maximizes
the joint probability but taking into account the multi-task learning. As a consequence,
since the system should be able to perform many different tasks, the model objective is to
predict the output with probability p(output|inputs, task) given the input conditionally
on a certain task to be performed in addition to the input data.

In order to train the model for different tasks such as translation, summarization and
Q&A, GPT-2 proposes to take data in a particular formats and then just training the
model for a text completion objective. Moreover, since the model is not at all trained
explicitly for any of the previously mentioned tasks, OpenAI researchers associate the
GPT-2 model to a "zero-shot" task transfer [21], as a consequence, the model is only eval-
uated on a variety of domain-specific language modeling tasks as a final test [20].

35

Transformer-based architectures

As far as input representation concerned, GPT-2 uses the Byte Pair Encoding (BPE),
a way of splitting up words to apply tokenization that is a compromise between character
and word level language modeling. Using the byte sequence representation, the model is
able to assign a probability to any Unicode string, allowing the model to be evaluated on
any dataset regardless of any pre-processing steps, tokenization or vocabulary size.

As for experimental results, GPT-2 achieves state of the art results on 7 out 8 language
modeling datasets in a zero-shot setting [21]. Examples of such datasets are the LAM-
BADA dataset, which task is to predict the final word of sentence which require at least
50 tokens of context for a human to successfully predict and the Children’s Book Test
(CBT) dataset, created to examine the performance of language modelings on different
categories of words such as named entities, nouns, verbs and prepositions. As reported
in Table 2.5, on the first dataset mentioned above GPT-2 improves by 4% the accuracy
and, on the second one, it achieves new state of the art results of 93.3% on common nouns
(CBT-CN) and 89.1% on named entities (CBT-NE).

System LAMBADA CBT-CN CBT-NE
(ACC) (ACC) (ACC)

SOTA 59.23 85.7 82.3
GPT-2SMALL 45.99 87.65 83.4

GPT-2MEDIUM 55.48 92.35 87.1
GPT-2LARGE 60.12 93.45 88.0

GPT-2EXTRA-LARGE 63.24 93.30 89.05

Table 2.5: GPT-2 zero-shot results on many datasets.[21]

36

Chapter 3

Environment and libraries
used

In this section all the technologies that have been employed during the comparative analy-
sis of different transformer models fine-tuned for text classification task will be described.
In particular, all the libraries used are available as Python packages.

3.1 Pytorch and HuggingFace
The pre-trained models used such as BERT, ELECTRA and GPT-2 are taken from the
Transformers library [10] made available by the Hugging Face Hub [25]. Transformers
library provides general-purpose architectures for NLU and NLG with different pre-trained
models in many languages. This API is fully integrated with one of the most popular deep
learning libraries like the Pytorch framework [8] which has been chosen for the development
of the project, indispensable for working with the Tensor class (torch.Tensor) on a
CUDA-capable Nvidia GPU.

Figure 3.1: Pytorch logo [11]

Figure 3.2: Hugging Face logo [25]

37

Environment and libraries used

3.2 Kaggle and Google Colab
In order to take advantage of the CUDA cores that are specialized cores, Google Colab-
oratory [4] and Kaggle [7] have been used for accelerating the deep learning operations
with free GPU. The former provides a free NVIDIA TESLA K80 GPU, while the lat-
ter provides free access to NVIDIA TESLA P100 GPU (named Kaggle GPU in the next
paragraphs).

38

Part II

Experimental Results

39

Chapter 4

Models application on NLP
text classification tasks

As far as text classification concerned, in the following analyses two problems will be
considered: Multi-Label and Multi-Class text classification.

4.1 Multi-Label Text Classification
A multi-label classification is characterized by the fact that each text can be simultane-
ously and independently assigned to multiple labels or classes. Therefore, in a multi-label
classification problem, the dataset is composed of instances and each of them can be as-
signed with multiple categories that are represented as a set of target labels and the task
is to predict the label set.

4.1.1 Dataset (English): GoEmotions Dataset
For fine-tuning the pre-trained models on the Multi-Label classification task, it has been
chosen the GoEmotions dataset as an English corpus developed at Google Research [6].
It is the largest human annotated English dataset of 58k selected comments extracted
from Reddit, labeled for 27 emotion categories or Neutral [15]. In particular, the emotion
categories are: admiration, amusement, anger, annoyance, approval, caring, confusion,
curiosity, desire, disappointment, disapproval, disgust, embarrassment, excitement, fear,
gratitude, grief, joy, love, nervousness, optimism, pride, realization, relief, remorse, sad-
ness, surprise.

For evaluating the transformer-based models these emotions are mapped into Ekman’s
taxonomy plus Neutral. The Ekman’s taxonomy includes the following categories: anger,
disgust, fear, joy, sadness and surprise. As a consequence, the models will be trained
and fine-tuned to predict for each comment as a maximum a number of labels equals to
NUM_LABELS = 7

41

Models application on NLP text classification tasks

The dataset is split into training, test and validation set. Their size is respectively
43.410, 5.427 and 5.426 comments. The distribution of labels in each split set is shown in
Table 4.1. We can therefore observe a greater number of comments labeled as "Joy" and
"Neutral" in all three sets.

Dataset Anger Disgust Fear Joy Sadness Surprise Neutral
Train 5579 793 726 17410 3263 5367 14219
Dev 717 97 105 2219 390 624 1766
Test 726 123 98 2104 379 677 1787

Table 4.1: GoEmotions labels distributions Train/Dev/Test datasets

The Google researchers present a strong baseline for emotion prediction model for
GoEmotions. They use the BERT model in the experiments adding a dense output layer
on top of the pre-trained model for fine-tuning purposes with a sigmoid cross entropy loss
function for the multi-label classification task. As hyperparameters, they use a batch size
of 16, a learning rate of 5e-5 for training and a dropout probability of 0.7. They also find
that training the model for 4 epochs is necessary for learning data, while more epochs lead
to overfitting . Their best performance achieves an average F1-score of 0.64 as shown in
Table 4.2. These results will be subsequently compared with the results obtained during
this Thesis fine-tuning different models.

Ekman Emotion Precision Recall F1
anger 0.50 0.65 0.57

disgust 0.52 0.53 0.53
fear 0.61 0.76 0.68
joy 0.77 0.88 0.82

neutral 0.66 0.67 0.66
sadness 0.56 0.62 0.59
surprise 0.53 0.70 0.61

macro-average 0.59 0.69 0.64
std 0.10 0.11 0.10

Table 4.2: GoEmotions baseline results using Ekman’s taxonomy on test set [15]

42

4.1 – Multi-Label Text Classification

4.1.2 Dataset (Italian): AMI Dataset

In order to evaluate the performance of models such as BERT, ELECTRA and GPT-2,
that have been trained on an English Corpus, an Italian dataset was also chosen for the
analysis carried out. For this purpose, the dataset used for the Automatic Misogyny Iden-
tification (AMI) shared task has been chosen. This task was proposed at the Evalita 1

2020 evaluation campaign and it is aimed at automatically identifying misogynous content
in Italian Twitter [3].

Going into more details, the model has to recognize if a text is misogynous or not, and
in case of misogyny, if it expresses an aggressive attitude. As a consequence, the number
of labels that the models will be able to predict is equal to NUM_LABELS = 2.

The dataset is taken from the European Language Grid catalogue [2]. It consists in
a training set of 5.000 tweets and in a test set of 1.000 tweets. In particular, in my
experiments, I will consider 20% of training set as validation set. The distribution of
labels of the three sets is shown in Table 4.3.

Dataset Misogynous Aggressiveness
Train 1880 1443
Dev 478 381
Test 500 176

Table 4.3: AMI dataset labels distribution Train/Dev/Test datasets

As the metric evaluation, each label to be predicted (i.e. "Misogyny" and "Aggres-
siveness") has been evaluated independently on the other using a Macro F1-Score. In
the Figure 4.1, all the results obtained in the competition and also the AMI baseline are
shown. The score is based on the Average Macro F1-score, computed as follows:

Average_F1_score = F1(Misogyny) + F1(Aggressiveness)
2

1EVALITA is a periodic evaluation campaign of NLP and speech tools for the Italian Language
http://www.evalita.it/

43

http://www.evalita.it/

Models application on NLP text classification tasks

Figure 4.1: Results with baseline for AMI task [18]

44

4.1 – Multi-Label Text Classification

4.1.3 Fine-Tuning Models
The purpose is to build a model that will be able to determine different types of emotions
in a given text snippet for the first dataset (GoEmotions) and for the second one (AMI) to
determine if a tweet is misogynous and aggressive or not. Different models such as BERT
English/Multilingual, ELECTRA and GPT-2 will be considered. These models, described
in details in Table 4.4, are downloaded from the HuggingFace Transformers library [10].

Architecture Model id Details of the model

BERT

bert-base-uncased

bert-base-multilingual-cased

12-layer, 768-hidden,
12-heads, 110M parameters.

Trained on lower-cased English text.

12-layer, 768-hidden,
12-heads, 179M parameters.

Trained on cased text in the top 104 languages
with the largest Wikipedias.

GPT-2 gpt2
12-layer, 768-hidden,

12-heads, 117M parameters.
OpenAI GPT-2 English Model.

ELECTRA google/electra-base-discriminator
12-layer, 768-hidden,

12-heads, 110M parameters.
Trained on lower-cased English text.

Table 4.4: Pre-trained models from HuggingFace library

Data preparation and Tokenisation

The data that will be fed to the model are represented, after some pre-processing, by
a dataframe in the following format: text and labels (as one-hot encoding vector). An
example is shown in Figure 4.5 for both datasets used.

The data will be represented by class CustomDataset which is defined to accept the
tokenizer, the dataframe and max_length as input and then it generates tokenized out-
put and tags that are used by the transformer models for training. The tokenizer perform
tokenization over the text column of the dataframe, which involves breaking up of input
text into its individual words, and generates the necessary outputs, namely: input_ids,
attention_mask, token_type_ids. labels is instead the list of classes labelled as 0 or 1
in the dataframe. In order to perform tokenization, the tokenizer included with the trans-
former models will be downloaded such as BertTokenizer for BERT, ElectraTokenizer
for ELECTRA and GPT2Tokenizer for GPT-2. The CustomDataset class is used to cre-
ate 3 datasets: Training, Validation and Test dataset. The former is used to fine-tune the
model, whereas the latter two are used to evaluate the performance of the model.

The PyTorch Dataloader class is used to create the training, validation and testing
dataloader that load data to the neural network in a defined manner. This is needed

45

Models application on NLP text classification tasks

Dataset Data Format
text labels

GoEmotions

...
to make her feel threatened
Enjoy the ride!
I’m really sorry about your situation
...

...
[0,0,1,0,0,0,0]
[0,0,0,1,0,0,0]
[0,0,0,0,1,0,0]
...

AMI

...
No non mi sento meglio, ho solo tanta tristezza,
perché ironizzare anche sullo stupro CHE DIAMINE
È UNA COSA SERIA è assurdo!
...

...

[0,0]

...

Table 4.5: Data examples for GoEmotions and AMI datasets

because all the data from the dataset cannot be loaded to the memory at once, hence the
amount of data loaded to the memory and then passed to the neural network needs to be
controlled through some parameters such as the batch_size and max_len.

Configuration section and Hyper-parameters

In order to fine-tune the models, some key variables have been defined which represent the
configurations and hyperparameters. MAX_LEN represents the maximum length used in the
tokenization, TRAIN_BATCH_SIZE and VALID_BATCH_SIZE are the size of the batches used
in the dataloaders, EPOCHS is the number of training epochs defined for fine-tuning the
models on the specific NLP task, hence it defines how many times the complete data will
be passed through the network. LEARNING_RATE, EPS and WEIGHT_DECAY are used in the
AdamW optimizer and WARMUP_FRACTION is used to calculate the warmup steps for the
scheduler in order to update the model parameters and learning rate during the training.

Model Architecture

In order to train the model on the chosen datasets, we consider a modified pre-trained
model (for Bert, Electra and GPT-2) in order to give outputs for classification, that is re-
spectively BertForSequenceClassification for Bert model, ElectraForSequenceClassification
for Electra model and GPT2ForSequenceClassification for GPT-2. Both of these mod-
els derive from the specific base model with a sequence classification head on top, hence
a linear layer on top of the pooled output.

As a way to fine-tune the network, during the training operation, when the model is put
in train mode (model.train()), the dataloader passes the training dataset to the model
in batches, then subsequent output from the model and the actual target are compared
to calculate the loss which is used to optimize the weights of the neurons in the network
during backpropagation. On the other hand, during the validation stage, in which we pass
the validation dataset to the model, the weights of the model are not updated, hence only

46

4.1 – Multi-Label Text Classification

the final output is compared with the expected one in order to calculate the accuracy of
the model.

4.1.4 Loss Function and Optimizer
In the scenario of a multi-label classification problem, the usage of Binary Cross-Entropy
with logits (BCEWithLogitsLoss from the PyTorch package torch.nn [1]) is preferred
as the loss function, which allows the model to independently assign the probabilities
to the labels optimizing the model. This function, which combines a Sigmoid layer and
the BCELoss in one single class, takes the output of the dense layer with no activation
as input and applies the Sigmoid function to improve numerical stability. The Sigmoid
mathematical function, reported below 4.1, squishes any real number into a range between
0 and 1 in order to treat model predictions like probabilities.

S(x) = 1
1 + e−x

(4.1)

The BCELoss is defined considering the binary cross entropy that is a measure of the
difference between two probability distribution p and q. In particular, the BCE function
is the negative average of the log of corrected predicted probabilities as defined in 4.2
and it is strictly related to the entropy concept which is a measure of the uncertainty
associated with a given distribution. Considering C as the number of classes, the true
probability pc is the true label, whereas the given distribution qc is the predicted value of
the current model.

H(p, q) = −
C∑

c=1
pc · log(qc) (4.2)

During the training, the classifier uses each of the N samples in its training set to compute
the cross-entropy loss, as a consequence, since the probability of each sample is 1/N , the
loss function is given by the following equation 4.3.

J(p, q) = 1
N

N∑
N=1

H(p, q) (4.3)

During the training phase, in order to update the model parameters, the AdamW opti-
mizer has been used. The AdamW, proposed in the paper [19], is an adaptive learning
rate optimization algorithm that modifies the typical implementation of weight decay in
Adam, by decoupling weight decay from the gradient update. To overcomes the problem
that adaptive gradient methods do not generalise as well as the stochastic gradient descent
(SGD) with momentum when tested on a different set of deep learning tasks, the AdamW
optimizer instead of using the classic L2 normalization, it simply uses a weight decay fix.
Experimentally, it has been shown that AdamW yields better training loss and that the
models generalize much better than models trained with Adam allowing the new version
to compete with SGD with momentum.

47

Models application on NLP text classification tasks

4.1.5 Evaluation Metrics and Results
After the completion of each training epoch in which the model makes predictions on the
training dataset fed to it in batches, and backpropagtes the prediction error to adjust
the model’s parameter, the model is then evaluated measuring the performance on the
validation ans test sets and for this reason it is put in evaluation mode (model.eval()).
During the forward pass, the model, in addition to calculating the loss, gets also the "log-
its" output. A logit, called also a score, is a raw unscaled value associated with a label,
before applying an activation function like the sigmoid or the softmax function. Since we
are considering now the multi-label classification problem, the sigmoid function will be
used as the activation function to get probabilities from predictions output by the model.

In order to evaluate the fine-tuned models and to get a measure of the models’
performance, the accuracy and F1-score are computed. The accuracy is the propor-
tion of correctly classified samples out of all the samples and it is calculated with the
accuracy_score function from the sklearn.metrics module of the scikit-learn API.
Another measure of the model’s accuracy is the F1-score which is a way of combining the
precision and recall of the model, and it is defined as the harmonic mean of the model’s
precision and recall. In particular, the precision (P), called also the Positive Predicted
Value (PPV), is the ratio of relevant instances among the retrieved ones. So, it is a
measure of the accuracy of the positive prediction and it is defined as

P = TP

(TP + FP) (4.4)

where TP is the number of true positives and FP the number of false positives. Whereas,
the recall (R), called also sensitivity or True Positive Rate (TPR), is the ratio of positive
instances correctly detected by the classifier and it is defined as

R = TP

(TP + FN) (4.5)

where FN is the number of false negatives.
Given the P and R, the F1-score is defined as

F1 = 2 · P ·R
(P + R) = 2TP

(2TP + FP + FN) (4.6)

and it reaches its best value at 1 and worst score at 0. All of these metrics have been ob-
tained through the classification_report function from the sklearn.metrics module.
In addition to calculating the metrics mentioned for each class, this function also com-
putes the "micro" and "macro" values. The macro-averaged F1-score, or the Macro-F1 for
short, is computed as an arithmetic mean of the per-class F1-scores and this does not take
label imbalance into account, taking all classes as equally important. While, the Micro-F1
considers all the samples together, computing the metrics globally by counting the total

48

4.1 – Multi-Label Text Classification

TP, FN and FP.

Each pre-trained model considered has been trained for a different number of epochs
and subsequently evaluated based on the previously discussed metrics.

Results on GoEmotions Dataset

Let’s consider first the GoEmotions Dataset. For each model analyzed, it was selected
as the number of epochs the one with which the best performances were obtained. In
particular, 2 epochs were chosen for the English Bert model, 3 epochs for the Multilingual
Bert and the Electra models and finally 5 epochs for the GPT-2 model. It has been
shown that training for more epochs results in overfitting, hence the training data are
modelled too well that the model can not generalise correctly. These values together with
the remaining selected hyperparameters are shown in Table 4.6.

Hyperparameters Bert Bert
Multilingual Electra GPT-2

Epochs 2 3 3 5
Batch Size 16 16 16 16
Learning Rate 2e-5 2e-5 2e-5 2e-5
Adam eps 1e-6 1e-6 1e-6 1e-6
Weight Decay 0.01 0.01 0.01 0.01
Warmup fraction 0.1 0.1 0.1 0.1
Machine Kaggle GPU Kaggle GPU Kaggle GPU Kaggle GPU
Training and Validation Time 0:23:24 0:35:13 0:35:02 1:01:35

Table 4.6: Hyperparameters selected for the analyzed models with GoEmotions Dataset

The performances obtained on the dev and test set are shown in Table 4.7 and 4.8
respectively. Looking at the results achieved, it can be seen that all the models obtain
a good accuracy of correctly classifying the input text. Table 4.8 shows that the trans-
formers pre-trained on large corpus generally achieve a good F1-score in the classification
task. The exception is GPT-2, which scores under BERT and ELECTRA. GPT-2 is the
model producing the lowest F1-score, which demonstrates that the greatest potential of
this model is evident in the text generation task rather than in the classification. In fact,
its main ability is to generate coherent and good text from minimal prompts.

Moreover, it can also be seen that, as expected, the Electra model slightly outperforms
the Bert model. This is partly due, as illustrated in the previous chapters, to the different
type of objectives with which the models in question were pre-trained, i.e. masked lan-
guage model (MLM) for Bert and replaced token detection (RTD) for the Electra model.

49

Models application on NLP text classification tasks

Model Accuracy (%) Micro-F1 (%) Macro-F1 (%)
Bert 62.67 70.23 63.01
Bert-Multilingual 61.77 69.41 62.40
Electra 62.49 70.45 63.26
GPT-2 59.10 67.76 59.25

Table 4.7: Results on dev set using Ekman’s taxonomy (GoEmotions Dataset)

Model Accuracy (%) Micro-F1 (%) Macro-F1 (%)
Bert 62.07 70.01 62.30
Bert-Multilingual 61.54 69.30 63.09
Electra 62.31 70.08 63.33
GPT-2 57.20 66.75 59.02

Table 4.8: Results on test set using Ekman’s taxonomy (GoEmotions Dataset)

Going into more details, it is possible to observe from the classification_report
(Table 4.13) how the measures achieved with the various models on the test set (i.e. 0.62
for Bert-English, 0.63 for Bert-Multilingual and for Electra, 0.59 for GPT-2) are in line
with the baseline obtained by the GoEmotions team [15] whose macro-average F1-score
for the Ekman’s taxonomy is 0.64 (as illustrated in Table 4.2 in Section Dataset (English):
GoEmotions Dataset).
Furthermore, the models obtain the best performance on higher frequency emotions such
as the "joy" emotion with a F1-score always greater than 0.80.
Instead, all the models have a low recall value for the "disgust" emotion which means that
they are able to correctly classify only 30%-40% of comments labeled as disgusting.

Let’s consider now the iterative process of the training model. As mentioned previously,
in each epoch the model makes a guess about the output, calculating the error in its guess
which takes the name of loss value. As a consequence, the main objective of the loss
function is to measure the degree of dissimilarity of obtained results with respect to the
target value by minimizing this loss value during the training phase. As can be seen from
the plots in the Figure 4.2, the expected behaviours have been obtained as results. In fact,
the training and validation loss decreases with each epoch, while the validation accuracy
increases with each epochs. The loss values obtained during the different fine-tuning
phases for the analyzed model are also reported in the Table 4.9.

50

4.1 – Multi-Label Text Classification

Model Training Loss Validation Loss Test Loss
Bert 0.20 0.21 0.21
Bert-Multilingual 0.18 0.22 0.22
Electra 0.17 0.22 0.22
GPT-2 0.21 0.22 0.23

Table 4.9: Loss function values (GoEmotions Dataset)

(a) Bert-English Model (2 Epochs) (b) Bert-Multilingual Model (3 Epochs)

(c) Electra Model (3 Epochs) (d) GPT-2 Model (5 Epochs)

Figure 4.2: Loss and accuracy plots for the models across analyzed epochs

51

Models application on NLP text classification tasks

Label Precision Recall F1-score Support
anger 0.60 0.52 0.56 726

disgust 0.64 0.34 0.44 123
fear 0.69 0.62 0.65 98
joy 0.83 0.85 0.84 2104

sadness 0.68 0.54 0.60 379
surprise 0.62 0.61 0.62 677
neutral 0.74 0.58 0.65 1787

macro-average 0.69 0.58 0.62 5894

Table 4.10: Results on Test set using Bert-English Model (GoEmotions Dataset)

Label Precision Recall F1-score Support
anger 0.59 0.49 0.54 726

disgust 0.66 0.42 0.51 123
fear 0.71 0.62 0.66 98
joy 0.83 0.83 0.83 2104

sadness 0.68 0.56 0.61 379
surprise 0.62 0.61 0.62 677
neutral 0.70 0.60 0.64 1787

macro-average 0.68 0.59 0.63 5894

Table 4.11: Results on Test set using Bert-Multilingual Model (GoEmotions Dataset)

Label Precision Recall F1-score Support
anger 0.59 0.55 0.57 726

disgust 0.56 0.36 0.44 123
fear 0.69 0.72 0.71 98
joy 0.81 0.86 0.84 2104

sadness 0.68 0.57 0.62 379
surprise 0.60 0.62 0.61 677
neutral 0.74 0.58 0.65 1787

macro-average 0.67 0.61 0.63 5894

Table 4.12: Results on Test set using Electra Model (GoEmotions Dataset)

Label Precision Recall F1-score Support
anger 0.57 0.45 0.51 726

disgust 0.54 0.36 0.43 123
fear 0.63 0.56 0.59 98
joy 0.81 0.82 0.81 2104

sadness 0.66 0.54 0.59 379
surprise 0.62 0.56 0.59 677
neutral 0.73 0.51 0.60 1787

macro-average 0.65 0.54 0.59 5894

Table 4.13: Results on Test set using GPT-2 Model (GoEmotions Dataset)

52

4.1 – Multi-Label Text Classification

Results on AMI Dataset

Let’s consider now the AMI Dataset. For each model analyzed, in Table 4.14 are reported
the hyperparameters chosen in order to achieve the best performances. Unlike the previ-
ous dataset taken into account (GoEmotions), this dataset on the Automatic Misogyny
Identification is small size, therefore, based on the available resources, it was possible to
train the model for a greater number of epochs in order to achieve better performances.

Hyperparameters Bert Bert
Multilingual Electra GPT-2

Epochs 8 8 8 3
Batch Size 16 16 16 16
Learning Rate 2e-5 2e-5 2e-5 2e-5
Adam eps 1e-6 1e-6 1e-6 1e-6
Weight Decay 0.01 0.01 0.01 0.01
Warmup fraction 0.1 0.1 0.1 0.1
Machine Kaggle GPU Kaggle GPU Kaggle GPU Kaggle GPU
Training and Validation Time 0:08:53 0:09:05 0:08:55 0:03:33

Table 4.14: Hyperparameters selected for the analyzed models with AMI Dataset

The performances obtained on the dev and test set are shown in Table 4.15 and 4.16
respectively. Evaluating the results obtained, it is clear how all the models reach a high
accuracy in predicting the labels of the tweets provided in input to each model. In
particular, as expected, Bert’s model trained on a multilingual corpus (Bert-Multilingual)
including the Italian language, obtains a macro-F1 score close to 100% on the dev set.
Moreover, considering the test set, the Bert-Multilingual model improves the macro-F1
score of more or less 7% points with respect to the Bert-English model. This result can
be explained by the fact that the multilingual model was pre-trained on a larger corpus
of data containing also the Italian language data. Consequently, it is able to classify a
larger number of Italian terms or with higher accuracy then a model that has only been
pre-trained on an English corpus.

Model Accuracy (%) Micro-F1 (%) Macro-F1 (%)
Bert 96.30 97.56 97.42
Bert-Multilingual 98.50 99.07 99.02
Electra 94.00 95.97 95.81
GPT-2 70.60 74.32 73.72

Table 4.15: Results on dev set (AMI Dataset)

53

Models application on NLP text classification tasks

Model Accuracy (%) Micro-F1 (%) Macro-F1 (%)
Bert 44.10 61.54 57.41
Bert-Multilingual 55.70 68.63 64.05
Electra 53.50 66.21 62.30
GPT-2 50.00 60.87 56.92

Table 4.16: Results on test set (AMI Dataset)

Comparing the values obtained (Table 4.21) with those present in the paper for the
AMI task challenge (as shown in Figure 4.1 in Section Dataset (Italian): AMI Dataset),
the macro-average F1-score obtained with the different transformer models considered is
almost always higher than 60%, except in the case of the GPT-2 model which, as in the
previous dataset, it appears to be less performing.
Furthermore, the models are able to predict more correctly the tweets present with a
greater frequency, as in this case the tweets labeled as "misogynous", achieving in most
cases a F1-score greater than 0.70.

As for the loss function, the loss values obtained during the different fine-tuning phases
for the analyzed model are reported in the Table 4.17 and shown with the corresponding
graphs in the Figure 4.3. As can be seen from the plots, the models pay too much
attention to training data and do not generalize well to the test dataset. As a result, the
variance, which reflects the variability of the model prediction, is found to be high and as
a consequence, these models show very low error on the training and validation set but
an high error on the test set.

Model Training Loss Validation Loss Test Loss
Bert 0.09 0.06 1.30
Bert-Multilingual 0.05 0.02 1.20
Electra 0.13 0.10 0.90
GPT-2 0.50 0.45 0.59

Table 4.17: Loss function values (AMI Dataset)

54

4.1 – Multi-Label Text Classification

(a) Bert-English Model (8 Epochs) (b) Bert-Multilingual Model (8 Epochs)

(c) Electra Model (8 Epochs) (d) GPT-2 Model (3 Epochs)

Figure 4.3: Loss and accuracy plots for the models across analyzed epochs

55

Models application on NLP text classification tasks

Label Precision Recall F1-score Support
misogynous 0.60 0.92 0.73 500

aggressiveness 0.27 0.86 0.42 176
macro-average 0.44 0.89 0.57 676

Table 4.18: Results on Test set using Bert-English Model (AMI Dataset)

Label Precision Recall F1-score Support
misogynous 0.68 0.92 0.78 500

aggressiveness 0.33 0.86 0.48 176
macro-average 0.51 0.89 0.63 676

Table 4.19: Results on Test set using Bert-Multilingual Model (AMI Dataset)

Label Precision Recall F1-score Support
misogynous 0.66 0.87 0.75 500

aggressiveness 0.34 0.88 0.50 176
macro-average 0.50 0.87 0.62 676

Table 4.20: Results on Test set using Electra Model (AMI Dataset)

Label Precision Recall F1-score Support
misogynous 0.68 0.74 0.71 500

aggressiveness 0.30 0.72 0.42 176
macro-average 0.49 0.73 0.57 676

Table 4.21: Results on Test set using GPT-2 Model (AMI Dataset)

56

4.2 – Multi-Class Text Classification

4.2 Multi-Class Text Classification
Unlike the previous task analyzed, in a multi-class classification each sample is assigned
to exactly only one label or class and it cannot belong to one or more than one class as it
happens in multi-label classification.

4.2.1 Dataset (English): Covid19 Tweets Dataset

For fine-tuning the pre-trained models on the Multi-Class classification task it has been
chosen the Coronavirus tweets NLP dataset as an English dataset. The dataset is made
up of English tweets relating to Covid19 and it is available in the Kaggle dataset catalog
[5]. The purpose of this task is to predict the sentiment related to the tweet. There are
five classes (NUM_LABELS = 5) in the sentiment variable such as Extremely Negative (0),
Extremely Positive (1), Negative (2), Neutral (3) and Positive (4).

Two sets are provided, the training dataset which contains 41.157 tweets and the test
dataset which contains 3.798 tweets. For evaluating the model, I have considered 10%
of train set as the validation set. The distribution of labels of the three sets is shown in
Table 4.22.

Dataset Extremely
Negative (0)

Extremely
Positive (1)

Negative (2) Neutral (3) Positive (4)

Train 4929 5937 8925 6964 10286
Dev 542 641 1032 791 1110
Test 592 599 1041 619 947

Table 4.22: Coronavirus tweets NLP dataset labels distribution Train/Dev/Test datasets

4.2.2 Dataset (Italian): SardiStance Dataset

As an Italian dataset for the Multi-Class classification problem, the SardiStance Dataset
was chosen. It derives from first shared task regarding Stance Detection (SD) in Ital-
ian tweets indeed known as SardiStance [12], proposed at Evalita 2020. The task of SD
consists in automatically determining from the text whether the author given a certain
context is in favour, against or neutral with respect to a certain target (NUM_LABELS =
3). There are many fields of application of SD, such as in politics, social media and public
services.
The dataset (taken from the European Language Grid catalogue [9]) consists in collected
Italian tweets about the "Movimento delle Sardine", retrieving tweets containing the key-
words "sardina" and similar hashtags. The training set is composed by 2.132 tweets,
whereas the test set is made up of 1.110 tweets. In order to evaluate the model, 10% of
the train set was taken as the validation set. The distribution of labels of the three sets
is shown in Table 4.23.

57

Models application on NLP text classification tasks

Dataset Against (0) Favour (1) Netrual/None (2)
Train 935 523 461
Dev 99 64 50
Test 742 196 172

Table 4.23: SardiStance dataset labels distribution Train/Dev/Test datasets

As metric evaluation for the competition, it has been considered by the organizers the
Average Macro F1-score computed over the two main classes ("Favour" and "Against"),
computed as follows:

Average_F1_score = F1(favour) + F1(against)
2

(4.7)

In the Figure 4.4, all the results obtained in the competition and also the SardiStance
baseline are shown.

Figure 4.4: Results with baseline for SardiStance task [12]

58

4.2 – Multi-Class Text Classification

4.2.3 Fine-Tuning Models
As for the multi-class classification problem, the previous models (i.e. BERT English/-
Multilingual, ELECTRA and GPT-2 described in Table 4.4) have been fine-tuned in order
to classify the sentiment of the tweets associated with Covid19 and to perform the stance
detection task within the tweets on the "Movimento delle Sardine".

Data preparation and Tokenisation

The data that will be fed to the model are represented, after some pre-processing, by a
dataframe in the following format: text and label (an integer representing the correspond-
ing label). An example is shown in Figure 4.24 for both datasets used.

Dataset Data Format
text label

Covid19 Tweets

...
Find out how you can protect yourself and loved ones from #coronavirus.?

Panic food buying in Germany
due to #coronavirus has begun. But the #organic is left behind!

Do you remember the last time you paid $2.99
a gallon for regular gas in Los Angeles?Prices at the pump are going down.
A look at how the #coronavirus is impacting prices.
...

...
1

0

3

...

SardiStance

...
#Salvinivergognati ha scatenato la macchina del fango contro le #Sardine,
quattro post da stamattina. Bene. Vuol dire che ha paura, e fa bene
Sono i movimenti dal basso che distruggono
le bugie sovraniste della Lega. Avanti tutta
...

...

1

...

Table 4.24: Data examples for Covid19 Tweets and SardiStance dataset

As explained in previous subsection Data preparation and Tokenisation, the data will
be represented by the class CustomDataset. Also the tokenizer, the Dataloader and
the architecture of the models will be the same and a configuration section will be used
in order to setup the hyperparameters.

4.2.4 Loss Function and Optimizer
Being a one-of-many classification problem, the Multi-Class classification task is treated
as a single classification problem of samples in one of NUM_LABELS classes. For multi-
class classification, the vanilla Cross-Entropy Loss (CrossEntropyLoss from the PyTorch
package torch.nn) is used, which predict one of several classes for each batch example.
This loss function is also called "Softmax Loss" because it combines a Softmax activation
function plus a Cross-Entropy Loss. The Softmax function calculates the probabilities of

59

Models application on NLP text classification tasks

each target class over all possible target classes and the output probabilities are in the
range 0 to 1 with the sum of them equals to 1. As a consequence, the target class will
have the high probability.

The Softmax mathematical function (4.8) calcuates the ratio of the exponential of the
given input value and the sum of exponential values of all the values in the input. So, it
is computed as:

S(xi) = exi∑C
j exj

(4.8)

where xj are the scores inferred by the network for each class in C and the softmax
activation for a class xi depends on all the scores in x.

After the logits, i.e. the input unnormalized raw values, have been converted into
probability by the Softmax function, the Cross-Entropy loss is calculated as:

CE = −
C∑

i=1
pi · log(S(xi)) (4.9)

where pi is the binary truth label for class i and S(xi) is the softmax probability. In
particular, CrossEntropyLoss (in the torch.nn module) expects as the target for each
value the class index instead of one hot encoded vectors and, discarding the elements of
the summation which are zero due to target label, the loss can be described as:

CE = −log(exp∑C
j exj

) (4.10)

where xp is the network score for the positive class.

As in the previous explained task, also in this multi-label classification problem the
AdamW optimizer is used to update the model parameters.

4.2.5 Evaluation Metrics and Results
After the training loop, in order to evaluate the model performances on the validation and
test set, the Softmax activation function is applied and it is then picked the class index
of the highest probability.

To get a measure of the models’ performances, the same previous metrics are computed.
The confusion matrix, the "precision vs recall" and "ROC" curves were also considered.
In particular, the confusion matrix is a way of visualising in a tabular the performance of
the predictions’ model understanding which classes are most easily confused. Each entry
in the matrix represents the number of predictions made by the model where it classifies
the classes correctly or incorrectly. In general, each row represents the instances in a pre-
dicted class, while each column depicts the instances in an actual class. However, since it
will be used the confusion_matrix function from scikit-learn module, it is important
to note that its convention is that the rows represent actual values and the columns the

60

4.2 – Multi-Class Text Classification

predicted ones. Starting from this matrix, it is therefore possible to derive the TP, the
TN, the FP and the FN values in order to measure the precision and recall. Moreover,
on the diagonal of the confusion matrix there is the counting of TP, so the higher these
values the better the predictive ability of the model.

To understand better the use of the confusion matrix, an example is shown below 4.5 in
which the TP, FN and FP values have been highlighted for the class "label 0". Specifically,
there is only one cell (highlighted in green) where the true label was "label 0" and the
predicted label was the corrected one, so it is the true positive (TP) value. The false pos-
itives (FP) values are highlighted in orange and represent all those cases where "label 0"
was predicted but the actual label was different. Finally, the false negatives (FN) are the
ones in pink in which the actual label was "label 0" but the model predicted something else.

Figure 4.5: Confusion Matrix example

Instead, the ROC (Receiver Operating Characteristics) curve is created by plotting
on the y-axis the true positive rate (TPR), i.e. the recall, against the false positive rate
(FPR) on the x-axis, which is defined as the ratio of the number of false positives (FP)
and the total number of ground truth negatives (FP+TN). Through the analysis of the
ROC curves, the ability of the classifier to predict a certain class rather than another is
evaluated by calculating the area under the ROC curve (Area Under Curve, AUC).
Typically, the ROC curve is only defined for a binary classification problem in which a
label can be predicted as positive or negative. In order to extend the ROC curve to
our multi-class classification task, for each class will be estimated an independently ROC
curve. Ideally, the TPR should be equal to 1 (thus having no false negative), while the
FPR should be 0 (therefore no false positive). Consequently, with the best ideal classifier
we would get a ROC curve positioned at the top left end of the plot. The goal is therefore
to have a ROC curve as close as possible to that corner of the plot.

61

Models application on NLP text classification tasks

Another curve represented in the multi-class experiments done is the Precision (on the
y-axis) vs Recall (on the x-axis) curve which is a useful measure when the classes are very
imbalanced. An ideal skilful model is represented by a curve that bows towards point
(1,1).

Results on Covid19 tweets Dataset

For the Multi-Class classification task, let’s consider first the experiments carried out on
the English dataset concerning Covid19. For each fine-tuned model, the corresponding
selected configuration are reported in Table 4.25. The results achieved will be compared
with those present in the article "Comparative Analysis of Transformer Based Pre-Trained
NLP Models" [23] in which we can take as a reference only the results obtained by the
authors with the BERT model.

Hyperparameters Bert Bert
Multilingual Electra GPT-2

Epochs 5 5 5 5
Batch Size 16 16 16 16
Learning Rate 2e-5 2e-5 2e-5 2e-5
Adam eps 1e-6 1e-6 1e-6 1e-6
Weight Decay 0.01 0.01 0.01 0.01
Warmup fraction 0.1 0.1 0.1 0.1
Machine Kaggle GPU Kaggle GPU Kaggle GPU Kaggle GPU
Training and Validation Time 0:48:49 0:49:50 0:50:58 0:53:23

Table 4.25: Hyperparameters selected for the analyzed models with Covid19 tweets
Dataset

All the models get good accuracy in predicting the sentiment of the input text. Specif-
ically, the Bert model trained on an English corpus seems to perform better with an F1
score of 97.76 on the dev set and 86.66 on the test set. If we compare this last mentioned
value, it can be observed that the fine-tuned Bert model outperforms that used by the
researchers in the paper [23] by about 2 points (0.85). In general, the remaining models,
with the exception of the GPT-2 model, achieve results close to 0.85 as macro-f1 score.

Model Accuracy (%) Macro-F1 (%)
Bert 97.67 97.76
Bert-Multilingual 96.77 96.80
Electra 95.57 95.64
GPT-2 73.47 74.12

Table 4.26: Results on dev set (Covid19 tweets Dataset)

62

4.2 – Multi-Class Text Classification

Model Accuracy (%) Macro-F1 (%)
Bert 86.31 86.66
Bert-Multilingual 85.42 85.85
Electra 85.07 85.43
GPT-2 62.92 64.08

Table 4.27: Results on test set (Covid19 tweets Dataset)

Figures 4.6 and 4.7 report the ROC and prevision/recall curves for the BERT-English
and Bert-Multilingual models respectively. Looking at the ROC curves (a), the class
0 ("Extremely Negative") has a high AUC value compared to all other models. While,
BERT is having difficulty in correctly classifying class 2 ("Negative") and 4 ("Positive").
In fact, the accuracy percentage is lower for the "Negative" (79.03% for Bert-English and
81.26% for Bert-Multilingual) and "Positive" (83.06% for Bert-English and 80.95% for
Bert-Multilingual) classes. While, as confirmed by the ROC curve, the class classified
with greater accuracy is the "Extremely Negative" with an accuracy of 90.69% for Bert-
English and 92.03% for Bert-Multilingual.
Looking at the Precision vs Recall curve (b), class 4 ("Positive") has a low F1-score while
class 0 ("Extremely Negative") has a high F1-score. Class 1 ("Extremely Positive") ranks
well with a low misclassification error compared to all other classes.

63

Models application on NLP text classification tasks

(a) ROC curve (b) Precision vs Recall curve

(c) Confusion Matrix

Figure 4.6: ROC curve, Precision/Recall curve and Confusion Matrix for the Bert-English
model on test set

64

4.2 – Multi-Class Text Classification

(a) ROC curve (b) Precision vs Recall curve

(c) Confusion Matrix

Figure 4.7: ROC curve, Precision/Recall curve and Confusion Matrix for the Bert-
Multilingual model on test set

Considering now the Electra model, also in this case the "Extremely Negative" (0)
class has a high F1-score (Figure 4.8 (b), while the class with the lowest F1-score is the
"Positive" (4) one. The accuracy is respectively 92.39% for the former class and 79.26%
for the latter.

65

Models application on NLP text classification tasks

(a) ROC curve (b) Precision vs Recall curve

(c) Confusion Matrix

Figure 4.8: ROC curve, Precision/Recall curve and Confusion Matrix for the Electra
model on test set

Looking at the figure 4.9, it is evident that the GPT-2 model has worse performance. In
particular, from the precision/recall curve (b), it can be observed that class 4 ("Positive")
has a lower f1-score unlike class 3 ("Neutral") which has a higher f1-score. This last result
obtained differs from the previous models analyzed in which it was class 0 (Extremely
Negative) to have a higher score.

66

4.2 – Multi-Class Text Classification

(a) ROC curve (b) Precision vs Recall curve

(c) Confusion Matrix

Figure 4.9: ROC curve, Precision/Recall curve and Confusion Matrix for the GPT-2
model on test set

In Table 4.31 are reported the classification report values obtained on the test set for
the various models taken into consideration.

67

Models application on NLP text classification tasks

Label Precision Recall F1-score Support
Extremely Negative 0.85 0.92 0.88 590
Extremely Positive 0.84 0.91 0.87 598

Negative 0.86 0.84 0.85 1040
Neutral 0.84 0.88 0.86 619
Positive 0.86 0.83 0.85 945

macro-average 0.86 0.87 0.86 3792

Table 4.28: Results on Test set using Bert-English Model (Covid19 Tweets Dataset)

Label Precision Recall F1-score Support
Extremely Negative 0.87 0.90 0.88 591
Extremely Positive 0.88 0.89 0.88 597

Negative 0.87 0.81 0.84 1040
Neutral 0.86 0.87 0.87 618
Positive 0.84 0.81 0.82 945

macro-average 0.85 0.87 0.86 3792

Table 4.29: Results on Test set using Bert-Multilingual Model (Covid19 Tweets Dataset)

Label Precision Recall F1-score Support
Extremely Negative 0.85 0.92 0.86 591
Extremely Positive 0.86 0.89 0.88 599

Negative 0.86 0.83 0.85 1039
Neutral 0.83 0.86 0.84 618
Positive 0.85 0.79 0.82 945

macro-average 0.85 0.86 0.85 3792

Table 4.30: Results on Test set using Electra Model (Covid19 Tweets Dataset)

Label Precision Recall F1-score Support
Extremely Negative 0.64 0.62 0.63 592
Extremely Positive 0.71 0.60 0.65 598

Negative 0.60 0.61 0.60 1040
Neutral 0.79 0.68 0.73 618
Positive 0.54 0.64 0.59 944

macro-average 0.66 0.63 0.64 3792

Table 4.31: Results on Test set using GPT-2 Model (Covid19 Tweets Dataset)

68

4.2 – Multi-Class Text Classification

Results on SardiStance Dataset

Looking now at the Italian dataset for the multi-class classification problem, the average-
F1-score considered in the shared SardiStance Evalita task 4.7 is also added as a metric in
the results obtained on the dev and test set shown in Table 4.33 and 4.34. These results
were obtained with the hyperparameters indicated in Table 4.32.

Hyperparameters Bert Bert
Multilingual Electra GPT-2

Epochs 6 6 6 6
Batch Size 16 16 16 16
Learning Rate 2e-5 2e-5 2e-5 2e-5
Adam eps 1e-6 1e-6 1e-6 1e-6
Weight Decay 0.01 0.01 0.01 0.01
Warmup fraction 0.1 0.1 0.1 0.1
Machine Kaggle GPU Kaggle GPU Kaggle GPU Kaggle GPU
Training and Validation Time 0:03:36 0:03:12 0:03:08 0:03:19

Table 4.32: Hyperparameters selected for the analyzed models with SardiStance Dataset

Compared to the computed baseline 4.4 for the SardiStance task in which the average
F1-score is equal to 0.5784, the fine-tuned models analyzed achieve better results in most
cases. In particular, considering the test set (shown in Table 4.33), Bert-Multilingual
model scores the highest average-F1 score of 0.62, overcoming the base Bert model by 4
points and the Electra model by 2 points. The GPT-2 model is still confirmed to be the
least performing model.

Model Accuracy (%) Macro-F1 (%) Average-F1 (%)
Bert 80.29 77.32 0.84
Bert-Multilingual 95.19 94.49 0.95
Electra 72.60 66.88 0.76
GPT-2 48.56 26.79 0.40

Table 4.33: Results on dev set (SardiStance Dataset)

Model Accuracy (%) Macro-F1 (%) Average-F1 (%)
Bert 63.68 47.07 0.58
Bert-Multilingual 63.41 54.67 0.62
Electra 60.87 48.19 0.60
GPT-2 66.03 27.25 0.40

Table 4.34: Results on test set (SardiStance Dataset)

69

Models application on NLP text classification tasks

Specifically, unlike the remaining models considering, GPT-2 has a greater difficulty
in correctly classifying tweets labeled as "FAVOR" (as reported in Table 4.38).
While, all the models reach a low F1-score in predicting the "NONE/NEUTRAL" class
which also has a smaller number of samples than the remaining two classes. This behavior
can also be seen by observing the plots of the Precision/Recall curve (Figure (b) in 4.10,
4.11, 4.12 and 4.13) in which the curve associated with class 2 ("NONE") underlies the
remaining two curves representing the "FAVOR" and "AGAINST" classes. Moreover, by
looking at the ROC curves (Figure (a) in 4.10, 4.11, 4.12 and 4.13), they show that class
0 ("AGAINST") has a high AUC, which indicates that the models are able to classify this
class with greater accuracy.

Label Precision Recall F1-score Support
AGAINST 0.73 0.80 0.77 738

FAVOR 0.39 0.39 0.39 194
NONE 0.34 0.20 0.25 172

macro-average 0.49 0.47 0.62 1104

Table 4.35: Results on Test set using Bert-English Model (SardiStance Dataset)

Label Precision Recall F1-score Support
AGAINST 0.82 0.70 0.75 738

FAVOR 0.42 0.56 0.48 194
NONE 0.37 0.47 0.41 172

macro-average 0.53 0.57 0.55 1104

Table 4.36: Results on Test set using Bert-Multilingual Model (SardiStance Dataset)

Label Precision Recall F1-score Support
AGAINST 0.76 0.72 0.74 737

FAVOR 0.37 0.52 0.44 195
NONE 0.31 0.25 0.28 172

macro-average 0.48 0.50 0.48 1104

Table 4.37: Results on Test set using Electra Model (SardiStance Dataset)

Label Precision Recall F1-score Support
AGAINST 0.67 0.99 0.80 738

FAVOR 0.00 0.00 0.00 195
NONE 0.15 0.02 0.02 171

macro-average 0.27 0.33 0.27 1104

Table 4.38: Results on Test set using GPT-2 Model (SardiStance Dataset)

70

4.2 – Multi-Class Text Classification

(a) ROC curve (b) Precision vs Recall curve

(c) Confusion Matrix

Figure 4.10: ROC curve, Precision/Recall curve and Confusion Matrix for the Bert-
English model on test set

71

Models application on NLP text classification tasks

(a) ROC curve (b) Precision vs Recall curve

(c) Confusion Matrix

Figure 4.11: ROC curve, Precision/Recall curve and Confusion Matrix for the Bert-
Multilingual model on test set

72

4.2 – Multi-Class Text Classification

(a) ROC curve (b) Precision vs Recall curve

(c) Confusion Matrix

Figure 4.12: ROC curve, Precision/Recall curve and Confusion Matrix for the Electra
model on test set

73

Models application on NLP text classification tasks

(a) ROC curve (b) Precision vs Recall curve

(c) Confusion Matrix

Figure 4.13: ROC curve, Precision/Recall curve and Confusion Matrix for the GPT-2
model on test set

74

Chapter 5

Conclusions

Looking at the obtained results several conclusions can be inferred:

• All the transformer models have been fine-tuned very quickly for the classification
task. This is one of the main benefit behind Transformer-based models, which being
already intensely pre-trained, they already understand the language and so we can
fine-tune them in an inexpensive way on numerous downstream NLP tasks.

• The application of a pre-trained model (in our case the Bert-Multilingual model) on
a multilingual corpus to an Italian language dataset leads to better performances
with greater accuracy in the results compared to the use of models pre-trained only
on a set of English data.

• The dataset also plays an important role in obtaining reliable results. In fact, the
classification of unbalanced or small annotated datasets involves the phenomenon
of overfitting in which the model is able to preform better on the training data
than on data it has never seen before. As a consequence, the model learns specific
representations at the training data and does not generalize well to test data.

• Being NLP tasks different in nature, following the various experiments carried out,
it can be concluded that is preferable to use auto-regressive models, such as GPT-2,
for long-text generation task where that model has been very successful. Learning
left-to-right language models, their disadvantage lies in the unidirectionality of the
attention mechanism, which does not allow the interaction of the context tokens to
be entirely captured. On the other hand, autoencoding models, such as Bert and
Electra, based on the bidirectional representation of the context, are more successful
at natural language understanding tasks such as text classification considered in this
thesis.

75

Conclusions

5.1 Future developments
In this Master Thesis, different models have been analyzed by applying them to a textual
classification task. However, such models could be applied in future experiments to a
variety of NLP tasks such as Q&A, summarization, text generation, and so on.

It would also be interesting to analyze new frameworks such as the T5 model. The
Text-To-Text Transfer Transformer (T5) was created at Google [22] with the aim of obtain-
ing a framework that would convert all text-based language problems into a text-to-text
format where the input and output are always text strings, unlike the BERT models that
can only output a class label or an input part. Its main advantage is the possibility to
perform multiple different tasks with a single trained model. For example, as shown in
the Figure 5.1, to tell the T5 model that you wanted to perform a certain task, you will
give the model an input string indicating both the task that you wanted to do and the
data that you want to perform that task on.

This is just another example of a Transformer architecture based model that can be
explored in a future works.

Figure 5.1: Example of classification, translation and Q&A tasks with T5 model

76

Appendices

77

Appendix A

Implemented scripts for
fine-tuning the pre-trained
models

The scripts I created in order to train and fine-tune the models analysed in this thesis
have been saved as Jupyter Notebook and they can be viewed on GitHub at the following
address: GitHub Repository Master’s Thesis Project

79

https://github.com/ValeMargi/Master-Thesis-Project.git

80

Bibliography

[1] BCEWithLogitsLoss Pytorch. URL https://pytorch.org/docs/stable/
generated/torch.nn.BCEWithLogitsLoss.html.

[2] AMI 2020 Dataset hosted at ELG, . URL https://live.european-language-grid.
eu/catalogue/corpus/7005.

[3] Automatic Misogyny Identification (AMI): Shared Task at Evalita 2020, . URL
https://amievalita2020.github.io/.

[4] Google Colaboratory. URL https://colab.research.google.com/.

[5] Coronavirus tweets NLP - Text Classification Dataset. URL https://www.kaggle.
com/datatattle/covid-19-nlp-text-classification.

[6] GoEmotions: A Dataset of Fine-Grained Emotions. URL https://github.com/
google-research/google-research/tree/master/goemotions.

[7] Kaggle. URL https://www.kaggle.com/.

[8] “PyTorch, the PyTorch logo and any related marks are trademarks of Facebook, Inc.
URL https://pytorch.org/.

[9] SardiStance Dataset hosted at ELG. URL https://live.
european-language-grid.eu/catalogue/corpus/5245.

[10] Transformers Library Hugging Face. URL https://huggingface.co/
transformers/.

[11] Soumith Chintala. Pytorch logo - "PyTorch, the PyTorch logo and any related marks
are trademarks of Facebook, Inc". URL https://github.com/pytorch/pytorch/
blob/master/docs/source/_static/img/pytorch-logo-dark.png.

[12] Alessandra Teresa Cignarella, Mirko Lai, Cristina Bosco, Viviana Patti, Rosso Paolo,
et al. Sardistance@ evalita2020: Overview of the task on stance detection in italian
tweets. In EVALITA 2020 Seventh Evaluation Campaign of Natural Language Pro-
cessing and Speech Tools for Italian, pages 1–10. Ceur, 2020.

[13] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. ELEC-
TRA: Pre-training Text Encoders as Discriminators Rather Than Generators, 2020.

81

https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
https://live.european-language-grid.eu/catalogue/corpus/7005
https://live.european-language-grid.eu/catalogue/corpus/7005
https://amievalita2020.github.io/
https://colab.research.google.com/
https://www.kaggle.com/datatattle/covid-19-nlp-text-classification
https://www.kaggle.com/datatattle/covid-19-nlp-text-classification
https://github.com/google-research/google-research/tree/master/goemotions
https://github.com/google-research/google-research/tree/master/goemotions
https://www.kaggle.com/
https://pytorch.org/
https://live.european-language-grid.eu/catalogue/corpus/5245
https://live.european-language-grid.eu/catalogue/corpus/5245
https://huggingface.co/transformers/
https://huggingface.co/transformers/
https://github.com/pytorch/pytorch/blob/master/docs/source/_static/img/pytorch-logo-dark.png
https://github.com/pytorch/pytorch/blob/master/docs/source/_static/img/pytorch-logo-dark.png

BIBLIOGRAPHY

[14] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. ELEC-
TRA, 2020. URL https://github.com/google-research/electra.

[15] Dorottya Demszky, Dana Movshovitz-Attias, Jeongwoo Ko, Alan Cowen, Gaurav
Nemade, and Sujith Ravi. GoEmotions: A Dataset of Fine-Grained Emotions, 2020.

[16] Jacob Devlin. GLUE benchmark leaderboard for BERT model. URL https:
//gluebenchmark.com/leaderboard.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding, 2019.

[18] Paolo Rosso Elisabetta Fersini, Debora Nozza. AMI @ EVALITA2020: Automatic
Misogyny Identification. In Valerio Basile, Danilo Croce, Maria Di Maro, and Lucia C.
Passaro, editors, Proceedings of the 7th evaluation campaign of Natural Language
Processing and Speech tools for Italian (EVALITA 2020), Online, 2020. CEUR.org.

[19] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

[20] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, Daniela Amodei,
Jack Clark, Miles Beundage, and Ilya Sutskever. GPT-2, 2019. URL https://
openai.com/blog/better-language-models/.

[21] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language Models are Unsupervised Multitask Learners. 2019.

[22] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer
learning with a unified text-to-text transformer, 2020.

[23] Saurav Singla. Comparative analysis of transformer based pre-trained nlp models. IN-
TERNATIONAL JOURNAL OF COMPUTER SCIENCES AND ENGINEERING,
8:40–44, 11 2020. doi: 10.26438/ijcse/v8i11.4044.

[24] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to Sequence Learning with
Neural Networks, 2014.

[25] The Hugging Face Team. Hugging Face. URL https://huggingface.co/.

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need, 2017.

82

https://github.com/google-research/electra
https://gluebenchmark.com/leaderboard
https://gluebenchmark.com/leaderboard
https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/
https://huggingface.co/

Acronyms

AMI Automatic Misogyny Identification. 43

AUC Area Under Curve. 61

BERT Bidirectional Encoder Representations from Transformers. 25

ELECTRA Efficiently Learning an Encoder that Classifies Token Replacement Accu-
rately. 25

FN False Negative. 48, 61

FP False Positive. 48, 61

GPT-2 Generative Pre-Trained 2. 25

LSTM Long short-term memory. 19

MLM Masked Language Model. 26, 31

NLG Natural Language Generation. 34, 37

NLP Natural Language Processing. 17

NLU Natural Language Understanding. 37

NSP Next Sentence Prediction. 27

P Precision. 48

R Recall. 48

RNN Recurrent Neural Network. 18

ROC Receiver Operating Characteristics. 60, 61

RTD Replaced Token Detection. 31

83

Acronyms

SD Stance Detection. 57

Seq2Seq sequence-to-sequence. 20

TL Transfer Learning. 25

TN True Negative. 61

TP True Positive. 48, 61

84

	List of Tables
	List of Figures
	I Background and used architectures
	Introduction
	Natural Language Processing (NLP)
	Pre-Transformer Models: RNN and LSTM
	Transformer Model

	Transformer-based architectures
	Transformer bidirectional encoder models
	BERT
	ELECTRA

	Transformer unidirectional decoder models
	GPT-2

	Environment and libraries used
	Pytorch and HuggingFace
	Kaggle and Google Colab

	II Experimental Results
	Models application on NLP text classification tasks
	Multi-Label Text Classification
	Dataset (English): GoEmotions Dataset
	Dataset (Italian): AMI Dataset
	Fine-Tuning Models
	Loss Function and Optimizer
	Evaluation Metrics and Results

	Multi-Class Text Classification
	Dataset (English): Covid19 Tweets Dataset
	Dataset (Italian): SardiStance Dataset
	Fine-Tuning Models
	Loss Function and Optimizer
	Evaluation Metrics and Results

	Conclusions
	Future developments

	Appendices
	Implemented scripts for fine-tuning the pre-trained models

