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Abstract

Event cameras are novel bio-inspired sensors, which asynchronously capture
pixel-level intensity changes in the form of “events'. The innovative way
they acquire data presents several advantages over standard devices, espe-
cially in poor lighting and high-speed motion conditions. In particular, their
high pixel bandwidth results in reduced motion blur, and their high dynamic
range make them a suitable alternative to traditional cameras when dealing
with challenging robotics scenarios. Moreover, the latency and low power
consumption of these novel sensors enable their use in real-world applica-
tions. Indeed, those peculiarities make them perfect to tackle well-known
issues which arise from the use of wearable devices, such as fast camera
motion and background clutter. However, their potential in these applica-
tions, such as egocentric action recognition, is still underexplored. In this
work, we bring to light the potentiality of event sensors in first-person action
recognition, showing the advantages that they offer over traditional cameras.
Specifically, the latter suffer from egomotion, a phenomenon arising from
the rapid and involuntary motion of the wearable device, which inevitably
moves around with the user. Indeed, this characteristic enables event cam-
eras to extract continuous information from the video. The recent release
of the EPIC-Kitchen large-scale dataset, comprehensive of multiple input
modalities, i.e., audio, RGB and optical flow, offers the possibility to show
the advantages of the event modality over the traditional ones from the first
person viewpoint.

In this thesis, we propose an event version of the large scale EPIC-Kitchens
dataset, unlocking the possibility to explore the behavior of event data in
First Person Action Recognition scenarios. Extensive experiments have been
carried out by repurposing a variety of popular action recognition architec-
tures in conjunction with recent temporal modelling methods. Those show
the potentiality of event data in both intra- and cross-domain scenarios, es-
tablishing a large egocentric action recognition benchmark.
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Chapter 1

Introduction

During the last several years, expressions like "Artificial Intelligence", "Ma-
chine Learning" and "Deep Learning" have started permeating our daily lives
and activities. This phenomenon has increased exponentially with the rising
popularity of smart devices. Indeed, those are able to steadily collect data
of all kinds and to provide users with an increasingly accurate and tailored
experience in the most diverse contexts. Nowadays, recommendation sys-
tems based on machine learning algorithms can monitor our online activity
and purchases to propose products we might be interested to buy. Virtual
assistants can make recommendations after considering a number of variables
that a human would not be able to handle and they can communicate with
us thanks to Natural Language Processing algorithms. Autonomous driving
systems are able to correctly interpret road signs and recognize moving ob-
jects and advances in robotics allow machines to collaborate with humans
in delicate ares such as the medical one. Every day, all over the world, a
countless number of new Al applications are studied and developed. The al-
gorithms behind these systems are able to improve their ability to solve their
tasks through experience, i.e, the analysis of large amounts of data that al-
lows them to discover patterns, extract useful information and process them
to take decisions. This is similar to how humans behave when they have to
learn something new.

Deep Learning is a particular branch of Artificial Intelligence where, in or-
der to achieve this ability, the architectures employed by intelligent systems
must be able to extract abstract representations from data in a hierarchi-
cal fashion, from simple to complex. A field of Artificial Intelligence where
Deep Learning architectures have become the state of the art is Computer

1



1 — Introduction

Vision. It has the goal of enabling computers and machines to gain high-
level understanding from images or videos to solve specific tasks. One of the
most researched areas in the field is Action Recognition, a task which aims
to automatically predict what action is taking place in a video. Its applica-
tions range from assistance systems (a tool could alert someone if an elderly
person falls and is alone in that moment) to video surveillance (a system
could automatically stop a train if it recognize a person falling on the track).
First Person Action Recognition (FPAR) is a sub-field of Action Recognition
which entails analyzing images and videos captured by a wearable camera
[28]. This sector is gaining great interest thanks to the increasing spread of
wearable devices, the release of large and well-annotated datasets [9] and the
huge investments in novel technologies e.g., autonomous drones and robots,
self-driving systems. Computer Vision tasks are very challenging by nature
and even though huge improvements in performances and computational
power requirements have been made, the most accurate and technologically
advanced architectures in existence are far from biological vision systems.
This is because, more recently, a new field of research, related to Computer
Vision, is emerging.

The neuromorphic approaches to Computer Vision are insipired by brain
structures and can lead to systems which are successful where conventional
ones fail. In particular, Dynamic Vision Sensors are novel bio-inspired devices
able to asynchronously detect pixel-wise brightness changes. This innovative
data acquisition method provides significant advantages over conventional
cameras especially in low-light and high-speed motion scenarios. Besides,
their low power consumption and low latency would allow the development
of many new real-world applications. Nevertheless, the potential of these
sensors in certain areas, such as First Person Action Recognition, is still
unexplored.

In our work we investigate the behavior of this new data modality in com-
bination with traditional ones in the context of First Person Action Recog-
nition developing a complete novel benchmark of results given by popular
models in literature. Our experiments also analyze multi-modal settings
which allow the creation of models capable of uniformly processing, integrat-
ing and interpreting heterogeneous data flows coming from different sensors.
Indeed, multi-sensory information can provide complementary features lead-
ing to great improvements in performances. We strongly believe it is critical
to include cross-domain analysis into the benchmark we have built in order
to provide a fair evaluation of a model considering its ability to generalize
on unseen domains because this is what happens in real-world scenarios.

2



1 — Introduction

pick up,ladle
— (ladle)

Figure 1.1. Example of annotated RGB frames from an EPIC-Kitchens video.

1.1 Research goals and motivations

This work seeks to explore the behavior of the event modality in the con-
text of First Person Action Recognition when used alone or in a multi-modal
fashion with RGB in both intra- and cross-domain scenarios. The egocentric
perspective has emerged especially in the last years due to the rapid spread
of wearable devices. Its objective is to illustrate how humans interact with
the surrounding world and this field could lead to the development of su-
pervisor models able to check whether robots are correctly interacting with
the environment while performing some human actions. For example this is
critical in fields like the patients care one. Many of the challenges posed by
this task can be addressed using the event modality. In fact, the high pixel
bandwidth and the wide dynamic range of DVS sensors result in a reduction
of motion blur and a greater capacity in dimly lit environments. We claim
that event modality, focusing on the motion and not on colors, appearance
or textures of an image, is robust to domain shifts like the flow modality
[29] but, differently from the latter, it has many practical advantages that
make it employable in real-time applications: events are generated real-time
by particular sensors with little energy consumption and low computational
cost.

We chose to build our benchmark on the EPIC-Kitchens [9] dataset. In-
deed, this dataset marked a turning point in this research area and it is the
largest egocentric vision dataset already including three modalities (RGB,
optical flow and audio). The huge success of this dataset is attributed, in
addition to its size, to the challenges standing behind it !. Its creation has

thttps://epic-kitchens.github.io/2021
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Figure 1.2.  On the left a stream of event data. On the right a 4 channels
frame-like representation of the asynchronous stream.

gathered participants from all over the world allowing to grasp highly di-
verse traditions, cooking styles and kitchen habits. Besides, the videos were
recorded using a non-scripted (Section 3.4) approach which was adopted to
show not just ordinary human actions involving the interaction with a single
object but also natural multitasking situations that can occur in real life.
Therefore, EPIC-Kitchens is more challenging with respect to many other
datasets but it gives a unique and realistic perspective. All these features
perfectly match our goal of building a fair and reliable benchmark to evaluate
different architectures, methods and data modalities.

It is important to highlight that we also addressed the egocentric action
recognition task using multi-modal approach [29, 30]. Indeed, in many cases,
a collection of heterogeneous input data from different sensors might offer
additional knowledge which reflects the contextual nature of the faced task
[10].

The increasingly interest in FPAR context has also brought to light some
cross-domain issues [14, 13, 31, 32, 33, 29]: big drops in performances occur
when a model, previously trained in a certain environment, is employed in a
different context. This is due to an "environmental bias" which prevents the
model from being able to generalize on unseen domains. We claim that, since
this scenario is frequent in real-world applications, it is crucial to evaluate
cross-domain performances of a model not limiting on in intra-domain ones.
For this reason, we include in our benchmark both the above-mentioned
analyses.
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1.2 Main contributions

Recently, innovative learning techniques based on event data have produced
remarkable outcomes in circumstances where traditional camera networks fail
[34, 35, 36, 37, 38]. These findings demonstrate that event data contains all
of the visual information necessary to perform the same tasks as conventional
cameras. Unfortunately, effective architectures require a significant quantity
of event data for training, which is scarce due to the novelty of event sensors:
event cameras only became commercially accessible in 2008 [24]. To address
this issue, there is an enormous demand for low-cost, high-quality synthetic,
labelled events for algorithm development.

In this work we propose an event extension of the EPIC-Kitchens dataset,
created employing a simulator [22] able to generate synthetic event data from
existing videos recorded with standard cameras. In addition, we provide a
large benchmark of the most well-known architectures in the egocentric action
recognition field. This result has been reached through extensive experiments
with the aim of showing how event modality perform compared to RGB and
optical flow ones, when used in single- or in multi-modal fashion in both
intra- and cross-domain scenarios. We hope our contributions can help the
scientific community unlock the potential of event data.
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Chapter 2

Deep Learning

This chapter and its subsections provide an overview of deep learning in
general, beginning with the most fundamental notions and progressing inward
to uncover those most relevant to our work (and particularly the kind of
neural networks we adopted). Firstly, Section 2.1 explains the motivations
behind the birth and the development of the new deep learning paradigm.
Then, in Section 2.2, starting from the beginning, the notion of perceptron
will be explained, which will evolve into the first feedforward neural networks
as a result of the new backpropagation algorithm. Finally, in Sections 2.3 and
2.4, a detailed examination of the architectures employed in this study will be
conducted, including the usage of convolutional neural networks to capture
spatial information and residual connections to enable deeper models.

2.1 Deep Learning

For decades, the primary goal of artificial intelligence researchers has been
to replicate the behavior of the human brain and to make machines able to
perform real world tasks. However, until recently, the majority of approaches
for machine learning and data processing relied on shallow-structured archi-
tectures. Typically, these designs include no more than one or two layers
of non-linear feature transformations. They have been demonstrated to be
successful in handling a variety of basic or well-constrained issues, but their
limited modeling and representational capabilities can offer challenges when
dealing with more sophisticated real-world applications. In particular, as
clearly stated by [39],even though perceptual capacities were increased, due
to the expanding capabilities of sensors and the vast quantity of information
included in input data, the major difficulty encountered by such models was

7



2 — Deep Learning

p1 dimension:
1) positions
L ]

2 dimensions:
100 positions
L ]

3 dimensions:
1000 positions!

Figure 2.1. With a rise in the number of relevant dimensions in the data,
the number of interesting combinations may expand exponentially. Thus, in
order to differentiate between d dimensions and v values along each axis, we
appear to require O(v?) regions and instances. [2]

the so-called curse of dimensionality. This term, coined by Richard Bellman
in the context of dynamic programming [40], has gained even more popu-
larity in the contexts of artificial intelligence and big data because it suc-
cinctly expresses the inherent difficulties in learning in a high-dimensional
space where data becomes sparse and statistically insignificant. To address
this issue, many approaches have been investigated in order to minimize the
dimensionality of data and make it easier for the learning algorithm to ex-
tract meaningful knowledge. All of these dimensionality reduction strategies
are referred to as feature extraction techniques, which are used to preprocess
data in order to increase the relevance of significant information and decrease
the amount of duplicated information, thus avoiding the curse of dimension-
ality. This process can be time consuming and costly, and may result in the
extraction of erroneous characteristics supplied in the input.

8



2 — Deep Learning

2.2 Neural Networks

Deep learning arises as a subfield of machine learning with the purpose of
avoiding extensive manual preprocessing while drawing loose inspiration from
the hierarchical organization of information representation in human brains.
Deep learning is a branch of machine learning concerned with the devel-
opment of algorithms for learning several layers of representation in order
to describe complex relationships between data. Thus, higher-level features
and concepts are specified in terms of their lower-level counterparts, and this
type of feature hierarchy is referred to as deep architecture. In practice,
it employs additional non-linear layers to extract the necessary information
from the raw input data (as stated by [41]). Three main reasons for deep
learning’s current popularity are the dramatically enhanced chip processing
capabilities enabled by the advent of GPUs, the greatly expanded size of
training data, and recent improvements in machine learning. All of these ad-
vancements have enabled deep learning approaches to exploit complicated,
compositional nonlinear functions successfully, to learn distributed and hi-
erarchical feature representations efficiently, and to make good use of both
labeled and unlabeled data. Neural Networks are the core components of
Deep Learning. Indeed, they are particular architectures designed to work
similarly to how human brain does. The term "deep" refers to the number of
layers. In fact, a deep learning algorithm is one that uses a neural network
with more than three layers. However, in order to grasp the concept of neu-
ral networks, it is necessary to begin with the most fundamental design, the
perceptron, and understand what brought us to the huge models we observe
nowadays.

2.2.1 Perceptron

The perceptron is the ancestor of the most fundamental unit of a deep neural
network, the so called artifical neuron, The origins of the perceptron can be
traced back to the cognitive science area, in particular:

o McCulloch & Pitts in [42], provided the first complete report, particu-
larly from a formal standpoint, of how basic units with excitatory and
inhibitory synapses and a specified threshold may represent complicated
ideas;

« Hebb stated in [43] that "When an azon of cell A is near enough to
excite a cell B and repeatedly or persistently takes part in firing it, some

9



2 — Deep Learning

growth process or metabolic change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B, is increased”. In other
words, it argued not only that when two neurons fire simultaneously,
their connection is strengthened, but also that this activity is a necessary
component of learning and memory (known as Hebb’s rule);

Resembling to how the biological brain processes information, perceptrons
were invented in 1958 by the scientist Frank Rosenblatt [44], who defined
them as entities consisting of an input layer and an output layer. The al-
gorithm they adopted by perceptrons is a learning rule based on error min-
imization that adjusts the weights of the connections (called synapses) pro-
portionally to the difference between the actual and desired output (learning
from examples). Specifically, the perceptron takes a sequence of input signals
x1, To... and converts them to a single binary output signal. To do so each in-
put x; is multiplied by its relative weight wj (i.e., higher weight means higher
importance of a certain input), then all the results are summed together with
a certain bias wy. The bias is an element that adjusts the boundary away
from origin without any dependence on the input value. Finally, due to the
output’s binary nature, the real number acquired by the weighted sum is
converted to 0 or 1 based on a specified threshold (parameter of the neuron).
To put it mathematically:

1, it ¥ xjw; +wy > threshold

. (2.1)
0, if X;zw; +wy <= threshold

output = {

Note that in this case the binary step has been used to discretize the output
of the perceptron. However, different activation functions can be used.

The perceptron’s learning algorithm is illustrated in 1. While iterating
through all the inputs, the weights are only modified in classification error
cases, otherwise they are left unchanged. This approach adheres to the pre-
viously mentioned Hebb’s rule, allowing the model to learn how to properly
classify the input samples on its own.

2.2.2 Feedforward Neural Networks

Despite initial enthusiasm, thanks to the prove of convergence of the percep-
tron algorithm in the case of linearly separable data, Minsky and Papert’s
1969 work [45] demonstrated all the limitations of such a reductive model.
By posing the simple XOR problem they demonstrated the perceptron’s in-
ability to solve it (see Figure 2.3), as well as all other non-linearly separable

10
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Activation
function

inputs weights

Figure 2.2. Perceptron scheme

Algorithm 1 Perceptron Learning Algorithm
P <+ inputs with label 1
N < inputs with label 0
Initialize w randomly
while !convergence do
Pick random z € PU N

if z € P and (z,w) < 0 then > Classification error
w=w-+zx
end if
if z € N and (x,w) > 0 then > Classification error
w=w-—c
end if
end while

problems. There was a need to add layers between the perceptron’s input
and output in order to solve these kinds of problems. To solve this issue
multilayer perceptrons have been introduced.

Deep feedforward networks or multilayer perceptrons (MLPs) are funda-
mental deep learning models. A feedforward network’s purpose is to approx-
imate a function f* by learning the values of the parameters 6 that result
in the best function approximation by defining a mapping y = f(x;8). Due
to the direction of the flow of information, passing onward from the input x,
through intermediate calculations, and finally to the output y, these models
are referred to as feedforward models. Furthermore they are called networks
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Figure 2.3. Linearly separable domain of the logical operator OR (left)
vs non-linearly separable domain of the logical operator XOR (right)

Input Hidden Ouput
layer layer layer

Figure 2.4. A Multi Layer Perceptron

since they are often represented as a collection of several functions.

model is associated with a directed acyclic graph that describes the com-
position of the functions. As seen in Figure 2.4, data flow from the input
layer (the first) through a series of hidden layers (so-called because they are
not directly visible) and finally emerge from the output layer. The length of

12
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the chain as a whole represents the model’s depth, which is why the term
"deep learning" is used. The primary distinction between linear models and
neural networks is that the non-linearity of neural networks results in the
non-convexity of the most interesting loss functions. This means that neural
networks are typically trained using iterative, gradient-based optimizers that
simply drive the cost function to a very low value, rather than using linear
equation solvers for linear regression models or convex optimization algo-
rithms with guaranteed global convergence. Of course, we can train models
such as linear regression and support vector machines using gradient descent
as well, and this is frequently done when the training set is quite large. In
this sense, training a neural network is similar to training any other model.
Calculating the gradient for a neural network is little more complicated,
initially there was no algorithm that could provide an appropriate way to
efficiently compute gradients until David Rumelhart, Geoffrey Hinton, and
Ronald Williams published a work ([46]) in 1986 which made the interest in
deep learning grow again.

2.2.3 Gradient Descent

The first thing that must be understood in order to comprehend how the
perceptron model was extended is the optimization strategy used to train
models with additional layers. To do so, we will describe what optimiza-
tion means in the context of machine learning and one of the methods to
do it. Optimization is the process of reducing or increasing the value of a
function f(x) by the manipulation of x. Most optimization problems are
typically phrased in terms of minimization of f(x). The objective function
or criterion denotes the function we wish to minimize or maximize and it is
sometimes referred to as the cost function, loss function, or error function.
The derivative is advantageous for minimizing a function because it indicates
how to adjust x in order to enhance f(x) slightly. So, we can minimize f(x)
by gradually increasing x in the opposite direction of the derivative. Gradient
descent, presented in [47], is the name of this approach. Due to the fact that
we are dealing with multidimensional data, the derivative’s generalization is
the gradient V, and so we can decrease f by travelling in the direction of the
negative gradient (see Figure 2.5). This is referred to as the steepest descent
technique or gradient descent technique. Steepest descent introduces a new
point:

x' =x — eVyf(x) (2.2)
13
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Figure 2.5. An example of gradient descent in a multidimensional space

where € is the learning rate, a positive scalar that determines the step size
and setting it to a small constant is a popular technique. Note that this op-
timization can lead to local minima that are not globally optimal. In other
words, we optimize functions that may have numerous suboptimal local min-
ima and numerous saddle points surrounded by extremely flat regions. This
is the primary reason why it is critical to appropriately configure the learning
rate and schedule for this method, all those techniques will be described in
Section 2.2.7. Despite being gradient descent the main pillar for the opti-
mization in neural networks, a recurring issue in deep learning is that while
bigger training sets are required for good generalization, they are also com-
putationally more expensive. Because of the high computing cost of large
training sets, stochastic gradient descent is an extension of gradient descent
which makes the observation that the gradient is an expectation, so, with a
limited sample size, the expectation can be approximated. Specifically, we
can sample a minibatch of samples B = z',...,2™ taken evenly from the
training set at each stage of the algorithm. Typically, the minibatch size m
is set to a small number of samples, ranging from one to a few hundred. We
can fit a training set with billions of instances using only a hundred examples
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as updates. To estimate the gradient the following formula is used:

m
g = ng ST L(x' Y, 0) (2.3)

moo=
where 0 indicates the parameters of the network, z* are the samples, y* the
respective labels and L(x?, 4", 0) is that he loss function to be minimized with
respect to the weights of the model. The stochastic gradient descent algo-
rithm then descends the predicted gradient using instances from the mini-

batch as follows:
0=0—eg (2.4)

where € is the learning rate as in the gradient descent case.

2.2.4 Back-propagation

Despite being a widely used approach for training deep learning models,
Stochastic Gradient Descent would be meaningless without the back-propagation
algorithm, which computes the gradient of each network parameter at an ac-
ceptable computing cost. The idea of backpropagation came around 1970,
but its significance wasn’t fully appreciated until David Rumelhart, Geoffrey
Hinton, and Ronald Williams published a seminal paper [46] in 1986 when
backpropagation was formally introduced as the learning procedure to train
neural networks. Calculating the gradient analytically is trivial, but numeri-
cally evaluating it can be computationally expensive. The back-propagation
method accomplishes this through a straightforward and affordable proce-
dure. Notice that back-propagation is employed merely to compute the gra-
dient; other techniques, such as the ones presented in Section 2.2.3, are uti-
lized to accomplish learning with this gradient. The gradient that we most
frequently require in learning algorithms is the gradient of the cost function
with respect to the parameters, VgL(V) (see Section 2.2.3). To fully com-
prehend how the algorithm works, it is necessary to establish the following
concepts.

Computational Graph

The computational graph, referring to a directed graph in which the nodes
represent variables and the edges represent actions. Variables can be used
to feed the value of operations, which are functions of one or more variables.
Each node in the graph is defined in this fashion as a function of the variables
(see Figure 2.6).
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Figure 2.6. An example computational graph

Chain Rule

The calculus’s chain rule, which is used to compute the derivatives of func-
tions constructed by assembling known derivatives of other functions. In
mathematical terms, if x is a real number and f and g two real functions
such that y = g(z) and z = f(g(x)) = f(y), then:

dz dzdy

e _ 22 2.5

dr  dydx (25)
Notice that the rule can be extended to the multidimensional case where
x € R™ and y € R" in the following way:

0z 0z Oy;

= —_— (2.6)
6:@ j ayj 8:(;1
which in vectorial terms is:
dy T
Xz — b z 2
Ve () v 27)

where % is the n x m Jacobian matrix of the function ¢ mapping from R™
to R™.
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The back-propagation algorithm employs this Jacobian-gradient product
for each operation in the graph. Thus, having established the essential no-
tions enabling the development of feedforward networks, we can now see
those models, bearing in mind that the core concepts underlying modern
feedforward networks have largely stayed unaltered since the 1980s. The
same back-propagation technique and gradient descent approaches are still
used. The majority of the progress in neural network performance can be
attributable to two reasons:

o larger datasets have alleviated some of the difficulties associated with
statistical generalization for neural networks;

e neural networks have grown in size significantly as a result of more pow-
erful processors and improved software infrastructure;

2.2.5 Activation functions

An important concept in the field of neural networks is the activation func-
tion. In fact, they are the source of non-linearity of the models which makes
it possible to learn complex tasks. This kind of function is often inserted in
the hidden layers of the network and there are actually more possible choices
which can be made. In abstract terms, activation functions are utilized to
determine whether or not a neuron fires.

Binary Step Function

The most basic function to be used to decide when a neuron fires is a
threshold-based classifier (as in the perceptron) which determines whether
or not the node should be activated based on the value from the linear trans-
formation. In other words, if the input to the activation function is greater
than a threshold, then the neuron is activated, else it is deactivated (Figure
2.7). It may be noticed that this function can be used just when the number
of classes is lower than two. Additionally, the gradient of the step function
is zero, posing a barrier to back propagation. That is, when the derivative
of f(x) with respect to x is calculated, it equals 0.

Sigmoid

The sigmoid function is a very popular non-linear activation function. The
sigmoid function changes values between 0 and 1 (Figure 2.8). Notably,
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Figure 2.7. Binary Step
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Figure 2.8. Sigmoid Activation Function

in contrast to the binary step and linear functions, the sigmoid is a non-
linear function. Thus, when having multiple neurons with sigmotd activation
functions, the output is also nonlinear. Although the gradient values are
considerable between -3 and 3, the graph becomes significantly flatter in
other places. This implies that for values more than 3 or less than -3, the
gradients will be extremely small. Gradient values approaching zero indicate
that the network is not truly learning. Additionally, the sigmoid function
is asymmetrical around zero. Thus, the output of all neurons will have the
same sign.

Hyperbolic Tangent

Unlike the sigmoid function, the tanh function is symmetric around the
origin (Figure 2.9), with the value range being between -1 to 1. As a result,
the inputs to subsequent levels will not always be the same in sign. The tanh
function, like the sigmotd, is continuous and differentiable at all locations
but it has a steeper gradient than the sigmoid function. Generally, tanh is
chosen over sigmoid because it is zero-centered and the gradients are not
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Figure 2.9. Hyperbolic Tangent Activation Function
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Figure 2.10. ReLU Activation Function

confined to move in a particular direction.

ReLU

Another non-linear activation function that has gained prominence in the
deep learning sector is the ReLLU function. Rectified Linear Unit is abbrevi-
ated as ReLU (Figure 2.10). The primary advantage of the ReLU function
over other activation functions is that it does not simultaneously stimulate
all neurons. This signifies that neurons will be deactivated only if the linear
transformation’s output value is less than 0. Due to the fact that just a
limited number of neurons are engaged, the ReLLU function is significantly
more computationally efficient than the sigmoid and tanh functions. If you
examine the graph’s negative side, you'll discover that the gradient value is
zero. As a result, certain neurons’ weights and biases are not updated during
the backpropagation process. This can result in the death of neurons that
are never stimulated.
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Figure 2.11. Leaky ReLU Activation Function

Leaky ReLU

The Leaky ReLU function is a modified version of the ReLU function (Figure
2.11). Leaky ReLU is developed to overcome the issue of deactivation of
neurons for x < 0; thus, rather than declaring the ReLLU function as 0 for
the negative inputs, we define it as an extremely tiny linear component of x.
By making this minor adjustment, the gradient on the left side of the graph
becomes non-zero. As a result, we would experience no more dead neurons
in that region.

2.2.6 Loss functions

As previously stated, the ultimate goal of all machine learning algorithms
is to minimize a loss function. The type of loss function that is considered
varies according to the type of problem to be addressed and is also related
to the activation function chosen for the final layer.

Mean Squared Error

The Mean Squared Error (MSE) loss is used to get the average of the errors’
sum of squares. It takes the squared difference between the estimated and
real numbers and averages it. It is a type of risk function in which the
difference between the actual and projected values is squared and averaged
over the number of instances in the model. MSE values that are close to 0
are preferable because they indicate that the model has less error. MSE can
be formulated as:

n

1 .
MSE = — Z(yfrue . yg)redzcted)Q (28)

i=1
20



2 — Deep Learning

where n is the number of samples. Notably, this function cannot be used
when the result is discrete (as is the case with classification issues), but only
when the output is continuous (as is the case with regression). Its primary
advantage over a Mean Absolute Error (MAE = Ly |yfree — P redicted )y
that, due to its quadratic structure, the MSE does not contain local minima

and penalizes larger errors more severely.

Cross Entropy Loss

The Cross Entropy loss, or log loss, is a metric used to evaluate the effec-
tiveness of a classification model whose output is a probability between 0
and 1. To generate a probability value as the network’s output for a clas-
sification task, a special function called softmax is applied to the output of
the final layer to generate a probability vector (whose elements sum to 1),
and typically one output neuron is reserved for each possible class in the
output vector (one-hot encoding of the classes). The softmax fuction can be
calculated as it follows: "

= T JG s

where s; is the output for class ¢ on one specific neuron while C' is the number
of different classes. Finally, the formula to calculate the Cross Entropy Loss
on the softmax output can be formulated as:

f(0); (2.9)

CE = =3 tilog(f(0)) (2.10)

where t; is 1 for the observations predicted correctly, 0 otherwise.

2.2.7 Learning rate

The learning rate is a tuning parameter that controls the step size for each
iteration in order to minimize the loss function. Since it determines the
extent to which new information modifies the weights it is a metaphor for
the rate at which a deep learning model "learns". When choosing a learning
rate, a trade-off must be made between pace of convergence and overshooting.
While the direction of descent is typically decided by the gradient of the loss
function, the learning rate dictates the magnitude of the step taken in that
direction. A learning rate that is too high will cause the learning to skip
minima, whereas a learning rate that is too slow will either take too long to
converge or will become stuck in an undesirable local minimum. To improve
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faster convergence, avoid oscillations, and avoid local minima during training,
the learning rate is frequently changed, either according to a learning rate
schedule or by utilizing an adjustable learning rate. A step-based learning
schedule alters the rate of learning in response to predetermined stages. The
decay application formula is defined as it follows:

€ = 6Odfloor( Hr'n)

(2.11)
where ¢ is the initial learning rate, €, is the learning rate at iteration n, r is
the iteration at which the drop happens while d is the drop rate (how much
the learning rate decreases). Finally there are optimizers which automatically
alter the learning rate parameter such as Adam, devised by [48]. They adapt
learning rates through the usage of momentum, it is a variant of the gradient
descent technique.

2.2.8 Weight Initialization

In order to facilitate network’s convergence, it is critical how we initialize
the network weights. Indeed, two extremely typical challenges in Neural
Networks are:

e the vanishing gradients problem, which arises when gradients tend to
shrink as errors propagate back via deep neural networks’ buried layers.
Because the gradient is nearly zero around the asymptotes, gradients do
not spread properly.

« the exploding gradient problem, which arises as gradients in prior layers
become considerably bigger, causing instability.

Numerous recent studies have focus on developing effective weight initial-
ization procedures, both to ensure gradient stability during training and to
accelerate the learning process. The authors of [49] devised the Xavier or
Normalized Initialization, whose formulation is:

V6 V6 )

Vg F g /g g

(2.12)

WNU(—

where n; is the size of the j-th layer while ¢/ is the uniform distribution.
Another frequent technique is to employ a pretrained neural network that

has previously learned to extract powerful and informative features as a start-

ing point for learning a new task. The bulk of pretrained networks in the
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context of CNNs (which will be discussed in Section 2.3) are trained on the
ImageNet database (proposed in [50]). These networks have been trained on
massive amounts of data and can be utilized as a starting point for weights,
resulting in a more rapid and straightforward training process than beginning
from scratch.

2.2.9 Overfitting and Regularization

Overfitting is a data science notion that refers to a situation in which a statis-
tical model fits perfectly to its training data. When this occurs, the algorithm
is unable to execute accurately on unseen data, negating the method’s goal.
In fact, the ability of a model to generalize to new data is ultimately what en-
ables us to use machine learning algorithms to make predictions and classify
new data. When machine learning algorithms are developed, they are often
trained using a sample dataset. However, if the model is trained for an ex-
tended period of time on sample data or if the model is very sophisticated, it
can begin to learn about the dataset’s noise or irrelevant information. When
a model memorizes the noise and becomes excessively similar to the training
set, it gets overfitted and it becomes incapable of generalizing well to new
data. If a model is unable to generalize adequately to new data, it will be
incapable of performing the classification or prediction tasks for which it was
designed. Low error rates and a large variance indicate overfitting. To avoid
this type of behavior, a portion of the training dataset is often set aside as
the "test set" to ensure that the model does not overfit. If the error rate of
the training data is low while the error rate of the test data is high, this in-
dicates overfitting, as it can be seen in Figure 2.12. If overtraining or model
complexity results in overfitting, a sensible preventative approach would be
to either interrupt the training process sooner, often known as early stopping
or to lower the model’s complexity by removing irrelevant inputs.
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Figure 2.13. Optimum stopping condition to avoid overfitting

However, if you halt too soon or eliminate too many critical data, you risk
encountering the reverse problem and underfitting your model. Underfitting
occurs when the model has not been trained for a sufficiently long period of
time or when the input variables are insufficiently significant to establish a
meaningful relationship between the input and output variables. In compari-
son to overfitted models, underfitted models exhibit a high degree of bias and
less variance in their predictions. This demonstrates the bias-variance trade-
off that happens when an underfitted model becomes overfitted. While the
model’s bias decreases as it learns, its variance may grow as it starts overfit-
ting. When fitting a model, the objective is to locate the sweet spot (Figure
2.13) between underfitting and overfitting, enabling the model to establish a
dominating trend and be applied broadly to new datasets. There are a num-
ber of possible strategies for avoiding overfitting and increasing the model’s
generalizability. To mention some, one could apply the previously mentioned
early stopping, increasing the dataset size (where possible) or using data aug-
mentation to increase the amount of data by adding slightly modified copies
of existing data or newly created synthetic samples. Another strategy is regu-
larization, which constrains the model to avoid excessive complexity. Weight
decay is a typical regularization strategy that consists in including a penalty
term in the cost function (cost = loss + penalty). The additional term, in
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Figure 2.14. Example of dropout effect

particular in the L2 case is defined in the following:
A 2
L2penaity = 2 Z W (2.13)

it encourages the sum of the squares of the parameters to be small, whereas
the L1 penalty penalizes the sum of the weights’ absolute values as illustrated
in the following equation:

A
LLpenatty = 5 3 i) (2.14)

where ) is the weight for the penalty. Finally, another well-known normaliz-
ing strategy is dropout, which refers to the practice of setting to zero units,
i.e., neurons, during the training phase of a randomly chosen set of neurons.
This implies that these units are not taken into account during a given for-
ward or reverse pass (see Figure 2.14). More precisely, during each training
stage, individual nodes are either eliminated from the network with proba-
bility 1 — p or retained with probability p, resulting in a smaller network;
also, the incoming and outgoing edges to a dropped-out node are erased.

2.2.10 Batch Normalization

During the training stage of neural networks, as the parameters of preceding
layers change, the distribution of inputs to the current layer also changes,
requiring the current layer to constantly readjust to new distributions. This
is a particularly serious problem for deep networks, because tiny changes in
shallower hidden layers are amplified as they propagate through the network,
resulting in considerable shifts in deeper hidden layers. Internal covariate
shift (as stated by the authors of [51]) is the term used to characterize this
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effect on the distribution of inputs to internal layers during training which is
caused by the distribution of each layer’s input changes after each training
step as a result of the previous layer’s weights being updated. A frequently
used technique for mitigating the impacts of internal covariate shift is to
employ a slower learning rate. This technique, however, has the disadvantage
of greatly slowing down the training process. Given that a neural network’s
input is often normalized, the authors of [52] advises normalizing the input
of hidden or output layers as illustrated in the following equation:

fen(x) £ (x—p) 0o (2.15)

with @ being the element-wise division and g and ¢ being the mean and the
standard deviation of the features:

i = Elz;]

o; =\/0 + Var|z;]

with 0 as a small number in order to avoid division by zero in the normal-
ization phase. During training, statistics are produced for the current batch,
and at test time, they can be used to infer for single samples using previ-
ously gathered data. Due to the fact that batch normalization might lower
a model’s expressive ability, it is often formulated as:

fan(x) 2v[(x—p) 00| —B (2.17)

This formulation allows for any mean and variance in the output features,
but both learnable values (y and B) are inferred as single parameters for
optimization, preserving the benefit achieved through batch normalization.
Apart from lowering internal covariate shift, batch normalization is claimed
to have a lot of additional benefits. This additional function enables the
network to operate at a faster learning rate without experiencing vanishing
or exploding gradients. Additionally, batch normalization appears to have
a regularizing impact, enhancing the network’s generalization qualities, ob-
viating the need for dropout to minimize overfitting. Additionally, it has
been discovered that using a batch normalization strengthens the network’s
resistance to diverse initialization schemes of weights and learning rates.

(2.16)

2.3 Convolutional Neural Networks

Convolutional Neural Networks, or CNNs, are a subset of neural networks
used to analyze data with a known, grid-like topology, as stated by [53].
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Time series data, for example, can be thought of as a 1D grid with samples
taken at regular time intervals, while picture data can be thought of as a
2D grid of pixels. Convolutional networks have proved enormously success-
ful. In fact, the first difficulty that multilayer perceptrons encounter when
working with images is that their completely connected structure introduces
an enormous number of parameters. Furthermore, MLPs lacks in capturing
spatial information, which prevents the network from taking into account
the location of pixels in the image. The term "convolutional neural network"
derives from the basic operation they use, which is called "convolution". It
is, basically, a systematic process in which two sources of information are
combined, an operation that transforms one function into another. Convolu-
tions have been used in image processing for a long period of time, mainly to
blur and sharpen images, but also to conduct other operations (e.g. enhance
edges and emboss).

2.3.1 Convolutional layer

To impose a pattern of local connection between neurons in neighbouring
layers, CNNs adopt convolutions. In particular, convolutional layers perform
a convolution on the input and transmit the result to the following layer.
Convolutions work through a certain number of filters or kernels sliding over
the incoming data and multiplying it element by element. The result is
achieved by adding all the elements of the multiplication result, see Figure
2.15. Mathematically, the result of a convolutional layer is obtained through
the following formula:

conv(p, q ZZf (6.) L (i4p.j+q) (2.18)

where f is the filter, x is the input image and conv is the resulting feature
map. The indexes p and ¢ are used to move on the input image (and refers to
where the filter is on the input image) while ¢ and j are used to iterate over
the filter’s dimensions, multiplying each weight by the corresponding value of
the input image’s pixel. The kernel will repeat the operation for each point
it slides over, and because there are more kernels, there will be more output
feature maps, all of which will be piled together. Take note that the filter’s
weights are spread throughout the entire image. This technique, intuitively,
allows us to extract certain local characteristics from the input, and indeed,
the output matrix is referred to as a feature map. Finally, three hyperparam-
eters regulate the spatial organization of the output volume: depth, stride,
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Figure 2.15. Example of convolution operation

and padding. The depth parameter specifies the number of filters we want to
utilize, which corresponds to the number of feature maps we will have. The
stride parameter determines of how many pixels is the filter moved while slid-
ing across the image. The padding is used to increase the dimensions of the
input with a variety of techniques (e.g. zero padding in images, adding zero
pixels to the input data). Through the use of these three hyperparameters
(D, S, and P), the dimension of the filter (H; x W) and the dimension of
the input (e.g. RGB picture C' x H x W), the following simple formula can
be used to regulate the output’s proportions:

H-—-H 2P
Hout = A * +1
S
— 2P
W _WoWpr2p (2.19)
S
Cvout =D

2.3.2 Pooling layer

A pooling function replaces the output of a network at a particular point
with a summary statistic of the network’s adjacent outputs. The max pool-
ing method, described in [54] (see Figure 2.16, for example, returns the maxi-
mum output within a rectangle region. Additionally, the average of a rectan-
gle neighborhood, the L2 norm of a rectangular neighborhood, or a weighted
average based on the distance from the central pixel are all popular pooling
functions.
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Figure 2.16. Example of max pooling

In each scenario, pooling contributes to the representation becoming ap-
proximately invariant to modest input translations. Invariance to transla-
tion implies that when the input is translated by a tiny amount, the values
of the majority of pooled outputs remain unchanged. Invariance to local
translation might be a highly beneficial trait if we are more concerned with
the presence of a feature than with its precise location. When the number of
parameters in the subsequent layer is proportional to the size of its input (as
when the subsequent layer is fully connected, which will be seen in Section
2.3.3, and based on matrix multiplication), this reduction in the input size
can also result in increased statistical efficiency and decreased memory re-
quirements for storing the parameters. Pooling is critical for many jobs since
it allows for the management of inputs of varied sizes. For instance, if we
want to identify photographs of varying sizes, the classification layer’s input
must be fixed in size. This is typically performed by adjusting the amount
of the offset between pooling areas such that the classification layer always
receives the same number of summary statistics regardless of the size of the
input. For example, regardless of the image size, the final pooling layer of
the network may be programmed to produce four sets of summary statistics,
one for each quadrant of the image.

2.3.3 Fully Connected layer

Following feature extraction (which is mostly accomplished through convo-
lutional and pooling layers), we must combine the highest-level abstractions
and relationships to take the final output decisions. This can be accom-
plished using a fully connected (FC) layer. The fully connected layers learn
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a (potentially non-linear) function between the convolutional layers’ output
high-level features. Fully connected layers in a neural network are those com-
ponents responsible of connecting the input from one layer to each activation
unit in the following one. As such, they can be defined as a particular type
of multilayer perceptrons.

2.4 Residual Neural Networks

As models become deeper and more complex, it becomes increasingly difficult
for the layers to transport information from shallow layers to deeper layers,
and the information is lost. This is referred to as the degradation problem. In
fact, the authors of [3] demonstrated empirically that the classic CNN model
has a maximum depth threshold (see Figure 2.17). As network depth in-
creases, accuracy becomes saturated and then rapidly declines. Surprisingly,
such degradation is not due to overfitting, because adding additional layers
to a sufficiently deep model results in increased training error. However, the
relevance of network depth has been clear since 2012, when the authors of
[55], for the first time, showed the potentialities of Deep Convolutional Neu-
ral Networks thanks to the performance obtained by their model (AlexNet)
that outperformed manual feature learning on the ImageNet. Additional lay-
ers are important to gradually acquire increasingly complicated properties.
The first layers acquires knowledge of edges and then, going more in depth,
shapes, objects, eyes and so forth. In addition to that, it is possible to see how
increasing the model’s depth has a significant impact on its performance also
through the works done by [56, 57]. To address the degradation problem and
allow more complex models, the authors of [3] proposed residual networks
operating via shortcut connections. The building block for these types of net-
works is depicted in Figure 2.18, where the concept is explained. Formally,
expressing the the desired underlying mapping as H(x), the stacked nonlin-
ear layers suit another mapping F(x) := H(z) — x. The initial mapping is
converted to F(x)+x. [3] suggest this change through the idea that optimiz-
ing the residual mapping is more straightforward than optimizing the initial,
unreferenced mapping. F(z)-+ x can be implemented using feedforward neu-
ral networks with shortcut connections. The term shortcut connections refers
to those that bypass one or more layers. In this scenario, the shortcut con-
nections simply conduct identity mapping, with their outputs being added to
the stacked layers’ outputs. No additional parameters or computational com-
plexity are added by identity shortcut links. This reformulation is inspired
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Figure 2.17. Training error (left) and test error (right) on CIFAR-10 with
20-layer and 56-layer “plain” networks. The deeper network has higher
training error, and thus test error. [3]
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Figure 2.18. Residual block [3]

by the seeming paradoxes around the degradation problem. The degradation
problem implies that solvers may encounter difficulties approximating iden-
tity mappings using many nonlinear layers. If identity mappings are optimal,
solvers can simply drive the weights of the many nonlinear layers toward zero
to approximate identity mappings using the residual learning reformulation.
While identity mappings are unlikely to be optimal in practice, our reformu-
lation may help precondition the problem. If the optimal function is closer to
an identity mapping than to a zero mapping, finding perturbations with ref-
erence to an identity mapping should be quicker for the solver than learning
the function as a new one. Finally, in [3] more architectures are suggested
with a total of 18 to 152 levels. Each of the recommended networks is com-
posed of many stacked residual blocks. The one that is most relevant to this
work is the model with 50 layers, known as ResNet50, however, for spatial
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Figure 2.19. ResNet-18 feature extractor

reason in Figure 2.19 it is shown just ResNet18.
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Chapter 3

Action Recognition from
videos

In this chapter we give an overview of the main task faced in our work,
focusing on the achievements reached in this field in the recent years.

3.1 Task

Action Recognition is a classification task comparable to the well-known
object recognition task performed on images. The objective is to predict the
class to which a segment of a video belongs. The temporal interval of each
segment is known a priori. In principle the action recognition task could also
be performed for images but many actions would not be distinguishable from
one another: for example the actions “pull the door” and “push the door”
can be easily recognized if the temporal reference is given and this is only
possible if we are dealing with videos and not images.

While object recognition has become more and more refined, the current
architectures tackling action recognition have not yet attained optimal re-
sults. This is certainly due to a greater difficulty of this task that, in addition
to a modelling of spatial information, also requires a modelling of temporal
information. Many other obstacles must also be tackled:

« handling videos instead of images is computationally expensive, requires
powerful hardware and this can also cause more overfitting problems and
long training time;

o the videos to classify are not of a fixed length so the developed model
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Cricket bowling  Skate boarding Cutting in kitchen
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Stretching leg Riding a bike Playing violin Dribbling basketball

Figure 3.1. Example frames from videos in popular action
recognition datasets [4].

have to deal with different temporal extensions;

o the videos may have been registered not in a controlled environment and
this can result in blundering background, different lighting conditions,
low quality frames or even occlusions.

If on one hand it is true that for the action recognition task the label is
an action, things may vary when employing different datasets. In fact, re-
cently, several new datasets are designed with finer-grained action labels.
An in-depth analysis in this sense will be given in the chapter describing
the used dataset in our work. Automatically recognizing the content of a
video, or, more precisely, the activities represented in it, is not only valu-
able for organizing massive video datasets. There can be positive sides in
a countless number of other applications such as assistance systems (a tool
could alert someone if an elderly person falls and is alone in that moment),
video surveillance (a system could automatically stop a train if it recognize
a person falling on the track) or human-computer interactions (a film could
automatically paused if the person who is watching it temporarily leaves the
room).
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3.2 Third Person Action Recognition

Following the success of image recognition, detecting actions in videos seemed
a natural development, particularly considering the massive amount of videos
published on the Internet every day. While the inclusion of the time di-
mension might aid in action discrimination, it also represents a significant
challenge to be faced.

Prior to the advent of deep learning, hand-crafted features were the state
of the art in this field. The standard pipeline started with the extraction of
the features. Then, they were processed or encoded differently to improve
their quality, and finally a classifier (SVM most of the time) performed the
prediction. Following the creation of larger and more complex datasets and
due to the deep learning’s ongoing progress with images, the deep learning
approach began to be used also to perform action recognition of videos.
At the beginning, frame level features, extracted with CNNs pretrained on
image datasets, were used instead of the traditional hand-crafted ones. The
drawback of this naive method was the lack of explicit modelling of the
temporal dimension. Later on, several attempts were made to employ CNNs
trained in an end-to-end fashion and this resulted in a total replacement of
the old conventional pipeline.

In the following, we present an overview of the most popular techniques
and architectures in the field.

Two-stream networks. This method has the advantage of using different
data modalities which often bring orthogonal information to the RGB data
stream (for more details read Section 3.5). In [5] they propose this kind of
architecture. Raw video frames are fed as input to the spatial stream with
the aim of extracting visual features. The temporal stream, instead, is able
to extract motion information by receiving optical flow images obtained by
scaling the components of the estimated flow to a [0, 255] range.

Deeper architectures. The advancement in Deep Learning has brought to
the rise of deeper architectures which, however, can bring to overfitting issues.
Wang et al. [58] established some good practices (e.g., synchronized batch
normalization, large dropout, cross-modality initialization) to tackle these
problems. Thanks to this research, they managed to develop a two-stream
network using VGG16 model [57].

Recurrent neural networks. Considering a video like a temporal sequence
is a perspective which opens to the usage of Recurrent neural networks,
particularly Long Short-Term Memory (LSTM) [59].

Segment-wise approaches. Two-stream networks are not able to retain
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information spanning over large temporal windows. In [6] Wang et al. in-
troduced an architecture to implement video-level action recognition taking
into account the entire input video. First, the whole video is divided into
segments uniformly scattered over time. Then, from each segment, a single
frame is taken and fed into the network whose weights are shared among all
the input frames. The final prediction is reached via consensus techniques
over the intermediate predictions (e.g., max or average pooling, bilinear en-
coding).

3D CNNs. The usage of this networks comes into play when a video is
perceived like a 3D tensor (2 spatial dimension and 1 time dimension). [60]
gave birth to this approach in 2012 but a turning point took place only in
2017 with I3D network [7].

3.3 Egocentric Action Recognition

In the last years, with the rapid spread of wearable devices, a new perspective
has emerged: the egocentric one. In this case, rather than using a fixed
camera to record a scene, as it is done when producing films, egocentric
videos are registered from the perspective of the individual who is performing
a certain action. Usually, the wearable cameras are mounted on the head of
the participant. Differently from third-person videos, in this case objects and
actions can occupy a greater portion of each frame. Nevertheless, egocentric
domain poses many other challenges. Indeed, the body or head motion of the
participant constitute a noise in the global scene recording. Besides, during
the video, the hands could sometimes obscure relevant objects or some actions
could occur while the participant is not directly looking at them with the
camera. The objective of the egocentric domain is to illustrate how humans
interact with the surrounding world and, as a result, it would be possible to
build supervisor models able to check whether robots are correctly interacting
with the environment while performing some human actions. This research
area could bring several benefits in delicate applications such as the one in
the patients care field.

Fine-grained action recognition is an extension of the action recognition
task introduced so far which deals with very specific labels. It is the problem
of distinguishing very specific actions such as "cutting a tomato" or "tighten-
ing a bolt" instead of coarse-grained interactions such as "preparing a meal"
[29]. This task further requires techniques able to reason not only about the
general action performed and the principal object of interest but also on the
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Figure 3.2.  Overview of the mentioned architectures employed in the context
of Action Recognition [4]. From top to bottom: two-stream networks [5], TSN
[6], 13D [7], Non Local [§]
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way the participant is interacting with the environment and with surrounding
items.

The most employed architectures and techniques used in the egocentric
context are derived from the third person one (more details in Section 3.2).
2D networks [5, 6, 61, 11, 62], 3D ones [63, 64, 65, 5] and LSTM [66, 67,
68] have been successfully adopted to solve First Person Action Recognition
tasks. The architectures involved in our novel benchmark are detailed in
further sections.

3.4 EPIC-Kitchens Dataset

In this section we provide the reader with a detailed description of the EPIC-
Kitchens dataset [9] which is the dataset we have chosen for our work and
its extension is one of our contributes.

In the last decade, significant improvement has been made in a variety of
Computer Vision related fields, including object detection and image classi-
fication. This success has been possible thanks to the advancements in the
deep learning architectures and the availability of new large image bench-
marks such as ImageNet [50], ADE [69] or VOC [70]. This success, however,
has not been seen in the video understanding field since only a small number
of annotated video datasets were available to the research community. Only
recently this has begun to change with the release of many new datasets:
most of these consisted of a collection of short videos, each recording a single
action performed by the user. A small turning point came with Hollywood
in Homes [71] because this dataset, unlike the previous ones, was an attempt
to collect longer videos showing humans performing the most varied actions.
The issue with this approach is that the videos are recorded in a scripted
way (i.e., participants sequentially follow a series of instructions) and this re-
sults in less natural videos which, in addition, do not represent multi-tasking
actions which are typical of human behavior.

EPIC-Kitchens [9] is the largest egocentric dataset and it includes videos
recorder in the kitchens of 32 participants from 10 different countries. All
the recordings are performed using a head-mounted Go-Pro able to capture
both video and audio. The participants were asked to take a video every time
they entered the kitchen for at least three consecutive days and the recording
was only stopped before leaving the room. All these gimmicks have allowed
the creation of an extremely rich and varied dataset, from many points of
view: the multi-ethnicity of the participants made it possible to grasp highly
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Figure 3.3. Frames from the 32 environments[9]

diverse traditions, cooking styles and kitchen habits. The non-scripted ap-
proach has led to a dataset which does not show just ordinary human actions
involving the interaction with a single object but rather on natural multi-
tasking which occurs, for example, when a person washes some dishes while
cooking. Besides, being able to recreate a scenario similar to what actually
occurs in the real world, EPIC-Kitchens gives a unique and novel perspective
on how individuals interact with objects taking into account their attention,
their intention (which may change over the course of the recordings) and
even unexpected events. This makes EPIC-Kitchens a more realistic but
also more challenging dataset. According to [9], EPIC-Kitchens has videos
for a total of 55 hours and 11.5 millions of frames along with bounding boxes
surrounding the objects the user interact with. Another peculiarity of this
dataset concerns the employed annotation technique: participants were asked
to narrate their own recordings afterward and this approach can reveal the
actual intentions of each user. In fact they are the more qualified than an
external observer to label the recorded actions; besides, the participants are
not disturbed by this activity while they are taking videos since the authors
opted for a post-recording narration [9]. After this coarse annotation, the
authors collected manual transcriptions and start /end timestamps of each ac-
tion using Amazon Mechanical Turk. The free text annotation performed by
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Figure 3.5. Example of object annotation [9]

participants consists of a huge variety of nouns and verbs. This means that
the same action could be referred to using two different verbs by two different
participants. In order to be coherent with the typical multi-class approach
where each sample of the dataset is classified as belonging to a single class, the
authors tried to cluster all the collected verbs into semantic classes: firstly,
they tried to obtain automatic clustering via WordNet/Word2Vec combined
with Part-of-Speech techniques to distinguish nouns and verbs but, in the
end, they performed a manual clustering as a result of the many issues en-
countered with the first approach. EPIC-Kitchens is an innovative dataset
also because the authors decided to monitor the community’s progress in the
First Person Action Recognition field proposing a series of challenges annu-
ally. Besides, this dataset is allowing deeper development in the application
of multi-modal techniques and this is a novel aspect not to be overlooked.
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Figure 3.6. Frequency plot of verb classes in EPIC-Kitchens dataset [9].

3.5 The multi-modal approach

In this section we provide an overview of the multi-modal approach which is
a set of techniques that allow a model to take into account a variety of input
modalities to solve a task. This approach promises more robustness [72] and
it is fundamental in real-world scenarios.

3.5.1 Multi-modal learning

In recent years, a variety of deep learning algorithms focusing on first person
action recognition have been created. Several researches have been conducted
in an attempt to improve the performances employing two or more data
sources (e.g., audio and video) [73, 74, 72]. The interest towards multi-
modal deep learning is growing more and more and this is aided by the
availability of huge multi-modal datasets collected through the employment
of many sensors [10] such as depth cameras.

The process of extracting features from more data streams, of different
nature, living in different spaces, and learning how to combine and fuse
them is referred to as multi-modal learning. The research in this sense has
grown significantly during the previous decade in a variety of fields, most no-
tably Computer Vision [10]. The rising capacity of deep learning algorithms
and multi-modal data streams has led to the creation of models capable of
uniformly processing, integrating and interpreting heterogeneous data. Un-
structured real-world data may take on a variety of formats, referred to as
modalities, which frequently include visual, audio and even textual infor-
mation [10]. The advantage of this approach is that in many situations, a
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Figure 3.7. General structure of a bimodal CNN receiving RGB and depth
images as input modalities [10].

collection of disparate inputs from different modalities and sensors might pro-
vide extra knowledge about the context of a task: for example audio-visual
modalities, if correctly combined, can be complementary to each other in
many contexts. However, while integrating multiple modalities to increase
the accuracy of a model is an appealing approach, the challenge is to isolate
possible noise and avoid conflicts between different input streams minimizing
biases associated with their heterogeneity. Besides, the present literature’s
dearth of labelled multi-modal datasets might result in less accuracy and
flexibility. What is encouraing, though, is that day by day there is more and
more visual data available and this is the result of the widespread of devices
of any sort. This means that it will be more and more frequent the collection
of data from several sensors resulting in significantly better results than the
ones obtained using a single input data flow. The potentiality hidden in the
multi-modal approaches can be unlocked also thanks to the tecnhnological
progress that has led to very fast and powerful GPUs.

The multi-modal approach has been widely employed in literature [7, 29,
6, 75, 76]. RGB data streams are usually combined with optical flow ones
since the latter encode motion information which can be complementary to
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the former. While optical flow has been shown to be a powerful modality in
the action recognition context, its computational cost prevents it from being
employable in online applications. This issue is addressed in more ways.

e There can be adopted strategies which avoid computing optical flow at
test time still preserving the performances of two-stream architectures.
In [77] this is done training a 3D CNN using RGB data minimizing the
distance between the features from the layer before the network’s final
fully connected layer and the features from the motion stream.

 Original approaches using RGB (or, in general, single-stream architec-
tures) can be studied. The network developed in [68] is able to jointly
exploit motion and appearance knowledge from a RGB input stream.
This is done by exploiting a self-supervised motion task at training time.

e« RGB can combined with other modalities other than optical flow. For
example, audio modality has been demonstrated to be effective in the
egocentric context [30, 78, 79].

3.5.2 Fusion algorithms

In order to exploit the information carried by multiple data streams, attention
must be payed in the techniques used to create a joint embedding. This is
a delicate and crucial task. For example, an image can be difficultly defined
using non-visual concepts while a textual representation is, by nature, more
sparse and so, combining these two modalities in an efficient way is not an
ordinary task. This is the reason why much importance must be given to the
development of multi-modal fusion approaches.

There are three common techniques [10] used to tackle the fusion of dif-
ferent data streams.

e FEarly fusion: low-level features, extracted separately for each modality,
are fused before the employment of a classifier which gives a prediction
basing only on the fused features. The extracted features are usually
very different in their appearance.

e Late fusion: each modality is treated separately performing both a fea-
ture extraction and a classification. Afterwards, the different predictions
can be combined to give a final prediction using several techniques such
as majority voting [80] or low-ranking [81].
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Figure 3.8. Example of a typical multi-modal pipeline with three
input modalities [10].

o Hybrid fusion: in this case the different modalities are first treated with
an early fusion approach and then with a late fusion one. As a result
different predictions scores are created and they are finally combined
together.

3.5.3 Pitfalls and promises

Deep learning has demonstrated its capacity to exceed human knowledge in
a variety of domains over the last decades [10]. These algorithms employ a
huge quantity of nonlinear processing units to extract and manipulate feature
vectors from raw input [10]. The tendency towards the employment of deep
learning in a broader variety of applications has grown recently [10] and this
means that it will be more and more important to develop algorithms directly
usable in real-life contexts. Indeed, multi-modal deep learning, along with
the most innovative scene-content analysis techniques, is still limited in this
respect and the community is pursuing a more favourable trade-off between
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Figure 3.10. Representation of late fusion approach [10].

the complexity of the models, the computing power need, the memory con-
sumption and the real-time processing capability [10]. The main challenges
can be summarized as reported in [10]:

o Conflicts between different data sources can arise since they can be pro-
vided in a wide variety of forms. This is an obstacle for the extraction
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Figure 3.11. Representation of hybrid fusion approach [10].

of useful features.

o Large datasets are needed or the performances of the model would be
severely affected by this lack.

e The primary challenge remains the attempt to minimise the computa-
tional power required by the complex multi-modal algorithms without
affecting their accuracy in order to make them more scalable and more
ready for real-time and real-world applications.

In the context of multi-modal FPAR, the most common datasets include
the visual modalities of RGB, depth and flow. The attention on these three
modalities is justified by the fact that it has been demonstrated, in many
researches [10, 82|, that their combination produces the best results reached
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in literature. The optical flow modality was introduced by Horn et al. [83] in
1981; it captures the motion in a video and the fact that this kind of data has
been successfully employed for more than three decades is a demonstration
of how motion is a precious source of information useful in solving many
real-world issues. The optical flow estimation relies on two assumptions [82]:

e Brightness constancy constraint. Along the motion trajectory, the pixel
intensity remains constant. In formulas, if a pixel is moving of a quantity
Axz and Ay respectively along the x-axis and y-axis in a time interval
At, it holds true that

I(z,y,t) = I(z + Az, y + Ay, t + At) (3.1)
where [ is the brightness.

o When motion occurs, it is small. In the video we are handling the motion
must be smooth and it locally appears as a translation; this assumption
allows us to use the Taylor series expansion on I.

ol ol ol
I(x + Az, y+ Ay, t + At) = I[(x,y,t) + %AJZ + a—yAy + EAt (3.2)

Substituting 3.1 into 3.2 and dividing all the terms by At we obtain the
following equation:

ol ol ol

P a—yvy +o =
where V,, and V), are the two components of the optical flow of I [84]. To
determine the optical flow, an extra set of equations is required: several
methods in literature introduce additional constraints in order to estimate
the real optical flow.

The optical flow is a robust modality when changing domain [30] because,
unlike RGB modality, it does not focus on the colors or textures of an image
(features that can change a lot from one context to another). However, the
big drawback is that it cannot be used in real-time applications. This is one of
the reasons why, in our work, we have focused on the event modality (which
will be thorough in the next chapter). In fact, this modality appears similar
to the flow modality as we can see in Figure 3.13 and it has many practical
advantages that make it employable for real-time applications: events are
simply generated by particular cameras.

0 (3.3)
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Figure 3.12. Example of flow modality sample from EPIC-Kitchens dataset.
It is not too much influenced by the appearance of the images.

Figure 3.13. How event modality looks like once processed (notice the sim-
ilarity with Flow modality).
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3.6 Architectures

The recent advancements in convolutional neural networks and the avail-
ability of large-scale video benchmark datasets has brought deep learning
approaches to dominate the area of video action recognition by utilizing 2D-
CNNs, as in [12, 6, 85], 3D-CNNs such as [7, 86, 8], a combination of the two
(for example [87, 62]) or bulding on already existing architectures structures
which grasp the temporal information such as [11]. While 2D CNNs exe-
cute temporal modeling independently of 2D spatial convolutions, their 3D
counterparts use 3D convolution to learn both space and time information.

For the sake of this work, we will briefly describe the models used in the
benchmarking, noting that their arrangement for multi-modality and event
data will be discussed in the thesis’s second part.

3.6.1 Temporal Segment Network

According to the authors of [6], there is a substantial obstacle to using CNNs
for video-based action recognition: comprehending video dynamics needs
observation of long-range temporal patterns. Numerous approaches rely on
intensive temporal sampling with a fixed interval of sampling (dense sam-
pling). When used to prolonged video sequences, these algorithms would
incur an excessive computing cost, limiting their application and introducing
the risk of missing vital information for videos that exceed the sequence’s
maximum time. To address this issue, in [6] it is introduced the temporal
segment network (TSN), which aims to anticipate at the video-level by utiliz-
ing the visual information included in the entire video. To do this, TSN uses
a sparsely sampled succession of video samples, each of which generates its
own early prediction of the event. Finally, a consensus is reached among the
snippets in order to make the final video-level forecast, see Figure 3.14 for
a graphical representation. Mathematically, if we have a video V' which has
been divided in K segments 57,55, ..., Sk of equal duration then the results
of the prediction is computed as follows:

TSN(Tl, TQ, ...,TK) = %(g(ﬁ(Th W),F(TQ; W), ceey ..F(TK, W))) (34)
where:

o (T1,T5,...,Tk) is the sequence of snippets, each of which has been sam-
pled from its corresponding segment Sg;
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Figure 3.14. Temporal segment network. In this case the ultimate forecast
is created by fusing predictions from more modalities [6]

o F(Tyx; W) is the function obtained by passing the snippet T} through
the CNN with weights W;

+ G combines the outputs of the snipped passed through CNNs (F(T}; W))
to obtain the final consensus which will be called G;

o H predicts the probability of each action class for the whole video. In
the case of the [6] the authors have decided to use a classical Softmaz
function);

In terms of the loss on the final consensus, when a conventional cross-entropy
loss is considered, it becomes:

C C
Ly,G)=—> i (Gi —log ) exp Gj) (3.5)
i=1 j=1
with C' as the number of possible outputs/actions and y; the true label for
sample i. The consensus functions G employed in this work are straightfor-
ward aggregation functions (maximum, evenly and weighted averaging) that
infer the final consensus from the scores of the same class on all the snippets.
If the consensus function is chosen correctly, the segment network is dif-
ferentiable, allowing for the simultaneous optimization of model parameters
utilizing all snippets via the following loss function:

ac(y,(;)_a,ci oG  OF(Ty)
OW  0G [= 0F(T) OW
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Figure 3.15. The Inflated Inception-V1 architecture [7]

In this way TSN can learn parameters from the entire video and not just
from a single snippet.

3.6.2 Inflated 3D ConvNets

Beginning with one of the most well-known models used in the field of ac-
tion recognition, Inflated 3D ConvNets (I3D) from [7], which has served as a
'gatekeeper’ baseline against which any newly published approaches can be
compared. Given that pre-training always improves performance, the goal of
I3D is to leverage pre-trained models on a variety of image datasets in order
to achieve excellent performance in the video domain as well. 13D builds on
existing image classification architectures, but inflates their filters and pool-
ing kernels (and optionally their parameters) into three dimensions, resulting
in extremely deep, naturally spatio-temporal classifiers. 3D CNNs appear to
be a natural approach to video modeling; they are similar to ordinary con-
volutional networks but include spatio-temporal filters. They share a crucial
property: they generate hierarchical representations of spatio-temporal data
directly. However, the main disadvantage of these models is that they con-
tain many more parameters than 2D CNNs due to the addition of the kernel
dimension, making them more difficult to train. Additionally, they appear
to preclude the benefits of ImageNet pre-training, and hence earlier works
like [60, 88, 89, 90] has created and trained rather shallow customized ar-
chitectures from scratch with not good performances. Thus, rather than
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Figure 3.16. Details on the inception submodule [7]

restarting the procedure for spatio-temporal models, the goal is to simply
move successful image classification models in two dimensions (2D) to three
dimensions (3D) (3D CNNs). This can be accomplished by starting with a
two-dimensional architecture and expanding all filters and pooling kernels,
endowing them with a temporal dimension. Typically, filters are square, and
they are simply converted to cubic. Basically N x N filters become N x N x .
Even if the technique for expanding the filters and pooling kernels is straight-
forward, doing so would miss the purpose of reusing the parameters. Thus,
in addition to the architecture, the inflation logic is to bootstrap parame-
ters from ImageNet pretrained models. To accomplish this, consider how
a picture can be transformed to a (boring) video by continuously copying
it into a video sequence. The 3D models can then be implicitly trained on
ImageNet by meeting what is referred to in the paper as the boring-video
fixed point: the pooled activations on a boring video should be identical to
those on the initial single-image input. Due to linearity, this may be accom-
plished by repeating the weights of the two-dimensional filters N times along
the time dimension and rescaling them by dividing by N. This ensures that
the response of the convolutional filter is identical. Because the outputs of
convolutional layers are constant in time for boring movies, the outputs of
pointwise non-linearity layers, average and max-pooling layers are identical
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to those in the 2D case, and so the total network response respects the fixed
point for boring films.

3.6.3 Temporal Relation Network

The authors of [11], observing the relevance of temporal relational reasoning
for activity recognition on both short- and long-term timescales, propose a
new module, called Temporal Relation Network (TRN), with the aim to fill
this gap in the literature. It is used to characterize the temporal relationships
between video observations and is a generic and adaptable module that plugs
into any current CNN architecture. Starting from the definition of pairwise
temporal relation as it follows:

Ty = hy (Z go( fi, fj)) (3.7)

i<j

with V' being the input video, (fi, f2, ..., fn) being the features extracted by
a standard CNN from the corresponding n frames of the video, gs and hy
as the functions which fuse frames features at different levels. The authors
extended this concept to higher frame relations, e.g. 3-frame as it follows:

T3 = h, ( > gé(fi;fjafk)) (3.8)

1<j<k

Finally, all the previously mentioned notions are used for capturing temporal
relationships at multiple time scales, by accumulating all frame relations at
different scales in the following manner:

MTy(V) = To(V) + T5(V)... + Tn (V) (3.9)

where each relation term T, captures temporal relationships between d or-
dered frames and has its own hg(bd) and géd). A schematic example of the

module can be grasped from Figure 3.17.

3.6.4 Temporal Shift Module

The authors of [12] observes that the main problem of 2D CNNs is that,
on individual frames, they are incapable of accurately modeling temporal
information. While 3D CNNs can learn spatial and temporal information
concurrently but their high computational cost makes deployment on edge

53



3 — Action Recognition from videos

!‘:

Tlme

CNN /

O

go 96

mmmm 2-frame relation
= 3-frame relation
4-frame relation

Pretending to put something next to something

Figure 3.17. TRN module [11]

devices challenging; so they cannot be used for real-time online video recog-
nition. There are techniques for balancing temporal modeling and compu-
tation, for example, post-hoc fusion and mid-level temporal fusion. These
methods sacrifice low-level temporal modeling in favor of efficiency, but a
significant amount of important information is lost during feature extraction
prior to temporal fusion. The Temporal Shift Module (TSM) is designed
with the intention of shifting the activation channels along the temporal di-
mension, both forward and backward, see Figure 3.18. Indeed, consider a
1D convolution process with a kernel of size 3 and weights W = (wy, we, w3).
If the input X is a one-dimensional vector of indefinite length, the opera-
tion’s outcome can be expressed as Y; = w1 X; 1 + woX; + w3X;y1. Two
steps can be taken to decouple the processes required to achieve Y: shift and
multiply-accumulate. The input is shifted by —1, 0, +1 and multiplied it by
wi, we, ws, the sum of which is Y. The initial step shift can be performed
without the use of multiplicators. The second stage, on the other hand, is
more computationally expensive.

TSM’s idea is to move the time dimension and fold the multiply-accumulate
from the time dimension to the channel dimension, allowing for very low-cost
temporal reasoning. The primary concerns that arise from the use of such a
module are as follows:

e Decreased efficiency as a result of significant data migration. While
the shift operation does not require any computing, it does entail data
movement. Data mobility increases the memory footprint and inference
time on the hardware;
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Figure 3.18. Temporal Shift Module (TSM) functioning [12]

e Performance deterioration due to a reduced ability to model spatially.
By relocating a portion of the channels to neighboring frames, the infor-
mation contained in the channels becomes inaccessible for the current

frame, which may impair the 2D CNN backbone’s spatial modeling ca-
pabilities;

To address the first issue, a partial shift approach (e.g. 1/8 of the channels)
is used to reduce memory transfer costs dramatically. Then, as indicated in
Figure 3.19(a), a straightforward way to use TSM is to place it before each
convolutional layer or residual block (in-place shift). However, it impairs the
backbone model’s ability to learn spatial features, particularly when a high
number of channels are moved, as the information stored in the shifted chan-
nels is lost for the current frame. Thus, rather than inserting the module
in-place, it is placed inside the residual branch in a residual block to balance
the model’s capacity for spatial and temporal feature learning. This is re-
ferred to as residual shift and is seen in Figure 3.19(b). Residual shift can be
used to address the problem of poor spatial feature learning, as all informa-
tion contained in the initial activation is still accessible following temporal
shift via identity mapping.
There are two ways to achieve the final prediction:

o Offline model with bi-directional TSM: given a video V', we sample
T frames from the video Fi, ..., Fp. Following frame sampling, 2D CNN
baselines process each frame individually and then average the resulting
logits to produce the final forecast. The TSM model has the exact
same parameters and computing cost as the two-dimensional model. The
distinction is that TSM is added for each residual block, which permits
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Figure 3.19. Different ways of using TSM [12]

no-computational fusing of temporal information;

e Online model with unidirectional TSM: offline TSM bidirection-
ally changes a portion of the channels, requiring features from future
frames to replace those in the current frame. Rather of that, the online
model simply shifts the feature from prior to current frames (see Figure
3.18(c)), enabling online recognition with uni-directional T'SM;

3.7 Cross Domain Analysis

First Person Action Recognition is increasingly gaining the scientific com-
munity’s attention [67, 76, 30, 64]. This is due to the growing popularity
of wearable cameras along with the multiple applications that this topic can
have in real-world scenarios ranging from industry sector to assistive tech-
nologies. Besides, the release of the EPIC-Kitchens dataset [9] has greatly
encouraged and enhanced the research in First Person Action Recognition.

The convolutional neural networks are state of the art in this context
[29] and they can be divided into two categories: 2D [6, 12, 61, 11] and 3D
[7,63, 64, 65, 91] methods. The first crucial works [60, 88] used only the RGB
modality but in 2014, for the first time, a multi-modal approach was used
[5]: Simonyan and Zisserman faced the lack of motion features that occurs
when using only RGB data by adding a second input stream consisting of the
Optical Flow modality. It turned out that the latter approach outperformed
the former one: since then, the multi-modal approach, generally combining
RGB with optical flow or audio, has become the most popular technique
in First Person Action Recognition [29, 6, 9, 92]. Recently, more complex
architectures, detailed in the previous sections have been developed [12, 6,
8, 93].

The incredible interest in FPAR context is has also brought to light some
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Figure 3.20. Results of the 3 best models in 2019 [13] and 2020 [14]. A drop
in performances occurs when testing on unseen kitchens.

cross-domain issues: in fact when a model is trained in a certain environment
but used in a different one, we witness a big drop in performances because
the model has an intrinsic "environmental bias". This makes a model unable
to generalize on unseen domains that can be, for example, real-world sce-
narios related to important applications. This phenomenon is more evident
in egocentric settings than in third person ones and to have an idea of its
extent it is sufficient to compare the performances of the best model of the
EPIC-Kitchens challenges on seen and unseen domains [14, 13].

Figure 3.21. Example of 3 different kitchens in the EPIC-Kitchens dataset.
Differences in colors, textures and appearance cause the domain shift.

This issue, also called domain shift, has been addressed by several studies
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in literature especially with Unsupervised Domain Adaption (UDA) tech-
niques. UDA has the goal of making a model, previously trained on a la-
belled source domain, able to perform well on an unlabelled target domain.
These techniques are widely used in other vision tasks [94, 95, 96] and only
recently some improvements are being made in the FPAR context [31, 32].
Some works [33, 29] have also used a multi-modal approach for UDA.

Nevertheless, none of these approaches were designed to handle cross-
domain settings. Indeed, in the UDA settings, the target domain, even if
unlabelled, is avaiable at training time but this situation is not realistic
at all: in real-world contexts the target domain is often unknown or having
access to it in the model development phase could be very expensive. For this
reason, in this thesis, one contribution is the creation of a large benchmark
showing how different modalities perform when used in single- or in multi-
modal fashion in both intra- and cross-domain scenarios. We would like
to emphasize the fact that a benchmark should also analyze the ability of a
modality to generalize in order to provide a fair and trustworthy evaluation of
a model which takes into account its ability to generalize on unseen domains.
In particular, as will be clear in the second part of our work, we have focused
on the event modality which can be complementary to the RGB one (hence,
reducing the domain shift) since it holds motion information, Besides, the
event modality does not suffer from problems such as the high computational
power required which would make it impossible to use in online scenario as
it is, instead, for the Optical Flow modality.
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Chapter 4

Dynamic Vision Sensor

The purpose of this chapter is to provide an overview of neuromorphic ap-
proaches to computer vision: this new paradigm, inspired by brain struc-
tures, can lead to systems which are successful where conventional cameras
fail. The first section discusses the history of these novel devices, their func-
tioning, and their benefits, with a particular emphasis on the DVS camera.
Afterwards, in order to demonstrate the potential of this innovative way of
sensing, we report some interesting real-world applications and we describe
how events are treated in this work. The final section is devoted to describe
two architectures that we combined together in order to obtain the EPIC-
Kitchen dataset’s event extension. Even though not all the notions discussed
here find direct application in our work, it is crucial to provide the reader
with a comprehensive overview of this field so that he can better perceive
the rational behind the choices we made throughout the work.

4.1 Introduction to Neuromorphic Approaches
in Computer Vision

Traditional cameras collect visual information by recording frames at con-
stant rates. As a result of this functioning, redundant useless data are col-
lected: a frame is generated even if none of its pixels produce a brightness
change and this behavior is typical, for example, of the background pixels
in a scene. The consequence is that these devices are power hungry, require
large storage capacities, hence the frame rate will always be severely limited
by several technological constraints. The conventional cameras do not focus
on the motion which is instead critical in a large number of scientific fields.
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Figure 4.1. In a scene like this, conventional cameras would produce frames
with redundant data about the background, circled in red, while neglecting
the movement, circled in yellow, which is the core of the scene [15].

Neuromorphic Computer Vision has the objective to develop cameras able
to mimic the computational efficient behavior of retinas which are a good
example of how neuro-biological systems are able to asynchronously capture
relevant information at an higher temporal resolution with a lower energy
and memory allocation requirement [18].

4.2 History of Neuromorphic Devices

In 1991, in order to imitate the millions of point-to-point neural connections
in the biological systems, the Caltech Institute introduced the Address-Event
Representation protocol [97, 98] whose functioning is schematized in Figure
4.2.

According to AER standard, in an electronic camera designed to mimic the
retina functioning, each memory address is uniquely associated to a single
image pixel'! and they all share the same digital bus on which they can
asynchronously output events. The AER standard is, still today, at the base
of modern event cameras as we will explain in the further section.

The first imaging device embodying this protocol was the silicon retina

lin general applications, the memory addresses are associated to units asynchronously
spiking data
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Figure 4.2. A general schematization of AER, the protocol that allows mul-
tiple devices to use the same bus. The arbitrer assigns distinct addresses to
the neurons of the first device. When these neurons spike, the generated event
is sent to the shared digital bus and the second device is able to reconstruct
the information via decoder [16]

developed in 1991 by Mahowald and Mead [99]. A second milestone in this
journey was the introduction, in 2005, of a more realistic silicon retina never-
theless having some weaknesses that did not allow it to be fully exploitable in
real-world applications[100]. The turning point for what concerns practical
applications was given by the realization of the Dynamic Vision Sensors [101].
Over the last decade, several new sensors have been developed and they all
can be classified into two main categories based on how they operate.

The Temporal Difference devices are made of a matrix of independent
pixels that generate data only when there are brightness changes. In other
words, a pixel is triggered by an event occurring in its receptive field (e.g., a
pixel viewing a static scene will not provide any event to the camera). This
category is also known as event-based cameras and DVS falls into this class
of devices.

The second-class devices are made of pixels consisting of two subpixels:
the change detector (implemented by a DVS pixel) and the exposure mea-
surement module. In this architecture the first subpixel, activated when it
detects an illumination change, triggers the second circuit which measures
the absolute intensity of that pixel. Coupling these two modules, the camera
measures the absolute intensity of the changing pixels encoding this informa-
tion through the generation of two events: the brighter the illumination, the
shorter the time interval between them [21]. An example of this kind of de-
vices is the Asynchronous Time Based Image Sensor [102] whose architecture
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Figure 4.3. The architecture of the ATIS device showing the interaction
between the Change Detector module and the Exposure Measurement one.
The two diagrams in the middle refer to a camera pixel taken as example [17]

is depicted in Figure 4.3.

Nowadays, these devices are a commodity that all major companies around
the world can build or buy. This will hopefully enhance the research in this
sector since, despite the impressive progress made, biological retina is still
far ahead of event-based camera in terms of precise timing, dynamic range
and efficiency.

4.3 DVS Functioning

In this section we provide a more detailed description of the DVS camera
since the stream of events it generates is what we will aim to simulate at a
certain point of our work.

DVS are novel bio-inspired camera able to asynchronously detect pixel-
wise brightness changes called "events'. The result is a stream of data en-
coding time, pixel location and sign of the captured intensity changes. This
stream is recorded at a variable data-rate: in general, the quicker the mo-
tion, the more events are produced. More specifically, every time a pixel in
the camera detects a change in brightness that exceeds a defined threshold,
an event is sent from the pixel matrix using a shared digital bus regulated
with a multiplexing strategy [21]. A clear formalization of this process can

62



4 — Dynamic Vision Sensor

be found in [21]. A single event is so defined:

ex = (T, Yk, th, Pk) (4.1)

where (z, yx) is the coordinate of the pixel which generated the event at time
tr. In 4.1 the last value is called polarity p € {+1,—1} and encodes the sign
of luminosity change. For each event e; we can define the brightness change
detected by the pixel at time t; with respect to the last event occurred at
the same pixel at time ¢, — At:

AL(xg, Yk, te) = L(xk, Yk, te) — L(xg, yr, te — Aty) (4.2)

L =log(I) (4.3)

In the above equations L represents the logarithm of the photocurrent?. An
event is generated only if the brightness change exceeds a threshold C' deter-
mined by the DVS. Formally:

AL(zg, yr, tr) = prC (4.4)
Hence, the determination of the polarity:

e pr = 1 refers to an ON event after an increase in brightness;

o pr = —1 refers to an OFF event after a brightness decrease.

Depending on the C value, a camera can generate more or less events. As
a rule of thumb, the less ideal the lighting conditions of the recorded scene,
the higher C should be in order to prevent random noise from triggering
useless events. Digging into math, we can linearize equation 4.4 assuming,
for simplicity, a constant illumination [RFF 7]:

AL~ —VL-vAt (4.5)

This means that, considering small At, the change is produced by a bright-
ness gradient travelling with velocity v across the image and, applying the
dot product’s rule, in 4.5 we are demonstrating that the maximum rate of
event generation is reached when motion is perpendicular to an edge while no
event is sent after a motion parallel to it. It is important to emphasise that
what has been discussed so far is an ideal model of the DVS that does not
account for possible transistor noise and mismatch. An example of events
stream as output of a DVS sensor is depicted in Figure 4.4.

2electric current that flows through a photosensitive device
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Figure 4.4. On the right we can observe the events generated by DVS camera
put in front of an oscilloscope producing a spiral [18].

4.4 Advantages and applications

In this section we draw attention to the intrinsic technical advantages of
event cameras with respect to traditional ones. These features can lead the
way to novel and innovative real-world applications which were unfeasible
before.

4.4.1 Technical specifications

This neuromorphic approach in the data acquisition process provides sig-
nificant advantages over conventional sensors, particularly in low-light and
high-speed motion conditions. Indeed, their high pixel bandwidth? reduces
motion blur, a phenomenon which arises from their rapid and involuntary
movements caused by the user, and their wide dynamic range* makes them
an attractive alternative to traditional cameras in challenging robotics and
computer vision scenarios. Moreover, the low latency and low power con-
sumption of these novel devices enable their use in several new real-world
applications, especially related to the field of wearable devices. The afore-
mentioned peculiarities make them ideal for addressing well-known issues as-
sociated with the usage of wearable devices, such as continuous visual stimuli
and background clutter. Of course, like any physical transducer, some tech-
nological constraints are present but they do not undermine the efficiency of

Sevents are timestamped with microsecond resolution [21]

4it is the ratio between the maximum and minimum measurable light intensities and
for a DVS it is 140 vs. 60 dB of standard cameras [21]
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these devices in the applications I'm going to mention in this section. There
is a maximum rate beyond which the DVS pixel is not able to record light
variations and this rate increases with the brightness intensity. Another limit
derives from a possible saturation of the digital bus, influencing the time with
which events are transmitted by the pixels.

4.4.2 Space-tracking

A fascinating field in which event cameras excel is space-junk tracking [19].
With each passing year, we become more aware of the number of pieces of
old or broken satellites orbiting our planet, increasing the risk of collisions.
An issue that must be addressed by mankind is therefore cleaning the space
of these objects but the first step to achieve this goal consists in precisely
identifying and tracking them: neuromorphic telescopes can help in this en-
deavour. In this context, the benefits of neuromrphic imaging can be fully
leveraged for several reasons:

e because there are few changes in lighting when observing a starry sky,
a frame-based camera would generate a large amount of useless data to
be stored and processed;

« while traditioanl telescopes need observatories whose strucutre is per-
fectly stable, these innovative neuromorphic telescopes can be located
in small, cheap and mobile containers. Indeed, they can tolerate motion
and even benefit from it, as it help them in detecting moving objects in
the space.

A result achieved by this novel telescope is shown in Figure 4.5. A similar
application to the aforementioned one is star-tracking [103].

4.4.3 Quadrotors

Another interesting DVS application is introduced in [20].Before the real-
ization of these quadrotors, the agility of a robot was highly limited by the
latency of its perception pipeline. DVS can be used to overcome these limita-
tions paving the way for novel future applications. A possible examples is the
employment of super-agile quadrotors in dangerous rescue operations where
the environment is prone to abrupt and unpredictable changes. Observing
Figure 4.6 the high performances of these devices are crystal clear.
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Figure 4.5.  Illustration of the output of a neuromorphic telescope in an

imaging mission of a geosynchronous satellite. The trajectory of the satellite
appears in the form of a continuous line in the 3D events space [19].
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Figure 4.6. The output of two different quadrotors performing a flip. The
left picture refers to a standard quadrotor (motion blur is present) while the
one on the right derives from a quadrotor equipped with a DVS camera which
is robust to fast motion [20].
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Figure 4.7. Super-agile quadrotors could be in future employed in dangerous
rescue operations where a human could difficultly operate [20].

4.4.4 Other applications

Other fields in which event-cameras are becoming widely adopted range from
surveillance [104] to object recognition [105], passing by wearable electronics
[106] and Simultaneous Localization and Mapping [107]. A sign of how perva-
sive this new technology can become is iniVation®: a company which designs
and builds neuromorphic vision systems. Among their most successful prod-
ucts we can find an high speed 3D laser profiling employed in production
quality controls, a micropower intelligent scene analysis for mobile and IoT
and the world’s fastest eye tracker.

4.5 Event Representation

Event sensors have posed a paradigm shift in the way visual information is
acquired. As a result, they introduce the problem of developing innovative
algorithms to process the acquired data and fully exploit the camera’s capa-
bilities. As highlighted in [21], the new challenges are consequences of the
following facts:

Shttps://inivation.com/
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« while traditional images are synchronous and spatially dense, the events
stream is asynchronous and sparse. Hence, if we want to use traditional
frame-based algorithms a preprocessing on the events is needed;

o DVS are intrinsically noisy due to their non-ideal transistor circuits;

e while conventional cameras record in grayscale, each event in this con-
text carries binary information encoded in the polarity focusing on the
motion.

Over the last few years several studies have been conducted on how to deal
with events data: the answer to this question is far from obvious as each
task and each working context may require a different process. Looking at
the literature today, we can divide [21] the algorithms employed to extract
features from the events into two big categories depending on the number of
events simultaneously processed:

o FEvent-by-event methods. Every time a new event is recorded, it is com-
pared with the current state of the system and the representation is
updated. This process results in minimal latency. A famous example
of these methods are the Spiking Neural Networks and the probabilistic
filters.

o Packet of events methods. An update of the representation occurs when
a new temporal window, within which many events have been recorded,
passes. The principle behind this methods is that a single event is very
prone to noise, therefore only a group of events is able to carry useful
information.

4.5.1 Voxel Grid Representation

In this section we provide a detailed description of the Vozel Grid because it
is the representation used in our work. This decision is motivated by the fact
that Voxel Grid is one of the most performing representations in literature.
Besides, it allows us to exploit, making the appropriate readjustments, all
the pre-existing knowledge (both in terms of feature extractor architectures
and, for example, domain adaptation techniques) in Computer Vision.
Voxel Grid [37] is an unsupervised representation of the events stream in
the form of several discretized volumes which preserves the temporal distribu-
tions of the recorded events. The only parameter to fix is B which indicates
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Figure 4.8. The operational flow leading to the creation of the
Voxel Grid representation [21].

the number of volumes, called bins, we aim to obtain. The objective is to
process a stream of N events (z;, y;, tz’;l)i)ieu, N] discretizing the time axis.

First of all, we rescale the timestamps ¢; to the range [0, B — 1]:

t; = (B —1)(t; — to)/(tn — t1) (4.6)

A single event bin is created grouping the events using a linearly weighted
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accumulation. Formally:
N
V(x,y,t) = Zpikb(x — xi)kp(y — yi) kot — £7) (4.7)

ky(a) = max(0,1 — |a|) (4.8)

Voxel Grid generates an input volume made by B frames with the same
length and with of the original events stream. Thus, the value of a pixel in
each frame is determined using a technique similar to bilinear interpolation.
More precisely, ky(a) serves as a bilinear sampling kernel [37].

After detailing how this representation treats events, it becomes more
evident that we are considering the time domain as the traditional channels
in a 2D image: downstream architectures will have to be adapted in order to
handle B-channels images instead of the typical RGB ones.

4.6 Event Simulation

Despite the enormous interest and promise of this data, event cameras remain
scarce and expensive, impeding the research community’s development. Fur-
thermore, commercially available event camera hardware is still in the pro-
totype stage and has a number of practical constraints, like low resolution,
low signal-to-noise ratio, and complex sensor design that requires special-
ist expertise. To solve the research difficulties, there is a great demand for
low-cost, high-quality synthetic, labeled events for algorithm prototyping,
deep learning, and benchmarking. This chapter will detail the typical instru-
ments that comprise the pipeline used to convert the classic RGB dataset
into event ones. They enabled us to add a new synthetic event modality to
the EPIC-Kitchen despite not having an actual event camera.

4.6.1 Event-camera Simulator

The authors of [22] has developed the first event camera simulator architec-
ture (called ESIM) that intimately connects the event simulator with the ren-
dering engine to enable accurate event simulation via an adaptive sampling
technique. In fact, creating a simulator of this type is not straightforward,
as event cameras operate fundamentally differently than normal cameras.
As a result, the amount of data required to replicate the scene is propor-
tional to the amount of motion present, so the simulator must be capable of
reproducing this variable data rate.
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Figure 4.9. Different sampling techniques for event simulators [22]

To emulate an event camera, one would need continuous representations
of the visual signal at each pixel, which are not available in practice. To ad-
dress this issue, previous work like [108] proposed sampling the visual signal
synchronously, at a very high frame rate, and performing linear interpolation
between the samples to reconstruct a piecewise linear approximation of the
underlying continuous visual signal, which is used to emulate the operation
of an event camera, Figure 4.9(a). ESIM takes the same general approach to
simulating events by sampling the visual signal (by rendering images along
the camera trajectory), but with one critical difference: rather than choosing
an arbitrary rendering framerate and sampling frames uniformly across time
at that framerate, the authors of [22] propose to sample frames adaptively,
adapting the sampling rate based on the predicted visual dynamics, Figure
4.9(b). ESIM architecture is depicted in Figure 4.10. It is strongly coupled
to the rendering engine (which outputs the motion field and the irrandiance
of the scene) and the event simulator, allowing the event simulator to query
visual samples (i.e. frames) adaptively based on the visual signal’s dynamics.
As illustrated in Figure 4.9, adaptive sampling more faithfully reproduces the
ideal output of an event camera, but let us now examine how this sampling
strategy works. Adaptive sampling can be achieved in two different ways:

o Brightness change: A first-order Taylor expansion of the brightness
constancy assumption under the assumption of Lambertian surfaces °

6The apparent brightness of a Lambertian surface to an observer is the same regardless
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Figure 4.10. ESIM architecture [22]
yields:
OL(x;ty
(c’)t) ~ —(VL(z; ), V(i ty)) (4.9)

where VL is the gradient of the brightness picture and V is the motion
field. In other words, the expected (signed) brightness change at pixel
x and time t; throughout the course of a particular time interval ¢ is:

aﬁ(CL’, tk)

AL ~ 5

At (4.10)
We want to ensure that for each pixel x, |AL| < C (i.e. the brightness
change is constrained by the simulated event camera’s intended contrast
threshold C'). Selecting the next rendering time ¢y in the following
manner enables this:

oLt

t =1 O
k+1 E+ Ay 81&

(4.11)

where ‘%—f . is the maximum predicted rate of brightness change over the
image plane, and )\ is a parameter that determines the speed-accuracy
trade-off of the rendering. Note that the validity of the formula depends

of the observer’s angle of view
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on the assumption of Lambertian surface, brightness constancy, and lin-
earity of local image brightness changes therefore, in order to take into
account all possible non-linearities a stricter criterion can be imposed by
chosing A\, < 1;

« Pixel displacement: A more straightforward technique for performing
adaptive sampling is to ensure that the maximum displacement of a
pixel between two successive samples (rendered frames) is constrained.
This can be accomplished by selecting the following sampling time #5.1
in this way:

terr = te + M| V(3 te)|) (4.12)

where |V(z; tx)|m is the highest value for the motion field at time ¢; and
Ay, may be set < 0 in order to take into account the non-linearities;

4.6.2 Video interpolation

To simulate the high temporal resolution of event cameras from a dataset of
videos shot at frame rates lower than the objective one, another step must be
taken. In particular, video interpolation is the objective we want to achieve.
Its objective is to generate intermediate frames that can be used to construct
spatially and temporally coherent video sequences so to artificially increase
the frame rate of our videos. Interpolation accuracy is frequently employed to
evaluate optical flow algorithms in the classical approach to video interpola-
tion like in [109, 110]. These techniques are capable of generating intermedi-
ate frames at any time interval between two input frames. However, motion
borders and severe occlusions continue to pose difficulties for present flow
algorithms, and so interpolated frames frequently contain artifacts around
moving object boundaries. Additionally, the intermediate flow calculation
(i.e., flow interpolation) and occlusion reasoning are heuristic-based and are
not trainable end-to-end. Deep learning’s success in high-level vision tasks
has encouraged the development of various deep models for low-level vision
tasks, including frame interpolation. The authors of [111] learn CNN models
for optical flow using frame interpolation as a supervision signal. However,
because their primary objective is optical flow, the interpolated frames are
frequently hazy. The work in [112] treats frame interpolation as a local
convolution between the two input frames and use a CNN to develop a spa-
tially adaptive convolution kernel for each pixel. Their approach produces
high-quality results. However, predicting a kernel for each pixel is computa-
tionally and memory heavy. Furthermore, these CNN-based approaches for
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single-frame interpolation are unsuitable for multi-frame interpolation.

Super Slow Motion

The authors of Super Slow Motion (or Super SloMo), in [23], proposes a
high-quality variable-length multi-frame interpolation algorithm that can in-
terpolate a frame between two frames at any arbitrary time step. The paper’s
premise is that, to a first approximation, the difference between two frames
of video can be conceived of as an optical flow. That is, the majority of
pixels in one frame match to pixels in the adjacent frame, moved in a par-
ticular direction. Calculating optical flow between pictures is a well-known
algorithm (including CNN-based approaches). Once an optical flow is estab-
lished, intermediate frames can be interpolated by simply multiplying pixels
by the interpolated quantity ¢. This can be further enhanced by the addi-
tion of time-reversed optical flow. Unfortunately, this solution does work
perfectly on its own, particularly around the edges of fast-moving objects,
because some pixels are occluded in one or more frames. (On rare occasions,
intermediate pixels are obliterated in both the start and end frames). Ad-
ditionally, there is the issue of opacity. As a result, Super SloMo computes
visibility maps 7 (to track occlusions) while simultaneously fine-tuning the
initial estimation of the bi-directional flow maps in a second CNN. By adding
visibility maps to the warped pictures prior to fusion, occluded pixels may
be excluded from the interpolated intermediate frame, hence decreasing ar-
tifacts. Combining flow map refinement and visibility training dramatically
increased performance, which makes sense given that the same features are
expected to predict flow and occlusion. To be more precise, the flow compu-
tation CNN is used to estimate the bidirectional optical flow between the two
input images, which is then linearly fused to approximate the intermediate
optical flow required to warp the input images. Both the flow computation
and interpolation networks have characteristics that are independent of the
time step to be interpolated, which is an input to the flow interpolation net-
work. As a result, the technique is capable of simultaneously generating as
many intermediate frames as required. In mathematical words, the objective
is to predict the intermediate picture ft at time T'=t € (0,1) given two input
images [y and ;. To do so the two optical flows F;_o from I; to Iy and Fy
from I; to I; are approximated (since the target I; is not accessible) using

Vi o(p) € [0,1] denotes whether the pixel p remains visible from time 0 to time ¢ (0
means fully occluded)
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Figure 4.11. Intermediate flow estimation visually [23]

Fi_0 and Fy_;.

Consider the toy example depicted in Figure 4.11, where each column rep-
resents a certain time step and each dot represents a pixel. We are interested
in simulating the optical flow of the orange dot at T" = ¢ to the same pixel
p at time ¢t = 1 (F;1(p)). One straightforward method is to borrow the
optical flow from the same grid pixel at T'= 0 and T" = 1, provided that the
optical flow field is smooth locally, and approximate the target as follows:

Ft—>1(p) = (1 - t)F0_>1(p)

Ft—ﬂ(p) = _(1 - t)F1_>0(p)

From this toy example, passing in vector form and considering the bi-directional
flow we can estimate intermediate optical flow as shown:

Fio=—(1—t)tFys1 + 2 Fi
Fii =1 —t)*Fo —t(1—t)Fig
Notice that these approximations, which as mentioned before works well
in smooth regions, may have problems in motion boundaries. To reduce

problems in those regions, and consequently artifacts, [23] proposes to refine
the estimates through a flow interpolation network. Finally, given the values
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of Fmo and FHl we can interpolate ft such that:
I = ap ® g(Io, Frs0) + (1 — ag) © g(Ih, By ) (4.13)

where ¢g(-, ) is a backward warping function to pass (in the case of the work
the bilinear interpolation has been used) while aq is a weighting factor to
give more relevance to the estimate obtained starting from [y or from I;.
The value of ap may be higher if ¢ is closer to 0 and viceversa (temporal
reasoning). At the same time the weight is also influenced by occlusion, that
is why visibility maps come into play. Taking into consideration both aspects
the formula becomes:

~ 1 A n
Iy =— (1 =Vieo © g(lo, Frso) + tVecs © g(In, i) (414)

where Z = (1 — t)Vi o + tVi1 is a normalization factor. Since the values of
the visibility maps need to be estimated as well, they are actually predicted
by the same flow interpolation network with the contrain that V;, ¢ = 1—-V;, 4
to avoid network divergence. Due to the usage of soft visibility maps, even
if the pixel is visible both in Iy and I; the networks learns by itself how to
combine the information. Notice that:

e Fy_1 and F_, are obtained via a flow computation CNN which uses two
input images Iy and I; to predict both the forward and the backward
flow;

o Instead of directly predicting the intermediate flow estimates, the flow
interpolation network performs a slightly better by computing the resid-
ual flow residuals:

AFt%O = Ftﬁo - Ft%()
AFt—>1 =l — Ft—>1

The final architecture can be seen in Figure 4.12 where it is possible to
observe what are the inputs and the outputs of both the CNNs adopted for
flow computation and then interpolation. In Figure 4.13 it is shown in detail
the architecture of the CNNs which are both U-Net models.

The last important aspect about this method is the loss function used to
train end-to-end the whole model. It is a linear combination of four different
losses:
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at each time step t

T T
flow computation arbitrary-time flow interpolation

Figure 4.12. Super SloMo architecture schematics [23]

ﬁ conv + LeakyRelLU ﬁ average pooling ﬁbilinear upsampling == skip connection

Figure 4.13.  Super SloMo architecture details [23]

reconstruction loss: which is a L1 loss in the RGB space which com-
pares the predicted intermediate frame against the true one;

perceptual loss: which compares the features, from an ImageNet pre-
trained VGG16, generated from the predicted frame against the ones
generated from the true frame through an L2 loss to reduce image blur
and make the frame sharper;

warping loss: comparing frames to their flow-warped counterparts us-
ing the reverse warping function g;

smoothness loss: encouraging neighboring pixels to have similar flow
values;
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Chapter 5

Dataset

There is a tremendous interest and potential in the events modality but
event camears are quite rare nowadays and this slows down the development
in this particular area of Computer Vision. However, in situations like this,
researchers usually rely on synthetic dataset. This means that much atten-
tion must be paid in this process since the quality of the generated dataset is
very crucial and constitutes the premise for being able to carry out truthful
studies. As studies are at the beginning and event dataset are lacking, a fun-
damental contribution for the Computer Vision community is the extension
of the EPIC-Kitchens dataset with its synthetic event-modality version.

5.1 EPIC-Kitchens event extension

Since the event cameras work at very high fps, traditional videos, usually
recorded at 30-60 fps, are not enough to generate a good amount of events.
This is the reason why in the pipeline we followed, the first step consisted
in generating an upsampled version of the original RGB input video using
Super SloMo [4.6.2]. Along with the upsampled frames !, SloMo generates a
file containing all the corresponding timestamps of the interpolated frames
and this information will be useful in our work as it will be explained in this
chapter. Going into more details, after an RGB video from EPIC-Kitchens
was given as input to SloMo to obtain the upsampled frames, we could have
followed three different pipelines to achieve our goal.

lupsampled frames are in gray-scale but this is not a problem since ESIM [4.6.1] would
have converted RGB frames into gray-scale ones.
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Figure 5.1. Method overview. The original video is first upsampled using
SloMo and the generated video is fed to the ESIM simulator which produces
the stream of asynchronous events [24]

o Pipeline 1. All the upsampled frames are fed into ESIM and the synthetic
events are used to generate a single CxHxW Voxel representation [4.5.1].

o Pipeline 2. All the upsampled frames are fed into ESIM and the syntethic
events in output are divided into groups and for each group I generate
a CxHxW Voxel representation.

o Pipeline 3. All the upsampled frames are divided into groups. Then,
from each group we obtain the corresponding syntethic events which are
used to generate a CxHxW Voxel representation for each group.

5.2 Pipeline

In our work we chose Pipeline 3. Given two consecutive original RGB frames
¢t and 7+ 1 we call slomo-frames; the sequence of upsampled frames obtained
by SloMo. We know the frame rate used to record each video of the EPIC-
Kitchens dataset [9] and we know the timestamps of all the upsampled frames
generated so this means that we are able to correctly identify the frames
belonging to each set slomo-frames; with i € {1,n—1} where n is the number
of original frames of the video in question. At this point of the pipeline a
factor must be chosen and it will be like an hyperparameter of the conversion
process. A factor equal to 3, for example, indicates that a single Voxel
representation is created taking as input 3 consecutive sets of upsampled
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Figure 5.2. Example of a 9 channels Voxel Grid representation obtained at
the end of the conversion process

frames or, equivalently, taking 3 original RGB frames as input. In our work
we decided to use a factor equal to 6 because, since the original videos are
recorded at 60 fps [9], the chosen factor means taking into account a temporal
window of 100ms in the input RGB video and in literature this quantity is
recommended when generating a single Voxel Grid [113]. We would like to
clarify that before using ESIM, we manually added the last frame of the
set. slomo-frames; to the set slomo-frames; 1 as if it was the first upsampled
frame of the latter set. This is done because otherwise we would have lost
the synthetic events generated comparing the last and the first frames of
two consecutive sets. We would like to highlight that we have set ESIM to
work in the log domain (i.e., the pixel brightness is measured in logarithmic
scale) to have a more realistic setting: real event cameras operate in this
domain measuring changes of the log-brightness to reach high dynamic ranges
[22]. As for the threshold C' beyond which events must be generated (look
description in Section 4.3), we chose the value 0.05 which is the minimum
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Figure 5.3. A representation of the pipeline employed in our work when
using a factor equal to 4.

recommended value in [24]

During the conversion process we also noticed that, sometimes, in the orig-
inal videos from EPIC-Kitchens there were two identical consecutive frames
and this is due to the fact that the GoPRO cameras used to record this
dataset had a low light mode active that replicated frames in case of not
well lit scenes. However, in our setting, this phenomenon is not a prob-
lem because we use a factor greater than 1 in the Voxel generation so these
replicated frames causes a negligible effect.

5.3 Solving the Blocking Artifacts

Another issue we faced in creating this synthetic dataset is the Blocking Ar-
tifacts encountered in the original RGB frames that were released in JPEG
format. A compression artifact is a visible distortion of audio, images or
video caused by the compression algorithm which has the task of discard-
ing some of the medias’ data in order to reduce its size on the disk [114].
Artifacts can occur because sometimes the used algorithms are unable of
distinguishing between distortions of little importance and those which are,
instead, unpleasant to the user [114]. In particular we had to face the Block-
ing Artifact which manifests itself with the appearance of abnormally large
pixel blocks and it is a typical distortion of the JPEG format. During our
work we noticed the presence of this artifacts in the original RGB frames and
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Figure 5.4. On the left, a channel of a Voxel representation when original
RGB frames suffer from blocking artifact. On the right, the result after
applying the Bilateral Filtering.

this had a bad impact on the final generated Voxel as shown in Figure 5.4.
We made several attempts to counteract these distortions by creating some
blur or adding filters on the original RGB frames. Finally, the technique
which proved most effective and that we incorporated into the pipeline was
adding a Bilateral Filter [115] on the upsampled frames extracted by SloMo.

In the widest definition of the word "filtering", the pixel at location (x;, y;)
of a filtered image is a function of the input image’s pixels in a neighborhood
around it so that the farther a pixel is from (z;,y;), the less is its weight
on the filtered pixel value at location (x;,y;). The intuition behind this
approach is that images usually change slowly in space and so adjacent pixels
are likely to have similar pixel values. Since the noise values which corrupt
these neighbouring pixels are less correlated one another than the real signal
values, a filter would average away the noise while retaining the signal [25].
However, this assumption is not true when it comes to edges.

The Bilateral Filtering has the objective to average the smooth regions
of an image while preserving sharp edges. This is done combining a domain
filtering (which is based on the distance between two pixels) with a range one
(based on the difference in value of two pixels) enforcing both geometric and
photometric locality [25]. So, the Bilateral Filtering operates by replacing a
pixel with a weighted average of similar and near pixels. Going into formulas,
this filter is so defined [115]:

Ifiltered(x)

= Y @) A(@) — @) Dglz—2l)  (5.1)

Wp z;€€)
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W, is a normalization term

Wy = > [l (@) = I(@)[))gs (|| — xl]) (5.2)

;€
where:

o I and I/red are respectively the original image and the resulting image
after applying the Bilateral Filter and I(x) indicates the intensity of the
original pixel located at x;

e z indicates a location in coordinates of the pixel that is going to be
filtered;

o () indicates the neighbourhood of pixels having the pixel located at = as
its center;

e f,isthe range kernel which smooths value differences between two pixels;

e g5 is the domain or spatial kernel which smooths the differences in coor-
dinates between two pixels.

In our work the kernels f, and g5 were Gaussian functions. This means that
if we want to filter a pixel with coordinates (i,j) and its neighbouring pixel
is located at (k,l), the latter has a filtering weight on the former equal to:

=K+ (G =0 [110G.4) = I(k DI
203 202

) (5-3)

exp(—

where:

e 0, is the filtering range parameter and the higher it is, the more different
colors of neighbouring pixels will be mixed together;

e 04 is the filtering domain parameter and the higher it is, the more farther
pixels will influence each other.

In our work we used a Bilateral Filter with a neighborhood diameter of
15 and the two o parameters equals to 75. Indeed small ¢ values would
have resulted in no filtering at all while high values would have generated
"cartoonish" images [116].

We would like to remark the peculiarity of this Filter with an example: in
smooth regions, pixels values within a small neighbourhood are comparable
and the bilateral filter operates in a manner similar to a conventional domain
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(a) Edge between dark and (b) Values of the range ker- (¢) Values of the resulting
bright regions nel centered in a bright filtered pixels
pixel

Figure 5.5. How the Bilateral Filtering acts on sharp edges [25].
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camera)
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EVENT STREAM
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Figure 5.6. Representation of the final conversion pipeline obtained
adding the filtering layer.

filter [25] but let us consider the case of a sharp edge between a dark region
and a bright one like in Figure 5.5. The range kernel centered in a pixel on the
bright side has values close to 1 in pixels on that same side while values close
to 0 in pixels located on the dark side of the edge. This means that the pixel
in question is replaced basically ignoring the dark pixels. The final result is
shown in Figure 5.5 on the right. It is crystal clear that a good behavior is
achieved in this difficult situation: sharp edges are preserved while smooth
regions are averaged removing noise.
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(a) Optical flow in the x direction (b) Optical flow in the y direction

Figure 5.7. Optical flow sample

5.4 Results

Finally, as a last part of this Chapter we report some qualitative results of
the conversion of the dataset. In Figure 5.8 it is shown a sample converted
first into events and then the event cloud brought in a Voxel representation.
Finally, in Figure 5.7 the optical flow of the same sample is reported in order
to show the differences and the similarities with respect to the Voxel and RGB
data. It is possible to see that the optical flow data is the more abstract one,
the one which gives more relevance to the pure movement, however, the Voxel
representations are much more similar to it with respect to the original RGB
frames. Event data, despite capturing, for example in the top-right corner
of the frame, some affordances of the environment, contains less information
non-related to the movement.
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Figure 5.8. Example of conversion
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Chapter 6

Implementation details

This chapter explains the implementation details necessary to attain the
benchmark. To begin, Section 6.1 describes the various sampling procedures
used, i.e., dense and uniform sampling. Second, Section 6.2 will outline the
preparation pipeline, regarding all data preprocessing techniques used on the
data before feeding them to the models. Finally, Sections 6.3 and 6.4 cover
respectively the details about the backbone architecture and how the models
have been changed in order to fit for the event data and the details of the
training schedule with all the parameters adopted.

6.1 Sampling techniques

Two widely used sampling procedures are used in action recognition to gener-
ate model inputs. The first method, known as uniform sampling, is frequently
used in 2D graphics. It divides a video into numerous equal-length segments
and then randomly selects one frame from each segment, it is possible to
observe how it works from Figure 6.1. Instead, the other method utilized by
3D models, dense sampling, uses an input set of continuous (or with a stati-
cally strided) frames directly starting from a randomly sampled frame inside
the sample, as you can see from Figure 6.2. As a result, we used a dense
sampling strategy for the I3D model and a uniform sampling method for the
TSN and TSM models. Finally, notice that for video action recognition,
there are two primary evaluation metrics: clip-level accuracy and video-level
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All frames in the sample

Uniform sampled
frames

Figure 6.1. Example of uniform sampling

All frames in the sample

Y
Dense sampled
frames with stride 2

Figure 6.2. Example of dense sampling with stride 2

accuracy. Clip-level accuracy is calculated by putting a single clip! into the

LA clip is a collection of frames obtained by one sampling round, e.g., in Figure 6.1 and
6.2 the result is one clip
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network, whereas video-level accuracy is calculated by combining the predic-
tions of numerous clips; hence, video-level accuracy is typically greater than
clip-level accuracy.

6.2 Preprocessing

To begin, it should be noted that data augmentation techniques are used to
add training data in order to minimize overfitting and allow the model to
learn from the greatest possible number of examples. As a result, the train-
ing and testing pipelines are slightly different. When discussing the training
pipeline. In fact, while in training we want the network to learn how to
generalize properly, in testing we want to see how it would perform on real
data without any alteration. To be more precise, while the multiscale crop
and the random horizontal flip (described respectively in Sections 6.2.1 and
6.2.3) are used in training, the central crop (Section 6.2.2) is applied during
test; finally, normalization and clipping (Sections 6.2.4 and 6.2.5) are tech-
niques adopted independently of the purposes. Furthermore, observe that all
of these transformations are performed on a single record, which is essentially
the composition of all the frames sampled from an action (basically, in our
setting a sample corresponds to an action); in this sense, it may be viewed
as if they were modifying a group of frames.

6.2.1 Multiscale Crop

The aim of this transformation is to crop images in different manner in order
to add a layer of randomization which works as data augmentation. To do
so, an initial crop on the original image is done chosing the offsets and the
dimensions of the crop in a quite sophisticated way:

o At first the possible crop dimensions are determined. To do so the
smaller size of the image is taken and then scaled by multiplying it for
a list of certain values passed by the operator (which in our case are 1,

0.875, 0.75);

 All possible cropping dimensions (width and height) are made by cou-
pling the possible values obtained in the previous step. A certain maxi-
mum value of distortion can be set in order to allow reduce the discrep-
ancy among the dimensions and avoid changing the image too much;
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Figure 6.3. Example of possible offsets (red crosses) for multiscale crop

e Randomly among the possible pairs the dimensions of the crop are se-
lected, i.e., (cropwidth, Cropheight);

o The cropping offset can be selected in two different ways: either ran-
domly among the available pixels (e.g., offset,;un < iMageign— CroPwidih)
or among some possible fixed positions. The fixed positions are obtained
by structuring the available offset space (which depends on the crop di-
mensions and on the image dimensions) in a grid-like manner, the grid
and the possible offsets can be seen, within an example, in Figure 6.3;

Notice that, after having cropped the image, the result may be also smaller
than the desired size because of the effect of scaling. Despite this, the final
step of the transformation is a re-scaling of the crop to the dimensions wanted.
It may cause some distortion on the result as it can be observed in Figure
6.4. Since this is a transformation for all the group of frames, once sampled,
crop dimensions and position are the same for all the frames.

6.2.2 Center Crop

As mentioned before, at test time we want to achieve the highest possible
accuracy, to do so, since we want to be sure to keep the relevant information
into the image, a central patch is taken from the data. In particular, since
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(a) Original image (b) Cropped image

Figure 6.4. Example of multiscale crop application

the dimension of the crop is known, the offsets are computed as it follows:

offset;, = (imagey, — cropy,)/2 (6.1)
offset,, = (image,, — cropy)/2 .

6.2.3 Random Horizontal Flip

The main aim of this transformation is to avoid network overfitting by ran-
domly flipping horizontally the images with a certain probability p. Since
the sample considered in our case is a collection of frames, the flip is done
either for all the images or for none of them.

6.2.4 Normalization

Regarding the normalization technique adopted, since the models have always
been used starting from a pretrained setting on famous datasets (Kinetics
dataset proposed in [117] or ImageNet one which have been published in [50]).
Due to this reason, to avoid a negative impact on the model while finetuning
it, data have been fed to the network in the same form it received pretrained
samples. So, new records have been rescaled in the expected range and then
the mean and the standard deviation of the pretrained samples have been
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(a) Original image (b) Horizontally flipped image

Figure 6.5. Example of multiscale crop application

used to normalize them. Mathematically, the formula used is the following
one:
T — Miny,

Trescaled = : (maxrcmge - minrange) + minrange
max; — Miny,

(6.2)

Trescaled — U
g

Tnormalized =

where ;1 and o are respectively the mean and the standard deviation of the
pretrained data and the normalization is done by channel. It means that also
i and o have the same number of values as the number of channels of the
input. Finally notice that z,,;, and x,,,. used to rescale the input, in our
case, are computed over the whole group of frames related to one action.

6.2.5 Clipping

Clipping is a type of distortion in which a signal is limited when it surpasses
a certain threshold. Due to the peaks detected in the Voxels generated from
the dataset, one preprocessing technique tested has been clipping. The values
of the Voxel Grids have been limited to a threshold or to a certain percentile
and then all the interval has been rescaled into a certain range. Doing so
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Figure 6.6. Clipping function with threshold equal to 1

the values of the pixels are more spread and the network avoids to give
more relevance and to overfit just based on the peaks. The mathematical
formulation of this preprocessing technique is the following one:

(6.3)

] value, if |value| < threshold
value =
threshold, if |value| > threshold

and a representation of the function can be seen in Figure 6.6.

6.3 Architectures

In terms of the models used in the benchmark, we chose those previously dis-
cussed in Section 3.6. Because they are higher-level structures that can be
adapted to multiple low-level architectures, the models have distinct back-
bones. The I3D and TSN models have been implemented using a slight
variation of the Batch Normalized Inception (or BN-Inception v1, proposed
in [27]) for the first while the exact BN-Inception model for the second. It
will be properly described in Section 6.3.1 and 6.3.2. While TSM is based on
the ResNet-50 architecture, already described in Section 2.4 and proposed in
[3]. The aim of this Section is to present the BN-Inception architecture which
has been used in the benchmark and, at the same time, describe the imple-
mentation details which have been applied on the different models tackled in
order to adapt them for the new data modality. At the same time we will
present how the TRN module has been tried on top of the previous mod-
els and a new averaging temporal aggregation method tried, respectively in

Section 6.3.6 and 6.3.7.
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Figure 6.7. Inception modules [26]

6.3.1 GoogLeNet

GoogLeNet (or Inception v1) architecture arises in [26] as a result of the issue
of prominent parts of an image that can vary significantly in size. Due of
the large fluctuation in the location of the information, selecting the optimal
kernel size for convolution becomes difficult. A larger kernel is preferable for
globally dispersed information, whereas a smaller kernel is chosen for locally
distributed information. Comparing this situation with biology: using just
dense connections to gain knowledge about different sized objects is expensive
while adopting sparsity connections, as in biology, and exploiting clustering
correlated outputs seems a more reasonable choice (also suggested by the
work of Arora et al. [118]). However, non-uniform sparse matrix calculations
are expensive while the dense ones are much more efficient. So, in the way of
finding out how an optimal local sparse structure in a convolutional neural
network can be approximated and covered by dense components, the authors
of [26] propose a module with filters of various sizes on the same level. With
the network becoming slightly "wider" rather than "deeper." It is possible
to witness what has been dubbed the "naive" inception module in Figure
6.7(a). It conducts convolution on an input signal using three different filter
sizes (1 x 1, 3 x 3, 5 x 5). Additionally, maximum pooling is carried out.
Concatenated outputs are forwarded to the following conception module.
One significant disadvantage of the preceding module is that even a small
number of 5 x 5 convolutions can be prohibitively expensive when applied
on top of a convolutional layer with a large number of filters. This issue
gets much more acute when pooling units are included: their total number
of output filters equals the total number of filters in the preceding stage.
Merging the pooling layer’s output with the output of convolutional layers
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e
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Figure 6.8. Effect of 1 x 1 convolutions

would inevitably result in an increase in the number of outputs from stage to
stage. While this architecture would cover the best sparse structure, it would
do so in a very wasteful manner, resulting in a computational explosion after
a few steps. To keep the cost down, the authors of [26] include an additional
1 x 1 convolution before the 3 x 3 and 5 x 5 convolutions, as you can see in
Figure 6.7(b). While it may seem illogical to add another operation, 1 x 1
convolutions are far less expensive than 5 x 5 convolutions, and the lower
number of input channels also helps. In fact, it is possible to see those kind
of convolutions as a sort of pooling in depth as you can see from Figure 6.8.
Take notice, however, that the 1 x 1 convolution occurs after the max pooling
layer, not before. In general, an Inception network is a collection of modules
of the aforementioned sort built on top of one another, with the addition of
periodic max-pooling layers with stride 2 to reduce the grid’s resolution. In
fact, Inception v1 is composed of 9 stacked inception modules for a total of
22 layers.

6.3.2 Batch Normalized Inception

Batch Normalized Inception (or BN-Inception) is proposed by the authors
of [27] in order to improve the performance of their previous model applying
some arrangements. In particular, the main issue which is addressed by this
version of the Inception architecutre is the internal covariate shift already
mentioned in detail in Section 2.2.10. To do so the previously mentioned
mechanism of batch normalization has been used after each convolution.
Another relevant change done in this architecture with respect to the previous
one is the fact that, to decrease computational cost at no representational
loss, the 5 x 5 convolution in the inception module has been substituted by
two consecutive 3 x 3 convolutions. The final inception module adopted by
this architecture is depicted in Figure 6.9.
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Figure 6.9. Inception module for BN-Inception network [27]

6.3.3 Temporal Segment Network Adaptation

Due to the fact that the TSN model is based on the concept of sparsely sam-
pling throughout the video and combining the properties of all the snippets,
it is easily adaptable to the Voxel Grid input. Indeed, because what was re-
ferred to in Section 3.6.1 as F (the CNN that generated the snippet output)
in our case is the BN-Inception architecture, the only thing that needs to be
changed to adapt it to the input is the first convolutional layer, which can be
extended or shrunk in size depending on the number of input channels. Be-
cause the weights of the BN-Inception backbone are initialized using models
pre-trained on ImageNet [50], as specified in the original GitHub repository
(https://github.com/yjxiong/temporal-segment-networks), and we do
not wish to lose this advantage, we changed the pre-trained weights of the
first convolutional layer appropriately. To do this, the function resize from
the numpy library (proposed in [119]) was used; by just feeding the model
the number of input channels, it becomes capable of treating any type of
Voxel Grid; in fact, as illustrated in Figure 6.10, it circularly replicates the
weights of the first convolutional layer. Furthermore, when the input has a
different channel count than RGB pictures, the mean and standard deviation
vectors already provided by [6] and computed on the ImageNet dataset are
appropriately expanded with the resize size function. In terms of the func-
tion G used to calculate the consensus, the average function has been used.
Finally, the frames employed in this design are extracted one by one from
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===

Figure 6.10. How resize function works along channel dimension

the sparsely sampled snippets.

6.3.4 Inflated 3D ConvNets Adaptation

As mentioned in the beginning of the Chapter, the backbone inflated for
the I3D model is slightly different from BN-Inception. In fact, it uses batch
normalization but it does not have a branch with a double 3 x 3 convolution.
Basically the scheme for the Inflated Inception module used is presented
in Figure 6.11. In addition to that, weights of the backbone architecture
are initialized using models pre-trained on Kinetics [117], because of that the
same procedure used for TSN is followed both for the first convolutional layer
and for the mean and the standard deviation given for the normalization (in
this case the ones computed on Kinetics dataset).

6.3.5 Temporal Shift Module Adaptation

For what concerns the TSM model, another backbone architecture has been
adopted since BN-Inception was not compatible with the residual shift pre-
sented in Chapter 3.6.4. Because of this, the backbone adopted in this case
has been ResNet-50 model. Also in this case it has been used with the
weights initialized using models pre-trained on ImageNet and even in this
case the adaptation of the first convolution and of the mean and standard
deviation has been performed through the resize function. Finally all the pa-
rameters of the network has been left as default from the original repository
(https://github.com/mit-han-1lab/temporal-shift-module) and the bi-
directional TSM has been adopted due to our offline setting.
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Figure 6.11. Inception module for I3D

6.3.6 Temporal Relation Network Adaptation

Since this module is used on top of existing CNNs we exploited the models
obtained through previous training as CNN feature extractor for the TRN
module. In particular 5 clips are extracted from the video and passed through
the CNN feature extractor. The dimensionality of the features changes ac-
cordingly to the model adopted: 13D and TSN return features with dimension
1024 while TSM returns features of dimension 2048. Before being passed to
the TRN module those features pass through a fully connected layer which
reduces their dimension to 512 in every case. Then all features enter into the
TRN module. In the module there are different phases:

o At first the features are concatenated in groups of 2, 3, 4 or 5. Up to
3 groups of a certain length are allowed and the temporal order of the
frames is respected while generating them;

e The groups of concatenated features pass through a fully connected layer
(there are is one fully connected layer per each group length). After this
phase the dimensionality is already reduced to the number of classes, so,
basically the fully connected layer works as a classifier for each group of
concatenated frames;

o All fully connected layers predictions are summed and the final output
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Figure 6.12. Details on the TRN module

predition is obtained;

6.3.7 Averaging Temporal Aggregation

The idea behind this module is simply to aggregate features of different clips
instead of the predictions themselves. As in the previous case, this module is
used on top of existing CNNs so we used it with the same number of frames
per clip and with 5 clips. Once features from all clips are obtained they
pass through a fully connected layer which cuts their dimension to 512 and
then all the clips feature are averaged. The result is a single feature vector
of dimension 512 which passes through a final fully connected that basically
works as a classifier. The schema of the module can be seen in Figure 6.13.
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Figure 6.13. Details on the Averaging module

6.4 Training details

All models have been implemented in PyTorch [120]. In addition to that, the
models have been trained with the Stochastic Gradient Descent optimizer
(already mentioned in Section 2.2.3) with momentum [121] with a starting
learning rate 1 of 0.01, a weight decay of 10~7 and a momentum p of 0.9.
We trained for a total of 5000 iteration since we observed it to be a good
trade-off in terms of performance and speed of the training. Notice that, in
our setting, due to the size of the dataset, an iteration is not as an epoch,
so not all the dataset is passed through the model, instead just the batch
size is considered. Due to the large size of the samples, despite training
on 4 NVIDIA Tesla V100 16Gb GPUs and exploiting parallel computation
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through the usage of DataParallel?, we adopted a gradient accumulation®
technique. With a mini-batch size adopted of 64 where possible and of 32 in
some multi-modal cases and a batch size of 128 simulated through gradient
accumulation. We trained for a total of 5000 iteration since we observed it to
be a good trade-off in terms of performance and speed of the training. Notice
that, in our setting, due to the size of the dataset, an iteration is not as an
epoch, so not all the dataset is passed through the model, instead just the
batch size of 128 is considered in an iteration. The learning rate is decayed by
a factor of 10 at iteration 3000. I3D, TSN and TSM are trained end-to-end
and the number of frames used changes accordingly to the modality and the
model as follows:

e I3D model: 10 frames per clip for the Voxel, 16 for RGB and 16 for
optical flow;

e TSN and TSM models: 5 frames per clip for all the modalities

For those models, while in clip-level testing just 1 clip has been considered,
at video level always 5 clips have been adopted. Finally, TRN and Averaging
methods are built on top of the previous models so the same number of
frames per clip are used while the features are extracted from 5 different
clips. Apart from the ablation study in Section 7.3.1 all the experiments in
the next Section involving event data are done with the usage of 9 channel
Voxel Grids. Finally, in all multi-modal cases the different outputs from all
the networks from the different modalities are summed before the computing
the final prediction.

?DataParallel parallelizes the application of the specified module by chunking the input
across the defined devices (other objects will be copied once per device). The module is
reproduced on each device in the forward pass, with each replica handling a piece of the
input. Gradients from each copy are added to the original module during the backward
pass

3Gradient accumulation refers to the process of doing a certain number of steps without
updating the model variables while accumulating the gradients of those steps and then
computing the variable updates using the accumulated gradients
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Chapter 7

Experiments

After having explained both the conversion pipeline and the implementation
details we will now show all the experiments done on the various modalities
provided by the Epic Kitchens dataset. This Chapter will begin with an anal-
ysis on the most important conversion and preprocessing hyperparameters in
order to feed to models with the most performing Voxel data (Section 7.1).
Then, in Section 7.2 all the experiments performed will be shown with the
respective performance properly shown and commented. Finally in Section
7.3, a couple of interesting ablation studies: altering the number of Voxel
channels and treating those channels differently (as temporal information)
are presented.

7.1 Event Anaylsis

In this chapter we show an analysis in order to identify an optimal prepro-
cessing approach for a completely different input modality, such as the Voxel
Grid, several clipping policies were tested. This has helped to spread the
pixels values, which can be seen to have a high number of cells with low
value and a few outliers in the extremes in Figure 7.1. However, since the
clipping function has a threshold it must be determined in order to optimize
the results of model. In particular, several different experiments have been
carried on a single kitchen of the dataset in order to see the best threshold
making the input best suited for the network. In Table 7.1 it is possible
to observe the effects of clipping with different static thresholds. However,
we also considered dynamic thresholds computing the 90, 95" and 99"
percentiles directly on the sample (collection of sampled frames), but this
method resulted in the divergence of the training schedule so we opted for
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Figure 7.1.  Number pixels (y —azis) with a certain value (z —axis)
in a sample Voxel

(a) Original Voxel Grid (b) Voxel Grid after clipping at 0.5

Figure 7.2. Effect of clipping on Voxel Grid representation

a simple static one. In the light of the results obtained, which shows higher
accuracy both at iteration 5000 and 9000 we finally decided to clip the values
with & = 0.5. The qualitative effect of this transformation can be seen in
Figure 7.2.

Finally a crucial parameter in the conversion pipeline has been the conver-
sion factor indicating the number of consecutive upsampled RGB frames to
be used to create that a single Voxel representation. The first aspect we con-
sidered under this point of view is the number of events extracted depending
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Table 7.1. Results of different clipping thresholds ¢

. Clipping with Clipping with Clipping with
No preprocessing 0—5 0—1 0 — 0.5
Iteration [ D3—D3  D3—D1 | D3—D3 D3—D1 | D3—-D3 D3—DI [ D3—-D3 D3—DI1
3000 50,92 32,38 48,53 32,64 54,03 36,60 54,20 36,34
4000 50,34 31,06 47,32 30,93 52,58 33,28 54,13 34,43
4500 49,87 31,62 46,81 31,01 52,67 33,51 52,91 33,84
5000 50,08 31,21 46,76 30,91 53,41 34,79 54,82 34,97
9000 51,72 33,15 48,36 33,82 54,65 35,35 56,08 36,58

on the number of frames used. To investigate it we took a sample and ob-
served the average number of events generated against the conversion factor.
The results are shown in Figure 7.3, they demonstrate that if the number
of frames used is too low there are not enough events to generate a proper
Voxel representation. However, increasing the conversion factor would also
decrease substantially the dimensionality of the dataset. At the same time,
in an hypothetical online setting, an high conversion factor is equivalent to
increase the time before the generation of a Voxel. In order to take into
account all the issues properly we decided to adopt a trade-off conversion
factor of 6 frames per Voxel. In fact, considering that the videos of the
Epic-Kitchen dataset that we used have all been sampled at 60 frames per
second, using 6 as a conversion factor does also mean that we are considering
a temporal interval of 100ms for the creation of the Voxel which is consistent
with N-Cars dataset samples, proposed in [122], that have the same temporal
length.
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7.2 Event EPIC-Kitchens Benchmark

In this section, we provide our novel benchmark, which includes the results
obtained using RGB, event, and optical flow modality in single- and multi-
modal fashion.

o Table 7.2 and 7.3 shows the performances reached using the 13D archi-
tecture respectively in a intra- and cross-domain scenario.

o Table 7.4 and 7.5 shows the performances reached using the TSM archi-
tecture respectively in a intra- and cross-domain scenario.

o Table 7.6 and 7.7 shows the performances reached using the T'SN archi-
tecture respectively in a intra- and cross-domain scenario.

Notice that the Aggregation technique at feature level may be performed
or not (late fusion). In case it is not it is possible to test both at clip or
video level (with 5 clips). We reported all the possible combinations for
completeness.

Inflated 3D ConvNets

Starting from the architecture composed by 3D convolutions we observe a
surprising general trend, event data work up to 1% better than RGB in the
cross-domain setting, validating the potentialities of event data (see Table
7.3). As it can be seen from Table 7.2) in a supervised setting RGB still
works better. This is expected, since RGB data present a lot of details and
environmental bias they tend to "overfit" on the source domain and be less
capable of adapting to unseen ones. Another important aspect to be observed
is that, in this case, video level testing performs usually better than the clip
one. Indeed, because the I3D design is built on dense sampling, it can observe
more video segments despite having a substantially greater processing cost.
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Table 7.2. 13D results in supervised scenario.
13D
Supervised
Modality Aggregation D1 D2 D3 Mean
Late fusion (clip) 53.66 61.86 59.49 | 58.34
RCB Late fusion (video) | 53.67 61.12  60.7 | 58.49
Average 54.33 60.62 62.66 | 59.20
TRN 54.35 61.46 63.34 | 59.72
Late fusion (clip) | 44.16 54.28 51.07 | 49.84
Event Late fusion (video) | 47.66 56.32 53.52 | 53.50
Average 51.03 57.36 59.08 | 55.82
TRN 49.60 56.84 57.79 | 54.74
Late fusion (clip) 52.34  56.03 50.18 | 52.85
Flow Late fusion (video) | 56.44 61.67 57.29 | 58.47
Average 59.31 67.06 64.57 | 63.65
TRN 59.39 70.29 69.48 | 66.39
Late fusion (clip) 54.89 59.64 57.19 | 57.24
Late fusion (video) | 59.23 65.10 61.87 | 62.07
RGB+Flow Average 57.93  64.47 66.07 | 62.82
TRN 57.24 67.98 67.62 | 64.28
Late fusion (clip) | 50.91 60.86 58.28 | 56.68
Late fusion (video 53.43 63.82 60.36 | 59.20
RGB+Event Averag(e : 56.55 62.8 64.71 | 61.35
TRN 55.66 63.61 65.28 | 61.52
Table 7.3. I3D results in cross-domain scenario.
13D
Cross Domain
Modality Aggregation D1—-D2 D1—-D3 D2—D1 D2—D3 D3—D1 D3—D2 | Mean
Late fusion (clip) 32.36 34.58 31.52 33.94 33.54 34.64 33.43
RGB Late fusion (video) 34.50 35.70 34.94 36.46 33.93 38.37 35.65
Average 32.46 35.79 34.94 35.21 36.12 38.26 35.46
TRN 33.20 35.83 34.02 36.22 35.76 38.35 35.56
Late fusion (clip) 31.96 31.81 33.33 36.95 33.10 40.00 34.52
Event Late fusion (video) 35.26 34.98 33.41 35.55 35.33 42.90 36.24
Average 35.08 31.72 34.48 36.32 35.53 42.44 35.93
TRN 34.65 32.37 35.14 38.68 36.17 42.43 36.57
Late fusion (clip) 34.50 35.70 34.94 36.46 33.93 38.37 35.65
Flow Late fusion (video) 42.80 36.46 39.97 45.56 43.60 52.03 43.40
Average 45.06 37.20 41.04 44.76 48.27 54.13 45.08
TRN 48.86 37.56 44.72 45.34 53.43 58.03 47.99
Late fusion (clip) 41.62 38.19 39.59 41.27 41.51 45.53 41.28
Late fusion (video) 44.44 40.94 42.86 43.60 43.96 51.54 44.56
RGB+Flow Average 34.53 38.08 38.75 39.77 38.85 4355 | 38.92
TRN 36.26 37.96 40.92 42.42 42.01 45.63 40.87
Late fusion (clip) 33.22 36.19 32.93 39.57 35.35 37.41 35.78
Late fusion (video 35.72 37.78 35.50 40.48 36.65 42.30 38.07
RGB+Event Averag(e : 30.75 3617 3614  36.66 3384  41.95 | 35.92
TRN 33.6 35.84 36.78 37.1 34.79 40.81 36.49
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Temporal Shift Module

In this model (whose results are reported in Table 7.4 and 7.5) the difference
among RGB and event modality is even more remarkable in the cross-domain
scenario. In fact, the event modality reaches up to 2% higher performance
than RGB data. Again, the fact that the event modality does not provide
an improvement w.r.t. RGB in the supervised scenario is comprehensible as
mentioned above. It is also worth noting that in this scenario, clip and video
level test performance are comparable. This is probably due to the fact that
the uniform sampling technique adopted already enhance the ability of the
network to see a great portion of the video. Finally, adding a further layer
of temporal aggregation, i.e., TRN, helps also in the cross-domain scenario
while with I3D it could also damage the performance of the network. This
may be due to the different type of features extracted by a 3D CNN model
which implicitly extract temporal features against the one of a 2D CNN
model adapted for temporal modelling.

Table 7.4. TSM results in supervised scenario.

TSM

Supervised
Modality Aggregation D1 D2 D3 Mean
Late fusion (clip) 61.15 75.29 74.47 | 70.30
RCGB Late fusion (video) | 61.62 75.07 74.94 | 70.54
Average 61.60 744 74.53 | 70.18
TRN 60.46 73.86 74.23 | 69.52
Late fusion (clip) | 57.47 68.30 66.45 | 64.07
Event Late fusion (video) | 56.22 68.74 65.32 | 63.43
Average 54.20 68.8 6542 | 62.81
TRN 55.63 69.33 66.11 | 63.69
Late fusion (clip) | 55.20 64.73 58.94 | 59.62
Flow Late fusion (video) | 55.68 64.19 57.71 | 59.19
Average 57.62 70.13 66.77 | 64.84
TRN 56.73 69.24 65.27 | 63.75
Late fusion (clip) 59.67 74.96 74.49 | 69.71
Late fusion (video) | 60.66 75.02 73.84 | 69.84
RGB+Flow Average 64.13 768 76.89 | 72.61
TRN 57.93 69.97 66.65 | 64.85
Late fusion (clip) | 59.67 76.90 73.18 | 69.92
Late fusion (video 59.69 7599 72.80 | 69.49
RGB+Event Averag(e ) 61.60 76.37 77.58 | 71.85
TRN 61.65 76.3 77.34 | 71.76
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Table 7.5. TSM results in cross-domain scenario.

TSM

Cross Domain
Modality Aggregation D1—-»D2 Di1—-D3 D2—D1 D2-D3 D3—D1 D3—D2 | Mean
Late fusion (clip) 37.02 32.03 35.02 38.28 33.92 36.47 35.46
RGB Late fusion (video) 36.52 32.26 35.61 37.82 33.41 37.91 35.59
Average 36.8 31.93 36.09 40.35 36.09 37.6 36.48
TRN 37.86 30.90 34.48 40.03 34.48 38.53 36.05
Late fusion (clip) 29.42 33.85 36.76 43.82 34.84 44.33 37.17
Event Late fusion (video) 29.53 33.95 36.73 43.82 31.80 43.05 36.48
Average 31.02 33.06 37.44 45.32 36.09 43.63 37.76
TRN 30.22 34.14 35.63 46.6 35.73 44.32 37.77
Late fusion (clip) 39.38 38.10 41.53 46.49 37.65 53.14 42.72
Flow Late fusion (video) 42.00 38.47 41.87 45.27 39.87 52.40 43.31
Average 40.92 39.31 40.28 44.05 41.96 54.96 43.58
TRN 41.6 40.11 42.75 44.21 44.05 55.09 44.64
Late fusion (clip) 39.45 34.52 37.32 45.13 37.29 43.87 39.60
Late fusion (video) 38.90 38.90 36.50 45.19 37.27 43.93 40.11
RGB+Flow Average 39.2 35.11 39.77 43.02 39.59 47.06 | 40.63
TRN 40.32 40.53 42.52 43.66 43.08 54.47 44.10
Late fusion (clip) 33.79 37.00 36.63 45.19 37.73 43.93 39.04
Late fusion (video 33.54 36.59 35.30 45.39 38.21 43.91 38.82
RGB+Event Averag(e : 34.41 34.88 37.55 47.74 39.08 44.93 | 39.77
TRN 34.04 34.22 38.57 46.65 38.36 46.56 39.73

Temporal Segment Network

Finally, passing to the last architecture we can see, through Table 7.6 and 7.7,
that in this case the TSN model is the one achieving a lower improvement in
the cross-domain setting with respect to the RGB setting but still achieving
on-par accuracy results. Again aggregation models do not affect cross-domain
accuracies supporting the hypothesis done in the TSM chapter. The same
can be said regarding video against clip level performance which are not
really affected by the usage of multiple clips probably because of the uniform
sampling strategy adopted.

General observations

Comparison between architectures. Among the three employed archi-
tectures, TSN is the worst in the cross-domain setting reaching 32.42%,
33.07% and 39.77% when fed respectively with RGB, event and flow data.
I3D reaches slightly better accuracies while TSM is the most capable archi-
tecture to generalize. It shows average improvements up to 4%, 5% and 5%
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Table 7.6. TSN results in supervised scenario.

TSN

Supervised
Modality Aggregation D1 D2 D3 Mean
Late fusion (clip) 55.25 66.22 67.33 | 62.93
RCGB Late fusion (video) | 55.40 66.21 67.31 | 62.97
Average 55.32 65.6 65.91 62.28
TRN 57.01 65.98 66.4 63.13
Late fusion (clip) 50.19 61.69 60.64 | 57.51
Event Late fusion (video) | 51.39 62.27 62.39 | 58.68
Average 49.65 63.73 62.52 | 58.63
TRN 50.11 64.93 61.72 | 58.92
Late fusion (clip) | 50.14 63.39 58.70 | 57.41
Flow Late fusion (video) | 49.65 63.73 60.69 | 58.02
Average 57.93 67.06 68.98 | 64.66
TRN 57.93 68.59 62.78 | 63.10
Late fusion (clip) 63.12 70.46 68.37 | 67.31
Late fusion (video) | 61.10 69.84 68.78 | 66.57
RGB+Flow Average 60.08 69.15 70.16 | 66.46
TRN 61.09 70.12 70.23 | 67.15
Late fusion (clip) 56.40 67.72 67.76 | 63.96
Late fusion (video) | 55.94 68.35 67.70 | 64.00
RGB+Event Averag(e 57.93 67.06 68.98 | 64.66
TRN 58.16 68.13 68.27 | 64.85

when dealing respectively with RGB, event and flow modalities. In the su-
pervised setting, TSM outperforms the others in many scenarios. It presents
improvements of 8% and 10% with respect to TSN and I3D with RGB input
data and it shows accuracy increases of 7% and 10% with respect to the same
architectures with RGB+FEvent modality.

The importance of temporal information. We expected the above-
mentioned differences in performances among the architectures because when
dealing with this task the encoding of temporal information is crucial. Indeed
TSN, as explained in Section 3.6.1, does not directly encode the temporal
information so it looses some information of the sample video. 13D instead is
a 3D CNN able to directly learn temporal features but it only reaches slightly
better accuracy results when fed with event data and there are no big leaps
in performances. This was to be expected as in [113] an attempt to use a
3D architecture instead of a 2D one on Voxel representation was made and
the reached improvement was not relevant. TSM achieves the best results
when dealing with event in cross-domain scenarios. This discovery can be
a turning point for online applications. In fact, while 3D CNNs have high
computational cost making their deployment on edge or wearable devices
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Table 7.7. TSN results in cross-domain scenario.

TSN

Cross Domain
Modality Aggregation D1—-»D2 Di1—-D3 D2—D1 D2-D3 D3—D1 D3—D2 | Mean
Late fusion (clip) 31.81 27.81 29.73 34.02 32.87 36.71 32.16
RGB Late fusion (video) 31.79 27.86 29.94 34.12 33.00 36.89 32.27
Average 32.13 28.39 31.95 33.57 32.64 35.46 32.36
TRN 32.13 27.74 31.95 35.72 31.49 35.48 32.42
Late fusion (clip) 27.01 28.95 29.89 37.36 31.23 37.72 32.03
Event Late fusion (video) 27.08 28.55 28.23 39.77 31.49 39.29 32.40
Average 28.80 29.26 29.65 37.22 31.72 37.86 32.42
TRN 28.34 28.63 31.03 38.93 33.79 37.72 33.07
Late fusion (clip) 32.92 33.76 36.32 38.78 38.93 45.67 37.73
Flow Late fusion (video) 34.83 37.68 37.32 41.44 38.60 46.31 39.36
Average 35.06 29.97 33.79 39.63 36.78 37.33 35.43
TRN 35.88 35.71 39.77 41.24 40.1 45.94 39.77
Late fusion (clip) 35.22 30.58 35.81 40.73 36.27 41.04 36.61
Late fusion (video) 35.50 30.23 35.25 40.91 36.76 41.35 36.66
RGB+Flow Average 3527 3129 35.09 36.91 37.96  42.07 | 36.43
TRN 36.08 33.17 35.58 41.5 39.61 43.14 38.18
Late fusion (clip) 34.99 30.49 32.26 36.62 34.07 37.08 34.25
Late fusion (video 34.18 30.79 33.00 36.93 33.92 37.42 34.37
RGB+Event Averag(e : 35.06 29.97 33.79 39.63 36.78 37.33 | 35.43
TRN 33.51 29.35 34.25 41.47 36.96 39.2 35.79

often impossible, TSM manage to model spatial and temporal information
using uni-direction temporal shift. This technique (Section 3.6.4) can be used
in online context since the shift is done from prior to current frames.

A focus on event modality. We can see that in cross-domain scenarios
the event modality is slightly better than RGB as it shows, on average im-
provements of 1%. This is very crucial as this scenario is typical of real-world
applications and event cameras have many technical and practical advantages
with respect to conventional ones. This finding can lead the way to applica-
tions which were technically unfeasible before. In fact, even if optical flow
is still the most effective modality in cross-domain contexts, it comes with
a lot of technical issues and drawbacks such as high computational cost and
high energy consumption. Besides, this is the first benchmark in which event
modality is comparable to RGB. A recent paper [123] introduced the event
version of ImageNet dataset [50] but the performances reached with the event
modality were far below that of RGB state-of-the-art ones showing a gap of
50% in accuracy [123]. This outcome could also be caused by the intrinsic
nature of the task we are dealing with. Indeed, in FPAR context, differently
from Image Recognition one, the architecture must give much importance

111



7 — Experiments

to the motion information in order to solve it and these features come with
event modality which does not focus on texture, colors and appearance of
videos.

Multi-modal approaches. Throughout our entire work we have claimed
the importance of investigating the usage of the event modality in combina-
tion with the RGB one. They bring orthogonal and complementary features
which can lead to improvements in the performances. The former encodes
motion information disregarding textures and colors which are instead car-
ried by the latter. This hypothesis is confirmed by the reached results. As a
matter of fact, regardless of the architectures employed, both in intra- and
cross-domain scenarios, the combination RGB+Event performs better than
RGB alone. In particular, TSN and TSM show average improvements of over
3% in the cross-domain scenario when fed with RGB+Event data streams.

7.3 Ablation studies

In order to understand the effects of the event representation, in this Section,
we performed a couple of ablation studies to find the best performing Voxel
choice. In particular, in Section 7.3.1 different number of Voxel channels are
tried in order to understand the most effective one in the different models
while in Section 7.3.2 we tried to move the channels of the Voxel representa-
tion into the temporal dimension before feeding them to the model.

7.3.1 Number of Voxel channels

Since we have a representation with a number of channels different from 3
but we are exploiting pre-trained backbones there are a couple of methods
which can be used to transfer the adapt the model to the new data:

e replacing the first convolutional block with a new one and train it from
scratch;

» repeating the weights of the first convolutional in a circualar way as
shown in Figure 6.10;

The latter is the method adopted for the overmentioned experiments. It tries
to limit the effects of having an input with a different number of channels in
a pre-trained context.

However, despite the second option could help in using pre-trained infor-
mation, both these methods may be damaging in a cross-domain scenario.
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Table 7.8. Different Voxel channels accuracies on TSM Supervised

Modality # Voxel ch. | Testing D1 D2 D3 Mean
5 Video | 56,22 68,74 65,32 | 63,43

Clip 57,47 68,30 66,45 | 64,07

Event 3 Video | 55,61 68,09 66,40 | 63,37
Clip 54,43 68,92 67,02 | 63,46

1 Video | 52,64 65,59 61,04 | 59,76

Clip 54,64 64,95 61,65 | 60,41

RGB ] Video | 61,62 75,07 74,94 | 70,54
Clip 61,15 75,29 74,47 | 70,30

9 Video | 59,69 75,99 72,80 | 69,49

Clip 59,67 76,90 73,18 | 69,92

RGB-+Event 5 Video | 61,30 74,36 72,82 | 69,49
Clip 60,89 74,82 73,01 | 69,57

Table 7.9. Different Voxel channels accuracies on TSM Cross Domain

Modality # Voxel ch. | Testing | D1-D2 D1—-D3 D2—D1 D2—D3 D3—D1 D3—D2 | Mean
0 Video | 29,53 33,05 36,73 13,82 31,80 43,05 | 36,48

Clip 29,42 33,85 36,76 43,82 34,84 44,33 | 37,17

Event N Video | 27,01 30,71 39,75 10,94 35,48 40,00 | 35,95
Clip 29,38 32,99 39,11 40,92 36,68 42,86 | 36,99

) Video | 30,58 30,08 34,23 10,89 36,07 10,04 | 35,32

Clip 31,07 29,51 31,83 40,59 33,61 38,64 [184,21

RGB ] Video | 36,52 32,26 35,61 37,82 33,41 37,01 | 35,59
Clip 37,02 32,03 35,02 38,28 33,02 36,47 | 35,46

0 Video | 33,54 36,59 35,30 15,39 38,21 13,01 38,82

Clip 33,79 37,00 36,63 45,19 37,73 43,93 | 39,04

RGB-+Event X Video 32,55 33,80 38,31 15,00 36,53 12,03 | 38,04
Clip 32,99 34,06 40,43 45,04 36,35 42,36 | 38,54

Indeed, the research indicates that the early layers of the network are typ-
ically the most influenced by domain shifts as stated in [124, 125], and so
changing the structure of the first convolutional layer of the network, may
cause a specialization on the source domain while performing badly in the
target domain. Indeed, when pre-trained layers are transferred properly, the
network can make use of robust low-level features. To test this hyphotesis
and to investigate the optimal number of Voxel channels we analyzed the
differences of having Voxels with 1, 3 or 9 channels. In Figure 7.4 it is pos-
sible to see the qualitative results. They show that decreasing the number
of channels the temporal resolution of the Voxel decreases, the borders are
more blurred since the number of events included in a single channels is much
higher so more "movement" is collected in less channels. However, to better
understand the effect of the different number of channels we quantitatively
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Table 7.10. Different Voxel channels accuracies on 13D Supervised

Modality # Voxel ch. | Testing D1 D2 D3 Mean
5 Video | 47,66 56,32 53,52 | 52,50

Bvent Clip | 44,16 54,28 51,07 | 49,84
5 Video | 50,32 58,33 57,99 | 55,55

Clip | 48,02 57,76 55,48 | 53,75

RO ] Video | 53,67 61,12 60,70 | 58,49
Clip | 53,66 61,86 59,49 | 58,34

0 Video | 53,43 63,82 60,36 |159,20

Clip | 50,91 60,86 58,28 | 56,68

RGB+Event 5 Video | 53,00 62,30 61,07 | 59,12
Clip | 50,78 59,91 59,33 | 56,67

Table 7.11. Different Voxel channels accuracies on I3D Cross Domain

Modality # Voxel ch. | Testing | D1-D2 D1—-D3 D2—D1 D2—D3 D3—D1 D3—D2 | Mean
9 Video 35,26 34,98 33,41 35,55 35,33 42,90 36,24

Event Clip 31,96 31,81 33,33 36,95 33,10 40,00 34,53
3 Video 37,27 39,12 32,98 36,52 35,68 43,56 37,52

Clip 36,92 37,21 29,94 34,91 34,61 41,81 35,90

RGB ) Video 34,50 35,70 34,94 36,46 33,93 38,37 35,65
Clip 32,36 34,58 31,52 33,94 33,54 34,64 33,43

9 Video 35,72 37,78 35,50 40,48 36,65 42,30 38,07

Clip 33,22 36,19 32,93 39,57 35,35 37,41 35,78

RGB+Event 3 Video 36,49 39,39 35,53 39,90 33,82 43,63 38,13
Clip 35,35 37,74 33,13 39,72 34,10 38,76 36,47

tested it. Starting from the TSM model. The results obtained are shown
in Table 7.9 and 7.8, the trend they show is not completely clear, however
it is possible to understand that the 1 channel setting is not the best one.
However, it is not clear from the results of the experiment on TSM alone
which choice between 3 or 9 channels is significantly better, which is why we
also went on to explore the behaviour of these two cases on the other two
models. In Table 7.10, 7.11, 7.12 and 7.13 it is possible to see all the results
obtained. From these it can be seen that switching from 9 to 3 channels
often helps the performance a lot and even leads to improvements of more
than 2%. As stated in the beginning, we assume this is due to the use of
a network pretrained on RGB data with 3 channels that therefore behaves
better when the input data is as similar as possible since it limits the effect
of domain shift. Notice, in fact, the results in Table 7.13 and 7.12 where the
effect of using just 3 channels is much more beneficial in the cross-domain
case than in the supervised one. After having observed such improvement we
tested it in the RGB+Event multi-modal scenario as well in order to observe
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Table 7.12. Different Voxel channels accuracies on TSN Supervised
Modality # Voxel ch. | Testing D1 D2 D3 Mean
0 Video | 51,39 62,27 62,39 | 58,68
Bvent Clip | 50,19 61,69 60,64 | 57,51
5 Video | 52,06 64,36 62,54 | 59,65
Clip | 51,83 63,60 60,86 | 58,76
ROB ] Video | 55,40 66,21 67,31 | 62,97
Clip | 55,25 66,22 67,33 | 62,93
0 Video | 55,94 68,35 67,70 | 64,00
Clip | 56,40 67,72 67,76 | 63,96
RGB+Event 5 Video | 57,24 68,56 66,74 | 64,18
Clip | 57,17 67,44 66,22 | 63,61

Table 7.13. Different Voxel channels accuracies on TSN Cross Domain

Modality # Voxel ch. | Testing | D1-D2 D1—-D3 D2—D1 D2—D3 D3—D1 D3—D2 | Mean
0 Video 27,08 28,55 28,23 39,77 31,49 39,29 | 32,40

Bvent Clip 27,01 28,95 29,89 37,36 31,23 37,72 | 32,03
) Video 30,65 32,36 31,80 38,67 34,82 39,36 | 34,61

Clip 31,17 31,41 32,49 38,66 34,92 37,84 | 34,42

ROB ) Video 31,79 27,86 29,94 34,12 33,00 36,80 | 382,27
Clip 31,81 27,81 29,73 34,02 32,87 36,71 | 32,16

0 Video 34,18 30,79 33,00 36,93 33,92 37,42 | 34,37

Clip 34,99 30,49 32,26 36,62 34,07 37,08 | 34,25

RGB+Event 3 Video 32,24 27,07 30,01 36,38 34,10 3742 | 33,02
Clip 32,46 26,91 32,08 36,85 35,07 37,41 | 33,46

if the same effect would have happened in that case. The results reported
in the Tables show that the change in the mean accuracy, in this case, is
less evident, probably the RGB data used in combination with 9 channels
Voxel data mitigate the domain shift effect. Finally, the choice of putting
RGB results in comparison with the ones of 3 channels Voxel has been done
in order to show the strength of event data in the cross-domain setting. In
the different architectures the 3 channels Voxel is able to perform on average
2% better than the RGB modality. This confirms the hypothesized advan-
tages of the event modality over the traditional RGB one in settings where
environmental bias may decrease performance as the cross-domain one.

115



7 — Experiments

(a) Voxel Grid with 1 channel

(c) Voxel Grid with 9 channels

Figure 7.4. Different number of Voxel channels
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7.3.2 Exploiting Voxel channels

Different aspects have been analyzed in order to find the best way to feed
Voxel data to the architectures. In particular, an interesting ablation study
has been performed by moving the channels of the Voxel data into the tempo-
ral dimension before feeding it to the network. In fact, since the Voxel Grid is
a representation that encodes the temporal dimension by discretizing it into
different channels, the latter can be interpreted as different greyscale images
acquired at different timestamps (or like a 1 channel Voxel computed with a
temporal interval reduced by a factor 1/C where C' is the number of chan-
nels of the original Voxel). Experiments on I3D model are reported in Table
7.14 and 7.15 where it is possible to observe that, effectively, in 3D models by
moving channels in the temporal dimension we let the architecture model bet-
ter temporal information. It increases the extraction of correlations among
frames allowing a better temporal reasoning. From these ablation studies
we found an even higher gap in performance among the RGB and the event
modality in cross-domain setting as 3 channels Voxel data where channels
are moved into the temporal dimension reach up to 38.76% accuracy with
I3D against the best result of 35.56% of RGB data. This demonstrate the
great potentialities of this new modality, and that further research can be
done in order to find an even better way to help the model learn even better
from event data by generating ad ad-hoc way of feeding the Voxel data into
the classical CNNs. Notice, however, that this approach does not have the
same benefit in a 2D model such as TSM where the temporal reasoning is
more independent from the input form due to the temporal shift performed
at several feature maps level. In fact, we tried to move some of the Voxel
channels into the temporal dimension and run them like that on TSM but
the results (which can be oserved in Table 7.16 and 7.17) are not as good as
in the I3D case.
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Table 7.14. Channels moving on I3D Supervised

Modality # Voxel ch. | Testing D1 D2 D3 Mean

Voxel Video | 47,66 56,32 53,52 | 52,50

9 Clip 44,16 54,28 51,07 | 49,84

Voxel moving chammels Video | 5LI9 62,55 60,43 | 58,05

Clip 47,77 60,00 57,88 | 55,22

Voxel Video | 50,32 58,33 57,99 | 55,54

. Clip | 48,02 57,76 55,48 | 53,75

Voxel moving chanmels Video | 50,52 62,99 60,11 | 57,87

Clip | 51,37 62,12 56,90 | 56,80

Table 7.15. Channels moving on I3D Cross Domain
Modality # Voxel ch. | Testing | D1-D2 D1—-D3 D2—D1 D2—D3 D3—D1 D3—D2 | Mean
Voxel Video 35,26 34,98 33,41 35,55 35,33 42,90 | 36,24
0 Clip 31,96 31,81 33,33 36,95 33,10 40,00 |W84,53
Voxel moving chanmels Video 33,30 32,73 31,62 37,34 38,03 13,02 | 36,16
Clip 33,81 33,62 31,11 38,40 37,75 42,67 36,23
Voxel Video 37,27 39,12 32,08 36,52 35,68 43,56 | 37,52
5 Clip 36,92 37,21 29,94 34,91 34,61 41,81 | 35,90
Voxel moving chanmels Video 38,07 38,71 35,02 38,49 36,73 15,53 |W3876
Clip 38,95 38,27 34,48 38,66 32,90 41,84 | 37,52
Table 7.16. Partial channels moving on TSM Supervised

Modality # Voxel ch. | Testing D1 D2 D3 Mean

Voxel Video | 56,22 68,74 65,32 | 63,43

0 Clip | 57,47 68,30 66,45 |[N64,07

Voxel moving channels Vid.eo 56,55 67,97 64,42 | 62,98

Clip | 56,86 69,39 65,62 | 63,96

Table 7.17.  Channels moving on TSM Cross Domain

Modality # Voxel ch. | Testing | D1-D2 D1—-D3 D2—D1 D2—D3 D3—D1 D3—D2 Mean
Voxel Video 29,53 33,05 36,73 43,82 31,80 13,05 | 36,48
0 Clip 29,42 33,85 36,76 43,82 34,84 44,33 DBTIT
Vosel moving channels Video 29,27 34,84 35,81 42,36 35,05 10,52 | 36,31
Clip 28,30 35,42 35,15 41,58 38,29 41,72 36,74
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Chapter 8

Conclusions

We started our work by identifying the EPIC-Kitchens [9] dataset as the
one of interest for the research due to its relevance in the field of egocentric
vision tasks. Thanks to the nature of this dataset, composed of multi-modal
data retrieved by settings with completely different affordances allowed us
to experiment the performances both in intra-, cross-domain scenarios and
multi-modal settings. To the best of our knowledge, this is the first analysis
which allows the research community to compare and comprehend what are
the benefits and the limitations of the event modality in the egocentric sce-
nario. The first step conducted to reach our purposes has been the creation
of a proper pipeline for the extrapolation of simulated event data from the
RGB frames of the dataset. Thanks to the methodologies recently proposed
by the authors of [22] and [23] we have been able to simulate the low latency
of DVS-cameras and to extract synthetic events. The generation of a proper
event dataset is a crucial point in this field, in fact event methods require
a substantial amount of training data, which is scarce due to the novelty of
event sensors in computer vision research. What we propose is an event ex-
tension of the Epic Kitchens dataset. As far as we know (in particular from
the works in [1, 21]), this will be the biggest dynamic event dataset, and, in
particular the first First Person event dataset (see Table 8.1).

Table 8.1. Dynamic event datasets dimension [1]

Dataset # classes | Total samples | Avg. length (s)

DVS128 11 1,464 6.52

UCF50 50 6,681 6.8
EpicKitchens (ours) 8 10,094 2.84
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Secondly, we provided a complete benchmark of the event data over the
most important action recognition architectures such as TSN [6], 13D [7],
TSM [12] and TRN [11]. To do so we used 9 channels Voxel Grid representa-
tions (proposed in [37]) for the event data in order to make them suited for
classical RGB model topologies and adapted the first convolutional layer for
the number of Voxel input channels. All modalities have been explored both
in single- and multi-modal setting. For an in-depth comparative analysis we
adopted both clip and video level testing methods, following the recent work
provided in [126], in order to better understand the differences among the
different models. The results unleashed the potential of event data in first
person action recognition, in fact, this is the first benchmark in which event
modality is comparable to RGB and overcomes it in in cross-domain setting.

Further research can be done in order to find a way to help the model learn
even less environmental bias by generating ad ad-hoc way of feeding the Voxel
data into the classical CNNs. An important step towards that direction has
been the testing of different Voxel channels in Section 7.3 but we believe
even more could be possibly done. Our contributions can also encourage
the scientific community to develop new ways of tackling other issues such
as egocentric action anticipation or even problems which traditionally do
not belong to the AR context such as motion compensation, event tracking,
image reconstruction.
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