
POLITECNICO DI TORINO
Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

Xpective Dataset
Towards Robust Pose Estimation with Radar Sensing

Supervisors

Prof. Barbara CAPUTO

Doct. Dario FONTANEL

Student

Niccolò CAVAGNERO

October 2021

Abstract

In the last years, Computer Vision has achieved astonishing results, especially
thanks to the development of Convolutional Neural Networks, in tasks such
as Object Detection, Semantic Segmentation, Pose Estimation. Despite this
success, the majority of RGB-based systems are still incapable of performing
accurate predictions in adverse situations such as lack of light or in presence
of occlusions, dust, fog and other unfavorable environmental conditions. On
the other hand, even if radar-based systems are capable of overcoming some
of these issues, their usage is still limited by low resolutions and difficulties
in capturing the shapes of objects. In order to fill the gap between RGB
and radar modalities, this work involves the acquisition of an heterogeneous
dataset containing synchronized radar samples and the ground truth for
keypoint 3D positions acquired by means of RGB sensors. Towards this
objective, samples of different performed actions have been acquired from
different people, in order to get as much variety as possible. At the time of
writing this Thesis, in the literature there is not yet a public dataset available
with these characteristics. After the collection of the dataset, we use it as a
benchmark to evaluate state-of-art methods. In addition, we also propose a
custom architecture able to outperform these methods by a large margin on
the acquired dataset.

ii

Acknowledgements

A special thanks to Dario Fontanel and Giuseppe Averta, for the precious
advises in the development of this thesis and to professor Caputo for giving
me the opportunity to work on this project. I also thank Inxpect for the
funding received and for hosting me and to Ugo Bertacchini who helped me
in the development of the Motion Capture System.

Finally, I dedicate this work to my friends and to my family for they are
the reason I achieved this goal.

iii

Table of Contents

List of Tables vii

List of Figures viii

Acronyms x

1 Introduction 1

I Literature 3

2 Prior 4
2.1 Radar . 5

2.1.1 Radar Signal Processing 5
2.1.2 Radar Signal Properties 8

2.2 Supervised Learning . 9
2.2.1 Neural Networks . 10
2.2.2 Convolutional Neural Networks 14

2.3 Unsupervised Learning . 18
2.3.1 Agglomerative Clustering 18

3 Previous Work 21
3.1 Pose Estimation . 21
3.2 Radar-based Pose Estimation 23

3.2.1 Main Issues . 25

v

II Dataset Collection and Evaluation 27

4 Capture System 28
4.1 Hardware . 29

4.1.1 Controlling Devices 29
4.1.2 Sensors . 30

4.2 Software . 31
4.2.1 Synchronization . 31
4.2.2 Camera Calibration 31
4.2.3 3D Skeleton Generation 32
4.2.4 Radar Data . 35

5 Inxpect Dataset 38

6 Radar-based Pose Estimation Experiments 40
6.1 Baselines . 40

6.1.1 mm-Pose . 40
6.1.2 PoseCapture . 42

6.2 Ablation Study . 43
6.3 Implementation and Training Details 45
6.4 Results . 46

7 R3D-Pose 50
7.1 Implementation and Training Details 52
7.2 Results . 52

8 Conclusions and Future Works 55

A Appendix 57

Bibliography 59

vi

List of Tables

4.1 Average, standard deviation, maximum and minimum error per
keypoint on a scene from Panoptic Dataset using 10 cameras. Values
in the table are in centimeters. 36

4.2 Average, standard deviation, maximum and minimum error per
keypoint on a scene from Panoptic Dataset using 6 cameras. Values
in the table are in centimeters. 37

4.3 Radar Configuration. 37

6.1 Average test error ± standard deviation per keypoint. All values
are in centimeters. Best results are highlighted in bold. 47

6.2 Median test error ± interquartile range per keypoint. All values are
in centimeters. Best results are highlighted in bold. 47

6.3 Average test error in centimeters, number of parameters in millions
and time needed to achieve the lowest test error in hours for the
different models. Best result is highlighted in bold. 48

6.4 Average test error in centimeters for the different input clip lengths.
Best result is highlighted in bold. 49

6.5 Average test error in centimeters for the different sampling steps.
Best result is highlighted in bold. 49

7.1 Average test error in centimeters, number of parameters in millions
and time needed to achieve the lowest test error in hours for the
different models. The best result is highlighted in bold. 53

7.2 Average test error ± standard deviation per keypoint. All values
are in centimeters. Best results are highlighted in bold. 54

7.3 Median test error ± interquartile range per keypoint. All values are
in centimeters. Best results are highlighted in bold. 54

vii

List of Figures

2.1 Radars produced by Inxpect are robust to light changes, debris,
smoke and liquids. The image is taken from Inxpect official
website. 5

2.2 A chirp in the amplitude-time plane. 6
2.3 A chirp in the frequency-time plane. 7
2.4 Radar scheme. 8
2.5 Multipath echoes from an actual target which generate ’ghost’

targets. The image is taken from Wikipedia. 10
2.6 MLP architecture scheme. The image is taken from [20]. . . 11
2.7 A scheme showing different kinds of activations. The image is

taken from Medium. 12
2.8 Training and validation losses and accuracies with overfitting.

The image is taken from [39]. 14
2.9 A scheme showing the structure of a Residual Block. The

image is taken from [44]. 15
2.10 A scheme showing the application of a 3x3 kernel to an input

feature map. The image is taken from Kaggle. 16
2.11 A scheme showing the application of MaxPool to an input

feature map. The image is taken from [20]. 17
2.12 A scheme showing the performance of different types of Ag-

glomerative Clustering. The image is taken from Sci-kit learn
official website. 20

3.1 A sample from the COCO dataset. 22
3.2 Some samples from the Panoptic dataset. The 3D skeletons

are projected to camera views. 23
3.3 An example of the output of RF-Capture from the original

paper. 24

viii

4.1 A photo of a RaspberryPi 4 from the official website. 29
4.2 An SBV-01 radar produced by Inxpect. The image is taken

from Inxpect official website. 30
4.3 A scheme explaining how Intrisics and Extrinsics work. The

image is taken from MATLAB official website. 32
4.4 Camera Geometry . 33
4.5 Sample of predicted skeletons over true skeletons. Numbered

blue points are the camera centers, in red the focal centers
and the lines represent the normal to each camera. 34

6.1 A representation of the input matrices from the original paper. 41
6.2 A scheme of the mm-Pose architecture. 42
6.3 An example of a range-azimuth heatmap from our dataset. . 42
6.4 A scheme of the PoseCapture architecture from the original

paper. 44

7.1 Left: Residual Block. Right: Residual Bottleneck. The image
is taken from [26]. 51

ix

Acronyms

ACC
Adaptive Cruise Control

AEB
Automatic Emergency Braking

AG
Agglomerative Clustering

AoA
Angle of Arrival

BCE
Binary Cross Entropy

BN
Batch Normalization

CNN
Convolutional Neural Network

DL
Deep Learning

ELLIS
European Laboratory for Learning and Intelligent Systems

x

ELU
Exponential Linear Unit

FC
Fully Connected

FFT
Fast Fourier transform

FMWC
Frequency-Modulated Continuous Wave

GELU
Gaussian Error Linear Unit

GNN
Graph Neural Network

IF
Intermediate Frequency

IIT
Italian Institute of Technology

IoT
Internet of Things

LR
Learning Rate

MIMO
Multiple-input Multiple-output

MLP
Multi-layer Perceptron

xi

MSE
Mean Squared Error

mmWave
Millimeter-wave

NLP
Natural Language Processing

NN
Neural Network

NTP
Network Time Protocol

PReLU
Parametric Rectified Linear Unit

ReLU
Rectified Linear Unit

RF
Radio Frequency

RNN
Recurrent Neural Network

RReLU
Randomized Rectified Linear Unit

SGD
Stochastic Gradient Descent

UDP
User Datagram Protocol

xii

Chapter 1

Introduction

The recent development of Deep Learning represented a breakthrough in
many technological fields, which span from Natural Language Processing, up
to Computer Vision and Robotics applications. Nowadays, Deep Learning
systems are ubiquitous in our daily life and the performances in different
tasks are already beyond the human level [1, 2, 3, 4, 5]. In particular, the
availability of various large-scale well annotated public datasets was a key
enabling factor in the achievement of astonishing results in Pose Estimation,
which is a deeply studied Computer Vision tasks [6, 7, 8, 9] whose objective
is the localization in 2D or 3D of various keypoints of the human body: head,
shoulders, wrists, hips, knees and so on. Its applications range from Computer
Graphics to Robot-human Interaction, industrial safety, autonomous driving
and so on.

However, Deep Learning algorithms still suffer of a number of data related
limitations, such as the corruption of the data samples. For example, most
of the state-of-art vision-based approaches suffer of a dramatic reduction in
performances when data are corrupted by poor-light conditions. This issue
can cause these systems to be unsuitable for an actual application, especially
in safety-critical scenarios such as industrial safety or autonomous driving:
an autonomous car would not see a person in the fog, a surveillance system
would not work in absence of light or a safety system may not detect a person
in case of debris or smoke.

In order to enhance the robustness of the sensing systems, various sensors
measuring different quantities may be adopted together, in a so called Sensor
Fusion fashion, by merging their information from different domains or by
exploiting the information coming from the right kind of sensor in the right

1

Introduction

situation.
In this Thesis, we explored the applicability of radars for Pose Estimation

purposes through the acquisition of a combined RGB and radar dataset. In
particular, we adopted mmWave Frequency-Modulated Carrier Wave (FMCW)
radars, which are popular for industrial and autonomous driving applications
thanks to their limited size [10]. Indeed, radar technology is insensitive
to weather conditions and may be exploited to enhance the robustness of
Computer Vision systems by providing environmental perception in all kinds
of situations.

As previously stated, a key enabling factor in the development of Pose
Estimation, and Deep Learning in general, was the availability of large-
scale public datasets, but at the time of writing this Thesis there is not a
single public dataset for radar-based Pose Estimation. For this reason, we
assembled a Motion Capture System and collected the first publicly available
dataset for such purpose, with the aim of encouraging and facilitating the
research community in the study and development of Pose Estimation and
related research. After an evaluation of state-of-art models on our dataset,
we also propose an ad hoc architecture which consistently outperforms these
methods by a large margin.

2

Part I

Literature

3

Chapter 2

Prior

In the Internet of Things (IoT) era sensors are ubiquitous in our daily life
and the trend is continuous growth, connecting devices and enabling the
collection and exploitation of an always increasing amount of data. Sensors
can be classified into two main categories:

• active sensors, if they employ their own signal to produce an output;

• passive sensors, if they rely on an external signal, usually called excitation
signal, to generate their output.

Vision-based systems rely on passive sensors which require light as exci-
tation signal and they are therefore ineffective in poor lighting conditions,
adverse weather conditions or when the scene/target is occluded, i.e. when
the excitation signal is absent or disturbed. Despite the recent astonishing
results achieved in the last years in Computer Vision, this drawback is one of
the reasons for which in safety critical scenarios, such as autonomous driving
[10, 11], RGB sensors are deployed together with active sensors, such as
Radar and Lidar, which do not rely on an external signal to operate, illumi-
nating the scene by their own and thus providing environmental perception
in all kinds of weather conditions [11].

A possible application would be aggregating and exploiting the information
coming from different kinds of sensors and domains in a Sensor Fusion
fashion. Sensor Fusion can be exploited in order to enhance the robustness
and accuracy of predictions and measurements. For example it could increase
the reliability to scene lighting and weather changes in detection systems
thanks to an obvious statistical advantage and a better observability.

4

Prior

Figure 2.1: Radars produced by Inxpect are robust to light changes, debris,
smoke and liquids. The image is taken from Inxpect official website.

However, it presents different drawbacks for which the actual implementa-
tion of this technique may be unfeasible, such as the increased energy and
the memory needed for collecting, processing and storing the data increase
or the increasing complexity of the sensing system.

2.1 Radar
Radar technology has been studied since the end of XIX century, but it
had its major development during the World War II when the majority of
the developed nations was secretly studying radio frequencies for detection
purposes. The United Kingdom was the first Nation to deploy a radar-
based defense system to detect incoming German attacks, later sharing the
knowledge with the United States. This system was a crucial factor in the
Britain Battle enabling the limited allied forces to counter the increasingly
large Luftwaffe raids. Since then this technology has been employed for
multiple different applications, both military and civilian, from air traffic
control to industrial safety.

In this work, we focus on Frequency-Modulated Continuous Wave (FMCW)
Millimeter-wave (mmWave) radars, which are popular in both industrial and
automotive segments thanks to the Multiple-input Multiple-output (MIMO)
technology which allows the synthesis of large virtual antenna arrays from a
relatively small number of transmitting and receiving antennas [10].

2.1.1 Radar Signal Processing
An FMCW radar is essentially a time-of-flight sensor, usually consisting
in an array with multiple TX and RX antennas, which resolves the target

5

Prior

distance, angle of arrival (AoA) and velocity by analyzing the reflections of
its signal. The base unit of an FMCW radar is the so called chirp, i.e. a
complex sinusoidal wave whose frequency increases linearly with time: the
signal starts with a certain carrier frequency fc and ends at time T with a
final frequency fc +B where B is the chirp bandwidth. Namely,

fT (t) = fc + (B/T)t t ∈ [0, T]

The time during a chirp is usually referred to as fast time, while the time
across multiple periods or chirps is referred to as slow time. Fig. 2.2 and
Fig. 2.3 show a chirp in the A-t and in the f-t planes.

Figure 2.2: A chirp in the amplitude-time plane.

From a functional point of view, the radar is made up of different compo-
nents which are schematized in Fig. 2.4:

• a synthesizer;

• transmitting antennas;

• receiving antennas;

• a mixer;

• a Band-pass filter;

• a final ADC.

The synthesizer generates the chirp signal which is transmitted by the set of
TX antennas and is then received, delayed and attenuated after the reflection

6

Prior

Figure 2.3: A chirp in the frequency-time plane.

on the target, by the set of RX antennas. Transmitted and received signals
are then combined by the mixer, generating the Intermediate Frequency (IF)
signal, also called Beat signal. The IF signal posses two interesting symmetric
properties which can be exploited in the signal processing pipeline:

• the instantaneous frequency of the IF signal is the instantaneous differ-
ence of transmitted and received signals;

• the starting phase of the IF signal is the difference between the starting
phases of transmitted and received signals.

Formally, from a mathematical point of view, these two properties can be
formulated as:

xTX = sin(ω1t+ φ1)
xRX = sin(ω2t+ φ2)

xIF = sin((ω1 − ω2)t+ (φ1 − φ2))

Therefore, the IF signal generated by a single object in front of the radar
has a fixed frequency Sτ , where S is the slope of the signal in the frequency-
time plane and τ = 2d/c is the round trip delay, i.e. two times the target
distance divided by the speed of light. The IF signal is later passed through
the Band-pass Filter in order to select only the desired frequencies of interest.

7

Prior

Finally the signal is converted from the analog domain to the digital one by
means of the ADC for further preprocessing.

Figure 2.4: Radar scheme.

The core preprocessing technique for signals in general and also for RF
data is the famous Fourier transform, specifically the fast Fourier transform
(FFT) and short-time Fourier transform, which transforms a signal from the
time domain to the frequency one. Formally, the mathematical formulation
for an integrable function f : R → C is the following one:

f̂(ξ) =
Ú +∞

−∞
f(t)e−2πitξ dt

The raw data extracted from the digital signal are organized as a cube
with dimensions fast time, slow time and channel. By applying a Fourier
Transform along the fast time one can identify the target range. If we apply
a second Fourier Transform along the slow time one can retrieve the Doppler
Frequency and the velocity of the target while by applying it along the
channel dimension one can retrieve the azimuth. The application of this two
consecutive FFTs along two different dimensions of the raw data cube is
equivalent to a single so called 2D-FFT. It is worthy to report that other
techniques for azimuth estimation, such as the Capon method, are available.

2.1.2 Radar Signal Characteristics
mmWaves are able to traverse walls and therefore can detect a person even
if it is totally occluded by an obstacle of this kind. However, while the

8

Prior

human body acts as a scatterer with visible light, mmWaves are specular to
the human body, i.e. the wavelength is comparable to the roughness of the
irradiated surface, which means that human bodies act as reflectors: this
causes the reflected signals to not be always directed towards the RX antenna
array, resulting in failed detections [12, 13]. While this is not a problem for
the simple detection of a person, this issue can be a serious problem for a
Pose Estimation task. In fact, while there are large body parts, such as the
thorax, which are likely to reflect the signal in the right direction back to
the radar, this may not be true for the limbs whose surface orientation may
cause the signal to be reflected away making an accurate prediction of those
keypoints a really challenging problem. For this reason, the state-of-art in
radar-based Pose Estimation takes as input multiple consecutive RF frames
exploiting the time dimension by means of 3D Convolutional Neural Networks
(CNNs) [14]. It must also be noted not only that commercial radars have
a much lower spatial resolution with respect to RGB sensors, making the
information extraction process much more challenging, but also the fact that
RGB works with just 2 dimensions, while radar data is intrinsically 3D or
4D, taking into account both the space and the time. This fact results in a
more difficult handling and processing phase which is also likely to require
significantly larger computational and storage capabilities. Moreover, the
signal may be disturbed by the so-called multipath, a phenomenon for which
non-direct reflections are received by the antennas causing a degradation
of signal with detrimental effects for the sensing pipeline. Fig. 2.5 shows
how this phenomenon can negatively impact on a sensing system by causing
ghost targets to be detected.

2.2 Supervised Learning
Supervised Learning is a Machine Learning branch where algorithms infer
knowledge from annotated data, usually by minimizing a loss function.
Formally, we have a set of training data Dtrain = {(X1, Y1), ..., (Xn, Yn)}, a
set of test data Dtest = {(Xn+1, Yn+1), ..., (Xm, Ym)} and we aim to build a
model which performs well on unseen samples by minimizing a loss function
L(x, y, f(x)) which measures the performance of the model f(·) on a certain
sample x.

Before the Deep Learning (DL) era, shallow algorithms such as Support
Vector Machine or Decision Trees where employed for prediction purposes

9

Prior

Figure 2.5: Multipath echoes from an actual target which generate ’ghost’
targets. The image is taken from Wikipedia.

after a feature extraction step, which was manually performed. For years these
methods shaded Neural Networks (NNs), which are both computationally
and data intensive and were almost impossible to train and deploy. As the
technology progressed and the amount of available data increased, there was
a paradigm shift to hierarchical deep algorithms capable of automatically
performing the feature extraction process, the Neural Networks. This kind
of deep algorithms slowly started to outperform shallow ones in famous
benchmark datasets such as MNIST [15], CIFAR [16], ImageNet [17]. Neural
Networks, in their various forms, nowadays represent the state-of-art in a large
number of fields, such as Computer Vision, Natural Language Processing or
Robotics.

2.2.1 Neural Networks

The classic architecture for a Neural Network is constituted by a stacking
of multiple non-linear Perceptrons [18] where each neuron of a layer is
connected to all the neurons in the following one and each layer is generally
followed by a non-linear activation function: this is the so called Multi-layer
Perceptron (MLP). It has been shown that Neural Networks are universal
function approximators able to deal with highly non-linear situations by

10

Prior

simply employing a finite linear combinations of Perceptron layers and non-
linear activations (sigmoids at the time) [19]. Fig. 2.6 shows a scheme of a
simple and small MLP architecture with only two hidden layers and a single
output neuron.

Figure 2.6: MLP architecture scheme. The image is taken from [20].

Namely, the mathematical formulation of the output vector of each layer
is given by the following formula:

y = σ(
mØ
i=1

wixi + b) (2.1)

where x ∈ Rm is the input vector, w ∈ Rm is the weight vector, b is
the bias and σ is the activation function providing non-linearity to the
model, which would be otherwise equivalent to a 1-layer linear Perceptron.
There exist various kinds of activation functions such as the sigmoid or
tanh but the most famous and the most commonly used is the ReLU [21]
activation, together with its derivatives such as Leaky ReLU, due to its
improved robustness to the vanishing of the gradient [22] which results in a
more efficient training and better performances. Fig. 2.7 contains various
activation formulas and plots.

As said before, a Neural Network1 is able to autonomously and automati-
cally learn how to extract useful information and meaningful representations

1If properly trained with enough data.

11

Prior

Figure 2.7: A scheme showing different kinds of activations. The image is
taken from Medium.

from the data, almost completely removing the need for a manual, and labo-
rious, feature extraction step. Moreover, these specialized features can be
transferred to other networks by exploiting the so called Transfer Learning,
either by applying the layers of a pretrained network for another different
task or with a Teacher-Student approach, where a new Student network tries
to mimic the behaviour of the trained Teacher one. Transfer Learning also
enable a better model generalization and a faster training which also requires
less annotated data, since the Neural Network is not trained from scratch
but its weights already encode useful knowledge about the data domain.

Passing the time by, in addition to the classic MLP various other architec-
tures emerged to tackle different problems: Convolutional Neural Networks
(CNNs) [23, 24, 25, 26] for vision tasks, Transformers [27] initially for Natural
Language Processing (NLP) and recently extended to vision [28, 29], Re-
current Neural Networks (RNNs) [30, 31] for sequential data, Graph Neural
Networks (GNNs) [32] for graph-like data structures.

Training

A network is trained via Error Backpropagation [33] by minimizing a Loss
function: after a forward pass in the network the error measured by the Loss
is backpropagated up to the input layer updating the various weights. In
fact, thanks to the chain rule it is possible to compute the various gradients

12

Prior

up to the input layer, since all operations that are applied on the data are
differentiable. The Loss functions employed are usually convex, since this
property is enough to guarantee the existence of a global minimum with
obvious advantages in terms of optimization. However, there can be a certain
number of local minima where the optimization algorithm can get stuck in
a sub-optimal solution without reaching the real global minimum. Usually
for the weight optimization the algorithm employed is Stochastic Gradient
Descent (SGD) [34] or similar gradient-based algorithms such as Adagrad
[35], AdaDelta [36], Adam [37] or AdamW [38].

Advanced Topics

Batch Normalization It is standard practice to apply a Batch Normal-
ization (BN) layer between before the activation function. Despite the
computational and memory overhead, normalizing the data is crucial and
results in both higher accuracies and a significant speed up in the convergence
of the training phase by reducing the vanishing gradient problem (up to 20
layers circa). Formally, the normalization procedure simply consists in the
subtraction of the mean and the division for the standard deviation of the
underlying distribution and can be formulated as:

x̂(k) = x(k) − E[x(k)]ñ
V ar[x(k)]

(2.2)

where x̂(k) is the normalized value of the kth hidden unit, E[x(k)] is its
mean and V ar[x(k)] is its variance. Since both the true mean and the true
variance are not known, these parameters are estimated at training time and
are then used to approximate the real values.

Overfitting One of the biggest drawbacks of Neural Networks, together
with the need of a large amount of data and significant computational
resources for the training phase, is in fact the tendency to overfit the training
data which can result in a poor model generalization and therefore low
performances at test time. Fig. 2.8 shows the effect of overfitting on the
validation/test data.

In order to address and mitigate this issue, different techniques have been
developed in addition to Transfer Learning, which still initially requires a
large amount of training samples:

13

Prior

Figure 2.8: Training and validation losses and accuracies with overfitting.
The image is taken from [39].

• Dropout [40], a simple procedure which consists in zeroing a fraction of
the output of some layers during the forward pass in the training phase
forcing the network to learn more robust features;

• Weight Decay [41], which consists in the addition of a term which penal-
izes the magnitude of the weights, formally λëwë where λ is a tunable
hyper-parameter, to the classic loss suppressing this way "irrelevant
components of the weight vector by choosing the smallest vector that
solves the learning problem";

• Data Augmentation [42], which instead consists in slightly modifying
the available data while maintaining the semantic information, e.g. by
flipping, cropping or rotating an image or adding noise to a signal.

2.2.2 Convolutional Neural Networks
The literature about radar-based Pose Estimation exploits Convolutional
Neural Networks, whose structure and functionality will now be briefly
described. The history of modern CNNs started in 1989 when Yann LeCun
at Bell Laboratories, leveraging the studies on Receptive Fields of the visual
cortex [43], used a small backtrained convolutional architecture called LeNet
[23] for handwritten digit recognition setting of the foundations of modern
Computer Vision and Deep Learning in general. The second milestone is
represented by AlexNet [24] which improved the overall architecture reaching
the state-of-art on ImageNet [17], but it is only with the introduction of
Residual Connections [26], also called Skip Connections or simply Residuals,

14

Prior

that we can really talk about deep Neural Networks. In fact, Residuals
represent alternative ways for the gradient to flow back, effectively tackling
the vanishing gradient problem and thus enabling the training of networks
with hundreds of layers. Fig. 2.9 shows the architecture of a Residual Block.

Figure 2.9: A scheme showing the structure of a Residual Block. The
image is taken from [44].

The standard convolutional architecture consists in a sequence of Convo-
lutional layer, generally followed by Batch Normalization, activations and
Pooling layers with a final Fully Connected layer. It is possible to interpret
the convolutional part as a feature extractor while the FC layer acts as
classifier.

Convolutional Neural Networks perform particularly well in Computer
Vision tasks, since their architecture intrinsically encodes the geometric
priors associated with both translation invariance, given by the Convolutions,
and scale separation, given by the Pooling layers [45]. However, CNNs do
not take into account other types of transformation which preserve semantic

15

Prior

information, e.g. rotation or light changes [45]. While these priors can be
easily encoded in the architecture exploiting Data Augmentation strategies,
it must be noted that this way we are making the network invariant around
the kind of transformations which are applied at training time, which in
practice may not be the same at test time.

Figure 2.10: A scheme showing the application of a 3x3 kernel to an input
feature map. The image is taken from Kaggle.

The core element is the Convolution: input data are convolved with
learnable kernels, or filters, generating a certain number of feature maps
which constitute the input for the next layer. These kernels, which act as a
sliding window over the input tensors looking for patterns, are able to learn
local features about the data which are more and more specific as the depth
of network increases. Fig. 2.10 shows the application of a Convolutional
filter to a feature map. Convolutions, thanks to weight sharing and being
only locally connected with the previous layer, enable a significant reduction
in the number of weight per layer which leads to a faster training phase and
a decreased overfitting capability of the architecture. Formally, the output
of a convolution followed by a ReLU [21] activation can be formulated as
follows:

hnj = max(0,
KØ
k=1

hn−1
k · wnkj)

where hn−1
k is the input feature map, hnj is the output feature map,

wnkj is the kernel and the max operator refers to the ReLU activation. A

16

Prior

Convolutional layer is characterized by four main hyper-parameters which
need be chosen:

• size, which is generally squared, e.g. 3x3, 5x5, 7x7 for 2D convolutions;

• stride, the step taken when sliding over the input tensor;

• padding, which increases the input tensor size in order to make it
compatible with the kernel size and stride;

• number of filters, which also determines the number of output channels.

The Pooling layer acts instead as a downsampling element which reduces
the resolution of the input tensor making it more manageable. A Pooling
layer, which is applied channel-wise, generally does not possess learnable
weights but, similarly to a kernel, it is characterized by a certain size and a
stride. Fig. 2.11 shows the application of a Pooling layer to a feature map.

Figure 2.11: A scheme showing the application of MaxPool to an input
feature map. The image is taken from [20].

There exist two main types of Pooling:

• Max Pooling, which retains only the highest value of the window and it
is the most common one [46];

• Average Pooling, which instead considers all the window to produce its
output.

17

Prior

More advanced architectures, such as ResNets [26], do also employ a
so called Global Pooling layer which downsamples an entire feature map
returning a single value, generally the average, for each input feature map
leading to a large reduction in the number of parameters and allowing the
network to take as input images of different dimensions. Global Pooling is
intended to substitute the final Fully Connected layer in order to generate a
fully Convolutional architecture, but in practice it is often employed before
the last FC of the architecture.

The combination of downsampling and weight sharing given by the use of
kernels allows a significant reduction in the number of weights in the network,
leading to a lower overfitting capacity and allowing a faster training phase
which also requires less computational resources.

2.3 Unsupervised Learning
While Supervised Learning relies on annotated data, Unsupervised Learning
algorithms detect patterns or extract information exploiting the intrinsic
properties of the samples, which are no labeled.

Clustering is the main family of Unsupervised Learning algorithms. The
objective of Clustering techniques is to group the different data points into,
possibly meaningful, categories according to similarities or distances across
samples such that the intra-cluster distance is minimized while the inter-
cluster distance is maximized. Clustering can be of two types:

• hierarchical, if generates a set of nested clusters which can be abstracted
to a hierarchical tree;

• partitional, if generates a set of non overlapping clusters, i.e. each data
point is in exactly one single cluster.

The major limitation of Clustering is the difficulty in assessing the fitness
of the various clusters when external metrics are not available. Luckily, in
our case we do possess the ground truth for our task in order to tune and
test the algorithm.

2.3.1 Agglomerative Clustering
The data collection pipeline for the dataset also exploits Agglomerative
Clustering (AG) [47] for the reconstruction of the 3D poses when multiple

18

Prior

people are in the scene. Agglomerative Clustering is a hierarchical Clustering
technique where all the sample points start as a single cluster and at each
iteration the two closest clusters are merged according to a certain metric
distance. The algorithm ends when a certain number of clusters has been
reached or when the minimum distance among the two closest clusters is
greater than a predefined threshold value. There exist four main different
kinds of Agglomerative Clustering, according to the criterion followed for
the computation of the distance among different clusters:

• single linkage, which computes the distance between clusters as the
minimum distance among their points;

• complete linkage, which is the opposite of the single linkage considering
the maximum distance among the points of each cluster;

• average linkage, which instead computes the distance as the average
distance of points of each cluster;

• ward linkage, where the merging criterion is instead given by the opti-
mization of a function aiming to minimize the whithin-cluster variance.

Figure 2.12 shows the differences in performance among these methods by
applying them to different kinds of data.

Single linkage is the only able to efficiently handle non-elliptical shapes,
but is sensitive to noise and outliers while on the contrary the complete
linkage tends to globular clusters but it is less sensitive to noise and outliers.
Average linkage is instead the compromise between these two other methods
being less biased to globular shapes while robust to noise. Ward’s method,
despite being biased to globular shapes too, is able to address clusters with
different density, as we can see from the third row of Figure 2.12, but there
exist other Clustering algorithms which are more suitable to handle cluster
with different densities, such as DBSCAN [48].

19

Prior

Figure 2.12: A scheme showing the performance of different types of
Agglomerative Clustering. The image is taken from Sci-kit learn official
website.

20

Chapter 3

Previous Work

3.1 Pose Estimation
Pose Estimation is a deeply studied Computer Vision task which consists
in the recognition and localization of the different keypoints corresponding
to multiple parts of the human body: head, neck, shoulders, wrists, knees,
ankles and so on. The synthetic set of keypoints of a person is generally
called skeleton. The possible application fields for this kind of technology
range from Computer Graphics to surveillance, industrial safety, autonomous
driving, activity recognition, gaming and so on.

During the last years astonishing results have been achieved in Pose
Estimation, both in 2D, with OpenPose [7] or AlphaPose [6] for example, and
in 3D with VoxelPose [9]. There exist two different approaches to address
this task:

• top-down approach [6, 8], where first the area containing the subject
is identified by means of Detectors, such as YOLO [49] (also employed
internally by AlphaPose), and then the area is fed to a pose estimator
to localize the keypoints of a single individual;

• bottom-up approach [7, 50], where first all the keypoints in the scene are
identified exploiting postprocessing techniques, such as non-maximum
suppression, and they are later associated to a single person.

3D Pose Estimation from a single view is still an unsolved problem and
that is the reason why 3D Estimation is not generally performed relying on
a single RGB frame but exploiting different techniques and technologies:

21

Previous Work

Figure 3.1: A sample from the COCO dataset.

• a multi-camera system [9], as the one developed in this Thesis and which
will be described later;

• RGB-D cameras to retrieve depth information in a Sensor Fusion fashion,
like the Microsoft Kinect [51].

The astonishing progress in this field was mainly enabled by the availability
of different public large scale datasets for this purpose, such as COCO [52],
developed and maintained by Microsoft, or Panoptic [53], which was used
in this work in order to develop and tune the algorithms for 3D skeleton
generation in the dataset.

COCO contains more than 200,000 images and 250,000 labeled 2D skele-
tons in a various range of environments, while Panoptic contains over 5.5
hours of data from a large range of sensors, HD cameras, VGA cameras,
RGB-D cameras, Kinects with 1.5 millions labeled 3D skeletons in a single
controlled setting.

22

Previous Work

Figure 3.2: Some samples from the Panoptic dataset. The 3D skeletons
are projected to camera views.

3.2 Radar-based Pose Estimation
While vision-based Pose Estimation is a well developed field, there are still
few works involving Frequency-Modulated Continuous Wave radars for this
purpose. There exist two different research branches employing wireless
signals in order to decode the human pose:

• device-based, which identifies the keypoint positions by exploiting wire-
less devices or markers on the subjects;

• device-free, which instead does not require the subjects to wear any kind
of sensors.

While device-based tracking is an easier task, device-free methods offer
obvious advantages in terms of deployment and applicability, despite being
more challenging. For this reason we chose this kind of technology as the
focus of this Thesis work.

The first paper exploiting FMCW radars in this relatively new research
area has been produced in 2015 at MIT1, where a group of researches proposed

1MIT currently posses the largest, unfortunately private, heterogeneous dataset related
to this task.

23

Previous Work

RF-Capture [12]. This work was just scratching the surface of the problem
relying on shallow algorithms fed with radar heatmaps to only retrieve a
coarse representation of a human body and not the actual localization of the
various keypoints. The ouput of RF-Capture can be seen in Fig. 3.3.

Figure 3.3: An example of the output of RF-Capture from the original
paper.

The same research group continued working on this topic developing RF-
Pose [54], the first paper in which Deep Learning is applied for actual radar-
based 2D Multi-Person Pose Estimation. RF-Pose is a bottom up method
which exploits an Encoder-Decoder architecture supervised by OpenPose [7],
which generates the ground truth for the radar-based model in a cross-modal
Teacher-Student fashion [55]. RF-Pose was then further improved to work in
a 3D scenario with the development of RF-Pose 3D [14], which is instead
a top-down approach. RF-Pose 3D exploits a ResNet [26] design for the
backbone of the network and introduced a Region Proposal Network acting
as Detector. The work was later extended with RF-Action [13], which is the
first paper employing the radar technology for Action Recognition purposes,
and with [56] which is instead the first work exploiting the radar signal for
Human Mesh Recovery.

However, the MIT research group employed a very large 2D radar array,
which enables the association of the received signal to a 3D spatial voxel, while
Inxpect radars are small 1D arrays and are therefore limited to the range
and azimuth plane, without elevation information. This issue is addressed
by exploiting two identical 1D arrays, one of which rotated of 90 degrees,
and combining the two signals. This is the approach adopted in mm-Pose
[57], in [58], which we will refer to as PoseCapture, and also in this Master
Thesis. It must also be noted that the size of the antenna array employed by
MIT researchers is 60×18 cm, with advantages in terms of resolution but

24

Previous Work

with serious issues in terms of deployment. On the contrary, Inxpect radars
are much smaller (9×9 cm) yielding a greater easiness in the deployment of
such systems.

mm-Pose extracts the XY and Y Z coordinates of the reflected points
from the signals of the two radars and generates a 16x16x3 matrix from
each of them as input for the CNN. Each entry of the matrix contains the
coordinates of a reflected point, up to 256 points, in the first two channels
and the intensity of the reflected signal in the third one, while the entries
not corresponding to a reflection point are set to (0, 0, 0). The points are
ordered following their time of arrival, i.e. by range dimension. This peculiar
preprocessing ensure a consistent dimensionality reduction, as claimed by
the authors. The two matrices are then fed into a branched CNN with a
final Fully Connected layer which predicts the 3D position of the keypoints
of a single person. It must be noted that the good results they achieved
exploiting a single frame for the estimation process may be due to their simple
setting, where the subject was mostly facing the radar while performing
simple actions such as walking, waving or lifting the arms.

PoseCapture exploits a simpler and more standard preprocessing, feeding
the network with 60 consecutive range-angle heatmaps from the two radars.
The researchers adopted an Encoder-Decoder architecture with 3D convo-
lutions. The output of the branched Encoder is concatenated and fed to
the Decoder, which outputs a 2D heatmap. The position of the keypoints
of the people in the scene is extracted by means of non-maximum suppres-
sion. However, it must be noted that the researchers limited their dataset
and experiments to a single person scenario, for which the decoder may be
redundant.

Both mm-Pose and PoseCapture will be later described more in details, as
they constitute the baseline models adopted as a benchmark for the dataset.

3.2.1 Main Issues
Due to the specularity of the human body to GHz RF waves, the radar
signals may be directed away from the receiving antennas resulting in missed
detections. While this fact may not represent a problem for a coarse detection
of a person or for the identification of body parts with a large reflective surface,
such as the torso, it could represent a serious issue for the identification of
smaller parts such as the limbs. This is due to the fact that large reflective
surfaces are likely to reflect at least part of the signal in the right direction

25

Previous Work

while, on the contrary, smaller and more mobile parts such as the limbs
are likely to not be detected since they may reflect the signal away from
the RX antennas. That is the reason for which the literature exploited
multiple consecutive frames as input for the networks: 3.3 seconds for RF-
Pose3D and 2 seconds for PoseCapture. Since the time dimension is also
considered, the architectures must employ 3D Convolutions which are much
more computational demanding with respect to their simple 2D counterparts,
causing a significant increase in terms of training time and model dimension.
Another relevant issue is given by the much lower resolution of a radar
with respect to RGB sensors, which makes the exact localization of the
joints a very challenging task. Moreover, the presence of multipaths is going
to further degrade information carried by the signal, especially in heavily
cluttered areas.

26

Part II

Dataset Collection and
Evaluation

27

Chapter 4

Capture System

In order to collect a significantly large dataset which could help the research
community in the progress of radar-based Pose Estimation and related tasks,
we developed a cheap and easily movable Capture System. Three different
design choices for the data collection were taken into account, each one with
its advantages and disadvantages:

• a VICON [59] system, which is the commercial golden standard but it
is very expensive and cannot be easily moved to different settings;

• a Kinect [51], which was the easiest and fastest choice but it suffers the
presence of occlusions and the deployment of multiple Kinects in order
to overcome this issue can lead to interference in their signals;

• a multi-camera system, robust to occlusions and easily movable but
which needed to be built from scratch.

A Vicon system was employed by the authors of RF-Pose 3D [14] but only
as a benchmark for their movable multi-camera system, since they wanted to
collect the data across different environments. The second approach with a
single Kinect was instead followed, for example, by the authors of mm-Pose
[57]. Despite the efforts required to build a multi-camera system, we opted
for this last option following the design employed by the authors of RF-Pose
3D, which showed a very low error with respect to the Vicon system.

28

Capture System

4.1 Hardware

4.1.1 Controlling Devices
The developed Capture System1 is a modular ensemble of RaspberryPi 4,
a famous small single-board computer developed in the United Kingdom.
Currently the system consists in 5 devices -with more in deployment-, each
one with its own batteries and a tripod in order to be easily moved across
various settings to ensure model generalization.

Figure 4.1: A photo of a RaspberryPi 4 from the official website.

Raspberry Pi boards offer multiple advantages such as the small size, which
enables an easy deployment, and the very low prices which are in the order
of 30-40 e circa, making the realization of the collection system relatively
cheap and easily scalable to more environments or to a larger number of
devices in the same setting to achieve better estimation performances.

Each device controls a PiCamera v2 which provides RGB supervision,
while two of them also control the two radars deployed in correspondence of

1The system is completely funded by Inxpect.

29

Capture System

the central device.

4.1.2 Sensors
PiCamera v2 are cheap camera sensors, less than 30 €, with 8 Megapixels.
They mount a Sony IMX219 sensor with maximum resolution of 3280x2464
pixels and a pixel size of 1.12x1.12 µm. They can be either employed by
means of simple Bash commands, raspistill and raspivid, or using various
APIs such as the one for the Python programming language.

The mmWave radars employed are the SBV-01 radars produced by Inxpect.
They operate at 60 GHz with 2 transmitting antennas, 4 receiving antennas
and a response time lower than 100 milliseconds. Thanks to their limited
size, such radars are suitable to be easily deployed in a large number of
different scenarios, from industrial settings to autonomous driving. This
kind of radar, however, possesses a low spatial resolution (40 cm in depth,
10-15 degrees in azimuth) which makes the Pose Estimation task even more
challenging. We refer to Inxpect official website for other details.

Figure 4.2: An SBV-01 radar produced by Inxpect. The image is taken
from Inxpect official website.

As previously said, in order to address the lack of elevation information in
standard 1D radar arrays as the ones produced by Inxpect, the two radars

30

Capture System

are arranged as a cross, as done in mm-Pose and PoseCapture, by means of
an ad hoc 3D printed support realized by Inxpect.

4.2 Software

4.2.1 Synchronization
In order to associate the frames from the different devices, the RaspberryPis
must be accurately synchronized. This is achieved by means of the Network
Time Protocol (NTP) [60] which enables the exchange of time information
exploiting the User Datagram Protocol (UDP) on the port 23. One of the
RaspberryPis acts as the NTP server dictating the time to the other devices
acting as NTP clients. NTP is able to maintain the error from Coordinated
Universal Time over Internet in the order of tens of milliseconds while in a
typical local subnet, as in our case, the delay between client and server is
typically in the order of 2-3 milliseconds, thus ensuring the reliability of the
timestamps used for the association of the frames coming from the different
cameras and radars. Moreover, this synchronization is quite simple to realize
and requires few commands and changes using a UNIX-like system like the
ad hoc Linux version for RaspberryPi boards, once called Raspbian.

4.2.2 Camera Calibration
In order to reconstruct the 3D pose of an individual from multiple 2D views
it is necessary to obtain the calibration data of the cameras. Calibrating a
camera means computing the so called Extrinsic parameters, i.e. its Camera
Matrix M , which is a 4x3 matrix mapping world points to image points and
the Intrinsic parameters, which map from an XY image coordinate system
to a pixel image coordinate system:

[x,y,1] = [X,Y,Z,1]M
M = [R|t]’K

where lowercase coordinates refer to images point, uppercase coordinates
refer to world points, R is a 3x3 rotation matrix, t a 3x1 translation vector
and K is the Intrinsics Matrix. Generally, together with K another set
of parameters is computed, the so called Distortion parameters, which,
surprisingly, encode the lens distortion and are used to undistort the images
by eliminating the lens effect.

31

Capture System

Figure 4.3: A scheme explaining how Intrisics and Extrinsics work. The
image is taken from MATLAB official website.

While Intrinsics Calibration is already automatized in several libraries,
such as OpenCV, Extrinsics Calibration (R and t) for more than two cameras
is a much harder and time consuming task which required us to deploy targets
with known coordinates (and thus to manual label the corresponding pixels)
on the scene in order to obtain a global 3D reference system. Calibration
data is then employed together with the 2D poses in order to reconstruct the
3D skeletons from the set of 2D skeletons in simultaneous frames captured
by different cameras.

4.2.3 3D Skeleton Generation
For the 3D reconstruction, we mainly followed again the approach showed in
RF-Pose3D. First, we retrieve the 2D poses from each camera by means of a
well established vision-based Deep Learning algorithm, such as AlphaPose
[6] which performs slightly better than the one adopted by MIT researchers,
OpenPose [7]. Then the association of different 2D skeletons of a same person
in simultaneous frames from different cameras is then performed by means
of Agglomerative Clustering exploiting the scikit-learn library: the distance
metric in our case consists in the distance between two skeletons, which is
computed as the mean Euclidean distance between the 3D lines exiting from
the cameras and intersecting some of the keypoints in 3D.

32

Capture System

Figure 4.4: Camera Geometry

To achieve this goal, we first identify the 3D position of the pixel containing
a certain keypoint in an image and we then compute the parametric equation
of the line passing from such point and the focal center of the camera. The
parametric equation of a line passing through two points x1 and x2 is simply
the following one:

p = x1 + (x2 − x1)t

with t ∈ (−∞,+∞). Then the distance d between two lines is computed
by means of the standard formula for the distance between two parametric
lines:

d = n(r1 − r2)
ënë

where r1 and r2 are the direction vectors of the two lines and n is the
cross-product of r1 and r2, namely n = r1 × r2.

Once we have different 2D skeletons of the same person, the 3D Triangu-
lation is performed similarly to what is described in RF-Pose3D, adding a
weight γ for each camera: the 3D position p of a single keypoint is computed
by minimizing the weighted distance from its 2D projections.

p = arg min
p

Ø
i∈I
γi||Cip− pi||22

"where the sum is over all cameras that detected that keypoint, and Ci is
the calibration matrix that transforms the global coordinates to the image

33

Capture System

coordinates in the view of camera i" [14] and γi is the confidence of the
keypoint as seen by camera i. Moreover, only keypoints with a confidence
greater than 0.6 are taken into account in the summation.

Figure 4.5: Sample of predicted skeletons over true skeletons. Numbered
blue points are the camera centers, in red the focal centers and the lines
represent the normal to each camera.

The optimization algorithm adopted for the minimization of the function
is a standard Newton method implemented in the SciPy library. The Newton
method is a sort of extension of the famous Gradient Descent algorithm
which locally approximates with a quadratic function, instead of a linear
one as Gradient Descent, generally leading to more accurate results and
better performances thanks to a quadratic rate of convergence. However, this
comes at the cost of being significantly more computationally intensive due
to the computation of the Hessian matrix ∇2f . Formally, the local function
approximation can be formulated as follows:

f(x+ p) Ä f(x) + pT∇f(x) + 1
2p

T∇2f(x)p =: m(p)

34

Capture System

If the Hessian ∇2f(x) is positive definite, p is a descent direction and
m(p) is a convex model for f around x, therefore the Newton step consists
in the minimization of the local model m(p) at each step:

∇m(p) = ∇f(x) + ∇2f(x)p = 0

As it is a common drawback of optimization algorithms, also Newton
method is quite sensitive to the starting point, which is roughly set to the
center of scene achieving this way convergence each time.

Moreover different techniques, such as Inexact Newton Method or Quasi-
Newton Method, have been developed in order to mitigate the computational
intensiveness of this algorithm making it suitable for large scale problems
relying on approximations of the Hessian matrix ∇2f(x).
Clustering and Triangulation are tuned and tested on a scene from Panoptic
dataset with three different groups of three subjects: 10463 skeletons and
3519 frames were considered in this sample. The results in centimeters for
different numbers of cameras are reported in Tables 4.1 and 4.2.

4.2.4 Radar Data
With regards to radar data, raw samples from the two radars are extracted by
means of two DCA100 and later processed by means of a proprietary library
of Inxpect. Radar raw cubes are associated to RGB frames by means of
timestamps and are then encoded in Base64 (since complex numbers are not
json-serializable) in order to be saved into a .json file. Table 4.3 contains the
radar configuration options chosen for the task by Inxpect Signal Processing
Engineers.

35

Capture System

Keypoint Avg Error Error Std Max Error Min Error
Nose 1.431 0.611 6.911 0.034
Neck 1.033 0.534 3.723 0.073

ShoulderR 1.362 0.725 7.425 0.015
ElbowR 2.105 0.934 10.252 0.028
WristR 2.861 2.262 18.607 0.076
ShoulderL 1.383 0.955 5.138 0.012
ElbowL 2.319 1.299 9.853 0.082
WristL 2.604 2.832 22.323 0.032
HipR 3.626 1.62 12.745 0.304
KneeR 3.543 3.287 26.263 0.221
AnkleR 2.942 1.498 36.961 0.184
HipL 3.572 2.159 11.678 0.201
KneeL 3.646 1.38 15.016 0.393
AnkleL 3.221 2.028 32.703 0.238
EyeR 1.875 0.629 5.73 0.372
EyeL 1.785 0.519 5.677 0.292
EarR 1.348 0.599 5.838 0.079
EarL 1.383 0.526 3.578 0.063

Table 4.1: Average, standard deviation, maximum and minimum error per
keypoint on a scene from Panoptic Dataset using 10 cameras. Values in the table
are in centimeters.

36

Capture System

Keypoint Avg Error Error Std Max Error Min Error
Nose 1.558 0.841 9.963 0.028
Neck 1.177 0.586 5.667 0.012

ShoulderR 1.299 0.736 9.827 0.062
ElbowR 2.824 2.245 21.71 0.057
WristR 3.18 3.33 29.971 0.062
ShoulderL 1.489 0.817 10.977 0.062
ElbowL 2.345 1.684 19.845 0.115
WristL 3.534 4.386 29.937 0.03
HipR 3.776 1.586 21.647 0.346
KneeR 4.264 3.991 28.882 0.238
AnkleR 4.385 3.554 29.443 0.276
HipL 3.107 1.419 16.888 0.17
KneeL 4.037 1.907 24.009 0.158
AnkleL 5.243 4.492 29.536 0.137
EyeR 1.951 0.831 9.36 0.439
EyeL 1.917 0.742 9.851 0.18
EarR 1.562 0.658 9.342 0.137
EarL 1.506 0.575 5.974 0.107

Table 4.2: Average, standard deviation, maximum and minimum error per
keypoint on a scene from Panoptic Dataset using 6 cameras. Values in the table are
in centimeters.

Option Value
Chirps per Frame 20
Samples per Chirp 256

Frame Period 25 ms
Start Frequency 60.6e9 Hz
Rampe Rate 40e12 Hz/s

Sampling Frequency 3000e3 sample/s

Table 4.3: Radar Configuration.

37

Chapter 5

Inxpect Dataset

Setting The dataset, which we called Xpective, was collected at Visual and
Multimodal Applied Learning (VANDAL) laboratory at Politecnico di Torino.
VANDAL is part of Italian Institute of Technology (IIT) and constitutes one
of the units of European Laboratory for Learning and Intelligent Systems
(ELLIS).

Currently, there is a single environment and the collected samples contain
a single person at a time: multi-person scenarios and different environments
are going to be added soon.

In order to have a realistic setting, the dataset is not collected in an empty
environment but in our office, which is a heavily cluttered space likely to
cause the emergence of a large number multipaths and ghost targets.

Content and Dimension Up to now, Xpective consists in 26 scenes of 3
minutes for a total of 78 minutes of data with over 135k labeled skeletons of
3 different people performing random movements, such as walking, waving,
drinking, using the phone and so on. Each skeleton is composed of 18 different
keypoints, following the "open" COCO format of AlphaPose [6] which is
the vision-based model adopted to extract the 2D skeletons from the single
camera views.

The dataset is organized in different environments which consist of various
scenes together with the Calibration data of the cameras. For each scene,
they are available the videos from the different cameras, the raw radar cubes
from the two Inxpect SBV-01 radars, the 2D skeletons as they are generated
by AlphaPose and the reconstructed 3D skeletons. Each environment also
contains a recording for each radar when there are no people in the scene in

38

Inxpect Dataset

order to optionally eliminate static reflections and multipaths coming from
the environment.

With regard to RGB data, we adopted a framerate of 30, the size of the
frames is 1280x960 and the videos are saved in .mp4 extension. Frames can
be easily extracted from the videos with a single Bash command by means of
FFmpeg [61]. As said before, radar data is encoded in Base64 (since complex
numbers are not json-serializable) and then stored to a .json file. In the
Appendix it is possible to find a Python function which acts as object hooker
to read the .json files.

Applications Since the dataset contains both RGB and radar data, it is
suitable to be employed by using the single modalities only or in a Sensor
Fusion fashion, constituting a useful tool in the development of Pose Es-
timation and related research. Moreover, a further labeling of the scenes
may easily extend the use of this dataset to Activity Recognition or Person
Identification tasks.

39

Chapter 6

Radar-based Pose
Estimation Experiments

In order to establish an initial benchmark for the dataset, we took into
consideration two1 different models, mm-Pose [57] and PoseCapture [58].
While both the works exploit two identical 1D radar arrays to overcome
the lack of elevation information, they employ different radar preprocessing
techniques and different architectures, which will be now described in details.
Moreover, we conducted an ablation study involving other architectures as
backbones and an analysis regarding the time dimension.

6.1 Baselines

6.1.1 mm-Pose
Preprocessing As mentioned in the section about previous works in radar-
based Pose Estimation, mm-Pose adopts a peculiar preprocessing strategy
with the aim of reducing the size of the input data while preserving the
valuable information to achieve real-time performances. By means of standard
signal processing techniques, as the ones described in the Prior chapter, the
authors extracted the XY and Y Z coordinates of the reflected points, up to
256 points, from the two radars and they then generated a 3x16x16 matrix

1MIT research could not be replicated due to the different nature of radar systems
employed, i.e. a single 2D radar array instead of two 1D radar arrays.

40

Radar-based Pose Estimation Experiments

from each of them as input for their architecture. Each entry of the matrix
contains the coordinates of a reflected point in the first two channels and the
intensity of the reflected signal in the third one. Entries not corresponding
to a reflection point are set to (0, 0, 0). The points are ordered following
their time of arrival, i.e. by range dimension. Fig. 6.1 shows a sample of
two paired input matrices.

Figure 6.1: A representation of the input matrices from the original paper.

Architecture The architecture is made up of two simple 3-layers CNNs,
whose output is concatenated and then fed to a small 3-layers MLP head
before the last fully connected layer which outputs the 3D coordinates of
different keypoints of a single person. Since the input is a single matrix
per radar, i.e. they do not exploit temporal information across previous
frames, the convolutions are 2D. The kernel size is 3x3 with stride 1 and
same padding, while the number of filters per convolutional layer is 16, 32,
64. The number of nodes per layer in the MLP is instead 512, 256, 128.
ReLU activation function is used after each layer but the last, convolutional
layers are followed by a 0.2 rate dropout while the fully connected ones by a
0.3 rate dropout to avoid overfitting. The loss minimized at training time is
a Mean Squared Error (MSE), and the optimizer adopted is Adam [37].

The good results achieved despite this simple method, which does not take
into considerations multiple consecutive frames, may be due to the nature of
the dataset collected by the authors, which is not particularly challenging
since the subject is mostly oriented towards the radar while executing simple
movements such as lifting an arm or waving.

41

Radar-based Pose Estimation Experiments

Figure 6.2: A scheme of the mm-Pose architecture.

6.1.2 PoseCapture
Preprocessing The authors of PoseCapture followed a more standard
approach. They first extracted the range-angle matrices from the raw data
and then they generated a range-azimuth and a range-elevation heatmaps
which are fed to their architecture.

Figure 6.3: An example of a range-azimuth heatmap from our dataset.

Architecture The architecture follows an Encoder-Decoder design. Since
they feed to the network two seconds of data, i.e. 60 frames with a framerate

42

Radar-based Pose Estimation Experiments

of 30, to predict the pose their network adopts 3D convolutions. The Encoder
is composed by two identical 5-layers CNN branches with kernels of size
9x5x5. Batch Normalization and ReLU activation are applied after each
layer. Nothing is specified about stride, padding and number of filters per
layer. The output of the two branches is concatenated and then passed
to the Decoder, which generates a 2D heatmap containing the locations of
the keypoints of the people in the scene. The Decoder is composed of 4
fractionally strided Convolutional layers with kernels of size 3x6x6 and 1x2x2
stride. The first 3 layers are followed by Parametric ReLU [1] while the last
one is followed by a sigmoid in order to scale the outputs in the [0,1] range.
The loss function minimized at training time is a Binary Cross Entropy
(BCE), the batch-size is 8 and the optimizer adopted is again Adam.

Due to the lack of information, we had to make assumptions about stride,
padding and number of filters in the Encoder:

• the stride is 1x2x2, as it is in the Decoder and in RF-Pose for all the
layers but the last two which have stride 1, due to size compatibility
with our heatmaps;

• no padding, since there is no reference to it;

• the number of filters starts from 8 for the first two convolutions and it
is doubled after each layer, as it is standard practice.

The choice for a low number of filters is due to the slowness of the
architecture. Moreover, since the adaptation of the Decoder in a 3D scenario
would be computationally unfeasible for our GPUs, we removed this part
of the architecture and substituted it with a simple FC layer acting as
multi-regressor, as proposed by the authors of mm-Pose.

6.2 Ablation Study
Backbones Together with the two Baseline models, we also evaluated
different standard architectures as backbones for the branches. Since proper
3D architectures are quite heavy to train and they often are too large even for
a simple forward-pass with our GPUs, we modified standard 2D architectures
by changing Convolutions, Pooling and BatchNorm layers changed from 2D

43

Radar-based Pose Estimation Experiments

Figure 6.4: A scheme of the PoseCapture architecture from the original
paper.

to 3D. A ResNet18 (2+1)D [62] is the only exception2 since this model is
both light and fast despite being originally developed for videos processing.
Since 3D convolutions are quite computationally expensive, we reduced the
number of filters of these models to make them trainable in a reasonable
time on our GPUs. This reduction not only makes these architectures faster
and lighter, but it also reduces the their overfitting capability with gains in
terms of test error.

• In the ResNet [26] family, we explored ResNet18, ResNet34, ResNet50
and, as just said, a ResNet18 (2+1)D. The number of channels is divided
by 8 from [64,128,256,512] to [8,16,32,64];

• In the DenseNet [64] family, we explored DenseNet40 and DenseNet76
with initial number of filters divided by 8 from 64 to 8 and the growth
rate is divided by 3 from 12 to 4;

• Considering more shallow and simpler networks without Residuals, we
explored a VGG16 [25] with Batch Norm, the Average Pooling performed
only on the spatial dimensions and the number of channels divided by 8
from [64,128,256,512] to [8,16,32,64];

• For lightweight scenarios, we also explored a MnasNet0.25 [65] that
should be more accurate than both MobileNetV1 [66] and MobileNetV2
[67] while being faster and with less parameters.

2Other standard 3D architectures, like X3D [63], were considered but they were far to
heavy to train.

44

Radar-based Pose Estimation Experiments

We refer to the original papers for an exhaustive description of these
architectures, since it is out of the scope of this work.

All these architectures are fed with 30 Range-Angle (RA) heatmaps (e.g.
1 second) sampling a frame every two. We removed the classifier from each
network and concatenated the output of the two convolutional branches. The
concatenation is then passed to a final FC layer for the actual prediction, as
done in mm-Pose.

Time Dimension Once we found the best performing architecture, we
also investigated how many frames does it leverage to predict the actual
pose by feeding 15, 30, or 60 frames (i.e. half, one or two seconds) per single
inference. Moreover, since we expect the frames to be highly redundant, we
also explored a simple sampling strategy by considering a frame every 3, 4
or 5.

6.3 Implementation and Training Details

All the architectures are fed with standard radar heatmaps. The models
try to minimize the Mean Squared Error (MSE) by means of Adam [37]
optimizer. The initial learning rate for all the networks is 1e − 2. Since
both in mm-Pose or PoseCapture no information is given about the learning
rate scheduling, we adopted Cosine Annealing with Warm Restarts [68] with
t0 = 2 and tmult = 2 for all the models. The batch-size is 32 and the Weight
Decay is set to 1 × 10−5. All the models are implemented by means of the
PyTorch [44] framework and are trained using two NVIDIA GTX 1070 for a
maximum of 24 hours or 62 epochs (4 Warm Restarts), with the exception of
mm-Pose which, being a lot faster due to the adoption of a 2D architecture,
is simply trained for a maximum of 24 hours.

We made sure that the models do not see any of the test data at training
time: all the scenes but a randomly chosen one are adopted for training while
the test is performed on the remaining one (scene 8). The keypoints which
have to be predicted are the the ones in the dataset with the exception of
nose, ears and eyes that are averaged to obtain the head.

45

Radar-based Pose Estimation Experiments

6.4 Results
Baselines Despite being an ad hoc architecture, mm-Pose miserably fails
on the dataset and is the worst model among the tested ones achieving an
average test error of 40.8 centimeters. This may be due to the necessary
adaptation, e.g. the Global Average Pooling layer, we applied to the model
to allow mm-Pose to be able to manage the radar heatmaps which are larger
than the input matrix originally adopted in the original work. However, it
must be noted not only that the original architecture is quite shallow and
naïve, but also the fact that taking as input 1 single frame it is likely that
some keypoints are not detected by the radars. Moreover, our dataset is
more challenging than the one collected by the authors of mm-Pose and
the environment is also quite cluttered, making an actual localization of the
keypoints an even harder task.

On the other hand, PoseCapture, which has been heavily modified to be
able to work in a 3D scenario, achieves far better results than mm-Pose
with 15.13 centimeters of average test error. However, also this model is
very shallow and naïve and indeed it is still outperformed by many standard
architectures both in terms of precision and training time.

Analyzing the average error per keypoint it is clear that, while the larger
and more static keypoints are easier to localize, the limbs are the most difficult
parts to predict. This is due to two different factors: the limbs possess a
higher degree of freedom and a smaller reflective surface. Indeed, the limbs
are generally the hardest keypoints to predict also in classic RGB-based Pose
Estimation due to their higher mobility, but in this scenario the error is even
more pronounced due to their limited reflective surface which is also likely to
reflect the signal away from the RX antennas, resulting in missing detections.
Tables 6.1 and 6.2 show the average and median test error per keypoint for
the two Baselines. Due to a non-symmetric distribution of the errors, the
median is actually a better estimator than the average.

Backbones The other standard architectures which have been tested on
average achieves better results than the state-of-art models, with also the
two worst backbones, MnasNet0.25 [65] and DenseNet40 [64], scoring an
average test error of 14.06 and 14.17 centimeters. VGG16 [25], despite being
a relatively simple model without even Residuals, performs surprisingly well
with an average test error of 13.34 centimeters but it is outperformed by
more complex architectures. DenseNet70 achieves a good 13.08 centimeters

46

Radar-based Pose Estimation Experiments

Keypoint mm-Pose PoseCapture
Head 38.26 ± 23.3 10.81 ± 8.25
Neck 35.62 ± 23.05 8.74 ± 8.08

ShoulderR 40.56 ± 23.26 11.71 ± 9.51
ElbowR 48.44 ± 23.75 19.93 ± 12.57
WristR 55.75 ± 23.81 28.86 ± 18.29
ShoulderL 35.88 ± 22.38 10.80 ± 8.17
ElbowL 42.31 ± 22.25 19.33 ± 10.9
WristL 50.24 ± 24.49 29.8 ± 16.88
HipR 38.44 ± 23.21 9.8 ± 9.03
KneeR 39.7 ± 23.64 12.1 ± 11.13
AnkleR 39.56 ± 24.39 15.25 ± 12.31
HipL 34.96 ± 22.81 8.89 ± 7.73
KneeL 35.9 ± 23.62 11.34 ± 10.34
AnkleL 35.6 ± 24.09 14.5 ± 11.58
Mean 40.8 15.13

Table 6.1: Average test error ± standard deviation per keypoint. All values are
in centimeters. Best results are highlighted in bold.

Keypoint mm-Pose PoseCapture
Head 32.94 ± 35.26 9.06 ± 6.9
Neck 29.76 ± 33.32 6.71 ± 5.82

ShoulderR 36.77 ± 32.4 9.71 ± 7.56
ElbowR 46.25 ± 36.74 17.59 ± 13.13
WristR 52.23 ± 36.74 25.19 ± 21.29
ShoulderL 30.07 ± 34.5 9.29 ± 7.42
ElbowL 39.53 ± 36.61 16.9 ± 12.66
WristL 45.47 ± 36.1 26.83 ± 20.87
HipR 33.76 ± 34.82 7.81 ± 6.4
KneeR 35.14 ± 37.16 9.24 ± 7.83
AnkleR 32.65 ± 37.96 12.75 ± 10.61
HipL 28.44 ± 35.01 7.18 ± 5.91
KneeL 30.35 ± 38.49 8.98 ± 7.4
AnkleL 28 ± 39 11 ± 10.48

Table 6.2: Median test error ± interquartile range per keypoint. All values are
in centimeters. Best results are highlighted in bold.

of average test error, which is the best result achieved by a standard 2D
model modified in 3D. This result is even more surprising considering how

47

Radar-based Pose Estimation Experiments

few parameters this architecture possesses but the training and processing
time are still very long due to the large number of input channels in each
Convolution. In the ResNet [26] family, as we could expect for the modified 2D
models we get more accurate results as the depth of the network increases but
the best performing architecture is actually the only proper 3D architecture,
ResNet18 (2+1)D [62] which is the only model able to achieve an average
error lower than 13 centimeters outperforming not only deeper ResNets but
also all the other models. Indeed, the (2+1)D Convolutions are able to better
model the phenomenon but this comes at the cost of a triplicated training
time with respect to the other ResNet18.

Table 6.3 contains the average test error, the number of parameters and
the needed training time for the different backbones.

Model Avg Error [cm] Parameters [M] Time [h]
mm-Pose 40.8 0.28 12.3

PoseCapture 15.13 1.34 16.75
ResNet18 13.88 1.05 5.5
ResNet34 13.82 2 2.5
ResNet50 13.11 1.49 15.3

ResNet18 (2+1)D 12.76 0.99 15.25
DenseNet40 14.17 0.1 12
DenseNet76 13.08 0.22 20.25
VGG16 13.34 1.39 10

MnasNet0.25 14.06 1.08 9.5

Table 6.3: Average test error in centimeters, number of parameters in millions
and time needed to achieve the lowest test error in hours for the different models.
Best result is highlighted in bold.

Time Dimension With regard to the time dimension, the experiments
showed that the best backbone, ResNet18 (2+1)D, leverages frames up to 1
second away in order to predict the pose. In particular, the performances are
slightly lower with 15 or 45 frames. The difference is however in the order
of 1-2 millimeters, so it could be useful to feed only 15 frames in order to
reduce training and inference time. Table 6.4 shows the average test error
for the different clip lengths.

With respect to the different sampling steps, step 2 seems to represent
the right compromise between subsampling the input size and preserving

48

Radar-based Pose Estimation Experiments

Measure 15 Frames 30 Frames 45 Frames
Avg Error [cm] 12.9 12.76 12.81

Table 6.4: Average test error in centimeters for the different input clip lengths.
Best result is highlighted in bold.

the useful information. Indeed, both with step 1 and step 3 it is possible
to see a decrease in terms of precision. While the decrease with step 3 is
easily attributed to the lower resolution, the decrease with step 1 is harder to
motivate. We suppose it could be due to the network which tends to overfit
focusing too much on the time dimension in place of the spatial ones. Table
6.4 shows the average test error for the different sampling step lengths.

Measure Step 1 Step 2 Step 3
Avg Error [cm] 13.53 12.76 13.42

Table 6.5: Average test error in centimeters for the different sampling steps. Best
result is highlighted in bold.

49

Chapter 7

R3D-Pose

After an evaluation of the current state-of-art together with other possible
architectures, we also developed an ad hoc model, which we called Radar-
based 3D Pose Estimation (R3D-Pose), which is able to consistently
outperform the other methods. Due to the results obtained in the ablation
study, we opted for a ResNet [26] design as the base backbone. The adopted
architecture and its modifications will be later described in details. Moreover,
in order to achieve a better generalization we introduced changes not only in
the architecture but also in the way the network is trained:

• AdamW [38] is adopted as optimizer in place of the classic Adam [37];

• Weight Decay is strongly increased to from 10−5 to 10−1;

• Data Augmentation is applied to the training labels in the form of
Gaussian noise;

• Huber [69] loss is minimized in place of the standard MSE.

These modifications highly enhance the generalization capability of the
network reducing the overfitting and leading to more accurate predictions.
Moreover, the adoption of Huber loss reduces the weight of outliers caused
by errors in the 3D reconstruction. Indeed, despite resulting in an unbiased
estimator for the mean, MSE tends to be dominated by outliers while Huber
is much less sensitive to them. Moreover, at the best of our knowledge, this is
the first time Data Augmentation is applied in radar-based Pose Estimation.

50

R3D-Pose

Architecture The architecture of a standard ResNet is the following one:

• a first Convolutional layer with 64 filters, kernel size 7x7, stride 2 and
padding 3, followed by Batch Norm layer and ReLU [21] activation;

• a Max Pooling layer with kernel size 3x3, stride 2 and padding 1;

• four groups of Residual Blocks or Residual Bottlenecks with number of
filters doubled after each group and stride 2 for all the groups but the
first whose stride is instead 1;

• a Global Average Pooling layer;

• a final FC layer acting as classifier or regressor.

Fig. 7.1 shows the differences between a standard Residual Block and a
Bottleneck at the same depth in the network.

Figure 7.1: Left: Residual Block. Right: Residual Bottleneck. The image
is taken from [26].

After various experiments we adopted a simple ResNet34, with all the
layers but the last Residual Block modified from 2D to 3D and a reduced
number of filters. Somehow with the applied modifications it performs better
than even ResNet18 (2+1)D [62], despite being the latter the best performing
model in the ablation study.

First, we modified the first convolution following the design in [62]: the
kernel size is 3x7x7, stride 1x2x2 and padding 1x3x3. Then, the Max Pooling
operation is performed only on the time dimension, since with radar heatmaps
we do not need scale equivariance on the spatial dimensions, while on the time
one scale equivariance makes the model invariant with respect to the speed of

51

R3D-Pose

movements. Moreover, the Global Average Pooling layer is removed and the
output of the last Convolution of each branch are directly concatenated. We
believe the translation invariance bias of the Global Pooling may worsen the
results making our regressor insensitive to shifts in the feature maps. Before
feeding the concatenation to the final Fully Connected layer, we applied
another Residual Block with stride 2 in order to downsample the feature
maps entering the Fully Connected layer, which would otherwise explode
without the dimensional reduction performed by the Global Pooling. The
absence of a Global Pooling is perhaps the reason why the 34-layer network
performs better than the 50-layer one, whose Convolutions output a tensor 4
times larger. Moreover Convolutional layers are initialized with a Kaiming
Normal [1], which has been specifically developed for ReLU-like activations,
instead of the default LeCun Normal [70]. We also tested different activation
functions replacing the ReLU: Randomized Rectified Linear Unit (RReLU)
[71], Parametric (PReLU) [1], Gaussian Error Linear Unit (GELU) [72] and
Exponential Linear Unit (ELU) [73]. After various experiments, we adopted
GELU which is a new type of high performance activation function which
further enhances the generalization capability of the model by "weighting
inputs by their values, rather than gating inputs by their sign as in ReLUs".

7.1 Implementation and Training Details
As for the Baselines and the ablation study, we adopted Cosine Annealing
with Warm Restarts [68] as scheduler with initial learning rate 10−2, t0 = 2
and tmult = 2. The batch-size is 32. The model is implemented by means of
the PyTorch [44] framework and trained using two NVIDIA GTX 1070 for a
maximum of 24 hours or 62 epochs (i.e. 4 Warm Restarts).

We made sure that the network does not see any of the test data at
training time: as before, all the scenes are used for the training phase but
scene 8 which is the one which the model is tested on.

7.2 Results
R3D-Pose results are far more accurate than the previous models, achieving
an average test error of 11.18 centimeters. In particular, it achieves an error
reduction of 30% circa with respect to PoseCapture and 70-80% with respect
to mm-Pose. The major drawback is due to the higher number of parameters

52

R3D-Pose

which is increased of 25% with respect to the base ResNet34 but it still
converges circa 5 times faster than the state-of-art models. Table 7.1 contains
the average test error, the number of parameters and the needed training
time for the Baselines, the ResNets and R3D-Pose.

Model Avg Error [cm] Parameters [M] Time [h]
mm-Pose 40.8 0.28 12.3

PoseCapture 15.13 1.34 16.75
ResNet18 13.88 1.05 5.5
ResNet34 13.82 2 2.5
ResNet50 13.11 1.49 15.3

ResNet18 (2+1)D 12.76 0.99 15.25
R3D-Pose (Ours) 10.65 2.43 22

Table 7.1: Average test error in centimeters, number of parameters in millions
and time needed to achieve the lowest test error in hours for the different models.
The best result is highlighted in bold.

Relatively to the error per keypoint we can notice the same behaviour
observed before, with the limbs showing a significantly larger error with
respect to the other body parts. However, on average R3D-Pose achieves
better results on each single keypoint and the difference in performance is
even more emphasized in the limbs. Tables 7.2 and 7.3 show the average and
median test error per keypoint for the two Baselines and R3D-Pose.

53

R3D-Pose

Keypoint mm-Pose PoseCapture R3D-Pose (Ours)
Head 38.26 ± 23.3 10.81 ± 8.25 8.3 ± 7.98
Neck 35.62 ± 23.05 8.74 ± 8.08 6.51 ± 7.78

ShoulderR 40.56 ± 23.26 11.71 ± 9.51 8.29 ± 9.57
ElbowR 48.44 ± 23.75 19.93 ± 12.57 13.73 ± 12.51
WristR 55.75 ± 23.81 28.86 ± 18.29 20.02 ± 16.77
ShoulderL 35.88 ± 22.38 10.80 ± 8.17 7.47 ± 7.55
ElbowL 42.31 ± 22.25 19.33 ± 10.9 12.95 ± 10.6
WristL 50.24 ± 24.49 29.8 ± 16.88 21.1 ± 15.94
HipR 38.44 ± 23.21 9.8 ± 9.03 7.2 ± 9.35
KneeR 39.7 ± 23.64 12.1 ± 11.13 8.43 ± 10.47
AnkleR 39.56 ± 24.39 15.25 ± 12.31 10.5 ± 10.11
HipL 34.96 ± 22.81 8.89 ± 7.73 6.31 ± 7.55
KneeL 35.9 ± 23.62 11.34 ± 10.34 8.07 ± 9.55
AnkleL 35.6 ± 24.09 14.5 ± 11.58 10.2 ± 9.92
Mean 40.8 13.88 10.65

Table 7.2: Average test error ± standard deviation per keypoint. All values are
in centimeters. Best results are highlighted in bold.

Keypoint mm-Pose PoseCapture R3D-Pose (Ours)
Head 32.94 ± 35.26 9.06 ± 6.9 6.23 ± 5.08
Neck 29.76 ± 33.32 6.71 ± 5.82 4.73 ± 3.83

ShoulderR 36.77 ± 32.4 9.71 ± 7.56 5.89 ± 4.87
ElbowR 46.25 ± 36.74 17.59 ± 13.13 9.97 ± 8.98
WristR 52.23 ± 36.74 25.19 ± 21.29 14.8 ± 15.09
ShoulderL 30.07 ± 34.5 9.29 ± 7.42 5.76 ± 4.78
ElbowL 39.53 ± 36.61 16.9 ± 12.66 10.03 ± 9.61
WristL 45.47 ± 36.1 26.83 ± 20.87 16.77 ± 16.2
HipR 33.76 ± 34.82 7.81 ± 6.4 4.8 ± 3.89
KneeR 35.14 ± 37.16 9.24 ± 7.83 5.44 ± 5.05
AnkleR 32.65 ± 37.96 12.75 ± 10.61 7.74 ± 7.96
HipL 28.44 ± 35.01 7.18 ± 5.91 4.39 ± 3.57
KneeL 30.35 ± 38.49 8.98 ± 7.4 5.5 ± 4.54
AnkleL 28 ± 39 11 ± 10.48 7.41 ± 6.62

Table 7.3: Median test error ± interquartile range per keypoint. All values are
in centimeters. Best results are highlighted in bold.

54

Chapter 8

Conclusions and Future
Works

The poor environmental robustness of RGB based models causes these sys-
tems to be often unsuitable for actual applications in safety-critical scenarios.
In particular a Pose Estimation system is likely to fail in scarce light condi-
tions, or if the signal is perturbed by weather phenomena such as intense rain
or fog. Radar technology can indeed mitigate this issue by providing robust
environmental perception in a large number of adverse conditions. Towards
this objective, in this thesis I collected a dataset with radar data and 3D
ground truth skeletons and after an evaluation of state-of-art techniques I
proposed a custom architecture, R3D-Pose, able to consistently outperform
them by a large margin with an error decrease of 70-80% with respect to
mm-Pose and 20-30% with respect to PoseCapture. This work is a step
forward in the development of this promising research field. However, despite
the positive results achieved in this work, there are still drawbacks in the
application of radars systems for Pose Estimation purposes. In particular, the
limited spatial resolution represents the major drawback in the development
of high precision models, especially for the localization of body parts with a
small reflective surface. Radars with higher resolution could in theory fill
the gap between radar-based and RGB-based models in standard conditions,
where RGB-based models still outperform radar-based solutions.

Regarding future works, there is a series of possible paths to be taken to
extend both the dataset and the architecture. First of all, the dataset could be
expanded to a multi-person scenario and to different environments in order to
obtain a more realistic setting. Moreover, by labeling the various subjects the

55

Conclusions and Future Works

dataset would be suitable to perform Person Identification, while by labeling
the different actions it can be adopted for Action Recognition. Finally, RGB
and radar signals can be jointly exploited in a Sensor Fusion Fashion. In
particular, this last path is quite interesting to explore since radars solve
the two major issues of a RGB sensor, the lack of depth information and
environmental robustness, while the latter could provide a better spatial
resolution on the height and width dimensions. Moreover, a mutual help in
the avoiding of false positives can occur: a radar would not see at all the
image of a person in a picture or reflected on a window pane and an RGB
sensor would not fail due to ghost reflections caused by multipaths.

56

Appendix A

Appendix

Object hooker function to read the radar files:

1 # adapted from : https : // s tackove r f l ow . com/ que s t i on s
/27909658/ json−encoder−and−decoder−f o r−complex−numpy−ar rays

2

3 import numpy as np
4 import base64
5

6 de f json_numpy_obj_hook (dct) :
7 " " "
8 Decodes a p r ev i ou s l y encoded numpy ndarray
9 with proper shape and dtype

10 : param dct : (d i c t) j son encoded ndarray
11 : r e turn : (ndarray) i f input was an encoded ndarray
12 " " "
13 i f i s i n s t a n c e (dct , d i c t) and ’__ndarray__ ’ in dct :
14 data = base64 . b64decode (dct [’__ndarray__ ’] . encode ())
15 re turn np . f rombuf f e r (data , dct [’ dtype ’]) . reshape (dct [’

shape ’])
16 re turn dct

57

Bibliography

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving
Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet
Classification. 2015. arXiv: 1502.01852 [cs.CV] (cit. on pp. 1, 43, 52).

[2] David Silver et al. Mastering Chess and Shogi by Self-Play with a
General Reinforcement Learning Algorithm. 2017. arXiv: 1712.01815
[cs.AI] (cit. on p. 1).

[3] Azalia Mirhoseini et al. «A graph placement methodology for fast chip
design». In: Nature 594.7862 (2021), pp. 207–212 (cit. on p. 1).

[4] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf.
«Deepface: Closing the gap to human-level performance in face verifica-
tion». In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2014, pp. 1701–1708 (cit. on p. 1).

[5] Noam Brown and Tuomas Sandholm. «Superhuman AI for heads-up
no-limit poker: Libratus beats top professionals». In: Science 359.6374
(2018), pp. 418–424 (cit. on p. 1).

[6] Hao-Shu Fang, Shuqin Xie, Yu-Wing Tai, and Cewu Lu. «RMPE:
Regional Multi-person Pose Estimation». In: ICCV. 2017 (cit. on pp. 1,
21, 32, 38).

[7] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh.
«OpenPose: Realtime Multi-Person 2D Pose Estimation using Part
Affinity Fields». In: IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (2019) (cit. on pp. 1, 21, 24, 32).

[8] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. «Mask
R-CNN». In: 2017 IEEE International Conference on Computer Vision
(ICCV). 2017, pp. 2980–2988. doi: 10.1109/ICCV.2017.322 (cit. on
pp. 1, 21).

59

https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
https://doi.org/10.1109/ICCV.2017.322

BIBLIOGRAPHY

[9] Hanyue Tu, Chunyu Wang, and Wenjun Zeng. «VoxelPose: Towards
Multi-Camera 3D Human Pose Estimation in Wild Environment». In:
European Conference on Computer Vision (ECCV). 2020 (cit. on pp. 1,
21, 22).

[10] Shunqiao Sun, Athina P. Petropulu, and H. Vincent Poor. «MIMO
Radar for Advanced Driver-Assistance Systems and Autonomous Driv-
ing: Advantages and Challenges». In: IEEE Signal Processing Magazine
37.4 (2020), pp. 98–117. doi: 10.1109/MSP.2020.2978507 (cit. on
pp. 2, 4, 5).

[11] Sujeet Milind Patole, Murat Torlak, Dan Wang, and Murtaza Ali.
«Automotive radars: A review of signal processing techniques». In:
IEEE Signal Processing Magazine 34.2 (2017), pp. 22–35. doi: 10.
1109/MSP.2016.2628914 (cit. on p. 4).

[12] Fadel M. Adib, C. Hsu, Hongzi Mao, D. Katabi, and F. Durand. «Cap-
turing the human figure through a wall». In: 2015 (cit. on pp. 9, 24).

[13] Tianhong Li, Lijie Fan, Mingmin Zhao, Yingcheng Liu, and Dina
Katabi. «Making the Invisible Visible: Action Recognition Through
Walls and Occlusions». In: 2019 IEEE/CVF International Conference
on Computer Vision (ICCV). 2019, pp. 872–881. doi: 10.1109/ICCV.
2019.00096 (cit. on pp. 9, 24).

[14] Mingmin Zhao, Yonglong Tian, Hang Zhao, Mohammad Abu Alsheikh,
Tianhong Li, Rumen Hristov, Zachary Kabelac, Dina Katabi, and An-
tonio Torralba. «RF-Based 3D Skeletons». In: Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication.
SIGCOMM ’18. Budapest, Hungary: Association for Computing Machin-
ery, 2018, pp. 267–281. isbn: 9781450355674. doi: 10.1145/3230543.
3230579. url: https://doi.org/10.1145/3230543.3230579 (cit. on
pp. 9, 24, 28, 34).

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. «Gradient-based
learning applied to document recognition». In: Proceedings of the IEEE
86.11 (1998), pp. 2278–2324 (cit. on p. 10).

[16] Alex Krizhevsky. «Learning Multiple Layers of Features from Tiny
Images». In: (2009) (cit. on p. 10).

60

https://doi.org/10.1109/MSP.2020.2978507
https://doi.org/10.1109/MSP.2016.2628914
https://doi.org/10.1109/MSP.2016.2628914
https://doi.org/10.1109/ICCV.2019.00096
https://doi.org/10.1109/ICCV.2019.00096
https://doi.org/10.1145/3230543.3230579
https://doi.org/10.1145/3230543.3230579
https://doi.org/10.1145/3230543.3230579

BIBLIOGRAPHY

[17] O. Russakovsky et al. «ImageNet Large Scale Visual Recognition Chal-
lenge». In: International Journal of Computer Vision (IJCV) 115.3
(2015), pp. 211–252. doi: 10.1007/s11263-015-0816-y (cit. on pp. 10,
14).

[18] F. Rosenblatt. «The perceptron: A probabilistic model for information
storage and organization in the brain.» In: Psychological Review 65.6
(1958), pp. 386–408. issn: 0033-295X. doi: 10.1037/h0042519. url:
http://dx.doi.org/10.1037/h0042519 (cit. on p. 10).

[19] George Cybenko. «Approximation by superpositions of a sigmoidal
function». In: Mathematics of control, signals and systems 2.4 (1989),
pp. 303–314 (cit. on p. 11).

[20] A. Karpathy. Convolutional Neural Networks (CNN / ConvNets). 2018.
url: http://cs231n.github.io/classification/ (cit. on pp. 11,
17).

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. «ImageNet
Classification with Deep Convolutional Neural Networks». In: (2012).
Ed. by F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
pp. 1097–1105. url: http://papers.nips.cc/paper/4824-imagen
et-classification-with-deep-convolutional-neural-networks.
pdf (cit. on pp. 11, 16, 51).

[22] H. Ide and T. Kurita. «Improvement of learning for CNN with ReLU
activation by sparse regularization». In: International Joint Conference
on Neural Networks (IJCNN) (2017), pp. 2684–2691. doi: 10.1109/
IJCNN.2017.7966185 (cit. on p. 11).

[23] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.
Hubbard, and L. D. Jackel. «Backpropagation Applied to Handwritten
Zip Code Recognition». In: Neural Computation 1.4 (1989), pp. 541–551.
doi: 10.1162/neco.1989.1.4.541 (cit. on pp. 12, 14).

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. «ImageNet
Classification with Deep Convolutional Neural Networks». In: Commun.
ACM 60.6 (May 2017), pp. 84–90. issn: 0001-0782. doi: 10.1145/
3065386. url: https://doi.org/10.1145/3065386 (cit. on pp. 12,
14).

[25] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional
Networks for Large-Scale Image Recognition. 2015. arXiv: 1409.1556
[cs.CV] (cit. on pp. 12, 44, 46).

61

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1037/h0042519
http://dx.doi.org/10.1037/h0042519
http://cs231n.github.io/classification/
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1109/IJCNN.2017.7966185
https://doi.org/10.1109/IJCNN.2017.7966185
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556

BIBLIOGRAPHY

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Resid-
ual Learning for Image Recognition. 2015. arXiv: 1512.03385 [cs.CV]
(cit. on pp. 12, 14, 18, 24, 44, 48, 50, 51).

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
Is All You Need. 2017. arXiv: 1706.03762 [cs.CL] (cit. on p. 12).

[28] Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale. 2021. arXiv: 2010.11929 [cs.CV] (cit.
on p. 12).

[29] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa,
Alexandre Sablayrolles, and Hervé Jégou. Training data-efficient image
transformers distillation through attention. 2021. arXiv: 2012.12877
[cs.CV] (cit. on p. 12).

[30] Sepp Hochreiter and Jürgen Schmidhuber. «Long short-term memory».
In: Neural computation 9.8 (1997), pp. 1735–1780 (cit. on p. 12).

[31] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry
Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learn-
ing Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation. 2014. arXiv: 1406.1078 [cs.CL] (cit. on p. 12).

[32] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner,
and Gabriele Monfardini. «The graph neural network model». In: IEEE
transactions on neural networks 20.1 (2008), pp. 61–80 (cit. on p. 12).

[33] David E. Rumelhart and James L. McClelland. «Learning Internal Rep-
resentations by Error Propagation». In: Parallel Distributed Processing:
Explorations in the Microstructure of Cognition: Foundations. 1987,
pp. 318–362 (cit. on p. 12).

[34] Léon Bottou. «Large-Scale Machine Learning with Stochastic Gradient
Descent». In: (2010). Ed. by Yves Lechevallier and Gilbert Saporta,
pp. 177–186 (cit. on p. 13).

[35] John Duchi, Elad Hazan, and Yoram Singer. «Adaptive subgradient
methods for online learning and stochastic optimization.» In: Journal
of machine learning research 12.7 (2011) (cit. on p. 13).

[36] Matthew D. Zeiler. ADADELTA: An Adaptive Learning Rate Method.
2012. arXiv: 1212.5701 [cs.LG] (cit. on p. 13).

62

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2012.12877
https://arxiv.org/abs/2012.12877
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1212.5701

BIBLIOGRAPHY

[37] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. 2017. arXiv: 1412.6980 [cs.LG] (cit. on pp. 13, 41, 45,
50).

[38] Ilya Loshchilov and Frank Hutter. «Fixing Weight Decay Regularization
in Adam». In: CoRR abs/1711.05101 (2017). arXiv: 1711.05101. url:
http://arxiv.org/abs/1711.05101 (cit. on pp. 13, 50).

[39] Shaeke Salman and Xiuwen Liu. Overfitting Mechanism and Avoidance
in Deep Neural Networks. 2019. arXiv: 1901.06566 [cs.LG] (cit. on
p. 14).

[40] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. «Dropout: A Simple Way to Prevent Neural
Networks from Overfitting». In: Journal of Machine Learning Research
(2014), pp. 1929–1958 (cit. on p. 14).

[41] Anders Krogh and John A. Hertz. «A Simple Weight Decay Can Improve
Generalization». In: Proceedings of the 4th International Conference
on Neural Information Processing Systems. NIPS’91. Denver, Colorado:
Morgan Kaufmann Publishers Inc., 1991, pp. 950–957. isbn: 1558602224
(cit. on p. 14).

[42] Connor Shorten and T. Khoshgoftaar. «A survey on Image Data Aug-
mentation for Deep Learning». In: Journal of Big Data 6 (2019), pp. 1–
48 (cit. on p. 14).

[43] David H Hubel and Torsten N Wiesel. «Receptive fields, binocular
interaction and functional architecture in the cat’s visual cortex». In:
The Journal of physiology 160.1 (1962), pp. 106–154 (cit. on p. 14).

[44] Sam Gross and Michael Wilber. Training and investigating Residual
Nets. 2016. url: http://torch.ch/blog/2016/02/04/resnets.html
(cit. on pp. 15, 45, 52).

[45] Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković.
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and
Gauges. 2021. arXiv: 2104.13478 [cs.LG] (cit. on pp. 15, 16).

[46] Dominik Scherer, Andreas C. Müller, and Seven Behnke. «Evalua-
tion of Pooling Operations in Convolutional Architectures for Object
Recognition». In: (2010) (cit. on p. 17).

[47] Daniel Müllner. Modern hierarchical, agglomerative clustering algo-
rithms. 2011. arXiv: 1109.2378 [stat.ML] (cit. on p. 18).

63

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1901.06566
http://torch.ch/blog/2016/02/04/resnets.html
https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/1109.2378

BIBLIOGRAPHY

[48] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. «A
Density-Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise». In: Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining. KDD’96. Port-
land, Oregon: AAAI Press, 1996, pp. 226–231 (cit. on p. 19).

[49] Joseph Redmon and Ali Farhadi. «YOLOv3: An Incremental Improve-
ment». In: ArXiv abs/1804.02767 (2018) (cit. on p. 21).

[50] Leonid Pishchulin, Eldar Insafutdinov, Siyu Tang, Bjoern Andres,
Mykhaylo Andriluka, Peter Gehler, and Bernt Schiele. DeepCut: Joint
Subset Partition and Labeling for Multi Person Pose Estimation. 2016.
arXiv: 1511.06645 [cs.CV] (cit. on p. 21).

[51] Zhengyou Zhang. «Microsoft Kinect Sensor and Its Effect». In: IEEE
MultiMedia 19.2 (2012), pp. 4–10. doi: 10.1109/MMUL.2012.24 (cit. on
pp. 22, 28).

[52] Tsung-Yi Lin et al. Microsoft COCO: Common Objects in Context. cite
arxiv:1405.0312Comment: 1) updated annotation pipeline description
and figures; 2) added new section describing datasets splits; 3) updated
author list. 2014. url: http://arxiv.org/abs/1405.0312 (cit. on
p. 22).

[53] Hanbyul Joo et al. «Panoptic Studio: A Massively Multiview System
for Social Interaction Capture». In: IEEE Transactions on Pattern
Analysis and Machine Intelligence (2017) (cit. on p. 22).

[54] Mingmin Zhao, Tianhong Li, Mohammad Abu Alsheikh, Yonglong Tian,
Hang Zhao, Antonio Torralba, and Dina Katabi. «Through-Wall Human
Pose Estimation Using Radio Signals». In: 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2018, pp. 7356–7365. doi:
10.1109/CVPR.2018.00768 (cit. on p. 24).

[55] Yusuf Aytar, Carl Vondrick, and Antonio Torralba. SoundNet: Learning
Sound Representations from Unlabeled Video. 2016. arXiv: 1610.09001
[cs.CV] (cit. on p. 24).

[56] Mingmin Zhao, Yingcheng Liu, Aniruddh Raghu, Hang Zhao, Tianhong
Li, Antonio Torralba, and Dina Katabi. «Through-Wall Human Mesh
Recovery Using Radio Signals». In: 2019 IEEE/CVF International
Conference on Computer Vision (ICCV). 2019, pp. 10112–10121. doi:
10.1109/ICCV.2019.01021 (cit. on p. 24).

64

https://arxiv.org/abs/1511.06645
https://doi.org/10.1109/MMUL.2012.24
http://arxiv.org/abs/1405.0312
https://doi.org/10.1109/CVPR.2018.00768
https://arxiv.org/abs/1610.09001
https://arxiv.org/abs/1610.09001
https://doi.org/10.1109/ICCV.2019.01021

BIBLIOGRAPHY

[57] Arindam Sengupta, Feng Jin, Renyuan Zhang, and Siyang Cao. «mm-
Pose: Real-Time Human Skeletal Posture Estimation Using mmWave
Radars and CNN». In: IEEE Sensors Journal 20.17 (2020), pp. 10032–
10044 (cit. on pp. 24, 28, 40).

[58] Guangzheng Li, Ze Zhang, Hanmei Yang, Jin Pan, Dayin Chen, and Jin
Zhang. «Capturing Human Pose Using mmWave Radar». In: 2020 IEEE
International Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops). 2020, pp. 1–6. doi: 10.1109/PerCom
Workshops48775.2020.9156151 (cit. on pp. 24, 40).

[59] L. Sigal, A. Balan, and M. J. Black. «HumanEva: Synchronized video
and motion capture dataset and baseline algorithm for evaluation of
articulated human motion». In: International Journal of Computer
Vision 87.1 (Mar. 2010), pp. 4–27 (cit. on p. 28).

[60] D.L. Mills. «Internet time synchronization: the network time protocol».
In: IEEE Transactions on Communications 39.10 (1991), pp. 1482–1493.
doi: 10.1109/26.103043 (cit. on p. 31).

[61] Suramya Tomar. «Converting video formats with FFmpeg». In: Linux
Journal 2006.146 (2006), p. 10 (cit. on p. 39).

[62] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun,
and Manohar Paluri. A Closer Look at Spatiotemporal Convolutions for
Action Recognition. 2018. arXiv: 1711.11248 [cs.CV] (cit. on pp. 44,
48, 51).

[63] Christoph Feichtenhofer. X3D: Expanding Architectures for Efficient
Video Recognition. 2020. arXiv: 2004.04730 [cs.CV] (cit. on p. 44).

[64] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q.
Weinberger. Densely Connected Convolutional Networks. 2018. arXiv:
1608.06993 [cs.CV] (cit. on pp. 44, 46).

[65] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark San-
dler, Andrew Howard, and Quoc V. Le. MnasNet: Platform-Aware Neu-
ral Architecture Search for Mobile. 2019. arXiv: 1807.11626 [cs.CV]
(cit. on pp. 44, 46).

[66] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications. 2017. arXiv: 1704.04861 [cs.CV] (cit. on p. 44).

65

https://doi.org/10.1109/PerComWorkshops48775.2020.9156151
https://doi.org/10.1109/PerComWorkshops48775.2020.9156151
https://doi.org/10.1109/26.103043
https://arxiv.org/abs/1711.11248
https://arxiv.org/abs/2004.04730
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1807.11626
https://arxiv.org/abs/1704.04861

BIBLIOGRAPHY

[67] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. MobileNetV2: Inverted Residuals and Linear
Bottlenecks. 2019. arXiv: 1801.04381 [cs.CV] (cit. on p. 44).

[68] Ilya Loshchilov and Frank Hutter. «SGDR: Stochastic Gradient Descent
with Restarts». In: CoRR abs/1608.03983 (2016). arXiv: 1608.03983.
url: http://arxiv.org/abs/1608.03983 (cit. on pp. 45, 52).

[69] Peter J Huber. «Robust estimation of a location parameter». In: Break-
throughs in statistics. Springer, 1992, pp. 492–518 (cit. on p. 50).

[70] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert
Müller. «Efficient backprop». In: Neural networks: Tricks of the trade.
Springer, 2012, pp. 9–48 (cit. on p. 52).

[71] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical Evaluation
of Rectified Activations in Convolutional Network. 2015. arXiv: 1505.
00853 [cs.LG] (cit. on p. 52).

[72] Dan Hendrycks and Kevin Gimpel. «Bridging Nonlinearities and Stochas-
tic Regularizers with Gaussian Error Linear Units». In: CoRR abs/1606.08415
(2016). arXiv: 1606.08415. url: http://arxiv.org/abs/1606.08415
(cit. on p. 52).

[73] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast
and Accurate Deep Network Learning by Exponential Linear Units
(ELUs). 2016. arXiv: 1511.07289 [cs.LG] (cit. on p. 52).

66

https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1608.03983
http://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1505.00853
https://arxiv.org/abs/1505.00853
https://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1511.07289

	List of Tables
	List of Figures
	Acronyms
	Introduction
	I Literature
	Prior
	Radar
	Radar Signal Processing
	Radar Signal Properties

	Supervised Learning
	Neural Networks
	Convolutional Neural Networks

	Unsupervised Learning
	Agglomerative Clustering

	Previous Work
	Pose Estimation
	Radar-based Pose Estimation
	Main Issues

	II Dataset Collection and Evaluation
	Capture System
	Hardware
	Controlling Devices
	Sensors

	Software
	Synchronization
	Camera Calibration
	3D Skeleton Generation
	Radar Data

	Inxpect Dataset
	Radar-based Pose Estimation Experiments
	Baselines
	mm-Pose
	PoseCapture

	Ablation Study
	Implementation and Training Details
	Results

	R3D-Pose
	Implementation and Training Details
	Results

	Conclusions and Future Works
	Appendix
	Bibliography

