
POLITECNICO DI TORINO
Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

Indoor Navigation with Vocal Assistant
Alexa vs low-power vocal assistant at the edge

Supervisors

Prof. Marcello CHIABERGE

Francesco SALVETTI

Vittorio MAZZIA

Candidate

Giulia BERTEA

October 2021

Abstract

Among the numerous human-machine interaction methods, vocal communica-
tion has become very popular in the latest years. When initially brought onto the
market, vocal assistants were strictly integrated on portable devices; nevertheless,
nowadays it is becoming clear that they can be a useful feature for service robotics.
In particular, driving a robot vocally constitutes a more inclusive mean of commu-
nication, which guarantees a faster and more straightforward way of asserting a
command. Indeed, this technology is beneficial since it allows to tackle the needs
of some social groups such as the elderly, visually-impaired or physically-limited
people.

The main purpose of this thesis work is to analyze and compare two different
approaches to vocal navigation, while developing and deploying both on a robotic
platform for domestic environments. The first approach exploits Amazon Alexa
and the AWS cloud system, to which it needs to connect. This aspect represents
the greatest drawback of this approach, since it brings out many issues related to
privacy and security; moreover, it requires constant internet service availability.
A valuable alternative can be a low-power vocal assistant at the edge, which is
therefore locally integrated on the robotic platform, that has been implemented by
a team of researchers at PIC4SeR (PoliTo Interdepartmental Centre for Service
Robotics). This vocal assistant is a compound of different machine learning models
for speech recognition and processing.

An algorithm for the navigation of the robotic platform is developed and
integrated with both vocal assistants. The main functions implemented allow the
robot to follow basic navigation instructions and steer towards predefined sets of
coordinates, which identify rooms and goals in a hypothetical map.

Furthermore, an analysis of the meaning extraction methods exploited by both
approaches is presented. Regarding the low-power vocal assistant at the edge, a
more powerful and precise module for the action classification, based on natural
language processing algorithms, is proposed and integrated into the application.
The described module exploits advanced machine learning techniques, such as
transformers and Deep Attention Neural Networks, for encoding and classifying
sentences into predefined categories of instructions.

Finally, after extensively simulating in a virtual environment a service robot
guided by the two vocal assistants, some real-world tests are run with the goal of
highlighting the limitations and advantages of both approaches. The results ob-
tained open up to various future implementations and show how service robotics can
highly benefit from vocal assistants at the edge, especially in indoor environments
for assisting elderly, visually-impaired or physically-limited people.

Table of Contents

List of Figures vi

List of Tables ix

I Introduction 1

1 Thesis Objective 2
1.1 Thesis Outline . 3

2 Vocal Navigation 5
2.1 Indoor Mobile Robots . 5
2.2 Robotic Vision vs Robotic Hearing 6
2.3 Two Approaches to Vocal Navigation 7

3 State of Art in Speech Recognition 9
3.1 Voice-based Machines . 9
3.2 Speech Recognition and Processing 10
3.3 Applications of Speech Recognition 11

4 Software and Hardware Tools 12
4.1 Robot Operating System . 13
4.2 TurtleBot3 . 13
4.3 NVIDIA Jetson Nano . 14
4.4 Gazebo . 15
4.5 Tensorflow . 16

II Alexa-driven Approach 17

5 Vocal Assistants and Service Robotics 18
5.1 History of Vocal Assistants . 18

ii

5.1.1 Amazon Alexa . 20
5.2 Internet of Robotic Things . 21

5.2.1 Architecture of IoRT . 22

6 Alexa Vocal Navigation 23
6.1 Working Principle . 23
6.2 Alexa Skill . 24

6.2.1 Action Interpreter of Alexa 26
6.3 Amazon Web Services . 26

6.3.1 AWS Lambda . 26
6.3.2 AWS IoT . 27

6.4 Communication Protocol . 28
6.4.1 MQTT . 28

6.5 ROS Nodes and Topics . 29
6.5.1 Controller node . 30

7 Alexa Approach Simulation and Testing 32
7.1 Gazebo Simulation . 32
7.2 Real-time Testing . 34
7.3 Limitations . 35

7.3.1 Security and Privacy in Cloud Computing 36

III Low-power Vocal Assistant at the Edge 38

8 Machine Learning in Speech Recognition 39
8.1 Machine Learning Overview . 39
8.2 Deep Learning Overview . 41

8.2.1 Convolutional Neural Network 43
8.2.2 Recurrent Neural Network 44

8.3 Audio Processing for Deep Learning 44
8.3.1 Mel Spectrogram . 45

9 Action Interpreter 47
9.1 Elements of a Vocal Assistant . 47

9.1.1 Audio Processing . 48
9.1.2 Wake Up Word . 48
9.1.3 Speech-to-Text . 49
9.1.4 Text-to-Speech . 49
9.1.5 Action Classification . 49

9.2 Natural Language Processing . 51
9.2.1 Pre-processing . 51

iii

9.2.2 Vectorization . 51
9.3 Universal Sentence Encoder . 54

9.3.1 Deep Averaging Network . 56
9.3.2 Transformer . 57
9.3.3 Multilingual Universal Sentence Encoder 58

9.4 From USE to Zero’s Action Interpreter 58

10 Zero Approach Simulation and Testing 61
10.1 Gazebo Simulation . 61
10.2 Real-time Testing . 62
10.3 Advantages . 64

IV Conclusion 65

11 Results and Future Work 66
11.1 Testing Summary . 67
11.2 Future Work and Applications . 67

Appendix A 69
[1] Alexa Skill Lambda Function . 69
[2] ROS Controller Node . 75
[3] Action Interpreter with Multilingual Universal Sentence Encoder . . . 79

Acronyms 81

Bibliography 87

iv

List of Figures

2.1 Differential Drive Vehicle [3]. 6

4.1 Hardware platform used for testing made up of TurtleBot3 Burger
and NVIDIA Jetson Nano. 12

4.2 Communication Scheme of ROS Nodes and Topics. 13
4.3 TurtleBot3 Burger. 14
4.4 Jetson Nano Developer Kit Specifications [7]. 15
4.5 Gazebo Simulation Environment with TurtleBot3. 15

5.1 Alexa Skills Trend from 2016 to 2019 [11]. 20
5.2 Layers and Protocols of IoRT [13]. 22

6.1 Application Working Scheme. 24
6.2 Alexa Skill Kit Framework [14]. 24
6.3 Alexa Developer Console. 25
6.4 AWS IoT Core. 27
6.5 MQTT protocol [16]. 28
6.6 Rqt Graph. 29

7.1 TurtleBot3 in the starting point (0, 0), in the kitchen (3, -3) and in
the living room (3, 3) respectively. 33

8.1 Traditional Programming vs Machine Learning. 40
8.2 Deep Neural Network Basic Structure. 42
8.3 Samples of Audio Signals. 44
8.4 Samples of Spectrum of Signals. 45
8.5 Regular Spectrogram Example [19]. 46
8.6 Mel Spectrogram Example [19]. 46

9.1 Cosine Similarity Relations [22]. 53
9.2 Bag of Words Technique Example [23]. 54
9.3 Matrix of Semantic Textual Similarity. 55

vi

9.4 DAN Neural Network. 56
9.5 Tranformer Structure [27]. 57
9.6 Layers of Encoder and Decoder [27]. 58
9.7 Tranformer Overall Model Architecture [28]. 59
9.8 Zero’s Action Interpreter with USE tests. 60
9.9 Alexa vs Zero Test. 60

10.1 Simulation of Zero vocal assistant example. 62
10.2 TurtleBot3 with Intel-based Computer 63
10.3 Rqt Graph of Testing. 63

vii

List of Tables

6.1 Commands for TurtleBot3 Vocal Navigation. 30

11.1 Testing Phases. 67

ix

Part I

Introduction

1

Chapter 1

Thesis Objective

Even though, nowadays, industrial robotics is still dominant in the robotic research
field, the trend of service robotics is rapidly growing. The interest towards au-
tonomous mobile robots assisting human beings in their daily life is permeating
every aspect of the Digital Age. More than ever, leaving to robots repetitive,
monotonous or dangerous tasks, seems like a good idea for improving the lives of
many. PIC4SeR, the Interdepartmental Centre for Service Robotics at Politecnico
di Torino, where this thesis work has been developed, focuses particularly on service
robots, trying to find new ways our society can benefit from them.

The main purpose of the thesis is the implementation of a mobile robot capable
of navigating an indoor environment, following vocal commands. The approaches
analyzed are two, therefore the differences between them are highlighted, as well
as the advantages and disadvantages of both methods. In the second approach,
the application developed is part of a broader project, carried on by researchers at
PIC4SeR, which concerns the development of a low-power vocal assistant at the
edge. However, the work discussed can be useful for many different applications,
especially those targeted at helping elder, visually impaired or physically limited
people whose autonomy in domestic environments can be improved, as well as their
overall well being. Indeed, this thesis shows that, for some applications, hearing
characteristics of robots are just as important as vision ones.

In conclusion, the main topics that can be found in this thesis work are cloud
robotics and connected devices, regarding the first approach, while for the imple-
mentation of a local vocal assistant, in the second approach, the focus is on the
speech recognition algorithms and the natural language processing field, with a
particular attention to the feature extraction from commands asserted to the robot.

2

Thesis Objective

1.1 Thesis Outline
In this section, the author aims at giving a brief overview of the structure of the
thesis and the contents of each chapter. In particular, there are four main parts.

The first part introduces the reader to the objectives, the motivations, the tools
and the methodologies exploited to carry on this work. The chapters in this part
are organized as follows:

• chapter 1 presents the objective and the outline of the thesis;

• chapter 2 is devoted to better explaining the goals of the thesis, explaining
the two approaches used to carry on the research, and the motivations of the
project to be developed;

• the state of art of speech recognition can be then found in chapter 3, with the
goal of providing the reader with a small theoretical background that allows
to better understand the topics of the work;

• finally, in chapter 4 the software and hardware tools exploited for the thesis
work are presented.

The second and third part expand, separately, the two approaches to vocal
navigation, trying to highlight the advantages and disadvantages of the two methods,
and explaining the reasons why it is sometimes necessary to aim at developing
a local assistant, even though more powerful ones are already available on the
market.

In particular, the outline of the second part, focusing on an Alexa-driven
Approach, is the following:

• chapter 5 displays the state-of-art of the two main topics of this part: vocal
assistants and cloud robotics;

• in chapter 6 the author illustrates the working principle of the application,
how it was developed, how the code of the Alexa skill and the ROS nodes
work and how they were linked together;

• in chapter 7 the results of the simulation and testing, both on Gazebo and
on the real hardware are shown and commented, as well as the limits of the
approach.

The third part of the thesis deals with the second approach, based on machine
learning techniques. The organization of this last section is the following:

3

Thesis Objective

• chapter 8 offers an overview on machine learning applied to speech recognition.
Audio processing, speech-to-text applications and natural language processing
are briefly presented and contextualized, showing the applications in which
they are mostly deployed;

• in chapter 9 the focus is firstly on how the application developed at PIC4SeR
is implemented and then on how it can benefit from an improved action
interpreter. In particular, the author propose a technique based on a model
offered by Google and the motivations behind this choice;

• in chapter 10, similarly as done for the first approach, the results of both
simulation and testing are reported and analyzed.

The last part, made up of chapter 11 only, aims at drawing the conclusions for
this thesis work, summarizing the advantages and disadvantages of the presented
techniques. Moreover, possible applications and future work are also presented.

The relevant code produced by the author for this thesis project can be found
in Appendix A.

4

Chapter 2

Vocal Navigation

In this chapter the author analyzes the problem of service robots navigation in an
indoor environment, presenting the main features of service robots, the reasons that
bring at implementing a vocal assistant for their navigation and the two different
approaches inspected in this work.

2.1 Indoor Mobile Robots
In modern times, thanks to industrial applications and the necessity of automating
monotonous and precise tasks to speed up and improve the production process,
fixed robots became the most popular and the most common ones. However, in
the last decades, interest towards mobile robots has started growing, together with
the ambition, typically human, of creating intelligent human-like machines able to
do a lot of fascinating things and make our lives easier [1].

As the name suggests, mobile robots are characterized by the ability of moving in
an environment without constraints on the position and the orientation. Therefore,
they are classified based on their main feature: a mobile base equipped with a
locomotion system that can be either wheeled or legged [2].

In particular, the robotic platform exploited for testing the code produced
by this work is called TurtleBot3 and it can be classified as a differential drive
vehicle. Indeed, it is equipped with two parallel actuated wheels, whose independent
velocities determine the motion of the robot. In particular, the motion takes place
about a rotation center, defined as Instantaneous Center for Curvature (ICC),
located at any point on the wheel axis and determined, in this specific case, by the
ratio between the velocities of the two wheels.

Nowadays, mobile robots are mostly used as service robots, defined by the
International Organization for Standardization as “robots performing useful tasks
for humans or equipment excluding industrial automation applications” [4]. In the

5

Vocal Navigation

Figure 2.1: Differential Drive Vehicle [3].

last decades, indeed, the concept of robot as a purely industrial entity has been
replaced by that of a machine able to help us in the daily tasks. Applications of
robots in indoor environments, such as our homes, hospitals, schools, museums
and so on are becoming more and more frequent and as people are starting to
accept robots cooperation, experts are focusing on how to better exploit the endless
resources that these technologies can offer.

2.2 Robotic Vision vs Robotic Hearing
As AVG technologies are becoming the most discussed field of application of robotics
and automation, also in the literature concerning indoor mobile robots, it is very
common to come across researches and studies regarding the improvement of indoor
autonomous navigation systems. Moreover, many surveys can be found regarding
object and obstacle detection. Hence, we can deduce that, at present time, the core
of the researches in the mobile robotic field is identified by the mobile robot vision.

However, in many applications, the complete autonomy of machines in their
movements can be somewhat of an holdback and the importance of being able
to guide the robot according to our specific needs has been often overlooked. In
particular, a mobile robot might be required to respond to our real-time demands
without having the freedom to choose how to operate and move around the
environment. There are many different ways in which we can control a robot and
though a tactile command is usually thought of, it is often useful to take into
account voice control.

Speech is the most frequently used mean of communication among human beings,
therefore it should not come as a surprise that the most practical way for people
to interact with intelligent agents is indeed exchanging vocal information. Besides
being the fastest way of giving a command from the user’s point of view, it also

6

Vocal Navigation

provides a much larger range of people with the ability to operate a mobile robot
without requiring any specific knowledge or ability besides one’s own voice.

Vocal commands can be very helpful in risky situations in which men can’t
operate manually the robot, hence in many papers hints to spaceships appear as
an example, next to the suggestion of using these applications in mines or similar
environments. Moreover, indoor mobile robots that do not need to be manually
controlled allow elderly, visually-impaired or physically-limited people to easily
demand their needs and be helped and therefore lead a more autonomous life.

Even though it is clear that exploiting vocal commands could lead to impressive
results in many applications, surprisingly this type of command assertion is not
often taken into account. Indeed, many progresses have been made in the field of
machine learning regarding speech recognition, but they are hardly ever applied to
mobile robots.

A mobile robot able to both see, listen and react to the human with whom it is
interacting constitutes the perfect combination to respond to a wide range of tasks
that it could be asked to perform in an indoor environment. Hence, it would be
necessary to proceed to improve both sight and hearing abilities of the artificial
machines in parallel. Since many papers already deeply explored the first one, the
focus of this work is precisely to show how it is possible to exploit vocal commands
to navigate a mobile robot in an indoor environment and expose the benefits we
could derive from it.

Obviously, it is of primary importance to improve the speech recognition readi-
ness and accuracy, particularly exploiting cloud services and IoT services. Moreover,
another focus of research in recent years is on the development of lightweight appli-
cations and the use low-power hardware platforms. Finally, the author underlines
the importance of integrating in these kind of applications with a vision system,
not only to achieve a more complete robotic platform, but also for safety purposes.

2.3 Two Approaches to Vocal Navigation
In this work two different approaches to the problem of navigating a mobile robot
giving it vocal commands are considered:

• Alexa-driven Approach;

• low-power vocal assistant at the edge.

The first one focuses more on the navigation algorithm, exploiting an existing
and ready-to-use vocal assistant, whereas the second approach aims at developing
a specific low-power assistant locally deployed on the hardware for the same tasks.

In particular, the first approach investigates the link between robotics and cloud
systems, analyzing the available tools for facilitating the integration of the vocal

7

Vocal Navigation

assistant with the hardware, but also highlighting the limitations and risks deriving
from the approach.

The second approach concerns many aspects of speech recognition: key-word
detection, speech-to-text translation, action interpretation, voice generation and
so on. The author of this work focuses specifically on the way commands are
interpreted by the vocal assistant and associated to a specific action, analyzing
different meaning extraction and text classification methods.

After simulating and deploying both applications, the author also analyzes the
pros and cons of both approaches in order to try to explain their validity according
to the needs of the user.

The main advantages of exploiting Alexa, for asserting vocal commands, are
given by the great power and accuracy of this vocal assistant. Indeed, it is created
by highly skilled developers using vast datasets and a great amount of resources. On
the other hand, the limitation of Alexa is the stringent requirement of connecting
to the internet and specifically to the cloud system.

In many occasions, the limitation described imposes the need of exploiting a
local vocal assistant. The advantages of having an integrated assistant are often
more than the limitations given by the little quantity of dataset and resources
available in this case. Especially for applications needing a limited amount of
commands, using low-power assistant directly available on the robotic platform
allows to have a faster, safer and always-available robot driven by voice.

8

Chapter 3

State of Art in Speech
Recognition

The goal of this chapter is summarizing the state of the art of technologies based
on speech recognition and Natural Language Processing (NLP), such as voice-based
machines, intelligent agents, chatbots. The applications in which these technologies
have been already exploited or could help greatly in the future will be analyzed as
well.

3.1 Voice-based Machines
In recent years the progresses made in the disciplines of signal processing and
machine learning combined allowed to explore the possibility of communicating
with machines. Until then the concept of robot as a humanoid had only appeared
in sci-fi movies, while in the real world machines were only thought of as manually
operated tools making some tasks easier for us. Adding to machines the abilities to
listen and to respond finally broke the barrier between fiction and reality. Hence,
probably influenced by scientific novels, we started feeling threatened by what
robots could accomplish and therefore we started calling them assistants, clearly
stating that they only existed to serve us.

Modern intelligent virtual assistants are equipped with voice users interfaces
that allow a more user-friendly human-machine interaction. In particular, the first
chatbot capable of being vocally interrogated was Siri, installed on the iPhone 4S in
2011. Siri was followed after few years by Alexa, Cortana, Google Assistant and so
on and therefore the interest in these newly developed and succeeding technologies
started to expand.

While at first, vocal assistants were mainly available on mobile phones or
laptops, eventually they were able to help greatly with a larger variety of tasks.

9

State of Art in Speech Recognition

They were found to be particularly useful especially in indoor environments such as
homes, healthcare centers, schools, whereas some categories of people could benefit
significantly from this interaction mode.

3.2 Speech Recognition and Processing
Speech is the main mean of communication among human beings, therefore ever
since machines were first invented men have always been striving for interfacing
with them in the same way they interacted with other people. For this reason the
literature on speech recognition is very extended, although it wasn’t until recent
years that major steps were taken and human beings actually started giving vocal
commands and getting conversation-like answers from machines.

The rapid growth and improvement of vocal recognition applications goes side
by side with the rise of a new branch in the machine learning world: deep learning.
Approximately after 2006 many deep learning algorithms were refined and allowed
to solve the issue of extracting precise features from artificial neural networks (ANN)
[5]. Another field of research that had great improvements with the breakthrough of
DNN is that of natural language processing, closely connected to speech processing,
because it allows the machines to understand the requests of the user, by creating
machine-readable representations of the language.

Indeed, one of the most challenging aspects of this field is trying to put together
a concept as complex and polyhedric as the human language. While a simple
picture can be modeled in an easier way by means of shapes and colors, there are
many more aspects that need to be taken into account when dealing with human
languages. First of all, language is not unique, there are more than 7000 languages
known in the world; moreover languages are not static but they dynamically change
from a domain to another and they develop in time as well. It is exactly for these
reasons that if on one side language is very complex and hard to model, on the
other side it allows us to access a great variety of information.

Hence, the union between speech recognition and language processing can be
exploited in many different ways: to extract information on the content, the
language, the accent but also features of the speaker such as the gender, the
age, the identity, the emotional status, the health status, but also to translate,
summarize or extract key-words from an audio file. These considerations highlight
how complex the field of voice detection is and they suggest that many different
methods must be investigated to understand which one better suits the application
in order to obtain the needed result.

At first, the most popular method for dealing with speech recognition, before
the breakthrough of deep learning, was the representation of signals through hidden
Markov models (HMM). However the main limit of this simple and practical

10

State of Art in Speech Recognition

model was constituted by statistical inefficiency in many applications concerning
non-linearity situations.

It is important to highlight how these techniques were not abandoned after the
power of neural networks was discovered. Actually, especially at the beginning,
many obstacles were found in using neural networks, therefore, they were often
combined with other models such as HMM, offering them a way to pre-elaborate
the input data.

Deep learning algorithms differed from other algorithms because they better
adapted to the goal of modeling the complexity of language. Even though this field
of artificial intelligence always existed, it is important to detach it from the idea of
programming a machine and embrace the idea of teaching it how to learn a pattern
from the input data instead.

3.3 Applications of Speech Recognition
As illustrated before, automatic speech recognition (ASR) allows to extract countless
features and so it has very diverse applications, such as automatic writing, automatic
translation, chatbots for improving costumer experience, smart homes, speaker
identification, different applications in the detection of diseases or similarly of the
emotional status of the speaker.

Moreover, even more applications of speech recognition can be thought of if
the ability of the intelligent agent to hear and understand a vocal instruction or a
question is put together with the ability of not only respond but also act upon the
user’s request.

This area of research has not been widely explored yet; in the last decades
researchers undeniably focused their attention on achieving autonomy of mobile
robots. Even if, on the other hand, another key point of scientific investigations has
been the development of intelligent assistants, the two fields hardly ever collapsed
together to generate a truly complete machine from the human interaction point of
view.

Mobile robots that can be controlled by human voice, though, have a great area
of usage, such as in risky environments or in improving the life of old, physically
limited or visually impaired people. They have also been found to be very effective
to help people with dementia or other generative diseases in remembering things
and also in feeling less lonely, with many beneficial results deriving from the use of
ASR.

11

Chapter 4

Software and Hardware
Tools

In this chapter the author wants to focus on the description of the software and
the hardware platforms used to simulate the speech recognition and navigation
applications presented in the next chapters.

First of all, the main set-up used for coding and simulating was a machine with
an open-source Linux-based OS, in particular Ubuntu Bionic Beaver 18.04. For the
prototyping and testing of the code, the hardware used is described in the following
paragraphs, as well as the software used for the application.

A new robotic platform, named Jetzero, is obtained by the compound of a
TurtleBot, a Jetson Nano board and Zero vocal assistant.

Figure 4.1: Hardware platform used for testing made up of TurtleBot3 Burger
and NVIDIA Jetson Nano.

12

Software and Hardware Tools

4.1 Robot Operating System
ROS is an open-source meta-operating system for robotic platforms of many kinds.
A peculiar characteristic of this meta-OS is that it is real-time and it is based on
a distributed peer-to-peer architecture of nodes, for this reason it can be easily
represented by means of a graph of nodes and arcs.

Figure 4.2: Communication Scheme of ROS Nodes and Topics.

Each node is a running process that needs to be registered to an always-running
Master node. The aim of the Master is only that of monitoring the information
exchange between the other nodes, which, though, communicate directly with each
other, without interfering.

The communication between nodes takes place by means of topics or services.
In this thesis only topics where exploited and are briefly illustrated. The main idea
is that the node sending a message, called Publisher, needs to set a "channel" called,
indeed, topic. Afterwards, the Publisher node can start publishing messages of
different types on it. On the other hand the node that should receive the messages,
subscribes to the topic in order to be able to read the messages, for this reason it
is called Subscriber.

The advantage of ROS with respect to other robotic frameworks is that it provides
many libraries and tools for programming a robot, offering a huge community useful
for support and for the reusability of the applications.

4.2 TurtleBot3
TurtleBot3 is the last version of a ROS-based mobile robot used mainly for edu-
cation and research purposes, whose advantages are that it is small, low-cost and
programmable [6]. There are different kinds of Turtlebots, with diverse shapes and

13

Software and Hardware Tools

characteristics. For this thesis work a burger type was used, since due to its small
size it is the most similar one to a common home service robot.

Figure 4.3: TurtleBot3 Burger.

The main characteristics of this simple, but very useful for prototyping, robotic
platform are:

• dynamixel actuators;

• an embedded controller OpenCR;

• a Single Board Computer (SBC).

Moreover, TurtleBot3 offers the possibility to easily test the application in Gazebo
thanks to the availability of a package containing many testing environments and
tools for testing the code even without deploying it on the real hardware.

4.3 NVIDIA Jetson Nano
Jetson Nano Developer Kit is a SBC by NVIDIA, only consuming 5 W to run,
which contains in little space everything that it needs to efficiently run artificial
intelligence applications.

Thanks to its small size and high computational power, it is suitable for service
robotic applications which need to efficiently perform neural network computation
while exploiting an hardware that can be easily placed on board of a robotic
platform.

14

Software and Hardware Tools

Figure 4.4: Jetson Nano Developer Kit Specifications [7].

4.4 Gazebo

As mentioned, Gazebo is another important open-source tool, commonly used in
combination with ROS, that offers a virtual environment for the simulation of the
behaviour of the robot and the functionality of the code. In particular it allows to
simply set up a customized simulation indoor environment and it also offers a wide
variety of models of robotic platforms, such as the model of TurtleBot3, used for
this work.

Figure 4.5: Gazebo Simulation Environment with TurtleBot3.

15

Software and Hardware Tools

4.5 Tensorflow
One of the most popular software tools exploited by developers for machine learning
purposes is Tensorflow, an open-source platform released by Google in 2015. In
this work, already trained model are mostly used, however tensorflow is necessary
for running all of them and especially the Universal Sentence Encoder exploited in
the last part of this work.

16

Part II

Alexa-driven Approach

17

Chapter 5

Vocal Assistants and Service
Robotics

The history and the state of the art of vocal assistants is presented next, with a
specific focus on Amazon Alexa and how the cloud systems AWS supports this
vocal assistant for robotic and IoT applications.

5.1 History of Vocal Assistants
Many researches show how smart speakers are becoming common devices that
can be easily found in the majority of middle-class households; in particular some
surveys estimated that by 2022 half of the families in the United States will at least
own either a Google Home or an Amazon Echo device [8]. Moreover, nowadays
vocal assistants are also integrated in smartphones and computers of any kind
and therefore a great part of the global population is able to daily interact with
artificial agents by speaking.

Men desired to vocally communicate with computers ever since these were
invented; many older books and movies suggested that we could benefit greatly
from vocal human-machine interaction on many levels. The first machine able to
listen to human voice was invented in 1952 and it was called Audrey, a single-speaker
speech recognition system that could achieve an impressive accuracy of 90%. The
substantial limitation of this technology was the fact that it could only understand
the voices of its creators, nevertheless at the time it was still a great invention that
amazed many [9].

In the 90s many projects were carried on regarding rooms with vocally guided
lights, speakers, blinds and so on. The most famous projects in the universities of
the United States in those years were Intelligent Room by MIT, ComHOME by the
Interactive Institute, Aware Home by Georgia Tech [8]. However these projects had

18

Vocal Assistants and Service Robotics

no long-term application, since they were based on a large amount of computers
and the performances were not very satisfactory.

It was only in recent years, with the improvement of the accuracy of speech
recognition and the general advancement of the hardware components and their
lower cost, that vocal digital assistant could be deployed in a way that could be
accessible to the population. The history of voice-controlled assistants actually
began in 2010, when Apple introduced Siri as a standalone app at first and then
integrated in iOS shortly after.

The revolution of Siri, compared to earlier technologies that could respond to
vocal commands, was the ability to understand a larger variety of commands and
to perform all kinds of tasks. The user was finally given the freedom to ask for
help as it was speaking to another human being, without worrying about whether
or not the machine could understand the given commands and without needing a
limited list of tasks that it could operate. This achievement was possible thanks to
artificial intelligence as well as the continuous connection of the digital assistant to
the internet.

After Siri’s appearance and success on the market, many other assistants started
to be presented by Apple’s competitors. Even though the purpose of these assistants
is similar to Siri they are equipped with different voices, features and available
tasks. In 2013 Microsoft created Cortana, then, a year later, Amazon launched
Alexa together with Echo, a specific home speaker in which it was integrated, then
later in 2016 Google’s Assistant and Google Home were introduced on the market
as well.

Even though the availability of these technologies has increased a lot in the
latest years, studies show how vocal assistants are not exploited as much as they
could. Since they provide simply a bridge between the user and the app, many
still prefer to issue commands manually, to avoid annoying situations in which the
vocal assistant does not rapidly understand and respond.

However, as speech recognition technologies are improving on a daily basis and
the field of application expands, vocal assistants are becoming very useful in the
daily life of young people and are destined to be exploited more widely, even for
the elderly community.

For example they can be a great help both for people that have an hard time
issuing commands manually and for people who need constant reminders or even
just some company at home, such as elder people. Finally, voice assistants could
be exploited widely by businesses to answer common questions of the costumers
or even for letting the costumer buy products directly with a vocal request, as for
example Starbucks does with its famous coffee drinks [10].

19

Vocal Assistants and Service Robotics

5.1.1 Amazon Alexa
Amazon Alexa was released in November 2014 together with Amazon Echo device
on which it was deployed and a smartphone app for managing settings. Nowadays,
it is estimated to be supported by a hundred thousand devices worldwide, being
the most deployed vocal assistant in the world.

Besides being exploited for basic tasks such as setting timers, putting music on
and sending text messages, Amazon Alexa has been the first vocal assistant widely
exploited for home automation as well. Compatible devices for smart homes are
smart lights, plugs, locks, security cameras, wi-fi routers and so on and allow the
user to vocally control every functionality of the house.

The advantage of Amazon vocal assistant is the great availability of skills offered.
Even though it was launched after many other vocal assistants, Amazon was the
first one to offer to the user the possibility to develop custom third-party skills for
Alexa, as well as simple routines and personalized tasks.

A study published in 2019 (Figure 5.1) analyzed the growth of available skills
of Alexa over three years, from 2016 to 2019. The trend grew very rapidly, as the
number of skills went from about 130 to over 100 thousand over that relatively
short time, and it increases daily thanks to users around the world. The same
study also shows that the countries from which most of the functions come from
are the United States, the United Kingdom and India [11].

Figure 5.1: Alexa Skills Trend from 2016 to 2019 [11].

20

Vocal Assistants and Service Robotics

5.2 Internet of Robotic Things
In 1999, the English engineer Kevin Ashton was the first one to coin the expression
Internet of Things (IoT). Nowadays, people are used to hearing the acronym IoT,
even though the majority probably could hardly guess what those three letters stand
for. The Internet of Things can be described as the set of all the physical things
that are connected to the internet and communicate and exchange information
thanks to this connection.

The International Telecommunication Union (ITU) defined the Internet of
Things as a “global infrastructure for the information society, enabling advanced
services by interconnecting (physical and virtual) things based on existing and
evolving interoperable information and communication technologies” [12].

It is necessary to clarify that these things are more than smartphones and
computers, the IoT actually comprehends a fast increasing number of smart objects
that surround us in our homes, offices and public places with the goal of automating
and improving the performances and the user experience of those objects. Recently,
a new concept related to the IoT world was introduced: the Internet of Robotic
Things (IoRT).

A common definition has not been given yet, however IoRT can be easily
characterized as the union between internet connection, cloud computing and
robotic entities. The role of the robot is clearly that of a smart object that can
benefit from the connection to the internet in many ways, being able to establish a
communication with other smart objects, to take advantage of a greater quantity
of data and to be controlled even remotely.

The necessity of connecting robots to the internet has arisen from the limitations
presented by networked robots. The physical constraints, such as low speed, low
memory, latency and lack of intelligence was mainly related to the hardware. One
of the first examples of application of this new concept was the Mars Rover that
needed to be remotely guided through the exploration of Mars [13]. Even if with
time the availability of powerful hardware increased exponentially and the cost
decreased significantly, it can be often advantageous to exploit cloud robotics for
many reasons.

First of all, the breakthrough of machine learning in recent years allowed robots
to exploit learning algorithms rather than traditional programming bringing the
focus on the necessity of even more powerful hardware in terms of computational
effort, memory and speed. Indeed, machine learning always requires faster and
more efficient GPUs and a great amount of data for the training process. These
factors can lead to a cost of the hardware that is often overwhelming and not worth
it for many applications.

Another aspect in favor of cloud robotics is given by the reusability of the
resources. Many cloud services allow to share code, applications and generic

21

Vocal Assistants and Service Robotics

knowledge among the community, reducing the developers’ effort and speeding up
the progresses in the robotic field. Whereas the need of an internet connection
always available may seem mostly a limitation, it can actually help the developers
and researches in many cases.

5.2.1 Architecture of IoRT
As previously described, IoRT is not a new technology, but simply a compound
of many existing ones put together with the goal of exploiting cloud services and
large amount of data available online.

The parts composing an Internet of Robotic Things platform, can be described
as five layers put one on top of the other exchanging data and messages of different
kinds and exploiting various protocols. In particular, these layers are similar to
those described in the literature of internet of things and can be classified as follows.

Figure 5.2: Layers and Protocols of IoRT [13].

• the hardware layer (comprising physicals components such as vehicles, robotic
parts, sensors, actuators, computers, smartphones, speakers);

• the network layer (defined by the connectivity system that can be of different
kind, for example cellular, wi-fi, bluetooth, NFC);

• the internet layer (it is the core of the architecture and it is made up of
communication protocols such as MQTT, IPv6, CoAP, DDS);

• the infrastructure layer (made up of the robotic platform support, usually
ROS, together with a cloud platform service);

• the application layer (actual application code to be deployed for the specific
usage).

22

Chapter 6

Alexa Vocal Navigation

In this thesis work the main goal, as previously stated, is the navigation of a mobile
robot through an indoor environment. However, the peculiar aspect of this project
is related to the way commands are asserted: using voice and allowing an hands-free
driving system.

The first approach proposed is based on an existing vocal assistant, developed by
Amazon, in order to focus at first on other aspects of the project. The availability of
Alexa, connected to TurtleBot3 thanks to an internet connection and the AWS cloud
services, allows to promptly navigate a mobile robot following vocal commands,
exploiting a fully developed intelligent agent.

6.1 Working Principle
The overall idea of this approach is to send the navigation commands to the AWS
cloud system exploiting a custom Alexa skill and to then receive them on the
service robot itself where ROS nodes are ran and allow to send velocity commands
and move the robot. In particular, two nodes are necessary, a first one serving as a
communication bridge between MQTT messages and ROS messages and a second
one sending messages to move TurtleBot3.

As previously mentioned, in order to connect all these components and applica-
tions together, AWS services, such as Lambda and IoT Core, have been used and
therefore the author will firstly describe how they work and how they communicate
with each other.

The comprehensive scheme shown next (Figure 6.1) aims at explaining the way
vocal commands, translated into text by Alexa, are sent to the mobile robot. On
one side a human speaker addresses its vocal commands to an Amazon Alexa device.
Therefore, an Alexa skill, whose code is stored in AWS Lambda, is invoked. On
the other side TurtleBot3 runs the ROS nodes and thanks to the mqtt_bridge it

23

Alexa Vocal Navigation

connects through MQTT protocol to another AWS service, AWS IoT Core, that is
easily linked to the skill using the endpoint and certificates location of the defined
thing.

Figure 6.1: Application Working Scheme.

6.2 Alexa Skill
Since the aim is driving TurtleBot3 by exploiting an existing vocal assistant, the
choice of using Amazon Alexa derives from the fact that it allows the user to easily
develop personal and customized skills activated with one’s voice. More specifically
the Alexa Skills Kit (ASK) is a software development framework that allows to
define the structure, write the code and manage the settings of deployment of a
personalized skill.

Figure 6.2: Alexa Skill Kit Framework [14].

24

Alexa Vocal Navigation

It is possible to develop a custom skill on the Alexa Developer Console following
a specific workflow to build the interaction model. In particular, the different
phases are:

• design

• build

• test

• certify

• publish

The most important phase is the first one, in which it is necessary to define the
interaction model of the skill. The skill developer is asked to decide the sentence
for the invocation, as well as the intents and slot types. The first one establishes
the key sentence to open the desired skill, while the other two allow to define
the interface for the user-skill interaction, such as the invocation sentences of the
possible tasks to be executed and other variables. All of these components together
form the action interpreter of Alexa, which is based on complex speech recognition,
as well as NLP algorithms.

Figure 6.3: Alexa Developer Console.

In the same phase other important parameters are set, among which the endpoint.
In this case the endpoint type is set to AWS Lambda ARN and the address is
substituted by the ARN identifying the lambda function in which the skill code is
stored and that will be explained later.

25

Alexa Vocal Navigation

6.2.1 Action Interpreter of Alexa
Thanks to the tremendous amount of available resources in terms of data and
computational power, Amazon Alexa is a very effective vocal assistant. A complex
set of action interpreter algorithms allows it to understand one’s request without
prompting errors most of the times. Nevertheless, it is important to distinguish
between the general purpose services provided by Amazon to every user and the
customized skills that the user can implement by themselves, since in the last case
some flexibility and efficiency of the intelligent agent is lost.

When dealing with custom skills, the interaction model that can be implemented
is simple and user-friendly, based on two different types of data: intents and slot
types. Basically, when creating a new skill the developer decides all of the possible
actions offered by the skill, as well as all of the utterances invoking each action.
Slight differences in the utterances are accepted by the vocal assistant, however
it does not offer great flexibility and often calls the Fallback Intent whenever the
sentence received is not recognized.

Moreover, slot types allow the developer to define a variable element inside an
intent, however types not explicitly defined are not understood by Alexa, causing
a high level of inflexibility to the application and a loss of intelligence of the
machine. This happens because the recognition of the action relies on the developer
definitions and not on the machine learning applications.

6.3 Amazon Web Services
Amazon Web Services (AWS) is a cloud platform owned by Amazon and launched
around 2002. It provides many cloud computing services and APIs for a wide range
of applications. It is available to anyone that registers to the website and offers
many plans that allow to benefit from a great quantity of cloud resources.

In this work AWS was exploited for creating and deploying the custom Alexa
Skill on the service robot. In particular, the used services are called AWS Lambda,
for the storage of the code of the skill, and AWS IoT Core, that allows to connect
smart things, such as the computer for simulation and the mobile robot for testing,
to the skill.

6.3.1 AWS Lambda
AWS Lambda is a web service exploited in our project for storing the skill code. In
particular Amazon Developer Console allows to link a custom skill to AWS through
an ARN code, so that the written code can be serverless. More in general, AWS
Lambda is a computing service that allows to run some functions, called lambda
functions, automatically managing the resources required by the code.

26

Alexa Vocal Navigation

Basically a zip folder, containing the Python script that defines the skill behavior
(lambda_function.py), is uploaded together with the packages needed to run the
code. The code of the lambda function alone can be found in the Appendix [1].

6.3.2 AWS IoT
Another important service for cloud-robotic applications is AWS IoT, the Amazon
service for Internet of Things, that indeed allows to manage all of the physical things
that need to be connected to the internet. In particular it offers the possibility
of registering the hardware object that needs to be controlled remotely and of
connecting it to a customized lambda function; moreover, it allows a secure way of
exchanging messages between the cloud and the robotic platform.

In details, for the simulation it is necessary to register the computer on which
ROS nodes are run, while for the deployment it is substituted by the Jetson Nano
board, which is directly connected to TurtleBot3, that runs the nodes locally.

While registering the needed thing, the following important parameters and files
are generated and are exploited for connecting the thing to the lambda function:

• endpoint of IoT Core;

• certificates and private key of the thing.

Moreover, it is necessary to attach a policy to the created thing, which authorizes
the access and therefore the communication thing-function.

Figure 6.4: AWS IoT Core.

27

Alexa Vocal Navigation

6.4 Communication Protocol
The communication between the thing and the lambda function is done through the
MQ Telemetry Transport (MQTT) protocol, and specifically the x.509 certificate
is used. The MQTT is a lightweight messaging protocol often used in the robotic
field. Even though, the way messages are published and subscribed in the MQTT
protocol is very similar to the way messages are exchanged on topics by ROS nodes,
a ROS node can’t simply subscribe to a MQTT message.

An existing ROS package, mqtt_ros_aws_iot [15], that serves as a bridge
between MQTT and ROS was cloned and used to transform the MQTT messages
in ROS messages.

6.4.1 MQTT
As previously stated, the MQTT protocol is a communication protocol, which
was designed in 1999 by an IBM engineer. Contrary to HTTP that is based on a
request-response model, MQTT exploits a simpler and lighter publish-subscribe
model.

This Machine-to-Machine (M2M) protocol was first invented for transferring
messages efficiently, even with very little bandwidth, to one or multiple clients.
Nowadays it is widely used for IoT applications, mainly because of its characteristic
of being lightweight and power-saving. Indeed, MQTT is suitable for those applica-
tions that require low impact and in which the amount of bandwidth available is
very limited.

Figure 6.5: MQTT protocol [16].

28

Alexa Vocal Navigation

Moreover, the publish-subscribe model does not require a direct connection
between publisher and subscribers and guarantees that the communication is
asynchronous as well. Much like radios and TVs, this protocol allows the publisher
to simply "broadcast" the messages and the subscribers to "view" the topics when
needed. For this reason, a central broker is required for the functioning of the
MQTT protocol, as shown in picture 6.5, for filtering messages and distribute them
to the subscribers.

In particular, various MQTT protocols are supported by AWS and therefore it
is possible to exploit them for transferring the information received through the
Alexa Skill to the connected smart thing, such as the service robot (subscriber).
Finally, as mentioned, the MQTT bridge node translates the messages on the topics
of the MQTT protocol in messages that can be sent over ROS topics, such as string
messages.

6.5 ROS Nodes and Topics
A ROS node is used to actually drive the robot. It is called controller node and it
publishes the topic cmd_vel, on which Twist messages are sent. These messages
describe the velocity of the robot in all the directions and are set differently
according to the received message.

In practice, the node periodically subscribes to the topic published by the
MQTT bridge node aws/iot/available, describing the text received by Alexa and
transformed into string type data. The callback function of the subscriber then
calls other functions according to the information contained in the received string
and the twist messages are generated and published on the cmd_vel topic. Finally,
the odom topic is exploited as well by the controller to receive continuously the
updated position of the robot and navigating towards a goal.

In figure 6.6, it is reported the ROS computation graph, called rqt graph. It
allows to understand how the communication between the nodes happens. In
particular, it shows that the velocity topic is published by the controller node and
subscribed by the simulation environment node (gazebo) in which the the robot is
simulated. However, at the same time this node acts as a publisher, allowing to
send back to the controller node messages carrying the position of the simulation
robot, in a retroactive way.

Figure 6.6: Rqt Graph.

29

Alexa Vocal Navigation

6.5.1 Controller node
The core of the application, whose complete code can be found in the Appendix
[2], is constituted by the controller node. It represents the control unit of the
robot, which receives the text data containing the commands and translating it
into velocities sent to the motors and driving the robot.

Besides the basic commands that allow to vocally direct TurtleBot3 to a needed
point in space, with a step-by-step commands procedure, navigation towards a set
of given coordinates has also been implemented.

The implemented ones are just examples of commands that can be useful for
any general purpose service robot navigating exploiting voice control. Many others
can be added, simply adjusting the code according to the needs of the application.

For example, the command follow me or save location can be handy for these
kind of robotic platform, however they require vision and mapping tools as well.
In the table below the author reported the illustrative commands implemented for
testing the application on TurtleBot.

BASIC COMMANDS LOCATION COMMANDS
avanti cucina
indietro salotto
sinistra bagno
destra camera da letto
fermati base

Table 6.1: Commands for TurtleBot3 Vocal Navigation.

The first goal could be integrated on any service robot that could receive velocity
commands on all three axis, even if not endowed with vision capabilities. In the
case of straight line navigation, only the linear velocity along the x axis is asserted,
while for rotating left and right the rotational velocity along the z axis is changed.
Visual aid to the robots would need to be added mainly for safety reasons, but are
not strictly necessary for the implementation of these basic commands.

On the other hand though, navigation to a specific goal defined in space by a set
of coordinates, would need to be integrated with other vision applications to fully
function: mapping, path planning and obstacle detection. In this thesis work the
author’s focus is the navigation through vocal commands, therefore it is implied
the assumption of having a map available with target spots that can be reached by
the robot without bumping into any kind of obstacle.

Therefore for simulating the navigation towards a specific point in space, such
as a room in the house (e.g. "go to the kitchen"), it is assumed that the room is
identified by a set of coordinates in a given map. In particular, a function called
mapping links the name of the location to a random point in space. Obviously this

30

Alexa Vocal Navigation

method can be exploited only for simulation purposes and it is an end to itself:
more sophisticated mapping and navigation algorithms, based on vision, should
substitute this function to have a complete robotic platform.

In order to reach these target points in space, an important aspect to take
into consideration is that the velocity of the robot needs to be set according to
the position of it with respect to the goal. To acquire these information on the
robot position, the author exploited a topic available for TurtleBot3: the odometry
topic. There are more effective and accurate ways to get its position, however, as
underlined before, these aspects are beyond the scope of this thesis.

31

Chapter 7

Alexa Approach Simulation
and Testing

This last chapter of part II aims at presenting the results obtained from the simu-
lation and testing of the Alexa-based application. Moreover, some considerations
about the advantages and, more importantly, the limitations of this approach are
reported.

7.1 Gazebo Simulation

In order to simulate and check the correct functioning of TurtleBot driven asserting
commands to Alexa, it is necessary to install on the machine the package containing
the simulation environments of TurtleBot3. Furthermore, since the focus is on the
right command-action association, a simple empty world environment has been used.
Therefore, for testing whether the established room was reached, the coordinates
chosen were integer numbers, simply marked with a "light-spot" available in the
Gazebo environment.

For running the simulation two ROS nodes need to be launched, together
with the previously described simulation environment. The commands to run the
communication node and the controller node are the following:

• roslaunch mqtt_ros_aws_iot connect.launch

• roslaunch vocalbot vocalbot_launch.launch

32

Alexa Approach Simulation and Testing

Figure 7.1: TurtleBot3 in the starting point (0, 0), in the kitchen (3, -3) and in
the living room (3, 3) respectively.

33

Alexa Approach Simulation and Testing

In figure 7.1 an example of simulation is reported, showing the service robot
going from its starting point to the kitchen and then directly to another location,
the living room. As can be seen, the set of coordinates is not perfectly reached by
TurtleBot, since an accuracy range must be defined before running the code, in
order not to have the robot continuously changing its orientation, slowing down
too much. However, the set of coordinates should identify a room, which is greatly
bigger than the accuracy range, and therefore the little error can be neglected for
the purpose of the application.

7.2 Real-time Testing
After checking the correctness of both the MQTT communication and the controller
node behavior, the next step is the testing on the real hardware. TurtleBot3 was
equipped with the NVIDIA Jetson Nano board, assembling them together in a
unique robotic platform.

Since Jetson Nano runs Ubuntu, the author was able to transfer the whole
vocalbot_ws workspace to it and then run another simulation. Indeed, the nodes
could be launched on the NVIDIA board, while launching TurtleBot in Gazebo at
the same time, simulating once again on the real hardware. Although some delays
were detected, the simulation worked well and therefore the testing phase could be
done next.

For testing the overall behavior of the service robot guided by Alexa, the same
two nodes need to be launched again (exploiting an SSH protocol in order to
connect to the Jetson Nano board):

• roslaunch mqtt_ros_aws_iot connect.launch

• roslaunch vocalbot vocalbot_launch.launch

However, instead of launching the Gazebo environment, in order to navigate the
real robot, it is necessary to bring-up TurtleBot through the command:

• roslaunch turtlebot3_bringup turtlebot3_robot.launch

The testing was carried-out marking on the ground the coordinates associated to
a specific room, assuming once again that no obstacles are present and so no path-
planning is needed. The task of reaching the goal after receiving the instruction
from Alexa was completed for any coordinate, with an accuracy slightly greater
than the one used for the simulation. This small error is due to issues related to
odometric accuracy, that can be improved with techniques largely analyzed in the
state of art of autonomous navigation.

34

Alexa Approach Simulation and Testing

7.3 Limitations

The focus of this section is the analysis of the advantages and disadvantages of
the first approach to vocal navigation presented. Although, this solution may
seem the best fit for the purpose, due to its simplicity and accuracy, it is not
suitable for many applications and often needs to be substituted by or sided with
a local vocal assistant. The reasons behind the choice of implementing a low-power
speech-to-text vocal assistant, even when disposing of powerful assistants, such as
Alexa, are presented next.

Amazon Alexa offers an easy way to allow anyone to make use of a vocal assistant
through a simple developer platform. Moreover, since it was developed by teams of
engineers and AI experts with powerful hardware and software resources available
and trained on a great vastity of dataset, Alexa offers great accuracy and high
performances that are difficult to achieve with a self-made vocal assistant.

On the other hand, it is important to notice that Alexa is a general purpose
assistant. It is built to adapt well to any application and context. However, since
it was not built for a specific application, it could not be perfectly suited for any
language domain. In particular, a specific purpose vocal assistant, could be tuned
through transfer learning techniques on specific set of data, achieving better results
in the NLP area.

Furthermore, the biggest disadvantage of exploiting Alexa is the need of always
connecting to the internet. This may not seem a big issue, however it could limit
greatly the usage of the service robot equipped with the vocal assistant.

Many environments in which these kind of robotic platforms may be exploited
could indeed not have an internet connection available. Just think of an elder’s
home that might not be interested in having an internet connection or, for examples,
hospitals, healthcare centers, schools and in general public places, where an internet
connection is usually also protected by many protocols that do not allow an easy
and consistent connection. Moreover, assuming the indoor environment at issue
has internet connection available all the time, even a temporary lack of service
could prevent anyone from guiding the robot vocally, sometimes even putting in
danger people relying on its usage.

In order to bring a tangible example, when testing TurtleBot with Alexa, the
author encountered issues with the internet connection of Politecnico di Torino.
Indeed, the MQTT connection was blocked and therefore, the robotic platform
could not receive any command. However, when switching to a different connection,
the application worked.

Finally, another important issue related to the need of connecting to the internet
is brought by the risks related to the security and privacy of cloud connection.

35

Alexa Approach Simulation and Testing

7.3.1 Security and Privacy in Cloud Computing
Whether people are aware of it or not, issues regarding security and privacy in cloud
computing systems and, more in general, the protection of data on the internet are
one of the major challenges of the last decades.

Along with the digitaliazion of our society, data have become highly important
and valuable. More than ever, in the last years, due to the COVID-19 pandemic,
the need of being able to carry-out daily working tasks and routines from a remote
location has grown exponentially. Even those who are not aware of the risks
of sharing data on the internet are doing so on a daily basis. Moreover, many
activities were forced to relocate their businesses on websites and make them smart,
often exposing their organization to the possibility of loss or theft of sensitive data
because of a cyber attack or a data breach.

As mentioned, Amazon, together with its vocal assistant platform, offers these
businesses many tools for renewing themselves in a time were digitalization and
e-commerce are fundamental. However, exploiting these services without proper
awareness and notice can sometimes have very dangerous consequences.

Without going too much into the details of the problem concerning the cloud
systems security, since it goes beyond the topics of this work, the main risks behind
it are briefly reported in order to explain how relying on a cloud-based vocal
assistants is not always the best choice.

Some of the issues related to data and cloud systems are listed below [17] in
order to show the extension of the risks related to the usage of these services:

• data and privacy disclosure;

• data destruction;

• service availability;

• external cybersecurity attack;

• accidental information leakage;

• access rights management;

• identity identification;

• multi-tenant and cross-domain sharing.

Being able to exploit a vocal assistant at the edge, therefore running directly on
the robotic platform, allows to avoid the mandatory use of an internet connection
and therefore assures that the data are always protected, because never shared.

36

Alexa Approach Simulation and Testing

In private environments, as can be homes or businesses and, even more, in
hospitals and healthcare centers that deal with highly sensitive data, the usage of
machines exploiting, for example, Amazon Alexa can be often questionable.

For these reasons to assure the protection of the privacy and security of data,
implementing a local vocal assistant can be a valuable alternative to exploit service
robots with vocal commands, without any cybersecurity risk.

37

Part III

Low-power Vocal Assistant
at the Edge

38

Chapter 8

Machine Learning in Speech
Recognition

The innovative machine learning approach widely exploited by AI applications of any
kind, is the key point for creating a local vocal assistant for service robots. In this
chapter the author gives an overview on ML, especially applied to speech recognition
and natural language processing, in order to give the reader the needed knowledge
to understand the different parts composing the intelligent agent. Moreover, some
applications of these innovative technology are also presented, to underline the
importance of heightening their efficiency and accuracy.

8.1 Machine Learning Overview
Machine learning is the subclass of artificial intelligence in which the purpose is not
only having a computer able to do what we order it, but also capable of learning
how to respond and behave from past experiences. In other words, the objective of
this discipline is not building a machine that can act upon a set of programmed
rules manually inserted by men, but instead the ability of training that machine and
teaching it how to respond even when the set of possible demands is not predefined.

It is important to underline that when talking about machine learning one should
not think about the concept of learning as the human ability to use consciousness.
Indeed, in this case the machine uses data to simply find statistical patterns on
which models used for future predictions are based.

This is why machine learning is particularly useful whenever it is not possible
to identify a specific pattern of input data that a problem could require; therefore,
in these cases many training data are exploited, in order to automatically improve
the ability of a machine to perform a task.

39

Machine Learning in Speech Recognition

Figure 8.1: Traditional Programming vs Machine Learning.

Nowadays, there are two main branches of machine learning that are mostly
used: on one hand gradient amplification algorithms, for shallow learning, and on
the other hand deep learning. In particular, the last one became very popular in
the last decade as it allowed to solve many challenges and speed up researches
in many fields, such as the natural processing language area. However machine
learning is a much more vast topic and it is very important not to superimpose
one to the other, but on the contrary understand that sometimes deep learning is
not the best choice: data could be not enough or a much more simpler algorithm
could give the desired result with a lower computational effort.

When talking about any machine learning technique it is important to describe
the workflow of the learning process, made up of three steps: training, validation
and testing. For any of these steps it is necessary to have a proper quantity of data
available, therefore most of the times the exiguous dataset available is the main
limit of machine learning, even though there are many techniques to compensate
this shortage. The training allows the machine to find a pattern or recognize
certain features in the input data, the validation instead allows to check whether
the objective function and loss function are improving and eventually tune the
weights accordingly. Finally the testing should be done afterwards when the tuning
of the parameters is completed, only to check if the model works on a completely
new set of data as well. Based on the input data available and the goal required it
is necessary to pick the right algorithm for the training process, there exist four
main branches making up the taxonomy of machine learning:

40

Machine Learning in Speech Recognition

• supervised learning

• unsupervised learning

• semi-supervised learning

• reinforcement learning

Supervised Learning: the supervised learning algorithms are those in which
the machine does not learn on its own but it needs an external help. In particular
during the training phase the feature engineer provides the machine with labelled
input-output pair of data. For this reason these kinds of algorithms are often
used for classification or regression tasks. The most famous supervised learning
approaches are the decision tree, the Naïve Bayes and the support vector machine.

Unsupervised Learning: in unsupervised learning algorithms labels and targets
are not used, instead the purpose of the algorithm is to require the machine to
autonomously find patterns and transformations in the input data. This approach is
often used in the pre-elaboration phase since it requires minimum effort and it allows
to have a better dataset to work on with another type of algorithm. In particular
feature reductions and K-means clustering are the most famous techniques.

Semi-supervised Learning: semi-supervised learning algorithms involve labels
as the supervised ones, however in this case they are not introduced by the feature
engineer but by the machine itself thanks to heuristic techniques. Generative
models and self-training models are the most common ones in this category.

Reinforcement Learning: reinforcement-based algorithms teach the machine
how to behave on the basis of a reward concept. Labels to the input data are
omitted, however some rewards are given to the machine during the training
according to the choices it makes. In this way the agent that is being trained learns
the best way to act in order to maximize the total reward.

8.2 Deep Learning Overview
The adjective deep, describing this type of machine learning technique, simply
describes the structure of the algorithms: layered and hierarchic. In order to deal
with these kinds of architectures it is important to think of the input data as a
set of high level features that can be described by putting together lower level
features. Indeed, the key-point of deep learning is the use of successive layers as if
they are filters through which the input data are passed and broken down. In this

41

Machine Learning in Speech Recognition

way features at different levels of abstraction can be gradually comprehend by the
machine.

Figure 8.2: Deep Neural Network Basic Structure.

It is thanks to deep learning that the field of machine learning has had a major
breakthrough in the last decade. Deep-learning architectures have been used in
the last years for many innovative applications such as computer and robotic
vision, medical image analysis, speech recognition and in general natural language
processing, giving impressive results.

Actually, the ideas and formulations behind the most famous and used algorithms
of deep learning were already described in the 90s. However, since this field is
mainly based on experiments rather than theory, it wasn’t until recent years that it
started giving good results. This happened because of previous limitations in the
hardware and in the availability of extended datasets. Since in the new century
the speed of CPUs and the power of hardware overall has increased exponentially,
so have the outcomes obtained by applying deep learning algorithms.

Most of the times these layered structures are artificial neural networks, that can
be either exploited for supervised, unsupervised or reinforcement algorithms. The
concept of ANN is based on a stratification and that is what makes it suitable to
deep learning. The input layer takes the input data and passes them to the hidden
layers for processing it, finally the output is given by the output layer. In practice,
the processing abilities of a single layer are described by the weights parameterizing
it, therefore the aim of deep learning is finding the appropriate values of these
weights such that the input data are correctly mapped by the input layer and the
hidden and output layers allow to obtain the required targets.

Two important characteristics of deep neural networks (DNN) are the objective
function and the loss function which describe how far the output data are from
the target and the overall accuracy of the algorithm. Basically the problem can

42

Machine Learning in Speech Recognition

be reduced to finding the weights that minimize the objective function, which
means that the obtained result is as close as possible to the target one. In many
cases the optimization is achieved through back-propagation, in particular the
most exploited one is the gradient-descent optimization. Since it is possible to
compute the gradient of the loss function, the optimization is done by moving the
parameters of the neural network in the direction opposite to it in order to reduce
the distance from the target and the value of the loss function.

The main problems caused by the quantity of training data selected are called
underfitting and overfitting. During the training process a significant part of the
dataset is entered as an input to the machine, so that it can learn from it. At the
beginning of this first step the machine shows underfitting, which means that it
still did not learn any pattern or elaborate any model from the input data, however
even when too many similar data are inserted a problem arises: the machine learns
those data too well and can’t recognize the new one as part of the same group, this
is called overfitting.

8.2.1 Convolutional Neural Network

Convolutional Neural Network (CNN) algorithms are based on convolution, hence
the best way to describe this technique is to portray it as a window of a certain
dimension sliding over the characteristic input map extracting local pattern instead
of the global picture all at once. CNN is made up of two types of layers alternated
which are the convolutional layer and the pooling layer. The aim of the convolutional
layer is to detect the local conjunctions of features from data coming from the
previous layers, while that of the pooling layer is to put together these local
features composing a global representation ready to be manipulated by the next
convolutional layer [18].

In other words the convolutional layer filters the raw data extracting a certain
number of features, then the pooling layer down-samples the data coming from the
convolutional one in order to reduce the dimensions and lower the computational
effort. Finally a fully-connected layer is needed whenever a classification task must
be performed. The training in a CNN structure is usually performed through
the most common back-propagation algorithm, the gradient-descent optimization.
CNN is mainly used for computer vision because images are made up of features in
which the location does not matter and what counts is the feature composition.

Finally this network allows to reduce the computational effort, but not to take
into account the sequential features of a sentence or a vocal command. For these
reasons CNN in speech recognition and NPL are usually used together with other
networks, such as RNN or DBN, for reducing the dimensions of the raw input data.

43

Machine Learning in Speech Recognition

8.2.2 Recurrent Neural Network
In speech recognition and natural language processing applications recurrent neural
network and all the techniques deriving from it usually give the best performances.
A RNN peculiarity is certainly the memory feature that allows it to be suitable for
processing sequences. While feed-forward networks, such as CNN, can’t retain past
information, RNN are based on an internal iterative cycle that allows to handle
the same data across many layers capturing temporal patterns in sequential data
such as speech [18].

Even though RNN are very effective on sequential data, they have a limitation
regarding the traditional gradient-descent approach, indeed gradient disappearing
may happen. Long-short term memory networks (LSTM) are a type of RNN
that solves the vanishing gradient problem, using special hidden layers to keep in
memory past information for a longer period of time of the sequence. Using these
units, called gates, the network can be trained to retain some features for a longer
time and to forget irrelevant ones immediately.

8.3 Audio Processing for Deep Learning
Altough natural language processing and speech recognition algorithms are very
important when dealing with vocal assistants, audio processing also plays a key role
in this field. Both for key-word detection and speech-to-text translation, necessary
for building this intelligent agent, audio files, and usually WAV files, are processed.
Moreover, the pre-processing phase of these files is of extreme importance, so that
the machine learning algorithms can work properly and efficiently.

This kind of data are simply sound waves that can be plotted as signals in which
the amplitude represents the sound intensity, while the period represents time,
often translated into frequency.

Figure 8.3: Samples of Audio Signals.

44

Machine Learning in Speech Recognition

For machine learning purposes it is obviously necessary to digitalize these signals,
in order to be able to input them into the machine for the training. Moreover,
pre-processing of these data is of primary importance for achieving accurate results
in this field.

As often happens in the telecommunication field, it can be useful to exploit the
spectrum of a signal instead of the signal itself. Indeed, each sound wave can be
seen as the sum of many different frequencies and the depiction of the union of all
of them can be seen in the spectrum obtained through the Fourier transform of a
signal.

Figure 8.4: Samples of Spectrum of Signals.

Thanks to this 2D visual representation of a signal, in which brighter colors
indicate higher energy of the signal, it is possible to train a neural network simply
with images, therefore convolutional neural network can be exploited and give good
results. It is easily understandable that this approach is better suited for short
audio data.

Whenever longer files are processed, in addition to convolutional networks, RNN
are often applied to spectrogram images, in order to extract the sequentiality
features of audio files as well.

8.3.1 Mel Spectrogram
An interesting aspect to be taken into account when processing human voice, is
that the range of amplitude and frequency of the sound used does not cover the
whole scales. This results into very dark spectrograms, with few spots of color,
giving little information on the sample.

Since human beings perceive both frequencies and amplitude on a logarithmic
scale rather than a linear one, it is possible to define a new scale in order to better
depict the spectrogram, highlighting the differences between audio samples in an
easier way.

45

Machine Learning in Speech Recognition

Figure 8.5: Regular Spectrogram Example [19].

The type of spectrograms obtained from this transformation is called Mel
Spectrogram, which uses the Mel Scale to indicate the frequency and the Decibel
Scale to indicate the amplitude, through colors, so that extracting features from
the audio sample becomes an easier task.

Figure 8.6: Mel Spectrogram Example [19].

46

Chapter 9

Action Interpreter

Zero is the name of a low-power vocal assistant implemented by a team of researchers
at PIC4SeR, the Interdepartmental Center for Service Robotics at Politecnico di
Torino. Instead of equipping an indoor service robot with one of the vocal assistants
available on the market, which can rely on powerful computational resources and
accurate results, the choice was to develop a vocal assistant at the edge, therefore
running locally on the robotic platform without requiring an internet connection.
This decision is based on the desire to overcome the limitations imposed by the use
of existing vocal assistants, among which the need of connecting to the internet,
and to avoid to expose the user’s data to privacy threats.

A local vocal assistant can’t be successfully exploited for general purpose appli-
cations, as it happens with Alexa, because it is equipped with a limited amount
of resources. However, these intelligent agents can be really useful for specific
purpose applications, such as vocal navigation in an indoor environment. Indeed,
as it happens in this work, the actions the robot can perform belong to a small set,
therefore the vocal assistant needs to simply link the given vocal command to one
of the actions or, in case it can’t classify it, prompt an error. The set of actions
can be even wider than the one analyzed in this thesis work; however, in order to
have an efficient application, it is necessary for it to be finite in order to exploit
supervised learning techniques.

It is important to underline once again that, since Zero is built to be deployed
directly on the hardware, the main focus when designing it goes towards creating a
lightweight and low-power application.

9.1 Elements of a Vocal Assistant
In the next sections the author will briefly describe an overview of all the different
applications composing this vocal assistant. Then a deepening on NLP will follow

47

Action Interpreter

since the purpose of this work is to improve the action interpreter of Zero.
The goal is to allow the machine to classify the received textual command, even

though the sentence structure used by the user differs from the one defined as
action utterance. An improved interpreter allows to make up for mistakes made
by the speech-to-text translator as well, understanding the overall meaning of the
command even though some errors occur.

Although Zero can be applied to many fields, this thesis focuses on highlighting
the differences, the advantages and the disadvantages of using a local vocal assistant
rather than Amazon Alexa, therefore Zero will be combined, simulated and tested
on the previously presented TurtleBot3 together with the ROS controller node used
in the first approach.

Next the author briefly presents the various modules composing the Zero action
interpreter, implemented by other members at PIC4SeR, though without going too
much into details. Then the action interpreter module, on which this work focuses,
will be analyzed more in depth, describing how it was implemented, the advantages
of exploiting it and how it was tested and deployed.

9.1.1 Audio Processing
Firstly the application deals with audio files recorded by a microphone: it exploits
the Python module PyAudio to record and buffer audio samples. The raw audio is
placed into a queue and therefore it can be streamed at low latency.

In addition, after processing the frames of audio samples, the previously presented
technique that exploits the conversion to a Mel spectrogram is applied as well. The
frequencies to Mel scale are obtained using HTK formula and the overall waveform
is converted to a log-magnitude mel-frequency spectrogram.

9.1.2 Wake Up Word
In order to activate vocal assistants, the most exploited way is through a wake up
word, indeed this method is a lot faster and simpler than pressing some combination
of buttons. For this reason, the recognition of a predefined word is a crucial feature
to be implemented. Although it may seem like a simple task, usually the wake-up-
word recognition requires to be handled by a limited amount of resources and with
an high accuracy, becoming one of the toughest modules to be implemented.

For Amazon Alexa the keyword is its name, Alexa, however for opening a skill
an additional command needs to be asserted, telling it to open the skill identified
by a certain invocation name. Therefore, the wake-up sentence to start the vocal
assistant for the application becomes very articulated and hard to remember. This
reasoning highlights yet another advantage of implementing an assistant at the
edge for the purpose.

48

Action Interpreter

Since the newly implemented vocal assistant is called Zero, the obvious choice
for the wake-up word is once again the name itself. The task of hearing every time
this word is pronounced is crucial for the application of the intelligent assistant
and it is based on the concept of keyword detection.

In order to be able not to miss any of these wake up words, Zero requires
the implementation of a small algorithm, consuming little power and computing
resources, whose only purpose is to understand whenever someone pronounces the
selected word. Zero then continuously runs this module, listening and trying to
detect the keyword among different voices, sounds and background noises. The
goal is trying to reduce to the minimum the errors due to the recognition of not
spoken words and to not detecting all of the spoken wake up words.

9.1.3 Speech-to-Text
After the wake-up word is detected, the main speech recognition algorithm of Zero
starts running. It is based on audio processing and translation from speech to text,
done thanks to the Python module Vosk.

As previously described, in machine learning applications audio files are handled
as spectrograms processed according to the needs. Thanks to a suitably trained
model, after asserting a vocal command, Zero translates it into a text data, that
can be handled by feature extraction and NLP algorithms, in order to understand
the meaning of the command and pass the information to the ROS node afterward.

9.1.4 Text-to-Speech
Another important aspect implemented in Zero is the vocal response. Indeed,
besides completing the requested action, it is necessary to give the user a feedback
on whether or not Zero understood the command. For this reason, Zero is able to
give answers, prompt errors vocally and guide the person speaking to it through
the overall experience of human-machine interaction.

These kinds of algorithms, exploited for speech synthesis purposes, fall into
another category of deep learning networks, particularly they are called generative
adversial network (GAN). GAN networks allow to generate new sets of data with
the same characteristics and statistics as those of the training dataset, such as for
example sound waves making up voices.

9.1.5 Action Classification
The link between the command assertion, translated into text by the speech-to-text
module, and the action itself, is done by what can be defined action interpreter

49

Action Interpreter

module. Indeed, through meaning extraction methods, it allows to determine which
of the available actions the robot should perform, according to the received text.

In particular, the simpler way to do so is by exploiting a JSON file. In this
case, similarly to how it is done in the Alexa Skill creation, the developer simply
defines a set of utterances the user could say to invoke each action and a set of
responses, positive or negative, and stores them in a JSON file. Using this solution
can be a good idea in many cases: it is quite effective and, most of all, does not
need any particular computational effort, since it is based on a simple equality
operator. However, there are some limitations and some aspects that it is possible
to improve.

First of all, using a more efficient action interpreter makes up for any error
that can occur in the speech-to-text conversion. Due to background noise or other
external factors, the translation could miss some letters or even words, therefore
comparing the command with the utterances in the JSON file sometimes fails to
classify the command in the right action category. Moreover, predicting all of the
utterances another person could use when interfacing with Zero, could be a hard
task for the application developer. Finally, it is important to take into account that
sometimes sentences using completely different words could mean the same thing,
while others with the same words re-ordered can have very different meanings.

In order to further elucidate what is the objective of the action interpreter
described, an example is reported. Basically, the vocal assistant should be able to
classify all of the following sentences in the same action category, identified by the
controller node as "CUCINA":

• Naviga verso la cucina.

• Ho fame, mangiamo?

• Preparami una pizza.

• Vai in cucina!

• Cuciniamo qualcosa da mangiare.

• Accendi il forno, per favore.

It is worth noticing that improving the accuracy, in this case of the action
interpreter, always comes with an increase of the computational cost. It is important
to keep in mind the trade-off between accuracy and resources usage, trying to find
algorithms that can be locally deployed and do not need an internet connection to
work, while also guaranteeing good performances.

50

Action Interpreter

9.2 Natural Language Processing
Natural Language Processing is the branch of machine learning that deals with
converting the human language, usually input as textual data, into a machine-
readable representation [20].

NLP can be exploited for any application that utilizes text, in different forms, as
input data. Hence, it can be applied also, as in the case of this work, in application
of speech recognition whereas audio is previously converted into text. For this
reason, language processing is a vast area of research and can be subdivided in
branches according, indeed, to the application needs, such as:

• information retrieval (IR);

• information extraction (IE);

• question-answering;

• text summarization;

• text translation.

9.2.1 Pre-processing
Often overlooked, when dealing with automatic text recognition, pre-processing
is a fundamental step in the machine learning process. Cleaning the input text
is necessary in order to reduce ambiguity and duplication [20]. For example,
punctuaction and stop words, which are frequently used words that do not add any
meaningful significance to the context, are usually removed.

Another important aspect of pre-processing is tokenization, which allows to
split the data into smaller pieces that the machine can handle more easily. In
particular, at this delicate stage the units (characters, words or sentences) passed
to the successive steps of text processing are identified.

9.2.2 Vectorization
Word-embedding vectorization plays a key-role in the information retrieval field;
often the major effort when dealing with text data is, indeed, the conversion of
these input data to vectors. A vector is an array of numbers of a defined dimension,
easily handled by machines.

In particular, vectors allow to show the machine obvious relationships between
words. Moreover, hidden relationships between words are also automatically
revealed, even those the software developer could not even notice. The creation of
patterns between vectors form a representation of the language that the machine

51

Action Interpreter

can comprehend; in this way when interrogated the assistant can efficiently link
words according to many features, such as presence of letters, semantic meaning,
sentiment and so on.

The most popular modules available for the task of conversion of words into
vectors are:

• Word2Vec by Google;

• Glove by Standford;

• FastText by Facebook.

Cosine Similarity

Cosine similarity is one of the most popular techniques for extracting features from
a set of vectors, created during the vectorization phase. It is based on the concept
of measure of similarity that is done using the cosine distance.

Cosine distance is a way to measure the distance between two non-zero vectors,
alternative to the more famous Euclidean distance. It can be defined starting from
the formula of the dot product and extracting the cosine of the angle between the
vectors, obtaining:

cosine(angle) = u · v
norm(u) ∗ norm(v)

The value of the cosine distance ranges from -1, opposite vectors, to 1, equal
vectors, while all the values in between indicate different levels of similarity or
diversity of the vectors [21]. This technique is preferred to the Euclidean distance
whenever the length of the vectors is not relevant and the interest is towards the
relative position of the vectors, one respect to the others.

It is interesting to visualize some examples of the pattern created using this
particular measure of distance between vectors. Analyzing the first graph in Figure
9.1, it is possible to notice that the distance between the words male and female
is the same as that between king and the corresponding feminine noun queen.
Similarly, in the second graph, in figure 9.1, it is evident that the distance between
different verb tenses of diverse verbs is constant.

Although, cosine similarity measures may appear sufficiently simple and efficient
for many application, in the case of the application analyzed in this thesis it
has some limitations. Firstly, cosine similarity works very well on single words,
but usually when asserting commands multiple words are used. Moreover, the
commands used for the indoor navigation of a service robot include words of the
same domain, therefore the distance between them is not very significant.

52

Action Interpreter

Figure 9.1: Cosine Similarity Relations [22].

Even though, in the collective imagination, the contrary of forward is backward,
and left and right are complete opposite words, the cosine distance between them
is not very high and therefore this method does not allow the machine to clearly
distinct these commands one from the other.

Bag of Words

In order to solve the first problem illustrated, it is possible to look for a way of
creating vectors from sentences, instead of single words. Bag of Words (BoW) allow
to do so exploiting the following strategy.

At first a list of words extracted from a set of text data, which is called vocabulary,
is created. Then, the concept behind BoW focuses not on the order in which words
appear in a text but simply on whether they do or do not and, sometimes, also
with what frequency. Therefore a weight is assigned to each word of the vocabulary,
for each sentence analyzed [22], so that a mapping of each word with some kind of
feature index is obtained.

This technique has the advantage of taking into account the whole sentence,
instead of separated words, however it is not suited for the goal of this work either
because it does not take into account the semantic similarity of the sentences.
Indeed, the same command assertion could be done with sentences containing all
different words. Moreover, this technique would require the availability of a vast
corpus of data, which is often hard to retrieve, especially in the Italian language.

53

Action Interpreter

Figure 9.2: Bag of Words Technique Example [23].

9.3 Universal Sentence Encoder

The Universal Sentence Encoder (USE) is a model by Google for encoding sentences
into embedding vectors [24]. It allows to convert not only words, but also sentences,
or even paragraphs, into embeddings that the machine can process, understand
and classify. This last point is crucial since the words handled by Zero are similar
to each other, indeed they belong to the same domain of navigation commands.
Therefore it is necessary that the algorithm focuses on the overall meaning of the
sentences, instead of on the single words. Moreover, researchers at Google proved
that sentence embeddings outperform word embeddings in many NLP tasks and
they developed the USE model, which results particularly suited for classification,
clustering and for transfer learning purposes.

This model is pre-trained on a vast corpus of data, guaranteeing great efficiency
and accuracy. Indeed, the main obstacle encountered by machine learning engineers,
when dealing with NLP problems, is related to the poor data availability. Exploiting
the USE model for transfer learning purposes can create in many cases a simple
solution to overcome the problem of the lack of sufficiently large datasets. In
details, the main sources of data on which this model has been trained come from
Wikipedia, web news and discussion forums.

Commonly, the USE is exploited for extracting semantic similarity features from
texts, even though there are many ways to deploy it. When giving in input a string,
it allows to output a fixed dimensional representation of the string as an embedding
vector. Therefore, the easiest way to deploy the USE for classification purposes is
comparing the embedding vectors of many input sentences. In particular, in order
to obtain the semantic similarity score between two vectors, the angular distance
between the pairwise embedding vectors can be computed as follows:

54

Action Interpreter

sim(u,v) = (1 − arccos(u · v
norm(u) ∗ norm(v))/π)

Basically, starting from the cosine distance of the two vectors, the angular
distance is obtained using the arccos function divided by π. This value represents
the similarity score which is a value ranging between 0 and 1, where the upper
limit represents the complete equality of the sentences.

Moreover, it is possible to plot a matrix of semantic similarity between sentences,
based on their embeddings, in order to better understand the correlations among
them and picture how the machine creates patterns in the human language. In
figure 9.2, the author reported an example of semantic similarity matrix using the
multilingual USE [25] model and giving as input some sentences useful for the
navigation of the indoor robot.

Figure 9.3: Matrix of Semantic Textual Similarity.

The USE is designed as a pre-trained model useful for transfer learning, however
its great accuracy allows to exploit it as a standalone as action interpreter of the
Zero application. In the case of this work exploiting a USE model allows to make
up for a lack of large datasets available, especially in Italian, for NLP applications
since a multilingual version of the USE has been developed as well.

Different version of the USE have been implemented. The main distinction is
given by a trade-off between accuracy and computing resources; the first model is
based on a transformer architecture, while the second on a Deep Averaging Network
(DAN). On one hand the transformer is more accurate, but on the other the DAN

55

Action Interpreter

is designed to have higher speed and efficiency. Both models take words, sentences
or paragraphs as inputs and output 512-dimensional vectors.

9.3.1 Deep Averaging Network
Deep Averaging Network is one of the two approaches exploited by the USE and it
is based on the typical neural network concept.

The intuition behind DAN is that passing the vector average of the input
embeddings through a network of feed-forward layers a more abstract and useful
representation of the input is obtained. Indeed, these kind of layers allow to extract,
at each step, more meaningful information, discarding those that are not important
for the word embedding purpose.

More in detail, in the case of DAN this abstraction concept is applied to an
unordered composition function, called Neural Bag of Words (NBOW). NBOW is
a very accurate model exploiting the average of the input word vectors to classify
the output, without take into consideration the importance of the single words.

Figure 9.4: DAN Neural Network.

Summarizing, as can be seen clearly in figure 9.4, the levels of a DAN model are
the following [26]:

1. vector average of the input embeddings;

2. feed-forward layers;

3. linear or softmax classification;

4. cross entropy loss function;

5. dropout (for increasing accuracy).

56

Action Interpreter

9.3.2 Transformer
Transformers are a kind of neural network that recently became very popular
among machine learning experts and in particular as useful for sequential data,
therefore they are used mainly for NLP applications. Tranformer models have been
found to be more efficient than RNN and LSTM models and allowed to solve some
issues in older networks, however they are more heavy computationally speaking
and therefore more expensive, in terms of time and money, as well.

The architecture of a transformer is based on a encoder-decoder structure. The
main idea of this model is based on the concept of attention and so aims at weighting
the importance of each feature encountered and so at paying attention to the single
words, instead of the overall word embedding meaning as for DAN.

Figure 9.5: Tranformer Structure [27].

As shown, a simplified transformer architecture is made up of the same number
(N=6) of encoders and decoders, in which the layer structure is always very similar.
Each encoder is usually composed by two layers:

• a self-attention layer;

• a feed-forward neural network;

while the decoders are made up of the same ones, plus an additional attention
layer, that allows it to focus on relevant features of the input. Therefore the decoder
has the following simplified structure:

• a self-attention layer;

• an encoder-decoder attention layer;

• a feed-forward neural network.

57

Action Interpreter

Figure 9.6: Layers of Encoder and Decoder [27].

In detail, the attention module exploited by transformers is called Multi-Head
Attention, in which the attention mechanism is ran in parallel many times [28].
Afterwards the different outputs are concatenated usually exploiting scale dot-
product attention.

9.3.3 Multilingual Universal Sentence Encoder
Even though the DAN-based English USE model already offers a lightweight and
quite accurate way to classify the commands asserted to Zero, in order to have a
significant growth of the action classification accuracy it is necessary to exploit
a model trained on an Italian dataset. Google developed a multilingual version
of the USE [25], exploiting a transformer architecture, trained on a large amount
of dataset in 16 languages. In particular, Google’s translation system has been
exploited to assure at least 60 million training data for each language were fed to
the algorithm.

The fields of application of the multilingual USE can be very different, for
example it is often deployed for translation purposes. Using the multilingual
version of the model, the semantic similarity matrix can be built having the words
in a first language as entries of the rows, while the entries of the columns can be in
a second language.

9.4 From USE to Zero’s Action Interpreter
In conclusion, after testing it with many similarity matrices, the author selected
the multilingual USE model to be integrated into the application of Zero, serving
as action interpreter.

In particular, the JSON file previously used for matching asserted commands
with available options was kept as sentence database. Then the main idea is the
comparison between the embedding of the received command and the embeddings

58

Action Interpreter

Figure 9.7: Tranformer Overall Model Architecture [28].

of all the possible commands available in the dataset. The higher score of similarity
between embedding vectors obtained detects the right command to be executed by
Zero. Moreover, a minimum threshold was also set in order to make sure that when
receiving a command very different from any of the available, an error message
could be sent to the user.

In the main function of the pic4speech package, implementing the overall behavior
of the vocal assistant, it is possible to find two functions (action_interpreter and
action_response). These functions can be found in the action_interpreter_USE.py
file, that defines the object class ActionInterpreterUSE, that can be found in the
Appendix A [3].

An important characteristic of this interpreter to be highlighted, is that it allows
to compensate for weaknesses in the other modules of the vocal assistant. In
particular, whenever audio processing or speech-to-text are not very accurate, Zero
can still understand the action to be executed thanks to the USE interpreter.

59

Action Interpreter

Figure 9.8: Zero’s Action Interpreter with USE tests.

As an example, in the top picture on the right in figure 9.8, it is possible to
read that the word "camera" has been detected as "cmar". While Zero does not
have any problem understanding the meaning of the command, if the same error
occurs when asserting the command to Alexa, the latest can’t understand that the
command is telling to navigate to the bed room. Of course, in the case of Alexa
the accuracy of the other modules is much higher, however this is an important
feature for improving the behavior of Zero and the accuracy of its responses.

Figure 9.9: Alexa vs Zero Test.

60

Chapter 10

Zero Approach Simulation
and Testing

The aim of last chapter of part III is to show the results obtained with the second
approach and the advantages brought by exploiting the local vocal assistant. The
deployment of the overall application, including the improved action interpreter, is
once again done on TurtleBot3. However, it is not possible to deploy the model
of the USE on the Jetson Nano because it does not support the tensorflow_text
package. An intel-based computer, mounted on TurtleBot3, is exploited instead, in
order to test the improved vocal assistant.

10.1 Gazebo Simulation
The set up for the simulation of the second approach is similar to the first one,
however it does not require an internet connection. As previously described in
chapter 7, the simulation is carried on in Gazebo and, more specifically, exploiting
TurtleBot3 empty world environment, in which the rooms are marked by some
light spots.

The controller node is ran through the roslaunch command, as before, however
it is not necessary to run the same bridge node for the mqtt connection. Indeed,
the vocal assistant is installed directly on the hardware, both for simulation and
testing, and therefore the only task of the bridge node is linking the action selected
by the USE model to the right action of the controller node.

Once the vocal assistant is launched, it is possible to start asserting vocal
commands that are directly translated from speech to text, processed by the action
interpreter and finally associated to an action request to the controller node.

61

Zero Approach Simulation and Testing

In figure 10.1 the author reports an example of exchange of command assertions
and answers with Zero vocal assistant. It is important to notice how the USE
performs the association between vocal command and action taking into account
not only the presence of specific words, but more importantly the whole sentence
semantic.

Figure 10.1: Simulation of Zero vocal assistant example.

10.2 Real-time Testing
Some difficulties appear when testing the behavior of the improved Zero vocal
assistant on the hardware set up chosen for the previous tests. The main limitation
is related to the tensorflow_text package, required to run the Universal Sentence
Encoder in offline mode. Indeed, the Jetson Nano board does not support this
package and so it can’t run the model. Since avoiding an internet connection is
one of the main reasons for choosing a vocal assistant at the edge, an alternative
hardware platform was selected in order to carry out the final test. The choice
falls on a small intel-based computer mounted on TurtleBot3 burger, that could be
substituted by any intel-based board of smaller size.

62

Zero Approach Simulation and Testing

Figure 10.2: TurtleBot3 with Intel-based Computer

Running the bridge and the controller nodes on the intel-based device, together
with a TurtleBot3 bring-up command, allows to test the overall application. The
testing was mostly smooth, however some limitations related to the poor quality
of the microphone were encountered. Moreover, the odometry of TurtleBot3 was
not very accurate, even though the defined coordinates were reached with good
approximation.

Figure 10.3: Rqt Graph of Testing.

63

Zero Approach Simulation and Testing

10.3 Advantages
After widely testing Zero vocal assistant with commands aimed at the indoor
navigation of a service robot, some conclusions can be drawn on the advantages
and disadvantages of using an assistant at the edge.

As expected, the need of satisfying strict requirements related to hardware size
and low-power consumption do not allow to reach levels of accuracy comparable
with those of vocal assistants that rely on cloud system resources. For this reason,
the Word Error Rate (WER), a metric for the measure of the accuracy of speech-to-
text application, can’t be as low as that of Alexa. The background noise reduction
is the main obstacle for reaching good levels of accuracy.

Although there are some limitations related to accuracy and readiness of this
system, there are actually many advantages of using it that have been described in
the previous pages and are summarized next. First of all, the main advantage of a
vocal assistant at the edge, is that it does not connect to any cloud system and so
no internet connection is required. This feature guarantees that no interruption of
the service occurs because of internet service unavailability or latency, as well as
an higher protection of the user from a privacy point of view.

Moreover, another characteristic to be highlighted concerns the meaning extrac-
tion algorithm. Indeed, Alexa assures a general purpose assistant, that is capable
to comprehend utterances in any semantic field. However, having a model trained
on a specific dataset, belonging to a specific semantic area, can be advantageous
for having a more precise way of classifying commands asserted by the user. For
example, running some tests in parallel on both assistants it is possible to notice
that whenever a character in a word is misplaced (e.g. sinstra) Zero does not have
any problem linking it to the right class, whereas Alexa often fails to match it with
the correct action.

64

Part IV

Conclusion

65

Chapter 11

Results and Future Work

The goal of this chapter is drawing the conclusions of this work, giving an idea
of possible ways to improve it in future researches and finally presenting the
applications in which a vocal assistants can help improving service robotics in
indoor environments. The author will briefly summarize the characteristics of
both approaches to vocal navigation, focusing in particular on the advantages of
implementing an intelligent assistant specific for an application.

The analysis and comparison of the two approaches to vocal navigation carried
out in this thesis clearly justify the choice of developing a low-power vocal assistant.
In particular, all the advantages of developing a specific purpose assistant, instead
of exploiting an existing one, have been extensively highlighted and allow to clarify
why choosing Alexa or Google Assistant, would impose many limitations.

As previously shown, although the vocal assistant implemented putting together
different machine learning models could never reach the computational power and
speech recognition accuracy of other cloud-based assistants it can be, on the other
hand, perfectly tuned to fit the application in which it is exploited. The effort put
into creating a specific purpose intelligent agent is balanced by avoiding the need
of an internet connection and of cloud resources, that can in some environments or
applications not always be available or easy to exploit.

Furthermore, an important aspect to be taken into account is that of privacy.
An implicit advantage of avoiding the support of a cloud system is the complete
protection of the acquired data. Indeed, all the vocal commands and background
noise heard by Zero, are synthesized and elaborated directly on the robotic platform
and do not need to be conveyed on the internet.

Finally, a matter of major importance regards taking into account that the
models needed to create the specific-purpose vocal assistant have to be suitable for
the selected hardware platform and also be able to work accurately even with a
limited amount of resources.

66

Results and Future Work

11.1 Testing Summary
In table 11.1 the author listed all of the tests that have been taken out during this
project and whether they were successful or not.

ASSISTANT HARDWARE TEST COMPLETED
Alexa Gazebo YES

but connection problems
Zero Gazebo YES

but poor action classification
Alexa TurtleBot3 + Jetson Nano YES

but connection problems
Zero&USE Gazebo YES

Zero TurtleBot3 + Jetson Nano NO
tensorflow_text not supported

Zero&USE TurtleBot3 + Jetson Nano YES

Table 11.1: Testing Phases.

Although the first version of Zero vocal assistant worked well on TurtleBot3
equipped with Jetson Nano, when deploying the improved Zero vocal assistant,
upgraded with the USE action interpreter, the author encountered some problems
due to the previously described limitations of the hardware. However, the deploy-
ment was successful on the intel-based hardware used to substitute the NVIDIA
board.

11.2 Future Work and Applications
In future work, it would be a good investment trying to overcome the hardware
constraint, in order to able to deploy the implemented vocal assistant to any kind of
processor. Moreover, the work to be done on the whole vocal assistant can proceed
in the direction to tune it and make it more accurate for the application.

The major improvements that can be made in this project, related to the
Zero vocal assistant are regarding the wake up word recognition accuracy and
the background noise detection. Moreover, the action interpreter could be tuned
specifically on the small set of commands using transfer learning, however this last
step requires to gather a good amount of data to work with.

Moreover, as mentioned when pointing out the working principle of the controller
node driving TurtleBot, in order to have a service robot able to actually navigate

67

Results and Future Work

any indoor environment listening to vocal commands, other features need to be
added. In particular, it is possible to add some ROS nodes to guarantee:

• environment mapping;

• path planning;

• obstacle detection and avoidance;

• more accurate position detection.

The results of this work have been drawn testing the application on a simple
robotic platform, such as TurtleBot3 burger, however the main goals were highlight-
ing the salient aspects of vocal navigation and analyzing two different approaches
to exploit a vocal assistant in service robotics and this analysis constitutes only
the core of a vast variety of applications, especially in service robotics, that can
exploit both cloud-based and local vocal assistants.

For example, a smart wheelchair [29] equipped with a vocal assistant could be
useful for elders or physically limited people. Autonomous wheelchairs are already
largely deployed, however, a more straightforward way of guiding them, through
voice, could allow a larger group of people to benefit from them.

Other service robots equipped with a vocal assistant could also be a good
companion for visually-impaired people and could allow them to become more
independent in their homes, helping them finding objects or moving around.

68

Appendix A

[1] Alexa Skill Lambda Function

1 import random , logg ing , os , time , json , boto3
2 from ask_sdk_core . u t i l s
3 import is_intent_name , is_request_type , v iewport
4 import ask_sdk_core . u t i l s as a sk_ut i l s
5 from ask_sdk_model . u i import SimpleCard
6 from ask_sdk_model import Response
7 from ask_sdk_core . s k i l l _ b u i l d e r import S k i l l B u i l d e r
8 from ask_sdk_core . dispatch_components
9 import AbstractRequestHandler

10 from ask_sdk_core . dispatch_components
11 import AbstractExcept ionHandler
12 from ask_sdk_core . handler_input import HandlerInput
13 from AWSIoTPythonSDK .MQTTLib import AWSIoTMQTTClient
14 from boto3 . dynamodb . c o n d i t i o n s import Key , Attr
15 from botocore . except i ons import C l i en tEr ro r
16 from ask_sdk_model . i n t e r f a c e s . a l exa . p r e s en ta t i on . ap l
17 import (RenderDocumentDirective ,
18 ExecuteCommandsDirective ,
19 SpeakItemCommand ,
20 AutoPageCommand ,
21 HighlightMode)
22

23

24 # ENDPOINT & CERTIFICATES LOCATION
25 AWS_IOT_ENDPOINT
26 = " a2bjbsrv2day9n−at s . i o t . us−west −2.amazonaws . com"
27

28 VocalbotMQTTClient = AWSIoTMQTTClient(" Vocalbot−ASK")
29 VocalbotMQTTClient . conf igureEndpoint (AWS_IOT_ENDPOINT, 8883)
30 VocalbotMQTTClient . c o n f i g u r e C r e d e n t i a l s (’ . / c e r t s /AmazonRootCA1 .

pem ’ , ’ . / c e r t s / Vocalbot . p r i va t e . key ’ , ’ . / c e r t s / Vocalbot . c e r t . pem ’)
31

32 VocalbotMQTTClient . conf igureAutoReconnectBackoffTime (1 , 32 , 20)

69

Appendix A

33 VocalbotMQTTClient . con f i gu r eOf f l i n ePub l i shQueue ing (−1)
34 VocalbotMQTTClient . conf igureDra in ingFrequency (2)
35 VocalbotMQTTClient . conf igureConnectDisconnectTimeout (10)
36 VocalbotMQTTClient . configureMQTTOperationTimeout (5)
37

38 VocalbotMQTTClient . connect ()
39

40 sb=S k i l l B u i l d e r ()
41 l o g g e r = logg ing . getLogger (__name__)
42 l o g g e r . s e tLeve l (l ogg ing . INFO)
43

44 de f format_mqtt_message (d i r e c t i v e) :
45 payload = {}
46 payload [’ data ’] = d i r e c t i v e
47

48 re turn j son . dumps(payload)
49

50 de f send_mqtt_directive (top ic , d i r e c t i v e) :
51 payload = format_mqtt_message (d i r e c t i v e)
52 VocalbotMQTTClient . pub l i sh (top ic , payload , 1)
53

54

55 # ALEXA SKILL
56 c l a s s LaunchRequestHandler (AbstractRequestHandler) :
57 de f can_handle (s e l f , handler_input) :
58 re turn ask_ut i l s . i s_request_type (" LaunchRequest ") (

handler_input)
59

60 de f handle (s e l f , handler_input) :
61 speak_output = " Zero è pronto a p a r t i r e ! "
62 re turn (
63 handler_input . r e sponse_bui lder
64 . speak (speak_output)
65 . ask (speak_output)
66 . r e sponse
67)
68

69 c l a s s ForwardIntentHandler (AbstractRequestHandler) :
70 " " " Handler f o r Forward Intent . " " "
71 de f can_handle (s e l f , handler_input) :
72 re turn ask_ut i l s . is_intent_name (" ForwardIntent ") (

handler_input)
73

74 de f handle (s e l f , handler_input) :
75 speak_output = "Vado avant i . "
76 send_mqtt_directive (" aws/ i o t / a v a i l a b l e " , " forward ")
77 re turn (
78 handler_input . r e sponse_bui lder
79 . speak (speak_output)

70

Appendix A

80 . set_should_end_session (Fa l se)
81 . ask (" ")
82 . r e sponse
83)
84

85 c l a s s BackwardIntentHandler (AbstractRequestHandler) :
86 " " " Handler f o r Backward Intent . " " "
87 de f can_handle (s e l f , handler_input) :
88 re turn ask_ut i l s . is_intent_name (" BackwardIntent ") (

handler_input)
89

90 de f handle (s e l f , handler_input) :
91 speak_output = "Vado i n d i e t r o . "
92 send_mqtt_directive (" aws/ i o t / a v a i l a b l e " , " backward ")
93 re turn (
94 handler_input . r e sponse_bui lder
95 . speak (speak_output)
96 . set_should_end_session (Fa l se)
97 . ask (" ")
98 . r e sponse
99)

100

101 c l a s s RightIntentHandler (AbstractRequestHandler) :
102 " " " Handler f o r Right Intent . " " "
103 de f can_handle (s e l f , handler_input) :
104 re turn ask_ut i l s . is_intent_name (" RightIntent ") (

handler_input)
105

106 de f handle (s e l f , handler_input) :
107 speak_output = " Giro a de s t ra . "
108 send_mqtt_directive (" aws/ i o t / a v a i l a b l e " , " r i g h t ")
109 re turn (
110 handler_input . r e sponse_bui lder
111 . speak (speak_output)
112 . set_should_end_session (Fa l se)
113 . ask (" ")
114 . r e sponse
115)
116

117 c l a s s Le f t IntentHand le r (AbstractRequestHandler) :
118 " " " Handler f o r Le f t In tent . " " "
119 de f can_handle (s e l f , handler_input) :
120 re turn ask_ut i l s . is_intent_name (" L e f t I n t en t ") (

handler_input)
121

122 de f handle (s e l f , handler_input) :
123 speak_output = " Giro a s i n i s t r a . "
124 send_mqtt_directive (" aws/ i o t / a v a i l a b l e " , " l e f t ")
125 re turn (

71

Appendix A

126 handler_input . r e sponse_bui lder
127 . speak (speak_output)
128 . set_should_end_session (Fa l se)
129 . ask (" ")
130 . r e sponse
131)
132

133 c l a s s Locat ionIntentHandler (AbstractRequestHandler) :
134 " " " Handler f o r Locat ion Intent . " " "
135 de f can_handle (s e l f , handler_input) :
136 re turn ask_ut i l s . is_intent_name (" Locat ionIntent ") (

handler_input)
137

138 de f handle (s e l f , handler_input) :
139 l o cat ion_va lue = handler_input . request_enve lope . r eque s t .

i n t e n t . s l o t s [’ l o c a t i o n ’] . va lue
140 l o ca t i on_id = handler_input . request_enve lope . r eque s t . i n t e n t .

s l o t s [’ l o c a t i o n ’] . r e s o l u t i o n s . r e so lu t i ons_per_author i ty [0] . va lue s
[0] . va lue . id

141

142 speak_output = "Vado in " + s t r (l ocat ion_va lue) + " . "
143 send_mqtt_directive (" aws/ i o t / a v a i l a b l e " , s t r (l o ca t i on_id))
144 re turn (
145 handler_input . r e sponse_bui lder
146 . speak (speak_output)
147 . set_should_end_session (Fa l se)
148 . ask (" ")
149 . r e sponse
150)
151

152

153 c l a s s HelpIntentHandler (AbstractRequestHandler) :
154 " " " Handler f o r Help Intent . " " "
155 de f can_handle (s e l f , handler_input) :
156 re turn ask_ut i l s . is_intent_name ("AMAZON. HelpIntent ") (

handler_input)
157

158 de f handle (s e l f , handler_input) :
159 speak_output = " Zero può andare avanti , i n d i e t r o , a

destra , a s i n i s t r a o ver so una stanza . "
160 re turn (
161 handler_input . r e sponse_bui lder
162 . speak (speak_output)
163 . set_should_end_session (Fa l se)
164 . r e sponse
165)
166

167 c l a s s CancelOrStopIntentHandler (AbstractRequestHandler) :
168 " " " S i n g l e handler f o r Cancel and Stop Intent . " " "

72

Appendix A

169 de f can_handle (s e l f , handler_input) :
170 re turn (a sk_ut i l s . is_intent_name ("AMAZON. Cance l Intent ") (

handler_input) or
171 ask_ut i l s . is_intent_name ("AMAZON. StopIntent ") (

handler_input))
172

173 de f handle (s e l f , handler_input) :
174 send_mqtt_directive (" aws/ i o t / a v a i l a b l e " , " stop ")
175 speak_output = " Navigazione d i Zero terminata . Ciao ! "
176 re turn (
177 handler_input . r e sponse_bui lder
178 . speak (speak_output)
179 . set_should_end_session (True)
180 . r e sponse
181)
182

183 c l a s s SessionEndedRequestHandler (AbstractRequestHandler) :
184 de f can_handle (s e l f , handler_input) :
185 re turn ask_ut i l s . i s_request_type (" SessionEndedRequest ") (

handler_input)
186

187 de f handle (s e l f , handler_input) :
188 re turn handler_input . r e sponse_bui lder . r e sponse
189

190 c l a s s In t en tRe f l e c to rHand l e r (AbstractRequestHandler) :
191 de f can_handle (s e l f , handler_input) :
192 re turn ask_ut i l s . i s_request_type (" IntentRequest ") (

handler_input)
193

194 de f handle (s e l f , handler_input) :
195 intent_name = ask_ut i l s . get_intent_name (handler_input)
196 speak_output = " Di rez i one non va l i da . Riprova ! "
197 re turn (
198 handler_input . r e sponse_bui lder
199 . speak (speak_output)
200 . ask (speak_output)
201 . r e sponse
202)
203

204 c l a s s CatchAllExceptionHandler (AbstractExceptionHandler) :
205 de f can_handle (s e l f , handler_input , except ion) :
206 re turn True
207

208 de f handle (s e l f , handler_input , except ion) :
209 l o g g e r . e r r o r (except ion , exc_info=True)
210 speak_output = " Scusa ho avuto problemi con i l comando ,

r ip rova . "
211 re turn (
212 handler_input . r e sponse_bui lder

73

Appendix A

213 . speak (speak_output)
214 . ask (speak_output)
215 . r e sponse
216)
217

218 sb . add_request_handler (LaunchRequestHandler ())
219 sb . add_request_handler (ForwardIntentHandler ())
220 sb . add_request_handler (BackwardIntentHandler ())
221 sb . add_request_handler (RightIntentHandler ())
222 sb . add_request_handler (Le f t IntentHand le r ())
223 sb . add_request_handler (Locat ionIntentHandler ())
224 sb . add_request_handler (HelpIntentHandler ())
225 sb . add_request_handler (CancelOrStopIntentHandler ())
226 sb . add_request_handler (SessionEndedRequestHandler ())
227 sb . add_request_handler (In t en tRe f l e c to rHand l e r ())
228 sb . add_exception_handler (CatchAllExceptionHandler ())
229

230 lambda_handler = sb . lambda_handler ()

74

Appendix A

[2] ROS Controller Node

1 import rospy , time , math
2 from geometry_msgs . msg import Twist , Point
3 from std_msgs . msg import S t r ing
4 from nav_msgs . msg import Odometry
5 from t f . t r ans f o rmat i ons import euler_from_quaternion
6

7 # GLOBAL VARIABLES
8 LINEAR_SPEED = 0.2
9 ANGULAR_SPEED = 1

10 LINEAR_ACCURACY = 0.3
11 ANGULAR_ACCURACY = 0.3
12 TURN_ACCURACY = 0.1
13

14 # INITIALIZE NODE
15 rospy . in it_node (’ c o n t r o l l e r ’)
16

17 # PUBLISH VELOCITY
18 pub_vel = rospy . Pub l i she r (’ /cmd_vel ’ , Twist , queue_size=1)
19

20 # BASIC NAVIGATION FUNCTIONS
21 msg_vel = Twist ()
22

23 de f stop () :
24 msg_vel . l i n e a r . x = 0
25 msg_vel . angular . z = 0
26 pub_vel . pub l i sh (msg_vel)
27

28 de f forward () :
29 msg_vel . l i n e a r . x = LINEAR_SPEED
30 msg_vel . angular . z = 0
31 pub_vel . pub l i sh (msg_vel)
32

33 de f backward () :
34 msg_vel . l i n e a r . x = −LINEAR_SPEED
35 msg_vel . angular . z = 0
36 pub_vel . pub l i sh (msg_vel)
37

38 de f r i g h t () :
39 sub_odometry = rospy . Subsc r ibe r (’ /odom ’ , Odometry ,

odometryCallback)
40

41 goal_theta = theta − math . p i /2
42 i f (goal_theta <= −math . p i) :
43 goal_theta = −(goal_theta + math . p i)
44 inc_theta = goal_theta − theta

75

Appendix A

45

46 whi le (abs (inc_theta) > TURN_ACCURACY) :
47 msg_vel . l i n e a r . x = 0
48 msg_vel . angular . z = −ANGULAR_SPEED
49 pub_vel . pub l i sh (msg_vel)
50 inc_theta = goal_theta − theta
51 stop ()
52

53 de f l e f t () :
54 sub_odometry = rospy . Subsc r ibe r (’ /odom ’ , Odometry ,

odometryCallback)
55

56 goal_theta = theta + math . p i /2
57 i f (goal_theta > math . p i) :
58 goal_theta = −(goal_theta − math . p i)
59 inc_theta = goal_theta − theta
60

61 whi le (abs (inc_theta) > TURN_ACCURACY) :
62 msg_vel . l i n e a r . x = 0
63 msg_vel . angular . z = ANGULAR_SPEED
64 pub_vel . pub l i sh (msg_vel)
65 inc_theta = goal_theta − theta
66 stop ()
67

68 # CALLBACK FUNCTION
69 x = 0
70 y = 0
71 theta = 0
72 de f odometryCallback (data) :
73 g l o b a l x
74 g l o b a l y
75 g l o b a l theta
76

77 x = data . pose . pose . p o s i t i o n . x
78 y = data . pose . pose . p o s i t i o n . y
79 rot_q = data . pose . pose . o r i e n t a t i o n
80 (r o l l , p itch , theta) = euler_from_quaternion ([rot_q . x , rot_q .

y , rot_q . z , rot_q .w])
81

82 # LOCATION FUNCTIONS
83 de f mapping (goa l_ loca t i on) :
84 goa l = Point ()
85 i f "CUCINA" in goa l_ loca t i on :
86 goa l . x = 3
87 goa l . y = −3
88 e l i f "SALOTTO" in goa l_ loca t i on :
89 goa l . x = 3
90 goa l . y = 3
91 e l i f "BAGNO" in goa l_ loca t i on :

76

Appendix A

92 goa l . x = −3
93 goa l . y = 3
94 e l i f "CAMERA" in goa l_ loca t i on :
95 goa l . x = −3
96 goa l . y = −3
97

98 re turn goa l
99

100 de f l o c a t i o n (goa l_ loca t i on) :
101 sub_odometry = rospy . Subsc r ibe r (’ /odom ’ , Odometry ,

odometryCallback)
102

103 goa l = mapping (goa l_ loca t i on)
104 inc_x = goa l . x − x
105 inc_y = goa l . y − y
106 goal_theta = math . atan2 (inc_y , inc_x)
107 inc_theta = goal_theta − theta
108

109 whi le (abs (inc_x) > LINEAR_ACCURACY or abs (inc_y) >
LINEAR_ACCURACY) :

110

111 i f inc_theta > ANGULAR_ACCURACY:
112 msg_vel . l i n e a r . x = 0
113 msg_vel . angular . z = ANGULAR_SPEED
114 e l i f inc_theta < −ANGULAR_ACCURACY:
115 msg_vel . l i n e a r . x = 0
116 msg_vel . angular . z = −ANGULAR_SPEED
117 e l s e :
118 msg_vel . l i n e a r . x = LINEAR_SPEED
119 msg_vel . angular . z = 0
120

121 pub_vel . pub l i sh (msg_vel)
122

123 inc_x = goa l . x − x
124 inc_y = goa l . y − y
125 goal_theta = math . atan2 (inc_y , inc_x)
126 inc_theta = goal_theta − theta
127

128 stop ()
129

130 # CALLBACK FUNCTION
131 de f dr iveCa l lback (data) :
132 rospy . l o g i n f o (data . data)
133

134 i f " forward " in data . data :
135 forward ()
136 e l i f " backward " in data . data :
137 backward ()
138 e l i f " l e f t " in data . data :

77

Appendix A

139 l e f t ()
140 e l i f " r i g h t " in data . data :
141 r i g h t ()
142 e l i f " stop " in data . data :
143 stop ()
144 e l s e :
145 l o c a t i o n (data . data)
146

147 whi le not rospy . is_shutdown () :
148 sub_voice = rospy . Subsc r ibe r (’ /aws/ i o t / a v a i l a b l e ’ , Str ing ,

dr iveCa l lback)
149 time . s l e e p (1)
150 sub_voice . u n r e g i s t e r ()
151

152 rospy . sp in ()

78

Appendix A

[3] Action Interpreter with Multilingual Universal
Sentence Encoder

1 import json , os
2 import numpy as np
3 import tensor f l ow_text
4 import tensorf low_hub as hub
5

6 embed = hub . load (os . path . dirname (os . path . r ea lpa th (" u t i l s /
model_USE/saved_model . pb ")))

7

8 c l a s s Act ionInterpreterUSE (ob j e c t) :
9 de f __init__(s e l f , c o n f i g) :

10 j s o n _ f i l e = s e l f . _load_json (c o n f i g)
11 s e l f . _get_actions (j s o n _ f i l e)
12 s e l f . _get_responses (j s o n _ f i l e)
13

14 de f _get_actions (s e l f , j _ f i l e) :
15 s e l f . a c t i o n s = { i n t (k) : v f o r k , v in j _ f i l e ["

a c t i o n s "] . i tems () }
16

17 de f _get_responses (s e l f , j _ f i l e) :
18 s e l f . r e sponse s = { i n t (k) : v f o r k , v in j _ f i l e ["

r e sponse s "] . i tems () }
19

20 de f _load_json (s e l f , c o n f i g) :
21 j s o n _ f i l e = j son . load (open (c o n f i g ["PATH_ACT_RESP"] , ’

r ’))
22 re turn j s o n _ f i l e
23

24 de f a c t i o n _ i n t e r p r e t e r (s e l f , detected_text) :
25 ac t i on = embed(detected_text)
26

27 s i m i l a r i t y _ s c o r e s = []
28 f o r i in l i s t (s e l f . a c t i o n s . va lue s ()) :
29 category = embed(s t r (i))
30 s i m i l a r i t y _ s c o r e s . append (np . inne r (act ion , category))
31

32 i f (max(s i m i l a r i t y _ s c o r e s) < 0 . 3) :
33 re turn 0
34 e l s e :
35 re turn s i m i l a r i t y _ s c o r e s . index (max(s i m i l a r i t y _ s c o r e s)

)
36

37 de f act ion_response (s e l f , act ion_index) :
38 re turn s e l f . r e sponse s [act ion_index]

79

Acronyms

AI
Artificial Intelligence

ANN
Artificial Neural Network

ASK
Alexa Skills Kit

ASR
Automatic Speech Recognition

AWS
Amazon Web Services

BoW
Bag of Words

CNN
Convolutional Neural Network

DBN
Deep Belief Network

DAN
Deep Averaging Network

DNN
Deep Neural Network

81

Acronyms

GAN
Generative Adversial Network

HTTP
Hypertext Transfer Protocol

HMM
Hidden Markov Model

ICC
Instantaneous Center for Curvature

IR
Information Retrieval

IE
Information Extraction

IoT
Internet of Things

IoRT
Internet of Robotic Things

LSTM
Long-short Term Memory

M2M
Machine-to-Machine

ML
Machine Learning

MQTT
MQ Telemetry Transport

NBOW
Neural Bag of Words

82

Acronyms

NLP
Natural Language Processing

OS
Operating System

ROS
Robot Operating System

RNN
Recurrent Neural Network

SBC
Single Board Computer

USE
Universal Sentence Encoder

WER
Word Error Rate

83

Acknowledgements

“Things change and friends leave. And life doesn’t stop for anybody. I think the
idea is that every person has to live for his or her own life and than make the

choice to share it with other people. You can’t just sit there and put everybody’s
lives ahead of yours and think that counts as love. You have to do things.

I’m going to do what I want to do. I’m going to be who I really am.
And I’m going to figure out what that is.” -Stephen Chbosky

Se cinque anni fa mi avessero detto che oggi mi sarei trovata a scrivere i
ringraziamenti per la mia tesi magistrale in Ingegneria Meccatronica, non ci avrei
creduto. Sono certa che gran parte del merito è di tutte le persone che hanno
sempre creduto in me anche quando io non lo facevo.

Per prima cosa desidero ringraziare tutti i membri del PIC4SeR, che tra una
pandemia e un incendio sono riusciti comunque a creare un ambiente di lavoro
allegro e sereno, tra droni, rover e reti neurali.

Un grazie enorme va a coloro che ci sono sempre stati, supportandomi in ogni
mia scelta, ma soprattutto sopportandomi: grazie a Mama, Pi e Marta. Vi voglio
bene con tutto il cuore.

Grazie a nonna Thea che da piccola mi regalava i lego e i robot senza fare
troppe domande e grazie a nonna Titta, con cui a 8 anni decisi che sarei diventata
Ingegnere e che vorrei potesse vedermi ora.

Grazie a Enrico, il regalo più grande che il Poli mi abbia fatto. Con lui ho
condiviso ogni singolo giorno del mio percorso universitario, dai successi ai fallimenti,
passando per tutte le belle avventure in giro per il mondo a festeggiare la fine di
una sessione o l’inizio di un nuovo anno. Grazie per essere il mio diario e la mia
roccia e per capirmi sempre alla perfezione.

Grazie ai miei amici. Grazie a Luca e Lindsay, che nonostante i molti chilometri
che ci separano hanno sempre trovato un modo di essermi vicino. Grazie agli
Operativi, i miei compagni di questo viaggio al Politecnico, che tra briscolate e
panozzi hanno reso questo percorso impegnativo molto più divertente.

Infine, grazie al Politecnico di Torino che, nonostante abbia provocato numerose
crisi di nervi, oggi mi rende fiera di me e del mio percorso.

85

Bibliography

[1] A. K. Niloy et al. «Critical Design and Control Issues of Indoor Autonomous
Mobile Robots: A Review». In: IEEE Access (2021) (cit. on p. 5).

[2] L. Sciavicco and B. Siciliano. Modeling and Control of Robot Manipulators.
Springer, 2000 (cit. on p. 5).

[3] Soonshin Han, ByoungSuk Choi, and JangMyung Lee. «A precise curved
motion planning for a differential driving mobile robot». In: Mechatronics ().
url: https://www.sciencedirect.com/science/article/pii/S0957415
808000512 (cit. on p. 6).

[4] International Federation of Robotics Website. url: https : / / ifr . org /
service-robots/ (cit. on p. 5).

[5] A. B. Nassif, I. Shahin, I. Attili, M. Azzeh, and K. Shaalan. «Speech Recog-
nition Using Deep Neural Networks: A Systematic Review». In: IEEE Access
(2019) (cit. on p. 10).

[6] url: https://emanual.robotis.com/docs/en/platform/turtlebot3/
overview/ (cit. on p. 13).

[7] url: https://www.nvidia.com/it-it/autonomous-machines/embedded-
systems/jetson-nano/ (cit. on p. 15).

[8] Frank Bentley, Chris Luvogt, Max Silverman, Rushani Wirasinghe, Brooke
White, and Danielle Lottridge. «Understanding the Long-Term Use of Smart
Speaker Assistants». In: (2018) (cit. on p. 18).

[9] A. S. Sharma and R. Bhalley. «ASR — A real-time speech recognition on
portable devices». In: 2016 2nd International Conference on Advances in
Computing, Communication, Automationa. 2016 (cit. on p. 18).

[10] Matthew B. Hoy. «Alexa, Siri, Cortana, and More: An Introduction to Voice
Assistants». In: Medical Reference Services Quarterly (2018) (cit. on p. 19).

[11] Total number of Amazon Alexa skills from January 2016 to September 2019.
2019. url: https://www-statista-com.ezproxy.biblio.polito.it/
statistics/912856/amazon-alexa-skills-growth/ (cit. on p. 20).

87

https://www.sciencedirect.com/science/article/pii/S0957415808000512
https://www.sciencedirect.com/science/article/pii/S0957415808000512
https://ifr.org/service-robots/
https://ifr.org/service-robots/
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://www.nvidia.com/it-it/autonomous-machines/embedded-systems/jetson-nano/
https://www.nvidia.com/it-it/autonomous-machines/embedded-systems/jetson-nano/
https://www-statista-com.ezproxy.biblio.polito.it/statistics/912856/amazon-alexa-skills-growth/
https://www-statista-com.ezproxy.biblio.polito.it/statistics/912856/amazon-alexa-skills-growth/

BIBLIOGRAPHY

[12] International Telecommunication Union. url: https://www.itu.int/en/
Pages/default.aspx (cit. on p. 21).

[13] P. P. Ray. «Internet of Robotic Things: Concept, Technologies, and Chal-
lenges». In: IEEE Access () (cit. on pp. 21, 22).

[14] url: https://developer.amazon.com/en-US/docs/alexa/ask-overview
s/what-is-the-alexa-skills-kit.html (cit. on p. 24).

[15] D. Tosse. mqtt_ros_aws_iot. url: https://github.com/dftossem/mqtt_
ros_aws_iot (cit. on p. 28).

[16] url: https://www.javacodegeeks.com/2016/10/mqtt-protocol-tutori
al.html (cit. on p. 28).

[17] PanJun Sun. «Security and privacy protection in cloud computing: Discussions
and challenges». In: Journal of Network and Computer Applications (2020)
(cit. on p. 36).

[18] M. Alam, M. D. Samad, L. Vidyaratne, A. Glandon, and K.M. Iftekharud-
din. «Survey on Deep Neural Networks in Speech and Vision Systems». In:
Neurocomputing. 2020 (cit. on pp. 43, 44).

[19] K. Doshi. Audio Deep Learning Made Simple. 2021. url: https://toward
sdatascience.com/audio-deep-learning-made-simple-part-1-state-
of-the-art-techniques-da1d3dff2504 (cit. on p. 46).

[20] Amy J.C. Trappey, Charles V. Trappey, Jheng-Long Wu, and Jack W.C.
Wang. «Intelligent compilation of patent summaries using machine learning
and natural language processing techniques». In: Advanced Engineering Infor-
matics (2020). url: https://www.sciencedirect.com/science/article/
pii/S1474034619306007 (cit. on p. 51).

[21] Avishek Garain, Sainik Kumar Mahata, and Subhabrata Dutta. «Normal-
ization of Numeronyms using NLP Techniques». In: 2020 IEEE Calcutta
Conference (CALCON). 2020 (cit. on p. 52).

[22] P. Pantola. Natural Language Processing: Text Data Vectorization. 2018. url:
https://medium.com/@paritosh_30025/natural-language-processing-
text-data-vectorization-af2520529cf7 (cit. on p. 53).

[23] C. Breviu. Grab Your Wine. Its Time to Demystify ML and NLP. url:
https://www.ronaldjamesgroup.com/blog/grab-your-wine-its-time-
to-demystify-ml-and-nlp (cit. on p. 54).

[24] Daniel Cer et al. «Universal Sentence Encoder». In: (2018). url: http:
//arxiv.org/abs/1803.11175 (cit. on p. 54).

[25] Yinfei Yang et al. Multilingual Universal Sentence Encoder for Semantic
Retrieval. 2019 (cit. on pp. 55, 58).

88

https://www.itu.int/en/Pages/default.aspx
https://www.itu.int/en/Pages/default.aspx
https://developer.amazon.com/en-US/docs/alexa/ask-overviews/what-is-the-alexa-skills-kit.html
https://developer.amazon.com/en-US/docs/alexa/ask-overviews/what-is-the-alexa-skills-kit.html
https://github.com/dftossem/mqtt_ros_aws_iot
https://github.com/dftossem/mqtt_ros_aws_iot
https://www.javacodegeeks.com/2016/10/mqtt-protocol-tutorial.html
https://www.javacodegeeks.com/2016/10/mqtt-protocol-tutorial.html
https://towardsdatascience.com/audio-deep-learning-made-simple-part-1-state-of-the-art-techniques-da1d3dff2504
https://towardsdatascience.com/audio-deep-learning-made-simple-part-1-state-of-the-art-techniques-da1d3dff2504
https://towardsdatascience.com/audio-deep-learning-made-simple-part-1-state-of-the-art-techniques-da1d3dff2504
https://www.sciencedirect.com/science/article/pii/S1474034619306007
https://www.sciencedirect.com/science/article/pii/S1474034619306007
https://medium.com/@paritosh_30025/natural-language-processing-text-data-vectorization-af2520529cf7
https://medium.com/@paritosh_30025/natural-language-processing-text-data-vectorization-af2520529cf7
https://www.ronaldjamesgroup.com/blog/grab-your-wine-its-time-to-demystify-ml-and-nlp
https://www.ronaldjamesgroup.com/blog/grab-your-wine-its-time-to-demystify-ml-and-nlp
http://arxiv.org/abs/1803.11175
http://arxiv.org/abs/1803.11175

BIBLIOGRAPHY

[26] Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber, and Hal Daumé III.
«Deep Unordered Composition Rivals Syntactic Methods for Text Classifi-
cation». In: Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing. 2015 (cit. on p. 56).

[27] url: https://towardsdatascience.com/transformers- 141e32e69591
(cit. on pp. 57, 58).

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. «Attention Is All You
Need». In: CoRR (2017) (cit. on pp. 58, 59).

[29] Andrej Koložvari, Radovan Stojanović, Anton Zupan, Eugene Semenkin,
Vladimir Stanovov, Davorin Kofjač, and Andrej Škraba. «Speech-recognition
cloud harvesting for improving the navigation of cyber-physical wheelchairs
for disabled persons». In: (2019). url: https://www.sciencedirect.com/
science/article/pii/S0141933119300109 (cit. on p. 68).

[30] F. Chollet. Deep Learning with Python. Manning Publications Co., 2017.
[31] R. Haeb-Umbach, S. Watanabe, T. Nakatani, M. Bacchiani, B. Hoffmeister,

M. L. Seltzer, H. Zen, and M. Souden. «Speech Processing for Digital Home
Assistants: Combining Signal Processing With Deep-Learning Techniques».
In: IEEE Signal Processing Magazine (2019).

[32] S. P. Reddy Karri and B. Santhosh Kumar. «Deep Learning Techniques for
Implementation of Chatbots». In: 2020 International Conference on Computer
Communication and Informatics (ICCCI). 2020.

[33] S. Sony, K. Dunphy, A. Sadhu, and M. Capretz. «A systematic review of con-
volutional neural network-based structural condition assessment techniques».
In: Engineering Structures. 2021.

[34] A. Rajalakshmi and H. Shahnasser. «Internet of Things using Node-Red
and alexa». In: 2017 17th International Symposium on Communications and
Information Technologies (ISCIT). 2017.

[35] Amazon Developer. url: https://developer.amazon.com/.

89

https://towardsdatascience.com/transformers-141e32e69591
https://www.sciencedirect.com/science/article/pii/S0141933119300109
https://www.sciencedirect.com/science/article/pii/S0141933119300109
https://developer.amazon.com/

	List of Figures
	List of Tables
	I Introduction
	Thesis Objective
	Thesis Outline

	Vocal Navigation
	Indoor Mobile Robots
	Robotic Vision vs Robotic Hearing
	Two Approaches to Vocal Navigation

	State of Art in Speech Recognition
	Voice-based Machines
	Speech Recognition and Processing
	Applications of Speech Recognition

	Software and Hardware Tools
	Robot Operating System
	TurtleBot3
	NVIDIA Jetson Nano
	Gazebo
	Tensorflow

	II Alexa-driven Approach
	Vocal Assistants and Service Robotics
	History of Vocal Assistants
	Amazon Alexa

	Internet of Robotic Things
	Architecture of IoRT

	Alexa Vocal Navigation
	Working Principle
	Alexa Skill
	Action Interpreter of Alexa

	Amazon Web Services
	AWS Lambda
	AWS IoT

	Communication Protocol
	MQTT

	ROS Nodes and Topics
	Controller node

	Alexa Approach Simulation and Testing
	Gazebo Simulation
	Real-time Testing
	Limitations
	Security and Privacy in Cloud Computing

	III Low-power Vocal Assistant at the Edge
	Machine Learning in Speech Recognition
	Machine Learning Overview
	Deep Learning Overview
	Convolutional Neural Network
	Recurrent Neural Network

	Audio Processing for Deep Learning
	Mel Spectrogram

	Action Interpreter
	Elements of a Vocal Assistant
	Audio Processing
	Wake Up Word
	Speech-to-Text
	Text-to-Speech
	Action Classification

	Natural Language Processing
	Pre-processing
	Vectorization

	Universal Sentence Encoder
	Deep Averaging Network
	Transformer
	Multilingual Universal Sentence Encoder

	From USE to Zero's Action Interpreter

	Zero Approach Simulation and Testing
	Gazebo Simulation
	Real-time Testing
	Advantages

	IV Conclusion
	Results and Future Work
	Testing Summary
	Future Work and Applications
	Appendix A
	[1] Alexa Skill Lambda Function
	[2] ROS Controller Node
	[3] Action Interpreter with Multilingual Universal Sentence Encoder

	Acronyms
	Bibliography

