
POLITECNICO DI TORINO
Master’s degree in Computer Engineering

Master’s Degree Thesis

Enhancing Circular Bioeconomy using
Distributed Ledger Technologies

Supervisor

Prof. Guido Albertengo

Company Tutors

Paola Dal Zovo

Andres H.M. Herrera

Candidate

Lorenzo Limoli

A.Y. 2020/2021



Abstract

In recent years, global sustainability challenges, such as world population growth
and over-consumption of non-renewable resources, are pushing societies to establish
and follow circular and regenerative approaches.

Bioeconomy and circular economy can help to alleviate environmental prob-
lems caused by the lack of modern and smart waste management systems, which
do not provide operational transparency, traceability, security and trusted data
provenance features. In fact, today’s technologies leveraged for waste management,
strictly relies on manual and centralized silos making them vulnerable and the
single point of failure of the entire system.

To meet the challenge, the transition plan must consider the necessity to integrate
economic and environmental perspectives as well as stimulating social awareness
and dialogue, leading to more conscious behaviors. Organic resources such as
food wastes or biodegradable and compostable packaging, can be transformed into
organic fertilizer or in organic gas that can be used as fuel. However, currently
they are not optimally utilized.

Waste resources are complex materials that are strongly varying in terms of
composition, quantity and quality. To get high value-added bioproducts it is needed
to ensure the quality of the inputs.

In the thesis is reported how Distributed Ledger Technologies (DLTs)
could play a key role in enhancing the transformation process and provide impor-
tant features that today’s digital infrastructures are missing. This would help the
transition towards scalable and decentralized systems with the capability to offer
the mentioned features.

Finally, a proof-of-concept (PoC) applied to a circular bioeconomy scenario,
and based on the novel kind distributed ledger of the IOTA platform, the Tangle,
is proposed.

i



Table of Contents

1 Introduction 1
1.1 What is a Distributed Ledger ? . . . . . . . . . . . . . . . . . . . . 1
1.2 Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Blockchain policies . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Consensus protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1 The Byzantine Generals Problem . . . . . . . . . . . . . . . 7
1.3.2 Byzantine Fault Tolerance Algorithms . . . . . . . . . . . . 8
1.3.3 Proof of Work . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.4 Proof of Stake . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.5 A comparison between PoW and PoS . . . . . . . . . . . . . 12

2 Bitcoin: The First Blockchain Implementation 14
2.1 What Bitcoin is and how it works . . . . . . . . . . . . . . . . . . . 15

2.1.1 Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Hashcash in Bitcoin mining . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Forks on the Bitcoin’s Blockchain . . . . . . . . . . . . . . . . . . . 21

2.3.1 Soft fork and Hard fork . . . . . . . . . . . . . . . . . . . . . 22
2.4 Blocks Validation Rate . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Blocks Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Weaknesses and Limitations of Bitcoin . . . . . . . . . . . . . . . . 26

3 Blockchain 2.0: Tools and Use Cases 30
3.1 Main Features of Blockchain 2.0 . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Smart Contracts . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.2 Tokenization . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 A Use Case Analysis: Circular Bioeconomy for Waste Management 35
3.2.1 Issues Overview . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.2 Digital Ledgers Technologies and Circular Bioeconomy . . . 37

ii



4 Suitability Assessment of DLT Frameworks 38
4.1 DLT Frameworks Comparison . . . . . . . . . . . . . . . . . . . . . 39

5 History of IOTA 43
5.1 What is IOTA? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 The Tangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 The IOTA Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4 Ternary Number System . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4.1 Advantages of a ternary system . . . . . . . . . . . . . . . . 49
5.5 Seeds, Addresses and Keys . . . . . . . . . . . . . . . . . . . . . . . 50
5.6 Structure of a Transaction . . . . . . . . . . . . . . . . . . . . . . . 52
5.7 Consensus in IOTA Network . . . . . . . . . . . . . . . . . . . . . . 54

5.7.1 Tip Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.8 Snapshot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.9 Coordinator and Milestones . . . . . . . . . . . . . . . . . . . . . . 58
5.10 IOTA 1.5 - Chrysalis . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.11 IOTA 2.0 - Coordicide . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.11.1 Shimmer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.11.2 Node Identities and concept of MANA . . . . . . . . . . . . 63

6 BioEnPro4To 64
6.1 Project Purpose and Scenario . . . . . . . . . . . . . . . . . . . . . 64
6.2 Use Case Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.3 Overview of the System Architecture . . . . . . . . . . . . . . . . . 66
6.4 IOTA Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.4.1 Channels Protocol . . . . . . . . . . . . . . . . . . . . . . . 68
6.4.2 Messages Types . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.4.3 Streams Solution for BioEnPro4To . . . . . . . . . . . . . . 72
6.4.4 Usage of iota-streams-lib . . . . . . . . . . . . . . . . . . 75

6.5 IOTA Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.5.1 Unified Identity Protocol . . . . . . . . . . . . . . . . . . . . 78
6.5.2 The Roles of Digital Identities . . . . . . . . . . . . . . . . . 79
6.5.3 Using Digital Identities . . . . . . . . . . . . . . . . . . . . . 80
6.5.4 Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.5.5 Purpose of Digital Identities in BioEnPro4To . . . . . . . . 82

6.6 Channel Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.7 PoC Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.7.1 Server Features . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.7.2 Component Interactions . . . . . . . . . . . . . . . . . . . . 91

6.8 Monitoring Mobile Application . . . . . . . . . . . . . . . . . . . . 96

iii



7 Conclusions 100
7.1 Obtained Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.1.1 Final Considerations . . . . . . . . . . . . . . . . . . . . . . 103
7.1.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . 104

7.2 PoC Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2.1 Server Configuration . . . . . . . . . . . . . . . . . . . . . . 107
7.2.2 Client Configuration . . . . . . . . . . . . . . . . . . . . . . 109

7.3 Open Issues and Further Improvements . . . . . . . . . . . . . . . . 110

List of Figures 112

List of Tables 113

Acronyms 114

Bibliography 116

iv



Chapter 1

Introduction

Decentralization is one of the main purposes that currently drives the ma-
jority of the existing cryptocurrencies. Since the launch of Bitcoin in 2009,
decentralization is the main ingredient used to build a peer-to-peer (P2P) financial
system managed by no central administrators (such as banks for the traditional
financial systems). Every cryptocurrency that has been designed after Bitcoin
takes inspiration from it either directly or indirectly. In these kinds of financial
systems, transactions are now stored in what are called Distributed Ledgers
that are maintained by the peers instead of the traditional databases that are
instead handled by a single authority.

1.1 What is a Distributed Ledger ?
A Distributed Ledger is a system aimed to store, share and sync digital data

geographically spread across multiple sites[1]. Thanks to its distributed nature,
it has no single point of failure because each node of the network contributes to
avoid data-loss or data corruption. Another property that characterizes a DLT
is the immutability of the stored data: once a particular data is added to the
ledger, it cannot be updated or deleted instead it is meant to live there forever. A
DLT enables decentralization by relying on a peer-to-peer network: each node
stores (usually) the entire ledger, and once new data are received and added to
it, the node has the duty to forward these updates of the ledger to its neighbours
(Figure 1.1). Each peer (node) is allowed to add new records inside the ledger, but
they are only accepted when everyone in the network agree the records meet every
requirement of the ledger, for example having a valid digital signature. DLTs share
characteristics with other distributed systems such as Distributed Database
Management Systems.

1



Introduction

Figure 1.1: Distributed Ledger graph

Here there is a list of the main similarities:

• Data Store: the aim of both systems is to store data.

• Data Share: both systems make data available to users for processing.

• Synchronization: because of the intrinsic meaning of "distributed", both
nodes of DLT s and DDBMSs must be synced in order to maintain a consistent
state of data.

• Fault tolerance: being distributed means also avoiding a single point of
failure, as we mentioned before.

But there are also differences. The biggest one is about trust. We can identify
two different aspects that are related with the concept of trust:

1. Inner trust. Can a node that contributes to the health of a distributed
system trust the information received by its neighbours?

2. Outer trust. This category instead focuses on the users of a service that a
certain system offers. Can they trust the data that the system provides? Can
they have guarantees about a secure and correct use of personal data that
they eventually have provided to the service?

As already explained, common DDBMS have to be managed by single entities.
Entities are assumed to maintain all the nodes of their distributed system in

2



Introduction

order to make it work correctly and efficiently. With this architecture, each node
has no reasons to doubt that its neighbours would act dishonestly because all of
them live under the same rough, so synchronization of data happens without trust
issues. However, consensus mechanisms among nodes are needed to handle data
consistency and fault tolerance. On the other hand, problems arise when there
are users that want to benefit from a certain service provided by a certain entity
(such as companies, governments or banks). In these cases users intrinsically have
to trust the specific entity that provides the chosen service; moreover, they have
to believe that this entity will properly handle their personal information that is
eventually required.

Thanks to their peer-to-peer architecture, DTLs are instead managed by the
simultaneous contribution of every single peer that participates to the network.
Differently from DDBMSs, this architecture is based on the fact that a peer
doesn’t trust at all the other ones, so each peer of the network must verify
each incoming data independently. Because of that, a more complicated consensus
mechanism is needed for these kinds of networks: to bring all the copies of the
ledger to a common and verified state, the majority of the peers must reach an
agreement voting for the same decision. The mechanism influences also how users
perceive a service DLT based: when a user decide to benefit from a certain service,
is sure that every information that the service provides, has been verified by every
node of the network independently and has not been altered by anyone by design.
In addition, no more central authorities will hold users’ personal data.

DLT DDBMS
Operations Create - Read CRUD

(Data are immutable) (Data are mutable)
Architecture Peer-to-Peer (Decentralized) Hierarchical (Centralized)

Each peer verify independently Each node trust its neighbours
Inner Trust each incoming data because because they belongs

doesn’t trust its neighbours to the same entity manager
Users are sure that data Users have to trust the validity

Outer Trust are verified and unaltered and correctness of received
data without guarantees

Table 1.1: Differences between DLT s and DDBMSs

Cryptocurrencies are today the most common use of DLT s. They are digital
assets that use cryptographic techniques, to make transactions secure, and also
Distributed Ledgers to store transactions into them. In this way a traditional

3



Introduction

trusted third party (e.g. banks) is no longer needed to enable money exchange.

A DLT can be implemented using various architectures and methods. The most
used is undoubtedly the blockchain and the most famous cryptocurrencies that
use this technology are Bitcoin, Ethereum, Cardano and many others.

1.2 Blockchain
The term "blockchain" has been used for the first time in 2008, when an un-

known person (or unknown group of people), with the alias of Satoshi Nakamoto,
has published the so-calledWhite Paper where it is explained how Bitcoin works.

As the term suggests, a blockchain is a data structure composed of a growing
list of records, called blocks, that are linked together using cryptographic relations.
Each block contains a cryptographic hash of the previous block, a timestamp and
the transaction data (Figure 1.2) that are generally represented as a Merkle Tree,
a data structure that we will discuss later on in this document. The timestamp
proves that the transaction data existed when the block was published in order to
get into its hash[2]. Each block is linked to the previous one to reinforce the entire
chain: in fact, to be able to modify an already existing block within the blockchain,
all the previous blocks must be altered too. These backward links between blocks
are usually referred to as hash pointers.

Figure 1.2: Blockchain Structure1.

1Source: linnwealth.com

4

https://linnwealth.com/wp-content/uploads/2021/03/1_x7xDjRQljgPVSRvV0VYEkg-1024x399.png


Introduction

1.2.1 Structure
A blockchain is a decentralized, distributed and usually public digital ledger

that is used, as we already explained, to record transactions across many com-
puters so that each block that composes the entire blockchain, cannot be altered
retroactively[2]. Every block is authenticated by mass collaboration powered by
collective self-interests. Such a system guarantees by design a robust workflow
and removes the characteristic of infinite reproducibility from a digital asset: it
confirms that each unit of value is transferred only once, solving the long-standing
problem of the double spending attack where a digital cash for the only fact of
being "digital", could be copied and so spent more than once.

Logically, a blockchain can be represented as a stack of layers that are from the
bottom (Figure 1.3):

1. Infrastructure: the hardware used from the peers.

2. Network: all the mechanisms implemented to guarantee decentralization,
availability and consistency through nodes communication.

3. Consensus: protocols that establish the rules that peers have to follow in
the system to guarantee the health of it.

4. Data: the set of data stored in the distributed ledger such as transactions.

5. Application: e.g. dApps and smart contracts.

Figure 1.3: Blockchain Layers

5



Introduction

1.2.2 Blocks
Blocks are sets of valid transactions and each block is linked to the previous one

through the hash pointers. This iterative process of adding new blocks to the last
valid one, confirms integrity and immutability of the previous blocks, all the way
back to the initial one, named genesis block[3].

Even if the "real" blockchain consists of a linear chain of blocks, sometimes
separate blocks can be produced concurrently. This phenomena leads to the creation
of a temporary fork. To deal with this behaviour, that would compromise the
security of the system, any blockchain has a specified algorithm for scoring different
versions of the history so that one with a higher score can be selected over the
others. Peers usually store only the history with the highest score, eventually
overwriting the older version.

1.2.3 Blockchain policies
After the introduction of the original concept of blockchain, new policies have

been devised about letting new nodes join the network.
Three different macro-types of blockchains can be identified with respect to chosen
policy:

• Permissionless blockchains. Also known as public blockchains. The most
striking example is Bitcoin again. Permissionless blockchains represent the
original concept of “blockchain” thanks to its intrinsic nature: they are totally
open to each user that wants to join the network with the aim of guaran-
teeing the purest ideals of decentralization. This implies that these kinds
of blockchains are not owned by a single entity but instead, they belong
to the community that believe in the project. Indeed, they are considered
community-driven. Permissionless blockchains also guarantee free access to
the data stored in the ledger that, in any case, are encrypted to provide a
minimum level of privacy.

Frequent concerns about public blockchains are about the concept of scalability,
or in other words the ability of a system to improve its speed and efficiency as
the number of the participants increase. In fact these systems are often not
fully scalable because, even if the security and stability of it increases as the
number of nodes increases, the number of transactions per seconds tends to
remain constant or even to decrease.

• Permissioned blockchains. Also known as private blockchains. They are
usually designed for business oriented solutions, or in other words designed

6



Introduction

for companies. Contrary to permissionless ones, permissioned blockchains
belong to specific entities. These kinds of systems introduce the concept of
governance and centralisation in a network that was originally thought
as fully decentralized and distributed[4]. Each entity acts as supervisor of
the distributed ledger, deciding which user is allowed to enter the network
and which message is approved. Instead of relying on the users’ nodes, the
consensus is entrusted to a small number of trusty nodes selected by the owner
of the blockchain. Private blockchains also enable roles selection for each node
of the network.

In this case, scalability is not a problem at all, instead thanks to the small
number of selected nodes that manage consensus, the ledger state synchroniza-
tion and propagation are way quicker. Of course the big compromise remains
the centralisation.

In the end, new types of consensus protocols are introduced in the context of
private blockchains such as the Proof of Authority[5] that, unfortunately, will
not be discussed in this document.

• Hybrid blockchains. As the name suggests, it is a mix of the previous
two, trying to get the best part of both. Ideally, when we talk about hybrid
blockchains, we talk about freedom and controlled access at the same time.
As usual, hybrid blockchain architecture is entirely customizable. The hybrid
blockchain members can decide who can participate in the blockchain or which
transactions are made public. This brings the best of both worlds and ensures
that a company can work with its stakeholders in the best possible way[6].

1.3 Consensus protocols
We mentioned more than once that a distributed system needs, due to its archi-

tecture, a mechanism that allows for synchronization among nodes and validation
of data. These mechanisms, also known as consensus protocols, are fundamental
for the correct functioning of the system, especially for a DLT where the concept
of trust becomes the core part to enable decentralization. Blockchains are no
different, and since the release of Bitcoin, consensus protocols became an active
research area.

1.3.1 The Byzantine Generals Problem
Before introducing how the most famous protocols work, it is necessary to

understand where the need, to agree on certain decisions asynchronously to reach

7



Introduction

consensus, come from.

The problem of Byzantine Generals was proposed in 1982 and it is a logical
dilemma that shows how a group of byzantine generals would have communication
problems when they try to reach an agreement for the next move[7].
The dilemma supposes that:

1. Each general has its own army.

2. Each army is placed in a different location around an hypothetical city
to conquer.

We can now define the rules that each general must follow:

1. A general must choose if its army has to attack or to retreat.

2. Once the decision is taken, it cannot be changed.

3. It doesn’t matter if the armies attack or retreat as long as every one of them
takes the same decision to avoid to compromise the operation.

Communication problems are related to the fact that each general can commu-
nicate to another one only through messages delivered by messengers. This makes
the entire problem really hard to solve. In particular:

• Messages could have delays or, worse, could never be delivered.

• Even if a message is correctly delivered, one of the generals could act dis-
honestly, for whatever reason, and send fake messages to confuse the others,
causing the entire operation to fail.

But how any of this would be related to the blockchain? In this context we
can imagine that each general represents a node (peer) of the network, and each
one of them must reach an agreement on the actual ledger state. In other words,
the majority of the peers must reach the consensus and execute the same action
to avoid data inconsistency. This implies that the only way to reach consensus
in these distributed and decentralized systems is to have at least 2

3 of honest and
reliable nodes within the network. Instead if the majority of the nodes decide to act
dishonestly, the system becomes susceptible to malfunctioning and cyber-attacks.

1.3.2 Byzantine Fault Tolerance Algorithms
The Byzantine Fault Tolerance (BFT), is the property of a distributed

network to reach consensus even when some of the nodes in the network fail to
respond or respond with incorrect information. The objective of a BFT algorithm

8



Introduction

is to safeguard against the system failures by employing collective decision making
(both correct and faulty nodes) which aims to reduce the influence of the faulty
nodes[5]. In other words BFT algorithms are those capable of solving the Byzantine
Generals problem.

The most used consensus protocols that will be explained in this section are the
Proof of Work and the Proof of Stake.

1.3.3 Proof of Work
Proof of work (PoW) is a form of cryptographic zero-knowledge proof in

which one party (the prover) proves to others (the verifiers) that a certain amount
of computational efforts has been done. Verifiers can subsequently confirm this
expenditure with minimal effort on their part[8].

In other words the protocol imposes the execution of some tasks to the users of
the service. These tasks are basically cryptographic puzzles characterized by two
main properties:

1. They must be complex enough to be solved (so that a certain amount of
computation power is required).

2. They must be easy to verify once the solution has been found.

Thanks to this mechanism, it is a protocol that is able to discourage denial of
service attacks and other service abuses such as spam in the network.
The concept of PoW was invented in 1993 and, in fact, its original goal was to solve
these problems instead of the ones related to consensus in a DLT discussed so far.

However, PoW became popular only after the Bitcoin release, turning into a
foundation for consensus in permissionless blockchains and cryptocurrencies, in
which miners compete to append blocks and to mint new currency.

Why miners are needed?

We already talked about the concept of trust in a distributed ledger context, so
it should be now clear why consensus protocols must be used. In the PoW, trust
is achieved by computational efforts done for the resolution of the cryptographic
puzzle: once the solution has been found, the solver (the node who actually found
it) communicate it to the other nodes in the network so that they can verify that
it is correct. When the consensus is reached, then everyone trusts that set of
transactions (the block) is valid, and it is pushed into the blockchain. Every node

9



Introduction

that tries to solve these puzzles is called miner. Miners compete against each other
to find the solution of these puzzles and so to add as many blocks as possible to
the blockchain. But why should miners use their computational power to compute
PoWs? What advantages do they get for lending their resources? The answer is
simple: they get paid for their effort each time a PoW is computed. The more
power you get, the more probabilities to generate the PoW you have, and the more
PoW you compute, the more you earn. The process can be simply explained with
this example:

• Alice wants to pay Bob with a certain amount of a cryptocurrency blockchain
based. So she have to add this transaction in the ledger.

• Before the transaction is added, it must be verified. So each miner of the
network starts computing the PoW as fast as he can.

• Once a certain miner solves the puzzle, the others check if it is correct. If the
consensus is reached, then the transaction become valid and it is added to the
ledger.

• The miner that found the solution is then rewarded for his effort. In fact,
when a PoW is computed, new currency is minted and used both to pay the
miner and to increase the circulation. Another source of income are fees that
the "transaction creator" will promise to miners for the computation of the
PoW (we will explain more in detail this mechanism when we will talk about
Bitcoin).

1.3.4 Proof of Stake
Proof of Stake (PoS) protocols are a class of consensus mechanisms for blockchains,

that replace the competitions among miners to solve PoWs into a system where
the network nodes, called validators, guarantee the validity of transactions by
staking a certain amount of their cryptocurrencies.

PoS has been designed to avoid the huge energy waste derived from miners’
competition. To have chances to be the first one solving PoWs you always need
more and more computational power, and more computational power means an
improvement of speed of PoWs resolution. This is what makes systems PoW based
very secure and reliable because these costs that miners have to meet, make the
event that they could hurt the network highly unlikely.

Another problem that PoS tries to overcome is the continuous decrease of decen-
tralization due to the mining pools: today miners are grouped under organizations
and companies with huge financial resources that allow mechanisms to cooperate

10



Introduction

Figure 1.4: Mining pools distribution2

as one single node (and so as a single supercomputer) to solve faster each PoW.
Each of these groups is called mining pool. With this method, all the incomes of
this single node are distributed among the members proportionally to the provided
computational power, rewarding also members that would have not solved a single
block due to their low power. This is surely an advantage for miners, but the
concept of decentralization becomes gradually weaker and weaker.

How it works?

PoS uses a mechanism that randomly chooses a validator. Contrary to PoW,
blocks are not mined but forged instead. A node becomes a validator only when
it stakes a portion of cryptocurrencies within the network, as a guarantee that it
will act honestly for the network’s sake (and for its own), otherwise they lose what
they staked. Obviously it’s not possible to spend or withdraw the resources once
they have been staked.

The random selection algorithm bases its choice on different factors, guaranteeing
that will be selected either the nodes with huge deposits and the ones with smaller

2Source: blockchain.com

11

https://www.blockchain.com/


Introduction

ones, but still reliable. The principal variables taken into account are the size of the
deposit (how much cryptocurrencies have been staked), the coin age (how long the
stake is active) plus an ulterior random factor. The nodes with bigger deposits and
with a higher coin age will be considered more reliable and will have of course more
probability to be chosen as validators. It’s important to note that, to maintain a
fair probability distribution of being chosen among nodes, once a validator forges a
block, its coin age is reset and before it can be re-chosen, a certain amount of time
has to pass. The validator must check whether each transaction of that block is
valid, then it signs the block itself and pushes it into the blockchain. Once a new
block is added, the validator is rewarded with a fee deducted from the cryptocoins
sent with the transaction. Nodes can’t withdraw earnings before the entire network
reaches consensus.

1.3.5 A comparison between PoW and PoS
At this point we can clearly notice how in systems PoS based, each node is

discouraged from acting against the network because of the stake that would be
gradually lost in case of dishonest behaviours; moreover when a node approve
fraudulent transactions, it loses the right to be selected as validator in the future.
The only way to bypass the security controls would be to own 51% of the network’s
liquidity, which is a highly unlikely hypothesis. On the other hand, as we said
before, in systems PoW based, security and trust rely on the large use of both
economical and financial resources[9]. This makes PoW less eco-friendly than PoS.

At first glance, PoS protocols seem to facilitate earnings to the nodes with the
highest amount of resources, making them richer and richer. However, thanks to
the random selection algorithm that we discussed before, PoS guarantees a fair and
well balanced mechanism to manage the validators shifts.

With PoS, better solutions for scalability, decentralization and democratisation
are provided: despite the huge computational power that mining pools provide to
the network, the cryptographic puzzles usually require a great amount of time to
be solved. This implies that there is some latency between the transmission of a
transaction and its validation. The slow validation speed could be considered as a
barrier of entry in traditional financial systems for all cryptocurrencies that adopt
PoW as consensus protocol. On the contrary, in PoS either the selection of the
validator and the validation of a block are performed in a few seconds enabling the
support for real-time electronic payments.

12



Introduction

PoW PoS
Limited by the complexity Scalable by design: security is

Scalability of the cryptographic puzzles guaranteed by the stake and
not by computational efforts

Transactions Few transactions Larger amount of
per seconds per seconds transactions per seconds

decentralization Affected by mining pools Fully decentralized
Facilitate miners Facilitate nodes with

Earnings with great great financial
computational power resources on stake

Table 1.2: Advantages of PoS over PoW

13



Chapter 2

Bitcoin: The First
Blockchain Implementation

During the last decades, the world’s economy is clearly moving towards digi-
talization to make the financial systems more secure but mostly easier and more
immediate. The virtualization of financial tools is nowadays very common, espe-
cially when we talk about money exchange made through mechanisms that just a
few years ago would have been considered unfeasible. When people use credit cards
or other payment methods, each transaction doesn’t require an actual transfer
of the physical assets (real coins or cash), instead it is represented as a virtual
exchange of digital assets that occurs through digital processes that manages and
tracks electronic money that are a representation of the real ones. This concept
lays the foundation for the creation of the first cryptocurrency the world has ever
seen, and the experiment is now considered one of the most successful ones in this
compound.

The story of these virtual coins begins in 1983, when a certain cryptographer
David Chaum developed a cryptographic system called eCash. Twelve years
later, he developed another system, DigiCash, that used cryptography to make
economic transactions confidential. However the term “cryptocurrency” was coined
in 1998 by Wei Dai. In that year he was thinking about developing a new
payment method that used a cryptographic system and whose main characteristic
was decentralization[10]. Starting from Dai’s idea, cryptographers started to get
interested in the cryptocurrency concept and it has been hypothesized that, once
established the rules of generation, realizing a coin that would be minted and
distributed on the internet would not be impossible. This brought to the realization
of Bitcoin, the first and most famous cryptocurrency that is now internationally
recognized as an “alternative coin”. From now on, will follow a great number of

14



Bitcoin: The First Blockchain Implementation

alternative cryptocurrency that take inspiration from Bitcoin and that aspire to
the same success.

2.1 What Bitcoin is and how it works
Bitcoin (B ) is a cryptocurrency created by Satoshi Nakamoto. He designed

and published the idea in 2008 in a document called White Paper with the title
“Bitcoin: A Peer-to-Peer Electronic Cash System - Satoshi Nakamoto” [11]; then
he developed and released the first build in 2009. Bitcoin is an “anonymous”
and distributed digital coin managed by a peer-to-peer network where its price
is tuned only from supply and demand. The main purpose for which Nakamoto
wanted to introduce a new and alternative financial system through Bitcoin, was
to contrast the global economic crisis that began more than one decade ago,
including America’s superpower. The primary consequence of this crisis was the
devaluation of the Fiat currencies (i.e. USD, EUR etc) due to inflation. Thanks to
a distributed system such as Bitcoin, central authorities would not be in charge of
making decisions by themselves that would influence the world’s economy anymore.

We mentioned more and more that Bitcoin uses the blockchain, and so it relies
on the concept of trust enabled thanks to the use of cryptography and in particular
of digital signature: Nakamoto himself states that “we define digital coin as a chain
of digital signatures”. A proper use of these cryptographic techniques allows to
achieve trust among strangers without the need of a “trusted” mediator.

2.1.1 Transactions
In the previous chapter it has been explained how a blockchain works from a

high level point of view, but without introducing more in detail the mechanism
that allows to create and resolve transactions, it would be very hard to actually
understand the previous concepts. Although the project on which the thesis will
focus doesn’t involve the direct use of cryptocurrency exchange, it is necessary to
analyze this process for a correct understanding of what happens under the hood
of applications blockchain based. In the next paragraphs, we will take Bitcoin as
an example to explore transactions work-flow.

Before diving into an explanation of the steps to follow to make a payment using
the Bitcoin blockchain, we must explain two more concepts:

• Asymmetric Cryptography. It is a cryptography technique that involves
the use of a pair of keys, one private and one public. Both of them are strictly
correlated since the data encrypted with one of the keys can only be decrypted

15



Bitcoin: The First Blockchain Implementation

with the other one.

The private key is the one that the user is supposed to keep secret, while the
public key is the one shared with anyone the user wants to communicate with.
If user A wants to send a message to user B, he has to cipher the message with
his private key. B is now able to decipher the message using A’s public key pre-
viously shared. When a message is sent in this direction, the mechanism does
not offer the secrecy property since everyone potentially knows the public key
and so everyone can read the message. However, the mechanism guarantees
integrity (if the encrypted message is altered, it cannot be deciphered) and
authentication (anyone can check the identity of the author) properties,
ensuring to B that the message has been written by A because only the public
key related to the A’s private one can decipher messages encrypted with the
latter. This property is called, instead, non-repudiation.

We can now analyze a message exchanged in the opposite direction. If B sends
a message to A, the first has to cipher it with the public key of A. In this case
no one can decrypt the message that B sent because the only key capable of
extracting the message is the private key of A, known by him only. The secrecy
of the message is now achieved, instead non-repudiation and authentication
are lost because A cannot know who is the author of the message due to the
shared public key. Message integrity is still preserved.

• Digital Signature. It is an application of asymmetric cryptography that
aims to ensure integrity, authentication and non-repudiation properties. To
create a digital signature, the author uses his private key to encrypt the digest
(a summary of a fixed length, i.e. 256 bit, of the considered data, to avoid
doubling the size of the file) of a certain document he wants to sign. Then
he sends the plain document and attach to it the digital signature and a
certificate that contains the author’s public key. The receiver can check the
mentioned properties as follows (Figure 2.1):

– Authentication: he decrypts the digital signature using the public key
of the author. He obtains the digest of the document.

– Integrity: he re-computes the digest of the plain document and compares
it with the one extracted before. If he finds a match, the document hasn’t
been altered.

– Non-repudiation: if the previous steps went fine, the author cannot
deny he sent the message.

16



Bitcoin: The First Blockchain Implementation

Figure 2.1: Digital signature flow chart1.

At this point, we suppose that two users, Alice and Bob, want to share a few
bitcoins. We also suppose that both Alice and Bob have a crypto wallet. In short,
a crypto wallet is an application, runnable on computers, smartphones or dedicated
hardwares, that allows users to store and retrieve cryptocurrencies such as Bitcoin.
Finally we say that Alice wants to pay Bob using her cryptocurrency. In order to
make the payment successfully, these steps must be followed:

1. Bob has to create a new address for his wallet in which he can receive the coins
sent by Alice. An address is a sequence of bits (160 for Bitcoin) generated
starting from a pair of private and public keys. To calculate the address, an
Elliptic Curve Cryptosystems must be chosen. Currently Bitcoin uses
Secp256k12 with the ECDSA3 (Elliptic Curve Digital Signature Algorithm).
Bob can now share the new address with Alice so that she can do the payment.

2. Alice uses one of her addresses with a positive balance as the source of the
transaction and Bob’s previously shared address as destination. Finally, Alice
signs the transaction with her private key.

1Source: www.crs4.it
2Secp256k1 refers to the parameters of the elliptic curve used in Bitcoin’s public-key cryptog-

raphy, and is defined in Standards for Efficient Cryptography (SEC)
3ECDSA is a cryptographic algorithm used by Bitcoin to ensure that funds can only be spent

by their rightful owners

17

https://www.crs4.it/wp-content/uploads/2018/06/1500px-Digital_Signature_diagram.png
https://en.bitcoin.it/wiki/Secp256k1
https://en.bitcoin.it/wiki/ECDSA


Bitcoin: The First Blockchain Implementation

3. Each node of the network that has visibility of the transaction, can verify it
through a balance check of the source address and a verification of the digital
signature authenticity. Then, the mining process starts involving each node of
the network.

4. Miners begin to collect a certain amount of transactions and group them into
a block to validate, and the competition begins.

5. Once the PoW has been found, and verified by the others, the block is attached
to the blockchain. The winner receives now the reward for its effort as new
minted bitcoins.

2.2 Hashcash in Bitcoin mining
We just explained what are the steps that are executed in order to do a bitcoin

exchange using the blockchain. But how is actually computed the Bitcoin’s PoW?

Satoshi Nakamoto mentioned that a certain algorithm, called Hashcash, was
taken as an inspiration to create the entire consensus protocol of Bitcoin. Hashcash
refers to a proof of work system that was created by Adam Back in 1997 and it
was initially meant to limit spamming and DDoS attacks.

The hashcash algorithm is relatively simple to understand. The idea builds on
a security property of cryptographic hashes, that they are designed to be hard
to invert (so-called pre-image resistant property). You can compute y from x as
y = H(x) cheaply, but it’s very hard to find x given only y. A full hash inversion
has a known computationally unfeasible brute-force (trial and error approach)
running time, being O(2k) where k is the hash size (e.g SHA256, k = 256). If a
pre-image was found, anyone could very efficiently verify it by computing one single
hash: this implies a huge asymmetry in full pre-image mining (computationally
unfeasible) against verification (a single hash invocation).

We then define a second pre-image as: given one pre-image x and y so that
y = H(x), the task is to find another pre-image xÍ (the second pre-image) of hash
y so that y = H(xÍ). It is important not to confuse with a birthday collision which
is to find two values x, xÍ so that H(x) = H(xÍ): this can be done in much lower
work O(

√
2k) = O(2k/2) because you can proceed by computing many H(x) values

and storing them until you find a matching pair. It takes a lot of memory, but
there are memory-time trade-offs.

18



Bitcoin: The First Blockchain Implementation

Version 0 of hashcash protocol (1997) used a partial second pre-image, how-
ever the later version 1 (2002) uses partial pre-images of a fairly chosen string,
rather than digits of π or something arbitrary: 0k (i.e all 0 bits) is used for
convenience. In this case, the work is to find x such that H(x) = 0. To make it
easier, the definition of a partial pre-image is to find x such that H(x)/2n−k = 0
where "/" is the integer quotient from division, n is the size of the hash output
(n=256-bits for SHA256) and k is the work factor, which is the number of the
firsts bits of the hash output equal to 0. For example, if k = 20 and n = 256, the
task is to find y such that H(x) = y, with y starting with 20 zero bits while the
remaining 236 bits can be anything (H(x)/2236 = 0). It is actually the hash output
(the digest) that partially matches the chosen condition (0k), not the pre-image. In
fact, it could be more accurately called a pre-image with a partial output match[12].

Bitcoin’s PoW is very similar to the just described algorithm, but there are few
differences: once a miner has chosen the set of transactions to put into a block, he
computes the hash of the block by using twice the SHA256 hash function on the
body of the block, while changing at each iteration the so called Nonce until the
output of the hash match the specified target. The target is the threshold number
that a block digest must be below, in order to add the block to the blockchain. The
target concept replaces the hashcash work factor. The Nonce, instead, is basically a
random value that is concatenated to the body of the block; once it is changed, also
the computed hash output will change and this procedure is done until the correct
Nonce is found. To summarize, Bitcoin’s PoW consists of finding a Nonce, using a
brute-force approach, so that the digest of the body of the block concatenated to
it, is smaller than the target.
An example could be needed to make the process simpler to understand: we suppose
that our target is 2240 and we must find an output of the SHA-256 hash function
that is smaller than the target. We vary the string (that in this example represents
the block) by adding an integer value to the end (the Nonce) incrementing it at
each iteration. Then, interpreting the hash result as a long integer and checking
whether it’s smaller than 2240. To find a match for "Hello, world!" 4251 tries
are needed[13].

" Hel lo , world ! 0 " =>
1312 af178c253f84028d480a6adc1e25e81caa44c749ec81976192e2ec934c64
= 2^252.253458683

" Hel lo , world ! 1 " =>
e9afc424b79e4f6ab42d99c81156d3a17228d6e1eef4139be78e948a9332a7d8
= 2^255.868431117

19



Bitcoin: The First Blockchain Implementation

" Hel lo , world ! 2 " =>
ae37343a357a8297591625e7134cbea22f5928be8ca2a32aa475cf05fd4266b7

= 2^255.444730341

[ . . . ]

" Hel lo , world ! 4248 " =>
6 e110d98b388e77e9c6f042ac6b497cec46660dee f75a55ebc7c fd f65cc0b965
= 2^254.782233115

" Hel lo , world ! 4249 " =>
c004190b822f1669cac8dc37e761cb73652e7832fb814565702245cf26ebb9e6
= 2^255.585082774

" Hel lo , world ! 4250 " =>
0000 c3a f42 f c31103 f1 fdc0151 fa747 f f 87349a4714d f7cc52ea464e12dcd4e9
= 2^239.61238653

When the consensus is reached and the block is attached to the blockchain, the
hash of the header of the block is computed, and this will be the fingerprint of the
entire block that, from now on, will represent it uniquely and will be used as a
reference to it by the next block, as shown in Figure 2.2.

Figure 2.2: Bitcoin’s proof of work4

4Source: dev.to

20

https://dev.to/codebyru/how-bitcoin-works-bitcoin-101-part-2-4e0i


Bitcoin: The First Blockchain Implementation

2.3 Forks on the Bitcoin’s Blockchain

When a distributed network, that relies on a consensus protocol PoW based,
includes a huge amount of nodes, the probability that two of them find the PoW in
a small time interval increases. We refer to this phenomenon as a fork, and when
it happens, a fair procedure, allowing to choose one of the blocks over the others,
needs to be found because of the intrinsic architecture of the blockchain. Once
a block is chosen the other one becomes invalid and sooner or later will be discharged.

But how should this procedure act? When two PoWs are computed and sent to
the other nodes in a really small time interval, it’s impossible to accept one over
the other just relying on the arrival time because the asynchrony of the network
hinders validators to recognize who the winner is: this leads to the creation of a fork.

When the network has to deal with a fork, each of the two blocks are temporarily
considered valid as a possible block to attach to the blockchain. At this point,
miners can decide which of the two branches of the fork they will keep mining on.

Figure 2.3: Example of a blockchain fork.

Once a new block is added to one of the two branches, miners tend to move
to the longest chain, because it has a greater probability to become the final one.
Another motivation of this behaviour is that transactions within the discharged
blocks will not be validated, so miners will get no earnings for their efforts. In other
words, Bitcoin’s blockchain follows the rule “the longest chain wins”. Thanks
to this mechanism, forks are usually resolved quickly: the longest fork in Bitcoin’s
history contains just six blocks and that is why a block that receives at least six
confirmations is considered secure. The Figure 2.3 shows a representation of
forks of a blockchain, where the green block is the genesis block, the black blocks
compose the main chain and the red blocks are the discharged ones after a fork.

21



Bitcoin: The First Blockchain Implementation

2.3.1 Soft fork and Hard fork
We just described forks caused accidentally by the behaviour that PoW protocol

leads to. However, there are other reasons that could lead to the creation of a fork.
For example, when some protocol’s modifications are proposed, miners can accept
or reject these changes.

If a global consensus is reached, no fork will be created and each member of
the network upgrades its version of the software to make the system keep working
correctly with the new rules. Instead, if the consensus never comes, two factions will
be created: the innovators that are in favour of the new rules, and the conservatives
that want to keep the old ones.
At this point, innovators can decide to give up or to continue on their own way. If
they continue, they have two ways to proceed:

1. Soft fork: guaranteeing backwards compatibility with the old software, so
that the conservatives can still work together with the innovators. In this case
there is not a real fork, because the main chain is still one.

2. Hard fork: upgrade the software with changes that make it incompatible
with the old one. In this case two blockchains will grow in parallel, still sharing
the same blocks until the fork. Innovators and conservatives are now split and
will keep mining in different blockchains, but also users and developers usually
tend to choose just one of those.

In Bitcoin’s history several hard forks have occurred: the first one is called
Bitcoin Cash.

2.4 Blocks Validation Rate
The greatest problem of Bitcoin comes from the need to keep the number of the

attached blocks in the blockchain, in a certain time interval, below a very small
threshold. This threshold is set to allow the validation of a single block every ten
minutes. This is required because if the validation rate increases too much, the
forks problem could become more and more complex to solve, extending the time
needed to be sure that a certain block will not be discharged during the resolution
of a fork.

Because of the continuous growth of the Bitcoin’s network and consequently of
the increase of the validation rate, the PoW target is always adjusted (decreased
generally) to maintain the average time of a block insertion around ten minutes.

22



Bitcoin: The First Blockchain Implementation

We define difficulty, the ration between the initial target and the current one. The
target is updated every 2016 blocks validations (around two weeks):

• If the average of the validation time computed on 2016 blocks is less than ten
minutes for each block, the target decreases.

• On the contrary, the target increases.

Figure 2.4: Bitcoin’s difficulty trend5.

Considering that each block has a maximum size of 1MB, that it contains an
average of 2000/3000 transactions and that a block is appended to the blockchain
every 10 minutes, Bitcoin’s network is capable of validating at most seven transac-
tions per second, but the average is just three or four.

This low validation rate causes the scalability problem previously mentioned
that hinders the entire project to become a real alternative for the global financial
system. If we do a comparison between Bitcoin and whatever digital payments big
player such as Visa, Mastercard, or Paypal, we can notice how the first one has
a validation rate of several orders of magnitude smaller, as we can see in Figure
2.5.

Another consequence of the slow payment speed, is that the network is not
capable of satisfying all the incoming transactions. For this reason a transaction
becomes more important as the fees that users are willing to pay are higher. In fact,

5Source: slides for the course Blockchain e Criptoeconomia of Politecnico di Torino - Danilo
Bazzanella

23



Bitcoin: The First Blockchain Implementation

Figure 2.5: Validation rate comparison6.

miners are pushed to first validate the transactions that promise higher earnings,
making the network inappropriate for microtransactions.

2.5 Blocks Structure
In the previous sections, we described what a block is, without going in detail.

The set of transactions within a block are organized in order to meet the blockchain
specifications. The block includes, indeed, some metadata for this purpose. We
now explore block structure in the specific case of Bitcoin, but similar solutions
are used in other blockchains.

Blocks are made of two parts: the header and the body; the first contains
metadata needed for the correct management of blocks inside the blockchain, while
the second contains the set of transactions. In Table 2.1 are reported all the
information stored in the header of a block.

At this point we are able to recognize almost every field and its meaning, except
for the Version and the hashMerkleRoot fields that are respectively the version
number of the protocol used by the blockchain and the SHA-256 hash output of
the set of transactions stored in the body.

6Source: slides for the course Blockchain e Criptoeconomia of Politecnico di Torino - Danilo
Bazzanella

24



Bitcoin: The First Blockchain Implementation

Field Purpose Size (Bytes)
Version Block version number 4

hashPrevBlock SHA-256 of the previous block header 32
hashMerkleRoot SHA-256 based on all 32

of the transactions in the block
Time Current block timestamp as seconds 4

since 1970-01-01T00:00 UTC
Bits Current target in compact format 4
Nonce 32-bit number (starts at 0) 4

Table 2.1: Block’s Header of Bitcoin

During the blockchain introduction, we said that transactions in a block are
organized in a data structure called Merkle Tree. This data structure permits
to efficiently verify if a transaction belongs to a certain block using only a small
subset of the entire transaction set. In this way data overhead is avoided, and less
data needs to be exchanged in the network.

Figure 2.6 represents a Merkle Tree: we can define it as a binary tree where
each node is the combined hash of the two child nodes, and the leaves are the
plain transactions. The root of a Merkle Tree is called merkle root. This is the
resulting hash computed starting from the leaves that are combined in couples to
compute the hash of their parent node, and the process continues until it reaches
the root. But what such a data structure is convenient for?

To understand the advantage of using a Merkle Tree, we make an example: we
suppose that we need to verify if the green transaction (HK) belongs to the block.
To do so, we have to compute the hashes at each level of the tree and check if the
hash of the merkle root matches the computed one. In the same figure we notice
how the data needed to make all the computations are the blue nodes: so instead
of using the entire transaction set (16 transactions) we just need 3 hashes and the
near transaction (HL) corresponding to the blue nodes to recompute the hash of
the Merkle Root. Considering that a single transaction is in size greater than 256
bit (the hash size), and that only h− 1 (where h is the height of the tree) hashes
plus a plain transaction is needed, it’s easy to understand that the amount of the
exchanged data is drastically reduced.

25



Bitcoin: The First Blockchain Implementation

Figure 2.6: Merkle Tree representation7.

2.6 Weaknesses and Limitations of Bitcoin
One of the most important properties, that a blockchain must have, is the

property of being secure. Despite being designed to be so, blockchains may be
subject to some vulnerabilities that can affect the health of the system making
it unstable, unusable or simply less secure. Even if these vulnerabilities have
little probabilities to cause damage to the system, it is important to know how
they work and how to prevent them, because they could be a problem in the fu-
ture, when new technologies could be exploited to make cyber-attacks more effective.

An overview of the possible attacks are here reported, considering the Bitcoin
network. Still, almost all of them are common to every blockchain implementation.

• Sybil Attack. It is a threat for online systems where a single user tries to
take control over the network by creating a multitude of different accounts,
that in this case are the nodes of the network.

Attackers that use this kind of attack could reach the majority of the network
causing lots of problems [14]:

– They can refuse to receive and transmit every transaction, effectively
disconnecting users from the network, and making them unable to use
that service.

7Source: slides for the course Blockchain e Criptoeconomia of Politecnico di Torino - Danilo
Bazzanella

26



Bitcoin: The First Blockchain Implementation

– They can relay only blocks that they create, putting users on a separate
network and then also leaving them open to double-spending attacks.

– If you rely on a transaction with 0 confirmations, they can just filter out
certain transactions to execute double-spending attacks.

At the moment, mechanisms that guarantee complete security against these
attacks do not exist, but blockchains and, more specifically, consensus proto-
cols make sybil attacks unfeasible.

For example, in the Bitcoin network, the ability to forge a block must rely on
the difficulty imposed by the PoW target. This means that for being capable
of computing the PoW, the node requires a certain amount of computational
power that is far from being negligible. This would bring attackers to use
their financial resources to buy the necessary hardwares to execute the attack.
If the attackers reach a computational power greater than 50% of the whole
network’s power, they can basically control the entire chain forcing consensus
for fraudulent or double-spend transactions or simply excluding honest ones.
This situation is usually labelled as 51% attack. That is why sybil attacks
(and 51% attacks consequently) are considered quite unfeasible as long as the
network includes a great number of nodes.

• Double-spend attack. We mentioned double-spending attacks as one of the
problems that could ruin a whole blockchain based system. Double-spending
is the risk that a digital currency can be spent twice. It is a potential problem
unique to digital currencies because digital information can be reproduced rel-
atively easily by attackers that have great knowledge of the interested network.

Reusing the hypothesis that an attacker has access to more than half of the
whole network computing power, he has to follow the following step in order
to do a double-spend attack (representation in Figure 2.7):

1. First, the attacker has to make two payments with the same bitcoins; one
to an online vendor and the other to another address owned by himself.

2. Initially he will only send the payment to the vendor.
3. Once the transaction is included in a block, the vendor can check it and

send the products ordered by the attacker.
4. When the attacker is sure that its order was processed and products sent,

he will use all of its computing power to create a secondary branch that
sooner or later will be longer than the main one. In this branch the
attacker will include the transaction to its secondary address and not the
one to the vendor, which will be discarded.

27



Bitcoin: The First Blockchain Implementation

Figure 2.7: Representation of a double-spending attack workflow8.

5. Once the secondary branch becomes longer than the main one, it will
be considered the correct branch and each node will keep adding other
blocks to it.

6. The original payment is considered invalid even from the honest nodes
because the bitcoins used for the transaction are already spent.

Other noteworthy problems exist in the context of the blockchain of Bitcoin but
they are even less probable to happen than the previous ones, or they cause minor
damage to the system[14]:

• Possibility to attach illegal content to the transactions. In fact, since
arbitrary data can be included in Bitcoin transactions, and full Bitcoin nodes

8Source: medium.com

28

https://medium.com/coinmonks/blockchain-101-5e19b7249db8


Bitcoin: The First Blockchain Implementation

must normally have a copy of all unspent transactions, this could cause legal
problems. However, local node policy generally doesn’t permit arbitrary data.

• Breaking the cryptography. SHA-256 and ECDSA are considered very
strong currently, but they might be broken in the far future. If that happens,
Bitcoin can shift to a stronger algorithm.

• Tracing a coin’s history. It can be used to connect identities to addresses.

We then report again the problems related mainly to the PoW consensus pro-
tocol that implies a huge energy consumption for the mining process and a poor
scalable system.

At this point, there are a couple questions that it is legitimate to think as
potential problems[14]:

• Is it possible that two people with different private keys generate
the same address? Collisions are highly unlikely: keys are 256 bit in length
and they are hashed in a 160 bit address (2160th power). Divide it by the world
population and we have about 2.15× 1038 addresses per capita.

• What if everyone calculates PoW at the same rate? If everyone
began with identical blocks, they starts their nonce at 1 and increment it at
each iteration, the fastest machine would always win. However, each miner
builds its own block in a random and independent manner. So everyone
begins with slightly different blocks and everyone truly has a random chance
of winning (even if still proportional to the computational power).

As we can easily notice, Bitcoin is overall a secure and reliable platform that
has been designed from the beginning with these problems in mind, and that is
why lots of people consider blockchains and cryptocurrencies as possible candidates
for the finance of the future.

29



Chapter 3

Blockchain 2.0: Tools and
Use Cases

So far, when the word "blockchain" has been mentioned, we have always referred
to Bitcoin, but blockchain applications are almost unlimited and go beyond the
concepts of Bitcoin and cryptocurrency in general.

The blockchain technology and its capability to create more transparency and
fairness while also helping businesses in saving financial and time resources, is
impacting a wide range of sectors, many of which are far away from the financial
one. Today it is a real game-changer for multiple industries including health-care,
education, real estate, supply chains and logistics, or even circular economy
scenarios which are the ones we will be focusing on before introducing the BioEn-
Pro4To project.

Blockchain technology is evolving constantly, revealing itself to be more flexible
and versatile than might have been expected a few years ago. The reason for
the exponential growth of its progress, might be found in the advent of another
big player in the game. Ethereum, officially released the 30th July of 2015, lays
the foundation for a modern concept of Blockchain introducing new tools such as
smart contracts and a protocol to implement tokenization on top of its main
layer. Ethereum starts the blockchain 2.0 era1.

1Instead of viewing the blockchain just as financial decentralisation, blockchain 2.0 expands
the scope of the technology enabling decentralization of markets in general.

30



Blockchain 2.0: Tools and Use Cases

3.1 Main Features of Blockchain 2.0
3.1.1 Smart Contracts

The concept of smart contract is somehow attributable to Nick Szabo that in
one of his works, in the 90’s, he is the first to use the term, stating that “A smart
contract is a computerized transaction protocol that executes the terms of a con-
tract” [15]. So a smart contract is nothing but a software to automate the execution
of some predefined contractual obligations. They are written using a particular
programming language that runs, generally, on a trusted computer network that
uses a specific protocol. More in detail they can be classified under the label of
event-driven software, representing contractual obligations in a digital form.
Using these definitions, a smart contract is non necessarily related to blockchains
and it is trusted and unbiased by design: once the rules of the contract have been de-
fined, the program will always produce the same output by entering the same inputs.

In the current industrial practice, a smart contract is a software that is executed
by the nodes of a blockchain network and so it would benefit from the same advan-
tages of a DLT, in particular decentralization, distributed execution, and strong
security. Every time a smart contract produces an output, it results in a change of
blockchain state that is represented as a transaction the miners/validators have to
validate respecting the rules defined by the consensus protocol. In this meaning,
they are not just contracts but more generally softwares whose executions and
outputs are guaranteed to be intact and trusted by the underlying technology
properties. The naming convention for these distributed applications (also known
as dApps) has been chosen by Ethereum that first introduced this tool in the sector.

The main factor to consider while writing a smart contract is that, as any other
information that is published on a blockchain, it will be immutable over time. So
it is easy to understand that when a smart contract is released, it must guarantee
its reliability by running a bug-free code and using data sources, trusted by each
involved party, to trigger events, and so producing the expected outputs reflecting
the predefined rules.

A practical example of a smart contract could be written to represents this
agreement:

31



Blockchain 2.0: Tools and Use Cases

- If company C manages to raise funds totaling $1.000.000, investors I
will earn a percentage of profits generated by C weighted by their initial
investment amount.

- Otherwise, if the invested funds don’t reach the target by the end of
date T , each investor will be refunded.

In this simple contract, we can find two events with their respective consequences:

Event Consequence
Invested funds reach the target ($1.000.000) Investors will earn some profits
Invested funds don’t reach the target by the Investors will be refunded

end of a certain amount of time

In this example the programmed smart contract would act as a neutral interme-
diary and the involved parties, C and I , would benefit from all the guarantees that
an external intermediary could offer but without any negative aspects to accept,
such as commission to pay for the provided service. Once one of the two events
happens, the smart contract will trigger the corresponding function to reflect the
corresponding effect. Before an event happens, the smart contract could change its
state several times.

For example the initial state of the smart contract could be like the one below:

Investor , Fund = [ ]
Total Funds = $0
Target = $1 . 000 . 000
Expi rat ion time = 31/12/2021
Remaining time = 6 months l e f t ( External data source )

The state of the smart contract traces every relevant information for the correct
conclusion of the contract. In this case it stores: for each investor how much money
he put in the contract, the total amount of received funds, the goal to reach and
the date of the expiration of the contract in case the target will not be reached.
This data can be stored statically in the state, so for each new input (new funds
from an investor), the state of the contract is updated and a new transaction is
issued in the underlying blockchain. The information of the remaining time is
instead computed by the smart contract by using an external data source which
should be, in this case, a time source that investors trust once they decide to send
funds to the contract.

32



Blockchain 2.0: Tools and Use Cases

An intermediate state could appear instead like this:

Investor , Fund = [ ( I1 , $100 . 000 ) , ( I2 , $300 . 000 ) ]
Total Funds = $400 .000
Target = $1 . 000 . 000
Expi rat ion time = 31/12/2021
Remaining time = 3 months l e f t ( External data source )

We can see that two investors have sent funds to the contract and a total of
$400.000/$1.000.000 has been collected. Internally it manages the collected funds
by owning an address on that particular blockchain, and thanks to this it can move
the funds independently once one of the two events happens by sending the total
funds to the address of the company C and guaranteeing earnings for the investors
in the first case, or just by refunding the investors I sending back to their address
the money.

3.1.2 Tokenization
Tokenization is the process to represent some assets, both physical or digital,

into a token that can be moved, stored and recorded on a blockchain. To say
it in other words, tokenization converts the value of an object, even if it would
be normally impossible to subdivide, into one or more tokens that can be ma-
nipulated for some reason on a blockchain. By using tokenization, each item
would become digitally tradable in a more secure and faster manner, overcoming
the limitations of the traditional paper markets. Moreover, trading assets does
not require an intermediary strengthening once more the concept of decentralization.

To simply understand how a crypto-token works, we can think of how real tokens
work. For example when we go to the cinema, before entering the room where
the movie is screened, we must present the ticket to the operator and before that,
we have to buy it at the ticket office. So in this case, the ticket represents our
token and by buying the token we are buying the permission to enter the room
and to watch the movie. But why is the ticket needed and why do we pay for
a piece of paper which has no real value? The answer for the first question is
about necessities: introducing a two-steps access for the movie room instead of one,
basically solves "logistic" problems. In fact, if the two-step access is not used, there
would be the need for a ticket office near each room of the cinema, while using the
tickets method, the ticket office can be just at entrance while operators can checks
the validity of the tickets near the rooms. The answer for the second question is
instead so obvious, that maybe just a few have ever thought about it: we agree to
buy a valueless piece of paper, just because we are sure that there is someone that
recognizes the value that exist behind the ticket. The same concept is applicable

33



Blockchain 2.0: Tools and Use Cases

to any token representing any other asset.

Although cryptocurrency coins and tokens might appear as synonyms at first
glance, they are far from being the same thing. The largest difference between
them is that, a cryptocurrency coin is native to its very own blockchain, while a
token does not require its own blockchain but it can be easily created by a template
compatible with a certain underlying blockchain. Ethereum is today the blockchain
with the largest token ecosystem, thanks to its ERC-20 and ERC-721 standards2.

Tokenization of assets has no limits but each corresponding token can be grouped
in one of three different categories:

1. Intangible tokens. In this category we find assets that exist only due to the
operation of law and no physical objects exist (copyrights, patents, etc)[16].

2. Fungible tokens. They are assets that can be replaced by another identical
item. They represent the object itself and so its value. Examples could be
gold, dollars etc. These kinds of items are easy to be tokenized because they
can be divided into smaller units or grouped into bigger ones. So a token can
stand, for example, both for a fraction of a gold coin or more units of them
To tokenize these assets it is required an abstraction layer: a set of tokens
must be always assured by the corresponding asset. For example for the case
of USDTs tokens, each one of them is pegged to a real assured dollar. The
advantage is now that tokens representing dollars can be easily exchanged in
the Ethereum blockchain.

3. Non-fungible tokens (NFTs). These tokens represent instead non-fungible
goods which are those which can’t be broken down into smaller pieces in the
real world. Tokenization overcomes this limitation allowing to break down
non-fungible assets into digital shares which can now be traded fully or in a
limited fashion. Collectibles items or real estate are two of the best examples
for this category.
Taking for example a painting from a famous painter, we can easily affirm
that there is only one authentic painting and that posters that replicate the
image of the painting are not the same thing and have not the same value.

To tokenize an item like this, a digital signature is introduced in order to
guarantee the authenticity of the painting. From now on, this digital NFT

2The ERC-20 and the ERC-721 introduce a standard for Fungible and Non-fungible tokens
respectively.

34



Blockchain 2.0: Tools and Use Cases

represents the painting as a digital twin and it is unique as the painting itself.
But the token can now be broken down into sub-tokens also digitally signed,
which can be sold like shares of the original painting to the public.

3.2 A Use Case Analysis: Circular Bioeconomy
for Waste Management

In recent years, global sustainability challenges, such as world population growth
and over-consumption of non-renewable resources, are pushing societies to establish
and follow circular and regenerative approaches. These approaches are represented
in particular by two economic models that can be wisely interlaced to enable the
positive aspects of both.

Before continuing, it’s necessary a brief digression about the concepts of bioe-
conomy and circular economy:

• Bioeconomy. As reported on Wikipedia, bioeconomy “refers to economic
activity involving the use of biotechnology and biomass in the production of
goods, services, or energy” [17]. The concept derives from the need to adopt
an economic model that is ecologically and socially sustainable. Whatever
economic process, focused on the production of material goods, will decrease
the energy availability to produce other goods in the future. Georgescu-Roegen
is the author of this theory, and he states also that once raw materials are
spread in the environment, they can be reused only to a lesser extent and with
a greater waste of energy. That’s why bioeconomy is today an active field of
research.

• Circular economy. This economic system is designed to be completely self-
sustaining: it is a production and consumption model that carefully focuses
on reducing the wastes of natural resources, and contemporary enhancing the
reuse and the recycling of the existing products as long as possible. Whenever
a product reaches the end of its lifecycle, materials of which it is made of, will
be re-injected in the market, if possible. These materials will be re-used to
assemble other products, restarting the entire loop.
The promotion of circular economy relies mainly on two cornerstones:

1. Reduction of the amount of wastes. This would be feasible through
some preventive measures to apply during the designing and production
processes of the product

2. Diffusion of aware recycling behaviours.

35



Blockchain 2.0: Tools and Use Cases

3.2.1 Issues Overview

Bioeconomy and circular economy can help to alleviate environmental problems
caused by the lack of modern and smart waste management systems, which do not
provide operational transparency, traceability, security and trusted data provenance
features. In fact, today’s technologies leveraged for waste management, strictly
relies on manual and centralized silos, and this makes them vulnerable and the
single point of failure of the entire system.

As introduced before, a circular economy system employs a reuse, repair, refur-
bish, and recycling model to create a closed-loop system where waste materials and
energy become inputs for other processes. The circular economy is a good match
with the bioeconomy model, which promotes the enhanced use of organic waste
and the recycling of biological resources. The conversion of renewable bio-resources
into value-added products is part of a circular system that can make businesses
more economically viable and sustainable in the long term.
In EU countries, the Waste Framework Directive3 demands a more virtuous use
of wastes and sets specific goals, such as the target of re-use and the recycling of
municipal waste to a minimum of 65% by weight by 2035 and the goal to reduce
the landfilling of municipal waste to 10% by 2030.

To reach these goals, the transition plan must consider integrating economic
and environmental directives as well as stimulating social awareness, leading to
more conscious behaviours. Organic resources such as food wastes, biodegradable
and compostable bags and packaging, can be transformed into organic fertilizer
or in organic gas that can be used as fuel. The process of transforming biomasses
exploits several techniques, such as anaerobic digestion, pyrolysis, torrefaction,
fermentation. However, currently they are not optimally utilized. Waste resources
are complex materials that are strongly varying in terms of composition, quantity
and quality. Unknown quality of waste resources might hinder their use as fertilizer,
since they can contain environmental pollutants, pathogenic microorganisms and
microplastics. This is why it is essential to ensure the quality of the inputs to get
high value products.

3It sets the basic concepts and definitions related to waste management, including definitions
of waste, recycling and recovery.

36



Blockchain 2.0: Tools and Use Cases

3.2.2 Digital Ledgers Technologies and Circular Bioecon-
omy

Due to their nature, DLTs are today attractive tools to solve the main supply
chain management challenges on circular economy use cases. A huge variety of
different sectors, such as the fast-fashion one, are approaching a circular economy
model in their businesses by including innovative frameworks or services, blockchain
based, into their tech-stacks to enable transparency, traceability and security. Es-
pecially for the fast-fashion sector, it is possible to already find multiple examples
of architectures and strategies that exploit very well the possibilities offered by
different blockchains. On the other hand, this is not the case for the waste man-
agement sector, and that is why this thesis aims at giving a little contribution by
proposing a PoC for a real use case.

Tracing and tracking features have been mentioned more than once, but why
would they be so important for this purpose? All the amount of waste resources
produced by a (smart) city should be sent to landfills, waste recycling facilities,
composters and waste-to-energy generation plants. In this process, traceability
can be very useful to verify the authenticity of data and ethical practices involved
in the collection, processing, and shipment of waste. These kinds of features
would assist in monitoring the current location and state of the waste during their
treatment processes. It also offers an added value to the system since it assists
in identifying, storing and managing detailed data about the activities and the
outcomes of waste management operations[18]. Moreover traceability assures that
each operation made during the different stages of the waste collection, have been
done in compliance with the waste handling guidelines to protect the environment.

Finally a well designed system supported by robust infrastractures would enable
users to efficiently track the end of life of the city waste, encouraging them to
correct behaviours, for example, through a rewards system.

37



Chapter 4

Suitability Assessment of
DLT Frameworks

Due to the huge number of available frameworks, it is important to establish the
set of parameters to evaluate and pick the most suitable DLT for the considered
use case.

BioEnPro4To is a project in the context of a circular bioeconomy model, that
needs to be supported by a great quantity of sensors to efficiently monitoring waste
treatment processes. This means that a massive amount of Internet-of-Things
(IoT) devices is required. Because of this, to correctly and optimally exploits these
devices and the related architecture of the infrastructure, we can identify three main
factors to analyze in order to pick the most suitable distributed ledger platform:

• Scalability. Due to the nature of IoT scenarios, it is reasonable to think that
a DLT should be able to manage a huge real-time data streaming. However,
transactions on blockchains are often very slow due to the frequent adoption
of the PoW as consensus protocol, as it is currently considered the most
reliable one. This is the reason why the scalability is a weak point for a lot of
blockchains.

• Choice of the consensus protocol. In addition to the massive adoption,
the PoW is also well-known for its high-demanding computational power.
Because of this, PoW may not be the best choice for an IoT context which is
characterized almost entirely by low-power and low-energy devices. PoS may
be a good alternative for this case, however, it has not fully tested yet.

• Transaction fees. The majority of blockchains are currently characterized
by a certain cost that users have to pay, to miners or validators, in order to see

38



Suitability Assessment of DLT Frameworks

their transaction confirmed. This is due to the low scalability of the system,
in fact, when the network is congested, miners and validators tend to favor
users willing to pay higher fees to see their transaction confirmed. This is
unfeasible for the analyzed scenario, where a large number of devices might
have the necessity to send even hundreds of transactions per day.

4.1 DLT Frameworks Comparison

In collaboration with Concept Reply, we have considered a few DLTs imple-
mentation to compare, in order to explore and analyze benefits and disadvantages
of each platform, in relation to the previously mentioned factors.

The comparison table below (Table 4.1) reports a summary of the most im-
portant features and characteristics of each chosen platform:

1. Ethereum. The blockchain with the greatest ecosystem right now. It
guarantees a huge level of security and flexibility due to its solid smart
contract infrastructure and token ecosystem.

2. Hyperledger Fabric. It is a modular blockchain framework oriented
to developing blockchain-based products, solutions and applications using
plug-and-play components that are aimed at a private enterprise use.

3. IOTA. Although it is still immature, IOTA is constantly growing day by
day to provide a solid distributed platform that would offer the best tools for
the Internet of Things and the Machine-to-Machine (M2M) economy,
without compromising scalability and decentralization, at no cost for the
end-user.

39



Suitability Assessment of DLT Frameworks

Ethereum Hyperledger
Fabric IOTA

Networks

Public (fees
must be paid
for transac-
tions)

Private
Public (no
transaction
fees)

Vision

Create the
greatest dis-
tributed plat-
form with the
largest ecosys-
tem thanks
to its solid
smart contract
programming
language.

Create a mod-
ular distributed
ledger platform
to build ad hoc
and private so-
lutions for com-
panies.

Provide an
innovative dis-
tributed ledger
platform to
enable IoT and
M2M econ-
omy, without
compromising
scalability and
decentraliza-
tion.

Consensus PoW
Voting-based
consensus
protocol

Tangle + small
PoW

Ledger Structure Blockchain Blockchain Tangle

Future Improvements

Serenity Up-
date (Ethereum
2.0-2021/2022).
It includes the
transition to
a PoS based
consensus.

Minor im-
provements
for the execu-
tion of smart
contracts.

Coordicide Up-
date (IOTA 2.0-
2021/2022).
It includes
improvements
for consensus
protocol, smart
contracts and
the removal of
the Coordinator
component
to enable the
true decentral-
ization of the
platform.

40



Suitability Assessment of DLT Frameworks

... Ethereum Hyperledger
Fabric IOTA

Advantages

(i) Flexibility of-
fered by smart con-
tracts that permit
a huge variety of in-
teraction with the
ledger.
(ii) It is the most
mature and reli-
able platform of
the three.

(i) Its consensus
protocol offers a
mechanism to re-
duce the compu-
tational and time
cost for creating a
transaction.
(ii) It is a mature
platform adopted
by many compa-
nies in their busi-
ness.

(i) It has been de-
signed for IoT ap-
plications. This en-
sures low-end de-
vices to be suitable
to improve scalabil-
ity and decentral-
ization in the net-
work.
(ii) Feeless transac-
tions

Disadvantages

(i) Every trans-
action on the
blockchain has
a cost, both eco-
nomically and
energetically.
(ii) The current
version is not IoT-
compatible yet.

(i) The need to
implement a pri-
vate network leads
to increase costs
in terms of money
and time for the de-
velopment of a pro-
totype.
(ii) The architec-
ture is not fully de-
centralized (Non-
partition tolerant)

(i) The platform
is still in a de-
velopment phase,
indeed many im-
portant features,
just like smart
contracts, are not
fully available yet;
(ii) After a certain
amount of time,
transactions that
don’t involve coin
exchanges are
deleted. To solve
this problem, it is
necessary to install
a permanode
called Chronicle.

Table 4.1: Features and characteristics comparison among DLT frameworks.

Considering the information reported in the comparison table, and without
going into detail, we have drawn some conclusions:

• Ethereum is the most mature, reliable and versatile platform, however it
does not suits very well for the purpose of the project: it is well known
that the Ethereum is one of the most expensive blockchains in terms of

41



Suitability Assessment of DLT Frameworks

transaction fees and, although smart contracts could be an added value for
future improvements, it is not, right now, the focus of the PoC. Finally it is
not the best platform to interact within an IoT environment due to the low
scalability.

• Hyperledger Fabric, on the other hand, fits better for a waste management
system where low-power devices are a fundamental part of the architecture.
However, its permissioned blockchain nature, makes Hyperledger Fabric inap-
propriate for a regional project as it is BioEnPro4To, in terms of maintaining
costs, to give then free access to the citizens of the entire Piedmont. Moreover,
aspects such as decentralization, transparency and resilience are weaker.

• IOTA, instead, offers interesting features for the case. It is natively designed
for the world of the IoT, and its feeless nature allows easier integration of low-
end devices. Moreover it provides a great variety of frameworks for developers
that rely on the IOTA ledger, the Tangle, ensuring flexibility and great synergy
among them to enable all the features required by the project. Finally it is
a platform with great potential that might meet every future need of this
complex circular bioeconomy scenario.

42



Chapter 5

History of IOTA

Digital revolution is characterized by the convergence of technologies: from
cloud computing to edge computing, artificial intelligence, big data, IoT, and DLT.
This is pushing communities to progressively switch from the physical to the digital
world. In this context, the IoT adoption is increasingly becoming an integral feature
of many modern systems often coupled with the use of DLT/blockchain. The fusion
between IoT and DLT is an unprecedented paradigm shift that is expected to
disrupt both current and future systems in various fields: in fact, blockchains have
exactly what is needed to solve the vulnerabilities of IoT, in particular they solves
security issues derived from the use of public trustless environment to connect
each device to each other. Moreover the distributed and peer-to-peer nature of
DLTs allows to easily handle the shortcomings of client/server models in Cloud-IoT
solutions. However, as we know, we are at an early adoption stage because there are
some significant challenges to overcome including scalability, data privacy, efficiency,
storage, interoperability and more others. In addition to this, there is still no global
consensus on what should be the best practices that specify how blockchain should
be utilized in IoT[19].

This is where IOTA comes in. With this project the founders of IOTA paid
particular attention to the sector of the IoT and M2M economy, enabling a huge
variety of new possibilities through the implementation of a totally different DLT
if compared to classic blockchains. If the project turns out to be successful, IOTA
would allow micropayments that will let the IoT and DLT industry to rapidly grow,
thanks to its fee-less model.

43



History of IOTA

5.1 What is IOTA?
IOTA is an open-source project and cryptocurrency with the aim of being faster,

more efficient and more decentralized than Bitcoin. The word “IOTA” also
refers to the main protocol used by the ledger. What makes IOTA peculiar is the
data structure used for its distributed ledger, called The Tangle. Differently from
the most existing cryptocurrency that are based on blockchains, IOTA uses this
particular ledger whose structure in math is known as DAG (Directed Acyclic
Graph). The Tangle is a feeless and permissionless DLT used to track and process
transactions. It has been designed to overcome the common blockchains limitations,
such as low scalability or the need for prohibitive computational power deriving
from the PoW consensus mechanisms, like for Bitcoin.

Thanks to the Tangle, IOTA is able to join the miners and users figures in one
single entity. This concept removes the need for transaction fees and the mining
process. All the IOTA coins (IOTAs) are already distributed, so when new transac-
tions are validated, no more IOTAs are created. In fact there is no real financial
incentive for the validators, contrary to Bitcoin and other PoW based blockchain:
the IOTA project relies on the vision of a community driven free platform, designed
to be more efficient as the number of nodes increases. Moreover, in the near future,
even common devices such as smartphones or IoT ones would be able to validate
transactions, so the incentive to join the network would be just making the system
working better. Fortunately, despite this incentive could appear underestimated,
the practice tells us differently, and the IOTA network keeps growing.

The lack of transaction fees enables microtransactions which are infeasible on
blockchains such as Bitcoin or Ethereum.

IOTA is not just an application for cryptocurrency exchange, indeed it provides
a series of tools that act as upper layers built on top of the Tangle in order to allow
users develop actual applications for a great variety of use cases. From a general
point of view, IOTA allows to develop applications with these features:

• Authenticity and Integrity: as it relies on a distributed ledger implemen-
tation, data are immutable and authentic by design.

• Decentralisation: IOTA is driven by a peer-to-peer network using a consen-
sus protocol to guarantee the correct functioning of the system.

• Confidentiality: although the entire ledger is public and available to anyone,
transactions are secured through digital signatures; moreover additional data
can be made accessible only to certain selected users thanks to cryptography.

44



History of IOTA

• Microtransactions: IOTA allows to send little amounts of the currency
without any fee. This would open the doors to a huge number of new different
approaches for many unsolved problems. When a node issues a new transaction
on the network, it must approve two previous transactions that are awaiting
for validations. This mechanism makes IOTA potentially infinitely scalable,
because a greater number of new transactions implies a greater number of
validated transactions, that would increase the speed and the security of the
network.

5.2 The Tangle
The Tangle is a novel kind of distributed ledger architecture that is based, as

we already mentioned, on a DAG. IOTA doesn’t use the traditional design applied
to most blockchain networks: instead of chaining blocks one after another, in the
Tangle each block references two previous blocks. Because of this rule, the tangle
evolves always along a specific direction that represents somehow a timeline that
gives us a sort of chronological order for the transactions.

Figure 5.1: Tangle vs common blockchains representation1.

We can observe how it differs from a common blockchain in Figure 2.9. Each
node of the graph is a transaction:

• The transaction ‘a’ is called genesis transaction: we said that all IOTAs
have already been distributed, and the genesis transaction is the special

1Credits: apriorit.com

45

https://www.apriorit.com/images/articles/connecting-large-scale-iot-smart-city-solution-to-iota-network/IOTA-Tangle-vs-traditional-blockchain.png


History of IOTA

Figure 5.2: Simple representation of the Tangle2.

transaction that dealt with the entire minting process of the IOTAs. No more
IOTAs will be ever forged in the future.

• The orange and the grey transactions are called tips: a tip is a transaction that
has not been approved by any other transactions. We say that a transaction A
directly approves a transaction B ,if there is an oriented edge that connects
A to B in this specific direction. Instead, we say that A indirectly approves
B, if there is a path of length greater than 1 that connects A to B in this
specific direction.

• We refer to green transactions as confirmed transactions: we say that a
transaction is confirmed, if it is directly or indirectly approved by every tip of
the Tangle.

• The blue transactions are approved but not confirmed yet: if there are
100 tips and a blue transaction is approved by 70 of them, then the transaction
is considered to be 70% confirmed.

As the Tangle got inspired by a DAG model, it inherits all the properties of a
graph. We define Height of a transaction, the length of the longest path from that
transaction to the genesis transaction. If we use as example the Tangle represen-
tation in Figure 5.2, the Height of the transaction ‘6’ is 4. In fact, the longest
path from ‘6’ to the genesis transaction ‘0’, is the one in the middle (‘6-5-2-1-0’)
that has exactly 4 links. Instead the Height of the transaction ‘4’ is 2.

Another inherited property is the Depth. It is the number of transactions
that are encountered in the longest inverse path that starts from the considered

2Source: blog.iota.org

46

https://blog.iota.org/content/images/downloaded_images/the-tangle-an-illustrated-introduction-4d5eae6fe8d4/0-ugPaad_14ESxwsPi.jpg


History of IOTA

transaction to a tip. Using the same example as before, the Depth of the transaction
‘4’ is 2 (‘4-6’) while the Depth of the transactions ‘2’ (‘2-5-6’) or ‘3’ (‘3-5-6’) is 3.

5.3 The IOTA Network
The P2P network of IOTA is composed of several nodes distributed through-

out the world. A node is the core unit of the network, and it runs the software
that gives reading and writing permissions on the Tangle to it. The first ver-
sion of the nodes software was the IOTA Reference Implementation, or IRI,
written in Java. This is now deprecated in favor of a new version, called Hor-
net, written in Go and runnable even in low-end devices such as a Raspberry Pi[20].

When a node, independently from its location in the world, issues a new transac-
tion, it tries to forward the transaction to all of its neighbouring nodes. As in every
other distributed system, this broadcasting method allows each node to validate all
the transactions and eventually store them in its copy of the ledger, after having
checked if they already exist in there or not; in fact nodes may have different
transactions in their ledgers at any time. To ensure that this inconsistent state
lasts as short as possible, each node must synchronize its state with the rest of the
network. We say that a node is synchronized when it has solidified all milestones up
to the latest one, which in practice it means that in the software run by a node, the
two values latestMilestoneIndex and latestSolidSubtangleMilestoneIndex
are the same. More details about these two values, and milestones in general, are
reported in the next sections.

‘Solidification’ is the process in which a node asks its neighbors for the history
of all milestones in the Tangle, starting from an entry point milestone and ending
at the latest one. When a node has a milestone’s history up to the entry point
milestone, it marks that milestone as solid, and starts the process again from the
next milestone. As a result, the older the entry point milestone is, the longer
solidification takes.

Another interesting mechanism is the possibility of a node to create an offline
version of the Tangle that would be eventually validated and attached to the online
Tangle in the future. This would be useful in such those cases where it cannot be
provided a stable internet connection: for example, if nodes, connected to sensors
on containers being shipped, lose their internet connection when ships are in the
middle of the ocean, they could create an offline version of the Tangle, and then
submit it to the real one, once the connection is restored. This process is called
partitioning.

47



History of IOTA

Figure 5.3: Offline transactions (Partitioning)3.

5.4 Ternary Number System
When IOTA has been designed, ternary logic has been chosen to run through

the entire project. Before we clarify why IOTA relies on ternary logic, we first need
to take a closer look at the two systems that are relevant to this document.

• The binary system. A bit (a binary digit) can assume exactly two states:
0 and 1. Eight bits make a byte that can represent 28 = 256 different
combinations.

• The ternary system. A trit (a trinary digit) can assume exactly three
states: −1, 0, 1 (also known as balanced ternary system). Three trits make a
tryte that can represent 33 = 27 different combinations.

The opposite number of each balanced ternary digit, is determined by swapping
each -1 by 1 and vice versa. Thanks to this, negative numbers can be represented
just as easily as positive ones: in fact no negative sign needs to be noted, such as
the decimal system, or particular method to represent negative numbers, such as
the two’s complement as in the binary system.

This circumstance makes some calculations in the ternary system more efficient
than in the binary one. Since trytes are even more complex than bytes, it is

3Source: blog.iota.org

48

https://blog.iota.org/content/images/downloaded_images/a-primer-on-iota-with-presentation-e0a6eb2cc621/1-NsW5kfMmpYgonRSEsvZyag.png


History of IOTA

important to make them more readable. This is done by converting them into some
kind of other language. For this purpose, the IOTA Development Team has created
the tryte alphabet. This consists of the number 9 and the capital letters A− Z.
This makes a total of 27 different digits, exactly the number of combinations of a
tryte. Thus, each combination of a tryte can be represented by a digit.

Tryte Dec Char Tryte Dec Char
0,0,0 0 9
1,0,0 1 A -1,-1,-1 -13 N
-1,1,0 2 B 0,-1,-1 -12 O
0,1,0 3 C 1,-1,-1 -11 P
1,1,0 4 D -1,0,-1 -10 Q
-1,-1,1 5 E 0,0,-1 -9 R
0,-1,1 6 F 1,0,-1 -8 S
1,-1,1 7 G -1,1,-1 -7 T
-1,0,1 8 H 0,1,-1 -6 U
0,0,1 9 I 1,1,-1 -5 V
1,0,1 10 J -1,-1,0 -4 W
-1,1,1 11 K 0,-1,0 -3 X
0,1,1 12 L 1,-1,0 -2 Y
1,1,1 13 M -1,0,0 -1 Z

Table 5.1: Ternary Alphabet

5.4.1 Advantages of a ternary system
When mechanical calculating machines were replaced by electrical ones, the

main components were relays, and they could only assume the states “on” and
“off”. Then, relays have been replaced by transistors that still assume the states
“on” (voltage “on”) and “off” (voltage “off”), but characterized by a better fault
tolerance and efficiency.

Today’s computers consist of many interconnections and components that are
used to transmit and store data, and to communicate with other components. These
still use the binary system with the two clearly separated states on=1 and off=0.
Binary systems are still used because of their high speed in changing circuit states.
Transistors are very fast and effective switches. However there is a disadvantage
that comes from the use of transistors themselves when it is needed to increase the

49



History of IOTA

speed of a chip. To do so, more transistors have to be built on the chip by making
it larger or by reducing the size of the single transistor. Currently the common
trend is the second one, but it causes the disadvantage of higher heat generation
and greater susceptibility to faults.

Using a system with three states would have advantages because it could rely
on other basic elements instead of transistors to produce more efficient integrated
circuits. Ternary is more efficient because it has the highest density of information
representation among other integer bases. Thus, in the ternary system, larger
numbers can be accommodated in less memory. For example, the decimal number
6 in the binary system would be the number 110 (needs 3 digits), while in the
ternary system would be 20 (one digit less). The efficiency of a numbering system
to the base of 3 is more efficient about 1.58 times than the one to the base of 2.
In other words, the ternary system permits to save extra memory and, moreover,
calculations would run faster with a lower clock number of the chip.

The effort required for a ternary system to build a complex logic circuit within
the CPU can be reduced to about 36% compared to an equivalent binary system.
This leads to a corresponding energy saving in addition to a space-saving smaller
design of the microcontroller. However ternary boards have not been used in
the computer industry yet, because the hardware implementation is much more
complex and because of the lack of mass market support[21].

5.5 Seeds, Addresses and Keys
As for Bitcoin and for each other cryptocurrency, IOTA uses addresses as “bank

accounts” that are associated to a particular private key from which they are
generated. Whoever owns these keys, has access to the funds of each related
address. Each key and so each address can be derived starting from a particular
secret string called seed. An IOTA seed is a 81 character long string which maps to
81 trytes, and in fact, it is made of characters from the ternary alphabet. An IOTA
Seed can be generated safely with the following command in a Linux shell prompt:

cat /dev/urandom | t r −dc A−Z9 | head c$ {1:−81}

To transfer IOTAs from an address to another one, it is needed to sign a
transaction with the private key of the source address, proving the ownership of
the funds to the other nodes. Thanks to this mechanism, addresses can be safely
shared to exchange cryptocurrency, because only the seed owner knows the private
key of a certain address.

50



History of IOTA

Figure 5.4: Representation of address management after a transaction4.

An address is characterized by a specific security level and a index:

• Index: a number between 0 and 9.007.199.254.740.991.

• Security Level: a number between 1, for the lowest security level, and 3, for
the greatest security level.

A tuple made of the same seed, index and security level, will always give the
same output address.

Once a transaction is sent, the source address should never be reused as each
output reveals part of the private key. Receiving outputs can be pooled in a single
address, but once that address is emptied it shouldn’t be reused for either sending
or receiving. The seed is not compromised if funds are received in an address that
has been already used for an output transaction, the funds are. This is due to the
quantum-resistant cryptographic scheme used by IOTA, called Winternitz One
Time Signature (OTS) Scheme.

For this reason, when a transaction with a certain source address with the index
x is built, IOTA automatically generates a new address with index x + 1, and

4Source: reddit.com

51

https://www.reddit.com/r/Iota/comments/7cze8u/iota_address_reuse_explained_for_laymen/


History of IOTA

moves the funds from the previous to the new address as for the parallelism of the
piggy banks in Figure 5.4.

When an address has been used for an output transaction, the security for
the next transactions is reduced and reduced. In fact, because of the use of the
Winternitz OTS scheme, a part of the private key of the source address is revealed
after a single output transaction. Using an address to make more than one output
transaction, will compromise the security of the private key by 50% for each
iteration, making the address more susceptible to cyber-attacks.

5.6 Structure of a Transaction
Every transaction in the Tangle is identified by a hash (digest). To make it

simple, a transaction is like a single instruction that allows to deposit or to withdraw
IOTAs from an address or just to send some data without exchange of coins. In
this section we will describe the possible types of a transaction, their differences
and their structure.

Until now, we referred to the nodes that compose the Tangle as single transac-
tions (the squares represented in figure 2.9 and 2.10), but this is not really correct.
Each node of the Tangle is instead a sort of “packet” that wraps a set of indivisible
transactions that must be entirely accepted or rejected. These packets are called
bundles. To explain it in an easy manner, if there is a transaction that deposits
some coins into an address, this must be linked to another transaction which deals
with the withdrawal of those coins from another address: these two transactions
must be in the same bundle.

We now suppose that a certain bundle is published to the Tangle, and in order to
make the bundle valid, it must confirm two tips as we already said. Each transaction
within the bundle is made of a set of fields that defines its characteristics:

• Hash: this field uniquely identifies the transaction on the Tangle. This value
is generated by computing the hash of the trits of the transaction.

• signatureMessageFragment: it contains the signature or a message, which
may be fragmented over several transactions of a bundle. If a transaction
records a transfer of funds, then the digital signature must be applied. Instead
if the transaction just contains a message, no signature is required.

• Address: it contains the address id related to the transaction.

52



History of IOTA

• Value: if it is greater than zero, then the Address field, refers to the recipient
address, otherwise if the value is lower than zero, it refers to the source address.

• Timestamp: Unix epoch value that refers to the publication of the transaction
on the Tangle.

• currentIndex: it represents the position of the transaction within the bun-
dle. If this value is equal to zero then the related transaction is called tail
transaction, instead if it is equal to the lastIndex value it is called head
transaction.

• lastIndex: the last position that a transaction can assume within the bundle.
The total number of transactions is equal to lastIndex + 1.

• bundle: it is the hash of the entire bundle. It is generated by computing the
hash of all meta-data of each transaction in the bundle.

• trunkTransaction: if the transaction is the head transaction, then this field
contains the hash of the first transaction of tip 0, otherwise it contains the
hash of the next transaction within the same bundle.

• branchTransction: if the transaction is the head transaction, then this field
contains the hash of the first transaction of tip 1, otherwise it contains the
hash of the first transaction of tip 0.

• tag: this is a name defined by the user to easily find the transaction in the
future. This field may be empty.

In addition to this, transactions that belong to the same bundle can be of three
different types:

1. Input Transaction. It contains the instruction to withdraw IOTAs from an
address. In order to be valid it must contain: a negative value in the field Value,
an address containing at least the import of the withdrawal and at least the first
fragment of a valid digital signature in the field signatureMessageFragment.

2. Output Transaction. It handles instead the deposit of coins into another
address. Transactions of this type are easily recognizable because the value of
the field Value is always greater than zero and the address doesn’t belong to
the sender.

3. Zero-value Transaction. This transaction doesn’t handle coins but just a
message. The message may be fragmented so the field signatureMessageFragment
could contain a piece of the message or could contain it entirely.

53



History of IOTA

5.7 Consensus in IOTA Network
Sending a transaction could be summarized in these 4 steps:

1. Construction of the transaction. The node that wants to issue a transac-
tion (your computer or smartphone or every other device that is capable of
running the node software) is in charge of creating it and signing it with its
private key.

2. Tip Selection. Once the transaction (the bundle) is added to the Tangle, it
must select two tips to approve. Each selected tip must be validated to be
sure that the sub-tangle referenced by it contains valid transactions. Then,
the new transaction becomes a new tip.

3. Proof-of-Work. The node checks that the selected tips are not in conflict
with each other, meaning that there are not double spending events. Then, a
simple PoW is necessary to prove that the new transaction has been correctly
validated by a node. The PoW mechanism is similar to Bitcoin’s. The
main purpose of it, is to force a computational cost, even if small, to emit a
transaction in order to hinder spam and sybil attacks. The mechanism makes
the control of the majority of the transaction of the entire network infeasible
for a malicious user. In fact, computational power is a very expensive resource
to obtain, as we repeatedly said.

4. Transmission. Finally the transaction is broadcasted through the IOTA
network to the neighbouring nodes that will send the information to their
neighbours and so on.

Since points 1, 3 and 4 should be now clear, we want to focus on point 2 to
understand in detail how tips are selected, and why this is an essential step for
consensus in IOTA.

5.7.1 Tip Selection
The process is executed by each node willing to publish a transaction to the Tangle,
by using the Weighted Random Walk (WRW) algorithm. The goal of the
WRW is to generate fair samples starting from a complex distribution. IOTA uses
it to:

• Select two tips when a transaction is created, in order to check its validity.

• Determine if a transaction has been confirmed.

54



History of IOTA

Figure 5.5: Weights and cumulative weights for a transaction5.

The IOTA foundation chose this algorithm primarily to avoid lazy tips, since
nodes could potentially approve whatever transaction. A lazy tip is one that
approves old transactions rather than recent ones. It is lazy because it does not
bother keeping up to date with the newest state of the tangle, and only broadcasts
its own transactions based on old data. This would not help the network, since no
new transactions are confirmed[22].

Each transaction (bundle) in the Tangle is characterized by a weight value
and a cumulative weight value. The first is an intrinsic value of the transaction,
while the second is a value equal to the sum of the weights of both direct and
indirect approvers, plus the weight of the current transaction. This means that
older transactions should have a higher weight than the latest ones. An example
of how weights are computed is shown in Figure 5.5, where for each transaction,
the cumulative weight (number in bold in the top-left corner), and the weight (the

5Source: The Tangle - Whitepaper

55

https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf


History of IOTA

Figure 5.6: Wanted vs Lazy behaviour6.

small number in the down-right corner) are reported.

For simplicity, IOTA attributes the value 1 to the weight of all transactions. So
the formula to compute the cumulative weight of a transaction X becomes:

Wcum,X = 1 + |direct|+ |indirect|

where |direct| and |indirect| are respectively the numbers of the direct and indirect
approvers.

The strategy to decentivize the approval of lazy tips is to create a system that
pushes nodes to use the WRW algorithm that prefers to walk towards heavy trans-
actions (transactions with a higher cumulative weight) rather than light ones. If the
majority of the nodes in the network uses this algorithm, then the others will be pe-
nalized because lazy tips are unlikely to be approved, since the walks towards them
have probably a smaller cumulative weight. To better explain this behaviour, we
consider the example shown in Figure 5.6. Transaction 16 is, in this case, a lazy
tip, and in order for it to get approved, the “random walker” must reach transaction
7 and then choose transaction 16 rather than transaction 9. But this is unlikely to
happen, because transaction 16 has a cumulative weight of 1 while transaction 9 has
a cumulative weight of 7. This mechanism effectively discourages lazy behaviour[22].

At this point, it is important to understand that randomness is still crucial,
otherwise unwanted behaviours might happen. In particular, the main problem is

6Source: blog.iota.org

56

https://blog.iota.org/the-tangle-an-illustrated-introduction-f359b8b2ec80/


History of IOTA

Figure 5.7: Tangle representation without using the random component for tip
selection7.

the one reported in Figure 5.7: if we insist on choosing only the heaviest trans-
action at any given point, a large percentage of the tips will never get approved,
creating a corridor of approved transactions (white squares), and forgotten tips on
the sidelines (gray squares)[22].

For this purpose it is essential to find a balance between the randomness and the
bias towards heaviest transactions. This balance is achieved through the parameter
α that sets how important a transaction’s cumulative weight is. If α is equal to
zero, then weights become useless, otherwise if we set α to be very high, there is
no randomness. This implies that the real challenge is to fine tune this parameter.
The right value of α is defined by the Monte Carlo Markov Chain.

Once the two tips are selected, they will be verified and eventually approved.
Approving a transaction involves verifying that it does not breach the rules of
consensus: in particular, that none of the accounts have negative balances and that
the chosen transactions don’t contradict each other.

5.8 Snapshot
IOTA is a public and decentralized platform, working for 24 hours per day and

for 7 days per week, and where everyone can store an unlimited amount of data
on the Tangle just by computing a simple PoW. As the stored data size increases,
the need for the storage increases too, so the costs to maintain the entire system

7Source: blog.iota.org

57

https://blog.iota.org/the-tangle-an-illustrated-introduction-f359b8b2ec80/


History of IOTA

will be very high. To contain the size of the entire ledge,r and consequently the
expenses, nodes could execute local snapshots.

A local snapshot is a process that involves a single node recording the entire
ledger’s state in a local file. During this process, each transaction with the same
address is collapsed in a single transaction with a positive value representing the
summary of the entire history of that address. Zero-value transactions are discarded.
As result an “image” of the positive balances for each address is stored in the file.
Thanks to this mechanism, the synchronization process among neighbours is much
faster because the Tangle contains way less transactions than before.

In many use cases, the IOTA Tangle data needs to be stored for a long period
of time. For example, financial data must be kept for 10 years in some cases (all
detailed transactions), or, for instance, all personally identifiable information (PII)
must be preserved for life[23]. For this purpose, there exists a node that, instead of
dealing with local snapshots, it records the complete Tangle history. In the IOTA
ecosystem, we refer to it as permanode or Chronicle .

5.9 Coordinator and Milestones
The cumulative weight of a transaction is considered the most important metric

to define the trust level of a transaction. Once this level reaches a threshold greater
than 95%, the transaction can be almost certainly considered verified and approved.
This means, for a hypothetical seller, that it’s very hard that a certain payment
that he receives is an intent to commit fraud, when this trust level is high enough.

However this is not totally unlikely to happen. In fact, if the buyer owns enough
computational power to do a double spending attack, he has just to issue a new
transaction where he moves his IOTAs to another address that he owns, and
makes it approve two old transactions that do not approve the one in favour of
the seller. At this point, using his computational power, he should just issue as
many transactions as possible in order to increase the cumulative weight of the
fraudulent transaction. In this way he is capable of making it trusted for the rest
of the network, that will not approve anymore, directly or indirectly, the original
transaction.

As for Bitcoin this is unlikely to happen, because the dishonest actor should
own a huge amount of computational power, but while Bitcoin is an already proven
network with a massive installed base in terms of number of nodes, IOTA, in its
current state, cannot be supported by such a thing. This means that, while IOTA

58



History of IOTA

is yet at an immature stage, it is more exposed to double spending attacks due to
its low transaction rate of the network.

For this reason, to improve the overall security of the network, IOTA has intro-
duced an additional consensus mechanism that is temporary, until the network will
grow enough. This mechanism relies on a particular component called Coordinator.
This component is an application that is run by the IOTA Foundation, and this is
the only reason why IOTA cannot be considered as a fully decentralized system
yet.

At regular intervals, the Coordinator sends bundles that reference and approve
two new random transactions in the ledger. The tail transaction of the bundle
signed by it is called a milestone. When a milestone is issued, every transaction
that is directly or indirectly referenced by it, is considered 100% trusted and verified.
This means that the Coordinator is in charge of establishing the direction of the
growth flow of the Tangle.

Each transaction that precedes a milestone can be of two types: a transaction
can carry a certain amount of IOTAs, modifying the balances of two or more
addresses, or it can be a zero-value transaction that just carries some messages. A
transaction of the first type, due to its nature, can cause potential troubles to the
network, such as double spending attacks, and so it must be always confirmed by
each node. Instead a transaction of the second type is always considered confirmed
if referenced by a milestone.

Among the group of milestones, there are a few that are considered more
important than the others:

• latestMilestone: it is the last milestone issued by the Coordinator, and its
value is represented by the digest of the latest transaction that the node has
received by the Coordinator. The index that refers to this milestone is the
latestMilestoneIndex.

• latestSolidSubtangleMilestone: it is the digest of the last milestone, ap-
proved by the Coordinator, that is considered solid. A milestone is considered
solid when it references a subset of milestones that is bigger enough to be
considered secure. This value is included in each new transaction. If a trans-
action reports a solid milestone that it is not up to date, the transaction
might be never approved. The index that refers to the solid milestone is the
latestSolidSubtangleMilestoneIndex.

59



History of IOTA

5.10 IOTA 1.5 - Chrysalis
IOTA has been criticized due to its unusual design, of which it is unclear whether

it will work in practice. As result, IOTA was rewritten from scratch leading to
what is called Chrysalis update (or IOTA 1.5), which was launched on 21st

April 2021 and terminated on 28th April 2021.

In this update, controversial decisions as a ternary encoding and quantum proof
cryptography were left behind and replaced with established standards.

This update is the intermediate stage for the IOTA network, that lays the
foundations for the removal of the Coordinator in the future IOTA 2.0 network.

With this update, the entire network becomes more efficient overall allowing for
a validation of transactions boost. Here’s the major changes in more details:

• Removal of theWinternitz OTS Scheme: before chrysalis update, IOTA
had used this scheme because of its extreme security. However this high level
of security has a cost: as we have already discussed, once a transaction is
issued from a certain address A to another address B, and it is signed with the
Winternitz OTS by the owner of address A, a small part of the private key is
revealed. This led to using an address only once when it is used as the source
of the transaction. As result, the use of the IOTA ecosystem was more complex
both for the users and developers. The scheme has now been replaced by the
Edwards-curve Digital Signature Algorithm (EdDSA). This is a well
trusted signature scheme similar to Bitcoin one. Thanks to this replacement,
now it is possible to static reuse addresses as source of transactions.

• Switching from ternary bundle to atomic binary transactions: origi-
nally it was thought that ternary computations were more efficient than binary
ones. It might be still true, but only under the hypothesis that computations
are done by ternary based processors that don’t exist in the market. So after
years of use of a ternary based protocol, the IOTA Foundation decided to
re-examine the previous choice and switch to a traditional binary based
protocol. They also removed the concept of a bundle of transactions.
Now bundles don’t exist anymore and each node of the Tangle is a single
transaction. These changes enable:

– the reduction of validation requirements.
– lower network overhead and stronger spam protection.
– lower maintainability and implementation efforts of IOTA’s core node
software.

60



History of IOTA

• Implementation of UTXO model: UTXO (Unspent Transaction Output)
simply means that instead of keeping track of only the balances, you also
keep track of the origin and the destination of them and when they are spent.
Previously IOTA used a balanced model that maps every address to the
associated balance: this method limits how efficiently IOTA can deal with
conflicts like double spend attacks. These situations are dealt with, by using
“the heaviest subtangle wins” similar to how Bitcoin uses the “longest chain
wins”. Now the new UTXO model, that carries a little more detail, will help
to solve these problems and improve the efficiency of the overall network with
just a little cost that is the increase of the single transaction size.

The Chrysalis update also open the doors to other new possibilities:

• Support for colored coins

• IOTA smart contracts

• Digital Assets

• New Developer Libraries

• Programmable Wallets

5.11 IOTA 2.0 - Coordicide
IOTA is currently not fully decentralized because of of the Coordinator. As

discussed before, this component is a security mechanism in IOTA, that helps to
reach consensus in the network and keep it secure. Because of this mechanism, the
Coordinator acts as a single point of failure: if the Coordinator does not work
properly, neither does the Tangle.

Right now, it’s not possible to simply remove the Coordinator because the
absence of this component could expose the whole network to the risk of some
cyber-attacks from dishonest actors. In response to this, the IOTA Foundation
has developed a plan, called Coordicide, that would permit the safe removal
of the Coordinator. This would be able to solve not just this decentralisation
problem, but also the so-called Scalability Trilemma. The trilemma claims that
a DLT cannot achieve at the same time decentralisation, scalability and se-
curity properties, but instead if two of them get stronger, the third becomes weaker.

Coordicide is a six part modular solution, allowing for an easy replacement
or upgrade of one of these modules once it will become obsolete.

61



History of IOTA

Figure 5.8: Scalability Trilemma representation. It is the most difficult challenge
to face because usually, in order to improve one of these properties, a cost must be
paid and this cost is often a compromise in terms of performance for one of the
other properties8.

5.11.1 Shimmer

The most important module is Shimmer which is a new voting scheme in the
IOTA consensus layer. The name refers to a behaviour observed in nature, where
swarming insects synchronize their movements to defend themselves. Without any
centralized authority they decide when to change their state entirely by observing
the behaviour of the near peers. Shimmer works in the same way just with nodes
instead.

Each node query other ones about their current opinion of the ledger and adjust
their own one based on the proportion of other responses they have observed.
Nodes will use a voting mechanism known as “Fast Probabilistic Consensus”
which is a quick and very accurate technique to see if the nodes all agree on the
same state of the ledger.

8Credits: SEBA Bank Ag

62

https://www.seba.swiss/


History of IOTA

5.11.2 Node Identities and concept of MANA
Other two modules of the Coordicide plan are about “Node Identities and

concept of MANA” . In a network without the Coordinator, a voting system
such as Shimmer is not valid if the nodes cannot be identified. Therefore, each node
generates a unique identifier that will be used to sign transactions or cast votes
to ensure authenticity. However, relying on node identities alone, would make the
Tangle vulnerable to sybil attacks where dishonest actors would try to control the
network by forging multiple fake identities. In order to deal with this situation,
IOTA introduces a reputation system called MANA.

MANA relies on the notion that reputation is difficult to gain but easy to lose.
Nodes gain MANA by propagating valid transactions and assisting the network, but
will lose MANA very quickly if it purposefully disagrees with the network. The more
MANA a node has, the more trusted it is, and the more trusted a node is, the more
transactions it is allowed to facilitate.

63



Chapter 6

BioEnPro4To

6.1 Project Purpose and Scenario
BioEnPro4To is the name of a project funded by the Piedmont region and POR

FESR1 2014-2020 , whose architectural design and implementation are entrusted to
Concept Reply (Santer Reply Spa). As reported in the official website2, the pur-
pose of the project is the enhancement of bioenergy and bioproducts obtained
starting from integrated conversion processes of organic fraction of municipal solid
waste (FORSU 3), primary biomasses, residuals waste and/or other waste materials
produced by the everyday life of the considered local communities.

In the following sections, a concrete solution will be proposed for one of the
supply chains involved in the project: the supply chain for the production of
compost. The PoC tries to solve the issues introduced in Chapter 3. In fact, it is
important to reiterate that one of the biggest challenges in the circular economy,
is the lack of an infrastructure capable of guaranteeing a safe products exchange
among parties. This means that, the physical exchange must be supported at
the same time by a trusted and decentralized information system that records
every interaction among each-other, and that enables the well known (and already
discussed) traceability and transparency features, through the immutability of data
provided by a distributed ledger technology. Traceability and transparency features
are the main purpose of the proposed implementation: the PoC consists of a system
capable of collecting, recording and consulting tamper-proof data over the Tangle
in order to provide, indeed, traceability and transparency for the supply chain

1Piano Operativo Regionale del Fondo Europeo di Sviluppo Regionale
2bioenpro4to.it
3Frazione Organica dei Rifiuti Solidi Urbani

64

https://www.bioenpro4to.it


BioEnPro4To

processes of waste collection, treatment and recycling. The role of each component,
included in the architectural design, will be discussed, focusing first and foremost
to the ones belonging to the IOTA ecosystem.

6.2 Use Case Analysis
For the PoC, we have considered an hypothetical case in which three categories

of actors are involved:

1. Trucks. Each truck of the fleet will be responsible for the day by day waste
collection. Thanks to sensors installed in the vehicles, they are able to collect
the required data such as the position coordinates of waste collecting points,
and weight of the collected organic waste.

2. Weighing Scales. They include sensors to record all the amount of incoming
wastes from the trucks for a specific plant.

3. Bio Cells. They are responsible for the waste treatments such as the anaerobic
digestion process. They include sensors to monitor the process conditions such
as the cell temperature or humidity.

The developed solution relies on this simplified case in which only a single stake-
holder manages the three categories of actors, but the implementation has been
designed in order to permit an extension of new categories and new stakeholders
to interact with.

In this scenario, the system would allow each actor to independently publish
their own recorded data to the Tangle, in order to store them in a safe and im-
mutable manner. These operations are essential to avoid single point of failure
issues within the system, thanks to the IOTA decentralization, and to ensure an
history of the assets that can be monitored in an efficient way. In fact, technical
operators belonging to whatever party of the supply chain, are allowed to easily
identify issues in each stage of each process without caring about the authenticity
of the data that is ensured by the underlying ledger. Moreover, logistic strate-
gies would be enabled. Also citizens would be finally allowed to easily verify how
wastes are actually treated and if the suggested ethical practices have been followed.

Finally, another benefit that indirectly offers a distributed ledger system is the
fact that none of the involved stakeholders has to maintain the shared infrastructure.
This guarantees a great flexibility because the system can be designed without
knowing who are and who will be the stakeholders that will join the supply chain.

65



BioEnPro4To

6.3 Overview of the System Architecture
Now that premises have been made, a deep dive into the system architecture

will follow. I developed the PoC during my internship in Concept Reply. In this
period, the IOTA platform has been explored and tested in the context of a supply
chain for the production of compost, as well as other technologies that have allowed
me to build the entire system.

The Figure 6.1 shows a high level point of view of the BioEnPro4To architec-
ture. Starting from the bottom, we can identify three layers:

1. Edge Layer. Each sensor of the actor is managed through the EdgeX
framework. It is an open-source Linux platform focused on the IoT Edge
Computing. With this platform it is possible to collect some data directly
from the sensors and then, they are sent to the IOTA network layer, by using
the MQTT4 protocol, and also to the YUCCA platform (in the application
layer). The latter is a mandatory requirement, requested by the Piedmont
region. This layer is not part of the proposed PoC, so data of each sensor have
been randomly created, to test the system.

2. IOTA Network Layer. The network layer, on the middle right side of the
figure, is the one responsible to wrap the data, coming from the edge layer,
into the structure compatible with the IOTA Streams framework. This is
one of the two frameworks of the IOTA ecosystem used in the PoC. Streams
is the component that allows the creation of secure channels, that are data
structures that lives on the Tangle, and whose messages are somehow linked
to each-other in a sequential manner. The channels are grouped in a tree
structure to make them easy to navigate through. This tree structure is
managed by a centralized server, that runs, under the hood, IOTA Streams
and IOTA Identity. This last component is the second used framework of
the IOTA ecosystem. Thanks to Identity, it is possible to create digital and
decentralized identities in order to enable authentication and authorization
mechanisms for each actor towards whatever stakeholder.

3. Application Layer. The last layer includes four planned applications/ser-
vices. The first one is a mobile application addressed to the technical operators,
allowing them to monitor and control the waste treatment process. It can
work in two different ways: in the first mode, the application subscribes
directly to the Tangle data streaming, while in the second one the application

4Message Queue Telemetry Transport - It is a lightweight, publish-subscribe network protocol
that transports messages between devices. The protocol usually runs over TCP/IP.

66



BioEnPro4To

Waste collection Treatment Distribution

IoT Gateways (EdgeX)

Data acquisition Data pre-processing

On field sensors SCADA GPS RFID

Exporting services

Distributed Ledger Services

Data Streaming

(IOTA Streams)

Identity Management

(IOTA Identity)
Smart Contracts*

End user

Mobile application for 

on field real-time 

control and 

monitoring

YUCCA Open data 

application and 

dashboard

Machine Learning for 

waste lifecycle 

optimization

Back tracing of  

bioproducts using QR 

code.
E

d
g
e 

L
ay

er
IO

T
A

 N
et

w
o

rk
A

p
p

li
ca

ti
o

n
 

L
ay

er

Waste generation

*Further improvements

Figure 6.1: BioEnPro4To Architecture.

retrieves data from the previously mentioned centralized server that caches an
updated version of the channels published to the Tangle. The second mode
has been introduced to boost the performance of the application, because the
mechanism to retrieve data directly from the Tangle is sequential. This slows
down the user experience if there are a lot of active channels. That’s why the
second mode is the recommended one.

The other service is provided through the regional open data platform, YUCCA,
where some of the processed data is published to be publicly available for third
party applications. The third and the fourth applications focus respectively
on machine learning algorithms, to optimize the processes involved in the
ecosystem, and on services for the end-users that allow them to know in detail
where the bioproduct comes from using, for example, QR codes.

However, only the first application has been developed during the implemen-
tation of this PoC. The others have been assigned to other partners of the
project.

67



BioEnPro4To

6.4 IOTA Streams
IOTA Streams is an organizational tool to structure and navigate secure data

through the Tangle. It organizes data by ordering it in a uniform and interoperable
structure and allows devices to communicate in a secure and private manner. It
defines the packetization structure, message typing, and cryptographic processes.
IOTA Streams is the natural evolution of the previous MAM (Masked Authenti-
cated Messaging) protocol. Thanks to its flexibility it allows to build cryptographic
messaging protocols, ideally with whatever transport system: currently the only
supported one, is of course, the Tangle, but it has been designed in order to allow
it to be extended in the future with other transportation layers such as TCP.

In this context, the Tangle can be described as a bag of unordered asynchronous
messages: in order for it to be exploited as a transport layer, messages need to be
extended with meta-data in order to enable packetization and sequencing. The first
one is nothing but an abstraction layer for Channels protocol, while sequencing
allows Channels protocol messages to be ordered in a suitable and convenient
manner[24]. The mentioned protocol will be described in the next section.

The framework includes other features such as:

• Sponge-based automation for messaging processing, data encryption and
authentication5.

• Ed25519 signature scheme (RFC8032) and X25519 key exchange (RFC7748)

• Pseudo-random generator for secure key generation

This framework is currently in the alpha stage and it is already compatible
with the new Chrysalis network.

6.4.1 Channels Protocol
Channels is a built-in Streams protocol for building secure messaging applica-

tions and it is based on the Publish/Subscribe design pattern. This pattern
is widely used to permit asynchronous communications among different objects or
processes, through an external component that acts as a transport medium (or
dispatcher), the Tangle in this case. This means that it is not required, for the

5In cryptography, a sponge function or sponge construction is any of a class of algorithms
with finite internal state that take an input bit stream of any length and produce an output bit
stream of any desired length[24]

68

https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/rfc7748


BioEnPro4To

sender of a message, to know the identities of the potential receivers. He just has
to send the messages to the dispatcher when needed. The receivers, on the other
side, have to contact the same dispatcher telling it they want to “subscribe” to
the stream of messages. This pattern solves a lot of issues that derive from the
lack of knowledge: for instance, it is not required to know how many subscribers a
particular channel has, or the identities of them.

In the context of the Channels protocol, a sender (or publisher) is named Author
and it is the owner of the channel, while a receiver is named Subscriber. Moreover,
there are two types of channels that the protocol provides:

1. Single Branch Channels. It is the most simple structure of a channel.
In this structure, each message is linked to each other as a chain. This is
recommended if a channel has just one publisher.

2. Multi Branch Channels. These kinds of channels, instead, enable more
flexibility at the cost of more complexity. With this structure, different and
complex use cases can be modeled. This is recommended if a channel has
more than one publisher.

Channels is an implementation that uses the core IOTA protocol and the Tangle
as a transportation and storage layer respectively. Its core functionality is achieved
through the following features:

• It maintains Streams state through an internal link store mechanism.

• It provides numerous predefined message types (i.e. Signed Packets, Keyloads,
etc).

• It offers decentralised transportation and storage through the usage of the
Tangle.

• It provides message types for managing cryptographic access control to
branches of data.

• It uses a pub/sub model with key sharing for access management.

While Channels exploits the Tangle to enable data integrity, the application
layer itself provides authenticity and protection through direct association of data
with the source, and key management solutions for assigning read/write privileges
to any particular branch. Each entity that is allowed to publish within a particular
branch of a channel, generates an Ed25519 and X25519 key pairing to be used for
signing and encryption respectively. These keys are exchanged via Subscription
messages, so once a participant subscribes to a channel, then, he can be authorised
by the channel author to join in or read from any number of branches.

69



BioEnPro4To

6.4.2 Messages Types
Different message types are needed to enable all the functionalities of the protocol.

Each message will handle a specific task in the Channels logic, by following a
predefined chain of cryptographic instructions. Each channel has its own address
and each message has its own message id that identifies that message within the
channel itself. In each message is embedded a field aimed at distinguishing each
type of message:

• Announce: Once a channel is created, the Author must initialize it with a
special message called Announce. It identifies the root of the channel and it
will always be the first message of a channel. After absorbing the required
information, the participant will verify the signature against the expected
public key to ensure the message came from the expected author. Once that
is verified, the multi-branch setting is detected and set accordingly in order to
parse further messages. It also allows subscribers to verify the authenticity
of the future messages sent by the Author. There is only a single Announce
message for each channel.

• Keyload: Message generated by the Author. The Keyload contains a list
of public keys of each Subscriber allowed in the channel, together with the
randomly generated key for chaining (the nonce). The Keyload message is
sent after the Author receives the Subscription messages of the users he
wants to allow reading the future messages. It is used for channels configured
in multi-branch mode, or to create a private channel with a predefined set of
subscribers (less common).

• Subscription: Message sent by a Subscriber wanting to subscribe to a
channel. If the Author accepts the subscription, the Subscriber is allowed,
from now on, to read the content of future encrypted messages, by receiving
the Keyload message.

• Unsubscription: Message sent by a Subscriber that indicates that he wants
to no longer read the encrypted messages in the channel.

• Sequence: Special message type used as a reference pointer for other messages
in a multi-branch implementation. It contains the essence necessary to derive
the referenced message’s identification marker for retrieval.

• Signed Packet: Message sent and signed by the Author using its private key.
It is appended to the message chain within the channel. It contains two fields
that wrap plain and masked payloads respectively. The message can only be
signed and published by the channel owner.

70



BioEnPro4To

• Tagged Packet: Message sent by the Author or Subscribers. It contains
a message that is appended to the message chain within the channel. As
for the signed packet, it can wrap public and masked payloads but they are
anonymous because of the absence of the signature.

In Figure 6.2 is shown a diagram of the interactions among the different
message types sent by the Author and Subscribers. The figure reports a case of
a double branched channel in which different subscribers choose what branch they
subscribe to. Once the Subscription messages have been confirmed by the Author,
two different Keyload messages are attached to the branches. Now Subscribers
can read both Signed and Tagged packets in their respective branch.

Figure 6.2: Double branched channel example diagram6.

6Source: legacy.docs.iota.org

71

https://legacy.docs.iota.org/assets/docs/channels/1.3/images/subscribe-workflow.png


BioEnPro4To

6.4.3 Streams Solution for BioEnPro4To
Before explaining how the framework has been exploited to meet the project

requirement, it is necessary to introduce a few problems that, at least for the used
release, afflict Streams which are about features not working as explained in the
official documentation7. The version of the used library is the release v.1.1.08 that
is compatible with the Chrysalis network of IOTA, which is the one the Mainnet
also relies on.

The following lines will describe a few problems, that pushed me to find and
implement a workaround, together with the related solutions:

• Limited Actions. The mechanism proposed by the IOTA Foundation for
the channel protocol is very tricky and limited when the complexity of the use
case increases. For instance, for a multi-branch channel, there is, currently,
no way for an Author to approve a set of subscribers for a branch A and a
different set for a branch B. Moreover, once a Keyload message is sent by
the Author, and few packets are appended to the Keyload, new Subscribers
willing to subscribe to that branch, are not able to do it.

I report an example to better understand the flow. We take as reference the
Figure 6.2, and we suppose that an author A creates a double branched
channel and initializes it with the Announce message. Now we suppose that
there are two subscribers, S1 and S2 that want to subscribe to the branch B1
and B2 respectively. The steps to follow in order to achieve this, should be:

1. S1 and S2 send their subscription messages linking them to the Announce
message.

2. A receives the subscriptions and stores the subscribers keys in order to
allow them to read the future packets. Then he creates two Keyload
messages to start two different branches for different packet chains.

But here is where the problems arise. First of all, there is no way to understand
for A to distinguish what subscription is linked to B1 or B2, because both are
appended to the Announce message (and this is the only way to do so). Then,
once A has stored the subscribers information into its state, Keyload messages
always wraps all the information with no mechanisms to actually select which
subscriber is allowed to read one or another particular branch. This means

7legacy.docs.iota.org/docs/iota-streams/1.1/overview
8github.com/iotaledger/streams/releases/tag/1.1.0

72

https://legacy.docs.iota.org/docs/iota-streams/1.1/overview
https://github.com/iotaledger/streams/releases/tag/1.1.0/


BioEnPro4To

that, the scenario reported in the figure, is simply unfeasible with the current
implementation, because if the Keyload messages are sent after the reception
of the subscriptions, then S1 and S2 will have the same permissions for both
B1 and B2. Otherwise if the first Keyload message is sent after the first
subscription, and the second after the second one, we would obtain a situation
where the branch, whose root is the first Keyload message, will be accessible
just by S1, if we suppose that he is the first who sent the subscription. The
second branch, instead, will be accessible by both subscribers because once
A owns the subscribers information, he cannot choose to incorporate just a
subset of them in the next Keyload message.

Finally, as we mentioned a few moments ago, new subscribers are not able to
join not a single branch started by a Keyload message, because it wraps just
the information of the subscribers that sent their request before the Keyload
itself. This would not allow, for instance, to end-users to check how the wastes
are being treated, or to new technical operators, to check the process states
along the supply chain.

Chosen Solution. Knowing these issues that derives from a tricky man-
agement of different message types, and knowing that each channel does not
require multiple publishers, as each actor involved in the analyzed scenario
would manage its own channel, a single-branch channel structure has been
chosen and the only message types that are used in this PoC are the Announce
message and the Signed Packet. This choice keeps the channel structure as
simple as possible and at the same time more flexible and suitable for external
mechanism integrations as will be later explained.

• No difference for Public and Masked payloads. Public and masked
payload fields provided by the Signed/Tagged Packet seem not to work as
intended. Once the subscribers send their subscriptions, and the author sends
the Keyload message after having processed them, both public and masked
payloads behave in the same way: they can be both accessed only by the
authorized Subscribers. With this behaviour, there is no reason to use one
instead of the other.

This hinders the possibility to maintain on a single packet data with different
levels of reading permissions, which is actually a huge limitation in a use case
that requires managing a supply chain, where data cannot be just either public
or private.

73



BioEnPro4To

Chosen Solution. In order to obtain the expected behaviour, an external
encryption mechanism for the masked payloads is provided. Each author of a
channel, and so each actor of the supply chain, is now able to build packets
that wrap both public and encrypted data. The public portion of the data
is readable by anyone who wants to access the channel, while the encrypted
portion of data can be read just by those who know the encryption key. The
chosen encryption algorithm for the masked payload is Xchacha20-poly1305.

In this way the protocol doesn’t need Keyload messages anymore. The cost
for this choice will be to implement an external key distribution mechanism
to actively exploit the encrypted data portion.

• Channel restoration. There isn’t a simple way to restore an existing channel
after the application that manages the author stops. The only way to do so,
seems to be the binary serialization of the author data structure in a moment
when the Announce message is already sent, otherwise some errors are thrown
by the library. This implies that in order to reuse channels, these states must
be stored safely somewhere and they should be retrieved in an easy manner.

Chosen Solution. To provide a friendly and immediate solution to the
problem, the binary serialization of the author state is appended to the
Announce message within a packet and carefully encrypted in the masked
payload field. The structure of the message, that we can call State Message
from now on, is reported in the following scheme:

1 SignedPacket{
2

3 public = byte[]("<channel_id>:<announce_id>.state")
4

5 masked = enc(serialized_binary_state, password)
6

7 }

All these changes made to the official Channels protocol, have been imple-
mented in a library, called iota-streams-lib9 using the Rust programming

9github.com/lore-lml/iota-streams-lib

74

https://datatracker.ietf.org/doc/html/draft-arciszewski-xchacha-03
https://github.com/lore-lml/iota-streams-lib


BioEnPro4To

language10. The library implements the lowest level of the network layer of the
PoC. To summarize it provides the following features:

• Create single branch channels.

• Publish signed packets to the Tangle.

• Each packet is split in two parts:

1. A public part that can be read from anyone.
2. A masked part that wraps optionally encrypted data accessible to anyone

who knows the encryption key.

• Restoring channels to keep chaining messages to an already existing channel,
even after the application stops.

• Receive signed packets from a channel.

6.4.4 Usage of iota-streams-lib

The library has been developed in order to guarantee a simplified experience,
compared to the official library, for developers that want to use this kind of solution
based on IOTA Streams. The library provides two main structures, ChannelWriter
and ChannelReader that replace, or rather wrap, the author and the subscriber of
the channels protocol respectively. They have been modeled as follow:

1 pub struct ChannelWriter {
2 author: Author,
3 channel_address: String,
4 announce_id: String,
5 last_msg_id: String
6 }
7

8 pub struct ChannelReader {
9 subscriber: Subscriber,

10 channel_address: String,
11 announce_id: String,
12 unread_msgs: Vec<(String, Vec<u8>, Vec<u8>)>,
13 }

10rust-lang.org

75

https://www.rust-lang.org/


BioEnPro4To

The usage of these two structure is quite simple:

• To create a ChannelWriter to start pushing packets to the Tangle a builder
pattern is used:

1 let mut channel = ChannelWriter::builder()
2 .node(node_url)
3 .build();
4 let (channel_id,announce_id) = channel.open_and_save(password)
5 .await?;

The first instruction initializes the structure. By setting the node_url it is
possible to choose which IOTA node to connect to. Picking a node also means
to choose if we want to connect to the Mainnet or to the Testnet. The second
instruction publishes instead the Announce message together with the State
message over the Tangle. As response, it returns the ids of the channel and
the Announce message. These two data must be provided to the subscribers
in order to let them read each message of the channel.

• There are two ways of sending signed packets over the Tangle. The first one is
to send raw data in a binary format, while the second one allows serialization
in a JSON format:

1 // RawPacketBuilder to serialize and deserialize in bin
2 // format
3 let bin_packet = RawPacketBuilder::new()
4 .public(&p_data)?
5 .masked(&m_data)?
6 .key_nonce(key, nonce)
7 .build();
8

9 // JsonPacketBuilder to serialize and deserialize in JSON
10 // format
11 let json_packet = JsonPacketBuilder::new()
12 ...
13 .build();
14

15 let msg_id1 = channel.send_signed_packet(&bin_packet).await?;
16 let msg_id2 = channel.send_signed_packet(&json_packet).await?;

76



BioEnPro4To

Packets are built using the builder pattern again. The key_nonce(...)
method is used to set the encryption key and nonce. Then the packets can
be sent in the same way by calling the send_signed_packet() method that
returns the id of the sent message.

• To restore instead an existing channel the following function is used:

1 let channel = ChannelWriter::import_from_tangle(
2 channel_id,
3 announce_id,
4 psw,
5 node_url
6 )
7 .await?;

• To create a ChannelReader to start pulling packets from the Tangle:

1 let mut channel_reader = ChannelReader::builder()
2 .node(node_url)
3 .build(channel_id, announce_id);
4

5 channel_reader.attach().await?;

As before, the first instruction uses a builder pattern to initialize the structure.
The second one, instead, attaches the subscriber to the channel in order to
receive the Announce message.

• Finally to receive packets from the channel:

1 let msgs: Vec<(String, Packet) =
2 channel_reader.fetch_parsed_msgs(key_nonce).await?;

With this method, a vector of tuples containing (msg_id, packet) is returned.

77



BioEnPro4To

6.5 IOTA Identity
There are three levels of privacy when interacting on the internet:

• Full Privacy: neither parties, nor observers, can identify the interacting
parties.

• Verifiable Identities: parties can trust each other, because they can both
provide proof about their identities.

• Pseudonymity: both parties recognize each other through a pseudonymous
identifier.

Pseudonymity is often the default setting of the Internet. However, today these
limited data are more than enough for big tech companies, such as Google or
Facebook, to be linked to real world identities. These associations have become
extremely valuable for advertising strategies, internal studies etc.

Internet users have developed a need to identify themselves online and share
their experiences and personal information with each other. However, this trend
only serves the big tech companies. In fact, the validity of this mechanism has
been so extensively proven that many internet services rely on them as a definitive
representation of their users, but profiles are not really verified. This means that
some situations, such as impersonation or fraud cases, still remain threats.

Digital identities could be the way to bridge the gap between the internet and
the real-world. In such a scenario, users will be able to prove their own identities
to be perfectly accurate. Moreover, with digital identities, a user can decide what
information to share and with whom they would like to share it. This will maintain
and even improve people’s online privacy, while allowing many new features and
new business opportunities[25].

6.5.1 Unified Identity Protocol
Unified Identity Protocol (UIP) is an implementation of digital identities

on IOTA, based on the standards proposed by W3C11. UIP permits the creation
of new digital identities to anyone or anything at any time. To achieve the goal,
a Decentralized Identifier (DID)12 is generated that serves as a reference to

11World Wide Web Consortium
12DIDs are URIs that associate a DID subject with a DID document allowing trustable

interactions associated with that subject. - Source: w3c.github.io/did-core

78

https://w3c.github.io/did-core/


BioEnPro4To

a DID Document13. It contains public keys, and other mechanisms, to enable
the subject to prove their association with the DID. However a DID alone is far
from being enough to reveal useful information about the subject. Indeed, it has
to be combined with Verifiable Credentials. These are statements about the
considered subject, owner of the DID. They can be shared and verified online in a
BYOI (Bring Your Own Identity)14 manner, and the DID owner remains in
complete control of the process.

Currently the IOTA Identity framework is in the beta stage and it is compatible
with Chrysalis network.

6.5.2 The Roles of Digital Identities
As reported in Figure 6.3, IOTA Identity involves the use of three different

roles:

• Holder: It is the owner of a digital identity and it often coincides with the
subject of the DID. They generate the DID and cryptographic keypairs. Their
personal data and private keys are under their own control.

• Issuer: It is a trustworthy party on a specific topic (such as governments).
They have their own digital identity. The Issuer provides to users with a
digital identity, verifiable credentials for different needs, which they digitally
sign using its private key.

• Verifier: A Holder shares their verifiable credentials with a Verifier to
prove a statement about themselves. The Verifier is able to verify the
credentials by performing the following verifications:

– Data Integrity: Is the credential unaltered?
– Issuer Trust: Do I trust this Issuer to provide these credentials?
– Signature Verification: Are the credentials signed by the expected
parties?

– Validation: Is the credential still valid?

13A set of data describing the DID subject, including mechanisms, such as cryptographic
public keys, that the DID subject or a DID delegate can use to authenticate itself and prove its
association with the DID. - Source: w3c.github.io/did-core

14BYOI is a form of federated identity where access to different service providers’ services is
permitted using credentials provided by a third-party identity provider, not credentials created
for the service itself. - Source: ubisecure.com

79

https://w3c.github.io/did-core/#dfn-did-documents
https://www.ubisecure.com/authentication/bring-your-own-identity-byoi/


BioEnPro4To

Figure 6.3: Roles of IOTA Identity. DID documents of Issuers and Holders
lives in the Tangle in order to provide a decentralized, safe and public key registry15.

6.5.3 Using Digital Identities

Holders can easily build up online profiles by using previously collected veri-
fiable credentials from organizations they interact with and trust. By collecting
verifiable credentials, Holders have more control over their personal information
so that they can choose what information they want to share on the internet.

When a Holder asks for a new crediantal, he first has to verify himself to the
Issuer by logging into the Issuer’s environment. He shares his DID with the
Issuer and requests the credential. The Issuer signs the credential together with
the statements about the Holder with a cryptographic keypair registered in its own
DID Document. At the end, when a Verifier needs to know specific information
about the Holder, the latter can choose to send to it those specific attributes. The
information can be quickly exchanged through various technologies such as NFC,
Bluetooth, QR Code, the Tangle, etc. Then, the Verifier decides if they
trust the credential’s Issuer and verifies their signature on the Tangle.

15Source: files.iota.org

80

https://files.iota.org/comms/IOTA_The_Case_for_a_Unified_Identity.pdf


BioEnPro4To

Figure 6.4: The Issuer, in the middle, issues a verifiable credential to a Holder,
on the left, and then the Verifier check the credential by verifying the signature
of the Holder and the DID document the credential references to16.

Using cryptographic techniques, users can choose to share as little information
as possible. For example, instead of sharing a full copy of a driver’s license, the
user need only prove that they own a driver’s license[25].

6.5.4 Considerations
The network is designed for both humans and devices, providing a platform for

trusted communication between individuals, organizations and things. Within the
IOTA Identity framework, the Tangle is used for the following functionalities:

• Public Key Registry: The Tangle enables a decentralised public key reg-
istry for Issuers and eventually Holders, using DID standards. This allows
Verifiers to verify credentials of a certain identity without relying on a cen-
tralized server. The DID standards also adds service endpoints, extending the
usability of identities beyond a public key registry, to, for example, registering
verifiable credential standards.

• Revocation: A verifiable credential can be revoked, meaning it will no longer

16Source: files.iota.org

81

https://files.iota.org/comms/IOTA_The_Case_for_a_Unified_Identity.pdf


BioEnPro4To

be able to pass verification. The revocation is immutably stored on the Tangle,
making sure no Holder can attempt to use their revoked credentials.

The UIP will ensure compatibility with global privacy and data management
legislation. GDPR17 states that citizens have the right to provide and retract
consent for the storage of PII (Personally Identifiable Information). Since
any data stored on a DLT is immutable and cannot be removed, a DLT and digital
identity solution is only GDPR compliant if it never stores PII on the ledger[25].

According to the GDPR Art. 4 (1), PII is defined as:

“Any information relating to an identified or identifiable natural
person (‘data subject’); an identifiable natural person is one who can be
identified, directly or indirectly, in particular by reference to an identifier
such as a name, an identification number, location data, an online identifier or
to one or more factors specific to the physical, physiological, genetic, mental,
economic, cultural or social identity of that natural person”

GDPR-
compliant
possible use

Used by UIP

(Asymmetric) Encryption of PII No No
Hash of PII No No

Salted hash of PII Maybe No
DIDs Yes Yes

Table 6.1: IOTA interpretation of the GDPR directives for the UIP.

6.5.5 Purpose of Digital Identities in BioEnPro4To
We have taken into account the integration of Identity for the BioEnPro4To

project, in order to enable more benefits from the decentralization that the IOTA
ecosystem offers. In this case, digital identities would enable authentication and
authorization mechanisms for each actor involved in the supply chains. This means
that, every time an actor has to prove its identity and permission levels, it can just
share its previously collected verifiable credentials to any stakeholder and they can
just verify its authenticity without relying on trusted third party servers.

17General Data Protection Regulation

82



BioEnPro4To

For instance, we suppose that there are two stakeholders, S1 and S2 that are
responsible for the management of the truck and weighing scale actors respectively.
Each truck and each scale would own a digital identity, in particular a DID docu-
ment, and a collection of verifiable credentials digitally signed by an Issuer that,
in this case, is one of the two stakeholders. These verifiable credentials would allow,
for instance, the actors to create and manage a channel in which they can push
the collected data of the process coming from their sensors.

So, once a truck T managed by S1 has to interact with a weighing scale W1
managed by S2, it can be authenticated in terms of actor identity and actor per-
missions within the system by S2 in an autonomous manner. In fact, S2 does not
have to rely on an authentication system provided by S1, because they share a
decentralized infrastructure, the Tangle, that provides them a public registry to
achieve the goal. In this way the only requirement for certain stakeholders is to
trust and to accept verifiable credentials signed by any other partner along the
supply chain. Moreover, authentication and authorization mechanisms don’t have
to be implemented and maintained by each stakeholder, but they are designed and
developed once in an interoperable way.

The same procedure, followed for Streams, has been used for Identity, and a
library, called iota-identity-lib18 has been developed. The iota-identity-lib
library depends on the official identity.rs one developed by the IOTA Foundation,
and it provides the following features:

• Creation of digital identities and store of the relative DID documents as well as
private keys to manage them inside a secure vault, named IOTA Stronghold.

• Issuance of verifiable credentials and possibility to securely store them within
a wallet.

• Possibility to verify identities and verifiable credentials.

6.6 Channel Manager
Before analyzing the detailed architecture of the entire PoC, it is necessary to

describe which choices have been made regarding the management of the channels.
As we discussed in the previous sections, the chosen type of channels is the single
branch channel provided by Streams, with the addition of some external features
such as an ad-hoc encryption system for masked payloads and the State message

18github.com/lore-lml/iota-identity-lib

83

https://github.com/lore-lml/iota-identity-lib


BioEnPro4To

to restore the channel. Although this modified version of channels would enable a
big level of flexibility for different use cases, if it is not integrated within a more
organized structure, a channel alone is a quite limited tool that is affected by three
big problems:

1. The first is the fact that it is a linear chain by design. This makes random
access unfeasible, and its traversal very slow. This would be a big problem for
an IoT scenario, where sensors collect a great amount of data that actors keep
appending to the channel, wrapping them within hundreds of packets a day.

2. The second is that, single branch channels are not meant to allow multiple
publishing entities, but by using multi-branch channels we would have met
more serious problems as illustrated before. This means that a single channel
must be owned and managed by a single entity, which is an actor (a truck or
a biocell etc).

3. The last one is about the channel address. Each channel, in order to be
read, must be first identified on the tangle by the subscribers by knowing this
information. So the challenge would be to design a method to easily exchange
addresses of each channel in an easy and feasible manner.

To solve these issues, channels have been rearranged and modeled into a tree
data structure. To avoid that a channel would include a chain of thousands of
messages, or even more, it has been decided to assign to each actor one channel per
day. This would make the performance problem less relevant, because the amount
of data within a channel is constrained and data size does not increase after that
day is passed. But using this solution the number of channels increases, so more
channel addresses have to be shared.

That is where the tree model pays off: each node of the tree is a channel and
each tree level contains the references of the channels of the next one. Finally each
leaf of the tree represents the actual daily channel of a certain actor. Here, the real
data about the supply chain processes are appended.

Figure 6.5 shows the actual structure of the tree. The root of the tree rep-
resents the entry point for each subscriber, that now has to know only a single
address to read data. The second level of the tree contains a channel for each
category of actors, three in our case. The third level is made of all the actors that
belong to that category. The fourth and last level, contains, instead, all the daily
channels managed by an actor of a certain category. This tree represents the actual
structure used in the PoC.

84



BioEnPro4To

Figure 6.5: Hierarchical organization of channels.

Now that it is clear how the tree has been modeled, we can analyze Figure 6.6
to understand what kind of information is stored within each channel of each level.

Starting from the left, we find the root channel (the entry point). In this channel
are simply stored some channel_ids and announce_ids, that together compose
what we have called so far channel address. Each channel address is linked with
an identifier of a category of actors, to allow the correct tree traversal. The second
column represents the second level of the tree and here, for each channel, we find
a list of all the actor identifiers that belong to that category together with the
channel addresses of their containers of personal daily channels.

In the next column each channel represents a container of all the daily channels
of that actor. For each daily channel is reported the owner, the date, and the
channel address. Finally the last column contains the actual daily channels that
contain the data coming from the sensors.

Figures 6.7, 6.8, 6.9, 6.10 show the actual data, in JSON format, that
are stored on the Tangle. The images have been screenshotted from an ad-hoc web

85



BioEnPro4To

Figure 6.6: Channels details of tree structure.

application, developed for debugging purposes, that acts as a channel explorer19.

The library that takes care of both initialization and management of the entire
tree structure is called bioenpro4to-channel-manager20 and depends on the
iota-streams-lib library.

19streams-chrysalis-explorer.netlify.app/
20github.com/lore-lml/bioenpro4to_channel_manager

86

https://streams-chrysalis-explorer.netlify.app/
https://github.com/lore-lml/bioenpro4to_channel_manager


BioEnPro4To

Figure 6.7: Root channel. It contains a message with the references to the
category channels.

Figure 6.8: Trucks channel. It contains a message for each actor of this category.
In each message different actor identifiers are reported.

87



BioEnPro4To

Figure 6.9: Actor channel with id xasd. It contains a message per each daily
channel the actor manages. A timestamp is reported to indicate the date.

Figure 6.10: Daily channel of the actor with id xasd of a specific date. It contains
all the data coming from the sensors.

88



BioEnPro4To

6.7 PoC Architecture

Now it should be clear how the actors of the considered scenario, for the BioEn-
Pro4To project, interact with the IOTA distributed ledger, so it is appropriate to
start illustrating the architecture of the PoC, and how all the components interact
with each other.

For a better comprehension of the architecture, Figure 6.11 shows a repre-
sentation of it, so that it can be used as the landmark for the analysis of this section.

What we know until now is that, each actor somehow collects data from its
sensors through the Edge Layer, and then they push these data to the Tangle in
their daily channels. But how do digital identities and the channel manager fit
together with this?

Figure 6.11: PoC Architecture21.

21Icons Credits: Good Ware, Freepik, DinosoftLabs - flaticon.com

89

https://www.flaticon.com/


BioEnPro4To

6.7.1 Server Features
The main component of the entire architecture is the one in the green box. This

is a centralized server managed by the stakeholder considered for the BioEnPro4To
scenario. This server has multiple roles:

1. First of all, it is the only responsible for the maintenance of the correct
functioning of the channel tree structure. In other words, it has the role
of channel manager. The server uses the bioenpro4to-channel-manager
APIs, and it is able to initialize the tree structure in order to create traversable
paths from the root to the requested daily channel, and to create daily channels
on behalf of the actor who asks it to do so. When the channel manager creates
a daily channel, it maintains a strict association between the channel and the
authorized actor. In fact only the authorized actor will be able to access and
publish data to this channel because it is the only who knows the password of
the encrypted State message.

2. The second role is that of Issuer. It uses the iota-identity-lib library in
order to issue verifiable credentials to the correct actors and check the validity
of their digital identities.

3. Finally it exposes RESTful APIs in order to guarantee a simple interaction
both for actors and for the users of the monitoring application.

The server22 has been developed using, again, the Rust programming language
and the Actix-Web23 framework. The server also relies for the storage on a SQL
database, Postgres, and every entity has been modeled as shown in Figure 6.12.

By watching carefully at this UML diagram, we can notice what are the entities
that are allowed to interact with the server. We have the actors table that
represents the list of each actor managed by the stakeholder. It contains the
data needed to identify the actor within the system. This is a table that aims at
aggregating all the common information of actors needed to identify them during an
early inner stage of authentication, before obtaining a valid credential. Then, there
are three more tables that model the specific data that characterize the considered
actor (trucks, scales and biocells). On the other hand we have a users table.
It models every user that has a particular role along the supply chain processes.
For this PoC a user may be, for instance, a truck driver or a supervisor that uses
the monitoring mobile application.

22github.com/lore-lml/bioenpro4to_gateway
23actix.rs

90

https://github.com/lore-lml/bioenpro4to_gateway
https://actix.rs/


BioEnPro4To

Figure 6.12: UML diagram of the entity relationships.

6.7.2 Component Interactions

At this point, we can start illustrating what is the flow of the interactions among
components.

On the left of Figure 6.11, are reported the actors of the three different cat-
egories and their relative sensors. Each truck, scale or biocell will have a device
that manages the logic of the Edge Layer. As already mentioned at the beginning
of this chapter, the edge layer relies on the EdgeX framework in order to collect
some data from the sensors and then, to publish those, wrapping them into several
packets, to the Tangle, or rather to a daily channel. The collection process, however,
is not covered by this PoC as we pointed out. Instead, what the PoC provides

91



BioEnPro4To

to the Edge Layer is a Go-lang24 client library, bioenpro4to_http_client25.
This choice has been forced due to EdgeX relying on Go programming language.
This library provides to these devices a simple interface to interact both with
the server through HTTP calls, and with the daily channels once they have been
retrieved from the server itself. To allow a direct communication with daily
channels, some bindings, that allow to use from Go-lang some Rust APIs of the
bioenpro4to_channel_manager library, has been developed by using the Cgo26

package.

The first thing to do, once an actor has been "activated" together with its sensors
and its device running the client, is to register the actor within the stakeholder
system. This task is entrusted to whatever user that has that permission level.
After the user is authenticated, he can register the actor to the server in order
to enable, from now on, the authentication of the actor. Each actor is able to
autonomously generate its authentication data such as a DID for its digital identity
(by using, again, bindings for Go-lang of the iota-identity-lib), an actor_id
and a password. Thanks to this, the user just needs to collect these data and
forward them to the server, specifying just the category the actor belongs to. The
actor is now part of the supply chain processes.

At this point, it is necessary to obtain a daily channel to start publishing data
to the Tangle. To do so, the actor needs a verifiable credential that certifies
that it has the authorization to create and publish data to a daily channel of a
specific category. To get this credential it just has to authenticate to the server,
by providing actor_id, password and its DID. The server checks the accuracy of
the information and, if no discrepancies have been found, it issues to the actor
a verifiable credential. From now on, the actor potentially has the benefit to be
authenticated and authorized by any other stakeholder of the supply chain to create
and manage daily channels: the only requirement is that stakeholders must trust
each-other in order to guarantee the validity of these verifiable credentials that
each of them is allowed to issue.

An example of an IOTA verifiable credential is reported, as a Rust struct format,
in the scheme below.

24golang.org
25github.com/lore-lml/bioenpro4to_http_client
26Cgo enables the creation of Go packages that call C code. For this reason an additional step,

to bind the Rust code to C code, has been made.

92

https://golang.org/
 https://github.com/lore-lml/bioenpro4to_http_client


BioEnPro4To

1 Credential {
2 context: Url(https://www.w3.org/2018/credentials/v1),
3 id: None,
4 types: [
5 "VerifiableCredential",
6 "ChannelWriteAuth",
7 ],
8 credential_subject: Subject {
9 id: Some(

10 Url(did:iota:dev:
GC2VXM5A8CP5ozJ9R7iE8S7jrrpkSZGXmqe7NEs1Mg21),

11 ),
12 properties: {
13 "channel_authorization": Object({
14 "actor_id": String(
15 "aa000aa",
16 ),
17 "category": String(
18 "trucks",
19 ),
20 }),
21 },
22 },
23 issuer: Url(
24 Url(did:iota:dev:

EYuK6teLh6nzPAJhJx7XUX361cZNezvwj4ppq6WUFCo6),
25 ),
26 issuance_date: "2021-09-20T15:27:30Z",
27 expiration_date: Some(
28 "2021-09-27T15:27:30Z",
29 ),
30 credential_status: [],
31 credential_schema: [],
32 refresh_service: [],
33 terms_of_use: [],
34 evidence: [],
35 non_transferable: None,
36 properties: {},
37 proof: Some(
38 Signature {

93



BioEnPro4To

39 type_: "JcsEd25519Signature2020",
40 value: Signature(
41 5M9jXWidqgYZU5VbyDn6oRPfh6L5iUZp6NN5gcGxDYVSJgTdvnkwJD
42 2zzPUkzB7qrTfSWgXNphNWSxxkD7YPgVpL
43 ),
44 method: "did:iota:dev:

EYuK6teLh6nzPAJhJx7XUX361cZNezvwj4ppq6WUFCo6#_sign-0",
45 },
46 ),
47 }

Starting from the top of the scheme, it is possible to notice the types field, in
which has been reported a custom credential type, ChannelWriteAuth, in order to
allow stakeholders to recognize the correct type of a credential. Then, it follows
credential_subject and issuer fields. In the first one, there are the DID of the
subject and the properties of the credential that indicate the actual purpose of the
credential. In this case it is reported that the actor with id aa000aa is authorized
to request the creation and the ownership of new daily channels belonging to
the category trucks. The second one, instead, just reports the did of the issuer.
Finally we find the dates of issuance and expiration, which is set to a week, and
the signature applied by the issuer in the proof field.

The actor can now ask the server to create a daily channel: to achieve this, it
does an HTTP call to the server, attaching to the request the obtained credential,
and providing the desired date for the daily channel together with a password to
encrypt the State message. If the credential is valid and the daily channel does
not exist yet, the server creates it and attaches its address to the channel’s tree
structure. In particular, once the the credential has been validated, the channel
manager module of the server follows these step to update the tree structure
(Figure 6.6 can help understanding the work-flow):

1. Starting from the root, it retrieves the address of the category the actor
belongs to. The category is reported in the credential, as we mentioned earlier.

2. It checks if the actor_id already exist in the category channel (in the second
level of the tree). If not, it creates an actor channel (in the third level of the
tree), and append a new packet in the category channel, referencing the new
actor channel by storing its address and the actor_id. The State message of
the actor channel is encrypted with a password chosen by the server, so that
only it will be able to access to the channel.

3. It checks if the actor has already requested the creation of a daily channel with
that specific date. If so, no more actions are needed. Otherwise, it creates a

94



BioEnPro4To

daily channel (last level of the tree structure), and append a new packet in the
correct actor channel, referencing the new daily channel by storing, again, its
address, the actor_id and the date. The State message of the daily channel
is encrypted with the password provided by the actor.

Once this procedure is over, only the actor is able to write into that channel, and
he can request permission access to it. This permission is achieved by performing
another HTTP call: the server in this case provides to the actor a binary serial-
ization of that channel, encrypted with the same password the actor has provided
during the creation. Thanks to the client library, now the actor is able to locally
decrypt and deserialize the channel, so it can start publishing data to the channel
autonomously.

Thanks to this mechanism, it’s not required that the server manages massive
requests from each actor everyday. Moreover the steps to obtain the verifiable
credential and to create a daily channel have to be executed once. In fact the
credentials will have an expiration time set to a week, and after two HTTP calls a
day, to create and get the daily channel, each actor is independent from whatever
centralized system. A detailed representation of this procedure can be found in
Figure 6.13.

To conclude the explanation of the component interactions reported in Figure
6.11, there are the ones between the server and monitoring app and between the
Tangle and the monitoring app (on the right). These two reflect the two modes
that the app can use, reported at the beginning of the chapter.

Finally the last one, on the top of the image, would be the hypothetical feature
that would allow end-users, the citizens of the Piedmont region, to autonomously
check the development of the waste management processes. This has not been
implemented in this PoC.

95



BioEnPro4To

Figure 6.13: Representation of the interactions among the actor and the other
components27.

6.8 Monitoring Mobile Application
The monitoring mobile app has been designed to make the supervision experi-

ence for technical operators easier. In fact, it is important that each step of the
waste collection and treatment processes would be executed without incurring in
particular issues. That is because each step of the chain depends on the previous one.

The app is part of the PoC and it has been developed using the Ionic frame-
work. During the research stage, Ionic28 turned out to be an interesting tool to
build cross-platform native apps. To achieve this, in relatively recent times, the
Ionic framework has integrated a powerful and open-source runtime tool, called

27Icons Credits: Good Ware, Freepik, DinosoftLabs - flaticon.com
28ionicframework.com/

96

https://www.flaticon.com/
https://ionicframework.com/


BioEnPro4To

Capacitor, capable of building native and cross-platform apps for iOS, Android
and the web, starting by a single code-base. Ionic is also really flexible, allowing
developers to choose the most comfortable Javascript platform. It supports three
different platforms which are Angular, React.js and Vue.js. For the case, Angu-
lar has been chosen for its rich set of features such as a built-in HTTP-client and
routing system.

The home page, shown in Figure 6.14, is made of three tabs:

• The first, on the left, implements the actual monitoring features. The main
page shows the daily feed of the active actors, and the possibility to check,
more in detail, one of the three categories.

• In the middle, a page for some real-time stats and diagrams has been designed.
The shown diagrams are interactive and allow for some filter features. The
reported ones are just ideas of possible implementations.

• The last one, on the right, is just a page to check personal information and
change default settings, using the special button on the top-right corner.

The most relevant features are, obviously, the one implemented by the monitor-
ing page, that includes the actual components to interact either with the Tangle or
with the server, depending on the chosen mode. When the Tangle mode is selected,
the application exploits the iota-streams-lib library compiled to WebAssembly29,
to allow the reuse of the Rust implementation.

By navigating into one of the category sections, the actual view of the entire
channel tree has been arranged. The Figure 6.15 shows the content of the cate-
gory channels, actor channels and daily channels. The list of the actors for that
category (on the left), the list of daily channels for a specific actor (in the middle)
and the list of messages of a particular daily channel (on the right).

Finally, in Figure 6.16 are shown three more views. The first one (on the
right) is the implementation of a setting section, allowing the user to select the
data source (server mode or Tangle mode). The second one (in the middle) to
check some warnings that the system could send on future prototypes of the system,
and the third one (on the left), showing a map to track trucks during the waste
collection process. These last two views are just graphical design and no actual

29WebAssembly (or Wasm) is a binary instruction format for a stack-based virtual machine.
Wasm is designed as a portable compilation target for programming languages, enabling deploy-
ment on the web for client and server applications - Source: webassembly.org

97

https://webassembly.org/


BioEnPro4To

implementations have been developed.

Figure 6.14: Main tabs of the home page. Starting from the left, monitoring
page30, stats page and profile page.

30Icons Credits: Freepik, DinosoftLabs | flaticon.com

98

https://www.flaticon.com/


BioEnPro4To

Figure 6.15: Views reporting the information of each level of the channel tree
structure.

Figure 6.16: Views of extra further features and settings to switch from server
mode to Tangle mode

99



Chapter 7

Conclusions

What makes an innovation so important is that it represents the umpteenth step
towards the progress of human communities. However, creating new technologies is
challenging and it is usually characterized by a huge level of uncertainty, risk and
complexity. Creating a PoC is useful to test these technologies as it can determine
whether an idea can be built in the real world and whether it is likely to be adopted
by its intended users.

To help businesses to drive consistent ideas, the entire PoC process has been
packed into five basic steps: from developing the idea, to firming it up, and pre-
senting it to the investors.

The Figure 7.1 reports and quickly explains what these steps are. Using this as
a starting point, we can retrace all the steps done for the PoC of the BioEnPro4To
project:

1. The first step of the PoC process is about demonstration of the need of
a product. This would allow to determine if putting time and money into
building some products, is supported by a proven necessity. In this case, the
analyzed scenario reports the problems deriving from the current centralized
infrastructures, that are susceptible to a lot of vulnerabilities and that lack of
operational traceability and transparency. That is why it is needed to improve
these infrastructures by enhancing the circular bioeconomy model supported
by decentralized distributed ledgers. The technical idea to meet the challenge
has been found in the use of IOTA.

2. After having defined the goals and the expectations, the next step, concept
development, is characterized by an intensive phase of analysis during which
as much information as possible about the idea must be collected. These
information should ensure an overview of the actual possibilities such as the

100



Conclusions

Figure 7.1: Representation of the PoC process steps.

existence of ready-to-use technologies or frameworks, and how these could
solve the initial problems.

Before the actual implementation of this PoC, every benefit coming from
the use of a circular bioeconomy model and their relative issues to enable
them have been considered and analyzed. To solve these problems, IOTA has
been chosen because of its features of decentralization, scalability and security
together with its feeless and IoT oriented nature.

3. In this stage of development and testing of the solution, a prototype of
the system is built.

The PoC has integrated all the components provided by the IOTA ecosystem
into a real case scenario. An architecture of the system has been designed,

101



Conclusions

implemented and tested in terms of performance and expected results, in order
to make each component work in synergy.

4. In this phase, it is expected the creation of a minimum viable product.
This should be a fully-functional solution that would include the most impor-
tant features that are fundamentals for solving the primary problems. This
step offers the opportunity to get more feedback to better understand the
level of maturity of the prototype.

Unfortunately, this stage has not been fully completed due to the lack of
testers. This has not allowed us to collect enough feedback to understand the
problems that might arise in production. However, some internal test results
have already given us an idea of what are the core problems of the PoC. They
will be discussed in the next sections.

5. The last stage is about designing a roadmap based on all the gathered
information from the previous steps. An explanation of what have been learned
during the development is made, together with a set of suggestion for further
improvements.

Everything that has been learned during the entire PoC process will be dis-
cussed and analyzed in the next paragraphs, as well as the future improvements
the PoC might benefit from.

7.1 Obtained Results
The results, obtained by the final version of the entire system, have successfully

proven that, the main problems the BioEnPro4To scenario is afflicted from, can be
handled by the tools provided by IOTA. In particular we can affirm that:

• Operational transparency, traceability, security and trusted data provenance
have been enabled by Streams and its (revisioned) Channels protocol.

• Centralized technologies, which are the ones the current waste management
systems rely on, might be replaced by the IOTA based systems to enable
decentralization and avoid single points of failure.

• Social awareness to stimulate more conscious behaviours among citizens would
be possible thanks to the intrinsic properties of DLT. This will be essential to
enable a circular bioeconomy model that strictly relies on the quality and on
the variation of the materials the products are made of.

102



Conclusions

• Complex supply chain scenarios, involving a certain number of stakeholders,
would become easier to handle thanks to systems like this one. As explained
before, in the architecture design, future and possible stakeholder or actor
integrations have been considered. This would allow to extend in a simpler
and trustless manner the supply chain processes.

• Flexible authorization and authentication mechanisms for each actor are
enabled through digital identities (IOTA Identity) allowing for a global cross-
party solution.

To summarize, the final release of the PoC proposes an hybrid design of the
architecture. A centralized part which is made of stakeholders managing internal
servers. This is needed to provide a private environment for the actors belonging to
a specific stakeholder, and to handle PII of the workers, that cannot be stored on
the Tangle due to GDPR compliance. Moreover, each server (that is just one for
the scenario analyzed in this PoC) is fundamental to maintain the correct channel
tree structure, avoiding forks and data inconsistencies, and to provide the credential
issuance service that enables the cross-party mechanism for actors authentication
and authorization. On the other hand, a decentralized part made of the IOTA
frameworks, Streams and Identity, that provide all the mechanisms needed to
access the Tangle, and to exploit the protocols for channels and digital identities
creation, enabling all the transparency, traceability and security benefits that this
kind of technology offers.

Finally, the PoC includes a client, to support the Edge Layer and the actor
interactions towards the server and the Tangle, and a mobile application capable
of subscribing to the data streaming coming either from the server or the Tangle,
in order to enhance internal monitoring operations.

7.1.1 Final Considerations
Despite all of these results, during the development of the PoC, I found the

IOTA ecosystem not mature and reliable enough to permit a real deployment of
the applications. Streams, in particular, which is the actual core component, is
currently in the alpha stage, and it does not provide complete and flexible APIs
that would be necessary, instead, for more complex use cases. The use of the
channel protocol is quite tricky and limited, and the more complexity and flexibility
are needed, the more limited the protocol becomes.

Although the use of a tree structure enables more flexibility in grouping and
accessing daily channels, by using a hierarchical organization, it causes a drop in

103



Conclusions

performance, in terms of time needed for the correct tree management. This is due
to the fact that more channels must be used in order to easily navigate from the
root to the desired daily channel. Moreover, the sequential structure of a channel
makes the server unable to serve in parallel requests that involve writing operations
for the same portion of the tree. Otherwise, this could cause a fork into a certain
channel that would break the entire navigation mechanism within the tree.

7.1.2 Performance Analysis
To better understand how the system performs during the publishing of data

into a channel, some tests have been done. Thanks to these, we can understand
how the size of the payload and the need for a specific throughput, in terms of
packets per second, limit the performance of the system for the considered scenario.

The tests have been performed on the IOTA Testnet, by using a computer
equipped with a 3rd generation Intel i7 mobile CPU. However, the performance are
strictly related to the chosen node1, that is (with the current version of Streams)
the only responsible for the execution of the PoW, and it does not depend on the
local CPU. This forces all the actors to maintain a stable internet connection, in
order to keep appending messages to a channel. This causes another limitation,
in fact, in an IoT scenario, where sensors may not be always in the same position
(such as for a truck sensors), guaranteeing a stable internet connection may be a
problem.

The tests involve the analysis of four different payload sizes, and for each of
them 30 channels have been created. For every channel, 10 packets have been
pushed consecutively, and each of them is made of a random sequence of characters
split into public and masked parts according to the packet structure of our custom
channel protocol. The sum of the sizes of these two parts is equivalent to the
considered size. For instance, if the considered payload size is 1024B, each packet
of each channel is made of a public part of 512B and a masked part of 512B.

The process that takes care of the creation of a channel involves the creation
of the Announce message and, for each of the 10 messages, the generation of the
random characters sequence, the encryption of the masked payload and the sending
of the packet to the node. Then, the node will compute the PoW for each packet.
An iteration of this process is indicated as cycle.

1Node URL: api.lb-0.h.chrysalis-devnet.iota.cafe

104

https://api.lb-0.h.chrysalis-devnet.iota.cafe/


Conclusions

Table 7.1 and Figures 7.2 and 7.3 show the results obtained by these tests.
As we can see, for small payload sizes (256B and 512B) 10 packets are sent in a
reasonable amount of time (less than 9 seconds per packet) with a percentage of
failure really close to zero. In these conditions, the built channel protocol seems to
be reliable and fast enough for our use case. In fact, each actor would not probably
have the need to send messages more frequently than this.

Things change for the last two payload sizes (1024B and 2048B): if the publishing
time could be still reasonable for the throughput needed by an actor (less than 20.6
seconds per packet), the level of reliability of the protocol drops abruptly. The test
for the first payload size, 1024B, managed to successfully complete 11 cycles over
30, and a total of sent packets which is 172 over 300. The second test, with 2048B
payload size, have completed just 4 cycles and 136 sent packets. Each failure in
these tests comes from the fact that the response coming from the node is long
in coming, and the request timeout expires. This behaviour affects the correct
functioning of a channel, because if the author does not notice that the packet has
been published despite the expiration of the timeout, there is the chance to create
a fork within the channel that would break the entire mechanism for the reading
process. However, this can be solved by introducing a mechanism that checks the
actual state of the channel after each expiration of timeout, so that the author’s
internal state is updated and consistent. But the cost would be introducing one
more mechanism that would slow down the process.

Payload
Size

Sent Packets
in 30 Cycles

Cycles
Success Rate

Cycle Avg
Publishing Time

256 B 300/300 30/30 83.07s

512 B 297/300 29/30 86.34s

1024 B 172/300 11/30 186.82s

2048 B 136/300 4/30 205.12s

Table 7.1: Test results for a set of four different payload sizes. The average time
values have been computed by using a number of samples equal to the number of
cycles that have successfully ended.

More in detail, we can also notice the cycle publishing time is not constant.
Figures 7.2 reports also the minimum and the maximum value recorded in the
30 cycles process and, As we can see, the black vertical line in the middle of
each bar shows how big is the difference between the maximum and the minimum
value. This means that the result in a certain moment is likely to be related to the

105



Conclusions

workload of the node as well as the network traffic conditions. This hypothesis is
also supported by Figures 7.3 that shows how the different trends are not regular
and it is not possible to clearly identify or predict them.

Figure 7.2: Minimum, Maximum and Average value of cycles publishing time for
each payload size.

Figure 7.3: Cycles publishing times trend for each payload size. The zero values
refer to cycles that have been interrupted due to timeout expiration.

106



Conclusions

7.2 PoC Setup

In order to correctly configure and run the system, instructions are reported
hereafter together with a brief explanation of the configuration parameters.

To setup either the server and the client, a .env file is provided containing some
configuration variables.

7.2.1 Server Configuration

1. The first thing to do is to clone the repository by using the related git command:

1 g i t c l one https : // github . com/ lo r e−lml /bioenpro4to_gateway . g i t

2. If needed, in order to customize the initial data of the tables, the insert
statements of the db_docker_init/sql/init_db.sql file can be edited.

3. Then, it is possible to set up the configuration variables of the server by
editing the .env file. The Tables 7.2 shows the most important configuration
variables with the relative description of what they need for.

4. Finally, the application can be put into a container using docker by simply
using the command:

1 docker−compose up −d

107



Conclusions

Configuration
Variable

Description Default behaviour
if not set

SERVER.ADDR

Ip address of the server.
127.0.0.1 for localhost
or 0.0.0.0 to make it
available to the whole net-
work.

127.0.0.1

SERVER.PORT TCP port of the server. 8080

IOTA.MAINNET

True to select the IOTA
mainnet or False for test-
net

False

IOTA.ROOT_CHANNEL.ADDR

Address of an existing
root channel. If it is set
it tries to import the tree
with the corresponding
root address.

It creates a new tree

IOTA.ROOT_CHANNEL.PSW

Password for the encryp-
tion of the State mes-
sage of each channel of
the tree. Daily channels
are not included.

A default password is pro-
vided

IOTA.IDENTITY
.STORAGE.TYPE

Stronghold to persist
the data about the digi-
tal identity of the Issuer.
Otherwise it is temporar-
ily stored on RAM.

Temporary storage

IOTA.IDENTITY
.STORAGE.PSW

Password to access the
identity vault.

A default password is pro-
vided

IOTA.IDENTITY
.ISSUER_NAME

Name of the Issuer.
This field must always be
provided.

None

Table 7.2: Server configuration variables.

108



Conclusions

7.2.2 Client Configuration
The client library can be used just on Linux machines.

1. As before, clone the github repository by using:

1 g i t c l one https : // github . com/ lo r e−lml / b ioenpro4to_http_cl i ent . g i t

2. Edit the .env file to set up the configuration variables. Tables 7.3 reports
the list of the most important ones.

3. Use make build or make run bash commands to build or run the example
application respectively.

Configuration
Variable

Description

HOST.ADDR Ip address of the server.
HOST.PORT TCP port of the server.

IOTA.IDENTITY.STORAGE.TYPE

Stronghold to persist the data about
the digital identity of the Holder. Oth-
erwise it is temporarily stored on RAM.

IOTA.IDENTITY.STORAGE.PSW
Password to access the identity/creden-
tial vault.

ACTOR.AUTH_PSW

Password to provide to be authenti-
cated by the server when a credential
is requested.

ACTOR.CHANNEL_PSW

Password used to encrypt the State
message of the daily channels of the
actor.

ACTOR.ID
Id of the actor used as username to
authenticate to the server

Table 7.3: Client configuration variables.

109



Conclusions

7.3 Open Issues and Further Improvements
Although the results of this early implementation of the PoC seem to be promis-

ing, the used technologies must be consolidated yet. In particular, the lack of a
complete and stable release of a selective permanode2 or an environment to
write reliable smart contracts is a big barrier to reach an hypothetical market-ready
production stage. These are indeed the main problems to solve once the platform
will become more mature: the first because data are currently temporarily available
on the Tangle until a snapshot is performed, while the second because smart
contracts would be essential tools to record interactions among stakeholders in a
trustless manner. At the current stage of the PoC, in fact, stakeholders should
take care personally of tracing each interaction that involves one of their actors,
and this means that, without a neutral intermediary, one of the two sides must
trust the other one that is in charge of publishing the interactions history.

This is just the starting point to turn this PoC into a system for a real use case.
I have reported a few more tips, ordered by priority in Table 7.4, to improve the
prototype performance and the developers experience. Both private and public
companies or institutions that want to implement and to test a system similar to
the one reported in this thesis, are encouraged to consider these suggestions as
well as checking for future updates of the IOTA ecosystem that might enable new
interesting features for such cases.

2Currently the official IOTA permanode solution, Chronicle, must store the entire transaction
history including all the zero-value-transactions. This enables persistence for applications that
use channels to publish some data to the Tangle, but at the cost of storing also unnecessary data
causing potential storage size issues. For this reason, a new release of Chronicle is expected to
come in order to allow the permanode to select and store just the data of interest, according to
some user-defined filters. This new feature is still under development.

110



Conclusions

Priority Tip Description

1 Enabling persistence using the future release of Chronicle for a
selective permanode solution.

2

Integration of smart contracts for an easier and improved man-
agement of stakeholders interactions. Despite IOTA being designed
with a feeless transaction system, the introduction of smart contracts
would enable new business opportunities for companies or people in
charge of running the code. In fact they might ask for some kinds of
rewards in exchange for the execution of the smart contract.

3

(i) Instead of using a centralized server for the roles of channel man-
ager and credential issuer, the business logic to authenticate and
authorize a certain author together with the channel management
process, it would be a great improvement to use a smart contract as
the only responsible for this. It would achieve an entirely decen-
tralized system that would make actors even more independent
from the stakeholder they belong to.
(ii) Otherwise, if the solution that involves the use of a server for
each stakeholder is kept, the creation of a cluster (for instance
using Docker containers) is encouraged. In this case, each node of the
cluster would take care of just a portion of the tree channel structure,
guaranteeing a greater throughput in terms of parallel execution.
For example, considering the same scenario of the PoC, each node
might have been responsible for just a single category among the
proposed ones.

4

Tuning of the granularization of the actor channels. Instead of
using daily channels, it can be considered to use a greater or lower
granularity according to the use cases. For example, each actor may
create channels every hour instead of every day. This guarantees
an improvement of performance per single channel but a higher
complexity of the tree structure.

5 Improving the UI of the mobile application for a more efficient and
comfortable experience on bigger devices such as tablets.

Table 7.4: Suggestions for further improvements of BioEnPro4To-like projects
for interested companies and institutions.

111



List of Figures

1.1 Distributed Ledger graph . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Blockchain Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Example of a blockchain fork. . . . . . . . . . . . . . . . . . . . . . 21

6.1 BioEnPro4To Architecture. . . . . . . . . . . . . . . . . . . . . . . 67
6.5 Hierarchical organization of channels. . . . . . . . . . . . . . . . . . 85
6.6 Channels details of tree structure. . . . . . . . . . . . . . . . . . . . 86
6.7 Root channel. It contains a message with the references to the

category channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.8 Trucks channel. It contains a message for each actor of this category.

In each message different actor identifiers are reported. . . . . . . . 87
6.9 Actor channel with id xasd. It contains a message per each daily

channel the actor manages. A timestamp is reported to indicate the
date. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.10 Daily channel of the actor with id xasd of a specific date. It contains
all the data coming from the sensors. . . . . . . . . . . . . . . . . . 88

6.12 UML diagram of the entity relationships. . . . . . . . . . . . . . . . 91
6.15 Views reporting the information of each level of the channel tree

structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.16 Views of extra further features and settings to switch from server

mode to Tangle mode . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.1 Representation of the PoC process steps. . . . . . . . . . . . . . . . 101
7.2 Minimum, Maximum and Average value of cycles publishing time

for each payload size. . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.3 Cycles publishing times trend for each payload size. The zero values

refer to cycles that have been interrupted due to timeout expiration. 106

112



List of Tables

1.1 Differences between DLT s and DDBMSs . . . . . . . . . . . . . . . 3
1.2 Advantages of PoS over PoW . . . . . . . . . . . . . . . . . . . . . 13

2.1 Block’s Header of Bitcoin . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Features and characteristics comparison among DLT frameworks. . 41

5.1 Ternary Alphabet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1 IOTA interpretation of the GDPR directives for the UIP. . . . . . . 82

7.1 Test results for a set of four different payload sizes. The average
time values have been computed by using a number of samples equal
to the number of cycles that have successfully ended. . . . . . . . . 105

7.2 Server configuration variables. . . . . . . . . . . . . . . . . . . . . . 108
7.3 Client configuration variables. . . . . . . . . . . . . . . . . . . . . . 109
7.4 Suggestions for further improvements of BioEnPro4To-like projects

for interested companies and institutions. . . . . . . . . . . . . . . . 111

113



Acronyms

DLT
Distributed Ledger Technology

DDBMS
Distributed Database Management System

BFT
Byzantine Fault Tolerance

PoW
Proof of Work

PoS
Proof of Stake

ECDSA
Elliptic Curve Digital Signature Algorithm

EdDSA
Edwards-curve Digital Signature Algorithm

NFT
Non Fungible Token

P2P
Peer-to-Peer

IoT
Internet Of Things

114



Acronyms

M2M
Machine-to-Machine

DAG
Directed Acyclic Graph

OTS
One Time Signature

WRW
Weighted Random Walk

PII
Personally Identifiable Information

PoC
Proof of Concept

115



Bibliography

[1] Distributed Ledger Technology: beyond block chain (PDF Report). Jan. 2016.
url: https://assets.publishing.service.gov.uk/government/upload
s/system/uploads/attachment_data/file/492972/gs-16-1-distribut
ed-ledger-technology.pdf (cit. on p. 1).

[2] Blockchain - Wikipedia. url: https://en.wikipedia.org/wiki/Blockcha
in (cit. on pp. 4, 5).

[3] Nirupama Devi Bhaskar; David LEE Kuo Chuen. «Bitcoin Mining Technol-
ogy». In: (2015), pp. 45–65 (cit. on p. 6).

[4] Veronica Valsecchi. La classificazione delle Blockchain: pubbliche, autorizzate
e private. Dec. 2018. url: https://www.spindox.it/it/blog/la-classif
icazione-delle-blockchain/ (cit. on p. 7).

[5] Proof of Authority - Wikipedia. url: https://en.wikipedia.org/wiki/
Proof_of_authority (cit. on p. 7).

[6] Diego Geroni. Hybrid Blockchain: The Best Of Both Worlds. Jan. 2021. url:
https://101blockchains.com/hybrid-blockchain/ (cit. on p. 7).

[7] La Byzantine Fault Tolerance spiegata. Jan. 2021. url: https://academy.
binance.com/it/articles/byzantine-fault-tolerance-explained (cit.
on p. 8).

[8] Proof of Work - Wikipedia. url: https://en.wikipedia.org/wiki/Proof_
of_work (cit. on p. 9).

[9] Giulia Spinoglio. Proof of Stake, cos’è, perché sta soppiantando il Proof of
Work. Apr. 2021. url: https://www.blockchain4innovation.it/esperti/
proof-of-stake-cose-perche-sta-soppiantando-il-proof-of-work/
(cit. on p. 12).

[10] A short history of cryptocurrencies. url: https://daviescoin.io/blog/a-
short-history-of-cryptocurrencies.html (cit. on p. 14).

[11] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. url:
https://bitcoin.org/bitcoin.pdf (cit. on p. 15).

116

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://en.wikipedia.org/wiki/Blockchain
https://en.wikipedia.org/wiki/Blockchain
https://www.spindox.it/it/blog/la-classificazione-delle-blockchain/
https://www.spindox.it/it/blog/la-classificazione-delle-blockchain/
https://en.wikipedia.org/wiki/Proof_of_authority
https://en.wikipedia.org/wiki/Proof_of_authority
https://101blockchains.com/hybrid-blockchain/
https://academy.binance.com/it/articles/byzantine-fault-tolerance-explained
https://academy.binance.com/it/articles/byzantine-fault-tolerance-explained
https://en.wikipedia.org/wiki/Proof_of_work
https://en.wikipedia.org/wiki/Proof_of_work
https://www.blockchain4innovation.it/esperti/proof-of-stake-cose-perche-sta-soppiantando-il-proof-of-work/
https://www.blockchain4innovation.it/esperti/proof-of-stake-cose-perche-sta-soppiantando-il-proof-of-work/
https://daviescoin.io/blog/a-short-history-of-cryptocurrencies.html
https://daviescoin.io/blog/a-short-history-of-cryptocurrencies.html
https://bitcoin.org/bitcoin.pdf


BIBLIOGRAPHY

[12] Hashcash - Bitcoin Wiki. url: https://en.bitcoin.it/wiki/Hashcash
(cit. on p. 19).

[13] Proof of Work - Bitcoin Wiki. url: https://en.bitcoin.it/wiki/Proof_
of_work (cit. on p. 19).

[14] Weaknesses - Bitcoin Wiki. url: https://en.bitcoin.it/wiki/Weakness
es (cit. on pp. 26, 28, 29).

[15] Raffaele Battaglini. Smart Contracts in Breve. url: https://www.4clegal.
com/hot-topic/smart-contracts-breve (cit. on p. 31).

[16] What is Tokenization. url: https://etorox.com/what-is-tokenization/
#:~:text=Tokenization%5C%20is%5C%20a%5C%20process%5C%20where,
or%5C%20recorded%5C%20on%5C%20a%5C%20blockchain.&text=Tokeniza
tion%5C%20in%5C%20simple%5C%20terms%5C%20converts,manipulated%
5C%20on%5C%20a%5C%20blockchain%5C%20system. (cit. on p. 34).

[17] Biobased economy - Wikipedia. url: https://en.wikipedia.org/wiki/
Biobased_economy (cit. on p. 35).

[18] Raja Wasim Ahmad; Khaled Salah; Raja JayaramanRaja Jayaraman; Ibrar
YaqoobIbrar Yaqoob; Mohammed Omar. Blockchain for Waste Management
in Smart Cities: A Survey. Apr. 2021. url: https://www.techrxiv.org/
articles/preprint/Blockchain_for_Waste_Management_in_Smart_
Cities_A_Survey/14345534/1 (cit. on p. 37).

[19] Bahar Farahani; Farshad Firouzi; Markus Luecking. The convergence of IoT
and distributed ledger technologies (DLT): Opportunities, challenges, and
solutions. Dec. 2020. url: https://www.sciencedirect.com/science/
article/abs/pii/S1084804520303945 (cit. on p. 43).

[20] HORNET - The IOTA community node. url: https://github.com/gohorn
et/hornet/blob/main/README.md (cit. on p. 47).

[21] Ternary system – What is it and is there an advantage? url: https://iota-
beginners-guide.com/future-of-iota/iota-x-0-ternary-vision-
abandoned/ternary-systems/ (cit. on p. 50).

[22] The Tangle: an illustrated introduction. Feb. 2018. url: https://blog.iota.
org/the-tangle-an-illustrated-introduction-f359b8b2ec80/ (cit. on
pp. 55–57).

[23] Luca Grande. Conservazione dei dati alla luce del recente Provvedimento della
Banca d’Italia. June 2020. url: https://www.antiriciclaggiocompliance.
it/conservazione-dei-dati-alla-luce-del-recente-provvedimento-
della-banca-ditalia/ (cit. on p. 58).

117

https://en.bitcoin.it/wiki/Hashcash
https://en.bitcoin.it/wiki/Proof_of_work
https://en.bitcoin.it/wiki/Proof_of_work
https://en.bitcoin.it/wiki/Weaknesses
https://en.bitcoin.it/wiki/Weaknesses
https://www.4clegal.com/hot-topic/smart-contracts-breve
https://www.4clegal.com/hot-topic/smart-contracts-breve
https://etorox.com/what-is-tokenization/#:~:text=Tokenization%5C%20is%5C%20a%5C%20process%5C%20where,or%5C%20recorded%5C%20on%5C%20a%5C%20blockchain.&text=Tokenization%5C%20in%5C%20simple%5C%20terms%5C%20converts,manipulated%5C%20on%5C%20a%5C%20blockchain%5C%20system.
https://etorox.com/what-is-tokenization/#:~:text=Tokenization%5C%20is%5C%20a%5C%20process%5C%20where,or%5C%20recorded%5C%20on%5C%20a%5C%20blockchain.&text=Tokenization%5C%20in%5C%20simple%5C%20terms%5C%20converts,manipulated%5C%20on%5C%20a%5C%20blockchain%5C%20system.
https://etorox.com/what-is-tokenization/#:~:text=Tokenization%5C%20is%5C%20a%5C%20process%5C%20where,or%5C%20recorded%5C%20on%5C%20a%5C%20blockchain.&text=Tokenization%5C%20in%5C%20simple%5C%20terms%5C%20converts,manipulated%5C%20on%5C%20a%5C%20blockchain%5C%20system.
https://etorox.com/what-is-tokenization/#:~:text=Tokenization%5C%20is%5C%20a%5C%20process%5C%20where,or%5C%20recorded%5C%20on%5C%20a%5C%20blockchain.&text=Tokenization%5C%20in%5C%20simple%5C%20terms%5C%20converts,manipulated%5C%20on%5C%20a%5C%20blockchain%5C%20system.
https://etorox.com/what-is-tokenization/#:~:text=Tokenization%5C%20is%5C%20a%5C%20process%5C%20where,or%5C%20recorded%5C%20on%5C%20a%5C%20blockchain.&text=Tokenization%5C%20in%5C%20simple%5C%20terms%5C%20converts,manipulated%5C%20on%5C%20a%5C%20blockchain%5C%20system.
https://en.wikipedia.org/wiki/Biobased_economy
https://en.wikipedia.org/wiki/Biobased_economy
https://www.techrxiv.org/articles/preprint/Blockchain_for_Waste_Management_in_Smart_Cities_A_Survey/14345534/1
https://www.techrxiv.org/articles/preprint/Blockchain_for_Waste_Management_in_Smart_Cities_A_Survey/14345534/1
https://www.techrxiv.org/articles/preprint/Blockchain_for_Waste_Management_in_Smart_Cities_A_Survey/14345534/1
https://www.sciencedirect.com/science/article/abs/pii/S1084804520303945
https://www.sciencedirect.com/science/article/abs/pii/S1084804520303945
https://github.com/gohornet/hornet/blob/main/README.md
https://github.com/gohornet/hornet/blob/main/README.md
https://iota-beginners-guide.com/future-of-iota/iota-x-0-ternary-vision-abandoned/ternary-systems/
https://iota-beginners-guide.com/future-of-iota/iota-x-0-ternary-vision-abandoned/ternary-systems/
https://iota-beginners-guide.com/future-of-iota/iota-x-0-ternary-vision-abandoned/ternary-systems/
https://blog.iota.org/the-tangle-an-illustrated-introduction-f359b8b2ec80/
https://blog.iota.org/the-tangle-an-illustrated-introduction-f359b8b2ec80/
https://www.antiriciclaggiocompliance.it/conservazione-dei-dati-alla-luce-del-recente-provvedimento-della-banca-ditalia/
https://www.antiriciclaggiocompliance.it/conservazione-dei-dati-alla-luce-del-recente-provvedimento-della-banca-ditalia/
https://www.antiriciclaggiocompliance.it/conservazione-dei-dati-alla-luce-del-recente-provvedimento-della-banca-ditalia/


BIBLIOGRAPHY

[24] Streams Specification - Rev: 1.0 A. url: https://github.com/iotaledger/
streams/blob/develop/specification/Streams_Specification_1_0A.
pdf (cit. on p. 68).

[25] Jelle Femmo Millenaar; Matthe Yarger. The Case for a Unified Identity.
url: https://files.iota.org/comms/IOTA_The_Case_for_a_Unified_
Identity.pdf (cit. on pp. 78, 81, 82).

118

https://github.com/iotaledger/streams/blob/develop/specification/Streams_Specification_1_0A.pdf
https://github.com/iotaledger/streams/blob/develop/specification/Streams_Specification_1_0A.pdf
https://github.com/iotaledger/streams/blob/develop/specification/Streams_Specification_1_0A.pdf
https://files.iota.org/comms/IOTA_The_Case_for_a_Unified_Identity.pdf
https://files.iota.org/comms/IOTA_The_Case_for_a_Unified_Identity.pdf

	Introduction
	What is a Distributed Ledger ?
	Blockchain
	Structure
	Blocks
	Blockchain policies

	Consensus protocols
	The Byzantine Generals Problem
	Byzantine Fault Tolerance Algorithms
	Proof of Work
	Proof of Stake
	A comparison between PoW and PoS


	Bitcoin: The First Blockchain Implementation
	What Bitcoin is and how it works
	Transactions

	Hashcash in Bitcoin mining
	Forks on the Bitcoin’s Blockchain
	Soft fork and Hard fork

	Blocks Validation Rate
	Blocks Structure
	Weaknesses and Limitations of Bitcoin

	Blockchain 2.0: Tools and Use Cases
	Main Features of Blockchain 2.0
	Smart Contracts
	Tokenization

	A Use Case Analysis: Circular Bioeconomy for Waste Management
	Issues Overview
	Digital Ledgers Technologies and Circular Bioeconomy


	Suitability Assessment of DLT Frameworks
	DLT Frameworks Comparison

	History of IOTA
	What is IOTA?
	The Tangle
	The IOTA Network
	Ternary Number System
	Advantages of a ternary system

	Seeds, Addresses and Keys
	Structure of a Transaction
	Consensus in IOTA Network
	Tip Selection

	Snapshot
	Coordinator and Milestones
	IOTA 1.5 - Chrysalis
	IOTA 2.0 - Coordicide
	Shimmer
	Node Identities and concept of MANA


	BioEnPro4To
	Project Purpose and Scenario
	Use Case Analysis
	Overview of the System Architecture
	IOTA Streams
	Channels Protocol
	Messages Types
	Streams Solution for BioEnPro4To
	Usage of iota-streams-lib

	IOTA Identity
	Unified Identity Protocol
	The Roles of Digital Identities
	Using Digital Identities
	Considerations
	Purpose of Digital Identities in BioEnPro4To

	Channel Manager
	PoC Architecture
	Server Features
	Component Interactions

	Monitoring Mobile Application

	Conclusions
	Obtained Results
	Final Considerations
	Performance Analysis

	PoC Setup
	Server Configuration
	Client Configuration

	Open Issues and Further Improvements

	List of Figures
	List of Tables
	Acronyms
	Bibliography

