
POLITECNICO DI TORINO
Master’s Degree in Communications and Computer
Networks Engineering (Ingegneria Telematica e delle

Comunicazioni)

Master’s Degree Thesis

Engineering and deployment of the
Personal Data Safe (P-DS) for PIMCity

Supervisors

Prof. Marco MELLIA

Prof. Martino TREVISAN

Candidate

Enrico ANNALORO

October 2021

Abstract

With the fast development of a society that bases its economy on the web, almost
forcing millions and millions of users to utilize new applications, forms, games,
movie platforms and more, directly from the internet, we have noticed how gathering
and collecting user personal data has become of fundamental importance. This is
sponsored as to be a feature that helps customize the user experience depending
on the individual tastes and likes. But personal data should not be given away so
easily. Most of the online services do not inform the user on how their data are
used, manipulated or even distributed. Personal Information Management Systems
(PIMS) try to give users control over their data, by configuring a central, safe
location to store all their personal information and manage the distribution in a
simple and intuitive manner, while giving feedback back to the user on the status
of their stored and distributed data.

PIMCity is a European project that is implementing this technology, based on
a set of different tools. One main component of PIMCity is the Personal Data
Safe (PDS), a platform to securely store the personal data, with a friendly user
interface which allows for easy interaction and gather of information. PDS will then
interact with other PIMCity components for the management of authorizations
and accessibility to the stored data. In this work I will explain and analyse the
implementation of the PDS as a full-stack web application, built from a previously
developed version and improved using the latest cutting edge technologies and
designs.

The future of technology is deeply infused into the development of internet
applications and web services in general. We believe that protecting the users from
leading IT companies, which exploit the power of their platform to force the free
and uncontrolled delivery of personal information, is of outermost importance, and
we think that PIMCity might be a balanced and right solution to a shared pool of
controlled information.

i

Acknowledgements

I would like to thank my supervisors Marco Mellia and Martino Trevisan for the
opportunity and for the support given to me during the development and, in general,
for the assistance given during these months of work.

I would also like to thank my parents and my close friends for the support and
for always believing in me.

At last, to my girlfriend Coco, thank you for accompanying me during these
long years and for always being there to help me in the most difficult of times.

“Thank you all.”
Enrico

ii

Table of Contents

List of Tables vi

List of Figures vii

Acronyms viii

1 Introduction 1
1.1 Motivation . 1

2 Background 3
2.1 PIMCity . 3

2.1.1 PIMS Development Kit . 4
2.2 The initial state of the project . 6

2.2.1 Data Structure Design . 6
2.2.2 Main Functionalities and Frontend 8

2.3 Goals of the project . 8

3 P-DS architecture: Frontend and Backend 11
3.1 From centralized, static server-side web server to fully-flagged, dis-

tributed client-side application . 11
3.1.1 Server-side vs. Client-side Rendering 12
3.1.2 Django . 13
3.1.3 The Frontend Web APP . 15

3.2 From MongoDB to PostgreSQL . 24
3.3 Authentication and JWT . 28
3.4 Using the .yaml file to control all the functionalities of the P-DS . . 30

4 Databuyers APIs 35
4.1 The interaction with the Personal Content Manager 35
4.2 The security in the Token . 37
4.3 The development of databuyers’ APIs 38

iv

5 Deployment, testing and next steps 40
5.1 Deployment . 40
5.2 Testing . 42
5.3 Next Steps . 47

5.3.1 Security . 47
5.3.2 Integration with other components 47
5.3.3 OAuth . 48
5.3.4 Automation for CI/CD implementation 48
5.3.5 Additional features for the REACT APP 48

6 Conclusions 50

Bibliography 52

v

List of Tables

5.1 Users requesting 1000 location history records to API 43
5.2 Users requesting 1000 browsing history records to API 44
5.3 Databuyers requesting users’ records to API 45

vi

List of Figures

2.1 P-DS logical interactions view . 5
2.2 P-DS initial logical structure . 7
2.3 P-DS initial homepage . 8
2.4 P-DS initial PersonalInformation page 9

3.1 Popularity Chart for Js Libraries 18
3.2 P-DS Homepage . 19
3.3 Personal Information Page . 19
3.4 Comparison of different screen-size View 20
3.5 Logical tree architecture for React App 22
3.6 Example of editable data page . 23
3.7 Example of Location History Page 24
3.8 Example of Single Location Map Pop-up 25
3.9 Example of All Location Map Pop-up 25
3.10 Example of Browsing History Page 26
3.11 Schema is checked upon startup . 34
3.12 Web APP reflecting changes in Schema.yaml file 34

4.1 Databuyers request workflow . 36
4.2 Databuyers APIs usage . 39

5.1 PIMCITY project server configuration 42
5.2 Users requesting 1000 location history records to API 44
5.3 Users requesting 1000 browsing history records to API 44
5.4 Databuyers requesting users’ records to API 45

vii

Acronyms

API
Application Programming Interface

CRUD
Create, Read, Update and Delete

CSS
Cascading Style Sheets

DOM
Document Object Model

DOS
Denial Of Service

ECDSA
Elliptic Curve Digital Signature Algorithm

EDPS
European Data Protection Supervisor

GDPR
General Data Protection Regulation

HTML
HyperText Markup Language

HTTP
Hypertext Transfer Protocol

viii

JWT
JSON Web Token

PCM
Personal Content Manager

PDA
Personal Data Avatar

PDK
PIMS Development Kit

PDS
Personal Data Safe

PIMS
Personal Information Management Systems

RSA
Public-key cryptosystem: the acronym RSA comes from the surnames of Ron
Rivest, Adi Shamir and Leonard Adleman who desribed it officially in 1977

RTT
Round Trip Time

SQL
Structured Query Language

URL
Uniform Resource Locator

VM
Virtual Machine

ix

Chapter 1

Introduction

1.1 Motivation

Today’s daily life strongly revolves around the usage of internet services: reading
the news, reserving a table at a restaurant, watching movies, listening to music are
all activities that are now mainly accessed on their web based counterparts com-
pared to only 10 or 15 years ago. Moreover, due to the recent events in the public
health, with the spread of the virus covid-19 throughout the globe, lots of jobs have
migrated into a home remote working environment, and this means that most of our
lives have now as a central focus point, the access and usage of internet applications.

To sustain a virtual ecosystem of this proportions, the amount of information
and data exchanged through the internet is enormous. Just to better understand
and put into perspective what just said: it is estimated that in one second are per-
formed around 94’000 Google searches, 10’000 tweets on Twitter, 1’000 Instagram
pictures posted and 124’170 GB of data exchanged [1, Internet Live Stats].

We are also well aware that in today’s web usage there are few giants of the
industry that hold and compete for the monopoly of the internet. We clearly have
Google on one side which is constantly challenged by Amazon, Microsoft and many
more. We can see the same situation on the leisure category of web applications
with Netflix competing with Amazon and Disney, with Spotify competing with
Tidal and Amazon. Few companies control the market, and more importantly,
control their users. As most of these services require mandatory sharing of per-
sonal information, the user has no choice on if or not to share its data, he just has to.

User data is obtained and analyzed by the web companies to enable specific
features that make the experience in their service more pleasant. Information

1

Introduction

are stored in cookies or imported in the browser to modify each user experience
depending on what the system thinks is better for the customer. Although most of
the time, the final result seems functional and convenient, the main problem is that
there is no choice. Users are forced to present their data if they want to use the
service. We have seen a trend in the last years where the most profitable companies
are those who manage large amount of information, benefiting from the release or
the share of these information to partners and/or into advertising campaigns; yet
when it comes to users, the value of the data in their hands is close to or exactly zero.

If there is such a profitable margin for companies in the market of data and
information distribution, there should also be an adequate market, for the users, to
avoid the free and "forced" release of valuable information, a controlled environment
where each and everyone can profit and control where their data is being moved
to and used for. There should be a solution that is regulated by protocols and
data protection standards which, in fact, are being discussed and analyzed by EU’s
GDPR [2, GDPR description] following the lack of online privacy that has been
developed in these last years over the internet. The proposed project PIMCity
aims at solving all these issues in an innovative manner while keeping the user
accessibility user-friendly and the process and analysis transparent.

2

Chapter 2

Background

2.1 PIMCity

Based on all the motivations cited above and much more, the EU founded the
project PIMCITY, which aims to improve the methods and tools of the users
in managing their personal data. PIMCity is based on the concept of PIMS -
Personal Information Management Systems - which are described by the EDPS as
systems that help give individuals more control over their personal data, allowing
individuals to manage their personal data in secure, local or online storage systems
and share them when and with whom they choose [3, EDPS].

PIMCity is creating the tools to make PIMS accessible by creating a PIMS
development kit (PDK), which makes the creation of new PIMS easy and stan-
dardized. All of this will be combined with the development of transparency tags
(TT) used to display to the users information about the services they access and
personal data avatar (PDA) to help users control the information shared to third
parties [4, PIMCity project description].
The PDK will allow for an easier, faster, controlled and cheaper method of building
PIMS, thanks to the open API developed and documented, aiming at distributing
the standard accross multiple realities and imprinting the privacy and protection
of data as a defacto standard [5, PIMCity project proposal].

The project also has additional goals related, as the development of EASYPims
which is described in the project proposal as a fully-fledged PIMS for controlling,
visualising, releasing, and monetizing web and mobility data, and demonstrate
how easy it is to combine off-the-shelf components from the PDK with a limited
amount of ad hoc code to create fast and economically powerful real world PIMS
[5, PIMCity project proposal].

3

Background

PIMCity focuses on personal data platforms and targets the online web environ-
ment (including fixed and mobile, making no distinctions). It aims at helping all
those startups and small companies which would, most likely, fail in the compe-
tition of data security and management, if compared to the tech giants that are
established. These small companies will need a system which is easily applicable
and connected to many users. This is why PIMCity aims at partnering with
TELCO realities to start its system, connecting to its systems the users already
established in TELCO and inserting the customers data that has already been
collected. Moreover PIMCity really believes that users should be active actors
of the whole platform by chosing how their personal data is disposed, receiving
monetary benefits for sharing and receiving extra services on security and analysis
of their information.

2.1.1 PIMS Development Kit
In this section we are going to analyze more in detail the structure of the PIMS
Development Kit (PDK). The PDK is a set of tools which will aid in the creation
of standardized and complex PIMS. As described in the PIMCity project proposal,
the main components of PDK are divided into different categories: elements to
improve data subject privacy, mechanisms for the new data economy and Novel
Data Management Tools. [5, PIMCity project proposal (pg. 9)].

• Elements to improve data subject privacy: these include functionalities
that allow the users to take informed decisions about which information to
share and with whom. In this category are defined the following components :
Personal Data Safe (P-DS), Personal Privacy Metrics (P-PM), Per-
sonal Consent Manager (P-CM) and Personal Privacy Preserving
Analytics (P-PPA)

• Mechanisms for the new data economy: Takes care of the fundamental
creation of a transparent, open and easily accessible data market. In this
category are identified two fundamental components and functionalities: Data
Valuation Tools (D-VT) and Data Trading Engine (D-TE)

• Novel Data Management Tools: Moving and manipulating user data
among heterogeneous systems need to be standardized with proper meta-
data which will record data source, data value and the implementation of
these data among the different systems. In this category are identified the
following components: Data Aggregation (DA), Data portability and
control (DPC), Data provenance (DP) and Data knowledge extrac-
tion (DKE)

4

Background

In this work we will only focus on the elements to improve data subject privacy
and more specifically on the Personal Data Safe (P-DS), as this was the target
of all the technical work done. When needed we will stop and focus on its interaction
with other components.

The Personal Data Safe (P-DS) is the means to store personal data in a controlled
form. It implements a secure repository for the user’s personal information such as
navigation history, contacts, preferences, personal information, etc. It gives the
possibility to handle them through REST-based APIs or a web interface. Thanks
to the REST APIs, the P-DS can be accessed also by other components of the
PDK. The architecture of the P-DS interactions is depicted in the figure below.

Figure 2.1: P-DS logical interactions view

We will consider the details of the implementation in the following chapters,
for now we just want to concentrate on the logical role that the P-DS holds and
the input/output connection it holds. As shown in Figure 2.1, our designed P-DS
will interact either directly with the user through a web interface or indirectly,
through other PDK components, through the defined APIs. The web interface is
managed and delivered from one of the project’s servers and it uses the same APIs
that the P-DS components use. Both customers and data-buyers, which are those
entities or companies that wants to access the data of the users, will have specific
ad-hoc APIs to permit scalable deployment of the whole application system. We
will discuss about this later as well.

In the end, as stated above, the P-DS will store, display and distribute the data
of the users, it will allow for manipulation, modification, deletion and insertion
of data both manually and automatically, which is one of the main targets of the
project as giving the users the control and a detailed view of their information.

5

Background

2.2 The initial state of the project
Before beginning to describe the work that has been done in these months, it
is important to define and describe the state of the P-DS. In this section, we
will briefly consider the outline, the architecture, the technologies and designs
implemented in the P-DS. If interested, it is possible to find all these information,
much more in detail, in the thesis elaborated for the description of the initial P-DS
implementation [6, Personal Data Safe: a flexible storage system for personal data].

In the beginning, the P-DS was delivered as a Django Web Application that
interacted with a MongoDB database. The choice of technologies was mainly
based on flexibility and ease of implementation: Django is a high-level Python
web framework that encourages rapid development and clean, pragmatic design. It
takes care of much of the hassle of web development, to let developers concentrate
on creating websites and APIs without having to build everything from scratch.
It’s free and open source [7, Django official website]. Its main qualities are to be
fast, secure and scalable. Moreover, being based on Python there are lots of free
open-source libraries to implement a variety of features.

MongoDB instead is an object-oriented, simple, dynamic, and scalable NoSQL
database. It is based on the NoSQL document store model. It gives the developer
a flexible choice of the model of data, which for the beginning of the project was a
positive aspect. We will discuss later, when discussing the changes made to the
project, why it has not been kept in the new design of the P-DS [8, MongoDB
official website].

Lastly, the web view was served through back-end generated static HTML files
which were styled using a framework known as Bootstrap. Again we considered
this a good choice for the ease of implementation it brought as Bootstrap is de-
fined as a free and open-source CSS framework directed at responsive, mobile-first
frontend web development which was developed by TWITTER. It contains CSS
and JavaScript based design templates for typography, forms, buttons, navigation,
and other interface components [9, Bootstrap official website].

2.2.1 Data Structure Design
This section describes how the data have been structured within the P-DS. It is of
fundamental importance as, throughout our development of the project we kept this
structure as is and try to automate the whole new application from just modifying
one single file, as will be explained in later sections.

6

Background

The central and focal point of the P-DS data structure resides in the Schema.
The Schema as a YAML file that contains the possible types of information that
can be stored in the P-DS, listing the possible fields and the logical group for
each type. The schema has the primary goal to control the data that can be
inserted on the Personal Data Safe: in this way it prevents the user from inserting
unstructured information, that may be too complex to handle and process, or
erroneous data. On the other side, the schema can be easily changed or expanded,
providing the flexibility required by different project goals. The schema can be con-
sulted by users, but its content is defined and managed by the system administrator.

The whole database is divided into two macro categories, which are identified
as Classes, defined at source-code-level to represent the data domain: the User
class, that represents P-DS users, and the Personal Information class, which
describes the principal characteristics of each P-DS entry.

Lastly, some REST APIs were defined too distribute the data. These APIs were
on an early stage, therefore we will reserve a whole section to it later.

We report the initial logical design of the P-DS as described in [9, Bootstrap
official website]

Figure 2.2: P-DS initial logical structure

7

Background

2.2.2 Main Functionalities and Frontend
The main functionalities of the P-DS have not been touched much during this work,
they have been reworked and improved but the main concept has remained the
same. With the Schema.yaml file set-up, the backend running and the database
functioning, it was possible, through the web interface, performing the following
actions:

• Log-in: Log-in procedure was performed by inserting username and password
as the O-Auth login has not been implemented yet;

• Upload of user data: once authenticated, users can import and view their data
from within the web page. It has also been implemented a prototype function
that accepts a Google Takeout zip file and imports some specific types of data
(location history and browser history).

We would also like to include in this analysis of the starting project, the state
of the frontend, UX/UI of the application. Although this was not a focus of the
previous project, it has been an important and time-consuming part of this work.
Taken directly from [6, Personal Data Safe: a flexible storage system for personal
data], we here present the look of the home page for the P-DS.

Figure 2.3: P-DS initial homepage

2.3 Goals of the project
Overall we consider the work previously done by Francesco Torta, a solid starting
point from where we would like to improve the flow and the concept of the P-DS

8

Background

Figure 2.4: P-DS initial PersonalInformation page

both in its backed and frontend. In this section we will shortly introduce what has
been touched and reworked before diving deeply into the technical analysis and
choices made during the update of the P-DS.

First, we thought that even if a complete Django application was quick to
set-up and update, the concept of generating HTML files in the backend and
sending back static files is slowly dying in modern web development. Today’s
modern development techniques revolve around a distributed implementation of
fullstack application, separating the frontend from the backend and developing the
frontend as a client application which utilizes the backend APIs. For this reason we
decided to move the frontend into a ReactJS application and leaving the backend
to ONLY transfer information through APIs. In this way we also relieve some of
the stress from the backend since it does not need to send HTML files but only
JSON responses.

Second, we moved the database from MongoDB to a PostgreSQL. This was
mainly for implementation purposes as Django is better suited and developed
around SQL databases, making our lives easier with the development.

Third, we modified the authentication and authorization logic for users, from
session based to token based, using JWTs (JSON Web Tokens). And we also
improved the concept and role of the Schema.yaml file to be able to control the
whole application state, both backend and frontend, just by changing its content.
We felt like this could be a good step forward in the ease of implementation of P-DS
as a component for different projects and companies who would like to implement
our PDK.

9

Background

We also did a whole rework of the style and look of the frontend, adding dynamic
and responsive views and application feel-like usage of the app. We thought, this
was a needed change as the state of frontend was still in the prototypical phase
and could not really be considered as a commercially valued product.

Finally, we added some extra functionalities by developing the databuyers APIs,
which are based on authorization given in form of a signed JWT (Asymmetric cryp-
tography) that is outsourced by the Personal Consent Manager (P-CM). Moreover,
we started the development of OAuth both as functionality in backend and its
frontend counterpart view. We uploaded the full application on the server of the
project and it is now accessible by navigating to easypims.pimcity-h2020.eu/pds
.

The final goal of this work was to improve the solid foundations of the project
and making it an appealing product that can be considered as finished. With this
said, we don’t mean that the P-DS is done, as much more work needs to be done,
and we will focus on these concepts at the end.

10

easypims.pimcity-h2020.eu/pds

Chapter 3

P-DS architecture:
Frontend and Backend

In this chapter we will dive deeply into the changes and updates we made from the
previous version of the P-DS. We will discuss why we chose to change, explain our
research in the possible alternatives and briefly touch the concept of the technologies
used.

3.1 From centralized, static server-side web server
to fully-flagged, distributed client-side appli-
cation

In this section we present the changes made at the core of the Django application.
It is of substantial importance because we aim at dividing the application into
two main components, releasing stress from the central and unique component
which was the Django server and moving some of the responsibility to a React
application for the frontend part of the P-DS. The Django server is still the focal
point of the P-DS as it handles all the REST APIs requests and it interfaces with
the database. By doing so, we allow for separate and independent developments of
the two main components that constitute the data safe, we will be able to develop
specific REST APIs that will not make it into the web views, such as APIs for
databuyers and utility APIs for internal use. Moreover, the frontend look and
feel could also be updated independently as time passes, without impacting the
functionality and development of the core of the P-DS.

11

P-DS architecture: Frontend and Backend

3.1.1 Server-side vs. client-side rendering
Since the beginning, with the rise of internet browsing and web pages, the conven-
tional method of accessing information and displaying HTML files into the system
was performed using server-side rendering. Server-side rendering works by creating,
loading and inserting data into the HTML file directly on the server and, once the
file is ready, sending it to the client, as is. The client web browser will then receive
the HTML file and display it, for the joy of all us users. Server-side rendering has
been working perfectly fine for years since most web pages were mostly just for
displaying static images and text, giving little space to interactivity.

In today’s usage, this is no longer the case. Today’s websites are much closer to
mobile applications than to pure websites: used as messages chats, videoconferencing
tools, online shopping and much more. With the constant need of updating the
information displayed, it is clear how the server-side rendering is not optimal as,
for these types of usage, it would need to request a new composed HTML file from
the server every time an update is necessary. So when is it ok to use server-side
rendering?

As stated above, when data does not change very frequently and when live
updates are not necessary, server-side rendering is still more than appropriate to
be used. Of course, for very large scale projects, which must handle a lot of traffic,
there might still be some problem as, for every user requesting a web page, the
server has to process the request, compose the HTML file and send it back, which
is a much more computational intense job than just sending requested data back.

This is where client-side rendering comes into play. When talking about
client-side rendering we usually refer to rendering content in the browser using
JavaScript, a lightweight, interpreted, object-oriented programming language which
is commonly used for scripting in web pages [10, Javascript Official Website]. With
client-side rendering, the user gets a backbone HTML document with JavaScript
on the background that will fetch and update the content of the HTML document,
on the go, keeping it updated.

This has quickly become the defacto-standard of building web applications and
websites in general, with some JavaScript libraries becoming very popular and easy
to implement. The main ones used today are React, Angular and Vue.

A good example of server-side versus client-side rendering is explained by
freeCodeCamp, a platform for learning everything about coding [11, FreeCodeCamp
article]:

12

P-DS architecture: Frontend and Backend

Listing 3.1: example proposed with static HTML
1 <!DOCTYPE html>
2 <html>
3 <head>
4 <meta cha r s e t=" utf −8">
5 < t i t l e>Example Website</ t i t l e>
6 </head>
7 <body>
8 <h1>My Website</h1>
9 <p>This i s an example o f my new webs i te</p>

10 <p>This i s some more content from the other . html</p>
11 </body>
12 </html>

Listing 3.2: equivalent example proposed with client-side HTML
1 <!DOCTYPE html>
2 <html>
3 <head>
4 <meta cha r s e t=" utf −8">
5 < t i t l e>Example Website</ t i t l e>
6 </head>
7 <body>
8 <div id=" root ">
9 <app></app>

10 </ div>
11 <s c r i p t s r c=" https : // vue j s . org " type=" text / j a v a s c r i p t "></ s c r i p t>
12 <s c r i p t s r c=" l o c a t i o n / o f /app . j s " type=" text / j a v a s c r i p t "></ s c r i p t>
13 </body>
14 </html>

As we can see from the second example, the HTML file contains only one div
called root and a component called app. This is the backbone HTML file we
mentioned above. The backbone file also has two JavaScript scripts attached to it,
these scripts will request, manipulate and return the data as HTML elements; and
the good news is that this process can be performed, seamlessly and periodically,
giving the feeling of constant updates to the page, without ever refreshing it.

3.1.2 Django
During development, we worked at the same time on backend and frontend to be
sure that they were compatible along the whole process, however modifications
had to be done to the Django core server, mainly focusing on removing the Django
static files generation logic and replacing it with REST APIs. Notice that in this
section we will not spend time explaining how Django works, why we decided to
use it or which other frameworks we could have used. If you are interested on

13

P-DS architecture: Frontend and Backend

this discussion please go read [6, Personal Data Safe: a flexible storage system for
personal data] on the highlighted section. We will also assume a basic knowledge
of python for the next discussion.

Before continuing on the modifications made to our Django server, we touch very
briefly the concept of REST APIs. As stated in [12, Restful API website], REST is
acronym for REpresentational State Transfer. It is an architectural style for
distributed hypermedia systems and was first presented by Roy Fielding in 2000
in his famous dissertation. The concept of REST is based on some fundamental
principles, which are:

• Client–server: By separating the user interface concerns from the data stor-
age concerns, we improve the portability of the user interface across multiple
platforms and improve scalability by simplifying the server components.

• Stateless: Each request from client to server must contain all of the informa-
tion necessary to understand the request, and cannot take advantage of any
stored context on the server. Session state is therefore kept entirely on the
client.

• Cacheable: Cache constraints require that the data within a response to a
request be implicitly or explicitly labeled as cacheable or non-cacheable. If
a response is cacheable, then a client cache is given the right to reuse that
response data for later, equivalent requests.

• Uniform interface: By applying the software engineering principle of gener-
ality to the component interface, the overall system architecture is simplified
and the visibility of interactions is improved. In order to obtain a uniform
interface, multiple architectural constraints are needed to guide the behavior
of components. REST is defined by four interface constraints: identification of
resources; manipulation of resources through representations; self-descriptive
messages; and, hypermedia as the engine of application state.

• Layered system:The layered system style allows an architecture to be com-
posed of hierarchical layers by constraining component behavior such that
each component cannot “see” beyond the immediate layer with which they
are interacting.

And this is why, by migrating to a client-side rendering model, we needed to
update and rework the REST APIs of the Django application. We focused on
creating new REST APIs by adopting the Django REST framework, which is a
toolkit used for building Web REST APIs [13, Django REST framework]. This
really shows the power of using Python for programming the backend, as we can

14

P-DS architecture: Frontend and Backend

easily find packages and toolkits that help us immensely to speed up the process of
developing the app, while remaining standardized and even controlled. To start
using it, is as simple as adding a couple of lines of code into our project and we
can start taking advantage of its features.
Django’s rest framework can be installed using pip with the command:

Listing 3.3: Installation of djangorestframework
1 pip i n s t a l l d jangorest f ramework

then we simply install it in the Django APP, that is our server, by adding it in
Django project configuration file:

Listing 3.4: Installing package into DJANGO APP
1 INSTALLED_APPS = [
2 . . .
3 ’ rest_framework ’ ,
4]

Django REST framework, uses the models already defined in normal Django
but adds an extra layer of functions on top of it to ease, standardize and speed up
the development. It introduces Serializers, used to serialize information before
inserting it into the database or before sending it as JSON response, ViewSets to
standardize the CRUD operations (we will discuss about CRUD and all the REST
APIs functionality soon) and Routers to provide an easy way of automatically
determining the URL configuration [13, Django REST framework].

So from now on, all CRUD operations need to be standardized into specific
REST APIs, but what is CRUD? Create, Read, Update and Delete are the basic
function the REST APIs model should use. There must be a way to perform these
actions, using the APIs. With this we are not stating that each user should be able
to do it, but that, if it is possible and it is authorized, an API should take care of
it. And this was another change we added to our Django server: it now handles
CRUD operations on user personal information. Of course not all information can
be freely modified or deleted, but this is also determined by the settings of the
Schema file because as stated earlier, the Schema file has been treated as the focal
point that governs the behaviour of the P-DS.

3.1.3 The Frontend Web APP
Once set up the basic APIs on Django, we started to migrate the static HTML file
logic into a client-based application, which will consume our new APIs and will
make the user experience more interactive and clear, with up to date modifications

15

P-DS architecture: Frontend and Backend

which don’t need the refreshing of the page to be displayed.

We had to choose how to implement it and the choice fell on some of the
most uptrend and most used JavaScript libraries for developing Web Applications:
React,Angular andVue. Javascript libraries are frameworks which are focused on
developing single page applications, that are simply put, applications that resemble
those running on smartphones, but that instead run on web browser. They work
based on the concept of client-side rendering that we explained in the previous
sections: starting from an empty backbone they will fill it accordingly depending on
the logic behind it. These libraries became popular for their component-based
architecture, in that it allows to build encapsulated components that manage their
own state, then compose them to make complex UIs. Since component logic is
written in JavaScript instead of templates, you can easily pass rich data through
your app and keep the app state out of the DOM [14, React official website]. All
these libraries will run on on the user browser, from which the user requesting the
web views of the P-DS will contact the Django backend for updating and displaying
data. In this way, we will have solved one of our tasks: separating and distributing
frontend and backend, allowing the frontend to consume the APIs as a client and
generalizing the usage of the backend logic. The only additional piece needed, in
comparison with the previous design, is another server (the frontend server) which
is listening for requests and distributing to the requesting user the backbone of the
application with its logic in form of JavaScript files.

Let’s now briefly analyse the choices we had in terms of JS libraries and after
that we will discuss which one has been chosen, why and how the work has been
developed.

Angular vs React vs Vue

Before starting we want to state that the final decision of which library to use has
been strongly dependent on the developer’s personal experience with the tool. I
had previous experience developing web applications in React and therefore we
decided to use React as our choice. Nevertheless it is surely good to go over each
library, understanding its strength and weaknesses. We will go into more details
with React being it our final choice. To help us gather information and differences
about these frameworks we will often cite the work done by Sneha Das, Senior
Technical writer and consultant in her work [15, AngularJS Vs. ReactJS Vs. VueJS:
A Detailed Comparison].

Angular is an open-source framework developed by Google in 2009, it has
become popular mainly due to its leverage of using HTML as a template language.
It allows for component views development which increase re-usability, involves

16

P-DS architecture: Frontend and Backend

the usage of declarative coding which makes the code quite simple to read. It
has one of the oldest most established and active communities in the field, which
will guarantee assurance to be covered under many development aspects. It also
supports Two-way data binding, which is one of the most useful features of Angu-
larJS. Thanks to Two-way data binding, the changes made in the user interface
can influence web apps objects immediately and vice versa. In simpler words,
any changes that have been made in the user interface will immediately reflect
in the app interface too. The main negative point is that it is heavy and since
our application was not going to be processing heavy loads we did not consider
this as a viable choice [16, Reasons to Choose AngularJs for Web App Development].

Vue is famous for being very reactive, this means that when you set variables
in Vue, it will automatically update the user interface. As with AngularJs, Vue is
scalable and flexible, this means that it can be used for large applications as well
as to construct small interactive parts to be integrated with different technology.
In practice, it uses the same concepts of components. the main drawback of Vue is
that the user base, although it is growing fast, it is still relatively new and small.
This could bring to undocumented procedures, unexpected bugs and hard to find
solutions.

Lastly, our choice, React. As already said the main decisive reason for using
React was my previous experience with the tool, which cut to zero the learning time
before being able to work on a project. Moreover React is very developer friendly,
with its fast pre-builds that set up an initial project. It also uses components view,
which allow for a distributed development and reuse of code, as an example, it is
possible to define a special custom table with filtering actions and reuse the table
for different parts of our APP, which is exactly what happened, since it has been
reused the same table component for all personal information views (more on this
later).

Moreover, React was founded in 2013, which means that its lifetime is long
enough to be considered stable, it is used by major companies such as Netflix,
Airbnb, Storybook, Facebook, Instagram, Whatsapp, Intercom, Atlassian and more.
Its userbase is growing strong, being the currently most popular Js framework
per GitHub Survey [17, GithHub Survey on most popular Js Frameworks] as it is
depicted in Figure 3.1:

For these reasons, we decided to implement the frontend of the P-DS with
ReactJs. We will now discuss the changes done to the frontend and how it interacts
with the backend, diving deeply in some React and Redux mechanisms which are
really promising and useful.

17

P-DS architecture: Frontend and Backend

Figure 3.1: Popularity Chart for Js Libraries

React implementation

As previously stated, React basic concept is that of components. We can program
a component to perform specific tasks, formatting the information received and
return a final result (which in most cases it is a HTML code snippet that will
be rendered live on the browser). We then started to developed the application,
and the main concept of using React is to make the experience similar to that
of using a smartphone app. We used the concept of single page application,
that is there are no url renderings or refreshing of the web page; this said, the
application will have different views, feeling like navigating to different pages, but
on the background only one is running. Depending on the path the user reach, some
components will activate and others will deactivate, giving the feel of switching
between tabs, or section of the web app.

As demonstrated in the following Figure 3.2 and Figure 3.3, we present the
newly designed P-DS Homepage and one of the personal data pages.

The homepage, runs on https://easypims.pimcity-h2020.eu/pds/. This is the first
page an authorized user sees. By navigating through the app, the url (for Figure 3.3
it would be https://easypims.pimcity-h2020.eu/pds/personal-information) changes
but this is not another request to the react server, comporting a reload of the page.
It is, instead, the loading of a new component and the disappearing of the previous
one (the homepage component), which triggers a set of REST APIs request to

18

P-DS architecture: Frontend and Backend

Figure 3.2: P-DS Homepage

Figure 3.3: Personal Information Page

the Django server. In this way we can still give the user the feeling of "browsing
the web" while it is simply a switch of component. This is really important as
there is no need to exchange HTML files with the server, only the needed APIs are
called, which result in less strain on the server and the network in general. This is
the concept that many tech giants are implementing on their side, such as Netflix,
Facebook, JustEat, Airbnb, Instagram and much more...

For the same reasons of giving the feeling of an APP running on the browser,
we concentrated a lot on a particular feature of web pages and applications:
responsiveness. A web page is responsive if it adapts its look, effects and

19

P-DS architecture: Frontend and Backend

functionalities to the screen size. Previously, since the focus of the project was
not to deploy a polished frontend product, this feature was completely missing,
making it impossible to run the P-DS web view on phones or even small browser
windows. Now, with the help of React and CSS, the application will run seamlessly
on every kind of device. We show in the following Figure 3.4, how the view of the
page adapts to different screen sizes.

Figure 3.4: Comparison of different screen-size View

On the left, we have an Ipad Pro view, and due to its size, there is not a big
difference from the desktop view. Yet being oriented vertically, it will allow for more
space and will display all the visual tools at once. Instead, with the two phones,
having a smaller screen size, it has been introduced a hidden navigation bar on
the side. It is then possible to stretch the components in size, making them usable
on the phone. As showed, when accessing the P-DS web app from a phone us-
ing the built-in browser, the feeling will be the same as if using a mobile application.

The best part about the concept of components is that we can dispatch particular
actions to different components, an example could be requesting data through an
API request (maybe for a component that displays a table), another example could
be formatting the data (such as a component representing each entry of the table)
and another example could be checking the status of a user. We will discuss about
user authorizations and authentication in the React application later, for now it is
important to know that the status of an authenticated user is kept at application
level, which means that each component has the capability, if wanted, to retrieve
this information. In our React design we have divided our app into app-level

20

P-DS architecture: Frontend and Backend

components, pages components, utility components and specific components.

• app-level components: we only have two components in this category, au-
thenticated and non-authenticated. When the user is authenticated, the
component containing the whole application will load, giving access to all
information and functions. If instead the user is not authenticated, the log-in
component will load, displaying the log-in page. By setting this authentication
check at this level, we are sure that only authenticated users can have access
to the sensitive, personal information.

• pages components: are the containers of everything that is displayed, they
are the direct child of the app-level components and are visualized between the
header/nav and the footer of the whole application. Containing all displaying
components, such as tables, titles, buttons and more, by switching among
these, we give the feeling of "changing" page. In this category we identify
3 different categories: Homepage, editable-information, non-editable
information. The homepage is self-explanatory, it gives an overview of the
user current situation in its P-DS. The other 2 categories are different, in
which, some information should be editable by the user, e.g. address and
phone number, while others should not be possible to modify, e.g. browsing
history or location history. In order to choose which information is editable or
not by the user, it is as simple as to modify the Schema.yaml file.

• utility components: are those components that can be placed inside different
levels and have a utility function, such as the Navigation Bar, the Header,
pop-ups and more.

• specific components: are those components that compose a page. They could
be buttons, tables, titles but can also be a set of components grouped into
one, like a chart box containing the chart, its title and description.

We propose a logical overview of the hierarchy of the React App design in Figure
3.5.

We have now seen how the different "pages" or parts of the app are rendered and
activated. We discussed earlier that, at the app-level we check for authentication
and then keep this information available in the whole app. In React, to transfer
information from a parent component to a child component, this data must be
passed as an argument of a function, this is because every component is actually
built in the code by a function (more common) or an object instance (less common).
It is clear now, that if we want to distribute information along the hierarchy of
components described above when lot’s of "jumps" are performed, it will result in a
lot of data passed to functions. The most critical case is in fact the one of the user

21

P-DS architecture: Frontend and Backend

Figure 3.5: Logical tree architecture for React App

authentication data, containing all the information to perform the APIs request
and authorizations of the user, that need to be passed from app-level components
all the way to specific components.

To avoid this problem we used Redux, a pattern and library for managing and
updating application state, using events called "actions". It serves as a centralized
store for state that needs to be used across your entire application, with rules
ensuring that the state can only be updated in a predictable fashion [18, Redux
official website]. When triggered by our log-in component, Redux will perform the
necessary authentication steps, recording useful token information and expiration
dates on local-browser storage and making it accessible from any component of
the application. This is also how the app-level component checks if the user is
logged-in or if some actions need to be performed.

Maps and data visualization

At last we will discuss about the focal point of the P-DS web app, displaying the
information to the user. Data information pages are divided into two categories:
editable and non-editable, and this is a setting that must be inserted in the
Schema.yaml file.

Editable information will have a different visualization display as showed in
Figure 3.6 and it will allow for all CRUD operations on all data in such category

22

P-DS architecture: Frontend and Backend

(at least stated otherwise in the Schema.yaml).

Figure 3.6: Example of editable data page

As an example, we could create a personal information page containing all
information of a user’s life (e.g. name, last name, birth date, address), then, we
could set which fields can be edited and which cannot. For example the address
should be editable while the birth date should not. This tuning of the data preset,
can be done simply by changing the settings in the Schema.yaml. Users will be
greeted with a simple and intuitive interface where they can edit the respective
fields and then choose to confirm their changes or restore the original format. This
is possible because with React, we keep in memory, as a separate variable the
original value of the field, while the displayed value is the one that gets modified.
If the user confirms the change, an API request for modification will be sent out
and, if successful, also the original value will be updated. If instead the change is
discarded, the display value will be reverted to the original value.

Non-editable information instead, can only be added, displayed and deleted.
This is because this type of information, if edited, lose all their value. As an
example we could use the location of a user: if the user could edit it’s location
history, he could prove to have been in a place it was not, and it is clear how this
is would make any location record worthless.

We provide two examples, we mainly worked on: location history and brows-
ing history, used to record respectively the physical location of a user, recorded in
terms of geographic coordinates, and the web pages visited. Both of these category
are identified as groups in the Schema.yaml and we will discuss later how to
configure properly each group by defining each field inside of it. An example of
location history page is displayed in Figure 3.7.

For this group we set-up the following fields: latitude(float), longitude(float),
description(string), time(date). We can see how the non-editable information page
has, as main component, a table displaying the data divided in columns representing
the fields. Some columns could be ordered in either ascending or descending values
(date and name for example) by just clicking the column titles. An arrow will
display the current method of sorting.

23

P-DS architecture: Frontend and Backend

Figure 3.7: Example of Location History Page

It is also present, in the left bottom corner, an editable input field, to control how
many entries to display at once. This is done to restrain unnecessary processing
from the React application. Each API request executed, even if not specified, will
limit the number of items received by the backend. We don’t want to receive all
entries at once (that could become hundreds of thousands over time) but only those
that will be displayed. Therefore every time a change occurs into the table a new
API request is performed by the component table itself.

To allow for better exploration of the table, at its bottom we introduced a quick
navigation toolbar, which is updated live depending on the number of displayed
items per page.

Moreover, for this specific setting, if it contains a latitude and longitude field,
we introduced also the possibility to display it in Google maps (also set up in the
Schema.yaml). By clicking on the map button, that is part of all rows, a pop-up
map representation will appear; there is also the possibility to checkout all the
currently displayed locations at once by clicking the top most map button, as
displayed in Figure 3.8 and Figure 3.9.

For the browsing history, instead, the only feature remains the possibility of
deletion, as displayed in Figure 3.10.

We think that this new and separated view between editable and non-editable
pages will be more recognizable and intuitive for the users. Moreover it gives and
extra field for tuning and customizing for the developers of new P-DS.

3.2 From MongoDB to PostgreSQL
The next big change done to the P-DS that we need to discuss, has been the
migration from a MongoDB database to a PostgreSQL database. The P-DS has
been developed previously with MongoDB because it allowed for better flexibility

24

P-DS architecture: Frontend and Backend

Figure 3.8: Example of Single Location Map Pop-up

Figure 3.9: Example of All Location Map Pop-up

when defining new personal data groups: it was simpler to structure the wanted
fields and to manage a large pool of non-uniform data.

Before discussing why we decided to change, let’s have a quick introduction of
the different databases types.

SQL vs. NOSQL

The differences between SQL and NOSQL databases can be summarized into 5
focal points, as summarized in [19, SQL vs. NOSQL]:

1. SQL databases are relational, NoSQL databases are non-relational.

2. SQL databases use structured query language and have a predefined schema.
NoSQL databases have dynamic schemas for unstructured data.

25

P-DS architecture: Frontend and Backend

Figure 3.10: Example of Browsing History Page

3. SQL databases are vertically scalable, while NoSQL databases are horizontally
scalable.

4. SQL databases are table-based, while NoSQL databases are document, key-
value, graph, or wide-column stores.

5. SQL databases are better for multi-row transactions, while NoSQL is better
for unstructured data like documents or JSON.

A relational database is structured, meaning the data is organized in tables.
It may also happen (quite often actually), that the data within these tables are
related with one another making therefore a connection among tables, or depen-
dencies. A non relational database is document-oriented, meaning, all information
gets stored as a big collection of "documents" which are not related to one another
by the above mentioned dependencies.

SQL databases use tructured query language that are based on a pre-defined
schema for defining and manipulating data. SQL is considered to be one of the
most versatile and most used query language, therefore it can be considered a safe
choice for the majority of the cases. As a negative point, it can feel restraining
as it uses those pre-defined schemas. NOSQL databases, instead, have dynamic
schemas for unstructured data. Data can be stored in a variety of manners as doc-
uments, graphs, KeyValue Pairs. This makes NOSQL very flexible for different uses.

The scaling of a database also differ, as SQL database scales vertically as to add
rows into a table, while NOSQL databases scale horizontally which means that they
can handle increased traffic simply by adding more servers to the database. NoSQL
databases have the ability to become larger and much more powerful, making them

26

P-DS architecture: Frontend and Backend

the preferred choice for large or constantly evolving data sets.

The main SQL database systems are MySQL, Oracle, Microsoft SQL Server
and PostgreSQL. The main NOSQL database systems are: MongoDB, Cassandra,
Amazon DynamoDB.

The main issue with our starting project is that, Django is set-up to work with
MySQL (which is an SQL type database), it can also easily work with all other SQL
databases (among which PostgreSQL). For interacting with MongoDB, instead, it
needs to use a 3rd party interface, that translates all the SQL queries to MongoDB
syntax queries. We think that basing the project on a non-supported 3rd party
interface would not be a smart decision for long term development. These are
the main reasons why we decided to switch to PostgreSQL. We chose PostgreSQL
because team members had some previous knowledge of the functionalities and
set-up procedures.

To start and allow interaction between the Django application and the Post-
greSQL DB it is very simple, and the steps are completely documented within the
project. Simply put, after installing PostgreSQL and creating a new database, we
can link it to the Django APP by adding it within the settings file, filling up some
fields and we will have the link. We then need to create the schemas needed to
define the different entities and the connections among them. For our project we
defined a personal-data entity and a user entity and connected the two of them
with a one-directional link from the personal-data to the user.

We now have to face one big problem: SQL databases have fixed fields and, for
each of our data group, we might need different fields, so how do we fix this?

By adding a JSON field in the schema of personal-data, we are able to insert
JSON content in that field and that would be the content of our data. This change
makes our searches slightly worse, but the increased speed of SQL will compensate
for it. Moreover we mostly search for data by ID, owner, or category and not much
by content.

The new DB has been set up and the logic of the various APIs has been changed
to reflect the changes made in the DB design. We are happy with this change as it
smoothed most of the DB operations and interactions with the backend and also
allowed us to use simplification features offered by the REST API packages that
are available with Django.

27

P-DS architecture: Frontend and Backend

3.3 Authentication and JWT
As described previously, we decided to move into a distributed design for our
application, where the frontend will operate by "consuming" the backend’s REST
APIs. Every call to the API is performed over HTTP(S), which is a stateless
protocol and ,therefore, all the requests performed will also be stateless as well.
But we want to give our users a consistent and convenient experience, as most
other online services do, by remembering the state of their connection so they
do not need to "log-in" every time they want to make a request. The main two
approaches to this problem are the usage of Session Based Authentication and
Token Based Authentication [20, Session vs Token Based Authentication].

Session Based Authentication

A session will be created for a user after the log-in procedure. For each session, its
ID will be stored on a cookie in the user browser. For each request, the cookie will
be sent together with the request, and the server will compare the received cookie
session ID with the session information stored in memory.

Token Based Authentication

Instead of using sessions, it is possible to use JSON Web Token (JWT) for au-
thentication. Upon successful log-in, the server generates a JWT with a secret
before sending it to the client. Then the token will be sent in the header of every
request. The server will then validate the JWT, its expiration date and any other
information before replying to the client’s request. The main difference is clearly
the fact that the tokens are not kept in memory.

There are advantages and disadvantages on using both these authentication
methods. We opted for JWT Token Based Authentication because we believe that
it best suits our REST APIs new model and, moreover, it might take less strain on
the backend, which must not check and look for session IDs, once lots of users will
be using the platform.

For simplicity here we opted to use a python package, which is part of the rest
framework used in most of the project, to take care of the logic. It is as simple
as creating some Django Views (endpoints) and the package will take care of the
authentication for the users’ requests. We added some more logic and depth to it
by introducing the concept of blacklisting a JWT. This is very useful for log-out
operations or if some token has been compromised. Each Token will have an
expiration date, which can be set-up in the backend as an option variable. This
also means that, until the expiration date is reached, the token will be operational,
but we want to give the user the ability to log-out or change user while working on

28

P-DS architecture: Frontend and Backend

the same browser. To implement this, we created in memory a list of blacklisted
tokens, these are tokens which are not usable anymore and therefore, a request
with such tokens must be rejected. When a user logs-out we will insert its token
(which will appear in the log-out request) into the blacklisted list and, from that
moment, the user will be officially out of session.

JWT

In this brief section, we describe what are JWTs, their composition and usage.
As defined in [21, What is JSON Web Token?], JSON Web Token (JWT) is

an open standard (RFC 7519) that defines a compact and self-contained way for
securely transmitting information between parties as a JSON object. Being it digi-
tally signed, either via a secret (with the HMAC algorithm) or via a public/private
key pair using RSA or ECDSA, a JWT can be trusted. It can provide integrity
and, if encrypted, also secrecy between parties. The main usages for JWT are
Authorization and Information Exchange. For our application, we use both,
as we mainly use it for authorizing users after their log-in, but also, inside each
authorization JWT, we insert information about its validity and expiration.

JWTs are composed of three parts, separated by dots, which are Header,
Payload and Signature. A typical JWT will look as follows:

xxxxx.yyyyy.zzzzz

The Header will contain the signing algorithm used (e.g. HMAC SHA256), the
Payload will contain the information in JSON format. They will be BASE64Url
encoded. The signature, instead, will take the previous sections, a secret and the
algorithm specified in the header as input to the sign function. In this way we
have an plain-text section which can be easily analyzed by at application level
environments and a secret section which can be used for establishing authenticity
and integrity.

In Web usage, as well as in our application, JWT are sent in the Authorization
Header using the Bearer Schema, creating an header that will look as follows:

Authorization: Bearer <token>

In our application we use JWT both for common user Authorization and also
for data-buyers authorization. We will explain the usage and management of
information for data-buyers using JWT in the respective section.

29

P-DS architecture: Frontend and Backend

3.4 Using the .yaml file to control all the func-
tionalities of the P-DS

As previously stated in multiple occasions, the set-up and settings chosen for the
P-DS are contained in the schema.yaml file. This file is used to define multiple
aspect of the functionalities and information that the database can contain, display,
receive and manipulate. In this section we will describe its options and the result
functionalities for each option, then we will discuss how we modified the logic of
the backend, at start-up, to make the whole P-DS customizable and operative only
by editing the schema.yaml file.

The schema.yaml file is nothing more then a set of options and choices we can
use to modify the behaviour of the P-DS as we want, it is thought as to allow
non-programmers, to be able to modify the P-DS functional behaviour without
having to code changes and it might be very useful in the future to develop the
PDK.

An example of what the file looks like is presented next in Listing 3.5:

Listing 3.5: Schema.yaml example
1 name : ’ PIMCity d e f a u l t P−DS schema ’
2 ve r s i on : 0 . 1
3 author : ’ Feder i co Torta , Martino Trevisan , Annaloro Enrico ’
4 content :
5 − group−name : persona l −i n fo rmat ion
6 user−i n s e r t i o n : t rue
7 user−update : t rue
8 add−zip− f i l e : f a l s e
9 extract −j s on : t rue

10 types :
11 − name : f i r s t −name
12 h i s t o r i c a l : f a l s e
13 type : s t r i n g
14 − name : l a s t −name
15 h i s t o r i c a l : f a l s e
16 di sp lay −name : l a s t name
17 type : s t r i n g
18 − name : b i r th −data
19 h i s t o r i c a l : f a l s e
20 di sp lay −name : b i r th data
21 type : date
22 − name : age
23 h i s t o r i c a l : f a l s e
24 type : i n t
25 − group−name : browsing−h i s t o r y
26 user−i n s e r t i o n : f a l s e

30

P-DS architecture: Frontend and Backend

27 user−update : f a l s e
28 add−zip− f i l e : t rue
29 extract −j s on : t rue
30 types :
31 − name : v i s i t e d −u r l
32 h i s t o r i c a l : t rue
33 type : d i c t
34 f i e l d s :
35 − u r l : s t r i n g
36 − t i t l e : s t r i n g
37 − time : date
38 − group−name : l o ca t i on −h i s t o r y
39 user−i n s e r t i o n : f a l s e
40 user−update : f a l s e
41 v i s u a l i z a t i o n −hint : map
42 add−zip− f i l e : t rue
43 extract −j s on : t rue
44 types :
45 − name : v i s i t e d −l o c a t i o n
46 di sp lay −name : v i s i t e d l o c a t i o n
47 h i s t o r i c a l : t rue
48 type : d i c t
49 f i e l d s :
50 − l a t i t u d e : f l o a t
51 − l ong i tude : f l o a t
52 − d e s c r i p t i o n : s t r i n g
53 − time : date

The nesting of tags can be deducted from the code snippet. As reported and
described by Federico Torta in his work [6, Personal Data Safe: a flexible storage
system for personal data], some possible fields are:

• group-name: it defines the macro group, which the information belongs
to. This field is used to group entries into semantic sets, in order to have a
hierarchical and structured repository. Example of group-names are personal-
information, browsing-history, location-history.

• types: this field is another list and it specifies at a finer-grained level which
kind of information each group includes. Basically the types field defines the
hierarchy of a single group-name field. For example, data that can be classified
as personal-information may be the year of birth, the email address, first name
and last name, etc...

• name: each entry of the P-DS is associated to a name that describes in a
human-understandable way the content of the entry. For example, the user
may insert his birth date in the Data Safe and a plausible name for the entry
may be "year-of-birth".

31

P-DS architecture: Frontend and Backend

• type: also the type field is linked directly to a P-DS entry. It defines the type,
at code-level, of the information. This field is required to perform consistency
control functions and avoid the user inserting erroneous data, such as a string
object for a field that requires an integer.

Other than these basics fields, other fields have been added to the list, they
define features and authorizations that the user might want to have to enhance
and protect its experience with the platform.

• user-insertion: a boolean option that defines if the user is allowed to insert
manually an entry for that specific group. For example we would like the user
to add manually an address (or maybe more if needed) but we do not want
him to add a location history entry as that could lead to the generation of
relevant false data.

• user-update: a boolean option that defines if the user is allowed to modify
manually an entry for that specific group. The previous example is valid for
this field as well.

• add-zip-file: a boolean option which is used to determine whether the user
can use the option of uploading information from a zip file (for now this is in
development phase and only accepts certain fields of a Google Takeout zip
file). This is very useful for groups like location-history or browsing-history as
those information are already recorded and logged by browsers and/or Google.

• extract-json: is a boolean option that defines if the user can export the
information contained in that group as a zip file.

• visualization-hint: a new field, added to customize how some visualization
of data is exposed in the web app. As of today the only option is map and
this allow to display coordinates as point in a google maps. This feature has
been developed for the location-history group and more visualization ideas to
be implemented in the future are tables (for extra data), carusel (for images)
and more.

Some of these fields depends on other fields or information contained in the
relevant data of the group. Since we want to be sure that, after customizing the
file, the status and operability of the backend will remain stable, some test and
initialization check scripts have been developed. These scripts will check that all
the needed fields are present and if some dependencies are needed (e.g. with the
visualization-hint option), that those dependencies are defined in within the group.
If, for any reason, these checks fail, the server will not start. This is because, once
the checks are passed, the schema.yaml file settings will be used to generate, delete

32

P-DS architecture: Frontend and Backend

or modify the tables where the data is contained. Admin rights are needed to make
any modification and more controls should be used in production phase.

With our latest changes, we know have a distributed application, therefore
the changes made to the Schema.yaml file must also reflect to the frontend. For
example, we explained earlier how the frontend will display different types of
"pages" depending on how many groups are defined. Being the groups defined in
the backend we will need to distribute the information to the frontend. For this
reason, and to deliver other types of information to the frontend (another example
is the map display option), a set of APIs has been created. These APIs take care
of this information requests and delivery from backend to frontend.

As an example, we will now add a new group by using the Schema.yaml file
configuration. This new group will be used to record the purchase history of the
users. We will add a purchase location type, to record the location in which a certain
purchase has been performed, therefore we might want to add the visualization-
hint option; moreover the we will want to record latitude, longitude, the amount
payed, the time of purchase and maybe give a brief description. Here in Listing 3.6
are shown the changes made:

Listing 3.6: Adding a macro group to the schema
1 − group−name : purchase−h i s t o r y
2 user−i n s e r t i o n : f a l s e
3 user−update : f a l s e
4 v i s u a l i z a t i o n −hint : map
5 add−zip− f i l e : t rue
6 extract −j s on : t rue
7 types :
8 − name : purchase−l o c a t i o n
9 di sp lay −name : purchase l o c a t i o n

10 h i s t o r i c a l : t rue
11 type : d i c t
12 f i e l d s :
13 − l a t i t u d e : f l o a t
14 − l ong i tude : f l o a t
15 − d e s c r i p t i o n : s t r i n g
16 − time : date

These changes will be considered only upon restart of the server, because we
want to check if such modifications are acceptable and could work. If the tests are
passed, then the changes will be automatically added. In Figure 3.11 we can see
how the checks are being performed on start-up.

33

P-DS architecture: Frontend and Backend

Figure 3.11: Schema is checked upon startup

Finally, when opening the web app, we can see how all users can now access a
new "page" containing the new category introduced, as shown in Figure 3.12.

(a) before (b) after

Figure 3.12: Web APP reflecting changes in Schema.yaml file

We have successfully created a distributed APP which is modifiable, both in
frontend and backend, by only editing a single file. We believe this to be a big
step towards the creation of the PDK, as we will need to create commands and
options that will control the whole application generating changes automatically,
after performing the relevant tests and checks.

34

Chapter 4

Databuyers APIs

The next main step in the development is the backend logic and the APIs for
databuyers. This, being one of the fundamental concepts of PIMCITY to allow
for controlled distribution of the users’ information, represented an important step
towards a future definitive version of the platform. In the following sections, we
will try to explain the main concept of how databuyers can access the users’ data
contained in the P-DS, how they can get authorization of access and how we secure
the interaction between different components of the whole platform.

4.1 The interaction with the Personal Content
Manager

As described in [4, PIMCity project description], the Personal Content Manager
(P-CM) is the means to control personal data. It is the means to define, once and
for all, the user’s privacy policies for consent management. It defines the policies
the users desire to apply when sharing personal data with services. In details, it
defines which data a service is allowed to collect by managing explicit consent.

For this reason, in order to allow users’ information to be distributed to other
entities or individuals, we have to coordinate our actions with the P-CM. The
general workflow, as described in Figure 4.1, follows some simple steps:

1. Databuyers contact the P-CM asking for permission to retrieve users’ data.
This part is completely managed by the P-CM and by the users’ choices of
whom can access their data.

2. If the request is successful, a signed token will be returned to the databuyer.
This token will contain a list of data that the databuyer can "withdraw" from
the P-DS. The security in this procedure is given by the sign of the P-CM in

35

Databuyers APIs

the token. In this way, the P-DS will be able to trust the token given by the
databuyer.

3. With the signed token, the databuyer will perform its request by means of
the Databuyers APIs developed and retrieve the results.

Figure 4.1: Databuyers request workflow

The databuyer will then act as an intermediate step between P-CM and P-DS.
This reduces the stress from our platform and gives better independence to the
clients on how and when to perform API calls.

Once the databuyer has received the token, it won’t need to request a new one
unless new types of data are needed or the original token has expired. In this
way we release stress from the P-CM and we also create a better user experience
for the databuyers which only need to request the token once and then can make
multiple requests; for example if the databuyer wants to implement his website to
display the users’ data on their profile page: it can either take the data once and

36

Databuyers APIs

store them in its DB, but if the data gets modified by the user in the P-DS, these
changes won’t reflect in the profile page because the DB does not get updated. It
can instead use the same token as for the first request (therefore storing the token
in DB and not the data) and then perform request to the P-DS using the developed
APIs. In this way the content will be always up to date and the information of the
users will be protected by our P-DS.

4.2 The security in the Token
We stated that the we can trust the validity of a token because it is signed. but
how does the procedure of detecting trusted tokens work?

Again we resort to JWT, and this is because of three main reasons:

1. They provide the asymmetric key signatures needed for trusting the information
inside the token.

2. They can pass information as a compact and encoded message.

3. We already used them for authorization in our P-DS web APP and therefore
we are more familiar with them.

Asymmetric cryptography is exactly what we need, because we will use the
databuyers’ users as intermediate step, as previously presented. Therefore we must
have some procedure to understand if the token passed is actually been modified
or if its integrity is intact.

But what is asymmetric cryptography? As best explained in [22, Search Security
- TechTarget], Asymmetric cryptography, also known as public-key cryptography,
is a process that uses a pair of related keys (one public key and one private key) to
encrypt and decrypt a message and protect it from unauthorized access or use. A
public key is a cryptographic key that can be used to encrypt a message so that it
can only be deciphered by the intended recipient with their private key, viceversa a
message encrypted with the private key can only be deciphered with the respective
private key. A private key (also known as a secret key) is shared only with key’s
initiator. By doing this, a message can be encrypted with the private key only by
the author of the message and, therefore, implies the integrity of the message if it
is possible to decypher it using the respective public key.

In the PIMCity project, the private key will be kept secret inside the P-CM
component and the public key will be distributed to the P-DS to be able to check
the integrity and non-repudiation of the tokens.

37

Databuyers APIs

This is very convenient to us, since both components are part of the same
infrastructure it will be easy to distribute public keys and, in case of any problem,
generate and redistribute a new set of public keys (making all previous corrupted
tokens invalid).

JWT still have a major disadvantage: they do not encrypt the content of the
message. Any JWT content will only be base-64 encoded and therefore easily read
by any man-in-the-middle. As of today we did not take this flaw into consideration
as the connection between different components of PIMCity as not been introduced
yet. If confidentiality of databuyers’ request is necessary we might have to rethink
how to behave with JWTs and how to distribute efficiently their token requests.

4.3 The development of databuyers’ APIs
Not having an active connection with the P-CM component, we had to create an
internal system to create sample JWTs as if the P-CM was generating it. Purely
for development and testing purposes, we had to keep private and public keys in
the same space, generating and signing sample tokens ourselves and then sending
them to our APIs. We used python scripts and its JWT package for the generation
of the tokens, then checked their validity in our APIs logic.

Databuyers’ requests are sent as a POST request to the databuyers reserved url.
The JWT token has to be passed as a POST request parameter. From here, the
backend will check validity, extract information from the token, retrieve the data
from the user safe and return it in JSON format to the databuyer. The procedure
is displayed graphically in Figure 4.2.

There are some considerations to make regarding this procedure:

1. We are sure that we will find the user data because we are sure the token has
been generated by the P-CM.

2. In case a user first grants access to data to a databuyer, those data should
then be locked in the P-DS because a "contract" has been established between
user and databuyer. We have not yet implemented this step as there is no
active connection between components.

3. User data is returned, for now, as plaintext response to the POST request. This
is not safe. As a future step, we should focus on securing these transactions,
making it safe for information to travel across the internet.

We consider the overall structure of the databuyers’ process to request data
deployed. Lots of improvements are still necessary to make it operative and secure.

38

Databuyers APIs

Figure 4.2: Databuyers APIs usage

The main aspects to concentrate from now on are those three mentioned above,
and, in general, focus on security.

39

Chapter 5

Deployment, testing and
next steps

In this section we will discuss the deployment of the application into the Polito
servers, the usage of different VMs to deploy the components, the naming convention
of the APIs and web APP paths applied by our internal proxy and more. We will
also dedicate a section to performance and testing of the servers to see how many
request can it sustain and other relevant metrics.

5.1 Deployment
Our P-DS is composed of 3 main components: a DJANGO application to distribute
APIs, a POSTGRESQL database to store the data and a REACT server that
distributes the JS application. With these 3 components in place, the P-DS is able
to be fully functional, as described throughout this work. It is also possible to
avoid using the REACT server and only have APIs working, this is the beauty of
distributed production.

Nevertheless, we have put in place these three components in our Polito servers.
We are handling the whole PIMCity system as a set of Virtual Machines, each
of them hosting a specific component. This design will later allow for easier
communication among components, making it simpler to set up a stable internal
infrastructure. Once the components will all be connected, we will also be able to
start working on some features that, at least for now, are only a prototype (such
as the signed JWT tokens for databuyers’ authorization).

In the P-DS virtual machine, we first set up the POSTGRESQL database as
we will need to connect it to the settings of the DJANGO project to allow for
connectivity and to perform the start-up checks. Then, next is the DJANGO

40

Deployment, testing and next steps

server. We can start it easily on whatever port we like as (it will be explained later)
we have set in place a Reverse Proxy Server at the entry point of the PIMCity
POLITO server. We opted for port 8000, but any other port will do (apart for
well-known-ports).

Once both the DJANGO server and the POSTGRESQL database were up and
active, we had to set-up the forwarding settings of the Reverse Proxy: we wanted to
divide the paths for requesting the WEB APP "pages" of the REACT application
from those paths requesting APIs. We also wanted the paths to be separated from
those of other components, therefore the first step was to separate the P-DS paths
from the other components. We simply decided to append "/pds" to the easypims
url and redirect all /pds requests to the selected VM.

https://easypims.pimcity-h2020.eu/pds

Now that our VM was set to receive all request with "/pds" appended, we could
simply continue with the same concept to separate requests once more. All requests
with "/pds/api" will be directed to the DJANGO server, onto the VM’s port 8000,
while all other requests will fall into the REACT APP.

It was now time to set-up the REACT server. As we are still in the development
cycle, we thought it would not make sense to build the REACT project since it is
still subject to frequent editing, we therefore kept using the npm command to run
a development server on a specific port:

npm start

This command runs our application in development mode. If we were on a local
environment, we could just navigate to http:localhost:3000 inside a web browser to
preview our app live, using the same concept, we redirect the requests arriving to
the Proxy Server to the VM’s port 3000 and redirect the response back to the user
that made the request.

The REACT dev server is very useful as the page will automatically reload
whenever it detects any code change in the source files, making it easier to make
changes and perform bug fixes. Beware that warnings and errors can also be seen
in the console, therefore once the project is ready for the public, we must build the
project and have a server provide the built JS files upon request (which is what
the dev server is doing on the background)

Finally, and not without many issues and troubleshooting, we have set up the
whole environment, which is working correctly and delivering the correct WEB
APP and APIs. For simplicity we report a graph to better display the whole
configuration on Figure 5.1.

41

Deployment, testing and next steps

Figure 5.1: PIMCITY project server configuration

5.2 Testing

For the testing portion of the process we focused mainly on the stability of the
servers. For the general code, some test have been developed in DJANGO, using
its test system, leaving to future developers the ability to check if the code they
will develop or modify is consistent with our build. Tests mostly focus on checking
if the expected outputs of different views is still the same after the changes done to
the code.

For the tests performed on the servers, we divided it into two categories: func-
tionality tests and performance strength tests. The functionality tests are similar to
the code tests, which is just checking if a specific call returns the expected output.
Therefore a bunch of scripts will just request some content (mainly the DJANGO
APIs content) and check if the returned values are the expected ones.

For performance test we mainly focused on stress testing the system. We wanted
to be sure that the system can withstand a fair amount of consequent requests. The
DJANGO server will instantiate a new DJANGO process, every time the server

42

Deployment, testing and next steps

is busy with a request and receives another one. Therefore we tried to send as
many request as possible using a python script and monitor their response time.
We mainly focused on normal requests and not on the heavy processing requests
which are rare and very long (for example the upload data from google Takeouts
files is fairly heavy).

We tested both the users’ and the databuyers’ APIs performance.

Users and databuyers testing

For the users’ APIs, we tested the retrieval of information, because we believe that
is going to be the most used request, since the REACT APP uses this API calls
frequently. Therefore we created a script that tries to retrieve data continuously
from a set of logged-in users. As a first analysis, we opted to perform requests
asynchronously, and check, for each request the round-trip-time. We understand
that it is not going to be a realistic scenario, but we wanted to avoid any queuing
delays from the proxy server, which is the bottleneck of the whole system.
We analyzed the average, maximum and minimum response time for a set of various
amount of stress tests requests, ranging from 100 requests to 10000 requests, while
retrieving 1000 records of different categories (location history, browsing history, ...).
We think that 1000 records is already a big amount of records to be transmitted in
one request as, at least the React app, is built to retrieve a smaller amount "per
page".

For the location history group, requests results are reported in Table 5.1 and
displayed in Figure 5.2, all times are recorded in seconds:

Requests Minimum Average Maximum Time to complete test
100 0.149 s 0.087 s 0.072 s 8.683 s
1000 0.171 s 0.088 s 0.0720 s 88.129 s
10000 0.179 s 0.088 s 0.065 s 876.688 s

Table 5.1: Users requesting 1000 location history records to API

43

Deployment, testing and next steps

Figure 5.2: Users requesting 1000 location history records to API

For the browsing history group, requests results are reported in Table 5.2 and
displayed in Figure 5.3, all times are recorded in seconds

Requests Minimum Average Maximum Time to complete test
100 0.0735 s 0.0861 s 0.156 s 8.615 s
1000 0.071 s 0.085 s 0.172 s 85.442 s
10000 0.067 s 0.085 s 0.168 s 850.318 s

Table 5.2: Users requesting 1000 browsing history records to API

Figure 5.3: Users requesting 1000 browsing history records to API

44

Deployment, testing and next steps

And, in the end, we also wanted to test the databuyers APIs, as they are of
central importance in the project. For this we reduced the number of requested
records because each record has to be specifically referenced in the JWT token
request, and therefore thousands of records at once are not the optimal way of
using the databuyers APIs.

Requests results are reported in Table 5.3 and displayed in Figure 5.4, all times
are recorded in seconds

Requests Minimum Average Maximum Time to complete test
100 0.022 s 0.031 s 0.063 s 3.052 s
1000 0.0196 s 0.031 s 0.065 s 30.618 s
10000 0.020 s 0.031 s 0.067 s 305.709 s

Table 5.3: Databuyers requesting users’ records to API

Figure 5.4: Databuyers requesting users’ records to API

Analysis of results
As shown in the tables and graphs above, the system is resistant to bursts of
requests performed by both users and databuyers. We consider the average RTT
time to be solid and stable, and the maximum and minimum RTT to be very good
as well. Of course these value represent a local testing environment, which is closed

45

Deployment, testing and next steps

with respect to the rest of the internet and therefore cannot be influenced by other
factors such as processing, queuing, transmission and propagation delays. That
being the case, anyway, there is not much we can do about it as we are not in
control of the internet and all its users.

For a quick comparison we tested a utility API, which is also used by the REACT
app, directly from the online server to see the average response time of it. With an
average recorded value of 80 ms, we think that our results with the other requests
previously analyzed could be averaging slightly more than this, and therefore being
optimal for online usage. We can also observe that the size of the response is the
main factor of RTT timings, as the databuyers responses, carrying much less data
within them, are on average 50 to 100 ms faster than the user ones.

Considering the differences between minimums, averages and maximums of all
the tests, we believe that the only factor affecting the recorded values is the amount
of test performed, as the more tests are performed the higher is the chance to have
a request that has slightly longer or shorter RTT. This is shown by the fact that
the averages are very similar among them and that, with more requests performed
in a single test, the maximum RTT increases but the minimum RTT decreases.
This is what makes us think that the backend is resistant to long and persistent
stream of requests.

We must consider that these are controlled and repetitive tests. Still we tried, as
much as possible, to vary the type of requests (by requesting different sets of records
in order to avoid that the database cache would influence the performance tests.
Nevertheless, these test are not completely realistic and have to be analyzed for the
information that they bring: the backend logic is resistant to a continuous stream
of requests, coming from different users and requiring different sets of records.
Moreover, it must be noticed that requesting 1000 records at the same time will
not be the case for the average user of both the APIs and the REACT web plat-
form, especially the second as 10 or 15 records per "page" are already hard to analyze.

During all tests, no failed request occurred which is a good sign that the logic is
correctly working for a different variety of requests and that the backend is able to
sustain the continuous requests’ stream. It must be noticed that, for more extensive
tests, which are tests that lasted hours, the access token expired and, without the
logic for requesting a new one with the refresh token, these requests failed. We
did not include these extensive tests in the graphs as they did not bring any more
useful information to our study.

Before the full application will be operational and the development cycle will

46

Deployment, testing and next steps

be over, these tests should be performed onto the official server. Testing if the
bottleneck of the system is the ability of processing request of the DJANGO backend
or redirecting the request of the NGINX proxy server, this remains to be studied
once the final server and systems are put in place. In my opinion, the bottleneck
will be the proxy server as it will have to analyze and redirect the requests of all
the PIMCity components at the same time.

5.3 Next Steps
With this new implementation of the P-DS, we set up solid foundations to a well
developed distributed application. There are still many more features to add and
functionalities to review and update. In this section we will go over all next steps
that we think will be beneficial for the P-DS, and for PIMCity in general.

5.3.1 Security
On top of all, because of its importance in the project and the current status of
the development implementation, we need to discuss security. Security should be
implemented step by step, together with all new features and functionalities of the
software development cycle. For most of the time, we tried to make our code and
design as secure as possible, but the limited time and personal resources did not
allow for a thorough security analysis. The implementation of JWT, for both user
sessions and databuyers requests, surely has improved considerably the security of
the data exchanges with the platform. Moreover, the addition of the proxy server
covers and hides our real servers which can then be protected more with a firewall
or other designs.

The APP is still vulnerable to DoS attacks as it has been shown from the stress
tests, continuous requests from the same user are accepted (which should not be
the case since a single user would not need to continuously request records). And
this is only one example of the lack of cyber-security of the system.

5.3.2 Integration with other components
The P-DS is one of the central components of the system, and therefore it will need
to communicate with other components to unlock some of its functionalities. One
example might be the coordination with the P-CM, which will release JWT to-
kens to the databuyers so that they will be able to request users’ information records.

As already discussed, from a development point of view we took care of this
lack of interaction with other components, by simulating the behaviors of those

47

Deployment, testing and next steps

components from within the P-DS, an example would be the generation of private
a public key for the release of "valid" databuyers token as a utility function of
the P-DS. Obviously this will not be the case with the final build and therefore
we believe that another important next step could be the implementation of the
communication system from the inside of the PIMCity environment and among its
components.

5.3.3 OAuth
One of the main changes we expect in the near future is the ability to log in via
OAuth (Open Authorization) which is an open standard for access delegation. As
previously discussed, we would like to delegate telco providers the ability to offer
authentication to our users. This section of the next steps has already started and
we are already trying to implement it with the REACT APP and the delivery of
JWT session tokens for the backend. We are presenting it here because we think it
is a very important step on both deployment and security of the final product.

5.3.4 Automation for CI/CD implementation
Now that the code is deployed into a running VM, once some changes need to
be applied, we must be sure that these changes will work and will not freeze the
operability of the machine. Moreover, we would like to not have to update the code
manually each time a small change is developed. For these reasons, we think that
an important step for the long-term deployment of the code would be to implement
some sort of automation for CI/CD delivery. This can be done by using tools such
as Jenkins or Ansible.

We leave the design of this for future developers.

5.3.5 Additional features for the REACT APP
At last, we have a bunch of suggestions from our testers on how to improve the
usage of the Web APP to make it more user-friendly and accessible.

• Filtering the records by title or dates. This feature has been highly
requested, and it is currently being developed. It will allow users to search and
find records faster, and together with the ordering of records that is already
in place will make the research even easier.

• Filtering places directly on map. The final goal of this feature is for the
user to be able to click on the google map, then set a radius and display markers
for places only within the radius limit from the point selected. The main
problem with this work is the difficult interaction with the REACT component

48

Deployment, testing and next steps

that handles the Google Maps API. Since we used a third party component,
it lacks specificity which would mean that, in order to complete and deploy
this feature, we might have to write our own Google Maps component.

• User Statistics. We could also improve the visualization of the user data.
For now, information is displayed in the homepage of the P-DS, but we could
also add an extra view which is only dedicated to statistics.

49

Chapter 6

Conclusions

This work presented a development cycle of the P-DS component of the PIMCity
project. It discussed design options, additional features, the implementation of
a distributed architecture and its benefits and the development of APIs for both
users and databuyers. It showed all the logical and implementation steps of the
development of the component, analyzing strengths and weaknesses of the new
choices adopted.

As a central ideology of the process, we discussed the importance of the dis-
tributed architecture, which we have seen been fully functional, bringing all the
benefits of having the frontend completely decoupled from the backend. We are
sure that the future of development will be much easier thanks to this division.
Moreover, now, the backend system is completely autonomous and, being it the
main building block of the whole application, easily improved.

We also discussed how the schema.yaml file is now controlling the functionalities
and types of each personal information contained in the P-DS, both backend and
frontend. We consider this a big step forward towards a fully functional SDK.
Moreover, it provides easy modification of the application content and functionali-
ties by both programmers and non-programmers.

A first addition of a security layer was needed, and achieved with the introduc-
tion of JWTs. Being them very customizable in content while keeping the benefits
of signed asymmetric cryptography, were used in different sections of the APP,
both for users and databuyers.

Some APIs were revisited and other new ones were added to the list. Some were
strictly for the interaction with the frontend and others were purely thought for

50

Conclusions

backend. The introduction of databuyers APIs started the consideration of inter-
component communication (e.g. with the P-CM for signed JWTs for databuyers).

Overall, we are happy with the final results obtained. The full application was
uploaded on the PIMCity server hosted in Politecnico and it is currently working
correctly. Local tests proved the stability of the final product and intensive user
usage proved that the online version of the platform is providing the wanted results.

This project has been very useful for the development of new skills, the refinement
of old ones and management of both time and resources. All troubleshooting, design
thinking and communication with other peers helped develop a product that is
getting closer to a final, business ready, well written piece of software. A platform
that, we believe, will help hundreds of thousands of users to manage their sensitive
data and decide where and to whom give their precious information.

51

Bibliography

[1] «Internet Live Stats». In: (2021). url: https://www.internetlivestats.
com/ (cit. on p. 1).

[2] «General Data Protection Regulation (website)». url: https://gdpr-info.
eu/ (cit. on p. 2).

[3] «EDPS PIMS description». In: (2020). url: https://edps.europa.eu/
(cit. on p. 3).

[4] «PIMCity project description». In: (2019). url: https://cordis.europa.
eu/ (cit. on pp. 3, 35).

[5] Marco Mellia. «Pimcity: Building The Next Generation Personal Data Plat-
forms». In: (Mar. 2020) (cit. on pp. 3, 4).

[6] Federico Torta. «Personal Data Safe: a flexible storage system for personal
data». In: (2019/2020) (cit. on pp. 6, 8, 14, 31).

[7] «Django official website». url: https://www.djangoproject.com/ (cit. on
p. 6).

[8] «MongoDB official website». url: https://www.mongodb.com/ (cit. on p. 6).
[9] «Bootstrap official website». url: https://getbootstrap.com/ (cit. on

pp. 6, 7).
[10] «Javascript Official Website». url: https://javascript.info/intro (cit.

on p. 12).
[11] «FreeCodeCamp server-side vs client-side rendering». url: https://www.

freecodecamp.org/news/what-exactly-is-client-side-rendering-
and-hows-it-different-from-server-side-rendering-bd5c786b340d/
(cit. on p. 12).

[12] «RestfulAPI.net». url: https://restfulapi.net/ (cit. on p. 14).
[13] «Django REST framework». url: https://www.django-rest-framework.

org/ (cit. on pp. 14, 15).
[14] «React official website». url: https://reactjs.org/ (cit. on p. 16).

52

https://www.internetlivestats.com/
https://www.internetlivestats.com/
https://gdpr-info.eu/
https://gdpr-info.eu/
https://edps.europa.eu/
https://cordis.europa.eu/
https://cordis.europa.eu/
https://www.djangoproject.com/
https://www.mongodb.com/
https://getbootstrap.com/
https://javascript.info/intro
https://www.freecodecamp.org/news/what-exactly-is-client-side-rendering-and-hows-it-different-from-server-side-rendering-bd5c786b340d/
https://www.freecodecamp.org/news/what-exactly-is-client-side-rendering-and-hows-it-different-from-server-side-rendering-bd5c786b340d/
https://www.freecodecamp.org/news/what-exactly-is-client-side-rendering-and-hows-it-different-from-server-side-rendering-bd5c786b340d/
https://restfulapi.net/
https://www.django-rest-framework.org/
https://www.django-rest-framework.org/
https://reactjs.org/

BIBLIOGRAPHY

[15] «AngularJS Vs. ReactJS Vs. VueJS: A Detailed Comparison». url: https://
dzone.com/articles/angularjs-vs-react-js-vs-vue-js-a-detailed-
compari (cit. on p. 16).

[16] «Reasons to Choose AngularJs for Web App Development». url: https:
//customerthink.com/reasons-to-choose-angularjs-for-web-app-
development/ (cit. on p. 17).

[17] «GithHub Survey on most popular Js Frameworks». url: https://gist.gi
thub.com/tkrotoff/b1caa4c3a185629299ec234d2314e190 (cit. on p. 17).

[18] «Redux official website». url: https://redux.js.org/ (cit. on p. 22).
[19] «SQL vs. NOSQL». url: https://www.xplenty.com/blog/the-sql-vs-

nosql-difference/ (cit. on p. 25).
[20] «Session vs Token Based Authentication». url: https://sherryhsu.medium.

com/session-vs-token-based-authentication-11a6c5ac45e4 (cit. on
p. 28).

[21] «What is JSON Web Token?» url: https://jwt.io/introduction (cit. on
p. 29).

[22] «Search Security - TechTarget?» url: https://searchsecurity.techtarg
et.com/ (cit. on p. 37).

53

https://dzone.com/articles/angularjs-vs-react-js-vs-vue-js-a-detailed-compari
https://dzone.com/articles/angularjs-vs-react-js-vs-vue-js-a-detailed-compari
https://dzone.com/articles/angularjs-vs-react-js-vs-vue-js-a-detailed-compari
https://customerthink.com/reasons-to-choose-angularjs-for-web-app-development/
https://customerthink.com/reasons-to-choose-angularjs-for-web-app-development/
https://customerthink.com/reasons-to-choose-angularjs-for-web-app-development/
https://gist.github.com/tkrotoff/b1caa4c3a185629299ec234d2314e190
https://gist.github.com/tkrotoff/b1caa4c3a185629299ec234d2314e190
https://redux.js.org/
https://www.xplenty.com/blog/the-sql-vs-nosql-difference/
https://www.xplenty.com/blog/the-sql-vs-nosql-difference/
https://sherryhsu.medium.com/session-vs-token-based-authentication-11a6c5ac45e4
https://sherryhsu.medium.com/session-vs-token-based-authentication-11a6c5ac45e4
https://jwt.io/introduction
https://searchsecurity.techtarget.com/
https://searchsecurity.techtarget.com/

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Motivation

	Background
	PIMCity
	PIMS Development Kit

	The initial state of the project
	Data Structure Design
	Main Functionalities and Frontend

	Goals of the project

	P-DS architecture: Frontend and Backend
	From centralized, static server-side web server to fully-flagged, distributed client-side application
	Server-side vs. Client-side Rendering
	Django
	The Frontend Web APP

	From MongoDB to PostgreSQL
	Authentication and JWT
	Using the .yaml file to control all the functionalities of the P-DS

	Databuyers APIs
	The interaction with the Personal Content Manager
	The security in the Token
	The development of databuyers' APIs

	Deployment, testing and next steps
	Deployment
	Testing
	Next Steps
	Security
	Integration with other components
	OAuth
	Automation for CI/CD implementation
	Additional features for the REACT APP

	Conclusions
	Bibliography

