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Summary

Cloud Computing and Edge Computing are becoming the standard for the de-
velopment and deployment of software applications. Scheduling frameworks for
resource management of an infrastructure of nodes play a key role in supporting
these approaches.

This thesis describes PHARE, a centralized gang scheduler that can handle
microservice applications taking into account both the resource and cost require-
ments of the single components and those derived by the communication between
multiple components.

Testing and validation demonstrated an average of 10 ms scheduling time, per
application, on infrastructures composed of 100 nodes. Increasing the number of
nodes to 1000 the scheduler kept the average scheduling time under 100 ms. To
provide more value to the result a performance comparison with the state of the
art Firmament scheduler was conducted. The measuring showed a performance
improvement in scheduling time and cost management.
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Chapter 1

Introduction

Cloud Computing is becoming the standard for the development of software ap-
plications and each day old monolithic software is being rewritten following the
cloud-native architecture. The cloud computing approach is based on the paradigm
of microservices, where the tasks of an application are splitted into small dedicated
software components. This approach leads to better maintainability, ease of scale
and higher fault-tolerance. From a low-level implementation perspective, each
component of the application becomes a software container that will interact with
other services using a internet-based protocol.

The growth of cloud computing is also related to the decrease in cost and
the increase in accessibility to computing resources, thanks to the rise of cloud
computing providers, such as Google Cloud and Amazon Web Services. These
providers remove the need from software companies to build and maintain a
dedicated infrastructure to run their set of services, offering a great range of
solutions that suit everyone’s needs, going from a bare-metal offer, such as hosting
a simple virtual machine in their own cloud, to provision a fully managed software-
as-a-service application.

Cloud providers also need to maintain a big, and always increasing, infrastructure
to satisfy the needs of their costumers. A single application to deploy for a customer,
becomes one of thousands from the provider’s perspective. The providers needs
to carefully manage their deployments to avoid wasting resources, leading to cost
increase and excessive power consumption. Even software companies, who exploit
resources offered by providers, could need to deploy big and complex applications,
composed of an intricate set of microservices. This could be done to satisfy multiple
users across the globe, or to provide high level of performances and low down times.

Given the described scenarios, scheduling a containerized applications over
a computing infrastructure in the right or wrong way could highly impact the
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performances and cost of running a service. The scheduling part of managing
software needs to be performed in an automated way, this led to the growth of
research towards fast and optimized scheduling paradigms.

1.1 The Goal of the Thesis

The Computer Networks Group at Politecnico di Torino is working hard on the
state of the art of cloud computing technologies, focusing mostly on the Kubernetes
orchestrator. This led to the birth of the Liqo project [1], an extension of Kubernetes
[2] to allow the seamless interaction between multiple clusters of nodes.

This new type of approach to cloud computing highlighted an issue regarding
the scheduling of resources in this new scenario. Since in a Kubernetes cluster, all
the nodes of the cluster are usually on the same datacenter the scheduler doesn’t
need to take into account the communications between containers in an application,
because they will remain internal to the datacenter and hence will probably have
no usage limitations or constraints. When instead scheduling the containers across
multiple clusters the communication factor needs to be taken into account, given
that datacenters could be placed in various corners of the world and the link between
them could become a physical limitation to the reliability and the performance.

The current state of the art doesn’t provide feasible solutions for this problem,
the Liqo team developed a scheduling algorithm to satisfy the communication
constraints in the new described scenario. This thesis describes the work done to:

• Validate the algorithm using various test cases.

• Extend the algorithm to support more complex scenarios.

• Create a working implementation.

The structure of the thesis is the following:

• Introduction. This chapter provides a brief introduction on the need for
scheduling technologies in cloud computing and the reasons behind the decision
to develop this thesis.

• State of the Art. This chapter illustrates the current state of the art on
scheduling technologies and their limitations, focusing on the Kubernetes
orchestrator and the Firmament scheduler.

• PHARE Scheduler Architecture. This chapter describes the conceptual
architecture of the scheduler, highlighting the algorithmic core and its funda-
mental design choices.

2
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• PHARE Scheduler Implementation. This chapter describes the imple-
mentation of the scheduler, analysing the various parts composing the sched-
uler.

• Validation and Testing. This chapter evaluates the performance of the
scheduler in various test cases, also comparing the performances to the Firma-
ment scheduler.

• Conclusion and Future Works. This final chapter provides an analysis on
the current state of the scheduler and its results. The chapter also focuses
its advantages and disadvantages, exploring the possible improvements and
future work.

3



Chapter 2

State of the art

2.1 Virtual Machines and Containers

At the base of Cloud Computing are the concepts of Virtual Machines and Contain-
ers which are the most used approaches when developing and deploying applications
on a computing infrastructure.

Virtual machines (VMs) are a technology for building virtualized computing
environments, they are considered the first generation of cloud computing. A
virtual machine is an emulation of a physical computer. VMs can run what appears
to be multiple machines, with multiple operating systems, on a single computer.
VMs interact with physical computers by using software layers called hypervisors.
Hypervisors can isolate VMs from one another and allocate processors, memory,
and storage among them. In traditional virtualization, a hypervisor virtualizes
physical hardware. The result is that each virtual machine contains a guest OS, a
virtual copy of the hardware that the OS requires to run, an application and its
associated libraries and dependencies. VMs with different operating systems can
be run on the same physical server.

A container is a standard unit of software that packages up code and all its
dependencies so that an application can run quickly and reliably from one computing
environment to another. A container image is a lightweight, standalone, executable
package of software that includes everything needed to run an application: code,
runtime, system tools, system libraries and settings. Container images become
containers at runtime and these containers will always run the same, regardless of
the infrastructure underneath. To summarize, containers main features are:

- Standard: containers are portable anywhere even on different operating sys-
tems.
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- Lightweight: containers share the machine’s OS system kernel and therefore
do not require an OS per application, driving higher server efficiencies and
reducing server and licensing costs.

- Secure: applications are safer in containers and provides the strongest default
isolation capabilities in the industry.

Containers enable microservice architectures, where application components can
be deployed and scaled more granularly. This is an attractive alternative to having
to scale up an entire monolithic application, hosted on a Virtual Machine, in case
a single component is struggling with load.

Figure 2.1: Container and Virtual Machine Architectures

2.2 Scheduling approaches

When looking at the scheduling of microservices-based application on an infrastruc-
ture, two main approaches have been studied and are currently used: sequential
scheduling and gang scheduling. The two approaches differ in the perspective used
over the application to be scheduled when making decision.

Sequential scheduling implies that when finding a placement solution for an
application, the scheduler considers its components one at a time. For each
component the scheduler takes into account the necessary requirements of the
component and the current state of the infrastructure, looks for the best solution
and assigns the microservice to a specific node, the process starts again for the
next microservices until all the application is scheduled.

Gang scheduling instead has a wider perspective on the scheduling process. This
type of scheduler considers the components of an application and how they interact
with each other. The scheduler needs to fine a suitable solution that satisfies the
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requirements of all the components of an application at the same time and then
assigns all of them to the corresponding node of the infrastructure.

Both styles have trade-offs. Using a sequential approach, usually leads to a
faster and easier implementation with respect to a gang one. Although sequential
scheduling could find sub-optimal or incomplete solutions by not considering the
interaction between components. Gang scheduling, on the other hand, requires
more effort because the scheduling algorithms used are usually more articulated
but the placement decision should be more accurate and optimized.

Looking at the current state of the art surrounding the scheduling of applica-
tions on resources in the cloud and on the edge, two interesting projects, one for
each mentioned approach, rise above the rest: the Kubernetes Scheduler and the
Firmament scheduler.

2.3 Kubernetes Scheduler

2.3.1 Kubernetes Architecture

Kubernetes is the standard de-facto system for automating deployment, scaling,
and management of containerized applications in the cloud. Kubernetes abstracts
all the concepts of the microservices world into a declarative API. A Kubernetes
cluster consists of a set of worker machines, called nodes, that run containerized
applications. Every cluster has at least one worker node. At the core of the
Kubernetes workflows are controllers, a controller is a process that looks at the
current state of the cluster and checks whether the desired state, defined through
the API matches it; in case the two states are not equal, the controller will change
the necessary components in the cluster to remove differences. This approach
proved to be very reliable and fault-tolerant. The state of a cluster is represented
using many kubernetes resources, a declarative data structure. The containers that
compose an application are represented using the Pod resource (fig. 2.2). The Pod
API provides all the necessary information needed to run an application, the most
relevant are the following:

• the container images, e.g. Docker images, used by the containers inside the
pod;

• the number of replicas of the same pod, to allow for load-balancing workloads;

• the requested resources needed to run the containers properly, e.g. CPU and
RAM usage;
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• the upper-bound limit for the containers’ resource consumption, in case the
application encounters errors, to avoid cluster resource starving;

• policies on the node placement to allow specific scheduling behaviours.

The nodes of the cluster are represented with the Node resources. This includes
the information about:

• the state of the node, whether is reachable and/or is available for the placement
of pods

• the current usage of the resources of the node

• policies to allow for specific scheduling decisions

To run an application inside the cluster the control plane of the framework needs
to place each pod onto a node, i.e. the role of the scheduler, taking into account
all the data present in the resources.

Figure 2.2: The internal representation of microservices in Kubernetes.

2.3.2 Scheduling Model

Among the controllers of Kubernetes, the one responsible for choosing where to
place a pod on a node is the kube-scheduler. For every newly created pod or other
unscheduled pods, the kube-scheduler selects an optimal node for them to run on.
However, every container inside a pod has different requirements for resources,
therefore, existing nodes need to be filtered according to the specific scheduling
requirements.

The selection of a node for a pod is divided in 2 steps:

• Filtering: the filtering step finds the set of nodes where it’s feasible to schedule
the pod. For example, a filter can check whether a candidate node has enough
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available resources to meet a pod’s specific resource request, or can check
whether a candidate node has a particular hardware component required by
the pod. After this step, the node list contains any suitable Nodes. If the list
is empty, that Pod isn’t (yet) schedulable.

• Scoring: the scheduler ranks the remaining nodes to choose the most suitable
pod placement. The scheduler assigns a score to each node that survived
filtering, basing this score on the active scoring rules.

Finally, the kube-scheduler assigns the Pod to the Node with the highest ranking.
If there is more than one node with equal scores, kube-scheduler selects one of
these at random. The assignment phase is known as “Binding phase”.

2.3.3 Limitations

The scheduling framework underneath the kube-scheduler is built following a
pipeline approach fig. 2.3, where each step of the scheduling process can be
customized, this provides flexibility to the user but doesn’t allow the scheduler to
fully overcome some limitations.

Figure 2.3: The pipeline architecture of the Kubernetes scheduler.

Given an application composed by a set of communicating pods, the limitations
of this type of scheduler arise. Since it selects a node for a pod one at a time, it
cannot have a full picture on how the complete application will be placed in the
infrastructure, this presents two issues:

• a choice for a certain pod could lead to a state where a later pod cannot be
placed. The situation could be avoided by considering the application as a
whole;
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• the effect of the communication between the pods, (e.g. the cost related to
the bandwidth used between two pods) is not taken into account, which could
lead to an imperfect solution.

Another limitation of the kubernetes scheduler is that it is designed with a
datacenter scenario in mind. This makes it not suitable for placing jobs in a
edge-network context.

2.4 Firmament Scheduler

2.4.1 Scheduling Model

Firmament [3] is a gang scheduling algorithm created at Google. It was created to
perform quick scheduling at scale. It creates an abstract representation of the pair
application-infrastructure as a flow network fig. 2.4. The flow network is a directed
graph whose structure is defined by the scheduling policy, the arcs carry flow from
source nodes (i.e. pod nodes) to a sink node. A cost and capacity associated with
each arc constrain the flow, and specify preferential routes for it. The algorithm
models the scheduling problem as a min-cost max-flow (MCMF) optimization over
the flow network. In response to events and monitoring information, the flow
network is modified according to the scheduling policy, and submitted to an MCMF
solver to find an optimal (i.e., min-cost) flow. Once the solver completes, it returns
the optimal flow, from which Firmament extracts the implied task placements. The
scheduling framework provides three policies:

• Load-spreading: The effect is that the number of tasks on a machine only
increases once all other machines have at least as many tasks. This policy
neither requires nor uses the full sophistication of flow-based scheduling.

• Quincy: This policy is suitable for batch jobs, and optimizes for a trade-off
between data locality, task wait time and preemption cost.

• Network-aware: it avoids overloading machines’ network bandwidth, which can
degrade task response time. This policy is used only to illustrate Firmament’s
potential to make high-quality decisions, but is not ready for a production
scenario.
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Figure 2.4: The flow network representation used by the Firmament scheduler.

2.4.2 Limitations

Even though Firmament is a great algorithm for scheduling inside datacenters,
where bandwidth requirements are not concerning, it doesn’t fully satisfy gang-
scheduling applications taking into account the communication between pods.
The network-aware policy is not ready and would take incomplete decision in a
production context, leading to an overloading of the network infrastructure or a
sub-optimal decision derived by assigning the wrong priority to the pod resource
requests.

2.4.3 Kubernetes Implementation

The Firmament scheduler can be used inside a Kubernetes cluster, thanks to
the Poseidon/Firmament project [4], which is in early stages of development.
At a very high level, the Poseidon/Firmament scheduler augments the current
Kubernetes scheduling capabilities by incorporating new novel flow network graph
based scheduling capabilities alongside the default Kubernetes scheduler. Due to
the inherent rescheduling capabilities, the new scheduler enables a globally optimal
scheduling for a given policy that keeps on refining the dynamic placements of the
workload.

This integration can be achieved thanks to the multiple-scheduler architecture
of Kubernetes. Normally each new pod is scheduled by the default scheduler, but
Kubernetes can also be instructed to use another scheduler by specifying the name
of another custom scheduler at the time of pod deployment. In this case, the
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default scheduler will ignore that Pod and instead allow Poseidon scheduler to
schedule the Pod on a relevant node.

Firmament was not built to work inside Kubernetes, this exposes some issues
that must be addressed in order to be able to deploy it inside a cluster:

• Kubernetes provides a rich API consisting of jobs, replica sets, deployments,
whereas Firmament’s API consists of tasks that are grouped into jobs. Code
that bridges between Kubernetes’ and Firmament’s API is required.

• Firmament is implemented in C++. Therefore, a Kubernetes C++ client is
required or code that uses the Go client and that communicates to Firmament
is required.

• Firmament requires utilization statistics of the Kubernetes cluster when placing
pods.

The following design choices needed to be made to solve the issues. Poseidon
is implemented in Go and acts as a bridge between the Kubernetes cluster and
Firmament. fig. 2.5 represents an overview of Firmament’s Kubernetes integration
and where Poseidon fits. Poseidon watches for updates from the Kubernetes cluster,
transforms pods information to Firmament compatible concepts (i.e., tasks &
jobs), receives scheduling decisions and informs the Kubernetes server API of pod
bindings. Moreover, Poseidon provides a gRPC service which receives utilization
statistics from Heapster. These statistics are transformed from per pod to per task
stats and forwarded to the Firmament scheduler which stores the last N samples.

11
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Figure 2.5: The use of Firmament in Kubernetes.

12



Chapter 3

PHARE Scheduler
Architecture

3.1 Introduction

All schedulers presented in the section before have some limitations: none of
them take into account the infrastructure communication requirements. Moreover
Kubernetes scheduler is only driven by resource demands and nodes’ available
resources without taking into account the cost of the scheduling, Firmament instead
accounts nodes’ resources costs, but not bandwidth ones.

Ignoring communication requirements during the scheduling of an application1

can produce a scenario where each component2 is working flawlessly, but they are
slower than expected because links used to communicate are overloaded. Looking
at fig. 3.1, supposing that the red links require high bandwidth, the green link
will not be able to handle all the packets at maximum speed, slowing down
the communication and, as consequence, slowing down the application. The
configuration at fig. 3.2 distributes application nodes on three infrastructure nodes
rather than two, reducing the stress on the green link and also speeding up
the orange application aggregating all its components inside a single node. The
“Network-aware” policy of Firmament schedules accounting links requirements, but
it cannot be used together with another policy that takes into account the resources
of nodes. All tests performed in section 5.1 are performed using this policy.

1application refers to a set of pods that interact together
2an application component is one of the microservices that compose an application
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Figure 3.1: Extreme link pressure Figure 3.2: Reduced link pressure

Supposing to have a set of nodes that can host an application component, the
Kubernetes scheduler decides following a scoring system which by default is not
related to the cost of scheduling on each infrastructure. Both Firmament and
PHARE scheduling decisions are also driven by the cost.

PHARE is a multi-cluster Kubernetes scheduler designed to reduce the cost of
applications inside a cluster. The main advantage of scheduling an application
rather than a pod is that the scheduler knows how each pod is connected to others
and it will schedule a pod taking into account not only its requirements but also
the connections with other pods. From now on, pods and clusters will be also
referred respectively as “application components” and “infrastructure nodes”.

3.2 Scheduler System Model

The high-level representation of the scheduler is shown in fig. 3.3. The PHARE
scheduler takes as main inputs some configuration parameters needed to customize
the scheduling decisions, and the application and infrastructure specifications. This
information is used to compute the data structures used during the scheduling phase.
Finally the scheduling algorithm is called recursively until all the components of
an application are scheduled, producing the solution.

The next part describes the main steps in the overall scheduling process.
First of all, when an application is loaded into the scheduler, its components are

sorted based on their “difficulty” to be scheduled. The “difficulty” of a component
to be scheduled is related to its resource requirements, network requirements and,
eventually, scheduling constraints. Sorting from the harder to the easier component
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Figure 3.3: PHARE system model

was decided to increase the ratio of schedulable applications.
The next step is to compute the affinity matrix with an entry for each pair

<component,node> and a related value (the affinity value) which is calculated over
the amount of resources required by the component and its neighbors3. This matrix
is used by the PHARE scheduler to retrieve which infrastructure nodes are more
likely to be the scheduling target for each evaluated component.

The next phase is the calculation of the cost matrix: this matrix, as well as
the affinity matrix, has an entry for each pair <component,node>. Each value
represents the cost of scheduling an application component to an infrastructure
node. This value is updated every time a component is scheduled.

At this point the scheduler takes the sorted set of components, explained in the
first paragraph of this section, and starts scheduling one component at a time. For
each component, the scheduler needs to calculate which infrastructure nodes can
be selected to schedule the evaluated component and give each one of them a value
calculated using both cost and affinity matrix. This value is used to sort the set of
infrastructure nodes. It calculates a set of nodes instead of a single node because if
later on, during the scheduling of other components, there is not enough space for
that component, the scheduler will rollback to the previous application component
and retry the scheduling phase selecting the next node from the sorted set.

Finally, when all the components of an application are scheduled, the next
application is evaluated. During the rest of this chapter, all main steps described
above are furthermore detailed.

3‘neighbors of x’ are components/nodes that are connected via a link to ‘x’

15



PHARE Scheduler Architecture

3.2.1 Sorting Application Components

The PHARE scheduler schedules components of an application sorted by both
importance and constraints. The importance is evaluated taking into account
the resources required by the component (a.k.a. weight) and by the components
which are connected to the evaluated component (a.k.a. scaledWeight): even if
the first value is very simple to calculate, the second one is a bit more complex
because there is the need to estimate with a single value if the connection between
two components is requiring an high amount of resources or not. In order to
compute this value, the scheduler divides each connection’s requirements by the
total amount of resources requested by the application’s connections (the sum of
resources requested by each connection).

Once these values are calculated for each application component, the next step is
to sort them from the higher to lower component requirements. These requirements
can be split into two different areas: the amount of resources and component
constraints. The resources sorting can be performed comparing components weight
or scaledWeight setting a value inside the configuration file. Component constraints
are similar to NodeSelector in Kubernetes: an infrastructure node must match
application component constraints in order to be selected as target node for the
component. The sorting based on component constraints assumes that a node with
a constraint is harder to schedule than once without because it can be scheduled only
on a subset of the nodes of the infrastructure. In case the compared components
both have or do not have a policy, the scheduler will compare them using their
resource requests.

Figure 3.4: Jobs ordering of an application

To summarize, the final job order will consider jobs with constraints first and job
without later; jobs are then ordered from the highest requirements one to the lowest
one. In the example showed in fig. 3.4, colorized circles represent components with
constraints. The sorted result displays that components with constraints have the
priority over components without, even if the component with constraint has less
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requirements than the other.

3.2.2 Affinity Matrix

Another important element of the scheduler is the Affinity Matrix, which con-
tains a value that displays the affinity between each application component and
infrastructure node. The affinity value can assume values between 0 and 1, where
1 means “very affine” and 0 means “low or not affine”. Affinity refers to the
amount of resources of a component and its neighbors that can be hosted by an
infrastructure node and is calculated following section 3.3.6 and section 3.3.7. The
affinity value is a product of two different values: one of them is computed over
the amount of resources requested by the evaluated component and its neighbors
(a.k.a. computing-affinity), and the other one is calculated taking into account
connections’ resources with its neighbors (a.k.a. communication-affinity).

If a job cannot be hosted, the affinity value is set to 0. Assuming that the job
can be hosted, the computing-affinity and the sum of the resources that can be
hosted on a node accordingly to its policies are calculated. This value related to
policies is fundamental because it allows to place the evaluated component on an
infrastructure node which has policies that can host the component itself and also
the majority of its neighbors.

Figure 3.5: Infrastructure with policies Figure 3.6: Application with policies

In the example above, the infrastructure at fig. 3.5 has 3 nodes, one of them that
can host red policy and another one that can host both red and blue policies. The
application (ref. fig. 3.6) has 3 components: one with a red label and another with
a blue label. Lets assume that the first scheduled component is the red one: it can
be placed in both red and red-blue infrastructure nodes, but it’s more convenient
to place it in the red-blue one because in this way its blue neighbor can be placed
on the same node and, for this reason, reduce the cost.
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In the next step the communication-affinity is multiplied with the computing-
affinity value to produce the affinity matrix value.

3.2.3 Cost Matrix

The cost matrix is the data structure used by the scheduler to keep track of the
evolution of scheduling costs. It contains, for each application component and
infrastructure node, the cost of placing the component on the node. The value is
computed multiplying the amount of resources requested by the component and the
unitary cost of the infrastructure node. Every time a job J is scheduled on a node
N , the scheduler forces neighbors of J to be scheduled on N or on its neighbors.
For this reason, the value of the cost matrix relative to J ’s neighbors must be
updated with the cost of links between N and its neighbors.

3.2.4 Nodes Priority

Once components are sorted, the scheduler will process them one at a time. For
each job, the scheduler must select the best node on which to schedule the job,
schedule it and recur on the next job. If the recursion determines that the a job
wasn’t schedulable, the scheduler will remove the job from the infrastructure node,
select another node and recur again (hence following a different path with respect
to the previous one).

The set of nodes on which the job can be scheduled is sorted in ascending order
by the priority value explained in the following. For each infrastructure node that
can host the evaluated job, the priority value is computed evaluating both the
affinity and the cost. Sometimes the priority value computed on two different nodes
is equal. If this is the case, given that the goal of the PHARE scheduler is to keep
applications as close as possible, the scheduler will check if infrastructure nodes
have jobs already scheduled on them or not: if only one of them is not empty
(i.e. has no jobs scheduled on), the non-empty node is selected; otherwise, if both
have(n’t) job scheduled, the selected node will be the one with the higher amount of
resources because it is more likely that the node will enough resources to host next
applications (and avoid the use of another node). If also the amount of resources
of both nodes are equal, the alphabetic order of nodes’ id is evaluated.

In the example at fig. 3.7, N1 and N2 have the same amount of resources,
N3 instead has less resources. Both N1 and N3 have already some application
components scheduled on them, N2 instead is empty. Supposing that a job has
these three nodes that can be chosen as scheduling target, the node N1 is selected
first because is the non-empty one with the bigger amount of resources, the second
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Figure 3.7: Nodes Priority ordering

is N3 because, even if it is smaller than N2, has enough resources to host the job
and it is already been used as target of other jobs.

3.3 Algorithm core

Before describing the main concepts behind the algorithm logic, the document
describes the main challenges of scheduling components in distributed constrained
infrastructure. Then, the algorithm and detail its details are analyzed.

3.3.1 Main Concepts

When taking the decision of scheduling a particular component on a given cluster, a
key role is played both by how big the component is (i.e., how much cluster resources
it demands) and by how much it communicates with other components of the same
application. A component that requires a lot of computational resources will be
harder to schedule (it has less feasible matches) compared to small components, but
this is also true for small components that feature intensive mutual communication
(e.g., if the chosen host cluster has not enough bandwidth, the communication with
any component placed outside will not occur properly).

Since edge infrastructures are highly scattered and constrained, it may be
particularly hard to satisfy the communication or computation requirements of all
the components to be deployed. Intuitively, the more components are scheduled
the harder will be to schedule the next ones. Therefore, to quickly converge to
a feasible placement, the algorithm should somehow prioritize the scheduling of
“harder” components, i.e., the ones featuring more stringent constraints.
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3.3.2 Algorithm Model

A distributed edge infrastructure was considered where resource are grouped in
clusters. Potentially, each cluster v ∈ N is owned by a different edge provider.
In the following, it is used index v ∈ N also for indicating the provider owner of
cluster v. Clusters are heterogeneous and may provide different resource capabilities
(e.g., centralized data centers, network access base stations, central offices, but
also isolated user devices). In this document work capabilities are considered in
terms of computing resources (i.e., total amount of CPU and RAM shares available
in the cluster), and communication resources (i.e., amount of network bandwidth
that the cluster uses to communicate with the rest of the world). From this point
on for simplicity the RAM notation was omitted from the dissertation since the
same principles apply as for the CPU. In particular, on cluster v ∈ N , the budget
of CPU resources is denoted with bCPUv ∈ R+ and with bBWv ∈ R+ the budget of
bandwidth resources.

Requests for deploying applications are issued to edge providers. Each application
i ∈ I is formed by a set of components Mi ∈ M, where M is the set of all possible
components. Each component of an application can be individually scheduled,
but it may feature inter-component dependencies: component j ∈ Mi has given
resource demands both in terms of computing ρCPUj ∈ R+ (amount of CPU required)
and communication with other components ρBWj,k ∈ R+ (bandwidth that j requires
to communicate with component k from the same application).

Edge providers jointly deploy applications across their clusters, thus forming a
federated edge infrastructure. Upon receiving the request for deploying an appli-
cation, the concerned edge provider decides which of the application components
should be executed locally (i.e., on its own cluster) and which of them will instead
be offloaded to foreign clusters across the federation.

Each available resource on every cluster features a given price per unit. To
preserve generality, lets assume that every provider may see different costs for the
same resources (i.e., resources may be exposed with different prices to different
partners of the federation). cCPUv,vÍ ∈ R+ and cBWv,vÍ ∈ R+ refer respectively the prices
of allocating CPU and bandwidth units on cluster v as seen by provider vÍ. The
following equation denotes

xij,v ∈ {0,1}, for i ∈ I, j ∈ Mi, v ∈ N , (3.1)

the decision variable that indicates if component j from application i is deployed
on cluster v. When allocating a certain component j ∈ Mi on cluster v, edge
provider vÍ experiences a cost given by multiplying the amount of each demanded
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resource for the cluster resource price:

CvÍ(j, v) = ρCPUj cCPUv,vÍ +
Ø
k∈Mi

ρBWj,k c
BW
v,vÍ 1{xi

k,v
/=1}. (3.2)

Note that the cost ρBWj,k cBWv,vÍ due to the communication between components j
and k is accounted only if j and k are not deployed on the same cluster.

When scheduling application components on the available clusters, the Edge
Provider seeks cost minimization of the overall deployment, and its decision is
subject to the resource constraints of the federated edge infrastructure. The
formulation of such optimization problem for Edge Provider4 vÍ as follows:

minimize
Ø
j∈Mi

Ø
v∈N

xij,vC(j, v), ∀i ∈ I (3.3)

subject to

Ø
i∈I

Ø
j∈Mi

xij,vρ
CPU
j ≤ bCPUv ∀v ∈ N (3.4)

Ø
i∈I

Ø
j∈Mi

Ø
k∈Mi\{j}

xij,vρ
BW
j,k 1{xi

k,v
/=1} ≤ bBWv ∀v ∈ N (3.5)

where constraint (3.4) ensures that components deployed on each cluster do not
violate the computation constraint, while (3.5) enforces the bandwidth constraint
by considering the communication demands between components that are deployed
on different clusters.

3.3.3 Overview

When the request for the deployment of a new application i ∈ I is received, the
algorithm first evaluate every component j ∈ Mi of application i and assigns an
importance metric zj to each of them (section 3.3.5). Then, an affinity score is
computed for each pair (j, v) of components j and available clusters v ∈ N . The
affinity provides an indication of how good it is to assign component j to cluster v,
with respect to a trade-off between convergence speed and optimality of the final

4Since the algorithm operates in a decentralized fashion at the level of an Edge Provider, it
will be, from now, omitted the underscript ×(vÍ) for simplicity.
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scheduling decision. In particular, two separate affinities Φj,v ∈ [0,1] (computing
affinity, see section 3.3.6) and Ψj,v ∈ [0,1] (communication affinity, see section 3.3.7)
are computed and combined. The algorithm then computes costs C(j, v) for every
component j and feasible cluster v, i.e., the marginal cost that would be required if
j is scheduled on v. Such raw costs are adjusted using the affinity values computed
at the previous steps, thus obtaining the so called perceived cost C(j, v)/(Φj,vΨj,v);
the less is the affinity between component j and cluster v, the higher will be the
perceived cost of scheduling j on v. In the last step, the algorithm iterates the
components sorted by their importance zj (descending), and assigns each component
to the cluster v∗ with the less perceived cost v∗ = arg minv∗∈N (C(j, v)/Φj,vΨj,v).

3.3.4 Sorting Components Following Constraints

Each application component can have some constraints which must be matched
by a cluster in order to be selected as target for the component. An application
component with constraints will probably have less clusters on which be scheduled
on, for this reason a component with constraints compared to a component without
will ignore the importance value explained in section 3.3.5 and be considered more
important. These constraints are also referred as “policies” in the document.

Each constraint is identified by a key and has one or more values associated
to the key. Moreover there is another parameter which can assume value “In” or
“Out”: let’s call VKA the values of the application component A referred to the key
K and VKC the values of the cluster C referred to the key K: if the operator is
“In”, at least one of the values related to VKA must be equal to values of VKC . On
the other hand, if the operator is “Out”, none of the values of VKA must be equal
to values of VKC .

3.3.5 Sorting Components by Importance

The evaluation of the importance of a component j mainly based on its demand in
terms of computing resource ρCPUj and its constraints. The importance value is
combined with the demands ρCPUk of each “neighbor” component k, i.e., all those
component that feature some communication constraint with j. By prioritizing
components with “big” neighbors the probability that such neighbors are scheduled
on the same clusters is increased.

Before describing how to compute the importance zj of a component j, there is
the need to provide the following definition of communication factor.

Definition 1. (Communication Factor θj,k). Given an application i ∈ I and two
of its components j, k ∈ Mi, θj,k = ρBWj,k /maxjÍ,kÍ∈Mi

(ρBWjÍ,kÍ) is the communication
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factor between components j and k of application i.

The communication factor θj,k is an indicator of how intense is the communication
demand between components j and k. The communication factor is used to weight
the contribution of each neighbor of j when computing the importance metric zj,
as follows:
Definition 2. (Importance zj). Given component j ∈ Mi of an application i ∈ I,
the importance of component j is defined as zj = ρCPUj + q

k∈Mi\{j} θj,kρ
CPU
k .

Intuitively, components that feature (i) high computing demands, (ii) neighbors
with high computing demands, and (iii) high communication demands will have
high importance factors.

The scheduler uses both constraints and the importance zj to sort components
of an application so that those featuring more stringent deployment constraints are
scheduled first. Additionally, the importance zj is used to compute the affinity of j
with the available clusters as described in the next section.

3.3.6 Components-Clusters Affinity: Computing

The first affinity factor evaluated only takes into account the computing resources
of the target cluster, without considering its communication capability. To estimate
the affinity between component j on cluster v, first it is evaluated the quantity
yj − rCPUv , where rCPUv is the residual computing resource on cluster v, while yj
is amount of overall computing resources required by j and all its neighbors, i.e.,
yj = ρCPUj + q

k∈Mi\{j} ρ
CPU
k 1{ρBW

j,k
>0}.

The computing affinity is then evaluated based on the quantity yj − rCPUv as
follows:

Φj,v =

e
−c

yj −rCP U
v

yj −zj if yj − rCPUv > 0,
1 if yj − rCPUv ≤ 0.

(3.6)

where c is a coefficient used to adjust how fast the affinity decreases with respect
to the lack of resources on the cluster.

To understand the rationale between Equation (3.6) it is helpful to visualize the
relationship between Φj,v and the quantity yj − rCPUv (Figure 3.8). An intuition is
provided below.

When yj − rCPUv ≤ 0, i.e., cluster v has enough resources to host j and all its
neighborhood, then the affinity is set to 1 (maximum affinity value).

If the resources on v are not enough for hosting j and all its neighbors, the affinity
start to drop slowly, until the quantity yj − rCPUv reaches a critical value where
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Figure 3.8: Cluster remaining resources and application resource requirements
correlation.

Φj,v = 0.75; the coefficient c is set so that Φj,v = 0.75 when yj − rCPUv = yj − zj,5
i.e., when the residual resources on v are numerically equal to the importance zj
of component j. The importance value here is used to estimate the portion of
neighborhood that is more significant for j: therefore, if the cluster has enough
resources for hosting j and a significant portion of its neighborhood, then the
affinity Φj,v will be higher than 0.75.

Finally, after the critical value where yj − rCPUv = yj − zj is reached, the affinity
Φj,v starts to drop quickly, with values close to 0 when the available resources are
few compared to the demand of component j.

3.3.7 Components-Clusters Affinity: Communication

The computing affinity Φj,v is used in combination with a communication affinity
that also takes into account the networking capabilities of the target cluster. It is
important to understand that a task j will consume the communication capabilities
(e.g., bandwidth) of the host cluster v only if its neighbors have been placed on
some external cluster other than v, since if j’s neighbors are host in v, j will not
need v’s bandwidth to communicate with them). For this reason, when designing

5This is achieved when c = 0.287682.
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the communication affinity, there was the need of a mechanism that reduces the
affinity between component j and cluster v the more it is difficult to accommodate
the communication demands of j, but that have a lower impact if cluster v is big
enough for possibly hosting j neighbors.

To calculate the communication affinity, first evaluate the quantity yBWj /rBWv −1,
where rBWv is the residual communication capacity on cluster v, while yBWj is the
overall communication demands for component j towards all its neighbors, i.e.,
yBWj = q

k∈Mi\{j} ρ
BW
j,k . Note that the quantity yBWj /rBWv − 1 is equal to zero when

yBWj = rBWv .
The communication affinity is then evaluated as follows:

Ψj,v =

e
−ayBW

j /rBW
v −1 if yBWj /rBWv − 1 > 0,

1 if yBWj /rBWv − 1 ≤ 0.
(3.7)

Ψj,v =

e
−a(yBW

j /rBW
v −1) if yBWj > rBWv ,

1 if yBWj ≤ rBWv .
(3.8)

where coefficient a is used to adjust the weight of the communication affinity so that
it has a lower impact if the target cluster v is big enough to host all j neighborhood:
the higher coefficient a is, the more the communication affinity will affect the final
solution (see below for a description of how a is computed differently for each
cluster).

The relationship between Ψj,v and the quantity yBWj /rBWv − 1 is visualized in
Figure 3.9. When cluster v has enough networking resources for accommodating
all the communication demands of component j, the communication affinity is
set to the maximum value 1. If the resources are not enough (e.g., the residual
bandwidth is less compared to the bandwidth needed to j to communicate with
the other components of the application), Ψj,v starts to drop exponentially with a
decreasing factor that is based on the coefficient a: for higher a, the value of Ψj,v

drops more quickly.
Compute the coefficient a. First compute the coefficient a so that Ψj,v decreases
more slowly, the more cluster v is likely to host some neighbors of j. The rationale is
that if cluster v has enough computing resources to host a subset of j’s neighborhood,
then it is unfair to decrease the affinity between v and j based on v’s communication
capabilities (since j probably will not need them). a is computed using a sigmoid

25



PHARE Scheduler Architecture

Figure 3.9: Bandwidth affinity correlation

function

a = S
1
8yj−rCP U

v

yj−zj
− 4

2
, (3.9)

where S is the sigmoid function S(x) = 1/(e−x + 1). If cluster v has enough
resource compared to the demand of j and its neighborhood, then a Ä 0, i.e., the
communication affinity will have a negligible impact. If residual resources are not
enough for hosting j and a significant portion of its neighborhood (estimated with
zj, then a Ä 1 and the communication affinity will have its maximum impact.

3.3.8 Multiple Resource Constraints

Until now the dissertation focused on the CPU as the only discriminating com-
putational resource for any scheduling decision. The same concepts described in
the previous sections can also be applied on Memory as well since they experience
similarities both in term of provisioning and cost modelling. Nevertheless realistic
application deployments feature always two or even more conjoined computational
constraints; now it is described how multiple resource constraints can then be
combined with the heuristics.

The values of computing and communication affinity defined respectively at
eq. (3.6) and eq. (3.7) provide an indication of the confidence of scheduling a
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component on a given cluster; having multiple computational constraints result in
having multiple Φt

j,v and Ψt
j,v for every component j, one for each type of resource

t. The computation of the final values of affinity can then be generalized:

ΦÍ
j,v = min(Φt

j,v) and ΨÍ
j,v = min(Ψt

j,v) (3.10)

extracting the minimum values of affinity among the resources, hence considering
then the most conservative scenario.
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Chapter 4

PHARE Scheduler
Implementation

4.1 Introduction

The prototype version of PHARE is implemented using Golang [5], a recently
developed programming language by Google, mainly focused on high-performance
both in networking and in multiprocessing. The framework has been designed to
be easily extensible, so that additional scheduling algorithms can be integrated
and tested in the same conditions. The implementation is based on an initial work
conducted in the Computer Networks groups of Politecnico di Torino [6].

In this section there will be a description about the implementation details of
the algorithm presented in the previous sections, providing also insights of the main
technical challenges addressed in the development process to achieve the goal of
optimal job placement with low latency.

4.2 Overview

The scheduling framework operates on simulated environments in which both the
infrastructures and the component-based applications are represented as data struc-
tures stored in memory; they can be either imported manually, to replicate specific
scenarios, or they can be automatically generated for testing purposes. Particularly
the automatic generation is performed through configuration files defining the tuple
(minValue-maxValue) for each type of resource both for application demands and
for infrastructures available resources; the framework then generates randomized
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infrastructures and applications within the specified ranges for the scheduler to
operate.

The scheduling framework has been designed with the key concept of modularity:
multiple scheduling algorithms can be integrated and can operate on the previously
described environments (either imported or generated). The framework strongly
relies on interfaces to ensure such property: each scheduling algorithm must
implement an interface named Scheduler which has a couple of methods, one
of them is the function Schedule that receive the information related to the
infrastructure and the components of the application and actually perform the
scheduling operation. The runtime environment takes care of calling the Schedule
function every time a new application scheduling request is issued.

Execution metrics are finally exported to evaluate the performance of each
scheduling algorithm; they describe many aspects throughout the execution of the
tests and they mainly focus on the scheduling success rate, the cost of the identified
solutions, the scheduling time and the distribution of the applications within the
infrastructure.

4.3 PHARE Scheduler Structure

The scheduler structure is loaded via a configuration file that describes which
algorithm will be used (alongside with other customizable parameters), the infras-
tructure and the list of applications that expects to be scheduled.

The implementation of the Scheduler interface for PHARE relies on recursion to
replicate the algorithm described in the previous chapter (see Code 4.1). Within
the Schedule function first the components are sorted by importance according to
definition 2, identifying the ones with strongest requirements (i.e. the ones that
will be scheduled first); an affinity matrix is then computed between each tuple
<component,cluster> as the product between the computing and the communica-
tion affinity.

The maximum depth of the recursion is equal to the number of components
of the application and within each recursive call the list of available nodes is
computed, sorted from the most to the least promising; finally to compute the
final placement sequentially adding the current cluster to the solution, recur on the
following component and eventually remove the cluster if the recursive branches
did not lead to a feasible solution.
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1 func (s CASTOScheduler ) InitScheduler (c config ){
2 s. infrastructure = loadInfrastructure (c)
3 jobs = getApplications (c)
4 for j := range jobs {
5 s. Schedule (j,s. infrastructure )
6 }
7 }
8 func (s CASTOScheduler ) Schedule (j []Job , infra []

Infrastructure ) {
9 sJobs = sortJobsByImportance (j)

10 AM = computeAffinityMatrix (sJobs , infra)
11 CM = computeCostMatrix (sJobs , infra)
12 if recursiveScheduler () == true {
13 solution .found(true)
14 } else {
15 solution .found(false)
16 }
17 }
18 func recursiveScheduler () bool {
19 if depth >= len(jobs) { return true}
20 NP = createNodesPriority ()
21 for node in NP {
22 solution .Add(jobs[depth], node)
23 if recursiveSchedule () == true { return true}
24 solution . Remove (jobs[depth], node)
25 }
26 return false
27 }

Code 4.1: PHARE implementation pseudo-code

4.4 Application Sorting

The application sorting is the first phase of the algorithm during the scheduling of
each application. To summarize what written in section 3.2.1, application’s compo-
nents are sorted taking into account their policies and their resource requirements.

The most interesting thing in Code 4.2 is the node sorting, which is performed
using the sort1 library which sorts slices using the QuickSort algorithm.

1https://pkg.go.dev/sort
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1 func sortJobsByImportance (jobs []Job , totConnRequest float ,
schedulingOrder string ) [] Jobs {

2 sortedJobs = []
3 for j := range jobs {
4 weight = j. GetWeight ()
5 scaledWeight = j. GetWeight ()
6 for connJob := range j. ConnectedJobs () {
7 connJobWeight = connJob . GetWeight ()
8 weight += connJobWeight
9 theta = LinkBetween (j, connJob ). GetWeight () /

totConnRequest
10 scaledWeight += theta * connJobWeight
11 }
12 j. SetConnWeight ( weight )
13 j. SetConnScaledWeight ( scaledWeight )
14 sortedJobs . append (j)
15 }
16 sort.Slice(sortedJobs , func(i, j int) bool {
17 return componentComparator ( sortedJobs [i], sortedJobs [j

], schedulingOrder )
18 })
19 return sortedJobs
20 }
21

22 func componentComparator (jA Job , jB Job , schedulingOrder
string ) bool {

23 if !(jA. HasSchedPol () != jB. HasSchedPol ()) {
24 // both have(n’t) the schedPolicy -> use the ’

schedulingOrder ’
25 if schedulingOrder == " weight " {
26 return jA. GetConnWeight () > jB. GetConnWeight ()
27 } else if schedulingOrder == " scaledWeight " {
28 return jA. GetConnScaledWeight () > jB.

GetConnScaledWeight ()
29 } else {
30 // error
31 }
32 } else {
33 // this returns ’true ’ if jA has a schedPolicy and jB

not ,’false ’ otherwise
34 return jA. HasSchedPol ()
35 }
36 }

Code 4.2: PHARE sortedJobsByImportance pseudo-code
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4.5 Affinity Matrix

The affinity matrix, described in section 3.2.2, has an entry for each <node,
component> and shows the “affinity” between an infrastructure node and an
application component. Higher is the correlation, more likely the component will
be scheduled on the node.

The pseudo-code at Code 4.3, the phi function ( line 17 ) is implemented
following eq. (3.6), and it is multiplied with the nodeSelFactor to compute the
computing-affinity value. The communication-affinity, computed using the psi
function ( implemented reflecting eq. (3.7) ), is multiplied with the computing-
affinity value to produce the affinity matrix value ( line 19 ).

1 func computeAffinity (jobs []Job , infraNodes []
Infrastructure , ..) .. {

2 AM = make(map ...)
3 for j := range jobs {
4 neighWeight = j. GetConnWeight ()
5 for infra := range infraNodes {
6 if !infra. CanHost (j){
7 AM[j][ infra] = 0
8 } else {
9 // computing affinity

10 totWeight = j. GetWeight ()
11 for connJob := range j. ConnectedJobs () {
12 if infra. CanHostNodeSelector ( connJob .

GetNodeSelector ()) {
13 totWeight += connJob . GetWeight ()
14 }
15 }
16 nodeSelFactor = totWeight / neighWeight
17 AM[j][ infra] = phi (...) * nodeSelFactor
18 // communication affinity
19 AM[j][ infra] = AM[j][ infra] * psi (...)
20 }
21 }
22 }
23 return AM
24 }

Code 4.3: PHARE computeAffinity pseudo-code
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4.6 Cost Matrix

The cost matrix keeps a value for each pair <node, component> which refers to
the cost of scheduling the component of the infrastructure node.

The function updateCM is called after a job has been placed on a node. Assuming
a job J has just been scheduled on a node N : this function doesn’t update all the
entries of the cost matrix, it updates only entries of the J ’s neighbors and N ’s
neighbors. Each cost is updated taking the amount of resources requested by the
link connecting J ’s neighbor and J itself, and multiplying it with the cost of the
link between N and its neighbor.

1 func computeCostMatrix (jobs []Job , infraNodes []
Infrastructure ) .. {

2 CM = make(map ..)
3 for j := range jobs {
4 for infra := range infraNodes {
5 weight = j. GetWeight ()
6 nodeUnitCost = infra. GetCost ()
7 CM[j][ infra ] = weight * nodeUnitCost
8 }
9 }

10 }
11

12 func updateCM (CM CMStructure , placedJob Job ,
selectedInfraNode Infrastructure , ..) ... {

13 for connJob := range placedJob . ConnectedJobs () {
14 for connNode := selectedInfraNode . ConnectedNodes () {
15 infraLinkCost = LinkBetween ( selectedInfraNode ,

connNode ). GetCost ()
16 jobLinkWeight = LinkBetween (placedJob , connJob ).

GetWeight ()
17 CM[ connJob ][ connNode ] += infraLinkCost *

jobLinkWeight
18 }
19 }
20 return CM
21 }

Code 4.4: PHARE costMatrix pseudo-code

4.7 Nodes Priority

The Nodes Priority (ref. section 3.2.4) is computed for each component of an
application. It is an array which contains nodes that can be selected as target for
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job, ordered from the most to the least convenient node.
1 func createNodesPriority (job Job , infraNodes []

Infrastructure , NPSize int , ..) .. {
2 NP = make (..)
3 for infra := range infraNodes {
4 if infra. CanHost (job) {
5 cost = CM[job ][ infra]
6 nodeAff = AM[job ][ infra]
7 if ! linksCanHost (infra , job. ConnectedScheduledJobs ())

{
8 continue
9 }

10 if nodeAff == 0 {
11 NP. append ( priority : MaxFloat )
12 } else {
13 NP. append ( priority : cost / nodeAff )
14 }
15 }
16 }
17 if len(NP) < NPSize {
18 return NP.top(compareNP , NPSize )
19 } else {
20 return NP.sort( compareNP ). getFirstN ( NPSize )
21 }
22 }
23 func compareNP (a_NP , b_NP) bool {
24 if a_NP. priority != b_NP. priority {
25 return a_NP. priority < b_NP. priority
26 } else {
27 a_NPIsUsed = a_NP. IsUsed ()
28 b_NPIsUsed = b_NP. IsUsed ()
29 if a_NPIsUsed != b_NPIsUsed { // only one is used
30 return b_NP. IsUsed () // return true if ’b’ is used ,

false otherwise
31 }
32 comp = compareResources (a_NP ,b_NP)
33 if comp == 0 {
34 return string . compare (a_NP.ID(),b_NP.ID())
35 }
36 return comp < 0
37 }
38 }

Code 4.5: PHARE nodes priority pseudo-code

An important speed-up that was added in this code (ref. Code 4.5) is the sorting
phase: a parameter that can be passed to createNodesPriority is NPSize: this
value defines the size of the Nodes Priority array. If NPSize is smaller than the
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length of the Nodes Priority array, only the first NPSize-elements of the sorted NP
are returned. This means that also a top-algorithm can compute the NP sorting.
Thie “top” algorithm is faster than a QuickSort sorting one when the NPSize is
small. Due to lack of time, the algorithm selector is not the smartest one and can
be improved: right now, the algorithm selection is driven by a simple if-else
statement ( line 17 ) and sometimes the top-algorithm is used even if it’s not the
fastest solution.

4.8 Internal representation

Each infrastructure or application is saved into a directory which contains two
subdirectories for nodes and links called respectively nodes and edges, a file
called graph.dot which contains the representation of interconnections between
nodes in dot format graph, and finally, only for infrastructures, a file called
components.json which contains the definition of each physical link that compose
virtual links stored inside the edges directory.

Each node stores its specifications inside a JSON file. After a closer look to
Code 4.6, it is shown that applications have a list of resource-types (labels) and, for
each type, request and limit are the same adopted by Kubernetes: request and
limit define respectively the minimum and the maximum amount of resource-type
requested by the application node.

The next element inside the application node specification is the nodeSelector:
this object is very similar to its homonym in Kubernetes, and its role is to define a
filter for infrastructure nodes on which the application node can be scheduled. The
nodeSelector is composed by:

• key: unique identifier

• values: set of values to compare with values stored in infrastructure nodes
referring to the same key

• operator: this field specifies how to compare infrastructure values and appli-
cation values ( ref. section 3.3.4 ).

Focusing on Code 4.7, it’s shown that the spec on infrastructure nodes provides
the following information:

• quota shows the total amount of resources available on the cluster, which is
the sum of the resources of each device inside the cluster.
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• cost refers to the unitary cost of the resource. Taking Code 4.7 as example,
using 1 cpu will cost 1.

• threshold and maxUnit are explained at section 4.10

For the application nodes, the spec contains instead (following the Kubernetes
approach):

• request shows the total amount of resources requested by a node.

• limit reports the maximum amount of resources that can be used by a node.
Exceeding this value could lead to an unstable state of the infrastructure node.

1 {
2 " labels ": [
3 {
4 "meta ": {
5 "kind ": " resource

",
6 "type ": " cpuDemand

"
7 },
8 "spec ": {
9 " request ": "1",

10 "limit ": "1"
11 }
12 }
13 ],
14 " nodeSelector ": [
15 {
16 " operator ": "In",
17 "key ": "user",
18 " values ": [
19 "n0"
20 ]
21 }
22 ]
23 }

Code 4.6: Application node

1 {
2 " labels ": [
3 {
4 "meta ": {
5 "kind ": " resource

",
6 "type ": "cpu"
7 },
8 "spec ": {
9 "quota ": "8",

10 "cost ": 1,
11 " threshold ": 0.5,
12 " maxUnit ": "8"
13 }
14 }
15 ],
16 " nodeSelectorLabels ": [
17 {
18 "key ": "user",
19 " values ": [
20 "n0"
21 ]
22 }
23 ]
24 }

Code 4.7: Infrastructure node

The scheduler keeps also a representation for connections pod-to-pod and cluster-
to-cluster: these connections are edges. Both edges types (application and infras-
tructure) have a list of resource types inside labels. The application edge in
Code 4.8 contains, for each resource type, the specification of request and limit
as already explained above for the nodes. Infrastructure edges, ref. Code 4.9,
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contain, for each resource type, inside the field called components, the reference to
the representation of each physical link that connects the two pods (ref. Code 4.10).
Each element inside Code 4.10 contains cost, which refers to the unitary cost of
the resource, and amount which represents the amount of resources of a link.

1 {
2 " labels ": [
3 {
4 "meta ": {
5 "kind ": " resource

",
6 "type ": "

bandwidthDemand "
7 },
8 "spec ": {
9 " request ": "1G",

10 "limit ": "1G"
11 }
12 }
13 ]
14 }
15

16

Code 4.8: Application edge

1 {
2 " labels ": [
3 {
4 "meta ": {
5 "kind ": " resource

",
6 "type ": " bandwidth

"
7 },
8 "spec ": {
9 " components ": [

10 "n1",
11 "n0"
12 ]
13 }
14 }
15 ]
16 }

Code 4.9: Infrastructure edge

1 {
2 " bandwidth ": {
3 "n0": {
4 "cost ": "1n",
5 " amount ": "1G"
6 },
7 "n1": {
8 "cost ": "1n",
9 " amount ": "1G"

10 },
11 ..
12 },
13 " latency ": {
14 ..
15 }
16 }

Code 4.10: Components
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4.9 PHARE Scheduler Input

The scheduler needs a configuration file as input to retrieve information about
the scheduler itself (f.e. the scheduling algorithm), the infrastructure definition
and the applications to schedule. This configuration file ( ref. Code 4.11 ) is
composed by the metrics part ( line 2 ), which contains informations about how
to collect scheduling metrics like scheduling time or cost, and the offline ( line 4
) part that contains the declaration of the algorithm, and also the definition of
infrastructure and applications. Focusing on the offline section, the algorithm
field ( line 6 ) contains the declaration of the scheduling algorithm. In the example
is showed what parameters are needed by the PHARE scheduler, but different
algorithms requires different parameters. The fedConfig ( line 9 ) and depsConfig
( line 16 ) contain paths to file locations respectively for infrastructures and
applications (“infrastructure” is also named as “federation”, as well as “deployment”
for “application”). Each field inside fedConfig and depsConfig has been already
explained in section 4.8.

1 name: liqo
2 metrics :
3 ...
4 offline :
5 ...
6 algorithm :
7 phare:
8 ...
9 fedConfig :

10 name: fed
11 graph: path/to/graph.dot
12 nodes: path/to/nodes
13 edges: path/to/edges
14 componentsFile : path/to/ components .json
15 source : file
16 depsConfig :
17 - name: app0
18 graph: path/to/app0/graph.dot
19 nodes: path/to/app0/nodes
20 edges: path/to/app0/edges
21 source : file
22 - name: app1
23 config : path/to/ appConfig .yml
24 directed : true
25 source : generator

Code 4.11: PHARE configuration file

An important testing feature is visible inside applications declarations: the
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application app0 ( line 17 ) has source set to file, that contains the path from
which the scheduler must load the application. The application app1 ( line 22 )
instead has the field source equal to generator: this means that the application
will be runtime generated following specifications written into the config file.

4.10 PHARE Scheduler Evaluation

4.10.1 Features

Additional features have been implemented, allowing PHARE to operate also in
more realistic scenarios and specify desired behaviors:

• defined threshold both for computational and network resource usage to
prevent the saturation of the infrastructure;

• defined shared network links between clusters;

• undefined number of resource types to evaluate (CPU, RAM, GPU, memory,
..);

• defined maximum dimension of an application component to be scheduled;

The threshold is a value between 0 and 1, and it aims to add a limit to the amount
of resources that can be used on the referred cluster. Application components with
a placement constraint on a specific cluster can exceed the cluster threshold and, if
there is enough room for the component, be scheduled. The scenario of threshold
exceed was designed for the opportunistic scheduling: a user that connects its
device to the infrastructure can add a threshold to avoid its saturation due to
other users jobs. The user can still add his jobs on his device until the device is
full. Right now there is no policy that checks if a user can insert a constraint of an
application or not, but it will be a future improvement.

The scheduler has a representation of each connection between clusters via a
virtual link; in the physical world, each cluster can be connected to another cluster
via a switch or a couple of routers, or lots of other solutions. Looking at fig. 4.1,
C1, C2 and C3 are connected via a Switch; links between each cluster are treated
by the scheduler as a single virtual link composed by a set of physical links (ref.
fig. 4.2).

PHARE scheduler is capable to make its scheduling decision with a the number of
labels which is virtually without limit. The actual version of PHARE scheduler has
a limited set of labels (CPU, RAM, bandwidth), but with some small modifications,
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Figure 4.1: Physical links Figure 4.2: Virtual links

the scheduler user can add its own custom labels. Due to some implementations
restrictions, only cluster labels can be multiple: only one label can be used on
virtual links.

Each cluster is an opaque representation of one or more devices: the scheduler
knows only the overall resource amount of a cluster and doesn’t have any information
about its devices specifications. A cluster administrator can add an information on
his cluster that specifies the maximum amount of resources of an application node.
This element is called maxUnit. This field can be set as the smallest amount of
resources held by a device.

4.10.2 Limitations

As was already mentioned in above sections, the PHARE scheduler relies on
recursion. The main limitation of the scheduler is that each level of recursion
increments the memory used by the program. Since the depth of recursion is driven
by the number of nodes inside an application, if this number is big enough it can
produce some unexpected behaviours.

Another limitation of the scheduler is, again, related to the recursion. A possible
way that was considered to speed up the scheduling phase was to parallelize the
execution of the program; this was not possible because, when the scheduler recurs,
there is no way to know if the path that it took will lead to a feasible solution
or not. A possible way to speed up the execution of the scheduler is to launch
a different instance of the program for each incoming application. This is only a
theoretical solution and, at the time of writing, has not been tested.
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The PHARE scheduler is currently using multiple resource types only on nodes
(both applications and infrastructure ones) and not on links. The only other
resource type different from “bandwidth” that could be useful on a link is the
“latency”2, but this resource is difficult to manage: first of all, differently from other
resource types, the latency is a constant value which never changes during the
scheduling life-cycle (the bandwidth will be decreased every time the link is used).
Moreover each resource type must be comparable with another resource type: for
example the scheduler considers equal 1 coreCPU and 10 GBRAM but it’s not clear
how to compare secondslatency with Mbbandwidth.

4.10.3 Performance Improvements

Many optimizations have been performed in order to improve the performance
of PHARE. Code profiling has definitely helped to identify critical code sections
throughout the execution and, as many values slowly change between subsequent
recursive calls, the implementation strongly relies on caching to prevent unnecessary
redundant computations.

The heuristic-based PHARE scheduler has been designed to identify a-priori
the most promising steps in order to speed up the scheduling process, but still
the worst case complexity can be estimated as O(N ∗ J), where N is the number
of clusters of the infrastructure and J represent the number of components of
the application. Such worst case scenario requires the simultaneous occurrence
of numerous factors including: huge application size and huge, almost-saturated
infrastructures. Although such scenario is theoretically possible, Cloud Providers
usually prevent the saturation of their infrastructure for resilience reasons; still the
worst case complexity can be reduced to O(M ∗ J), selecting only a subset M of
the N feasible clusters, with M = 10, since empirical evaluations have shown that
the scheduling solution is always found within the first M clusters. Consequently
the sorting algorithm used to rank the most promising clusters can be improved as
well: the complexity of the Heap Sort O(N logN) can be reduced using a modified
version of the Selection Sort only for the first M clusters with complexity O(N) as
M << N .

In order to find which are the critical parts of PHARE scheduler code, the
Golang profiler pprof3 was used: it produces a set of different graphs from which
the developer can retrieve information about the performance of each function.
The most analysed graph is the Flame Graph: this graph shows the percentage

2latency is the period of time used by a packet to traverse the link
3https://pkg.go.dev/net/http/pprof
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and the absolute time usage of each function in the code. An extract of the
PHARE scheduler Flame Graph is reported in fig. 4.3. Each line is referred to a
function, lines below a line show functions called inside the above one. The width
of a line is directly proportional with the function execution Time. From this
graph is clear that the reflection4 is the bottleneck of the NewLabel function
(reflect.<something> functions). Most of the modularity of the code is achieved
using this concept, and clearly it doesn’t comes for free. In order to make the
scheduler ready to go in production, there must be a refactoring process to speed-up
this phase or reduce the modularity in favor of performance.

Figure 4.3: Code Flame Graph

Furthermore, pprof expose also a table called Top Table (ref. fig. 4.4) which
has the list of functions sorted from the one with the longest cpu time usage to
one with the shortest. From this table is visible that also maps manipulations are
operations which slow down the scheduler, to avoid this issue, non-map types, such
as slices, have been used where suitable.

4https://pkg.go.dev/reflect
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Figure 4.4: Code Top Table

43



Chapter 5

Validation and Testing

5.1 Experimental Results

This section shows the experimental validation of PHARE, under different parame-
ters such as the scheduling success rate (sections 5.1.1 and 5.1.2), scheduling time
(either in presence of abundant or scarce resources) (sections 5.1.1 and 5.1.2), the
cost of the identified solution (sections 5.1.1 and 5.1.2), and scalability properties in
terms of infrastructure size (section 5.1.1) and number of applications (section 5.1.2).
Results are compared against Firmament, a state-of-the-art scheduler and one of
the few ones available in Kubernetes.

In the simulations are replicated random infrastructure topologies of different
sizes with the number of clusters ranging between 50 and 1000. Each single cluster
of the infrastructure features a given random amount of CPU cores and is connected
with all the other clusters in the infrastructure (i.e. full mesh topology) with virtual
connections characterized by the value of available network bandwidth. Moreover
each resource features a given cost expressed in $/unit, correctly sized to match
major Cloud Provider resource costs (table 5.1 summarizes the main configuration
values of the infrastructures). In order to produce repeatable tests, the configuration
file of applications and infrastructures contains the seed for the random generator
and max-min-boundaries of each random value.

It was selected a sample 10-tier microservices application called Online Boutique
[7] for the simulated workload, monitoring the resource demands of the application
both in term of CPU and bandwidth usage, allowing us to later use those information
to correctly define the workload. A set of 500 applications was randomly generated,
each consisting of 10 microservices dimensioned according to table 5.2.

Ultimately it was evaluated how the communication-aware placement of PHARE

44



Validation and Testing

impacts the network congestion within the infrastructure by performing some further
set of tests, focusing the evaluation on the bandwidth consumption of the scheduling
solutions (section 5.1.3).

To cope with the randomness of both the infrastructures and the simulated
workload all the simulations were replicated 20 times (simulation samples) with
different configurations.

Infrastructure size: 50 — 1000 clusters
Number of vCPU per cluster: 300 — 500 cores
Cost of vCPU per cluster: 0.15 — 0.4 $/core
Amount of RAM per cluster: 128 — 512 GB
Cost of RAM per cluster: 0.01 — 0.06 $/GB
Upstream bandwidth per cluster: 5 — 40 Gb/s
Cost upstream bandwidth per cluster: 0.01 — 0.4 $/Gb

Table 5.1: Infrastructure setup.

Number of deployed applications: 500
Application size: 10 microservices
Microservice CPU requests: 4 — 20 vCPU
Microservice RAM requests: 1 — 2 GB
Microservice connectivity ratio: 30%
Microservice bandwidth requirements: 0.6 — 20 Mb/s

Table 5.2: Workload setup.

5.1.1 Scalability on Infrastructure Size

Now, the focus is on the evaluation of horizontal scaling on the infrastructure size.
Specifically the objective of the tests is to deploy PHARE with infrastructures
of variable sizes, in order to understand the performance: 1) with few (possibly
saturated) clusters with very limited scheduling solutions 2) with multiple clusters
(up to 1000 for the study case) and with many possible scheduling solutions to be
evaluated.
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Deployment success rate

fig. 5.1 represents the percentage of successfully scheduled applications out of the
complete set; one application is accounted as scheduled only if all its microservices
have been successfully scheduled. Small infrastructures do not have enough resources
to accommodate all the applications, hence infrastructures with less than 200
clusters experience a success rate < 100%. On the other hand infrastructures with
more than 200 clusters can host all the applications, so the success rate is always
100%.

There are no visible differences between the success rate with PHARE and
Firmament, meaning that both the solutions are able to correctly consolidate the
application deployments even with small infrastructures.
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Figure 5.1: Scheduling success rate

Scheduling time evaluation

fig. 5.2 represents the average scheduling time needed to place each of the 500 appli-
cations (the time needed to identify unfeasible scheduling placement is accounted as
well); PHARE outperforms the scheduling time required by Firmament, being able
to identify suitable placement always within 80ms even for large infrastructures.

Additionally PHARE scheduling time not only experiences a linear trend with
the size of the infrastructure, but also the variance of the distribution across
different simulation samples is very limited (see fig. 5.3); this means that the
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heuristic is always able to identify the most promising steps in order to speed up
the scheduling process. Conversely, Firmament experiences very high response
time especially on small infrastructures mainly because it has been designed to
consider an application scheduled even if only a subset of the microservices has
been successfully scheduled, resulting in multiple calls to the solving algorithm.
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Figure 5.2: Application scheduling time
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Figure 5.3: Application scheduling time box
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Deployment cost evaluation

Previous results could raise the question on whether the smallest scheduling time
requested by PHARE translates to worst solutions in term of experienced cost.
Figure 5.4 represents the cumulative deployment cost of all the applications; not-
scheduled applications contribute with cost = 0 to the final deployment cost. Three
phases can be identified in the perceived cost throughout the test: 1) infrastructures
with few clusters (< 150) experience a rapid growth in the applications deployment
cost given that the scheduler has more and more available resources to accommodate
the applications 2) infrastructures with more than 150 clusters have enough resources
to schedule all the application, hence the total deployment cost starts to drop
as the number of clusters grows 3) in case of infrastructures with more than 600
clusters the scheduler is not able to reduce even more the deployment cost because
even if there are more possible solutions, they are all very similar in term of cost,
given the bounded randomness of the infrastructure parameters.

The target placements both for PHARE and Firmament experience the same
perceived cost, meaning that even if fewer steps are considered by PHARE, the
heuristic succeed to identify the most promising one first.
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Figure 5.4: Federation deployment cost box

5.1.2 Scalability on Number of Applications

In the previous set of tests were identified the 100-cluster infrastructure as one
of the most challenging one, given the limited amount of available resources to

48



Validation and Testing

fulfill the demands of all the applications; hence analyzing closely such scenario it
is possible to understand the performance of PHARE both when the infrastructure
is almost saturated and the possible solutions are very limited, but also when there
are no more available resources in the infrastructure and the algorithm must quickly
identify such situations.

Deployment success rate

fig. 5.5 depicts the scheduling success rate for the complete set of applications;
one application is accounted as scheduled only if all its microservices have been
successfully scheduled. The infrastructure does not have enough resources to
accommodate all the applications, in fact only the first 325 applications can always
be scheduled across all the simulation samples. PHARE is able to achieve some
slight better performance, scheduling some few more applications with respect to
Firmament thanks to a more accurate management of the available resources.
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Figure 5.5: Scheduling success rate

Scheduling time evaluation

figs. 5.6 and 5.7 represent the scheduling time for the ith application. As in the
previous section PHARE outperforms Firmament scheduling time, being able to
converge to a suitable scheduling solution not only in complex almost-saturated
infrastructures, but also in detecting unfeasible solutions when the amount of
available resources are not enough to host the remaining applications;
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Figure 5.6: Scheduling time
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Figure 5.7: Scheduling time box

Deployment cost evaluation

fig. 5.8 represent the average deployment cost of the ith application. Throughout
the test it was experienced a linear increase of the deployment cost, motivated by
the reduction of the number of possible scheduling solutions, until the saturation
of the infrastructure was reached.
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Figure 5.8: Deployment cost box

5.1.3 Bandwidth Consumption

Now it is evaluated how much the infrastructure can benefit from the communication-
aware placement of PHARE, thus focusing especially on the overall bandwidth
consumption of the links between clusters.

For this specific set of tests it was used a 60-cluster infrastructure (dimensioned
according to table 5.1) and the workload that describes applications was slightly
modified, increasing by a factor of 100 only the amount of bandwidth requirements
for each microservice-to-microservice communication, hence increasing conceptually
the amount of data transferred throughout the execution of the application itself.
Furthermore some additional resource usage thresholds of 75% were introduced
both for computational resources (CPU and RAM) and for network resources
(bandwidth) to limit the amount of available resources, replicating a realistic
scenario for Cloud Providers.

figs. 5.9 and 5.10 represent the percentage of allocated resources in the clusters,
sorted in descending order. As expected PHARE tends to group as much as possible
the microservices belonging to the same application onto the same clusters, avoiding
the intra-microservice communication to span across different clusters, whereas
Firmament prefers to spread more evenly the workload across the federation.
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Figure 5.9: PHARE resource usage
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Figure 5.10: Firmament resource usage

As a result these scheduling decisions reflect also on the network resource usage
within the federation. figs. 5.11 and 5.12 depict the resulting network pressure on the
links between clusters; more specifically they represent the congestion matrix N ∗N ,
where N is the number of cluster of the federation and each cell (i, j) represents the
percentage of network bandwidth usage between cluster i and j. Moreover each cell
value is represented on a grey-scale color code, except the ones in red that exceed
100% network usage (i.e. the target placement require more bandwidth than the
available amount). It’s shown that the network-aware placement of PHARE is
able to distribute accurately the applications across the federation, aggregating
as much as possible the microservices of the same application within the same
clusters; on the other hand Firmament is not aware of the communication between
microservices thus the outcome of the scheduling process is nearly randomic for
what concerns network consumption.
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5.1.4 Resource Usage Distribution

General Scenario

After testing the performance of the scheduler, we decided to further investigate how
it consumes its target infrastructure of available nodes, focusing on the topological
resource distribution. The goal is to affirm that the scheduler, trying to keep
the cost of the communications between pods to a minimum, aggregates the
microservices of an application as much as possible, avoiding to spread them across
the infrastructure.

To test this aspect we decided to schedule a number of toy-applications, based
on the microservices demo Kubernetes deployments proposed by Google, on a
simple infrastructure composed by equal nodes. The infrastructure has 50 nodes,
each can host up to 700 cores of cpu-usage; the nodes are in a full mesh network,
each link has 20 Gbps bandwidth availability. This infrastructure is designed to
provide a non-challenging scenario to the scheduler.

To have a clear view on the evolution of the scheduling we took 4 snapshots of
the state of the infrastructure, each after scheduling 20 applications. The following
charts display the percentage resource usage of the nodes in the infrastructure.

The results confirm the desired behavior of the scheduler. Considering the
snapshots one by one it is possible to note that, in each chart, only a single node is
not completely full, this means that the scheduler tries to fill a node as much as
possible before starting to fill the next one. This is achieved thanks to the sorting
of nodes based on the nodesPriority mentioned in section 3.3.5. The trends keeps
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Figure 5.13: 20 apps scheduled
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Figure 5.14: 40 apps scheduled
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Figure 5.15: 60 apps scheduled
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Figure 5.16: 80 apps scheduled

the same when considering subsequent snapshots in the scheduling process.

Opportunistic scenario

The results obtained in the above described test, led us to investigate the same
metrics on a more challenging scenario. While the last infrastructure could represent
a set of datacenters connected together in a full mesh network, the following is
going to test the scheduler in an “opportunistic” scenario [8]. With the term
“opportunistic” we intend an infrastructure composed by a large set of “small
nodes”, e.g. small workstations in a university laboratory. This is a scenario where
a single application can access a lot of resources distributed across multiple “small”
nodes. Each of the nodes has 8 cores of available CPU. We also added 2 other “big”
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nodes, representing two clusters of servers, each with 100 CPU cores; this scenario
could be achieved using the Liqo framework.

We scheduled 80 toy-applications. Each app is composed by 3 microservices
in a chain topology (A-B-C). In table 5.3 are described the requirements of the
toy-application. The microservice A of the application has a nodeSelector that
forces the pod to be placed on a specific “small” node of the infrastructure. Among
the 80 applications scheduled, the nodeSelector on pod A is the same every 20
applications.

Microservice ID: CPU request nodeSelector
A 1 Yes
B 1 None
C 4 None

Table 5.3: Application requirements.

For the test we took 4 snapshots of the resource usage of the infrastructure
every 20 app scheduled. In fig. 5.21 is possible to see that not all 80 apps are
scheduled, the scheduler can not place the last set of applications. Looking at the
resource distribution is possible to see that the small nodes get filled up by the first
60 applications, thus when needing to scheduled the last 20, the scheduler cannot
satisfy the nodeSelector constraint of pod A of each application. This behaviour
is a consequence of the placement of C pod of previous applications, those pods
take up a lot of the available space of “small” nodes, including those targeted by
some nodeSelector thus making it impossible to fit other A nodes, which require
little CPU cores but are bound to specific nodes.

This scenario shows a potential drawback of the aggregating tendency of the
PHARE scheduler, i.e. if the scheduler would have placed some C pods on other
unused nodes, following a more distributed approach, all 80 applications would
have been scheduled. Although this solution would have certainly increased the
total cost of the deployment, given the higher amount of bandwidth consumed.
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Figure 5.17: Cpu usage after 20
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Figure 5.18: Cpu usage after 40
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Figure 5.19: Cpu usage after 60
scheduled apps
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Figure 5.20: Cpu usage after 80
scheduled apps

56



Validation and Testing

0 10 20 30 40 50 60 70 80
Application #

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

sf
ul

ly
 sc

he
du

le
d

fedSize
0

algorithm
liqo

Figure 5.21: Successful scheduling

Opportunistic scenario optimized

This section analyses the test results of a possible implementation to fix the
scheduling behavior of PHARE in the last described test scenario.

To accomodate the potential incompatibility between the aggregating tendency of
the scheduler and the use of node-selecting policies on pods, we thought of combining
the use of the nodeSelector and the threshold properties of application and
infrastructure nodes. The new scheduling behaviour considers the resource threshold
of a node depending of the nodeSelector relationship between a pod and a node.
When examining if a node can host a pod, if the pod has a nodeSelector that
targets a certain node, the scheduler does not consider resource threshold. This
means that a certain pod could be perceived more or less resourceful depending on
the pod perspective.

After implementing this behaviour we run again the previously described test
and the result were positive. In fig. 5.26 is possible to note that the scheduler
managed to place all 80 applications. The resource usage charts show that the
placement kept the aggregating tendency without using unnecessary resources.
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Figure 5.22: Cpu usage after 20
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Figure 5.23: Cpu usage after 40
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Figure 5.26: Successful scheduling
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Chapter 6

Conclusions and Future
Works

The thesis aims at producing a scheduler that can be used alongside with the Liqo
framework on a multi-cluster/multi-provider infrastructure. The main features of
the current version are:

• scheduling decisions take into account application resources, bandwidth con-
straints and cluster costs. The final decision is a trade off between these
parameters resulting in a performing solution at the lowest price;

• the ability to adopt specific pod-to-node selection policies to allow for better
placement in more articulated scenarios;

• the liberty left to the user to precisely customize the type and the handling
of the resource assigned to each component or node, allowing to represent
different scenario with various requirements and constraints.

The PHARE scheduler, at the time when the thesis was written, is efficient and
can find a solution fast. To further improve the solution, the following modification
ca be added:

- the high level of customization offered by the chosen implementation has
a non-negligible impact on performances. In future versions the scheduler
customization could be limited creating a more compact framework that can
reach higher performances.

- every time the scheduler starts a recursive path, is impossible to know apriori
if a solution will be found or not. A possible improvement can be the paral-
lelization of the recursive section by exploring different paths of the recursion
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tree at the same time, hoping that at least one of them returns a feasible
solution for the application.

- the current way of computing costs for pod placement doesn’t reflect real
world scenarios, where the cost is usually not computed in this way: the cost
is commonly relative to the number of active nodes that hosts the application.
The Liqo team is currently working to produce a cost-oracle which will be
interrogated by the scheduler to retrieve the cost of each component of the
application.

- the current scheduling “policy” is to use the least amount of infrastrucute
nodes. A possible future work could be the implementation of other policies
which, for example, to split the application across the infrastructure.

Finally, the scheduler next step is to integrate the PHARE scheduler into
Kubernetes in order to test it in a real multi-cluster environment and collect
information to improve scheduler performances.
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