
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Acceleration by Separate-Process Cache for
Memory-Intensive Algorithms on FPGA via

High-Level Synthesis

Supervisor
Prof. Luciano Lavagno

Candidate
Giovanni Brignone

ID: 274148

Academic year 2020-2021

Abstract

The end of the Moore’s Law validity is making the performance advance of Software
run on general purpose processors more challenging than ever. Since current technology
cannot scale anymore it is necessary to approach the problem from a different point of
view: application-specific Hardware can provide higher performance and lower power
consumption, while requiring higher design efforts and higher deployment costs.

The problem of the high design efforts can be mitigated by the High-Level Synthesis
(HLS), since it helps improve designer productivity thanks to convenient Software-like
tools.

The problem of high deployment costs can be tackled with FPGAs, which allow
implementing special-purpose Hardware modules on general-purpose underlying physical
architectures.

One of the open issues of HLS is the memory bandwidth bottleneck which limits
performance, especially critical in case of memory-bound algorithms.

FPGAs memory system is composed of three main kinds of resources: registers, Block
RAMs and external DRAMs. Current HLS tools allow exploiting this memory hierarchy
manually, in a scratchpad-like fashion: the objective of this thesis work is to automate
the memory management by providing an easily integrable and fully customizable cache
system for HLS.

The proposed implementation has been developed using Vitis™HLS tool by Xilinx
Inc..

The first development phase produced a single-port cache module, in the form of
a C++ class configurable through templates in terms of number of sets, ways, words
per line and replacement policy. The cache lines have been mapped to BRAMs. To
obtain the desired performance, an unconventional (for HLS) multiprocess architecture
has been developed: the cache module is a separate process with respect to the algorithm
using it: the algorithm logic sends a memory access request to the cache and reads its
response, communicating through FIFOs.

In the second development phase, the focus was put on performance optimization, in
two dimensions: increasing the memory hierarchy depth by introducing a Level 1 (L1)
cache and increasing parallelism by enabling multiple ports.

i

The L1 cache is composed of cache logic inlined in the user algorithm: this solution
allows to cut the costs of FIFOs communications. To keep L1 cache simple it has been
implemented with a write-through write policy, therefore it provides advantages for read
accesses only. It is configurable in the number of lines and each line contains the same
number of words of the associated Level 2 (L2) cache.

The multi-port solution provides a single L2 cache accessible from multiple FIFOs
ports, each of which can be associated with a dedicated L1 cache. It is possible to specify
the number of ports through a template parameter and it typically corresponds to the
unrolling factor of the loop in which the cache is accessed.

In order to evaluate performance and resource usage impact of the developed cache
module, multiple algorithms with different memory access patterns have been synthe-
sized and simulated, with all data accessed to DRAM (performance lower bound), to
BRAM (performance higher bound) and to cache (with multiple configurations).

ii

Contents

List of Figures v

List of Tables vi

List of Acronyms vii

1 Background 1
1.1 Cache . 1

1.1.1 Structure . 1
1.1.2 Policies . 2
1.1.3 Benefits . 3

1.2 Field-Programmable Gate Array . 4
1.2.1 Memory system . 4

1.3 High-Level Synthesis . 4
1.3.1 Workflow . 4
1.3.2 Optimization techniques . 5

2 Motivation 8
2.1 Ma’s cache . 8
2.2 Proposed solution . 9

3 Basic cache 10
3.1 Architecture . 10

3.1.1 Functionality . 10
3.1.2 Characteristics . 11
3.1.3 Single-process Basic cache . 11
3.1.4 Multi-processes Basic cache . 12

3.2 Implementation . 12
3.2.1 Internals . 14
3.2.2 Interface . 15

4 Multi-levels cache 18
4.1 Architecture . 18
4.2 Implementation . 18

iii

4.2.1 Internals . 18
4.2.2 Interface . 19

5 Multi-ports cache 20
5.1 Architecture . 20
5.2 Implementation . 20

5.2.1 Internals . 20
5.2.2 Interface . 21

5.3 Limitations . 22

6 Results 23
6.1 Simulation environment . 23

6.1.1 Reference memory models . 24
6.1.2 Collected data . 25

6.2 Matrix multiplication . 26
6.2.1 16x16 matrices . 26
6.2.2 32x32 matrices . 31

6.3 Bitonic sorting . 35
6.3.1 128 elements . 36

6.4 2D convolution . 39
6.4.1 32x32 matrix and 9x9 kernel . 39

7 Conclusions 43

A Source code 44
A.1 Cache . 44

Bibliography 58

iv

List of Figures

1.1 Cache logic structure. 2
1.2 Set associative policy address bits meaning. 3
1.3 Pipelining example. 5
1.4 Loop unrolling example. 6
1.5 Array partitioning examples. 7
1.6 Burst read and write example. 7

3.1 Single-process Basic cache architecture. 10
3.2 Multi-processes Basic cache architecture. 12
3.3 Stalling schedule of request writing and response reading. 16
3.4 Optimal schedule of request writing and response reading. 17
3.5 Static schedules in case of multiple accesses per iteration. 17

4.1 Multi-levels cache architecture. 19

5.1 Multi-ports cache architecture. 21
5.2 Static schedules in case of 2-ports cache. 22

6.1 Design space of Matrix multiplication 16x16 (single-level). 27
6.2 Request and response waveforms for Matrix multiplication 16x16 single-level

and single-port. 28
6.3 Design space of Matrix multiplication 16x16 (multi-levels). 29
6.4 Design space of Matrix multiplication 32x32 (single-level). 31
6.5 Pareto curve of Matrix multiplication 32x32. 34
6.6 Pareto curve of Bitonic sorting 128. 38
6.7 Pareto curve of 2D convolution. 42

v

List of Tables

3.1 Data exchanged through Port. 13

6.1 Simulation environment configuration. 23
6.2 Single-level cache configuration for Matrix multiplication 16x16. 27
6.3 Performance and resource usage of Matrix multiplication 16x16 (single-level). 28
6.4 Multi-levels cache configuration for Matrix multiplication 16x16. 29
6.5 Performance and resource usage of Matrix multiplication 16x16 (multi-levels). 30
6.6 Performance and resource usage of Matrix multiplication 16x16. 30
6.7 Single-level cache configuration for Matrix multiplication 32x32. 31
6.8 Performance and resource usage of Matrix multiplication 32x32 (single-level). 32
6.9 Multi-levels cache configuration for Matrix multiplication 32x32. 32
6.10 Multi-levels cache Matrix multiplication 32x32 hit ratios. 32
6.11 Performance and resource usage of Matrix multiplication 32x32 (multi-levels). 33
6.12 Performance and resource usage of Matrix multiplication 32x32. 33
6.13 Single-level cache configuration for Bitonic sorting 128. 36
6.14 Performance and resource usage of Bitonic sorting 128 (single-level). 36
6.15 Multi-levels cache configuration for Bitonic sorting 128. 37
6.16 Performance and resource usage of Bitonic sorting 128 (multi-levels). 37
6.17 Performance and resource usage of Bitonic sorting 128. 38
6.18 kernel and B caches configuration for 2D convolution. 40
6.19 Performance and resource usage of 2D convolution (single-level). 40
6.20 Performance and resource usage of 2D convolution (multi-levels). 41
6.21 Performance and resource usage of Convolution. 41

vi

List of Acronyms

API Application Programming Interface

AXI Advanced eXtensible Interface

BRAM Block RAM

CC Clock Cycle

DRAM Dynamic RAM

DSP Digital Signal Processor

FF Flip-Flop

FIFO First-In First-Out

FPGA Field-Programmable Gate Array

FSM Finite-State Machine

HDL Hardware Description Language

HLS High-Level Synthesis

HW Hardware

II Initiation Interval

IPC Inter-Process Communication

L1 Level 1

L2 Level 2

LRU Least Recently Used

LSB Least Significant Bit

LUT Lookup Table

MSB Most Significant Bit

vii

RAM Random Access Memory

RAW Read After Write

RTL Register-Transfer Level

SW Software

viii

1 Background

The literature about cache systems, the High-Level Synthesis state of the art and an
analysis of the resources available on board modern FPGAs are the fundamental back-
ground for this thesis work.

1.1 Cache

Memory devices are crucial components of computing systems as they can pose a higher
bound in terms of performance, especially when executing memory-intensive algorithms.
The ideal memory should be fast, large and cheap, but current technology forces the
designer to choose a trade-off between the metrics.

A common solution to this problem is to set up a memory hierarchy in which fast
but small memories are paired with large but slow memories, which allows getting good
performance on average while containing costs.

This hierarchy can be managed by two main approaches:

• Scratchpad : different memories belongs to different addressing spaces: the user is
in charge of manually choosing what memory to access: this approach allows to
optimally exploit the hierarchy at the cost of high design effort.

• Cache: different memories belongs to the same addressing space: the system au-
tomatically uses the whole hierarchy, exploiting spatial locality (accessed data is
likely physically close to previously accessed data) and temporal locality (accessed
data has likely recently been accessed), which are typical of many algorithms.

1.1.1 Structure

A cache memory is logically split into sets containing lines (or ways) which are in turn
made up of words, as shown in Figure 1.1.

Whenever a word w is requested, there are two possibilities:

• Hit : w is present in the cache: the request can be immediately fulfilled.

• Miss: w is not present in the cache: it is necessary to retrieve it from lower level
memory before fulfilling the request.

1

1. Background

0

1

2

3

0

1

0

1

0

1

0

1

0 1 2 3

WAYSET WORD

Figure 1.1: Cache logic structure.

During the data retrieving, a cache line is filled with a block of contiguous words loaded
from the lower level memory, trying to exploit spatial locality of future accesses, while
mapping policies and replacement policies determine which cache line to overwrite, trying
to exploit temporal locality.

If the cache memory is writable, data consistency is ensured by a consistency policy.

1.1.2 Policies

Mapping policy

The mapping policy is in charge of statically associating a lower level memory line to a
cache set.

The set associative policy is the most common mapping policy: given a cache memory
with s sets of w words, the word address (referred to the lower level memory) bits are
split into three parts (as shown in Figure 1.2):

1. log2(w): offset of the word in the line.

2. log2(s): set.

3. Remaining MSBs: tag identifying the specific line.

Special cases of this policy are:

• Direct mapped policy: each set is composed of a single line: the set bits identify a
specific cache line, therefore there is no need for a replacement policy.

2

1. Background

SET WORDTAG

LSBMSB

Figure 1.2: Set associative policy address bits meaning.

• Fully associative policy: there is only a single set, therefore the line is fully deter-
mined by the replacement policy.

Replacement policy

The replacement policy is in charge of dynamically associating a lower level memory line
to a cache line of a set.

Multiple solutions of this problem have been developed, trying to maximize the
temporal locality exploitation. Among the most commonly used solutions there are:

• First-In First-Out : the line to be replaced is the first one that has been inserted
to the cache.

• Least Recently Used : the line to be replaced is the one that has least recently been
accessed.

Consistency policy

The consistency policy is in charge of ensuring data consistency between memories be-
longing to different hierarchy levels.

The most common solutions to this problem are:

• Write-back : write accesses are performed to the highest level memory and lower
level memories are updated when the cache line is replaced only.

• Write-through: each write access is propagated along the whole hierarchy.

1.1.3 Benefits

A two-level memory hierarchy is composed of a L1 cache memory (access time: tL1;
access energy: EL1) and a L2 memory (access time: tL2; access energy: EL2), with
tL1 << tL2 and EL1 << EL2.

This memory hierarchy is accessed ntot times and nhit of these accesses are cache
hits.

The hit ratio is defined as:
H :=

nhit
ntot

(1.1)

3

1. Background

The average access time and energy are defined as:(
t(H) := HtL1 + (1−H)tL2

E(H) := HEL1 + (1−H)EL2

(1.2)

Equation 1.2 shows the criticality of the hit ratio: the performance and power con-
sumption advantages provided by the cache are significant if and only if H is sufficiently
near to 1.

1.2 Field-Programmable Gate Array

Field-Programmable Gate Arrays are integrated circuits able to implement special pur-
pose circuits described in Hardware Description Language (HDL), thanks to their pro-
grammable logic blocks and interconnections.

1.2.1 Memory system

A FPGA memory system is typically made up of:

• Registers: the fastest but most expensive memories, therefore they are only a few.

• BRAMs: on chip Random Access Memories (RAMs) accessible through simple and
fast interface.

• External DRAMs: off chip DRAMs accessible through complex and slow interface
(e.g. AXI).

1.3 High-Level Synthesis

High-Level Synthesis (HLS) is an Electronic Design Automation technique aimed at
translating an algorithm description in a high-level Software programming language
(such as C and C++) into a HDL description.

HLS allows designing more complex systems in less time, compared to HDL design,
moreover makes the Hardware and Software co-design easier, at the cost of limited low-
level control.

This Section is mainly referred to Vitis™ HLS 2020.2 [2] and 2021.1 [3], but most
currently available HLS commercial tools provide equivalent features.

1.3.1 Workflow

The typical HLS workflow consists of:

1. SW implementation: the top-level entity is a C function: the function arguments
are the entity ports and the functionality is implemented in SW; in order to guaran-
tee synthesizability some constraints should be respected (e.g. no dynamic memory
allocation).

4

1. Background

2. SW verification: the testbench can be developed as a simple main function which
calls the top-level entity function, therefore the functionality is verified like any SW:
it is possible to exploit traditional tools (e.g. debuggers, print statements. . .).

3. HW synthesis: the synthesizer generates a Register-Transfer Level (RTL) descrip-
tion of the top-level entity. It is possible to generate different architectures by
setting up some parameters through dedicated directives.

4. HW verification: the RTL description is simulated, to make sure that SW and HW
outputs match.

1.3.2 Optimization techniques

HLS tools provide different optimization techniques which can be set up by means of
compiler directives.

Pipelining

Given a set of sequential stages (e.g. A, B and C of Figure 1.3) which compose an
operation (e.g. A + B + C of Figure 1.3) which has to be executed multiple times, the
pipelining technique inserts pipeline registers at the output of each stage, so that each
stage can run in parallel on different input data (e.g. at the third clock cycle, while C
is processing first input, B is processing second input and A is processing third input).
The introduced parallelism allows to increase the throughput at a limited additional
area cost (only pipeline registers and a FSM are required).

The throughput is determined by the interval (expressed in number of clock cycles)
between the beginning of two consecutive executions of the operation, which is called
Initiation Interval (II). The optimal pipeline has an II equal to one: at the steady state,
one output per clock cycle is produced.

The pipelining can be performed at instruction level, within a loop or a function, or at
function level (in HLS terminology this particular kind of pipelining is called Dataflow).

Figure 1.3: Pipelining example.

5

1. Background

Loop unrolling

The logic of a rolled loop allows the execution of one iteration at a time: if the loop
iterates N times and each iteration has a latency Lit, the total loop latency is equal to
Lloop,rolled := N · Lit.

The loop unrolling technique instantiates the logic for executing f iterations at a
time (where f is the unrolling factor). If there are no dependencies between different
iterations, the latency of the unrolled loop is: Lloop,unrolled(f) := N

f · Lit.

Loop unrolling can improve both latency and throughput, but it is expensive in terms
of resource usage, since they are multiplied by f .

Figure 1.4: Loop unrolling example.

Memory optimizations

• On-chip memory:

– Array partitioning: given a partitioning factor f , an array is split into f
portions, each one mapped to a dedicated memory element.

This allows multiple concurrent accesses to the same array, at the cost of
higher memory elements usage.

Figure 1.5 shows different partitioning modes.

• Off-chip memory:

6

1. Background

Figure 1.5: Array partitioning examples.

– Interface widening: multiple data elements are packed into a single bigger
word, to perform multiple accesses at the same time.

– Burst accesses: multiple memory accesses are aggregated into AXI bursts
to reduce overall latency and improving throughput.

Figure 1.6: Burst read and write example.

7

2 Motivation

HLS tools are currently unable to automatically exploit the memory hierarchy present
on FPGAs: the only way to take advantage of them is the manual management in a
scratchpad -like manner, which requires additional design and verification efforts.

The proposed solution automates the low-level memory management through
a cache module for HLS, which works as an interface with the off-chip DRAM (accessible
through an AXI bus) and stores its data to on-chip BRAMs and registers.

The proposed cache module has the dual purpose of:

• Reducing the number of DRAM accesses: misses only needs to access DRAM.

• Optimizing DRAM accesses: lines are accessed in bursts through a widened mem-
ory interface.

FPGAs provide multiple DRAM ports and HLS can assign each array to a different
port: this allows implementing array-specific caches, which in general can be easily
tuned to reach high hit ratios, since access patterns to a single array are usually regular
and there is no interference between accesses to different arrays.

A special attention has been put on user-friendliness:

• Configurability : cache characteristics can be set through parameters.

• Integrability : cache can be inserted into existing designs without requiring many
changes.

• Observability : critical cache data (e.g. hit ratio) can be profiled during SW simu-
lation for easing the cache parameters tuning.

2.1 Ma’s cache

Liang Ma et al. proposed a C++ cache implementation [6] compatible with Vivado™HLS
2016.2.

It is an array-specific cache module in the form of different C++ classes: each of them
implements an access type (read only/write only and read write) and a mapping policy
(direct mapped and set associative).

8

2. Motivation

To improve the integrability the operator[] has been overloaded so that the cache
object can be accessed in the same way as array variables, minimizing the required
changes to the code which integrates the cache.

This architecture is inlined: the cache logic is directly inserted in the user algorithm
logic. This is the major limitation of this solution, since the additional logic inserted in
the algorithm may make it too complex and worsen the generated circuit performance.

2.2 Proposed solution

The primary goal of this thesis work is to develop the Basic cache, a cache architecture
which runs in a separate process with respect to the application using it, trying to solve
the main limitation of Ma’s cache: the application logic cluttering due to the inlining.

This architecture has been then optimized in two dimensions:

• Multi-levels cache: a L1 cache are added to the cache hierarchy, with the objective
of further reducing memory access latency.

• Multi-ports cache: multiple cache access points are added to the cache, each one
with a dedicated L1 cache, so that multiple requests can be served in parallel.

9

3 Basic cache

The Basic cache is aimed at solving the main limitation of Ma’s cache: application logic
cluttering due to inlining.

3.1 Architecture

The fundamental idea behind the Basic cache is that the cache logic is inserted in a
separate process with respect to the application logic accessing it (Figure 3.1): this
isolation makes the cache always perform in the same manner, independently of the
algorithm accessing it, while keeping the application logic as clean as possible, since
application only has to write requests to cache and read responses, instead of integrating
the whole cache logic.

application

cache

DRAM

response

AXI

request

Figure 3.1: Single-process Basic cache architecture.

3.1.1 Functionality

If application A needs to access the array associated with the cache C:

10

3. Basic cache

1. A sends the access request to C: operation (i.e. read or write), address and (in
case of write access) data.

2. C receives the request and checks if the requested address causes a miss.

3. (in case of miss) C prepares its BRAM memory for fulfilling the requested access:

• (if needed) writes back to DRAM the BRAM line to be replaced.

• reads from DRAM the requested line and store it to BRAM.

4. C performs the requested access to BRAM and (in case of read request) sends
requested data to A.

3.1.2 Characteristics

The Basic cache is compliant with the set associative mapping policy and the write-back
consistency policy. It is configurable in terms of:

• Word type and number of words per line.

• Number of sets and ways (therefore, it is possible to obtain a fully associative
policy by setting the number of sets to 1 or a direct mapped policy by setting the
number of ways to 1).

• Replacement policy (Least Recently Used or First-In First-Out).

3.1.3 Single-process Basic cache

The Single-process Basic cache is composed of a single pipelined process which performs
all the cache functionalities.

This process can be pipelined with an II equal to 1 when:

• Memory accesses are Read-Only.

• A cache line can fit a single AXI transaction (i.e. line is not bigger than the
maximum AXI interface width: 512 or 1024 bits typically, depending on the specific
device).

Write accesses generate some dependencies on the AXI interface, while large cache
lines require multiple AXI transactions: both of them cause an increase of the cache
process II, reducing cache performance.

11

3. Basic cache

3.1.4 Multi-processes Basic cache

The Multi-processes Basic cache splits cache into two processes (Figure 3.2):

• Core process: manages communication with application and keeps cache data
structures up to date.

• Memory interface process: deals with the AXI interface.

This architecture is aimed at solving the performance limitations of the Single-process
Basic cache: it manages to pipeline the core process with an II equal to 1, even in case
of write-only accesses or long lines, since the AXI interfacing resides in the separate
memory interface process.

The latency of the response to a hitting request depends on the core process only,
therefore with this solution the best performance is achieved in case of write-only caches
too.

In the case of caches which are accessed both in read and in write mode, it has not
been possible to achieve an II of 1, due to dependencies on the cache memory. Given
that a read-write cache implies at least one read access and one write access,

application

cache

DRAM

response

AXI

core

mem_if

request

responserequest

Figure 3.2: Multi-processes Basic cache architecture.

3.2 Implementation

The Basic cache is implemented in the form of a C++14 [4] class, compatible with Vi-
tis™ HLS 2021.1. All the configurable parameters are set through class template argu-
ments.

The cache class is logically split into two parts:

12

3. Basic cache

• Internals: cache functionalities.

• Interface: APIs for managing requests and responses from application side.

Internals and Interface communicate with each other through a Port (Table 3.1), in
a Master/Slave fashion:

• Interface sends to Internals a request (operation, address and write data).

• Internals sends to Interface a response (read data), after executing the requested
operation.

Content Description Direction

Operation Read/Write Internals → Interface
Address Index to be accessed Internals → Interface

Write data Data to be written to memory Internals → Interface
Read data Data read from memory Internals ← Interface

Table 3.1: Data exchanged through Port.

Process modeling HLS is intended for synthesizing sequential Software code, there-
fore it has been necessary to develop a novel technique for modeling multiprocess designs.

The proposed model follows the Master/Slave paradigm:

1. Master sends a request to Slave.

2. Slave executes the requested operation and optionally sends a response to Master.

Slave must be modeled as an infinite loop which waits for requests from Master
before executing its functionality, while Master can be modeled as standard sequential
code (or it can be in turn a Slave of another Master).

The parallelism between Master and Slave is modeled differently depending on the
compilation target:

• SW simulation: each process is mapped to a std::thread.

• HW synthesis: each process is a dataflow function, in a dataflow region with the
disable start propagation option disabled (which allow each function to run in
parallel, without waiting for the completion of previous ones).

The distinction between simulation and synthesis code can be performed through the
“#ifdef SYNTHESIS ” preprocessor directive.

The communication between the two processes is performed through a port, which
contains data flowing from Master to Slave (request) and from Slave to Master (re-
sponse). Request and response are mapped to one or more FIFOs which are written
from the transmitter and read from the receiver. hls::stream class by Vitis™ HLS can
be used as FIFO implementation.

13

3. Basic cache

3.2.1 Internals

The Internals implementation differs between the Single-process and the Multi-processes
implementations:

• Single-process Basic cache: single process which implements all the cache func-
tionalities.

• Multi-processes Basic cache:

– Core process: same as Single-process Basic cache process, but it does not
directly access the AXI bus: it issues requests to the memory interface process
through FIFOs.

– Memory interface process: it accesses the AXI bus as requested by the core
process.

Single-process Basic cache, with respect to the Multi-processes one, requires lower
resource usage and better performance, when it is possible to schedule its process with
an II equal to 1 (read-only accesses with line not larger than the maximum AXI interface
bitwidth): therefore it is automatically instantiated whenever it is convenient.

Dataflow checking

Alternatively executing the Multi-processes or the Single-process code with traditional
if statements would generate errors during the synthesis, particularly in the Dataflow
check step (which checks if each hls::stream has a single reader and a single writer):
the compiler builds both branches of the if statements, independently of the fact that
one of them is never executed.

The problem has been solved through a wrapper class, which conditionally includes
a hls::stream object, exploiting the template specialization mechanism.

Arrays partitioning

Cache memory (which stores the actual data) must be accessed one line per clock cycle:
it is mapped to a BRAM array cyclically partitioned with a factor equal to the number
of lines.

Helper data (e.g. tag, valid, dirty. . .) is stored to completely partitioned arrays,
mapped to registers, in order to avoid dependencies as much as possible and get the best
performance.

AXI optimizations

To exploit the Vitis™ HLS support to automatic port widening and burst accesses to
AXI interface, every access to external DRAM accesses a whole cache line. The accessed

14

3. Basic cache

addresses Least Significant Bits (LSBs) are explicitly set to 0 so that synthesizer can
infer that they are aligned to the line size.

If the cache line is at most equal to the maximum AXI interface width, it is accessed
in a single request, otherwise it is accessed in multiple burst requests.

Read After Write dependencies

In case of read-write caches, the Core process II increases to 3 due to RAW dependencies
on the cache BRAM.

To mitigate this issue the RAW cache has been developed: it is a single-line cache
which provides the functions:

• get line: in case of hit, read the RAW cache line; in case of miss, read the cache
line.

• set line: write both the RAW cache line and the cache line.

Cache memory is always accessed through the RAW cache and the set line function
is called once per iteration at most: if a cache line has been written, it is impossible that
it is read in the next iteration, since the RAW cache would hit and return its line. This
allows to falsify the RAW dependency with distance 1 on the cache memory (by setting
to false the RAW inter-iteration dependencies and to true the RAW inter-iteration
dependencies with distance 1).

This solution allows to schedule the cache process with an II equal to 2. The RAW
cache could be extended to a fully-associative cache complying with the FIFO replace-
ment policy, allowing to falsify the RAW dependency with distance 2 and achieving an
II of 1.

A read-write cache implies that it is accessed at least two times per iteration (once in
read mode, once in write mode), therefore, due to the issues discussed in Subsection 3.2.2
it is not possible to fully exploit the cache pipelining. In this case the cache II does not
have a relevant impact on effective performance: RAW cache could not provide real
advantages and it has not been included in the final design, to keep it simpler.

3.2.2 Interface

Interface provides APIs for managing requests and responses between application and
cache:

• get: send a read request and read the response.

• set: send a write request.

To improve user-friendliness, similarly to Ma’s cache, the operator[] has been over-
loaded so that a cache object can be used as a traditional array (e.g. val = cache[i]

calls val = cache.get(i) and cache[i] = val calls cache.set(i, val)).

15

3. Basic cache

Deadlock prevention

The HLS scheduler is not able to infer the dependency between the request writing (W)
and the response reading (R) in the get function (i.e. it is not aware that first the
request has to be written, then it is necessary to wait for the cache latency and finally
the response has to be read).

For that reason the scheduler optimizes the logic by inserting both W and R into the
same pipeline stage. This leads to a deadlock: R is blocked since it reads from an empty
FIFO (it cannot contain the response yet) and it blocks the whole stage, including W ,
making R wait for the response to a request which cannot be sent.

The deadlock has been fixed by inserting a clock operation between W and R (calling
ap wait), which forces W and R to separate pipeline stages.

Cache pipeline exploiting

At the steady state, in case of hit, the cache can process one request per cycle, thanks
to its optimal pipelining (i.e. II equal to 1).

HLS is not aware of the dependency and latency between request writing (W) and
response read (R), so it schedules R just after W (Figure 3.3a): at runtime Ri, which
should be executed in the cycle following Wi, stalls, since the cache response has a
latency (and Wi+1 stalls too, by consequence).

Wi+1 is executed after waiting for the full latency of the cache (Figure 3.3b) and the
final result is that cache never receives multiple requests in consecutive cycles, it never
reaches the steady state and its throughput is the same as if it were not pipelined.

W R

(a) Static schedule.

W0 STALL STALL STALL R0

W1

W2

STALL STALL STALL R1

(b) Runtime.

Figure 3.3: Stalling schedule of request writing and response reading.

To mitigate this issue the ap wait between request write and response read has been
replaced with ap wait n(LATENCY), where LATENCY is an integer value set through a
template parameter. This forces the scheduler to insert LATENCY clock cycles between
W and R (Figure 3.4a), so that at runtime stalls are avoided (in case of hit) and one
request per cycle is sent to cache (Figure 3.4b).

LATENCY is not set to a constant because its optimal value highly depends on memory
access pattern and cache configuration, and can be determined by means of design
exploration.

This is a partial solution: the ap wait forces all the subsequent operations to wait:
when there are multiple calls to get per iteration (e.g. A and B), WB has to wait

16

3. Basic cache

W NOP NOP NOP R

(a) Static schedule.

W0 NOP NOP NOP R0

W1 NOP NOP NOP R1

W2 NOP NOP NOP R2

W3 NOP NOP NOP R3

(b) Runtime.

Figure 3.4: Optimal schedule of request writing and response reading.

LATENCY cycles after WA before being scheduled (Figure 3.5a). This situation makes the
application loop II to increase, since it must guarantee the order of accesses to FIFOs
(i.e. WA,i+1 cannot be executed before WB,i).

To actually fix this problem (with the schedule shown in Figure 3.5b), a mechanism
for informing the scheduler about dependencies and latency between specific operations
is probably needed, but this is not available in Vitis™ HLS 2021.1.

WA NOP NOP NOP RA

WB NOP NOP NOP RB

(a) Achieved static schedule.

WA NOP NOP NOP RA

WB NOP NOP NOP RB

(b) Optimal static schedule.

Figure 3.5: Static schedules in case of multiple accesses per iteration.

17

4 Multi-levels cache

The Multi-levels cache is aimed at improving performance by making the memory hier-
archy deeper, adding a faster L1 cache memory on top of it. This alternative approach
has been proposed to overcome the difficulties, to fully exploit the optimal pipeline of
the Basic cache, due to the scheduler unawareness about the latency between request
writing and response reading (as explained in Section 3.2).

4.1 Architecture

The Multi-levels cache introduces a L1 cache inlined in the application logic (Figure 4.1):
the scheduler exactly knows the latency of each L1 cache operation and can build an
application pipeline which stalls in case of L1 miss only.

In order not to fall into the same cluttering issues of Ma’s cache, the L1 cache is kept
as simple as possible:

• Mapping policy: direct-mapped.

• Consistency policy: write-through.

The write-through consistency policy discards any advantage for write accesses, but
given that simplicity is a priority and read accesses are usually more frequent than writes,
and they suffer the most from the scheduling issues which lead to the introduction of
the L1 cache, this has been considered the best trade-off.

4.2 Implementation

The Multi-level cache has been implemented adding the L1 cache to the Basic cache.
It is possible to configure the number of L1 cache lines through the L1 CACHE LINES

template parameter. When it is set to 0, the resulting architecture is equivalent to the
Basic cache.

4.2.1 Internals

The only difference with respect to the Basic cache implementation is that the response
to a read request does not send a single word, but a whole cache line (therefore the data
FIFO flowing from cache to application has been widened accordingly).

18

4. Multi-levels cache

cache

DRAM

response

AXI

request

application
l1_cache

Figure 4.1: Multi-levels cache architecture.

4.2.2 Interface

The L1 cache is contained in the Interface: the newly introduced get line function
receives an address A in input and it returns the line to which A belongs. In particular,
it first checks if A hits in the L1 cache: if so it reads the data from the L1 cache, otherwise
it issues the request to the L2 cache.

It is still possible to use the same Basic cache APIs, which have been updated to
support the L1 cache:

• get: it calls the get line function and then returns the requested word.

• set: it sets L1 cache line to dirty, if it hits, and it forwards the request to the L2
cache.

19

5 Multi-ports cache

The computational core of many algorithms consists in a loop, which HLS can optimize
with two techniques: Pipelining and Unrolling.

The Basic and Multi-levels caches are suitable for Pipelining since they complete one
access per clock cycle, at the steady state, in case of hit, however they are not suitable
for Unrolling, since they do not support concurrent accesses.

The Multi-ports cache has been specifically designed for adding support to multiple
concurrent accesses to the same cache memory, allowing to efficiently unroll appli-
cation loops.

5.1 Architecture

The Multi-ports cache is characterized by multiple ports accessed in parallel (Figure 5.1).
Each port has dedicated logic for communicating with the shared L2 cache and an

independent L1 cache.

Multiple independent ports allow removing dependencies between different ac-
cesses to the cache. This brings the advantage of achieving better performance, making
it possible to schedule multiple requests at the same time, without increasing the ap-
plication loop II, but it also brings the disadvantage of not guaranteeing the expected
ordering between different accesses. To guarantee the correct functionality the Multi-
ports architecture is compatible with read-only accesses.

5.2 Implementation

The Multi-ports cache has been implemented extending the Multi-levels cache.
It is possible to configure the number of ports through the PORTS template parameter.

When it is set to 1, the resulting architecture is equivalent to the Multi-levels cache.

5.2.1 Internals

To avoid dependencies issues, whenever PORTS is greater than 1, the Multi-process In-
ternals architecture is generated.

20

5. Multi-ports cache

cache

DRAM

resp[0]

AXI

req[0]

application
L1[0]

resp[1]

req[1]

L1[1]

Figure 5.1: Multi-ports cache architecture.

The Core process has been modified to serve requests coming from all the ports
by inserting an unrolled loop which iterates over all the ports. HLS guarantees all the
dependencies on cache data structures, and the resulting II of the Core process is equal
to PORTS.

5.2.2 Interface

FIFOs between Core and application and L1 cache have been replaced with arrays of
FIFOs and L1 caches, completely partitioned, so that they are independent.

Each call to get line (which is in turn called by get) is automatically associated
with a specific port by means of a member variable holding the port index and is updated
after each access.

FIFOs accesses scheduling

Ideally the request write (W) and the response read (R) should be scheduled in parallel
in the same cycle (Figure 5.2b). Due to the scheduler limitations (described in Subsec-
tion 3.2) it is not possible to achieve such a schedule, since there is a forced clock cycle
between W and R, which delays all the subsequent operations.

The resulting schedule (Figure 5.2a) is almost equivalent to the one achieved with
the Basic cache in case of multiple accesses per iteration (Figure 3.5a), with the differ-
ence that request and response FIFOs are distinct, since they belong to separate ports,
therefore the scheduler does not have to ensure dependencies between subsequent reads
and writes and application loop II does not increase.

At the steady state, in case of hit, one W and R are executed per cycle, allowing to
fully exploit the L2 cache pipeline.

21

5. Multi-ports cache

WP0 NOP NOP NOP RP0

WP1 NOP NOP NOP RP1

(a) Achieved static schedule.

WP0 NOP NOP NOP RP0

WP1 NOP NOP NOP RP1

(b) Parallel static schedule.

Figure 5.2: Static schedules in case of 2-ports cache.

5.3 Limitations

In some particular situations (e.g. when cache is explicitly accessed multiple times per
iteration) the simulation of the generated circuit enters a deadlock. The source of this
problem can be probably found in the port indexing and to be fixed may require more
control over the operations scheduling, which is not provided by Vitis™ HLS 2021.1.

22

6 Results

The proposed cache architecture has been embedded in multiple Vitis HLS kernels im-
plementing different algorithms, to evaluate both the performance gain and the resource
usage of different cache configurations.

Each algorithm has been selected for its memory intensiveness and for its specific
memory access patterns.

6.1 Simulation environment

Kernels have been synthesized by the C Synthesis in Vitis™ HLS 2021.1, targeting the
xcvu9p-flgb2104-2-e part, running at a clock frequency of 250MHz.

Vitis™ 2021.1 provides two main kind of simulation:

• Hardware Emulation: accurate, but slow.

• C/RTL Co-Simulation: fast, but not very accurate (especially for what concerns
the AXI interface model).

HW Emulation has been used for determining the delay of the AXI interface (which
is around 4 clock cycles). The AXI latency has been accordingly set to 3, so that
the synthesizer can better optimize the circuit and Co-Simulation results match HW
emulation as much as possible.

Synthesizer C Synthesis in Vitis™ HLS 2021.1
Simulator C/RTL Co-Simulation in Vitis™ HLS 2021.1
Flow target vitis

Part codename xcvu9p-flgb2104-2-e

Clock period 4ns
AXI latency 3

Table 6.1: Simulation environment configuration.

23

6. Results

6.1.1 Reference memory models

The results have been compared with the output of synthesis and simulation of same
algorithms implemented with different data access mechanisms: global memory (perfor-
mance lower bound) and local memory (performance higher bound).

Global memory

The algorithms access data directly from external DRAM through AXI interface: this is
the straightforward but slowest solution, therefore it determines the performance lower
bound.

Local memory

All the data required by algorithms is stored to local BRAMs: it determines the per-
formance higher bound, but it is unfeasible in general, due to the limited amount of
BRAMs.

With this solution the kernel:

1. Moves all the input data from DRAM to BRAMs.

2. Performs all the computations accessing data to and from BRAMs.

3. Moves all the output data from BRAMs to DRAM.

The execution time of DRAM accesses is not of interest, therefore it has been sub-
tracted from reported results.

Ma’s cache

Ma’s cache was designed for Vivado™ HLS 2016.2 : with some minor changes it is possible
to synthesize it with Vitis HLS 2021.1, but it would need some more optimizations to
achieve the original performance in the new environment.

The results reported in Ma’s paper “Acceleration by Inline Cache for Memory-
Intensive Algorithms on FPGA via High-Level Synthesis” and PhD thesis “Low power
and high performance heterogeneous computing on FPGAs” are not comparable with
the ones obtained in Vitis HLS 2021.1 : the execution times of same algorithms with
same configurations (i.e. global and local memory) differ up to one order of magnitude
(most probably due to different AXI latency values), therefore also cache execution times
would not be reliable for making comparisons.

The lack of comparable results and the impossibility to generate new ones prevented
from directly comparing the proposed cache results with the Ma’s ones.

24

6. Results

6.1.2 Collected data

The most relevant collected data concerns:

• Performance: evaluated in terms of execution time (i.e. the time at which the
simulation of the algorithm terminates).

• Resource usage: evaluated in terms of number of used BRAMs, Digital Signal
Processors (DSPs), Lookup Tables (LUTs) and Flip-Flops (FFs).

These values are approximate, since they come from C/RTL Co-Simulation and from
the estimations performed by the C Synthesis, but in any case they can be meaningful
for identifying some trends.

25

6. Results

6.2 Matrix multiplication

The standard row-by-column Matrix multiplication algorithm (Algorithm 1) includes
two memory access patterns: by rows (A and C) and by columns (B).

Each row of A matrix is accessed P times and then it is not accessed anymore: the
most convenient A cache is composed of a single line which fits a matrix row, which is
filled each time a new row is accessed and it hits until the next row is accessed.

Each column of B matrix is accessed P times: the B cache, to get a hit ratio greater
than 0 needs to contain at least M lines and comply with the fully-associative mapping
policy. The results reported by Ma used a direct-mapped cache with M lines each one
containing P elements (so that it is as big as the B matrix).

C elements are accessed sequentially and only once: any single-line cache with n
words per line would have a hit ratio of n−1

n .

The implementation used during the tests applies both pipelining and unrolling (with
factor equal to the number of ports) to the innermost loop.

Algorithm 1 Matrix multiplication algorithm.

Require: A ∈ RN×M , B ∈ RM×P , C ∈ RN×P

Ensure: C = A×B
procedure Multiply(A,B,C)

for i = 0, . . . , N − 1 do
for j = 0, . . . , P − 1 do

tmp← 0
for k = 0, . . . ,M − 1 do

tmp← tmp+A[i][k] ·B[k][j]
end for
C[i][j]← tmp

end for
end for

end procedure

6.2.1 16x16 matrices

In the case of Matrix multiplication 16x16, matrices A, B and C are sized 16 × 16
(N = 16,M = 16, P = 16).

This problem has been explored in two configurations: Single-level cache configura-
tion (L2 caches only), and Multi-level cache configuration (L2 and L1 caches).

Single-level cache configuration

The cache sizes have been fixed with the values shown in Table 6.2. The get latency
and the number of ports have been determined through design space exploration.

26

6. Results

Matrix Sets Ways Words per line L1 lines Hit ratio

A 1 1 16 0 99.6 %
B 16 1 16 0 99.6 %
C 1 1 16 0 93.8 %

Table 6.2: Single-level cache configuration for Matrix multiplication 16x16.

Figure 6.1 shows the execution time with respect to the get latency, for different
numbers of ports.

It is worth noting that the get latency has a big impact on effective performance,
especially in the single-port case (one order of magnitude). This makes clear that the
cache process itself can run at high speed and the bottleneck is the scheduling of the
FIFOs accesses.

Increasing the number of ports can provide significant advantages when the get

latency is not optimal, because multi-port allow to schedule some cache requests in
consecutive clock cycles.

Figure 6.1: Design space of Matrix multiplication 16x16 (single-level).

The best performance is achieved by the single-port, since in this case the caches core
process has an II of 1: with a get latency of 1 it is not possible to take full advantage of
the core pipelining (as explained in Subsection 3.2.1), therefore the design keeps stalling
even at the steady state (Figure 6.2a: a new request is written every multiple cycles)
but the optimal get latency allows to fully exploit the pipelining and at every cycle one
request is written and a new response is read (Figure 6.2b).

27

6. Results

(a) Sub-optimal get latency of 1.

(b) Optimal get latency of 15.

Figure 6.2: Request and response waveforms for Matrix multiplication 16x16 single-level
and single-port.

Table 6.3 reports the data for the single-level cache configuration of different port
numbers, each one set to its optimal get latency value (15 for the 1-port, 3 for the
2-ports and 2 for the 4-ports).

The single-port configuration fully exploits the underlying single L2 cache, therefore
adding more ports not only increase the resource usage, but it also reduces performance
since the cache II increases.

It is not clear why the estimated required BRAMs in the 2-ports case is much higher
than the other cases.

1-port 2-ports 4-ports

Execution time [ns] 17438 38570 49694
BRAM 90 165 90

DSP 3 6 12
LUT 57653 87437 118434
FF 26597 37686 39352

Table 6.3: Performance and resource usage of Matrix multiplication 16x16 (single-level).

Multi-levels cache configuration

The cache sizes have been fixed with the values shown in Table 6.4. The get latency
and the number of ports have been determined through design space exploration.

28

6. Results

Matrix Sets Ways Words per line L1 lines Hit ratio

A 1 1 16 1 99.6 %
B 1 1 16 16 99.6 %
C 1 1 16 0 93.8 %

Table 6.4: Multi-levels cache configuration for Matrix multiplication 16x16.

From Figure 6.3 it is clear that the get latency is not relevant is this case, since all
the cache hits are on the L1 cache.

Increasing the number of ports allows to significantly improve performance, since
the multiple L1 caches can run effectively in parallel. The higher is the number of
ports, the lower is the hit ratio of each L1 cache: indefinitely increasing the number
of ports is not always convenient; in this case 4 ports is the optimal configuration in
terms of performance. More details about some simulated configurations are reported
in Table 6.5.

Figure 6.3: Design space of Matrix multiplication 16x16 (multi-levels).

29

6. Results

1-port 2-ports 4-ports 8-ports

get latency 8 7 7 1
Execution time [ns] 18986 10166 6458 7358

BRAM 129 165 237 381
DSP 3 6 12 24
LUT 58138 81779 118794 198678
FF 41961 101315 238374 581204

Table 6.5: Performance and resource usage of Matrix multiplication 16x16 (multi-levels).

Summary

Table 6.6 reports most relevant figures about performance and resource usage of Matrix
multiplication 16x16.

The Proposed cache data is referred to the most performant cases of the single-level
variant (with single port and get latency equal to 15) and of the multi-levels variant
(with 4 ports and get latency equal to 7).

The cost in terms of resource usage of the proposed cache is significant in terms of
resource usage, particularly the number of LUTs and FFs is one order of magnitude
more for the single-level and single-port configuration and two orders of magnitude for
the multi-levels and multi-ports configuration, with respect to global memory. The
single-level configuration allows reaching performance on par with the local memory and
the multi-level configuration is more than two times faster, thanks to the unrolling.

Global
memory

Local
memory

Proposed
cache

(single-level)

Proposed
cache (multi-

levels)

Execution
time [ns]

30182 16916 17438 6458

BRAM 34 90 90 237
DSP 3 3 3 12
LUT 4421 26403 57653 118794
FF 4736 8829 26597 238374

Table 6.6: Performance and resource usage of Matrix multiplication 16x16.

30

6. Results

6.2.2 32x32 matrices

To check whether the results scale with the problem size, in the case of Matrix multipli-
cation 32x32, matrices A, B and C have been sized 32× 32 (N = 32,M = 32, P = 32).

Single-level cache configuration

The cache sizes have been fixed with the values shown in Table 6.7. The get latency
and the number of ports have been determined through design space exploration.

Matrix Sets Ways Words per line L1 lines Hit ratio

A 1 1 32 0 99.9
B 32 1 32 0 99.9
C 1 1 32 0 96.9

Table 6.7: Single-level cache configuration for Matrix multiplication 32x32.

From Figure 6.4 it is possible to infer that the shapes of the Execution time - get
latency plot of Matrix multiplication 32x32 are equivalent to the ones obtained in the
16x16 case.

Figure 6.4: Design space of Matrix multiplication 32x32 (single-level).

Results reported by Table 6.8 have been obtained by setting the get latency to value
which provided the best performance (12 for the single-port cache and 3 for the dual-

31

6. Results

port cache). The performance gain obtained by doubling the number of ports is not very
significant.

1-port 2-ports

Execution time [ns] 265226 229190
BRAM 90 90

DSP 3 6
LUT 126411 175727
FF 39871 47648

Table 6.8: Performance and resource usage of Matrix multiplication 32x32 (single-level).

Multi-levels cache configuration

The cache sizes have been fixed with the values shown in Table 6.9. Since most of the
read accesses are performed to L1 caches (Table 6.10), the get latency value does not
have a big impact on the performance, therefore it has been fixed to 1.

The number of ports has been kept free for design space exploration.

Matrix Sets Ways Words per line L1 lines get latency

A 1 1 32 1 1
B 1 1 32 32 1
C 1 1 32 0 1

Table 6.9: Multi-levels cache configuration for Matrix multiplication 32x32.

Matrix L2 hit ratio [%] L1 hit ratio [%]

A 0.7 99.2
B 0 99.9
C 96.9 0

Table 6.10: Multi-levels cache Matrix multiplication 32x32 hit ratios.

32

6. Results

1-port 2-ports 4-ports 8-ports

Execution time [ns] 138974 71618 39398 30362
BRAM 90 90 90 90

DSP 3 6 12 24
LUT 113957 140117 183947 291738
FF 51004 75734 140269 336003

Table 6.11: Performance and resource usage of Matrix multiplication 32x32 (multi-
levels).

Summary

Table 6.12 compares the results obtained by different memory access mechanisms. The
column Cache is referred to the most performant tested configuration: the multi-levels
version with 8 ports, therefore the Matrix multiplication inner loop is unrolled by a factor
8. To make the higher bound comparable, there are two versions of the Local memory
report: the first is referred to the case in which the Matrix multiplication inner loop is
kept rolled, while in the second case the loop is unrolled with a factor 8 so that it is
comparable with cache results.

Global
memory

Local
memory

Local
memory
(unrolled)

Cache

Execution
time [ns]

389498 131580 16920 30362

BRAM 34 90 90 90
DSP 3 3 24 24
LUT 4106 30589 121971 291738
FF 4699 11417 27866 336003

Table 6.12: Performance and resource usage of Matrix multiplication 32x32.

The cache can provide a great performance gain: it is one order of magnitude faster
than the global memory and it is almost on par with the ideal case of the unrolled local
memory. From Figure 6.5 it is possible to recognize the typical Pareto curve shape,
which makes easy to find the desired trade-off: the more resources are employed, the
more performance is delivered.

33

6. Results

Figure 6.5: Pareto curve of Matrix multiplication 32x32.

34

6. Results

6.3 Bitonic sorting

Bitonic sorting (Algorithm 2) is a sorting algorithm characterized by a high degree of
parallelism, therefore it is suitable for Hardware implementation.

Algorithm 2 Bitonic sorting algorithm.

Require: a ∈ RN , N = 2n; dir: sorting direction
Ensure: a[i] ≥ a[j], ∀i ≥ j ∧ dir = true ∨ a[i] ≤ a[j],∀i ≥ j ∧ dir = false

procedure Sort(a, dir)
for b = 1, . . . , n do

for s = i− 1, . . . , 0 do
for i = 0, . . . , N/2− 1 do

dir0 ← (i/2b−1)&1
dir0 ← dir0|dir
step← 2s

pos← 2i− (i&(s− 1))
a0 ← a[pos]
a1 ← a[pos+ step]
if a0 > a1 6= dir0 then

tmp← a0
a0 ← a1
a1 ← tmp

end if
a[pos]← a0
a[pos+ step]← a1

end for
end for

end for
end procedure

From the memory accesses point of view, each inner loop iteration:

1. a[pos] is read.

2. a[pos+ step] is read.

3. a[pos] is written.

4. a[pos+ step] is written.

The cache associated with a array should be set-associative with at least 2 sets, so
that the interleaved accesses to pos and pos + step do not overwrite the related cache
lines.

In the design under test the inner loop have been pipelined, but, due to the data
dependencies on a array, the pipeline performance is limited (i.e. II is greater than 1).

Due to the multiple accesses per iteration, it is not possible to exploit:

35

6. Results

• Multiple ports: setting the number of ports to a number greater than one would
result in a deadlock in C/RTL Co-Simulation, due to scheduling issues).

• get latency tuning: due to dependencies on a, each request to L1 cache is written
only when the previous request is read.

For these reasons the get latency has been fixed to 2 (not 1, because it would lead
the synthesizer to hang for unknown reasons) and the number of ports to 1.

6.3.1 128 elements

In the case of Bitonic sorting 128, array a contains 128 elements to be sorted (n = 7).
The Single-level cache configuration is aimed at checking the performance of the L2
cache alone, while the Multi-levels cache configuration has the purpose to evaluate the
boost given by adding a L1 cache on top of the L2.

Single-level cache configuration

For the Single-level cache configuration the cache associated with a is a fully-associative
cache with two sets, so that the accesses to pos+step index do not interfere with accesses
to the pos index. The number of words per cache line has been kept free for design space
exploration.

Table 6.13 summarizes the cache configuration.

Sets Ways L1 lines get latency Ports

1 2 0 2 1

Table 6.13: Single-level cache configuration for Bitonic sorting 128.

Table 6.14 shows the achieved results, with different number of words per cache
line. Doubling the number of words approximately doubles the resource usage, while the
performance grows at a much lower rate.

8 words 16 words 32 words

Hit ratio [%] 93.8 96.9 98.4
Execution time [µs] 232 202 188

BRAM 16 30 30
LUT 20294 45481 91656
FF 6766 14403 24851

Table 6.14: Performance and resource usage of Bitonic sorting 128 (single-level).

36

6. Results

Multi-levels cache configuration

The Multi-levels cache configuration (Table 6.15) matches the Single-level cache config-
uration, with the only difference that a single-line L1 cache has been added on top of
the memory hierarchy.

Sets Ways L1 lines get latency Ports

1 2 1 2 1

Table 6.15: Multi-levels cache configuration for Bitonic sorting 128.

Table 6.16 shows some results obtained with the Multi-levels cache configuration.
Comparing these data with the Single-level cache configuration (Table 6.14) ones it is
clear that the insertion of the L1 cache gives a further boost to performance, without
increasing much the resource usage.

Execution time of the 16 words case is not reported because the Co-Simulation
deadlocks with that specific configuration; its value would be probably between 150 µs
and 170 µs.

8 words 16 words 32 words

L1 hit ratio [%] 16.1 19.6 22.3
L2 hit ratio [%] 77.7 77.2 76.1

Execution time [µs] 194 - 130
BRAM 16 30 30
LUT 20745 46246 92740
FF 8082 18025 33066

Table 6.16: Performance and resource usage of Bitonic sorting 128 (multi-levels).

Summary

Table 6.17 compares the results achieved with the most performant cache configura-
tion (i.e. multi-levels with 32 words per line), with the higher and lower bounds for
performance.

Cache is almost two times faster than the global memory, but it’s still one order of
magnitude slower than the local memory, and the resource usage is not negligible.

37

6. Results

Global memory Local memory Proposed cache

Execution time [µs] 244 23 130
BRAM 2 30 30
LUT 1743 3540 92740
FF 1088 3464 33066

Table 6.17: Performance and resource usage of Bitonic sorting 128.

From Figure 6.6 it is easy to conclude that the best trade-offs (between area and
performance) belonging to the Pareto curve are the ones which include the L1 cache.

Figure 6.6: Pareto curve of Bitonic sorting 128.

38

6. Results

6.4 2D convolution

Algorithm 3 is a possible implementation of 2D convolution [1].
The algorithm accesses three matrices:

• A: read according to a sliding window pattern.

• kernel: read sequentially.

• B: written sequentially.

Accesses to kernel and B can be optimized by single-line caches, while A cache
requires a more complex cache to get a sufficiently high hit ratio.

In the Hardware implementation the innermost loop have been pipelined, after mov-
ing the assignment to B in its latest iteration, to make the loop nest perfect (i.e. a
loop contains only another loop without any external logic, reducing the HLS effort for
pipelining).

Algorithm 3 2D convolution algorithm.

Require: A ∈ RN×M , kernel ∈ RP×Q

Ensure: B ∈ RN×M : B = A ∗ kernel
procedure Conv(A, kernel)

for i = 0, . . . , N − 1 do
for j = 0, . . . ,M − 1 do

tmp← 0
for m = 0, . . . , P − 1 do

for n = 0, . . . , Q− 1 do
ii← i+ (Q/2−m)
jj ← j + (P/2− n)
if ii ≥ 0 & ii < N & jj ≥ 0 & jj < M then

tmp← tmp+A[ii][jj] · kernel[m][n]
end if

end for
end for
B[i][j]← tmp

end for
end for

end procedure

6.4.1 32x32 matrix and 9x9 kernel

The design under test has been set such that A,B ∈ N32×32 and the kernel ∈ N3×3.
The cache associated with A matrix is fully associative with 4 sets, to ensure that

consecutive cache accesses do not overwrite previously loaded line. The other parameters
have been left free for design space exploration.

39

6. Results

kernel cache has been set to work as a line buffer: it contains a single line which fits
the whole kernel, so that the first request load the kernel to cache and all the subsequent
accesses are L1 cache hits.

B cache has the purpose of gathering multiple write requests.
The full configuration of caches is shown in Table 6.18.

Matrix Sets Ways Words per line L1 lines Hit ratio [%]

A 1 4 Free Free ?
kernel 1 1 16 1 100
B 1 1 32 0 96.9

Table 6.18: kernel and B caches configuration for 2D convolution.

Single-level cache configuration

With the Single-level cache configuration the A cache is configured to have no L1 cache,
while the number of words per line is kept free. The get latency has been set to 9 for
both A and kernel caches.

Table 6.19 reports the collected results. The execution time with 32 words is missing
since this configuration causes a deadlock in Co-Simulation.

8 words 16 words 32 words

A hit ratio [%] 89.6 95.8 99.6
Execution time [µs] 45 40 -

BRAM 146 174 174
DSP 3 3 3
LUT 85574 91190 102887
FF 33803 37779 44578

Table 6.19: Performance and resource usage of 2D convolution (single-level).

Multi-levels cache configuration

The Multi-levels cache configuration is equivalent to the Single-level, but a single-line L1
cache has been added.

The performance advantage with respect to the Single-level configuration is negligi-
ble, therefore it is not convenient to invest in more resources in this case.

40

6. Results

8 words 16 words 32 words

A L1 hit ratio [%] 59.6 63.8 66.0
A L2 hit ratio [%] 30.1 32.0 33.7

Execution time [µs] 43 40 39
BRAM 146 174 174

DSP 3 3 3
LUT 85640 91274 102970
FF 40288 50146 68720

Table 6.20: Performance and resource usage of 2D convolution (multi-levels).

Summary

Table 6.21 compares the most performant cache configuration (i.e. multi-levels with 32
words per line) with the performance bounds: the achieved performance is almost equal
to the performance higher bound.

Global memory Local memory Cache

Execution time [µs] 66 37 39
BRAM 12 178 174

DSP 3 3 3
LUT 3504 30897 102970
FF 3257 10672 68720

Table 6.21: Performance and resource usage of Convolution.

The plot shown in Figure 6.7 suggests that the single-level 16 words per line con-
figuration may be the most convenient in this case, since it offers almost the same
performance and requires almost half of the FFs with respect to the multi-levels 32
words configuration.

41

6. Results

Figure 6.7: Pareto curve of 2D convolution.

42

7 Conclusions

This thesis work proven the possibility to implement multi-process designs in HLS.
The cache process itself can provide high performance thanks to its optimal pipelining

(i.e. II of 1), but some issues arise from the proposed Inter-Process Communication
protocol: Vitis HLS 2021.1 do not provide any mechanism to inform the scheduler
about the dependencies and latency between the request writing to a FIFO and the
response reading from another FIFO, therefore the accesses to these data structures are
not optimally scheduled by HLS, resulting in performance loss and in some cases even
deadlocks.

The proposed workaround of forcing clock cycles to increase the latency between
the FIFO write and the FIFO read allows to achieve optimal results in some specific
situations, but it can not always work.

The collected results prove that in general the resource usage required by the pro-
posed cache module is paid off in terms of performance, without requiring high design
efforts for optimizing memory interfacing: it is enough to include the cache in the kernel
and setup the parameters according to the desired performance and resource usage.

In some cases it is possible to achieve very high performance gain (e.g. Matrix multi-
plication achieved a reduction of execution time of more than one order of magnitude).

To overcome the limitations posed by the HLS tool it may be worth implementing
the interface with the cache or the whole architecture at RTL, which provides full control
on the operations scheduling.

The cache performance could be further improved by implementing a pre-fetching
mechanism which analyses the memory access patterns and tries to load in advance the
data, before it is requested.

43

A Source code

The source code produced during this thesis work is fully open source and can be found
in the git repository hosted to https://github.com/brigio345/hls_cache.

The src directory contains the cache class and the related dependencies.
The test directory contains some test programs, including those used to collect the

reported results; each of them can be synthesized and simulated in Vitis HLS 2021.1 by
executing the related script stored to scripts.

A.1 Cache

Listing A.1: Source code of src/cache.h

1 #ifndef CACHE_H

2 #define CACHE_H

3

4 /**

5 * \file cache.h

6 *

7 * \brief Cache module compatible with Vitis HLS 2021.1.

8 *

9 * Cache module whose characteristics are:

10 * - address mapping: set -associative;

11 * - replacement policy: least -recently -used or

12 * last -in first -out;

13 * - write policy: write -back.

14 *

15 * Advanced features:

16 * - Multi -levels: L1 cache (direct -mapped , write -through).

17 * - Multi -ports (read -only).

18 */

19

20 #include "address.h"

21 #include "replacer.h"

22 #include "l1_cache.h"

23 #define HLS_STREAM_THREAD_SAFE

24 #include "hls_stream.h"

25 #include "stream_cond.h"

26 #include "ap_utils.h"

27 #include "ap_int.h"

44

https://github.com/brigio345/hls_cache

A. Source code

28 #include "utils.h"

29 #ifdef __SYNTHESIS__

30 #include "hls_vector.h"

31 #else

32 #include <thread >

33 #include <array >

34 #include <cassert >

35 #endif /* __SYNTHESIS__ */

36

37 #define MAX_AXI_BITWIDTH 512

38

39 template <typename T, bool RD_ENABLED , bool WR_ENABLED , size_t PORTS ,

40 size_t MAIN_SIZE , size_t N_SETS , size_t N_WAYS ,

41 size_t N_WORDS_PER_LINE , bool LRU ,

42 size_t L1_CACHE_LINES , size_t LATENCY >

43 class cache {

44 private:

45 static const bool MEM_IF_PROCESS = (WR_ENABLED || (PORTS > 1) ||

46 ((sizeof(T) * N_WORDS_PER_LINE * 8) > MAX_AXI_BITWIDTH));

47 static const bool L1_CACHE = (L1_CACHE_LINES > 0);

48 static const size_t ADDR_SIZE = utils :: log2_ceil(MAIN_SIZE);

49 static const size_t SET_SIZE = utils :: log2_ceil(N_SETS);

50 static const size_t OFF_SIZE = utils :: log2_ceil(N_WORDS_PER_LINE);

51 static const size_t TAG_SIZE = (ADDR_SIZE - (SET_SIZE + OFF_SIZE));

52 static const size_t WAY_SIZE = utils :: log2_ceil(N_WAYS);

53

54 static_assert ((RD_ENABLED || WR_ENABLED),

55 "RD_ENABLED and/or WR_ENABLED must be true");

56 static_assert ((PORTS > 0), "PORTS must be greater than 0");

57 static_assert ((!(WR_ENABLED && (PORTS > 1))),

58 "PORTS must be equal to 1 when WR_ENABLED is true");

59 static_assert (((MAIN_SIZE > 0) && ((1 << ADDR_SIZE) == MAIN_SIZE)),

60 "MAIN_SIZE must be a power of 2 greater than 0");

61 static_assert (((N_SETS > 0) && ((1 << SET_SIZE) == N_SETS)),

62 "N_SETS must be a power of 2 greater than 0");

63 static_assert (((N_WAYS > 0) && ((1 << WAY_SIZE) == N_WAYS)),

64 "N_WAYS must be a power of 2 greater than 0");

65 static_assert (((N_WORDS_PER_LINE > 0) &&

66 ((1 << OFF_SIZE) == N_WORDS_PER_LINE)),

67 "N_WORDS_PER_LINE must be a power of 2 greater than 0");

68 static_assert ((MAIN_SIZE >= (N_SETS * N_WAYS * N_WORDS_PER_LINE)),

69 "N_SETS and/or N_WAYS and/or N_WORDS_PER_LINE are too big \

70 for the specified MAIN_SIZE");

71

72 #ifdef __SYNTHESIS__

73 template <typename TYPE , size_t SIZE >

74 using array_type = hls::vector <TYPE , SIZE >;

75 #else

76 template <typename TYPE , size_t SIZE >

77 using array_type = std::array <TYPE , SIZE >;

78 #endif /* __SYNTHESIS__ */

79

80 typedef address <ADDR_SIZE , TAG_SIZE , SET_SIZE , WAY_SIZE >

45

A. Source code

81 address_type;

82 typedef array_type <T, N_WORDS_PER_LINE > line_type;

83 typedef l1_cache <T, MAIN_SIZE , L1_CACHE_LINES , N_WORDS_PER_LINE >

84 l1_cache_type;

85 typedef replacer <LRU , address_type , N_SETS , N_WAYS ,

86 N_WORDS_PER_LINE > replacer_type;

87

88 typedef enum {

89 READ_OP ,

90 WRITE_OP ,

91 READ_WRITE_OP ,

92 STOP_OP ,

93 NOP_OP

94 } op_type;

95

96 #if (defined(PROFILE) && (! defined(__SYNTHESIS__)))

97 typedef enum {

98 MISS ,

99 HIT ,

100 L1_HIT

101 } hit_status_type;

102 #endif /* (defined(PROFILE) && (! defined(__SYNTHESIS__))) */

103

104 typedef struct {

105 op_type op;

106 ap_uint <ADDR_SIZE > load_addr;

107 ap_uint <ADDR_SIZE > write_back_addr;

108 line_type line;

109 } mem_req_type;

110

111 ap_uint <(TAG_SIZE > 0) ? TAG_SIZE : 1> m_tag[N_SETS * N_WAYS];

112 bool m_valid[N_SETS * N_WAYS];

113 bool m_dirty[N_SETS * N_WAYS];

114 T m_cache_mem[N_SETS * N_WAYS * N_WORDS_PER_LINE];

115 hls::stream <op_type , 4> m_core_req_op[PORTS];

116 hls::stream <ap_uint <ADDR_SIZE >, 4> m_core_req_addr[PORTS];

117 hls::stream <T, 4> m_core_req_data[PORTS];

118 hls::stream <line_type , 4> m_core_resp[PORTS];

119 stream_cond <mem_req_type , 2, MEM_IF_PROCESS > m_mem_req;

120 stream_cond <line_type , 2, MEM_IF_PROCESS > m_mem_resp;

121 l1_cache_type m_l1_cache_get[PORTS];

122 replacer_type m_replacer;

123 unsigned int m_core_port;

124 #if (defined(PROFILE) && (! defined(__SYNTHESIS__)))

125 hls::stream <hit_status_type > m_hit_status;

126 int m_n_reqs = 0;

127 int m_n_hits = 0;

128 int m_n_l1_hits = 0;

129 #endif /* (defined(PROFILE) && (! defined(__SYNTHESIS__))) */

130

131 public:

132 cache() {

133 #pragma HLS array_partition variable=m_tag complete dim=1

46

A. Source code

134 #pragma HLS array_partition variable=m_valid complete dim=1

135 #pragma HLS array_partition variable=m_dirty complete dim=1

136 #pragma HLS array_partition variable=m_cache_mem cyclic \

137 factor=N_WORDS_PER_LINE dim=1

138 #pragma HLS array_partition variable=m_core_req_op complete

139 #pragma HLS array_partition variable=m_core_req_addr complete

140 #pragma HLS array_partition variable=m_core_req_data complete

141 #pragma HLS array_partition variable=m_core_resp complete

142 #pragma HLS array_partition variable=m_l1_cache_get complete

143 }

144

145 /**

146 * \brief Initialize the cache.

147 *

148 * \note Must be called before calling \ref run.

149 */

150 void init() {

151 m_core_port = 0;

152 if (L1_CACHE) {

153 for (auto port = 0; port < PORTS; port ++)

154 m_l1_cache_get[port].init();

155 }

156 }

157

158 /**

159 * \brief Start cache internal processes.

160 *

161 * \param[in] main_mem The pointer to the main memory.

162 *

163 * \note In case of synthesis this must be

164 * called in a dataflow region with

165 * disable_start_propagation option ,

166 * together with the function in which

167 * cache is accessed.

168 *

169 * \note In case of C simulation this must be

170 * executed by a thread separated from the

171 * thread in which cache is accessed.

172 */

173 void run(T * const main_mem) {

174 #pragma HLS inline

175 #ifdef __SYNTHESIS__

176 run_core(main_mem);

177 if (MEM_IF_PROCESS)

178 run_mem_if(main_mem);

179 #else

180 std:: thread core_thd ([&]{ run_core(main_mem);});

181 if (MEM_IF_PROCESS) {

182 std:: thread mem_if_thd ([&]{

183 run_mem_if(main_mem);

184 });

185

186 mem_if_thd.join();

47

A. Source code

187 }

188

189 core_thd.join();

190 #endif /* __SYNTHESIS__ */

191 }

192

193 /**

194 * \brief Stop cache internal processes.

195 *

196 * \note Must be called after the function in which cache

197 * is accessed has completed.

198 */

199 void stop() {

200 for (auto port = 0; port < PORTS; port ++)

201 m_core_req_op[port]. write(STOP_OP);

202 }

203

204 /**

205 * \brief Request to read a whole cache line.

206 *

207 * \param[in] addr_main The address in main memory belonging to

208 * the cache line to be read.

209 * \param[out] line The buffer to store the read line.

210 */

211 void get_line(const ap_uint <ADDR_SIZE > addr_main , line_type &line) {

212 #pragma HLS inline

213 #ifndef __SYNTHESIS__

214 assert(addr_main < MAIN_SIZE);

215 #endif /* __SYNTHESIS__ */

216

217 const auto port = m_core_port;

218 m_core_port = ((m_core_port + 1) % PORTS);

219

220 // try to get line from L1 cache

221 const auto l1_hit = (L1_CACHE &&

222 m_l1_cache_get[port].hit(addr_main));

223

224 if (l1_hit) {

225 m_l1_cache_get[port]. get_line(addr_main , line);

226 #ifndef __SYNTHESIS__

227 m_core_req_op[port]. write(NOP_OP);

228 #endif /* __SYNTHESIS__ */

229 } else {

230 // send read request to cache

231 m_core_req_op[port]. write(READ_OP);

232 m_core_req_addr[port].write(addr_main);

233 // force FIFO write and FIFO read to separate

234 // pipeline stages to avoid deadlock due to

235 // the blocking read

236 ap_wait_n(LATENCY);

237 // read response from cache

238 m_core_resp[port].read(line);

239

48

A. Source code

240 if (L1_CACHE) {

241 // store line to L1 cache

242 m_l1_cache_get[port]. set_line(addr_main , line);

243 }

244 }

245

246 #if (defined(PROFILE) && (! defined(__SYNTHESIS__)))

247 update_profiling(l1_hit ? L1_HIT : m_hit_status.read());

248 #endif /* (defined(PROFILE) && (! defined(__SYNTHESIS__))) */

249 }

250

251 /**

252 * \brief Request to read a data element.

253 *

254 * \param[in] addr_main The address in main memory referring to

255 * the data element to be read.

256 *

257 * \return The read data element.

258 */

259 T get(const ap_uint <ADDR_SIZE > addr_main) {

260 #pragma HLS inline

261 line_type line;

262

263 // get the whole cache line

264 get_line(addr_main , line);

265

266 // extract information from address

267 address_type addr(addr_main);

268

269 return line[addr.m_off];

270 }

271

272 /**

273 * \brief Request to write a data element.

274 *

275 * \param[in] addr_main The address in main memory referring to

276 * the data element to be written.

277 * \param[in] data The data to be written.

278 */

279 void set(const ap_uint <ADDR_SIZE > addr_main , const T data) {

280 #pragma HLS inline

281 #ifndef __SYNTHESIS__

282 assert(addr_main < MAIN_SIZE);

283 #endif /* __SYNTHESIS__ */

284

285 if (L1_CACHE) {

286 // inform L1 caches about the writing

287 m_l1_cache_get [0]. notify_write(addr_main);

288 }

289

290 // send write request to cache

291 m_core_req_op [0]. write(WRITE_OP);

292 m_core_req_addr [0]. write(addr_main);

49

A. Source code

293 m_core_req_data [0]. write(data);

294 #if (defined(PROFILE) && (! defined(__SYNTHESIS__)))

295 update_profiling(m_hit_status.read());

296 #endif /* (defined(PROFILE) && (! defined(__SYNTHESIS__))) */

297 }

298

299 #if (defined(PROFILE) && (! defined(__SYNTHESIS__)))

300 int get_n_reqs () const {

301 return m_n_reqs;

302 }

303

304 int get_n_hits () const {

305 return m_n_hits;

306 }

307

308 int get_n_l1_hits () const {

309 return m_n_l1_hits;

310 }

311

312 double get_hit_ratio () const {

313 if (m_n_reqs > 0)

314 return ((m_n_hits + m_n_l1_hits) /

315 static_cast <double >(m_n_reqs));

316

317 return 0;

318 }

319 #endif /* (defined(PROFILE) && (! defined(__SYNTHESIS__))) */

320

321 private:

322 /**

323 * \brief Infinite loop managing the cache access

324 * requests (sent from the outside).

325 *

326 * \param[in] main_mem The pointer to the main memory (ignored

327 * if \ref MEM_IF_PROCESS is \c true).

328 *

329 * \note The infinite loop must be stopped by

330 * calling \ref stop (from the outside)

331 * when all the accesses have been completed.

332 */

333 void run_core(T * const main_mem) {

334 #pragma HLS inline off

335 // invalidate all cache lines

336 for (auto line = 0; line < (N_SETS * N_WAYS); line ++)

337 m_valid[line] = false;

338

339 m_replacer.init();

340

341 CORE_LOOP: while (1) {

342 #pragma HLS pipeline II=PORTS

343 INNER_CORE_LOOP: for (auto port = 0; port < PORTS; port ++) {

344 op_type op;

345 #ifdef __SYNTHESIS__

50

A. Source code

346 // get request and

347 // make pipeline flushable (to avoid deadlock)

348 if (m_core_req_op[port]. read_nb(op)) {

349 #else

350 // get request

351 m_core_req_op[port].read(op);

352 #endif /* __SYNTHESIS__ */

353

354 // exit the loop if request is "end -of-request"

355 if (op == STOP_OP)

356 goto core_end;

357

358 #ifndef __SYNTHESIS__

359 if (op == NOP_OP)

360 continue;

361 #endif /* __SYNTHESIS__ */

362

363 // check the request type

364 const auto read = ((RD_ENABLED && (op == READ_OP)) ||

365 (! WR_ENABLED));

366

367 // in case of write request , read data to be written

368 const auto addr_main = m_core_req_addr[port].read();

369 T data;

370 if (!read)

371 data = m_core_req_data[port].read();

372

373 // extract information from address

374 address_type addr(addr_main);

375

376 auto way = hit(addr);

377 const auto is_hit = (way != -1);

378

379 if (! is_hit)

380 way = m_replacer.get_way(addr);

381

382 addr.set_way(way);

383 m_replacer.notify_use(addr);

384

385 line_type line;

386 if (is_hit) {

387 // read from cache memory

388 get_line(m_cache_mem ,

389 addr.m_addr_cache ,

390 line);

391 } else {

392 // read from main memory

393 auto op = READ_OP;

394 // build write -back address

395 address_type write_back_addr(m_tag[addr.m_addr_line],

396 addr.m_set ,

397 0, addr.m_way);

398 // check if write back is necessary

51

A. Source code

399 if (WR_ENABLED && m_valid[addr.m_addr_line] &&

400 m_dirty[addr.m_addr_line]) {

401 // get the line to be written back

402 get_line(m_cache_mem ,

403 write_back_addr.m_addr_cache ,

404 line);

405

406 op = READ_WRITE_OP;

407 }

408

409 const mem_req_type req = {op , addr.m_addr_main ,

410 write_back_addr.m_addr_main , line};

411

412 if (MEM_IF_PROCESS) {

413 // send read request to

414 // memory interface and

415 // write request if

416 // write -back is necessary

417 m_mem_req.write(req);

418

419 // force FIFO write and

420 // FIFO read to separate

421 // pipeline stages to

422 // avoid deadlock due to

423 // the blocking read

424 ap_wait ();

425

426 // read response from

427 // memory interface

428 m_mem_resp.read(line);

429 } else {

430 execute_mem_if_req(main_mem ,

431 req , line);

432 }

433

434 m_tag[addr.m_addr_line] = addr.m_tag;

435 m_valid[addr.m_addr_line] = true;

436 m_dirty[addr.m_addr_line] = false;

437

438 m_replacer.notify_insertion(addr);

439

440 if (read) {

441 // store loaded line to cache

442 set_line(m_cache_mem ,

443 addr.m_addr_cache ,

444 line);

445 }

446 }

447

448 if (read) {

449 // send the response to the read request

450 m_core_resp[port].write(line);

451 } else {

52

A. Source code

452 // modify the line

453 line[addr.m_off] = data;

454

455 // store the modified line to cache

456 set_line(m_cache_mem ,

457 addr.m_addr_cache ,

458 line);

459

460

461 m_dirty[addr.m_addr_line] = true;

462 }

463

464 #if (defined(PROFILE) && (! defined(__SYNTHESIS__)))

465 m_hit_status.write(is_hit ? HIT : MISS);

466 #endif /* (defined(PROFILE) && (! defined(__SYNTHESIS__))) */

467 #ifdef __SYNTHESIS__

468 }

469 #endif /* __SYNTHESIS__ */

470 }

471 }

472

473 core_end:

474 // synchronize main memory with cache memory

475 if (WR_ENABLED)

476 flush ();

477

478 // make sure that flush has completed before stopping

479 // memory interface

480 ap_wait ();

481

482 if (MEM_IF_PROCESS) {

483 // stop memory interface

484 line_type dummy;

485 m_mem_req.write({STOP_OP , 0, 0, dummy});

486 }

487 }

488

489 /**

490 * \brief Infinite loop managing main memory

491 * access requests (sent from \ref run_core).

492 *

493 * \param[in] main_mem The pointer to the main memory.

494 *

495 * \note \p main_mem must be associated with

496 * a dedicated AXI port.

497 *

498 * \note The infinite loop is stopped by

499 * \ref run_core when it is in turn stopped

500 * from the outside.

501 */

502 void run_mem_if(T * const main_mem) {

503 #pragma HLS inline off

504

53

A. Source code

505 MEM_IF_LOOP: while (1) {

506 #pragma HLS pipeline off

507 mem_req_type req;

508 // get request

509 m_mem_req.read(req);

510

511 // exit the loop if request is "end -of-request"

512 if (req.op == STOP_OP)

513 break;

514

515 line_type line;

516 execute_mem_if_req(main_mem , req , line);

517

518 if ((req.op == READ_OP) || (req.op == READ_WRITE_OP)) {

519 // send the response to the read request

520 m_mem_resp.write(line);

521 }

522 }

523

524 }

525

526 /**

527 * \brief Execute memory access(es) specified in

528 * \p req.

529 *

530 * \param[in] main_mem The pointer to the main memory.

531 * \param[in] req The request to be executed.

532 * \param[out] line The buffer to store the read line.

533 *

534 * \note \p main_mem must be associated with

535 * a dedicated AXI port.

536 */

537 void execute_mem_if_req(T * const main_mem ,

538 const mem_req_type &req , line_type &line) {

539 #pragma HLS inline

540 if ((req.op == READ_OP) || (req.op == READ_WRITE_OP)) {

541 // read line from main memory

542 get_line(main_mem , req.load_addr , line);

543 }

544

545 if (WR_ENABLED && ((req.op == WRITE_OP) ||

546 (req.op == READ_WRITE_OP))) {

547 // write line to main memory

548 set_line(main_mem , req.write_back_addr , req.line);

549 }

550 }

551

552 /**

553 * \brief Check if \p addr causes an HIT or a MISS.

554 *

555 * \param[in] addr The address to be checked.

556 *

557 * \return hitting way on HIT.

54

A. Source code

558 * \return -1 on MISS.

559 */

560 inline int hit(const address_type &addr) const {

561 #pragma HLS inline

562 auto addr_tmp = addr;

563 auto hit_way = -1;

564 for (auto way = 0; way < N_WAYS; way ++) {

565 addr_tmp.set_way(way);

566 if (m_valid[addr_tmp.m_addr_line] &&

567 (addr_tmp.m_tag == m_tag[addr_tmp.m_addr_line])) {

568 hit_way = way;

569 }

570 }

571

572 return hit_way;

573 }

574

575 /**

576 * \brief Write back all valid dirty cache lines to main memory.

577 */

578 void flush () {

579 #pragma HLS inline

580 for (auto set = 0; set < N_SETS; set ++) {

581 for (auto way = 0; way < N_WAYS; way ++) {

582 const address_type addr(

583 m_tag[set * N_WAYS + way],

584 set , 0, way);

585 // check if line has to be written back

586 if (m_valid[addr.m_addr_line] &&

587 m_dirty[addr.m_addr_line]) {

588 // write line back

589 line_type line;

590

591 // read line

592 get_line(m_cache_mem ,

593 addr.m_addr_cache ,

594 line);

595

596 // send write request to memory

597 // interface

598 m_mem_req.write({WRITE_OP , 0,

599 addr.m_addr_main ,

600 line});

601

602 m_dirty[addr.m_addr_line] = false;

603 }

604 }

605 }

606 }

607

608 void get_line(const T * const mem ,

609 const ap_uint <(ADDR_SIZE > 0) ? ADDR_SIZE : 1> addr ,

610 line_type &line) {

55

A. Source code

611 #pragma HLS inline

612 const T * const mem_line = &(mem[addr & (-1U << OFF_SIZE)]);

613

614 for (auto off = 0; off < N_WORDS_PER_LINE; off ++) {

615 #pragma HLS unroll

616 line[off] = mem_line[off];

617 }

618 }

619

620 void set_line(T * const mem ,

621 const ap_uint <(ADDR_SIZE > 0) ? ADDR_SIZE : 1> addr ,

622 const line_type &line) {

623 #pragma HLS inline

624 T * const mem_line = &(mem[addr & (-1U << OFF_SIZE)]);

625

626 for (auto off = 0; off < N_WORDS_PER_LINE; off ++) {

627 #pragma HLS unroll

628 mem_line[off] = line[off];

629 }

630 }

631

632 #if (defined(PROFILE) && (! defined(__SYNTHESIS__)))

633 void update_profiling(const hit_status_type status) {

634 m_n_reqs ++;

635

636 if (status == HIT)

637 m_n_hits ++;

638 else if (status == L1_HIT)

639 m_n_l1_hits ++;

640 }

641 #endif /* (defined(PROFILE) && (! defined(__SYNTHESIS__))) */

642

643 class square_bracket_proxy {

644 private:

645 cache *m_cache;

646 const ap_uint <ADDR_SIZE > m_addr_main;

647 public:

648 square_bracket_proxy(cache *c,

649 const ap_uint <ADDR_SIZE > addr_main):

650 m_cache(c), m_addr_main(addr_main) {

651 #pragma HLS inline

652 }

653

654 operator T() const {

655 #pragma HLS inline

656 return get();

657 }

658

659 square_bracket_proxy &operator =(const T data) {

660 #pragma HLS inline

661 set(data);

662 return *this;

663 }

56

A. Source code

664

665 square_bracket_proxy &operator =(

666 const square_bracket_proxy &proxy) {

667 #pragma HLS inline

668 set(proxy.get());

669 return *this;

670 }

671

672 private:

673 T get() const {

674 #pragma HLS inline

675 return m_cache ->get(m_addr_main);

676 }

677

678 void set(const T data) {

679 #pragma HLS inline

680 m_cache ->set(m_addr_main , data);

681 }

682 };

683

684 public:

685 square_bracket_proxy operator [](const ap_uint <ADDR_SIZE > addr_main) {

686 #pragma HLS inline

687 return square_bracket_proxy(this , addr_main);

688 }

689 };

690

691 #endif /* CACHE_H */

57

Bibliography

[1] Song Ho Ahn. Convolution. June 2018. url: http : / / www . songho . ca / dsp /

convolution/convolution.html#convolution_2d (visited on Oct. 12, 2021).

[2] Xilinx Inc. Vitis High-Level Synthesis User Guide. Mar. 2021. url: https://www.
xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1399-

vitis-hls.pdf.

[3] Xilinx Inc. Vitis High-Level Synthesis User Guide. Aug. 2021. url: https://www.
xilinx.com/support/documentation/sw_manuals/xilinx2021_1/ug1399-

vitis-hls.pdf.

[4] ISO. ISO/IEC 14882:2014 Information technology — Programming languages —
C++. Fourth. Dec. 2014.

[5] Liang Ma. “Low power and high performance heterogeneous computing on FPGAs”.
PhD thesis. Politecnico di Torino, Feb. 2019. doi: http://dx.doi.org/10.6092%
2Fpolito%2Fporto%2F2727228.

[6] Liang Ma, Luciano Lavagno, Mihai Lazarescu, and Arslan Arif. “Acceleration by
Inline Cache for Memory-Intensive Algorithms on FPGA via High-Level Synthesis”.
In: IEEE Access PP (Sept. 2017), pp. 1–1. doi: 10.1109/ACCESS.2017.2750923.

58

http://www.songho.ca/dsp/convolution/convolution.html#convolution_2d
http://www.songho.ca/dsp/convolution/convolution.html#convolution_2d
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1399-vitis-hls.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1399-vitis-hls.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1399-vitis-hls.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_1/ug1399-vitis-hls.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_1/ug1399-vitis-hls.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_1/ug1399-vitis-hls.pdf
https://doi.org/http://dx.doi.org/10.6092%2Fpolito%2Fporto%2F2727228
https://doi.org/http://dx.doi.org/10.6092%2Fpolito%2Fporto%2F2727228
https://doi.org/10.1109/ACCESS.2017.2750923

	List of Figures
	List of Tables
	List of Acronyms
	Background
	Cache
	Structure
	Policies
	Benefits

	Field-Programmable Gate Array
	Memory system

	High-Level Synthesis
	Workflow
	Optimization techniques

	Motivation
	Ma's cache
	Proposed solution

	Basic cache
	Architecture
	Functionality
	Characteristics
	Single-process Basic cache
	Multi-processes Basic cache

	Implementation
	Internals
	Interface

	Multi-levels cache
	Architecture
	Implementation
	Internals
	Interface

	Multi-ports cache
	Architecture
	Implementation
	Internals
	Interface

	Limitations

	Results
	Simulation environment
	Reference memory models
	Collected data

	Matrix multiplication
	16x16 matrices
	32x32 matrices

	Bitonic sorting
	128 elements

	2D convolution
	32x32 matrix and 9x9 kernel

	Conclusions
	Source code
	Cache

	Bibliography

