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Summary

In recent years automotive safety has become more and more important due to the
high numbers of fatal accidents.

The trend is to automate and enhance the safety technologies in order to assist
the driver and avoid dangerous situations. Advanced Driver-Assistance Systems
(ADAS) can implement various features such as automatic emergency brake, blind-
spot detection, automated highway driving and more. ADAS are based on radar
technology since it can effectively detect and locate objects without being affected
by low visibility or by bad weather conditions.

The most common type of radar for automotive applications adopts linear frequency-
modulated continuous waveform and it provides range, velocity and direction of
arrival of the detected targets. Several integrated single-chip radar sensors are
available in the market, capable of operating in the 76- to 81-GHz band with
unprecedented levels of integration in an extremely small form factor.

The TI AWR1843 device is a self-contained single-chip radar sensor that pro-
vides a 3TX, 4RX system with built-in PLL and A2D converters. It integrates
the Digital Signal Processing (DSP) subsystem, a processor subsystem responsible
for radio configuration, control, and calibration, an ARM R4F for automotive
interfacing, and an hardware accelerator block to perform radar processing saving
MIPS on the DSP for higher level algorithms.

The scope of this thesis is to optimize the performances of automotive radar
application based on the TI AWR1843 by implementing the most demanding
processing tasks on the hardware accelerator block instead of the general purpose
DSP. The performances are evaluated in terms of the time required to execute the
different tasks.
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Chapter 1

Introduction to Automotive
Radar

In recent years automotive safety has become more and more important due to
the high numbers of fatal accidents. Since human error is one of the main causes,
the trend is to automate and enhance the safety technologies in order to assist the
driver and avoid dangerous situation.

This group of electronic technologies is called Advanced Driver-Assistance Systems
(or ADAS) and it can implement various features such as automatic emergency
brake, blind-spot detection, automated highway driving and more. Many of these
safety features are based on radar technology since it can effectively detect objects
without being affected by low visibility (for example at night) or by bad weather
conditions such as rain and fog.

The most common type of radar for automotive applications is called Frequency-
Modulated Continuous Wave (or FMCW) [1] and it includes the processing of the
received signals to obtain range, velocity and angle of the detected targets.
As the name implies it transmits signals that are modulated in the frequency
domain and the most used signal is called "Chirp", which has a linear modulation
as function of time. The magnitude of the resulting wave is shown in Figure 1.1
while its frequency is represented in Figure 1.2.
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Introduction to Automotive Radar

Figure 1.1: Chirp magnitude as a function of time.

Figure 1.2: Chirp frequency as a function of time.

The basic work flow of this type of Radar starts with a synthesizer that generates
the chirp with the parameters of choice, that includes: starting frequency (f0),
sweeping bandwidth (B) and time duration (Tc). The signal is transmitted through
an antenna after being amplified. Another antenna is then needed to receive the
reflected signal so that finally the TX and RX chirps can be mixed and properly
filtered to obtain the difference of the frequencies of the two input sinusoids (called
intermediate frequency or fIF ), as shown in Figure 1.3.

The purpose of computing the difference between the two signals is to deter-
mine the range of the detected object. In fact, in optimal conditions, the received
signal is just the replica of the transmitted one shifted in time by tf = 2d/c,
where d is the distance of the object (or range) and c is the speed of light. This
time is also called "round-trip delay". Since the TX and RX chirp have the same

2



Introduction to Automotive Radar

linear modulation, the difference of the two will be a constant IF tone equal to
the round-trip delay multiplied by the slope of the chirp (S = B/Tc). In this
case, knowing the resulting frequency, the range of the object can be easily and
accurately computed by inverting the formula and obtaining:

d = fIF · c
2S

Figure 1.3: Result of TX-RX chirp mixing.

An important figure of merit in the design of a FMCW Radar is the range resolution.
This is the metric that describes the ability to detect targets near to each other as
distinct objects and it depends on the bandwidth of the chirp.

The Fourier transform theory tells that in order to resolve two different tones
in the frequency spectrum, they have to be spaced more than 1

T
, being T the

window duration and in this case equal to Tc.

From this consideration the minimum resolution is obtained:

∆f > 1
Tc

=⇒ 2S∆d
c

>
1
Tc

=⇒ ∆d > c

2STc

3



Introduction to Automotive Radar

Since the slope of the chirp is equal to S = B/Tc the range resolution is:

dres = c

2 ·B
From this equation it can be seen that the higher the bandwidth the better the
resolution. Infinitely small resolutions can not be achieved though due to the
analog to digital conversion process that has finite sampling frequency (Fs). For
this reason there is also a maximum achievable range that is computed as follows
(the factor 2 is due to the Nyquist sampling theorem):

Fs ≥ 2 · 2Sdmax

c
=⇒ dmax = Fsc

4S
After the sampling of the IF signal a Fast Fourier Transform (or FFT) is performed
to obtain the frequency spectrum where the frequency of the peaks is proportional
to the range of the detected objects.

In order to separate two different targets at the same distance from the FMCW
Radar, their different relative velocities can be exploited. Since a transform in the
frequency domain is performed, the signal is complex and that means that every
value is a phasor with an amplitude and a phase.

Figure 1.4 shows that if the round-trip delay changes by a small amount ∆τ
there is a change in the phase of the computed FFT peak (in the example is the
difference between points C and F ). Comparing the phases of the peak in two
consecutive chirps, the relative velocity of one single object can be estimated.

Figure 1.4: Phase difference between two slightly delayed chirps.
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In order to estimate the velocities of different objects, more than two chirps are
needed so generally N equi spaced chirps are transmitted (this set is typically called
a "frame"). Once the range FFT is done for every chirp of the frame, a second
Fourier Transfor is done for every range "cell" to obtain the Doppler frequency
spectrum where the peaks correspond to the velocity of the detected objects. This
is called Doppler FFT.

An important figure of merit of the FMCW radar is the velocity resolution. This
is the minimum separation between two velocities to be detected as two different
peaks and it can be computed knowing that the phase difference ∆Φ must be
greater than 2π/N , being N the number of chirps in the frame.

∆Φ = 4π∆vTchirp

λ
>

2π
N

=⇒ ∆v > λ

2Tframe

Once the Doppler FFT is computed, a matrix with two dimensions, respectively
range and velocity, is obtained.

The goal is now to detect two different objets at the same range and with the same
relative velocity. For this purpose, it is necessary to have at least two receiving
antennas. The so called "Angle of Arrival" (or AoA) estimation is based on the
received phase shift between antennas due to different path length. Figure 1.5 shows
how the path difference depends on the distance between the receiving components
and the sine of the angle θ. Since the former is known, the direction of arrival of
the signal can be computed using the following formula:

∆Φ = 2πdsin(θ)
λ

=⇒ θ = sin−1(λ∆Φ
2πd )

Figure 1.5: Path difference between two receiving antennas.
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The peaks of the range-Doppler FFT will have different phases for different RX
antennas so, in order to compute this phase shift and estimate the angle of the
object, a third Fast Fourier Transform is needed. This one is called angle FFT and
it is computed on the data of N receiving antennas, so the bigger this number, the
better the resolution.

The problem is that increasing the number of RX antennas has an high cost
since each one has its own processing chain with related components such as low-
noise amplifier, mixer, low-pass filter and analog to digital converter.

The solution to this problem is called MIMO, acronym that stands for Multi-
ple Input Multiple Output, that is a technology that uses more than one antenna
to transmit the signal and, by using orthogonal waveforms, gives an higher angle
resolution using less antennas. In fact, taking as example a MIMO configuration
with two TX and four RX, a resolution equivalent to 8 standard receiving antennas
can be achieved.

To obtain this result though it is necessary to be able to distinguish between
the different transmitted signals. There are various methods to accomplish this
task and the one used in the implementation is now presented.
It is called Time Division Multiplexing (TDM) and it is based on transmitting
chirps in different contiguous time slots through the different TX antennas as shown
in Figure 1.6. This method is the easiest to separate the TX signals and therefore
it is widely used.

Figure 1.6: Time Division Multiplexing MIMO.

The concept is that for every virtual antenna (for example the combination of TX1
and RX1, the one of TX1 and RX2 and so on) a range-Doppler FFT is computed.
A thresholding process is then executed to identify peaks corresponding to detected
objects and Doppler compensation is applied since the time between chirps of
different TX antenna introduces a phase shift.
The Angle FFT can now be performed across the values of all the virtual antennas

6



Introduction to Automotive Radar

giving a higher angle resolution with limited costs.
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Chapter 2

TI AWR1843 Automotive
Radar System

2.1 Radar Sensor Chip

The AWR1843 belongs to the AWR1x family of single-chip mmWave radar sensors
for Advanced Driver Assistance Systems, or ADAS applications. These devices are
built with TI’s low-power 45 nanometer RF CMOS-technology and offer high levels
of integration in a compact dimension form.
These radar sensors provide a solution for low-power and self-monitored ultra accu-
rate radar systems for advanced automotive applications, such as adaptive cruise
control, automatic emergency brake, blind-spot detection, automated highway
driving and more.

The AWR1843, in particular, is a complete single-chip radar that integrates analog
and digital components, including multiple transmit and receive chains, PLL, ADCs,
ARM Cortex-R4F MCU, C674x DSP, FFT accelerator, memories, and various I/O
interfaces. This device also features continuous self monitoring and calibration of
the RF and analog functionality to a dedicated built-in ARM R4F-based radio
subsystem which is responsible for front-end configuration, control, and calibration.
In Figure 2.1 is represented the functional block diagram of the chip.

The sensor is based on FMCW radar technology with capability to operate in the
76 to 81 GHz frequency range and supports chirp bandwidths of up to 4 GHz.
Three transmit and four receive chains are provided for MIMO radar operation.
Programmable and flexible chirp profiles are available to support multiple sensing
profiles in the same radar frame.

8
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Figure 2.1: AWR1843 functional block diagram [2]

The chip provides an onboard hardware accelerator for FFT operations and Con-
stant False Alarm Rate (or CFAR-based thresholding algorithms) [CFAR] and
a full-featured C674x DSP code for FMCW signal processing and advanced algo-
rithms, such as clustering, tracking, and object classification.

There are two ARM Cortex R4F MCUs running at 200 MHz. One of these
is locked and used by the radio subsystem for calibration and monitoring. This
R4F is programmed through firmware provided by TI and is not available for user
code. However, the second R4F is available for high-level application processing.
The device supports various industry standard input-output interfaces, such as
CAN, SPI, I2C, UART, and also high-speed raw ADC data output using LVDS.

The typical FMCW processing chain is represented in Figure 2.2.
The receiver chain starts with the RF front end receiving the reflected radar signal,
which is mixed with the transmitter signal to generate a intermediate frequency
signal that is delivered to the ADC. The ADC converts the analog signal to digital
samples which are pre-processed for digital processing.
Successive FFTs are computed on the digitized samples for range, velocity, and

9
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Figure 2.2: Signal processing chain.

angle of arrival calculation. The radar hardware accelerator can be used to offload
these FFTs and perform thresholding processes to get a point cloud output.

More complex algorithms can be then performed to obtain other informations
such as the path of a detected target, the type of the object and so on.

The device architecture can be divided into the following main blocks: the RF
(or analog) subsystem, the radar subsystem, the master subsystem and the DSP
subsystem.

Analog subsystem

The analog subsystem includes the RF and analog circuitry used to generate,
transmit and receive the signals. It consists of various components such as the
synthesizer, the PA, LNA, mixer, IF, and ADC. This subsystem also includes the
crystal oscillator and temperature sensors.
The RF and analog subsystem can be divided into three subcomponents, namely,
the clock subsystem, the transmit subsystem, and the receive subsystem.

The clock subsystem generates 76 to 81 GHz frequency from an input reference of
40 MHz crystal. It has an inbuilt oscillator circuit, followed by a clean-up PLL and
an RF synthesizer circuit.
The output of the RF synthesizer is then processed by a 4x multiplier to create
the required frequency in the 76 to 81 GHz spectrum. The output is modulated
by the timing engine block in order to create the required waveforms for effective
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sensor operation. The timing engine is highly flexible and is programmed via the
R4F-based radio controller subsystem.

The clean-up PLL also provides a reference clock for the host processor after
system wake-up. The clock subsystem also has built-in mechanisms for detecting
the presence of a crystal and monitoring the quality of the generated clock.

The transmit subsystem consists of three parallel transmit chains. Each transmit
chain has independent phase and amplitude control.
A maximum of two transmit chains can be operational at the same time. However,
all three chains can be operated together in a time-multiplexed fashion. The device
also supports binary phase modulation for MIMO radar and interference mitigation.

The receive subsystem, instead, consists of four parallel channels where each
receive channel consists of an LNA, a mixer, IF filtering, analog to digital conver-
sion and decimation. All four receive channels can be operational at the same time.
Individual power-on option is also available for system optimization.

Unlike conventional real-only receivers, AWR1843 radar sensor supports a complex
baseband architecture which uses quadrature mixer and dual IF and ADC chains
to provide complex I/Q output for each receiver channel. The bandpass IF chain
has configurable lower cut-off frequencies, about 350 KHz and the continuous time
sigma delta ADC supports bandwidths of up to 15 MHz.

Radar subsystem

The radar processor is actually a second dedicated ARM Cortex-R4F micro-
controller running at 200 MHz. It includes the Digital Front-End and the ramp
generator, but it is not available for customer application. In fact, this process is
programmed by TI and takes care of out-of-calibration self-test and monitoring
functions.

User applications running on the master subsystem do not have direct access
to the radar system: the master system accesses the radar through well-defined
API messages which are sent over hardware mailboxes. This interface is also known
as the mmWaveLink and the functions to use it are included in the mmWave SDK.

Master subsystem (or MSS)

The master subsystem includes an ARM Cortex-R4F processor clocked at 200 MHz
for running user application code. User applications executing on this processor
control the overall operation of the device, including radar control via API messages,

11
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radar signal processing, which is assisted by the radar hardware accelerator, or
DSP, and peripherals for external interface.

A Quad Serial Peripheral Interface (QSPI) is available and it can be used to
download customer code directly from a serial flash. A CAN interface is included
that can be used to communicate directly from the device to a CAN bus, very
common in automotive applications. An SPI/I2C interface is available for power
management IC control. For more complex applications, the device can operate
under the control of an external MCU which can communicate with the device
over SPI interface.

DSP subsystem (or DSS)

The DSP subsystem contains TI’s high-performance C674x DSP for FMCW signal
processing, including FFT, CFAR thresholding and also advanced radar signal
processing. This allows the AWR1843 to serve as a complete single-chip radar with
advanced capabilities for clustering, tracking, and object classification.

The DSP Subsystem also contains a high-bandwidth interconnect for high perfor-
mance (128-bit, 200MHz) and associated peripherals, LVDS interface for measure-
ment data output, L3 Radar data cube memory, ADC buffers, CRC engine and
data handshake memory.

Both the master and the DSP subsystems can communicate with the radar hard-
ware accelerator, which is used to offload certain frequently used computations and
FMCW radar signal processing from the processors. It will be discussed in detail
in Section 4.

2.2 Development board
To exploit the radar sensor chip functionalities Texas Instruments provides an
Evaluation Board called AWR1843BOOST.

The AWR1843 BoosterPack from Texas Instruments is an easy-to-use evalua-
tion board for the AWR1843 mmWave sensing device, with direct connectivity
to the microcontroller (MCU) LaunchPad Development Kit. The BoosterPack
contains everything required to start developing software for on-chip C67x DSP core
and low-power ARM R4F controllers, including onboard emulation for programming
and debugging as well as onboard buttons and LEDs for quick integration of a
simple user interface [3].
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In Figure 2.3 is represented the front view of the Evaluation Board, where the main
components, the switches and the buttons are placed.

Figure 2.3: Evaluation board front view.

AWR1843 sensor chip is placed in the lower part of the board, directly connected to
the antennas. The chip and the onboard-etched antennas are represented in detail
in Figure 2.4, which also shows the layout parameters.
The Evaluation Board provides antennas for the four receivers and three transmit-
ters that enable tracking multiple objects with their distance and angle information.
This antenna design enables estimation of the angle of arrival for both azimuth
and elevation, detecting objects in a three-dimensional plane.

13
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Figure 2.4: Chip and antennas detail. [3]

With regard to the switches the most important are related to the outside commu-
nication. One is used to select the interface protocol between SPI and CAN-bus,
since they are muxed on the same lines. This switch can be seen in the central part
of the board (Figure 2.3).
A set of switches is responsible for setting the operation mode of the chip. The
possible choices are: debug mode, flash programming and functional mode.
This set is placed in the upper-left part of the Evaluation Board.

There are two buttons to interact with the AWR1843BOOST. One is responsi-
ble for resetting the system while the other is used as a general purpose input
(GPIO).

On the rear part of the board the most important components are the two 20-pin
LaundPad connectors that leverages the ecosystem of the TI LaunchPad, the 5-V
power jack to power the board and the micro-USB port used to both program the
chip and communicate via UART.
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Chapter 3

Software starting point

In this chapter the software from which my implementation work started is pre-
sented.

As explained in the previous Section, the chip has two cores to be programmed (the
ARM Cortex R4F and the C674x DSP) and, in this application, they are managed
without operative system. The communication between the two is accomplished
using an internal Mailbox and semaphores system that uses just 2 KB of memory.

The ARM is in charge of the external communication and it uses the SPI in-
terface in order to have a good bandwidth for data and commands. For the PC
interface a KSZ8851SNL chip is used to convert SPI to Ethernet protocol. The DSP
core, instead, is used to perform all the calculations needed for radar processing
such as FFT and CFAR thresholding algorithms.

With regard to the analog part of the AWR1843, 4 RX and 3 TX are used
and, being the layout of the transmitting antennas not aligned (as shown in Figure
2.4, azimuth and elevation angles can be estimated. To better the angle resolution
a time multiplexing MIMO configuration is exploited, providing a total of 12 virtual
antennas.

3.1 DSP operations
To get an overview of the software the two main processing functions of the DSP
are reported:

• dssInitTask:

1. Initializes Mailbox and semaphores.
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2. Initializes the MMWaveLink which is a set of functions to generate the
messages needed to configure the BIST via Mailbox.

3. Launch nonOsLoop

• nonOsLoop: during the loop the following functions are called:

1. mboxReadTask: handles mailbox messages received from MSS such as the
values for the configuration of the peripherals or sensor start and stop
commands.

2. Event_checkEvents: checks if any of the events listed in Table 3.1 has
been received from MSS. If so the function dssDataPathTask handles it
performing the correct operations.

3. The loop also checks for the presence of radar_start and radar_stop
commands.

EVENT NAME POSTED BY FUNCTION

bss_stop_complete_evt DSS after receiving
radar_stop command.

It stops the sensor with the StopRadar
function.

datapath_stop_evt DSS when BIST stop is
completed.

It moves DSS into the stop state and com-
municates it to the MSS.

framestart_evt BIST firmware. It indicates the beginning of the radar
frame.

chirp_evt BIST firmware. It indicates that the ADCbuffer is filled
with samples.

config_evt DSS after receiving
mss2dsscontrol_cfg
message.

It configures the DSS datapath and start
the operations.

Table 3.1: Events handled by DSS

The dssDataPathTask operations which need to be highlighted are:

• If config_evt is detected dssDataPathConfig is called. This function allo-
cates the memory space needed for processing, configures EDMA transfers,
configures ADC buffers and updates datapath variables based on the current
configuration.
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• If chirp_evt is detected dssDataPathProcessEvents is called. This function
performs all the processing such as range, Doppler and angle FFTs, CFAR
detection and XY coordinates computation. When interframe processing is
completed it transfers the output data to MSS which will send them to the
PC interface.

The states in which the DSS can be are the following:

1. DSS_STATE_INIT: starting idle state.

2. DSS_STATE_STOP_PENDING: preparing for stop state.

3. DSS_STATE_STOPPED: stop state.

4. DSS_STATE_STARTED: operating state.

The DSS state diagram is shown in Figure 3.1.

3.2 DSP datapath processing
The general datapath processing chain is shown in Figure 3.2.

Figure 3.2: Datapath processing chain.

The DSP has two ADC buffer of 32 KB each that can be used in ping-pong mode
so that the processing is done in parallel with the reception of data. In these buffers
the samples of each RX antenna are stored consequently. When one of the two
is full a chirp_evt is sent and the computation begins while the other one get
filled with new data. The ADC buffers become full after a number of chirps that
depends on the size of the single chirp.

The first function called after the chirp_evt is chirpProcess in the
dss_data_path.c file and the following operations are executed:

• Data are EDMA transferred from ADCbuffer, which is stored in L3 memory,
to the ADCdataIn buffer in L1 memory of the DSP (which is much faster
than L3) alternating even and odd RX antennas in ping-pong manner.

• A Blackman window is applied to the samples for the range FFT.
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Figure 3.1: State diagram
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• First dimension (range) FFT is performed on the samples.

• The results of the computation are EDMA transferred in L3 memory (that
has more space than L1) in the so called RadarCube matrix, where all the
values are stored for each virtual antenna, each chirp and each range bin.

As said these operations are done every time an ADC buffer is full and they continue
until every chirp of the frame has been processed. In Figure 3.3 the schematic of
the first dimension processing is represented.

Figure 3.3: First dimension datapath schematic.

When all the chirps of the frame have been processed and stored in the RadarCube
matrix, all the other computations can start. These operations are referred to as
the interframe processing because they are computed in the time between the finish
of a frame and the start of the other. The following calculations are executed:

• FFT for velocity detection (second dimension processing).

• CFAR thresholding algorithm in both Doppler and range direction.

• FFT for Angle of Arrival detection.

• XY coordinates of detected objects.

Interframe processing can be divided in two main parts: velocity-targets detection
and Azimuth-XY detection.

The former is represented in Figures 3.4-3.5 and it includes the following operations:
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• Data are EDMA transferred from RadarCube in L3 memory to dstPingPong
buffer in L1 memory alternating odd and even chirps in ping-pong manner.

• An Hanning window is applied to the second dimension FFT samples.

• Doppler FFT is performed.

• Magnitudes of the computed values of all the virtual antennas are summed in
log2 basis for each Doppler bin.

• Outputs are EDMA transferred in L3 memory to the DetMatrix, the matrix
where each range and Doppler bin values are stored.

• CFAR threshold in Doppler direction is applied for each range bin.

• If an object pass the threshold at a certain Doppler line, a bit corresponding
to its range and Doppler is set in the DopplerLineMask matrix in L2 memory.

Figure 3.4: Second dimension and Doppler CFAR datapath schematic.

• CFAR threshold in range direction is applied for each Doppler line which have
passed the previous threshold.

• Peak grouping is performed on groups of near indices both in range and
Doppler direction.
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• For each detected object range index, Doppler index and magnitude value
are saved in a detObj2D structure, that will also be used for storing XY
coordinates.

Figure 3.5: Range CFAR and peak grouping datapath schematic.

Figure 3.6: Doppler compensation for TX2 and TX3 before azimuth FFT.
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As mentioned in Section 1, a phase compensation is needed because successive
chirps of different TX antenna are separated in time.
This phenomenon is explained in Figure 3.6.

Azimuth and XY detection are represented in Figure 3.7.
The following operations are executed:

• Data of the detected objects are EDMA transferred from RadarCube in L3
memory to dstPingPong in L1 memory.

• Single point Discrete Fourier Transform (32 bits precision for both real and
imaginary part) with windowing is performed at the detected range indices.
This DFT is done because the results of the Doppler FFT are stored in
magnitude with precision of 16 bits.

• Doppler compensation is performed before azimuth processing for the second
and third TX antennas following the formula reported in Figure 3.6.

• Phase compensation for each virtual antenna:
The correction coefficients for each antenna are computed with a MATLAB®script
(Calibration.m):

– Input: azimuthFFT_input after Doppler compensation (8 values).
– Output: real and imaginary part of the correction factors which need to
be copied into the compensation table in AWR1843_MRR_mss/cli.c.

Figure 3.7: Azimuth and XY calculation.
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• Azimuth FFT is performed on the samples.

• Magnitude square and X, Y coordinates are then calculated and stored in the
detObj2D structure.

Once the interframe processing is complete the data are sent to the ARM processor
(MSS) via Mailbox. The format of the messages from the DSP to the ARM is as
follows:

• Message Type (4 bytes).

• Preamble (6 bytes).

• Doppler zero plot from the DetMatrix(2 bytes*NumRangebins).

• CFAR range threshold at Doppler zero (2 bytes*NumRangebins).

• Doppler FFT (2 bytes*NumDopplerbins).

• Doppler CFAR (2 bytes*NumDopplerbins).

• Detected Objects (Max 15, values preset to 0XFF) with the following structure:

– Rangeidx (0 to NumRangebins) (2 bytes): to obtain the correct range
value a multiplication with the range resolution is needed.

– Doppleridx (from −NumDopplerbins to NumDopplerbins−1) (2 bytes):
to obtain the correct velocity value a multiplication with the velocity
resolution is needed.

– PeakVal (2 bytes): this value is then converted in dB.
– X position in Q Format −→ Xmeter = X >> Qformat (2 bytes).
– Y position in Q Format −→ Ymeter = Y >> Qformat (2 bytes).

• Matrix part counter (2 bytes).

• Matrix part address (4 bytes).

3.3 ARM operations
The MSS core executes the following tasks:

• mssInitTask: This function is called in the main and it is a one-time initial-
ization task that executes the following operations:

1. Initializes GPIO, SPI, DMA, Mailbox and Semaphores.
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2. Performs synchronization.
3. Launches nonOsLoop.

• nonOsLoop: This is the main function and it replace the operative system. Its
tasks are:

1. If the DSP is stopped it checks if commands have been received by the
KSZ8851SNL board.

2. If a command is received and it corresponds to one of the the following,
it serves the request:
– cfg_cmd −→ rcvParameterfromcli and configureDSS functions are
called.

– start_cmd −→ configureDSS and sensorStart functions are called.
3. It checks if a message is arrived in the Mailbox from DSS.
4. If data are ready it sends them through SPI. The message type for this

action is: DSS2MSS_DATA_READY_FOR_PLOT.
5. After data have been sent it checks if a command has been received by

the KSZ8851SNL.
6. If the command stop_cmd is received it calls the function stopProcedure.

• ConfigureDSS : sets the DSP parameters.

• rcvParameterformcli: updates user parameters.

• sensorStart: sends configuration to DSP through mailbox.

• stopProcedure: stop the DSP operations so that commands can be received.
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Chapter 4

Hardware Accelerator
description

The Radar Hardware Accelerator (HWA) is an hardware IP that enables off-
loading the burden of certain frequently used computations in FMCW radar signal
processing from the main processor. The most common are FFT and log-magnitude,
as explained in chapter 1, to obtain a radar image across the range, velocity, and
angle dimensions. An advantage of using the Hardware Accelerator is that it
doesn’t affect the flexibility of implementing other propritary algorithms in the
main processor.

4.1 High level architecture
An overview of the Hardware Accelerator architecture is represented in Figure 4.1.

As shown in Figure 4.1 the HWA has four local memories of 16KB each called
ACCEL_MEM0, ACCEL_MEM1, ACCEL_MEM2, and ACCEL_MEM3 that,
for convenience, will be referred to as M0, M1, M2 and M3. The processing
block is called accelerator engine and it includes different sub-modules that will be
presented and explained in Section 4.2.

The Radar Hardware Accelerator is connected to the processor via a 128-bits
bus that is used to transfer from and to the main memories. At the same bus
is also connected the ADC buffer, which receives the samples directly from the
Digital Front End.

The Hardware Accelerator has an operating clock frequency of 200 MHz that
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Figure 4.1: General HWA architecture. [4]

is a third of the DSP speed but, since the algorithms are more efficient and opti-
mized, the performance is comparable if not better.

The typical data flow is that the samples are transferred from the memory of
the main processor to the HWA, the accelerator engine executes the operations
and then the results are sent again to the main memories.

A feature of the Hardware Accelerator is that the first two local memories (namely
M0 and M1) can be shared directly with the ADC buffers such that the samples
for the first dimension FFT are immediately available at the end of each chirp.
This property is useful since it saves an heavy DMA transfer (of all the unprocessed
samples from main memory to the HWA local memory).

The purpose behind the four separate local memories inside the HWA is to enable
the ping-pong mechanism, for both the input and output, such that the DMA read
and write operations can happen in parallel to the main computational processing of
the accelerator. So, for example, while the accelerator engine performs calculation
using M0 as input memory and M2 as output, the DMA can write the samples of
the following operation in M1 and read the results of the previous one from M3.
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The only limitation is that a single local memory cannot be accessed by the DMA
and the HWA at at the same time as this would produce an error.

Since the DMA bus is 128-bits wide, the accelerator local memories are implemented
to have words of 16 bytes so that the transfers are more efficient (they can reach
the maximum throughput of 128 bits per clock cycle).

The use of the local memories is very flexible since any of them can be used
as source or destination of the computation, with the only exception that the
input and output memory cannot be the same 16KB bank. Also, the ping-pong
mechanism is not compulsory so for example 32KB of data can be processed at a
time using two banks as source and the other two as destination. This is possible
because the address space for the HWA local memories is contiguous.

To configure the operations of the Radar Hardware Accelerator there is a 512-byte
RAM that contains the so called parameter-sets, which are registers used to pre-
program every aspect of the computations so that the HWA can then read one
after the other and perform the calculations without the need of DSP intervention.
This mechanism will be explained in detail in the following Section.

4.2 Accelerator Engine
The detailed block diagram of the Radar Hardware Accelerator is presented in
Figure 4.2. As shown, there are two main blocks that constitute the HWA: the
four local memories and the accelerator engine.

The Accelerator Engine consists of the following sub-modules:

• State machine: this module controls the operations of the whole HWA. In
particular it is responsible for starting, looping and stopping the computations,
for the triggering system and for the handshake mechanism with the main
processor or the DMA. It is configured by the parameter-set and it executes the
programmed tasks like sequencing and chaining various accelerator operations.

• Parameter-set configuration memory: as mentioned it is a RAM that contains
registers used to pre-configure the operations of the HWA. The size of this
memory is 512 byte and it contains 16 programmable parameter-sets of 32-
bytes each. Furthermore there is a group of registers called static (or common)
that are used to configure the basic settings of the state machine.

• Input formatter: the purpose of this operational block is to read the samples
from the designed source memory and, after a flexible manipulation of the
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Figure 4.2: Detailed HWA architecture. [4]

data (like for example scaling, sign extension, different alignment etc.), to feed
them to the core computational unit in a 24-bit complex format.

• Core computational unit: it is the module that contains the logic to perform
different common radar-related operations such as CFAR thresholding, win-
dowing, FFT, magnitude and log2. The core computational unit receives the
input samples at a rate of one per clock cycle and, after a variable initial
latency, produces the results that are then processed by the output formatter.

• Output formatter: the purpose of this block is to receive the output samples of
the core computational unit and to write them in the designated destination
memory. As the input formatter, it is capable of manipulating the samples in
a flexible way in order to reach the user’s need in terms of data representation.

The overall accelerator engine operation is the following: the main processor writes
in the parameter-set registers to program the functioning and the sequence of
operations to be executed. Then, when the accelerator engine is enabled, the state
machine is activated, meaning that it starts loading the configuration registers one
after the other and running the accelerator as described in the registers.
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In the parameter sets are stored all the important operating informations such as
the type of calculation, the input and output memory address, the formatting, the
trigger mode and so on. The sequence of parameter sets can also be repeated a
determined number of times, programmed writing in the NLOOPS state machine
register.

4.2.1 State machine
As mentioned in the previous section the state machine is the module that controls
all the functioning part of the Hardware Accelerator, since it is responsible for: the
enabling and the disabling of the whole HWA, the sequencing and looping of the
parameter sets and the management of the trigger mechanism.

The settings of the state machine are programmed in the common part of the con-
figuration registers, while the specific informations for each computation are stored
in the parameter sets. An example of common settings are the PARAMSTART,
PARAMSTOP and NLOOPS registers. When the accelerator is enabled, the state
machine start executing the parameter-set defined in PARAMSTART and continues
until it reaches the one written in PARAMSTOP. Then, if the register NLOOPS
contains a value greater than 0, the sequence is repeated for the programmed
number of times.

A setting that is particular for each parameter-set instead is, for example, the
TRIGMODE register, that offers different modes of triggering. This is useful to
time the operations correctly based on different events and to ensure that the
computations start when all the input values are present in the local memory.

The incoming trigger types that can be selected for each parameter-set are:

• Immediate trigger: This mode is not based on a particular event and starts
the operations immediately. It is useful when chaining different computations
that just need a one-time trigger.

• Software-based trigger: In this case the state machine waits for the main
processor to start the sequence of tasks. To do that a self-clearing bit is set in
a common register (CR42ACCTRIG).

• ADC buffer switch trigger: Since the first two banks of the local memory can be
shared with the ADC buffer, the state machine can be triggered when a switch
from ping to pong happens (or vice versa) so that, as soon as the samples
are ready, they can be processed and sent to the main memory, reducing the
burden and the time needed for the inter-chirp processing.
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• DMA-based trigger: This mode triggers the state machine when a DMA
transfer finishes. It is useful when the input samples are stored in the main
memory. In this way it is ensured that the computation starts when all the
data are present in the source memory. Also in this case the trigger is done
setting a bit in a common register (DMA2ACCTRIG).

When the state machine is triggered, it loads the registers contained in the configu-
ration memory for the current parameter-set into corresponding internal registers
of the accelerator and starts the actual computations for that parameter set.
Once these have finished, the accelerator repeats the same steps for the following
parameter-set.

When the accelerator engine finish the operations for the current parameter-set it
has two possible outgoing trigger mechanism:

• Interrupt to main processor: Once the HWA has reached the end of a parameter-
set it can generate an interrupt event in the main processor.

• Trigger to DMA: The state machine can also generate an event to start a
determined DMA channel. The configuration is done by writing in a parameter-
set register the channel to be triggered.

To modify the configuration memory is necessary to disable the HWA, reset it and
then rewrite the new parameters in the RAM.

Table 4.1 shows the main state-machine-related registers, specifying the width, the
purpose and whether or not they are proper of each parameter-set (if not it means
that they are common).

Register Width Parameter
set Description

ACCENABLE 3 No

Enable and Disable Control:
This register enables or disables the entire Radar Hardware
Accelerator. The reason for a 3-bit register (instead of 1-bit)
is to avoid an accidental bit-flip (for example, transient error
caused by a neutron strike) from unintentionally turning on the
accelerator engine. A value of ACCENABLE = 111b enables
the Radar Hardware Accelerator and any other value of the
register keeps the accelerator engine in disabled state.

Table 4.1: State machine registers. [4]
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Register Width Parameter
set Description

ACCRESET 3 No

Software Reset Control:
This register provides software reset control for the Radar
Hardware Accelerator. The assertion of these register bits
by the main processor will bring the accelerator engine to a
known reset state. This is mostly applicable for resetting the
accelerator in case of unexpected behavior. Under normal
circumstances, it is expected that whenever the accelerator is
enabled (from disabled state), it always comes up in a known
reset state automatically. The recommended sequence to be
followed in case software reset is desired is to write 111b to
this register and then a 000b, before the clock is enabled to
the accelerator.

NLOOPS 12 No

Number of loops:
This register controls the number of times the state machine
will loop through the parameter sets (from a programmed
start index till a programmed end index) and run them. The
maximum finite number of times the loop can be run is 4094.
A value of 4095 (0xFFF) programmed in this register should be
considered as a special case and it should be interpreted as an
infinite loop mode, for example, keep looping and never stop the
accelerator engine unless reset by the main processor. A value
of zero programmed in this register means that the looping
mechanism is disabled. In this case, the accelerator engine
can still be used under direct control of the main processor
(without the state machine looping provision coming into the
picture).

PARAMSTART
&
PARAMSTOP

4
&
4

No

Parameter-set Start and Stop Index:
These registers are used to control the start and stop index
of the parameter set through which the state machine loops
through. The state machine starts at the parameter set speci-
fied by PARAMSTART and loads each parameter set one after
another and runs the accelerator as per that configuration.
When the state machine reaches the parameter set specified
by PARAMSTOP, it loops back to the start index as specified
by PARAMSTART.

Table 4.1: State machine registers. [4]
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Register Width Parameter
set Description

FFT1DEN 1 No

ADC buffer sharing mode:
This register is relevant when the HWA is included in a single
device along with the mmWave RF front-end. In such a case,
during active chirp transmission and inline first dimension FFT
processing, the ACCEL_MEM0 and ACCEL_MEM1 memories
of the accelerator are shared as ping-pong ADC buffers. This
register bit needs to be set during this time, so that while the
digital front end writes ADC samples to the ping buffer, the
accelerator automatically accesses the pong buffer, and vice
versa. At the end of the active transmission portion of a frame,
this bit can be cleared, so that all the four local memories can
be accessed independently.

TRIGMODE 3 Yes

Trigger mode control:
This parameter-set register is used to control how the state
machine and the operations of the accelerator are triggered for
each parameter set.
The following modes are supported:
• 000b – Immediate trigger
• 001b – Software trigger
• 010b – Ping-pong switch based trigger (applicable only when
FFT1DEN is set)
• 011b – DMA-based trigger

CR42ACCTRIG 1 No

Software trigger bit:
This register bit is relevant whenever software triggered mode
is used (for example, TRIGMODE = 001b). Whenever software
triggered mode is configured for a parameter set, the state
machine keeps monitoring this register bit and waits as long
as the value is zero. The main processor software can set this
register bit, so that the state machine gets triggered and starts
the accelerator operations for that parameter set.

Table 4.1: State machine registers. [4]
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Register Width Parameter
set Description

DMA2ACCTRIG 16 No

DMA trigger register:
This register is relevant whenever DMA triggered mode is used
(for example, TRIGMODE = 011b). Whenever a channel has
finished copying input samples into the local memory of the
accelerator and wants to trigger the accelerator, the procedure
to follow is to use a second linked DMA channel to write a 16-
bit one-hot signature into this register to trigger the accelerator.
In DMA triggered mode, the state machine keeps monitoring
this 16-bit register and waits as long as a specific bit (see
DMA2ACC_CHANNEL_TRIGSRC) in this register is zero. The
second linked DMA channel writes a one-hot signature that
sets the specific bit, so that the state machine gets triggered
and starts the accelerator operations for that parameter set.

DMA2ACC_
CHANNEL_
TRIGSRC

4 Yes

DMA channel select for DMA completion trigger:
This parameter-set register is relevant whenever DMA triggered
mode is used (for example, TRIGMODE = 011b). This register
selects the bit number in DMA2ACCTRIG for the state machine
to monitor to trigger the operation for that parameter set.

CR4INTREN 1 Yes

Completion interrupt to main processor:
This parameter-set register is used to enable/disable interrupt
to the main processor upon completion of the accelerator
operation for that parameter set. If enabled, the main processor
receives an interrupt from the Radar Hardware Accelerator at
the end of operations for that parameter set, so that the main
processor can take any necessary action.

PARAMDONESTAT

&
PARAMDONECLR

16
&
16

No

Parameter-set done status:
This read-only status register can be used by the main processor
to see which parameter sets are complete that led to the
interrupt to the main processor. The individual bits in this 16-
bit status register indicate which of the 16 parameter sets have
completed. These status bits are not automatically cleared,
but they can be individually cleared by writing to another
16-bit register: PARAMDONECLR.

Table 4.1: State machine registers. [4]
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Register Width Parameter
set Description

DMATRIGEN 1 Yes

Completion trigger to DMA:
This parameter-set register is used to enable DMA channel
trigger upon completion of the accelerator operation for that
parameter set. This trigger mechanism enables the accelerator
to hand-shake with the DMA so that output data samples
are copied out of the accelerator local memory. If enabled,
the accelerator triggers a specified DMA channel, so that the
output samples can be shipped from the local memory to Radar
data memory.

ACC2DMA_
CHANNEL_
TRIGDST

4 Yes

DMA channel select for accelerator completion trigger:
This parameter-set register is used to select which of the 16
DMA channels allocated to the accelerator should be trig-
gered upon completion of the accelerator operation for that
parameter set. This register is to be used in conjunction with
DMATRIGEN.

CR42DMATRIG 16 No

Trigger from processor to DMA:
This register can be used by the processor to trigger a DMA
channel for the first time, so that a full sequence of repeated
operations between the DMA and the accelerator gets kick-
started.

Table 4.1: State machine registers. [4]

4.2.2 Input and output formatters

The input and output formatters are the operational blocks that interface the
computational unit with the accelerator local memories. To operate efficiently with
the latters, this two modules has a flexible way of accessing to the stored data,
very similar to the EDMA multidimensional access patterns. The input and output
formatters can also perform different types of data manipulation, since the samples
need to be in a 24-bit complex format for the calculations.

The access to the source and the destination memory needs to be programmed in
detail in order to make the operation independent of the main processor. The first
parameters to be set are the source and destination addresses that, as mentioned,
can not be in the same local memory. Then the sample width and type need to be
specified between 16 and 32 bits for the former and real or imaginary for the latter.
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The flexibility of this operational blocks lies in the programmable access pat-
terns and the possibility to perform various iterations back-to-back. The patterns
are programmed using different parameter-set registers that specify for example
how many bytes there are between a sample and the following (SRCAINDX and
DSTAINDX), how many samples a single operation has to process (SRCACNT and
DSTACNT), how many bytes there are between the starting address of an iteration
and the following (SRCBINDX and DSTBINDX) and how many back-to-back iterations
have to be performed (REG_BCNT).
These registers are explained in detail in Table 4.2.

Figure 4.3: Example of source memory with the values of the input formatter
registers. [4]

To understand better the operations of the input and output formatters an example
from HWA User’s Guide is reported. In Figure 4.3 the source memory in a first
dimension FFT case is analysed.

The colored cells represents the samples received from the four RX antennas
of the same transmitted chirp. In this case the data are in a 16-bit real and
16-bit imaginary format and the number of samples per RX is 128. The register
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REG_BCNT is set to three (4 − 1) since four FFT iterations, one for each RX
antenna, must be performed. Every clock cycle the input formatter can fetch a
complex sample, format it and send it to the core computational unit in order to
be processed.

As mentioned, the computational unit works with 24-bit parallelism so each sample
has to be scaled or extended to the correct number of bits depending on the initial
width. Also this operation can be adjusted by the processor specifying, in the case
of 16-bits samples, how many bits to pad at the MSB or, in the case of 32-bits width,
how many MSBs to clip. The input formatter will treat the samples according to
whether they are signed or not.

These considerations are also valid for the output formatter taking into account
that the operation is reversed, that is, when the results need to be stored in 32-bits,
a padding is applied while, if the 2 bytes representation is chosen, a clipping is
performed.

Another feature of the input formatter is the automatic zero padding when per-
forming an FFT. In fact, if the number of input samples is not a power of two, this
modules adds zeros until the programmed FFT size is reached so that the core
computational unit can operate correctly.

To continue with the same example, the destination local memory with the output
formatter parameters is represented in Figure 4.4. As can be seen the output
samples are stored in a transposed manner. The offset between consecutive samples
is 16 bytes corresponding to the size of the sample (4 bytes) times the number of
RX antennas. The index between two consecutive iterations is 32 bits to effectively
interleave the processed samples.

Table 4.2 then explains in detail the registers of the two formatters and their
purpose.
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Figure 4.4: Example of destination memory with the values of the output for-
matter registers. [4]

Register Width Parameter
set Description

SRCADDR
&
DSTADDR

16
&
16

Yes

Source and destination start address:
These registers specify the starting address of the input and output
samples. These are byte-address and these 16-bit registers cover
the entire address space of the four local memories (4 × 16KB
= 64 KB). The four accelerator local memories are contiguous in
the memory address space and any of them can act as the source
or destination memory (as long as the same memory bank is not
configured to be used as both at the same time).

Table 4.2: Input and output formatters registers. [4]
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Register Width Parameter
set Description

SRCACNT
&
DSTACNT

12
&
12

Yes

Source and destination sample count:
These registers specify the number of samples (minus 1) to be
read from or written to the local memory for every iteration. The
sample count is in number of samples, not number of bytes. For
example, the sample count can be specified as 255 (0x0FF) in a
case where 256 samples must be processed. Note however that
the sample count register does not always match the FFT size.
This can happen when zero-padding of input samples is required
or when only a part of the FFT bins must be written to memory.

SRCAINDX
&
DSTAINDX

16
&
16

Yes

Source and destination sample index increment:
These registers specify the number of bytes separating successive
samples in the source memory or to be written to the destination
one. For example, a value of DSTAINDX = 16 means that succes-
sive samples written to the destination memory should be separated
by 16 bytes. The maximum value allowed for these registers is
32767.

REG_BCNT 12 Yes

Number of iterations:
This register specifies the number of times (minus 1) the processing
should be repeated. This register can be used to process the four
RX chains back-to-back – for example, a value of REG_BCNT =
3 means that the processing (say first dimension FFT processing)
is repeated four times. Note the distinction between the NLOOPS
register of the state machine block and the REG_BCNT register
of the input formatter block. The NLOOPS register specifies how
many times the state machine loops through all the configured
parameter sets (with each time possibly awaiting a trigger), whereas
the register REG_BCNT specifies how many times the input
formatter and the computational processing of the accelerator is
iterated back-to-back for the current parameter set (without any
intermediate triggers).

Table 4.2: Input and output formatters registers. [4]
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Register Width Parameter
set Description

SRCBINDX
&
DSTBINDX

16
&
16

Yes

Source and destination offset per iteration:
These registers specify the number of bytes separating the starting
address of samples for successive iterations. For example, when us-
ing four iterations to process the four RX chains, these registers can
be used to specify the offset in the address between the successive
RX chains. Note the distinction that SRCAINDX and DSTAINDX
specify the number of bytes separating successive samples for a
particular iteration, whereas SRCBINDX and DSTBINDX specify
the number of bytes separating the starting address of the first
sample for successive iterations. The maximum value allowed for
these registers is 32767.

SRCREAL
&
DSTREAL

1
&
1

Yes

Complex or real input and output:
These registers specify whether the input and output samples are
real or complex. A value of 0 implies a complex sample and a value
of 1 implies real input or output. When real input is selected, the
input formatter block automatically feeds zero for the imaginary
part, while if real output is selected, the output formatter module
automatically stores only the real part into the destination memory.
This is useful when the core computational unit is configured to
output magnitude or log-magnitude values.

SRC16b32b
&
DST16b32b

1
&
1

Yes

Software trigger bit:
These registers specify whether the samples are to be read or
written as 16-bits or 32-bits wide. A value of 0 implies that the
samples are 16-bits wide each (in case of complex data, real and
imaginary parts are each 16 bits wide). A value of 1 implies that
the samples are 32-bits wide each.

SRCSIGNED
&
DSTSIGNED

1
&
1

Yes

Input and output sign-extension mode:
These registers, when set, specify that the samples are signed
numbers and hence, sign-extension or signed-saturation at the
MSB is required when converting 16- bit or 32-bit words to the
computational unit’s 24-bit wide samples or vice versa.

Table 4.2: Input and output formatters registers. [4]
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4.2.3 Core computational unit
The core computational unit can perform various mathematical operations that are
commonly used in Radar processing such as Fast Fourier Transform, log-magnitude,
Constant False Alarm Rate, and so on. As mentioned, it accepts 24-bit complex
numbers as input samples at a rate of one per clock cycle and, after a variable
latency, produces the results with the same throughput.

There are two main path to process the samples: one for executing window-
ing, FFT, log2 and magnitude operations and one for the CFAR algorithm. Only
the first branch will be presented since the CFAR hardware implementation is
beyond the scope of this paper.

The architecture of the computational unit is represented in Figure 4.5 and shows
that various operations can be performed in series as well as singularly. This
provides to the user the flexibility to choose from different possible configurations
for every parameter-set. As for the other modules of the accelerator engine, to
program the operational block various configuration registers are used, such as the
ones written in Figure 4.5 to control the multiplexers.

Figure 4.5: Core computational unit block diagram. [4]
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Windowing

The sub-block responsible for the windowing operation is the first in the FFT
processing chain (excluding the pre-processing module that will not be used). Win-
dowing operation is often required prior to performing FFT, to mitigate the sinc
roll-off leakage from one strong FFT bin to the adjacent bins.

To implement this useful operation the input samples are multiplied by coefficients
stored in a dedicated programmable RAM. The format of the weights is 18-bit,
signed and two’s complement. After the multiplication with the input samples the
results need to be brought back to 24-bit parallelism so excessing LSBs are dropped.

The coefficients memory has a size of 1024 words so more than one window
can be stored and then used when necessary. If the coefficients are symmetric,
only half of the window needs to be stored so that the space in the RAM can be
optimized.

FFT

The FFT sub-block, as said, works with 24-bit parallelism and has a throughput
of one sample per clock cycle. It supports FFT sizes from 2 to 1024 (the powers
of two between these numbers), while for bigger operations a chaining of more
computations in needed. Depending on the chosen FFT size, an appropriate number
of butterfly stages is used (up to a maximum of ten).

Figure 4.6: Single butterfly stage diagram. [4]

The schematic of a single stage in represented in Figure 4.6 and shows that after
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the first operation the samples need to loose one extra bit to maintain the same
parallelism. To account for that, the user can decide for each stage to divide the
result by 2 (rounding the LSB) or to saturate the MSB.

After the rounding there is a multiplication operation with the twiddle factors.
These coefficients are stored in a ROM as 24-bit complex data and, before the
multiplication, they loose 3 LSBs to avoid overflow. In the process dithering can
be optionally applied.
"The purpose of dithering is to eliminate any repetitive quantization noise patterns
from degrading the SFDR of the FFT. [...] For dithering, an LFSR is used to
generate a random pattern, for which the LFSR seed must be loaded with a non-zero
value [...]. The SFDR performance of the FFT, with dithering enabled, is better
than –140 dBc" [4], as shown in Figure 4.7.

Figure 4.7: SFDR performance. [4]

Magnitude and log-magnitude processing

These sub-blocks perform absolute value and base two logarithm computation.
Since they are directly after the FFT module, the output stream of samples can be
immediately post-processed.

The Log2 sub-block uses a look-up table to implement the operation while the
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magnitude computation is performed using a Levitt and Morris approximation.
The latter, given a complex number I+jQ, defines the quantities U = max(|I|, |Q|)
and V = min(|I|, |Q|).
The following operation is then applied to compute the magnitude:

Mag ≈ max(U + V/8,7U/8 + V/2)

With regard to the computation of base two logarithm the following definition of
generic unsigned number is used: N = 2k(1 + f).
This means that log2(N) = k + log2(1 + f). Starting from this concept, the
look-up table of the module implementation provides the second addendum (i.e.
log2(1 + f)). The performance of the log2 module is shown in figure 4.8.

Figure 4.8: Log2 performance. [4]

The results of this sub-block are in a 16-bit real fixed point format with 5 bits
of integer part. Since the parallelism must get back to 24 bits, if the log2 and
magnitude blocks are enabled, 8 zeros are padded to the MSB.

Statistics

Another important operational block is the one responsible for computing statistics
such as the sum and the maximum value of the output samples. In Figure 4.9 is
reported a detail of the core computational unit’s block diagram.
At the end of the FFT computational branch the 24-bit complex samples can
either be sent directly to the output formatter or they can be processed to obtain
some useful informations such as the sum and the maximum of the processed values.
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Figure 4.9: Statistics block detail. [4]

The statistics are computed for each iteration of the processing and they are
logged in dedicated registers that can be read by the main processor. There are
four of these register-sets for each statistic so, if the number of iterations is greater
than four, these informations need to be stored in the destination local memory of
the accelerator.
To do that a parameter-set register (namely FFT_OUTPUT_MODE) needs to be
properly configured in order to choose which data should be fed to the output
formatter.

The possible configurations are reported in Table 4.3.

FFT_OUTPUT_MODE Register I Channel Output Q Channel Output

00b - Default output mode Main output of core computational unit
10b – Max statistics output
(One output per iteration) Max Value Max Index

11b – Sum statistics output
(One output per iteration) Sum of I values Sum of Q values

Table 4.3: FFT computational branch output modes. [4]

Only the sum operation is now presented since, to compute the maximum values
of the FFT peaks, more complex algorithms will be used.

44



Hardware Accelerator description

As mentioned, the sum statistic is computed on a "per-iteration" basis and this
implies that many values can be accumulated every time. To avoid saturation, the
parallelism of the sum output is 36 bits so that 12 bit of MSB growth are allowed
from the standard computational unit’s data width.

If the number of iteration is lower than 4 the statistics are saved in the regis-
ters maintaining the 36-bit format while, if more iterations are needed, the data
must be scaled down to 24 bits to match the Output Formatter specifics.
To do that, the user can configure the number of LSBs to drop writing in the
common accelerator register called FFTSUMDIV.
To be noted that the Output Formatter in this case is not meant to be used
normally since there is only one value per iteration so its configuration is standard
and it provides 32-bit complex samples even if magnitude values are being summed.

Computational Unit’s registers

Table 4.4 presents the main computational-related registers and their purpose.

Register Width Parameter
set Description

WINDOW_EN 1 Yes

Windowing Enable:
This register-bit enables or disables the pre-FFT windowing oper-
ation. If this register is set to 1, then the windowing is enabled,
otherwise, it is disabled. The exact window function (coefficients)
to be applied is specified in a dedicated Window RAM.

FFT_EN 1 Yes
FFT Enable:
This register-bit is used to enable the FFT computation. If
FFT_EN = 1, then the FFT computation is enabled. Otherwise,
it is disabled (bypassed).

ABSEN 1 Yes

Magnitude Enable:
This register-bit is used to enable the magnitude calculation. If this
register bit is set, then the magnitude calculation is enabled, else
it is bypassed. When enabled, the magnitude (absolute value) of
the input complex samples are calculated using Levitt and Morris
approximation and the resulting magnitude value is sent on the
I-arm of the output. The Q-arm is made zeros.

Table 4.4: Core computational unit registers. [4]
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Register Width Parameter
set Description

LOG2EN 1 Yes

Log2 Enable:
This register-bit is used to enable the Log2 computation. If this
register bit is set, then the Log2 computation is enabled, else it is
bypassed. Note that setting this register bit only makes sense if the
inputs to the Log2 computation are unsigned real numbers, such as
when the Magnitude Enable bit (ABSEN) is also set. When enabled,
the Log2 of the magnitude of the input samples is calculated and
sent out on the I-arm of the output. The Q-arm is made zeros.

WINDOW_START 10 Yes

Windowing coefficients start index:
This register specifies the starting index of the window coefficients
within the Window RAM. The value of this register ranges from 0
to 1023. The purpose of this register is to allow multiple windows
(for example, one window of 512 coefficients and another window of
256 coefficients) to be stored in the window RAM and one of these
windows can be used by programming this start index register
appropriately in the current parameter set.

WINSYMM 1 Yes

Window symmetry:
This register-bit indicates whether the complete set of window
coefficients are stored in the Window RAM or whether one half of
the coefficients are stored. If this register bit is set, it means that
the window function is symmetric and therefore, only one half of
the window function coefficients are stored in the Window RAM.

FFTSIZE 4 Yes

FFT size:
This register specifies the FFT size. The mapping of the FFTSIZE
register to the actual FFT size is as follows: Actual FFT size =
2 elevated to FFTSIZE. For example, a register value of 0110b
specifies that the FFT size is 64. The maximum FFT size that is
supported is 1024. Therefore, this register value is never expected
to exceed 1010b. For large-size FFT (> 1024 point) that might be
useful for industrial level-sensing applications, an FFT stitching
procedure is supported, which is based on performing multiple
smaller size FFTs in a first step and then stitching them in a second
step (using a subsequent parameter set).

Table 4.4: Core computational unit registers. [4]

46



Hardware Accelerator description

Register Width Parameter
set Description

BFLY_SCALING 10 Yes

Butterfly scaling:
This register is used to control the butterfly scaling at each stage
of the FFT structure. Because the maximum FFT size is 1024,
there are up to ten butterfly stages. Each butterfly stage has an
add-and-subtract structure, at the output of which the bit-width
would temporarily increase by 1 (from 24 to 25 bits wide). If
BFLY_SCALING = 0, then the 25-bit output is saturated at the
MSB to get back to 24 bits. Otherwise, it is convergent-rounded
at the LSB to get back to 24 bits. The user can thus control
the scaling at each of the 10 butterfly stages. The LSB of this
register corresponds to the last stage and the MSB of this register
corresponds to the first stage. For an FFT size of 64, only the LSB
6 bits are relevant.

DITHERTWIDEN 1 No

Twiddle factor dithering enable:
This register-bit is used to enable and disable dithering of twiddle
factors in the FFT. The twiddle factors are 24-bits wide (24-bits
for each I and Q), but they are quantized to 21-bits before twid-
dle factor multiplication. This quantization is implemented with
dithering on the LSB, to avoid periodic quantization pattern af-
fecting SFDR performance of the FFT. TI recommends keeping
this register bit set to 1 (i.e. dithering enabled), with appropriate
LSFR seed loaded.

LFSRSEED 29 No

Seed for LFSR (random pattern):
For twiddle factor dithering, there is an LFSR that is used, whose
seed value is loaded by writing to this 29-bit LFSRSEED register.
The LFSRSEED register should be set to any non-zero value, for
example 0x1234567.

FFT_OUTPUT_
MODE 2 Yes

FFT Path output mode:
This register specifies the output mode of the FFT path. Instead
of the default mode where the main output of the core computa-
tional unit is sent to the destination memory, this register can be
configured such that either the max or sum statistics can be sent
to the destination memory.

Table 4.4: Core computational unit registers. [4]
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Register Width Parameter
set Description

FFTSUMDIV 5 No

Right-shifting for Sum statistic:
This register specifies the number of bits to right-shift the sum
statistic before it is written to destination memory. The internal
sum statistic register is 36-bits wide, but this statistics value needs
to be scaled down to 24 bits to match the data path width going
to the Output Formatter. This register specifies how many LSBs
to drop to convert the sum statistics to 24-bit value.

Table 4.4: Core computational unit registers. [4]
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Implementation

In this section the implementation of the Hardware Accelerator functions in the
radar software will be described. The integrated development environment (IDE)
used is the Texas Instrument’s Code Composer Studio and the version of the
software development kit (SDK) is 3.0.0.8, which includes many useful functions.

5.1 Common configurations
The first step of the process is to include the HWA library in the project. To do
that the library search path must be specified in the linker options. In this case the
files to be included are in <sdk_install_directory>/packages/ti/drivers/hwa/lib
directory. In the same folder the library file must be also specified and its name is:
libhwa_xwr18xx.ae674.

Secondly, the HWA local memory must be defined (as HWA_RAM) in the
dss_mmw_linker.cmd file. The offset of this memory is 0x21030000 and the
length is, as said, 16KB ∗ 4 (or 0x00010000).
The .hwaBufs section is also added, which is responsible for loading the accelerator
RAM with the NOINIT option.
A memory buffer is then defined to produce the M0, M1, M2 and M3 partition
addresses and the #pragma DATA_SECTION command links them to the memory
section just defined.

The HWA memory buffer is used in the definition of the destination addresses
of various operations such as the ADC sampling(M0), the output of the first
dimension FFT ping (M2) and pong (M3) channels and the input and output of
the second dimension FFT (explained in detail later).

49



Implementation

An Hardware Accelerator handle is defined in the MmwDemo_DSS_dataPathCon-
text_t_ structure to manage the HWA driver.
In the same header file (dss_data_path.h) the prototypes of two accelerator-related
functions are added: MmwDemo_hwaInit and MmwDemo_hwaOpen.
Both methods call the homonymous functions defined in the already mentioned
SDK library in order to respectively initialize the HWA and open the accelerator
instance. These methods will be then added to the dssDataPathInit function (in
the dss_main.c file), which is responsible for initializing the drivers of the chip
such as ADC and EDMA.

5.2 First dimension FFT
The first step for implementing in hardware the range FFT is to configure the ADC
buffer.
As explained in Section 4.2.1, the ADC buffer can be shared with the Hardware
Accelerator local memories to have the samples ready at the end of each chirp.
To implement this feature the register FFT1DEN must be set to 1 but first the
dssDataPathConfigAdcBuf function must be adjusted to the HWA settings.
For example the ADC must have complex output format, real part in the MSB
bytes while imaginary part in the LSB bytes, non-interleaved channel mode and
chirp threshold equal to 1 (i.e. every chirp the ADC switch from ping to pong or
vice versa).

The offset between the addresses of the RX antennas is also changed to (16∗1024)/4
(because 16 KB is the size of the HWA local memory and four is the number of
RX antennas). This means that, being the samples of 4 bytes each (two I and two
Q), a maximum of 1024 range bins can be set.

The MmwDemo_dataPathConfig_FFTs_HWA function is then needed to per-
form the preliminary FFT configurations and its purpose is:

• To disable and reset the Hardware Accelerator in order to modify the parameter-
sets.

• To compute the window coefficients for the range FFT and to save them in
the ad hoc RAM explained in Section 4.2.3. As for the DSP version of the
software, the window type chose for first dimension FFT is Blackman.

• To enable the HWA interrupt for NUMLOOPS completion, setting a callback
function whose only operation is to raise a flag (hwa_1d_done_flag).

• To enable twiddle coefficients dithering by writing in TWIDDITHERENABLE
and LSFRSEED registers respectively 1 and a non-zero value.
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5.2.1 HWA parameter-sets configuration
The Hardware Accelerator range FFT can now be configured. The first dimension
block diagram is shown in Figure 5.1. Each part of the schematic will be explained
in detail starting with the parameter-sets configuration (represented as light blue
boxes). EDMA channels and their purposes will then be discussed.

The first step is configuring the registers common for all the parameter-sets:

• The FFT1DEN must be set to 1 to have ADC buffer samples directly available.

• The PARAMSTARTIDX and PARAMSTOPIDX registers are respectively set to
0 and 3 because, as shown in Figure 5.1, four parameter-sets are programmed
(two dummy and two operational).

• NUMLOOPS is set to the number of Doppler bins times the number of TX
antennas divided by 2 (this factor is present because every loop two chirp are
processed).

The configuration of each parameter-set is now explained starting with the ping-
related ones. The first parameter-set is called dummy because it is programmed
only to trigger the computation of the accelerator.

The trigger mode is set to DMA-based but, as can be read in Figure 5.1, there
is also a software trigger and that seems to be an impossible configuration.
The explanation of this conflict is that in the SDK there is a function called
HWA_setDMA2ACCManualTrig that lets the user manually trigger the execution
of the state machine waiting on DMA.

The software trigger is used only to start the computations since, after the first
loop, the dummy parameter-set will be then effectively triggered by the DMA
completion. In particular, the HWA’s DMA channel to be triggered is the number 0.

The second parameter-set is programmed to perform the FFT computation and its
configuration is now explained:

• The trigger mechanism is based on the Digital Front-End switch from ping to
pong (as discussed in Section 4.2.1).

• The source memory is M0.

• The number of samples to be processed in a single FFT (SRCACNT) is equal
to the number of ADC samples (that can be a lower value than the FFT size).
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Figure 5.1: First dimension FFT block diagram.

52



Implementation

• The number of bytes between a sample and the following (SRCAINDX) is equal
to four since the data representation is 16-bit I and 16-bit Q.

• The number of back-to-back operations (SRCBCNT) is equal to the number of
RX antennas because a single chirp is processed per iteration.

• The offset between the starting address of an iteration and the following
(SRCBINDX) is equal to the offset configured in the dssDataPathConfigAdcBuf
function (i.e. 16 KB/4).

To be noted that the destination memory layout is transposed with respect to the
source one (as can be seen in Figure 4.3 and 4.4). This choice is made because
it increases DMA efficiency. In fact, since the bus connecting the HWA and the
processor is 128 bit wide and the EDMA can perform a transfer per cycle, the
bandwidth is exploited if 16 bytes are transferred at a time.
In this case, the same range bin for each RX (up to a maximum of four) is moved
and, apart from improving the efficiency of the single transposed transfer, it also
makes the access to the range bins contiguous for the second dimension processing.

The configurations of the destination memory are the following:

• The destination memory is M2.

• The number of output samples per operation (DSTACNT) is equal to the size
of the FFT.

• The number of bytes between an output sample and the following (DSTAINDX)
is the size of the single complex sample times the number of RX antennas
(transposed write).

• The offset between the start address of an iteration and the following (DST-
BINDX) is equal to the size of a single sample (interleaved RX).

The FFT operation settings are now presented:

• The FFT operation is enabled (FFTEN register is set to 1).

• The FFT size is equal to the base-two logarithm of the programmed number
of range bins.

• Windowing is enabled (WINDOW_EN set to 1).

• The window-symmetry option is set to 0 and the window address offset is the
one defined in the MmwDemo_dataPathConfig_FFTs_HWA function (for the
range FFT is 0).
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• The log-magnitude post processing is disabled since it is not needed.

• The butterfly scaling needs to be revisited for all FFT sizes and data widths.
For the configuration of the software (256 range bins and 16-bit complex
samples) this register is set to 0x7, meaning that the last three butterfly stages
operate a factor 2 scaling to prevent saturation.

The last configuration of the ping range FFT is specifying the type of interrupt for
parameter-set completion: in this case a DMA interrupt event is generated in order
to trigger the transfer of the computed output samples from M2 to RadarCube
matrix.

The configuration of the two pong parameter-sets is basically the same. For
the dummy parameter-set the only different setting is the source trigger channel
(DMA channel number 1 instead of 0 of the accelerator). With regard to the
pong FFT parameter-set the source and destination memories need to be changed
(respectively to M1 and M3) and also the output DMA trigger channel is different.

5.2.2 EDMA configuration
Once the Hardware Accelerator is set, the following step is to configure the EDMA
transfers. Since the ADC buffer is shared with the HWA memories there is no need
for an input transfer. Again, the ping and pong configurations are very similar so
the former will be discussed in detail while the differences of the latter will be then
reported.

Starting with the EDMA transfer represented in Figure 5.1 as EDMA A, it is
triggered by the FFT parameter-set completion that generates an event on DMA
channel 0 of the HWA (called EDMA_TPCC0_REQ_HWACC_0 ). After being
triggered, this transfer starts sending the output samples to the RadarCube matrix
(stored in L3 memory) and it ends when half of the total chirps in a frame are
transferred (the other half are managed by the pong EDMA). This is possible
thanks to the intermediate chaining option of the EDMA IP.

Every time a ping chirp is sent to the RadarCube matrix, the transfer A is stopped
and the chained EDMA B is automatically started. This EDMA channel does
not actually transfer data but it is only used to write a one-hot signature to the
DMA2ACCTRIG register in order to trigger the ping dummy parameter-set of the
Hardware Accelerator.
The SDK function to do that is called HWA_getDMAconfig and it returns a struc-
ture filled with the correct parameters with which an EDMA transfer has to be
programmed to effectively trigger the desired accelerator channel.
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As shown in Figure 5.1, both EDMA A and EDMA B have a linked shadow
transfer (linking is represented by light blue arrows while red arrows mean chain-
ing).
The shadow channels are used to reload the parameters of the respective EDMA
channels once these have finished. The linking feature makes the reprogramming
of the EDMA unnecessary (it becomes a one-time only programming).

The pong EDMA configuration is basically the same except that the EDMA
C has a destination address offset with respect to the ping equal to the number of
receiving antennas times the size of the single complex sample (offset represented
in bytes). Another difference of this channel with respect to the EDMA A is
that, once the transfer is complete (after that the second half of the chirps is
sent to L3 memory), an interrupt event is generated and a corresponding flag
(edma_1d_done_flag) is raised.

5.2.3 Range FFT implementation conclusion
To implement the described functions in the software presented in Section 3 some
final modifications are needed.
The first step is to add the HWA configuration functions in the dssDataPathConfig
method (in dss_main.c file), which is responsible for the one-time programming of
the main drivers such as ADC and EDMA.
The methods added are:

• MmwDemo_dataPathConfig_FFTs_HWA: the purpose of this function has
been already discussed in Section 5.2.

• MmwDemo_config1D_EDMA: as the name implies, it is the method responsi-
ble for configuring the EDMA channels for first dimension processing.

• MmwDemo_config1D_HWA: the parameter-set configurations for range FFT
are done in this function.

• MmwDemo_dataPathTrigger1D: it enables the HWA instance and manually
triggers both the ping and pong dummy parameter-sets. This function is
called before the start of Front End chirp generation so that the accelerator is
immediately ready for processing.

Also in the dssDataPathProcessEvents some little modifications are needed. In
the case of a chirp_evt message, a counter is needed to know when the total
number of chirp per frame is reached. This operation is done in a function called
chirpProcess which, in the old version of the software, was used to process the
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chirps as well. This processing is not needed anymore since it is automatically done
by the HWA. Once the end of the frame is reached, a function is added to wait the
HWA loop completion and the related EDMA transfers. This is done by checking
if the flags in the callback functions are asserted.

After the range FFT is completed, the inter frame processing is done (the de-
tails of which will be discussed in Section 5.3). Now, since the RadarCube matrix
has a different layout with respect to the previous version of the software, the
EDMA transfers that read from that matrix must be modified. In fact, while the
size of the samples and the number of bins remains the same, the offset between
them is different.
For example the offset in bytes between two Doppler bins, that used to be num-
RxAntennas*numRangeBin*sizeof(cmplx16ImRe_t), becomes equal to numVirtu-
alAntennas*sizeof(cmplx16ReIm_t).

Another difference of the RadarCube matrix is the real and imaginary part are
swapped (i.e. the I is stored in the 16 MSBs while the Q in the LSBs). This change
is due to the Hardware Accelerator specifics.
The samples of the matrix are used to compute the Doppler FFT and, to account
for the swap, there is a function in the SDK library that performs the windowing
operation and then reverse the output samples.

The following modification implies that, just before the start of the successive frame,
the two aforementioned functions MmwDemo_config1D_HWA and MmwDemo_da-
taPathTrigger1D must be called to reconfigure the HWA parameters and to trigger
the operations.

Since the first dimension FFT is now done by the Hardware Accelerator the old
DSP processing chain can be dismantled. The first step is removing the ADCdataIn
buffer and the related EDMA transfers, that used to bring the data from the output
of the ADC to the input of the DSP. The method interChirpProcess, where the
range FFT was performed, can also be removed.

Other old functions that are not used anymore due to the hardware FFT implemen-
tation are: the one responsible for generating the window for DSP computation
and the one that calculates the twiddle factors for range FFT.
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5.3 Second dimension FFT

The second dimension processing is programmed and executed in the inter frame
period, that is the time between two successive groups of transmitted chirps. To
clarify the timing of the operations, Figure 5.2 is reported.

Figure 5.2: General timing of radar processing.

The preliminary operation for implementing the Doppler FFT is to compute the
windowing coefficients and to save them in the HWA’s designated RAM.
As for the DSP version of the software, the window type chose for second dimension
FFT is Hanning. This configuration is done, for simplicity, in the same function of
the range FFT (MmwDemo_dataPathConfig_FFTs_HWA explained in Section
5.2).

5.3.1 HWA parameter-sets configuration

The Radar Hardware Accelerator second dimension processing is configured in the
function MmwDemo_config2D_HWA. The block diagram is represented in Figure
5.3.

As for the first dimension processing, the configuration begins with the regis-
ters common for all the parameter-sets:

• The FFT1DEN register must be set to 0 since the input samples come from
the main memory and not from the ADC buffer.

• The PARAMSTARTIDX and PARAMSTOPIDX registers are respectively set
to 4 and 11 because eight parameter-sets are programmed: four for FFT
computation, two for the sum between virtual antennas and two for the
formatting of the results.
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Figure 5.3: Second dimension FFT block diagram.
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• NUMLOOPS is set to the total number of range bins divided by 4: this factor
is obtained by multiplying the number of ping and pong operations every loop
(2) and the number of range bins processed by the single operation (in this
case is also equal to 2).

The description of the parameter-sets configuration is now presented. As usual,
the ping is treated in detail and the differences of the pong are then discussed.

The first parameter-set is in charge of computing the Doppler FFT of one single
range bin at a time throughout all the chirps.
The configuration is the following:

• The FFT is triggered by DMA event. In fact, the computation needs to wait
the input samples being transferred from the main memory.

• The source memory is M0 and the destination one is M2.

• The FFT operation is enabled (FFT_EN is set to 1) as well as the magnitude
and base two logarithm computation (ABSEN and LOG2EN both set to 1).

• The windowing function is also enabled and the offset corresponding to the
Hanning window is set.

• The output samples are stored as 16-bits real unsigned numbers since the
log2-magnitude is performed.

The second parameter-set is the copy of the first with only two exceptions:

• The trigger mode is set to immediate since there is no need to wait external
events.

• An offset equal to the size of the range bin processed by the first parameter-set
(numDopplerBin*numVirtualAntennas*sizeof(cmplx16ReIm_t)) is added to
the source memory starting address. The same is done for the destination
memory with a different offset (numDopplerBin*numVirtualAntennas*sizeof-
(uint16_t)) to avoid overwriting the previous results.

The third ping-related parameter-set performs the sum of the values of the virtual
antennas in order to have a better estimation of the average received power in each
range and Doppler bin. This operation is performed with the statistics block of
the FFT branch described in Section 4.2.3.
The configuration is the following:

• The trigger mode is set to immediate.

• The source memory is M2 and the destination one is M0.
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• The computational branch is set to FFT.

• All operational blocks are disabled except for the statistics one.

• The register FFT_OUTPUT_MODE is set to 11b to enable the writing of the
sum results to the destination memory.

• Every iteration a number of samples equal to the number of virtual antennas
is processed by the computational unit.

• The FFTSUMDIV register is set to drop 8 LSBs.

• The output samples are stored as 32-bit I and 32-bit Q signed data since the
statistics block has fixed output format.

The last parameter-set of the ping processing is responsible for formatting the
samples to the correct width and data representation.
This parameter-set is needed because the statistics block stores the samples in a
32-bit complex format regardless of the type of data treated.
The Hardware Accelerator settings are the following:

• The trigger mode is set to immediate.

• The source address is the start of M0.

• The destination address is the starting address of M2 memory plus an offset
equal to the size of the results of the first two parameter-sets (numDopplerBins*
numVirtualAnt*numRangeBinsPerIter*sizeof(uint16_t)).

• All operational blocks are disabled including the statistics one.

• The accelerator only requires a single iteration in which it processes num-
DopplerBins*numRangeBinsPerIter samples.

• The input samples are, as said, in a 32-bit signed complex format while the
output is configured to be 16-bit unsigned real.

After the registers configuration, a DMA interrupt is enabled for this last parameter-
set in order to correctly trigger the output EDMA transfer at the end of ping
computations.

The pong configuration is literally copied from the ping parameter-set with the
only modification being the source and destination memory (respectively M1 and
M3) and the different source trigger DMA channel for the first parameter-set.
Of course also the output interrupt must generate an event on a different channel
to trigger the pong EDMA.
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5.3.2 EDMA configuration

The EDMA transfers of the second dimension processing are used to bring the data
of the RadarCube matrix to the accelerator memories and to send the results of
the computation to the range/Doppler matrix (DetMatrix).
As usual a ping pong mechanism is exploited to transfer all the samples efficiently
and the description is mainly focused on the former part.

The configuration of the first EDMA channel (represented as EDMA A) is very
similar to the range FFT’s output transfer but it also has some differences. The
similarities are that both transfers have a linked shadow channel to automatically
reconfigure their parameters and that the chained channel (namely EDMA B) has
a one-hot signature function to trigger the accelerator computation.

The differences are that the first ping channel, as can be seen in Figure 5.3,
is chained to the output transfer. This implies that to work properly it needs to be
started via software.
The MmwDemo_dataPathTrigger2D function is responsible precisely of that, en-
abling the HWA instance and triggering (at the beginning of the loop) simultane-
ously both the ping and the pong input transfer. The samples are therefore brought
to M0 and M1 memories and, once the transfers are complete, the respective
one-hot signature bits are set in order to trigger the HWA computations.

To be noted is the fact that the input EDMA channels work in parallel for the first
iteration of the loop, so that the ping parameter-set (which is the initial one) is
triggered, while the pong waits to be executed. Once the ping HWA parameter-sets
are completed, the pong is executed and it starts immediately since the register to
poll is already set to 1.
After the first iteration the EDMA transfers are alternated normally following the
usual ping-pong pattern.

The ping output transfer (EDMA E) is responsible for sending the results of
the second dimension processing to the range/Doppler matrix in L3 memory. This
transfer is triggered by the accelerator parameter-set number 7 generating a DMA
interrupt on the fourth HWA channel (called EDMA_TPCC0_REQ_HWACC_4 ). This
channel has a linked shadow transfer, a chained one (namely EDMA A) and the
option of intermediate chaining enabled.

The pong EDMA configuration is basically the same with respect to the ping
except that the EDMA F has a destination address offset to interleave the results
that is equal to numDopplerBins*numRangeBinsPerTransfer*sizeof(uint16_t).

61



Implementation

Another difference of this channel is that, once the transfer is complete, an interrupt
event is generated and a corresponding flag (edma_2d_done_flag) is raised.

5.3.3 Doppler FFT implementation conclusion
In this section the last steps for implementing the described functions in the soft-
ware are presented. All the second dimension related methods are added at the
beginning of the interFrameProcessing function, substituting the loop for FFT and
magnitude computation.

The methods called are, in order:

• MmwDemo_config2D_EDMA: with this function all the previously described
EDMA channels are configured. This method could have also been called in
the dssDataPathConfig since it performs a one-time configuration.

• MmwDemo_config2D_HWA: in this method all the accelerator parameter-sets
are configured but the HWA remains disabled.

• MmwDemo_dataPathTrigger2D: as mentioned, this function enables the HWA
and starts the ping and pong input transfers.

• MmwDemo_waitEndOf2D_HWA: this method waits for the pong output
transfer completion by polling the edma_2d_done_flag.

Since the Hardware accelerator can be programmed and, once triggered, it doesn’t
require additional software control, these functions are all what is needed to perform
the second dimension processing and store the results in the range/Doppler matrix
(DetMatrix).

The old DSP processing chain can be now dismantled since it is not needed any-
more. This implies removing the loop where the Doppler FFT and log2-magnitude
operations were computed for each virtual antenna (smaller blue loop in Figure 3.4).
The related EDMA transfers can also be removed such as the channels responsible
for bringing the samples from the RadarCube matrix to the input of DSP or vice
versa from the output to DetMatrix.
The functions used to wait for the end of these EDMA transfers are removed as
well.
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Chapter 6

Results and conclusions

The aim of this work is to optimize the radar processing. That implies improving
the time performance while maintaining the correctness of the computations.

6.1 Results

The first step is therefore to verify that the Hardware Accelerator provides the
same numerical results of the software-computed version.
To do that two successive acquisitions are taken in the same environment, the
former using the old version of the application while the latter using the developed
software. The data of the computations are saved through the PC interface and
analysed with MATLAB®software.

The test is performed placing a corner reflector at a distance of 10 meters and
comparing the values of the range/Doppler matrix (detMatrix) since the latter
is where the results of the second dimension processing are stored. Being the
environment constant, the zero velocity Doppler bin is analyzed.

In Figure 6.1 the content of the matrices throughout an acquisition period of
100 frames is represented. The curves shown in the picture represent range FFT of
the static objects (0th bin).
The main peak is positioned between range bin number 30 and 31 meaning that
the corner reflector is detected between 9.837 and 10.165 meters (since the range
accuracy is 0.3279m).
Other peaks are present between range bin number 75 and 125. These are due to
environment objects (in particular a long metal fence).
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Figure 6.1: Zero velocity bins from the detection matrix of the two softwares.

Figure 6.2: Difference of the two curves.
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The aim of this test was to prove the correctness of the numerical operations so
in Figure 6.2 is shown the difference of the two curves in dB. In the peak-related
range bins the value is less than 1 dB (approximately 0.7).
Also the other peaks have comparable values being around one dB of difference.

On average the values of the range/Doppler matrix of the developed software
are lower by 1.087 dB. Figure 6.3 shows that also the output of the CFAR thresh-
olding algorithm is slightly lower with respect to the DSP version of the software
(on average by 1.093 dB). This means that the signal to threshold ratio remains
constant in both softwares.

Figure 6.3: CFAR threshold comparison.

The difference in the computed range/Doppler matrix values is due to the different
algorithm of magnitude estimation used. In fact, the DSP has a math library in
which the following operation is performed in order to compute the magnitude of
the Doppler FFT output samples:

Mag ≈ (max(|a|, |b|) +min(|a|, |b|) ∗ 3/8)

The Hardware Accelerator, as mentioned in Section 4.2.3, uses the Levitt and
Morris approximation instead.
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To test the performance of both algorithms a comparison is done using a sin-
gle set of Doppler FFT output samples. The results are shown in Figure 6.4 and,
as can be seen, the approximation performed by the HWA algorithm produces a
peak that is around 0.6 dB lower.

Figure 6.4: Comparison of the magnitude estimation algorithms.

The second test is performed to verify the correct detection of targets and the Angle
of Arrival computation. As explained in Section 5 the layout of the RadarCube
matrix changed and so did the related EDMA transfers.
The purpose is to control that the third dimension processing is not affected by
the implementation of the accelerator FFT computations.

The test consists in performing a constant path with a 10 dB corner reflector
and compare the radar detections through the PC interface. The path is reported
in Figure 6.5.

The two softwares are run and the data of the radar are saved to file through the
PC interface. The acquisitions are then analysed with MATLAB®. Figure 6.6 and
6.7 show the results of the acquired data.
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Figure 6.5: Test path. [source: Google Earth]

Figure 6.6: Detection results of the software without the HWA.
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Both Figure 6.6 and 6.7 show the X coordinate of the detected targets versus time
(number of acquisitions) in the first subplot.
In the second subplot is shown the Y coordinate (or distance from the radar in
the longitudinal direction). To be noted that in the left part of the plot there is a
reflection due to the wall behind the radar.
In the third subplot the X-Y coordinates of the detected targets are represented.

Figure 6.7: Detection results of the software with the HWA.

Once the correctness of the results has been proved the following step is to verify
the computational time performance of the software.
As far as the first dimension processing is concerned the main goal is to reach the
real time since, as shown in Figure 5.2, the operations are performed during the
frame time between a chirp and the following.
Apart from that, further reductions of the processing time is not fundamental since
the range FFT is the only computation performed in the inter-chirp period.

The most important time reduction is needed in the inter-frame period instead.

68



Results and conclusions

In fact, during this lapse all the complex algorithms such as tracking and elevation
processing are performed so, since these computations require more time to execute,
the faster the second dimension processing the better.

To verify the second dimension processing performance the two softwares are
run again in a constant environment and, using the DSP cycle profiler, the number
of clock cycles are stored and analysed in MATLAB®.
Two operations are compared between the softwares: the single second dimension
processing and the whole inter-frame function (which contains the former).

The timing of the Doppler FFT and log2-magnitude computations are reported in
Figure 6.8.

Figure 6.8: Time profiling of the second dimension processing.

As can be seen in the graph, the performance of the single computation is really
stable (the variance is close to zero for both curves) and this is due to the fact
that the timing of the FFT, the log2-magnitude and sum operations is not data
dependent.

To compare the results the mean value of the samples is used. To be noted
that the DSP runs at 600 MHz so for the conversion between clock cycles and time
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that value is used.

The results are:

• DSP software version: 5.210 · 106 clock cycles or 4.795ms.

• HWA software version: 6.827 · 105 clock cycles or 1.138ms.

• The ratio of the mean values is: 0.131. This means that the Hardware
Accelerator implementation saves more than 85% of the second dimension
processing time.

The same is done for comparing the performance of the inter-frame processing
which, as shown in Figure 5.2, consists of second and third dimension, CFAR,
tracking and elevation operations.

The results of the profiling are reported in Figure 6.9. The curves have more
variation and that happens because, unlike the second dimension operations, it
is data dependant. In fact, for every detected target some algorithms must be
performed and that requires time.

Figure 6.9: Time profiling of the inter-frame processing.
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The results are:

• DSP software version: 5.695 · 106 clock cycles or 9.513ms.

• HWA software version: 1.119 · 106 clock cycles or 1.848ms.

• The ratio of the mean values is: 0.196. The reduction of clock cycles is
therefore more than 80%.

6.2 Conclusions
The Hardware Accelerator strong advantage is to drastically reduce the time needed
for inter-frame processing that reflects in many useful possibilities.
For example the Frame Repetition Interval can be lowered thus increasing the
number of radar observation per second. Otherwise the number of chirp per frame
can be increased providing more Doppler bins and therefore a better velocity
resolution.

Another benefit of using the Accelerator is that a lot of temporary buffers and also
some mathematical functions are not needed anymore so a good portion of fast
memory can be saved leading to a further software optimization.

The great results in terms of time performance without affecting the compu-
tations’ accuracy will therefore lead to an implementation of the technology in the
softwares of the Politecnico’s radar team.
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