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Abstract

In the last decades the average quality of life improved all over the globe, leading
to an increase of elderly people, that often need assistance in their everyday life.
Contextually the field of service robotics has been trying to fulfill this social need,
providing solutions which can safely coexist in the house. Inside this scenario,
PIC4SeR (PoliTO Interdepartmental Centre for Service Robotics) has been putting
efforts in a wide project, with the aim of assisting elder people in their daily routines.

In particular, the goal of this thesis was to develop a series of software applica-
tions to be run on an Unmanned Ground Vehicle (UGV), designed to roam safely
in a domestic environment.
Person following is the task of navigating while maintaining the user framed as he
walks. To do so, the robot detects the presence of a person in the camera stream
and recognizes the main parts of the human body, exploiting an already trained,
light and low resource demanding neural network: PoseNet. Adopting SORT (Sim-
ple Online and Real time Tracking), the presence of the same person in multiple
successive frames is tracked. Finally, the relative distance between the robot and
the person is computed.
The other main subject of this work was relocalization, correcting the odometry
error accumulated while roaming. At first it has been performed via markers.
Adopting the April tag system, knowing a priori position and orientation of the
marker, it is possible to derive the robot global position and orientation very pre-
cisely.
Another approach to relocalization was then tried in the last part. Acquiring a
database of images when the robot turns on, it can later be compared with a query
frame. Finding features matching in two frames, an estimation of the relative pose
difference between them can be estimated. This framework, although less precise,
has the advantage of working in an unstructured environment, unlike the previous
one. It also leaves space for improvements in the way matching couples are selected.
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Chapter 1

Introduction

1.1 Objective of the thesis

In the last decades the average quality of life improved all over the globe, leading
to an increase of elderly people, that often need assistance in their everyday life.
Contextually the field of service robotics has been trying to fulfill this social need,
providing solutions which can safely coexist in the house. Inside this scenario,
PIC4SeR (PoliTO Interdepartmental Centre for Service Robotics) has been putting
efforts in a wide project, with the aim of assisting elder people in their daily routines.

In particular, the goal of this thesis was to develop a series of software applica-
tions to be run on an Unmanned Ground Vehicle (UGV), designed to roam safely
in a domestic environment.
Person following is the task of navigating while maintaining the user framed as he
walks. To do so, the robot detects the presence of a person in the camera stream
and recognizes the main parts of the human body, exploiting an already trained,
light and low resource demanding neural network: PoseNet. Adopting SORT (Sim-
ple Online and Real time Tracking), the presence of the same person in multiple
successive frames is tracked. Finally, the relative distance between the robot and
the person is computed.
The other main subject of this work was relocalization, correcting the odometry
error accumulated while roaming. At first it has been performed via markers.
Adopting the April tag system, knowing a priori position and orientation of the
marker, it is possible to derive the robot global position and orientation very pre-
cisely. This is accomplished by firstly acquiring the pose of the tag in the robot
reference frame, and then use these measurements to get the robot global pose.
Another, more complex approach to relocalization was then tried in the last part.
Acquiring a database of images when the robot turns on, it can later be compared
with a series of query frames obtained making the robot spin around when it comes
back to what it thinks is the starting position. After extracting significant features
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1 – Introduction

from the environment with SIFT and once some features matching in two frames
are found, an estimation of the relative pose difference between where they were
taken can be done. This framework, although less precise, has the advantage of
working in an unstructured environment, unlike the previous one. It also leaves
space for improvements in the way matching couples of images are selected.

1.2 Organization of the thesis
The thesis is composed of seven chapters, as follows:

• In the first chapter a general overview of motivations and achievements of the
work done is given, and the following chapters are briefly presented.

• In the second chapter a theoretical introduction about machine learning can
be found.

• The third chapter contains an overview on the different types of robotic plat-
forms and their sensors. Then ROS (Robotic Operative System) is presented,
with all the components of its framework. Finally, the actual hardware used
in the project is described.

• The fourth chapter introduces the problem of person recognition and following.
Then, the tools adopted in this work are presented, alongside their implemen-
tation.

• In the beginning of the fifth chapter an introduction about the problem of
relocalization is given. Then it is presented the first approach used to tackle
it using markers, in particular April tags.

• In the sixth chapter a more challenging framework is illustrated. By extracting
features with SIFT, two frames can be found matching and via the 5 point
algorithm the rotation matrix linking the two camera reference frames can be
computed. Finally, exploiting information coming from the depth camera, the
translation vector can be derived.

• In the seventh and last chapter, the results of the work are recapped, and some
ideas for future works are presented.
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Chapter 2

Machine learning

Machine Learning is simply speaking the development of computer programs able to
improve by themselves, learning from experience. Nowadays it is referred as one of
the pillars of the technological advancement, alongside Artificial Intelligence, Inter-
net of Things (IoT), Big Data and Cloud Computing to name few other. In reality
Machine Learning has been around since the last century. The term was coined by
Arthur Samuel in 1952, who while working at IBM developed an algorithm able to
learn to play checkers. After the initial enthusiasm, a period of delusion came in the
70s, caused by the frustration of the poor results obtained. However in the mid 80s
a new wave of interest revived the field of research. It was caused by the combined
application of neural networks and back propagation, alongside the improvement in
computational power. New theoretical contributions led to an exponential growth
of the field, which rapidly found usage in everyday applications. One of the very
first was the anti spam filter in email inboxes. Today a huge emphasis has been
put on Natural Language Processing. It consists in giving computers the ability to
understand text and recently even speech in a similar way human beings do. With
this, it is possible to develop algorithms that extrapolate information from a written
text published on internet, to summarize or categorize it. Automatic translation
improved dramatically in the latest years, and the so called chat robots became
common in the support sections of companies, while vocal assistants invaded our
houses. Inside companies, Machine Learning is used in strategical decision making,
included fixing prices according to demand of products. In finance, there is a huge
interest in predicting future trends of the market. Other applications can be found
in search engines, or in the "recommended for you" section popping up in every web
service.

11



2 – Machine learning

2.1 Characteristics
A formal definition of Machine Learning was given by Tom M. Mitchell: "A com-
puter program is said to learn from experience E with respect to some class of tasks
T and performance measure P if its performance at tasks in T, as measured by P,
improves with experience E" [28].

The task T can be of various types. To name a few of them, in classification
the algorithm assigns to the input data a label which can be either binary (e.g. is
a cat present in the picture?) or identifying multiple classes (e.g. which objects are
present?). A Machine Learning algorithm can be trained on data from the past to
build a model and predict the future (e.g. guess financial trends), and this is called
regression. Another task is anomaly detection, such as credit card fraud detection
based on a model of the user habits.

The performance measure P is in general the accuracy, build around the dif-
ference between the label generated and the ground truth value. Usually this is
performed with a test set, different and much smaller than the one used to train
the model.

The experience E is the core of ML. The training is usually performed providing a
large training set to the algorithm, and comparing its predicted label to the ground
truth value for each instance, it builds its own model. If the learning process is
monitored by a human, it is called supervised learning, and unsupervised otherwise.
Another way is reinforcement learning, in which the algorithm proceeds with a trial
and error and receives continuously a feedback on the outcome it has given.

2.1.1 Underfitting and overfitting data
The major challenge in machine learning is generalization, that is the ability to
perform well on previously unseen inputs. As mentioned before, algorithms are
trained on some large training set, and an error can be derived summing in some way
the difference between output and ground truth values for each instance. Rationally
the smaller the error, the better is the algorithm. However to evaluate how good it
performs on unseen data, the algorithm is provided also with a test set, and a test
error can be derived in the same way. Naturally, this one will be larger than the
training error.

In the end the objective is to tune the model to achieve a small training error
while minimizing the difference between it and the test error. In practice it is very
difficult to do both altogether. To achieve a small training error, the algorithm will
specialize on the training instances, and will result stiff to previously unobserved
inputs. Thus generalization will be lost and the difference between the two errors
will be large. This phenomenon is called overfitting. On the other hand, a model
with low capacity, not able to fit a wide variety of functions, will end up with a
large training error as the model is not able to adapt to the training instances. This
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2.2 – Classical ML models

phenomenon is called underfitting. Figure 2.1 presents the three levels of fitting.
On the left, the model chosen was a linear function that cannot represent the
curvature of the training data (underfitting). On the right, the interpolation with
a high degree polinomial function gave rise to overfitting. Comparing them to the
center image, it can be noted that the third picture present a completely different
behaviour especially on the leftmost part, where it is decreasing and increasing
rapidly, unlike the good approximation with a quadratic function.

Figure 2.1: The three different levels of fitting [18]

2.2 Classical ML models
They were historically the first developed and can tackle easier problems faster than
more complex algorithms.

2.2.1 Linear Regressor
It is the simplest algorithm in Machine Learning. The name is self explanatory:
it performs regression, so it provides as output a continuous value, result of a
weighted sum of the input. The weights are the parameters tuned in the learning
phase. Denoting with ây the predicted value, n the number of input features, xi the
i-th feature value and θ the tunable parameters (where θ0 is called bias), it stands:

ây = θ0 + θ1x1 + θ2x2 + θnxn = θ · x (2.1)

The chosen θ will be the one that minimizes the error between predicted (ây) and
ground truth (y) value. Usually the mean squared error is computed:

MSE(X,θ) = 1
m

mØ
i=1

(θTx(i) − y(i))2 (2.2)
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2 – Machine learning

Since the model is linear, a closed form solution exists to the optimization problem,
and it is the so called least squared solution:

âθ = argmin
θ
MSE(X,θ) = (XTX)−1XTy (2.3)

2.2.2 Support Vector Machine
SVM is a supervised machine learning algorithm able to tackle both classification
and regression tasks requiring low computational power. This is granted by the fact
that the model considers only the closest points (called support vectors) near the
decision boundary, discarding the others (see Figure 2.2). The decision boundary is

Figure 2.2: Hard and soft margin in Support Vector Machine [26]

an hyperplane of dimension n− 1, where n is the number of features of the inputs,
so that if x is a vector of dimension 2, the decision boundary will be a straight
line, while an input vector of dimension 3 will require a plane and so on. The
mathematical structure is similar to the linear regressor:

f(x) = wT x + b (2.4)

where wT x = 0 is the equation of the decision boundary. Simply speaking, the
algorithms searches for the largest possible region between the support vectors,
trying to divide the input data in separate classes. If it is not possible to rigidly
isolate groups, a soft margin approach can be applied. In this way some outliers
are allowed, and their quantity will become the quantity to be minimized.

14



2.3 – Deep learning models

2.2.3 K-nearest neighbor
K -nearest neighbors is another algorithm that can be applied for both classification
and regression. At its core there are no parameter to tune, as there is no actual
training phase indeed. What it does is trying to find the k-nearest neighbors in the
training data space for the inference instance. In regression, the average between
the y label values of the neighborhood is computed and is assigned to x, while for
classification the most common label is taken as output. The distance metric to
use should be evaluated carefully, as it is the basis of the model.

Figure 2.3: Visual representation of the k-nearest neighbor algorithm [21]

2.3 Deep learning models

2.3.1 Artificial neuron
Deep learning is a branch of ML which tackles more complex problems with models
based on the artificial neuron. The name comes from the strong similarity with the
biological neuron. In fact, as it can be seen in Figure 2.4, a parallel can be traced
between the two structures. The biological neuron receives electrical inputs from
other neurons via its ramified dendrites, capturing neurotransmitters coming from
the axons of other neurons. When the electrical potential in the cell body overcomes
a threshold, an impulse is transmitted through the axon to ramified synapses, which
constitute the links to other cells.
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2 – Machine learning

Figure 2.4: Comparison between a biological and an artificial neuron [24]

The first model of an artificial neuron, realized by McCulloch and Pitts in 1943,
was later improved in 1958 by Rosenblatt, who renamed it perceptron. As it is a
binary classifier and given its working principle, it is also called Threshold Logic
Unit. In fact it receives binary signals coming from other TLUs, applies a weight
wi in each "dendrite" and then the resulting quantities are sum in the nucleus. The
output signal is then forwarded based on an activation function, a basic threshold
step function (Figure 2.5).

f(x) =
1 if

q
i wixi > b

0 if
q

i wixi ≤ b
(2.5)
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2.3 – Deep learning models

Figure 2.5: Threshold function (here b = 0) [40]

2.3.2 Artificial neural networks
The composition of artificial neurons into a well defined model gives rise to a neural
network. A general representation is presented in Figure 2.6. Neurons are disposed
in columns to form layers. Each neuron of a layer is linked to every element of the
previous layer via weighted connections. Three types of layer can be distinguished:

• The input layer, formed by the input signals xi.

• The hidden layer, which is usually repeated multiple times in the structure.
As their number increases, the more complex the model becomes, and it can
achieve better results. An hidden layer is identified by its number of neurons,
a weight matrix, a bias vector, and the type of activation function.

• The output layer is the last layer of the network, providing the results of the
inference as output.

In artificial neural networks the learning process consists in minimizing a cost
function, involving the difference between generated output ây and ground truth
value y. A frequently used cost function is:

C(w, b) = 1
2n

Ø
x

||y − ây||2 (2.6)

The network is covered backwards, as the information about the cost is used to
tune weights w and biases b in an operation called back propagation.
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2 – Machine learning

Figure 2.6: Graphical representation of an ANN [2]

Activation functions

The choice of the activation functions determines significantly the model. One of
the problem of the perceptron was that having an activation function with binary
output, a small change in the values of the weights and of the bias could lead to
drastic changes in the overall behavior of the model. Thus, different functions with
a non binary output have been used in place of the step function, while preserving
the simplicity fundamental to keep the computational cost low.

For the hidden layer neurons, the most adopted activation function is the sigmoid
function, usually denoted with σ:

σ(z) = 1
1 + e−z

(2.7)
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2.3 – Deep learning models

Figure 2.7: Sigmoid function

As the output varies smoothly in the interval, the problems previously described
about the perceptron are largely reduced.

With a similar shape to the sigmoid function, the hyperbolic tangent is another
widely used activation function. The main difference is that the output range is
[−1; 1] instead of [0; 1].

tanh (z) = ez − e−z

ez + e−z
(2.8)

Figure 2.8: Hyperbolic tangent function

The Rectified Linear Unit function (ReLU) is another widely chosen activation
function. Its main advantage is its low computational cost, while preserving non
linearity for good modelling properties.

σ(z) = max(0, wx+ b) (2.9)
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2 – Machine learning

Figure 2.9: Rectified Linear Unit function

Finally, the softmax function is an activation function used in particular for
the output layer, especially in case of classification. In fact, its output can be
interpreted as the probability of an input instance to belong to one class. It is also
know as normalized exponential function, and for each j-th element of the input
vector z, the expression is:

σ(zj) = ezjq
k ezk

(2.10)

Notice that q
j σ(zj) = 1 What the function does in practice is highlighting the

biggest element of the vector with respect to the others, identifying, indeed, the
most plausible class label.

2.3.3 Convolutional neural networks
Convolutional neural networks are complex ANNs adopted especially to work with
images. As the nature of the input is complex, they implement techniques to
reduce the complexity of the model, saving computational time. These tools are:
local receptive fields, shared weights and pooling.

First of all, the input image is not decomposed in a column vector of inputs,
but its structure is maintained. As a consequence a new type of hidden layer
must be introduced, as fully connected ones would not suit the framework. The
so called convolutional layers consider only a region of pixels at a time, named
local receptive field. The convolution operation is illustrated in Figure 2.10. Every
receptive field is overlapped with a filter, also called kernel, and the sum of the
element wise multiplications is stored to form the input of the next layer. The filter
is linked to the feature to recognize, and is in common for the whole layer, unlike
fully connected layers where each neuron had its own weights and biases.

Then the next local receptive field is considered, sliding of one pixel column to
the right. To reduce the computational cost, a stride of 2 can be chosen. The input
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2.3 – Deep learning models

Figure 2.10: Convolution operation in CNN [8]

matrix is often surrounded with a frame of zeros, such that the input values on the
edges are equally considered to the ones inside, that would naturally appear in more
receptive fields. This operation is called padding. To further reduce the complexity
of the model, a pooling layer is introduced right after a convolutional layer. The
pooling operation considers once again a region of the matrix, and computes one
value from it. Usually either the maximum value is extracted, or the average of all
the elements is found. In this way the dimensions are further decreased, at the cost
of losing information on the precise location of the feature recognized.

Right before the output layer, a fully connected layer is present, with a softmax
activation function. In fact, as it can be seen in Figure 2.11 , one characteristic of
convolutional neural networks is that the data is progressively flattened thanks to
the convolution and pooling operation previously described.

Figure 2.11: Typical structure of a CNN [17]
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Chapter 3

Robot platform

3.1 General introduction
A robot is a programmable machine able to autonomously perform repetitive tasks
or change its behaviour according to the environment, learning from experience.
It is composed by an hardware and a software part. Mechanical links and joints,
batteries, electrical motors, electronic boards and sensors all belong to the hard-
ware part, while the software is composed by the microcontroller firmware and the
utilities and routines developed to manage the mechanical parts in the execution
of the tasks.
As the number of tasks robots can perform is constantly increasing, robotics is an
exponentially growing field and different architectures can be identified, each one
adapting best to its own application:

• Mobile robots: designed to move in a well-defined environment, these usu-
ally wheeled robots have a large application field, from the military to space
exploration, from logistics to domestic use.

• Industrial robots: inspired to a human arm, they are formed by a set of me-
chanical joints and links that allow many degrees of freedom. A gripper is
mounted at the end of the arm, which can be interchanged with other tools to
properly perform the large variety of tasks requested in an industrial environ-
ment.

• UAVs: short for Unmanned Aerial Vehicles, commonly called drones, they are
classified by the number of propellers. The most known is the quadcopter.
Given their ability to fly autonomously and carry relatively small objects,
cameras primarily, drones are used in a vast area of applications, ranging from
photogrammetry to delivery, from military to recreational and civil use.

• Humanoid robots: manufactured with a head, a torso, two legs and two arms,
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3 – Robot platform

they aim to simulate the human execution of tasks, like a standing bipedal
movement. They are mostly used in service robotics.

• Bio-inspired robots: given a specific application, they are designed to resemble
an animal functional to the goal.

Figure 3.1: Components of a robotic system [38]

All these categories share the common structure of a robotic system, shown in
Figure 3.1. In particular the microcontroller sends actuation signals to electrical
motors, usually brushless, to change the behaviour of the robot, based on informa-
tion coming from sensors. They can be distinguished in two classes: proprioceptive
and exteroceptive sensors.

3.1.1 Proprioceptive sensors
Proprioceptive sensors acquire information relative to the state of the robotic sys-
tem. Some examples are battery level indicators, IMU, encoders.

IMU

The Inertial Measurement Unit is an electronic device incorporating a gyroscope,
an accelerometer and a magnetometer for each of the three main axes. As such, the
sensor is able to measure the acceleration and the orientation of the robot, while
providing in second instance velocity and position. The problem of working with
an IMU is that, as it integrates the acceleration to compute velocity and position,
it accumulates error over time. This leads to an increasing difference between the
estimated and real robot state.

Encoders

A rotary encoder is an electro-mechanical sensor that translates the angular motion
of a shaft into a digital signal. Once attached to the shaft of a wheel, it can be
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3.1 – General introduction

Figure 3.2: Gyroscopes and accelerometers [10]

used to measure the distance covered by the robot, and thus its position. The
most common is the optical encoder, consisting in a disc of opaque and transparent
areas put between a light source and a photodetector. The transparent areas let the
light pass, corresponding to a 1 value bit, while opaque areas which block the light
correspond to a 0 value bit. Gray code is used in the alternation of transparent
and opaque areas, to minimize the probability of errors occurring in the reception
of the information. Optical encoders are of two types:

• Absolute encoders, able to measure angular shift up to 0.06° and hold it even
when powered off. The resolution depends on the number of tracks: for ex-
ample a 12 track encoder will offer 212 = 4096 segments per revolution, thus
providing 360°

4096 ≈ 0.088° of resolution.

• Incremental encoders, on the other hand, give up on the ability to hold the
measurement when powered off to provide a faster translation of change in the
angular position. The relative difference in output of the two tracks is used to
understand the sense of rotation, clockwise or counterclockwise.

3.1.2 Exteroceptive sensors
Exteroceptive sensors acquire information external to the robot, from the environ-
ment. Two among the most used ones in robotics are lasers and cameras. Lasers
are generally cheaper and can provide 2D or 3D measurement of the environment.
The most famous one is 2D LiDAR, Light Detection And Ranging, consisting of a
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Figure 3.3: Difference between absolute and incremental encoders [13]

laser and a support platform performing a full 360° rotation, obtaining the distance
of features at the same horizontal level.

Figure 3.4: An example of a LiDAR sensor [22]

On the other hand, given their price, cameras provide rich information, are light,
compact, with low energetic consumption, although the field of view is generally
reduced to 90°. They can be used in different configurations:

• Single camera, not providing 3D depth and images need to be compared to
the previous ones to be processed.

• Stereo cameras, simulating human vision, provide 3D depth.
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• Catadioptric sensors are a mix of mirrors and lenses, provide higher field of
view but with lower resolution.

• Multiple camera rigs provide high field of view and uniform spatial resolution.

Alternatively, to solve the problem of 3D depth, an active device can be used, like
a depth camera as the Intel RealSense D435i.

3.2 ROS
ROS, Robot Operating System, is an open source set of libraries and tools that help
in the otherwise difficult realization of a robotic platform. It has become over the
years the de facto standard in robotics development, thanks to its continuously
growing community where projects, ideas and suggestions are shared.

Figure 3.5: Example of data exchange between ROS nodes [14]

The essential components of the framework are:

• ROS node: the software module developed to perform a certain task. It can
be coded either in C++ or Python.

• ROS message: it is the data type nodes can send or receive. A part from
the large variety of messages that ROS already offers, the user can create new
custom messages, according to his necessity.

• ROS topic: it is the bus nodes use to communicate with each other. Nodes
can publish a message on it, or subscribe to the topic to read a message as
soon as it is published by another node.

• ROS service: it is another way nodes can use to communicate. The client node
produces a synchronous call, sending a request to the server node, which will
reply with some kind of response. They are most suited for calculations to be
done quickly and occasionally.
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• ROS action: instead of services, actions can be used for long running requests,
as they also provide feedback while executing.

A visual representation all the components active in a ROS environment can be
obtained at any moment in a graph like the one in Figure 3.5, by using the com-
mand rqt graph. With the goal of clarity and functional distinction, in ROS the
filesystem is divided in packages, which must be compiled before launching the
file within them. In the spirit of collaborative development promoted by ROS,
hardware and software producers share publicly packages to be used along their
products. In particular in this work two packages were used: turtlebot3[35] and
ros2_intel_realsense[34].

3.3 Hardware

3.3.1 Turtlebot3
Born thanks to a collaboration between Open Robotics and ROBOTIS with edu-
cational and research purposes, the Turtlebot project helps beginners in their early
steps in robotics, providing a customizable starter kit. Arrived at its third gener-

Figure 3.6: Turtlebot3 Waffle [39]

ation, the Turtlebot family counts three members: Burger, Waffle and Waffle Pi.
All of them are small unmanned ground vehicles differentially driven, with the for-
mer being smaller and less powerful overall, and the Waffle Pi differentiating from
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the standard Waffle due to the presence of a Raspberry Pi and the absence of the
Intel RealSense D200. As the basis platform for this work, Turtlebot3 Waffle was
chosen. The default hardware included is presented in Figure 3.6. Dynamixel is a
high performance and versatile motor actuator designed by ROBOTIS. Open CR
(Figure 3.7) is an embedded board equipped with a lot of ports as its microcon-
troller manages the actuators and sensors of the robot. The board itself has a 3
axes accelerometer, gyroscope and magnetometer sensor.

Figure 3.7: OpenCR components [30]

The Intel Joule Single Board Computer has been removed, and its place was
taken by an Acer Swift 3 with 8 GB of RAM and a Ryzen 5 4500U processor,
running Ubuntu 20 and ROS2 Foxy. Although more bulky, it has the benefit of
providing, alongside computational power, a graphical interface. Furthermore, the
Coral USB Accelerator[9] was added to the system, an Edge TPU coprocessor
specifically designed to perform high speed machine learning inference.

3.3.2 Intel RealSense D435i
The Intel RealSense coming by default is a R200, but it has been substituted with
a more advanced D435i. It is composed by a 30 fps RGB camera with 69°x42° field
of view and 2 MP resolution, and a stereoscopic depth camera 87°x58° and global

29



3 – Robot platform

Figure 3.8: Coral USB accelerator [9]

shutter that limits blurring in the images acquired. Its ideal range goes from 30 cm
to 3 meters, with a measurement uncertainty below 2% at 2 meters.

Figure 3.9: Intel RealSense D435i components [20]
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Figure 3.10: Final version of the robot
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Chapter 4

Person following

The first objective of the thesis was the development of a ROS node able to recognize
if inside the field of view of the robot a person is present, and then get the relative
distance. In this way the robot can either follow the person or check that they are
following it, if the distance is not increasing. Therefore, the first step was to make
the robot detect the figure of a person in the camera stream. To do so, it was used
an already well tested convolutional neural network, PoseNet[32].

4.1 PoseNet
PoseNet is a light but reliable framework for pose estimation and instance seg-
mentation. In particular, in this work, the first result has been exploited. Given
an input image, at first the CNN detects individual keypoints of the human body,
then tries to group them starting from the more confident. This is called bottom-up
approach, while on the other hand in the top-down approach at first there is an
object detection phase, where a box is drawn containing the figure identified as a
person, then during a second step individual keypoints are searched inside the box.
PoseNet, by default, is trained on a set of 17 keypoints: nose, eyes, ears, shoulders,
elbows, wrists, hips, knees and ankles.

As it is a Tensorflow Lite model, PoseNet can easily be compiled and run on the
Coral USB Accelerator.

4.2 SORT
Simple Online Realtime Tracking[6] is an algorithm developed by Alex Bewley to
track the movements of a detected object in a camera stream. The necessity to
integrate it in this work comes from the fact that PoseNet alone is not able to
recognize the presence of the same person in different frames, and thus if more
than one person are identified, different IDs will be assigned to the resulting poses
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Figure 4.1: PoseNet framework [32]

estimated, frequently interchanging among consecutive frames. To run properly,
SORT needs to be fed with the bounding box of the object. In the case of study,
it was decided to take a box containing the two keypoints relative to the shoulders
of the person. Indeed, these are two of the most recognizable pose features, and
they are present nearly every time a person is identified, as the upper body gives
much more confidence to the algorithm than the lower body. Therefore, as SORT
requests an input vector in the form [left, bottom, right, top], the vector passed
was chosen as

[xmin − 20, ymin − 20, xmax + 20, ymax + 20] (4.1)

where each element is taken computing coherently the maximum and minimum
between the two shoulder keypoint.
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4.3 Acquiring the distance
To get the relative distance between the person and the robot, the camera pinhole
model has been exploited. As a calibrated camera is being used, the calibration
matrix K, which is fundamental in this work, is known:

K =

fx 0 cx

0 fy cy

0 0 1

 (4.2)

where fx = 617.42 and fy = 617.79 are the focal lengths of the Intel RealSense
D435i depth camera along respectively the x and y axis, while cx = 316.72 and
cy = 244.22 are the coordinates in pixels of the camera center in the frame. Firstly,
the middle point between the shoulders is found as:

xmp = xright−sh + xleft−sh

2

ymp = yright−sh + yleft−sh

2

(4.3)

Now that these coordinates in the RGB camera frame are known, it is possible to
obtain the distance between the camera plane and the plane parallel to the camera
containing the middle point. This information, measured by the depth camera,
is conveniently stored inside a matrix corresponding to the depth camera frame
aligned with the RGB camera, so that it is sufficient to access the element in the
same row and column as the pixel in the RGB camera.

With reference to Figure 4.2 this is the distance along the z axis. To get the
ones along x and y, at first they are easily calculated in pixels,xpx = xmp − cx

ypx = ymp − cy

(4.4)

Then we have basically two pairs of similar triangles, as shown in Figure 4.3, so
that 

Xm = xpx · Zm

fx

Ym = ypx · Zm

fy

(4.5)

4.4 ROS node implementation
All the concepts mentioned above were merged inside a ROS node which can run in
the background while the robot is performing some other tasks. It subscribes to two
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Figure 4.2: Pinhole model for a camera [33]

Figure 4.3: Similar triangles putting in relation focal length, distances in pixels and
real world distances.

topics: /camera/color/image_raw and /camera/aligned_depth_to_color/image_raw.
Every time a new RGB frame is published by the Intel RealSense, it runs the in-
ference of PoseNet. If a person is detected, the keypoints are drawn on the frame
and linked to build the stylized skeleton of the figure. Then the SORT algorithm is
called, as explained in Section 4.2. When computing the person distance, the dis-
placement along the y axis can be ignored: as the mobile platform is constrained to
the ground, that displacement cannot be compensated. Instead, the distance along
the x and z axes are stored, along with the person ID.
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Figure 4.4: Pose recognition

4.4.1 ROS service integration
Alongside the ROS node previously presented, a ROS service was realized. It reads
the robot position in the /odom topic, and acquires the goal location from the
PoseNet node, combining them in a unique message consisting of a new data type.
In this way the SLAM algorithm can easily access the starting and the goal point
of the robot.
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Chapter 5

Relocalization with tags

Relocalization is a fundamental task for a mobile platform. As it navigates in the
environment, the pose estimated by the robot itself increasingly differs from the
actual one, if it is left alone with no feedback. This happens due to errors in the
IMU as explained in Section 3.1.1, but also with encoders in presence of not smooth
ground, as the wheels spin making no contact. It has a significant outcome even if
it happens for a fraction of a second, as in the case of floor grout lines.

Figure 5.1: Correction of the odometry error via landmarks

A classical way to perform relocalization is via fiducial markers, so that knowing
the a priori position and orientation of the tag in the global map, computing the
relative pose of the robot from it, the robot global pose can be calculated.
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Differently from other barcode systems like QR codes, visual fiducials are de-
signed to be artificial landmarks easily recognizable. To accomplish that, a com-
promise must be accepted. They contain fewer but bigger data cells, such that a
tag can be detected and decrypted even if tucked away in the corner of the image,
badly lit, or seen laterally. That’s not the case of QR codes for example, which
require an high resolution image and must be well framed to be recognized. In
turn, they can contain much more data.

Here, with respect to the person recognition problem previously presented, a
further step is needed. Even if the tag is detected and its center is found, like it
was for the middle point between shoulders in the PoseNet node, there is not enough
information to estimate the robot pose. Indeed, knowing the orientation of the tag
is fundamental. With reference to Figure 5.2, Z and X can be computed as already
explained thanks to the measurements of a depth camera, but without knowing the
angular displacement φ between the tag plane and the camera plane, XW and YW

cannot be calculated. Luckily, the classes of tags developed by researchers include

Figure 5.2: Relocalization via tag [4]

in most cases built-in functions that provide the relative orientation of the marker.
Among the list, April tags[29] were picked as they are easy to integrate inside any
project and all the material related is open source.
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5.1 April Tags

April tags are sets of markers specifically designed for computer vision purposes.
They come in different families, each one more suited for a specific task. For
this work, a marker among the ones present in the standard Tag36h11 family was
randomly picked.

Figure 5.3: The specific April tag used

April tags framework comes with a series of tools, including a Python library
containing the detector. What it does is basically to look in the gray-scaled con-
verted image for a four sided area that has a black inside and a white outside,
applying image segmentation. Once the tag dimensions in the image are identified,
they are compared to its real ones, to be provided a priori, so that the algorithm
is able to compute the tag pose in the camera reference frame.

Finally, April tags creators state that below 3 meters the distance is estimated
almost perfectly, and then starts to slowly get worse, while the error on the rotation
angles is lower than 0.2° till 70°. After that threshold it reaches even 2°, but values
over 70° represent extreme cases, in two ways. First, it is difficult for the detector to
recognized the tag in these situation, as it is almost parallel to the camera. Second,
imagining a real world application, if the tag is put on a flat surface like a wall or a
door in the perimeter of a room, it is unlikely that the robot will be in a situation
where it sees the marker from these angles.
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5.2 Implementation
The first step in the realization of the ROS node was the integration of the detector
inside a Python script. This was made easy by the library directly provided by the
authors of April tags. Given in input the RGB camera frame, the detector returns
the position of the four vertices of the polygon, and the transformation matrix
between the camera reference frame and the one of the tag. As a visual little
addition, the polygon of the marker is drawn on the image. Two adjustment were

added to the raw detector. Firstly, if the tag is estimated being further than 2.5
meters, it is ignored, as the estimation would be prone to errors. On the contrary if
the marker is too close, its figure could be not completely inside the camera frame,
but enough to be recognized. This is especially critical when a part of the black
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external edge is cut, as the tag would result "squeezed" from the point of view of
the algorithm, thus leading to an overestimation of the angle with respect to what
it is in reality (Figure 5.4). To prevent this a check is made after the four vertices

Figure 5.4: Detection of a tag cut at the border

of the polygon are detected: if they are too close to the camera frame edge, the tag
is ignored.

5.2.1 Frontal tag

Position estimation

Now, as explained in Appendix A, we can derive from the rotation matrix a set of
three angles that describe the orientation of the tag. In this particular application,
we are interested in the pitch angle, relative to a rotation around the y axis of the
tag. Since it is antiparallel to the robot z axis, that angle is the only one changing
while the robot is navigating. Indeed it is holonomically constrained to move only
along its x axis and rotate around its z axis. As a result, there cannot be any
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vertical displacement and the other two angles of rotation are always null.

zrobot = fixed

θx = 0°
θy = 0°

An exemplifying situation is presented in Figure 5.5.

Figure 5.5: Geometrical description of a situation where the tag plane is parallel
to one of the axes of the global map

Up to this point OF and FT distances and the pitch angle are known. The goal
is to compute OM and MT = KH, that are the distances projected along the x
and y axes of the global map. To do so, a bit of trigonometry is involved:

OH = OF · cos p
HM = FT · sin p
FK = FT · cos p
FH = OF · sin p
OM = OH +HM

KH = FH − FK

One important thing to notice is that while OM will always be a positive quantity,
as the tag cannot be detected from behind, KH can be both positive and negative,
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depending if the robot is, respectively, to the right or to the left of the center of
the marker. It is important to specify that this configuration considers the tag as
parallel to one of the axes of the global map. This is a simplification that makes
the immediate next step easier, but it is not a stretch, as it represents the situation
in which the marker is put on a wall in room, where usually walls are orthogonal
each other. At this point the a priori information on the location of the tag comes
into play. Since the vector of the marker position and the relative distance between
it and the camera are parallel, a simple algebraic sum is needed to estimate the
robot global position. However, since the tag can be detected only when in front on
the camera, two cases must be distinguished. The first is when the z axis, always
exiting from the center of the marker perpendicular to its plane, is parallel to the
x axis of the global map (situation 2 in Figure 5.6). In this case, the quantities can
be just sum together:

xrobot = xtag +OM

yrobot = ytag +KH

Figure 5.6: The two different situations, where the z axis of the tag can be parallel
(2) or antiparallel(1) to the x axis of the global map

In the other configuration (1 in the figure) the z axis of the tag is antiparallel to
the x axis of the global map, the quantities must be subtracted:

xrobot = xtag −OM

yrobot = ytag −KH
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In general, using a variable z_parallel with value 1 if we are in situation 2 and value
−1 if we are in situation 1, it all can be put together as:

xrobot = xtag + z_parallel ·OM
yrobot = ytag + z_parallel ·KH

Orientation estimation

For what regards orientation, things are a little easier. Knowing the angular dis-
placement between the tag and the robot in the form of the pitch angle, we can just
add it with sign to the tag orientation with respect to the global map reference,
respectively 0° and 180° in situation 1 and 2 represented in Figure 5.6. Exploiting
the z_parallel previously defined, the robot orientation can be computed as:

θrobot = pitch+ 180 · (1 + z_parallel − 1
2 )

In this way, in case 2 (z_parallel= 1), 180° will be added to the pitch angle, as the
robot must have completed half a turn to have it in front. On the other hand, in
case 1 (z_parallel= −1), no angle will be added.

5.2.2 Rotated tag
Previously a significant hypothesis was assumed, that the tag would always have
been parallel to one of the axes of the global map. To generalize the work, let the
marker plane form any angle with the x global axis. A general situation is pictured
in Figure 5.7, where this angle is called α.

Position estimation

In the previous step what here are called xA and yA were retrieved. Now, exploiting
the a priori knowledge of the angle α, xW and yW must be computed. First of all,
it is useful to define angle β = 90° − α. Then with a bit of trigonometry it can be
derived that:

xW = xA · sin β + yA · cos β
yW = −xA · cos β + yA · sin β

These are the distances between the robot and the tag along the x and y axes of
the global map. Now, they can be put together with the a priori information on
the position of the tag. As this is the most general framework, in which the case
of the parallel tag can be obtained by imposing α = 0°, the following equations are
the final ones to estimate the robot position:

xrobot = xtag + z_parallel · xW

yrobot = ytag + z_parallel · yW
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Figure 5.7: Geometrical description of a situation where the tag plane forms an
angle α with the x axis of the global map

Orientation estimation

Finally, the estimation of the robot angle of rotation is performed with the same
equation, but in this case the angle α must be subtracted from the sum:

θrobot = pitch− α + 180 · (1 + z_parallel − 1
2 )

To explain why, with reference to Figure 5.7, let’s imagine the case in which the
camera, and thus the robot, is face to face with the tag. In this case the pitch
angle detected would be 0°, and there would be no other contribution outside α,
as z_parallel= −1 in this case. Since here α ≈ 30°, the estimated rotation around
the z axis of the robot would be ≈ −30°, coherently.

5.3 Overwriting Turtlebot3 self estimation
As the manufacturers of Turtblebot3 did not expect that someone would want to
overwrite the pose self estimated, it has been necessary to dive in its core C++
files to making it possible. In particular a callback was added that runs when a
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pose is published on a new personal topic, modifying the x and y coordinates of
the robot, and its orientation. After that, the control is given back to the usual
odometry functions of Turtlebot.

5.4 Tests and results
To test the correctness of the algorithm, the tag was put in a room in four different
configurations, as pictured in Figure 5.8. The marker was put in places with both
positive and negative x and y coordinates, and with positive and negative angles
of rotation. As the robot was navigating, it had the marker both on its right and
on its left, thus simulating all possible scenarios.

Figure 5.8: Pose of the tag in the four different positions in the test

Comparing the estimated with the real robot pose, it can be concluded that the
algorithm output has an error of around 0.8° for the angle of rotation and 1 cm
for the x and y coordinates. The resulting estimation is of course very dependant
on the preciseness of the a priori info on the tag. A lot of effort should be put in
having a value of the angle as accurate as possible, as this is the factor with the
biggest impact on the correctness of the estimations.
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Chapter 6

Relocalization with feature
matching

Once the application with the tag was working very well, it was decided to go
on with a more challenging framework. This time relocalization was performed
removing the marker, and relying only on images taken by the camera, with nothing
particular in them. Indeed, the idea is to extract relevant features from a pair of
similar pictures. Comparing the different position in pixel coordinates of couples of
features present in both images, the different camera pose can be derived. Three are
the most popular feature extractors: SIFT(Scale Invariant Feature Transform)[23],
SURF (Speeded-Up Robust Features)[5] and ORB(Oriented FAST and Rotated
BRIEF)[36]. While ORB is the fastest, and as such more suitable for application
like visual odometry, SIFT is the most reliable one, but requires more computational
time. For this work SIFT was chosen, as quickness is not the priority.

6.1 SIFT and RANSAC
SIFT is a method presented by David Lowe for feature extraction and description.
Given a gray-scaled image, the algorithm returns a list of vectors containing, for
each feature, its location on the image and its description, consisting of the module
of the gradient in the eight major directions, computed in a neighbor of the feature.
These feature are invariant to affine transformations such as rotation, translation
or scaling, and partially to changes in the illumination. As SIFT looks for high
contrast regions inside the frame, usually keypoints lie on the edges of objects, as
seen in Figure 6.1.

The algorithm has received particular interest for its possible use in the fields
of image stitching, robotic navigation and object recognition. Indeed, having two
similar images, features can be extracted from each one of them and then the vectors
of features can be compared to find matching couples. The way this is performed

49



6 – Relocalization with feature matching

Figure 6.1: Feature extraction with SIFT

is by evaluating the ratio between two euclidean distances: the first is the one
between the descriptor vectors of one feature and its closest neighbor; the second is
the distance with its second closest neighbor. Naturally, the second is bigger than
the first one, and thus the ratio is always < 1. The smaller the ratio, the closer the
nearest neighbor is to the starting feature than the second nearest neighbor. Lowe
suggests a threshold of 0.8 in order to reject 90% of the false matches together with
a 5% of good matches. At the end of the process a list of feature couples is derived.

As a final refinement, RANSAC (Random sample consensus)[16] is applied to
filter out residual false matches. The algorithm estimates, according to some pa-
rameters to be given in input, a mathematical model to describe the input data.
It performs a large number of iterations to confirm the output model, and the ran-
domness comes from the fact that it first starts with a randomly chosen subset of
data, and later tries to expand it for all data. At the end the input data is divided
in two sets: inliers, whose distribution fits a certain model, and outliers, those who
does not. In Figure 6.2 the result of SIFT feature extraction and RANSAC outlier
detection is presented. The two pictures were taken with an angle shift of 24°, and
since many objects were present on the scene, 144 feature couples were detected.
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Figure 6.2: Result of feature matching after RANSAC is applied

6.2 Essential matrix
When a calibrated camera is being used, a relation exists between two 2D points
in two images, representing the same point in real life. Such relation is called
coplanarity constraint:

xTExÍ = 0 (6.1)

where x and xÍ are the homogeneous point vectors, and E is a 3x3 matrix called
essential matrix. It is a useful tool in estimating the relative pose from which the
two images were taken. Indeed, the translation vector t and the rotation matrix
R from the second reference frame to the first one can be derived, as the essential
matrix can be decomposed as

E = StR
T (6.2)

where St is the skew-symmetric matrix built from vector t:

t =

t1t2
t3

 → St =

 0 −t3 t2
t3 0 −t1

−t2 t1 0

 (6.3)

It is important to notice that the translation vector can be derived up to its di-
rection, and it will be always of unitary magnitude. This is due to the fact that
working with 2D images, the information about depth is lost, thus decreasing the
degrees of freedom from six to five. Furthermore, there is a mathematical ambigu-
ity generated while performing the singular value decomposition (SVD). It returns
four possible configuration, represented in Figure 6.3, respectively characterized by
(R1, t), (R1,−t), (R2, t), (R2,−t). Out of them, only one is physically realizable,
placing the point in front of both cameras. To choose which one of them is the
correct one, the so called chirality test should be performed, but in the case of
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Figure 6.3: The four possibilities coming from the decomposition of the essential
matrix[11]

study some assumptions have simplified the process. First, the translation vector
was discarded, as it did not provide a complete information. Later it will be dis-
cussed how this information was retrieved, using the depth camera. Second, we
can exploit once again the fact that the robot can only rotate around its z axis.
This means that only one angle of rotation should have a significant value, while
the other two should be close to zero. For these reasons, among the two matrices
returned as output by the algorithm, the correct one will be close to matrix Ry

in Equation A.4, as the z axis of the robot is parallel to the y axis of the image,
while the other one will represent a rotation xyz of [180°, θy, 180°]. As a result, the
correct matrix can be easily identified on the basis of the value of θx and θz.

6.3 Experiment

After some positive tests with previously acquired images, the feature extraction
algorithm was run on the robot. To acquire the database of images, as soon as the
robot is turned on, it spins around at π/20 rad/s, so that in 4 seconds it rotates
of π/5 radiants. In this way it can performs a full rotation (2π radiants) in 10
steps. Every time it stops, the robot saves both the RGB and the depth images
in two separate lists. It also performs feature extraction via SIFT at this moment
to optimize time. The descriptors are stored in a list as well. After the initial
orientation at 0° is regained, the robot is free to roam and perform other tasks.
When it comes back to what it thinks is the starting position, it performs again
a full rotation to acquire another set of ten images, exactly in the same as for the
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database. After that each query image is compared with each database image via
their descriptors. The three pairs with more feature matching are saved and for
each pair the couple of features with the lowest sum of depth distance is found.
This is done because the data coming from the depth camera is more accurate for
closer ranges. As the depth distance is extracted, the orthogonal distance is derived
too, as shown in Equation 4.5.

To recap, at this point three candidate pairs of images are being considered, and
from each one of them the pair of feature closest to the camera are identified. For
each pair the distances, both longitudinal and orthogonal, and the pixel coordinates
in the respective images are known. The pair of features to continue to work with is
chosen by taking the one with the smallest difference between the pixel coordinates
of the feature in the database image and in the query image. Once a feature is

Figure 6.4: Deriving relative displacement between the two camera poses

chosen among the three, the situation is represented in Figure 6.4. Data relative
to the database picture is in red, while the one coming from the query image is
in green. The angle α is the one derived from the decomposition of the essential
matrix. With once again the assistance of trigonometry, the relative displacements
∆z and ∆x can be computed as

∆z = zdb − (xq · sinα + zq · cosα)
∆x = xdb − (xq · cosα− zq · sinα)
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6 – Relocalization with feature matching

To bring these measurements in the robot reference system of when the database
image was shot, it is sufficient to change sign to ∆x, as out of the equation the
quantity is positive to the right.

∆xrot = ∆z
∆yrot = −∆x

The situation at this point is represented in Figure 6.5. The two quantities are

Figure 6.5: The two reference frames

in a reference frame that shares the origin with the global map reference system,
but the axes are rotated. This time the angle is solely dependant on which image
was chosen among the one in the database, so it can be retrieved easily from the
image index. As the first shot, with index 0, is done at 0°, the second (index 1) at
36°, it will be θ = 36 · indexdb. Thus, the global displacements are related to the
previously computed distance by the 2D version of rotation matrix Rz presented in
Appendix A. C

∆xfinal

∆yfinal

D
=

C
cos θ − sin θ
sin θ cos θ

D C
∆xrot

∆yrot

D
(6.4)
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Finally, the estimation of the orientation of the robot is done by adding θ, the
angle related to the database image, and α, the estimated angle shift between the
two camera poses. This would be the absolute orientation of the robot relative to
the query image. To compute the one relative to the moment the robot stopped
roaming, it is necessary to subtract the angle related to the query image. To clarify
this point, imagine that the query image used was the one shot as third. This
means that at the moment it stopped roaming, and after completing the full turn
to acquire query images, the robot orientation was 36 · 2 degrees more than the one
it had when it acquired the third query image (the first shot is done at 0°). Thus
the final equation is

θfinal = θ + α− 36 · indexquery (6.5)

6.4 Results
A series of tests was performed, in different locations, comparing the robot real
position in the map and the one estimated by the algorithm. The results os some
of them are shown in Table 6.1. As it can be seen, in general the estimation works
quite well. A deterioration in precision with respect to the tag was expected, but
it remains sufficient enough. However, in some tests the results were really bad.
In these cases the images used in the process contained features at long distances
(> 4 meters), and the estimation of the essential matrix in the first place and
the final displacements suffered from this inaccuracy. Even though the vicinity of
features is a criteria present in the algorithm, those images were selected because
they contained elements distant from the robot, that remained more or less all
framed together even with a slight change in the angle at which the robot was
seeing the scene. On the other hand, elements closer to the robot disappear more
easily from the frame as the robot rotates, and this makes the application discard
the relative image. In the end, more than a confidence range from the initial
position in which the results are satisfying, it is more significant to talk about the
environment surrounding the robot while it spins and acquires pictures. Furniture
and objects should be closer than four meters, to make the estimation error not
explode. This is a likely situation in a domestic environment, that usually does not
have so much open space.
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Test Ground truth [cm] Estimated [cm]
n. 1 x 5 5.6

y −10 −17.05
n. 2 x −7 −2

y −9 −7
n. 3 x −17.5 −17.8

y 27 23.3
n. 4 x −10 −10.88

y −6.5 −7.2
n. 5 x −2 45

y −11 4
n. 6 x −36 −43

y 16 14.18
n. 7 x −9.5 −24

y 5 −11
n. 8 x −16 −18

y 8 10.7
n. 9 x −55 −60

y 20 24
n. 10 x −133 −145

y 44 28
n. 11 x −81 −79

y 23 34
n. 12 x −16 −13

y 260 467
n. 13 x 75 150

y 150 232

Table 6.1: Tests for relocalization with feature matching
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Chapter 7

Conclusions

In the end the development of all the three applications brought good results, to
different degrees:

• In the first one multiple people can be identified inside the same image and
they are tracked if they remained constantly framed. The errors in the relative
distances to the robot, which do not compromise the goodness of the results,
depend mainly on the accuracy of the depth estimation. To facilitate the
recognition of a person, a support to the camera could be implemented, such
that it is located at a higher distance from the ground. From a software point of
view, the overall code could be optimized to shorten its runtime, since there is
a bit of delay between the moment the image is acquired and when the output
is computed. Furthermore, a possible feature to add could be the classification
of the person, such that if they exit the frame, they are recognized as the same
person when they are seen again.

• Relocalization using the tag is almost flawless. It can be expanded to accept
multiple markers to be positioned in different locations in the environment,
so that the odometry error is frequently corrected. This framework has the
potentiality to work also in 3D, using the other two angles derived from the
transformation matrix.

• The relocalization via feature matching is for sure the one that can improve
the most. Being more challenging and complex than the one via marker, it
was expected to be less accurate, but possible improvements can be found in
the way image pairs are selected. At first the couples were classified based
on the number of features matching, but it turned out that more couples did
not correspond to a more precise estimation. One factor has been identified in
the closeness of the feature pair used in the trigonometry calculations, as the
distances are more precise in this cases. In the final version, the pair of images
is selected by comparing the pixel coordinates of the features extracted. The
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one presenting the smaller shift is chosen. Thus in the end there is a trade
off to work on: images with close objects should be preferred because depth
estimation is more accurate, but as the robot rotates, the pixel coordinates of
one feature change greatly. On the other hand, objects far from the camera
remain framed for greater variations in the angle of view, and they stay in
almost the same spot in the image for small variation. A possible solution could
be to consider weights during the choice of image pairs, putting emphasis on
the medium distance of the features filtered by RANSAC. However this would
increase the computational time, as the RANSAC algorithm would be applied
to the whole set of 100 couples, instead of 3.
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Appendix A

Transformation matrix

Figure A.1: Two reference systems sharing the origin [1]

Given two reference systems Ù0 and Ù1 as in Figure A.1, their reciprocal relation
can be described by two rotation matrices, depending from which reference frame
is considered as the starting one. For example, the three unit vectors taken along
the main axes of Ù1 can be described using the basis of Ù0 composed by its unit
vectors, building the matrix conventionally denoted as R0

1:

R0
1 =

1è
x1

é
0

è
y1

é
0

è
z1

é
0

2
(A.1)

The inverse operation is represented by the rotational matrix R1
0 = (R0

1)−1 = (R0
1)T

as they are orthonormal matrices. As Figure A.1 suggests, an axis can be found
around which a single rotation is needed to make the two reference systems assume
the same orientation. But every rotation can also be described as a composition of
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A – Transformation matrix

three elementary rotations along axes x,y,z:

Rx =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 (A.2)

Ry =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (A.3)

Rz =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (A.4)

Figure A.2: Two reference systems rigidly displaced

If two reference systems have parallel axes and the origin rigidly displaced, like
in Figure A.2, their relation can be expressed by translation vectors.

−−→
OOÍ = tab is

the translation vector represented in Ùa. Vector tba = −tab is its inverse.
Both rotation matrices and translation vectors are useful to convert the represen-

tation of a vector between two reference systems. Let va, vb two vectors representing
the same point in two reference frames Ùa and Ùb, given the rotation matrix Ra

b

and the translation vector tab it holds:

æva =
C
Ra

b tab
0T 1

D åvb = T a
b åvb (A.5)

where 0T is a 1x3 row vector of zeros, and æva is the homogeneous vector obtained
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adding 1 at the end in an additional row.

æva =
C
va

1

D

The transformation matrix T a
b is a 4x4 matrix that describes a roto-translation

relationship at once.
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