
POLITECNICO DI TORINO

Master of Science’s Degree in Mechatronic
Engineering

Master of Science’s Degree Thesis

Performance evaluation of operational
space control and visual servoing for

complex 3D arm applications

Supervisors

Prof. Marcello CHIABERGE

Candidate

Luca MARCHIONNA

October 2021

Summary

Nowadays a great effort is made to try to reproduce human behavior. In this
regard, a challenging task concerns the development of control system algorithms
for movement management in terms of perception and dexterity. An important
benchmark for testing analogies and differences in motion control techniques can
be a game. In this project, control systems are investigated to allow a robotic arm
to play Jenga. In particular, this master’s thesis aims at comparing operational
space control and visual servoing. Therefore, keywords are path planning, force
interaction, mechanical design and sensor fusion.

The development of control systems is carried out through proprioceptive and
exteroceptive sensors. Such information allows for the construction of the over-
all game strategy that is characterized by an analytical footprint combined with
empirical considerations. The forces acting on a generic block are studied from a
theoretical perspective that includes geometrical dimensions, material properties,
and physical constraints. This analysis provides quantitative results to detect
the state of a single block. To this end, a force sensor, mounted on the finger of
the robotic arm via a 3D printed support, provides real-time measurements. In
addition, a RealSense camera is attached to the robot’s end-effector in a well-known
configuration, also called eye-in-hand. It enables the construction of control systems
based on visual information. Also in this case, the implementation involves the
design of the camera support equipment. In particular, two control techniques are
tested: operational space control and visual servoing. The first scheme consists
of a planned trajectory in Cartesian space that, upon receiving a pose, generates
waypoints to follow in order to reach such position. This control method guar-
antees convergence to the desired pose through a PID controller that ensures a
small tracking error. For this purpose, the functionalities of MoveIt, a planning
framework in Robotic Operating System (ROS), are exploited using a customized
inverse kinematic solver and a planning adapter. The second control method,
visual servoing, is a real-time feedback control law designed to respond rapidly
to world noise, lack of measurements and kinematic tolerances. The eye-in-hand
configuration provides feedback information for the position-based visual servoing,
a control scheme to actuate the manipulator according to the pose of the object.

ii

For this purpose, knowledge from a CAD model is used to continuously track the
block and estimate its pose. In this case, an additional controller is designed to
accept the velocity generated from the visual control loop as input. Such a control
method improves the accuracy of the task as it can correct the robotic arm position
according to the target in real time.

In conclusion, experimental results are reported in the last chapter, highlighting
analogies and discrepancies with respect to similar works. The general approach for
system validation involves unit testing of individual components with subsequent
integration of the different modules. Therefore, the two control systems are analyzed
to understand strengths and weaknesses, as well as to assess their effectiveness
on this application. To this end, accuracy of final position represents the main
factor. A further trial is performed considering the speed of convergence for visual
servoing. It aims at finding a good trade-off between performances and system
stability. Such results allow the construction of the Jenga tactics.

iii

Table of Contents

List of Tables vii

List of Figures viii

Acronyms xi

1 Background 1
1.1 Software . 1

1.1.1 ROS . 1
1.1.2 Gazebo . 4
1.1.3 RViz . 4
1.1.4 rqt . 4

1.2 Kinematics . 5
1.2.1 Direct and Inverse Kinematics 5
1.2.2 Denavit–Hartenberg convention 9

1.3 Differential kinematics . 10
1.3.1 Geometric Jacobian . 11
1.3.2 Analytical Jacobian . 14
1.3.3 Kinematic Singularities . 16

1.4 Control . 16
1.4.1 Joint space control . 17
1.4.2 Operational space control 18

1.5 Visual servoing . 19
1.5.1 ROS Controllers . 24

1.6 Force analysis . 28

2 Project development 33
2.1 e.DO . 34

2.1.1 ROS network . 35
2.1.2 Kinematics . 36

2.2 Visual servoing . 37

v

2.2.1 Camera calibration . 38
2.2.2 Feedback control loop . 40
2.2.3 Tracking . 42
2.2.4 Velocity Controller . 44

2.3 Overall strategy . 46
2.3.1 Motion . 47
2.3.2 Planning adapters . 50

2.4 Force sensor . 55

3 Experimental results 60
3.1 Related works . 60
3.2 Gain tuning for visual servoing . 61
3.3 Accuracy for eye-to-hand configuration 65
3.4 Accuracy for visual servoing . 67
3.5 Conclusions and future developments 69

A Linear Algebra 70
A.1 Matrix properties . 70

B Rigid body 71
B.1 Kinematics . 71
B.2 Euler angles . 73
B.3 Denavit–Hartenberg . 75

B.3.1 Chain of rules . 75
B.3.2 Anthropomorphic Manipulator 77

C Hardware settings 78
C.1 Force sensor . 78

Bibliography 81

vi

List of Tables

1.1 Velocity expressions for revolute and prismatic joints 13

2.1 DH parameters for e.DO . 36
2.2 Orientation, expressed in quaternions, for the two possible configu-

rations . 49

3.1 Position and orientation for the starting pose 62

vii

List of Figures

1.1 Example of ROS communication . 3
1.2 Direct and inverse kinematics . 6
1.3 Elbow up and down configurations 8
1.4 Basic structure for open-chain manipulator 13
1.5 Graphical relationship between ∂ψ

∂t
and ω 15

1.6 Joint space control . 18
1.7 Relationships among reference frames in visual servoing 20
1.8 Scheme for Visual servoing . 23
1.9 Architecture of ROS control . 25
1.10 Hardware interface communication in ROS_control 27
1.11 Stable configurations in Jenga . 29
1.12 Force diagram for a single generic block of Jenga 29

2.1 e.DO . 34
2.2 ROS topics of e.DO used for the communication 35
2.3 3-D printed support for RealSense d435i 38
2.4 ArUco marker . 39
2.5 Frame of RViz during camera calibration process 39
2.6 Position-based visual servoing control loop 41
2.7 CAD model for model-based tracking in ViSP 42
2.8 Initialization by user click for tracking 43
2.9 Tracking of a single Jenga block . 44
2.10 Control scheme for the velocity controller 45
2.11 Tactics for playing Jenga . 46
2.12 First phase of the movement for approaching the block 48
2.13 Trajectory to achieve the left configuration 49
2.14 Trajectory to achieve the right configuration 49
2.15 Second phase of the movement for pushing the block 50
2.16 System architecture of MoveIt . 51
2.17 Integration of e.DO and MoveIt . 52
2.18 Simulation to test the different planning adapters 54

viii

2.19 Top and front view of Honeywell FMA MicroForce sensor 56
2.20 Pinout of the sensor . 56
2.21 CAD design for the force support 56
2.22 Force-time graph for free blocks in different tower positions 57
2.23 Force-time graph for constrained blocks in different tower positions 58
2.24 Force loop scheme . 59
2.25 The sequence of movements when robot perceives a stuck piece . . . 59

3.1 Settings to tune the λ parameter 63
3.2 Manipulator movement to approach the target 64
3.3 Velocity-time chart for different values of λ 64
3.4 Settings to evaluate accuracy of eye-to-hand configuration 65
3.5 Accuracy of eye-to-hand configuration 66
3.6 Model-based tracking for a single Jenga piece 67
3.7 Accuracy of visual servoing with model-based tracker 68

B.1 Infinitesimal rotation for vector bi 73
B.2 ZYZ intrinsic rotation . 75
B.3 Geometric relationship between two successive links according to

the Denavit-Hartenberg conventions 76

C.1 Signals for data acquisition . 78
C.2 Two byte data readout . 79

ix

Acronyms

CAD
Computer Aided Design

GPU
Graphics Processing Unit

GUI
Graphical User Interface

MISO
Master in Slave Out

ML
Machine Learning

PBVS
Position-Based Visual Servoing

PID
Proportional-Integrative-Derivative

RF
Reference Frame

ROS
Robotic Operating System

RViz
ROS visualization

xi

SDF
Simulation Description Format

SPI
Serial Peripheral Interface

URDF
Unified Robot Description Format

ViSP
Visual Servoing Platform

xii

Chapter 1

Background

The insights contained in this chapter are important for understanding the advanced
topics proposed in this project. The main software will be analyzed, highlighting
their general characteristics and their use in the project. Some examples, present in
the discussion, will help the reader in the recognition of these topics, especially for
abstract concepts. The kinematics problem will be approached from an analytical
point of view, starting with the mathematical notions for the formulation of the
overall problem. Important quantities are introduced that will be used in the
subsection on robotics control systems. This part takes up more space because it
requires careful discussion. It first introduces the notions and terminology of basic
control schemes, then describes conventional control methods. To this end, both
Operational and Joint space control, as well as Visual servoing, will be handled. In
particular, closed-loop structures with feedback visual information will be presented,
pointing out the mathematical structure and the differences among the different
types of Visual servoing. In conclusion, the Jenga tower will be managed through
the physical formulation of the force diagram.

1.1 Software

1.1.1 ROS

The Robotic Operating System [1] is a meta-operating system that includes a
software framework specifically designed to accomplish several challenging robotic
tasks. The open-source property allows to develop fast-prototyping, ideas exchang-
ing and shared documents among the whole community. Code portability and easy
testing are the main ROS advantages. Standard services of an operating system
are supported ranging from low-level details to graphical user interfaces. Hardware

1

Background

abstraction is enclosed to bring the operating system towards a user-friendly config-
uration while neglecting the interaction with hardware devices. A variety of tools
and functionalities are included to perform quite common user actions as message
management, package administration and creation of a particular working space.
For this project, I have used ROS Noetic under the Linux distribution, Ubuntu 20.04
LTS. The ROS general architecture is extremely powerful and flexible, although the
overall complexity grows significantly. Therefore, a deep understanding about the
basic elements is needed. The main aspect to capture is the coding implementation
and how different algorithms can run on the same network. Robotics demands
a modular structure in order to callback functions, activate operations in precise
moments, read sensor data and send off parallel actions to perform correlated com-
putations. Therefore, the architecture is built around a general tracker called ROS
Master. Each code script – i.e.node - implements a specific task or functionality,
connecting to the ROS Master. Nodes are independent and can run concurrently
systems allowing fast communication among them. In a real-world application,
a complex task can be divided into n-subtasks to enforce modularity and error
debugging. For example, robotics applications about Guidance, Navigation and
Control (GNC) are usually split into several nodes. These tasks are responsible
for perception, sensor acquiring, path planning and movement control. The type
of information sent or received by a specific node is called a topic that contains
data to be processed under a message format. Standard topics concern information
about wheel velocities, encoder position in the motion node or point cloud data
and depth information about path planning. A systematic way to define infor-
mation exchange is through message definition that establishes the data format
to be respected. As a reference to the motion control node, the velocity to be
sent to the robot is usually defined either with geometry_msgs/PoseStamped or
geometry_msgs/TwistStamped that contains a specific data format. Let suppose
that the velocity command is triggered by a further node. In this situation, the
ROS Master enables the communications between the nodes, registering them for
the exchange of information. The figure below depicts the current situation.

2

Background

Figure 1.1: Example of ROS communication

The active processes in ROS have been handled through a peer-to-peer (P2P)
architecture, as shown in the figure. From a practical point of view, the ROS
Master is notified every time a topic exchange information. It can be thought
of as the supervisor responsible for the ROS system throughout. Besides these
aspects, nodes can either read data or publish information. Therefore, a publisher
is a node that broadcasts a message into a topic while subscribers read data from
a topic. However, ROS provides further two ways for communicating: Actions
and Services. While topics offer one-way communication, these latter consist of
bimodal communication. The entities, a client and a server establish a continuous
conversation in order to accomplish a task. In particular, the client sends a request
to the server, who receives the incoming request elaborates the decision. The main
difference between actions and services arises in the scheduling. In the following, a
summary:

• Topics: one-dimensional channel for transporting the information.

• Services are synchronous: a running program cannot be interrupted when a
ROS Service is called.

• Actions are asynchronous: a node functionality can be preempted while
Actions are triggered.

The hierarchical architecture allows rapid prototyping, as well as code reusability
although the not real-time feature restricts its field of application.

3

Background

1.1.2 Gazebo
Rapid prototyping is enforced through simulations that allow designing the main
functionalities. In this context, Gazebo represents a primary choice for many
ROS users. It has been developed in 2002 by Andrew Howard in collaboration
with his student, Nate Koenig, at the University of Southern California. After
a few years from its license, Gazebo has become a milestone for robotics [2]. A
robust physics engine guarantees a scenario close to reality while the rendering
offers a more realistic environment. Although many robots are already provided,
a custom SDF can be developed and easily integrated into Gazebo. One of its
main strengths represents the data generation of sensors. Indeed, it is possible to
simulate cameras, contact sensors and acquire the information directly from the
simulated environment. For this project, Gazebo 10 was used.

It was mainly used for testing new functionalities, analyzing velocity profiles as
well as for sensors purposes. To this end, a variety of plugins are also available.
This latter allowed me to verify the effectiveness of the hardware interface for the
robot. A simulated version was tested first, then implemented for the real robot.
Collision checking is also integrated as part of the toolbox.

1.1.3 RViz
ROS visualization (RViz) [3] is a graphical interface for visualizing the main
information concerning the robot. This 3D visualization tool interactively displays
the robot through the various plugins. Thanks to these characteristics it is possible
to take updated information about the kinematic chain of the manipulator and
visualize what the robot can see. It is particularly important for managing joint
values, know their position in almost real-time and construct the robot’s tree by
specifying parents and child links. The Motion Planning tab allows the user to
manage the manipulator’s kinematics interactively. Movements can be planned and
later executed while showing the entire trajectory. In addition, RViz can obtain
data from cameras, lasers and other sensors for managing the information through
ROS topics.

During this work, it was used to obtain information on the status of the robot
while maintaining coherency between simulation and real robot. Also, it was
used for the camera calibration to get extrinsic parameters. This latter process is
well-documented in the next chapters.

1.1.4 rqt
The ROS Qt GUI toolkit (rqt) is a software framework for creating various GUI
tools. It is composed of three meta-packages that users can use through the
command line. In particular, rqt_graph allows viewing nodes and topics that are

4

Background

active. As the name suggests, the structure is made of nodes and edges connected
in order to shape the graph. Since the manipulator employed in this project was
not comprehensive with exhaustive ROS documentation, rqt was an important tool
throughout the project.

It was mainly used for debugging purposes. It allowed me to understand how
the nodes communicated and which topics were responsible for. Moreover, it
is possible to receive information about the duration of the running nodes as
well as the messages triggered by the communication. It turned out a complex
ROS infrastructure made up of several services, actions and custom messages.
Nevertheless, other interesting plugins are included. For example, rqt_image_view
displays the images supplied by topics in a formatted way. It was used when
calibrating the camera for arUco markers detection, yielding a graphical view of the
entire process as explained in the next chapters. Thus, it gains access to RealSense
topics to monitor the process while ensuring that the marker is always in the
camera’s field of view.

1.2 Kinematics
As far people talk about robot movements, it is common to think of jerky movements.
However, this popular belief has been overcome over the years through the study
about the motion properties of an object, also called kinematics.

In this field of research, all possible motions are considered through the equations
that connect joints and end-effector. It is worth highlighting that the latter does not
involve the relationship with forces, but only kinematic patterns. Neither torques
on the shaft nor effort in the motors are treated in kinematics. Nevertheless, the
possible movements of the manipulator determine a feasibility range i.e., the robot
workspace, which accounts for limits in the feasible range of motion Let us start
the discussion by introducing two concepts of kinematics. Mathematical steps and
notions can be found in [4] and [].

1.2.1 Direct and Inverse Kinematics
The relative position of the joints determines the configuration the robotic arm
will assume. If the previous statement is correct, thus it is also possible to find a
relation between a certain pose and their related joint values. Let suppose that
q =

è
q1 q2 . . . qn

éT
∈ Rnx1, with n number of joints, is the vector that represent

the joint values and the pose p =
è
x y z α β γ

éT
∈ R6x1 indicates the position

and orientation of the manipulator.

• Direct kinematics consists of computing the pose of the end-effector pee as

5

Background

function of the (nx1) vector q. Hence, the relation between direct and inverse
kinematics is suggested in the following figure.

• Inverse kinematics determines the joint variables q =
è
q1, q2, . . . , qn

éT
for a given pose of the end-effector pee.

Figure 1.2: Direct and inverse kinematics

The figure above represents such a concept. It is worth noting that, while
direct kinematics provide a unique solution, inverse kinematics can exhibits many
solutions. Also, no solution can be provided in case of vector p is outside the
workspace. In such a case, an unfeasible problem turns out. Furthermore, let
denote the joint space as the possible robotic arm arrangements, in terms of position
and orientation, for which the vector q is defined. At the same time, Cartesian
space consists of the pose - position and orientation - assumed by the end-effector.
This definition will be useful when discussing redundancy and control schemes. In
addition to these aspects, it is important to note that no admissible solutions can
occur due to the chain of the manipulator. Thus, for a n-DOF manipulator, the
inverse kinematics problem cannot be determined if n < 6. Consequently, it turns
out that these robotic arms do not guarantee both position and orientation. For
example, given a pose pdes, a 5 -DOF manipulator can achieve either position or

6

Background

orientation, not the complete pose pdes. From a mathematical point of view, the
direct kinematic problem consists of defining the following matrix

T bee =
C
nbee(q) sbee(q) abee(q) pbee(q)

0 0 0 1

D
, (1.1)

that can be constructed, knowing the geometric dimension of the manipular and
the joint values as well. It links univocally the base frame with the end-effector
frame attached to it. In this way, it is possible to know the relative position and
orientation, i.e., the pose between the considered RFs.

In general, trigonometric functions are present which lead to laborious calculus.
However, complex operations can be overtaken by adopting a systematic procedure.
In absence of such methodology, geometric abilities allow obtaining the desired
matrix. Nevertheless, the latter T baseee is derived as a result of the kinematic chain
of the manipulator. Since it depends on the (nx1) vector q, each joint position
contributes to its general expression. Thus, it is common to obtain this matrix for
two successive links and construct the chain. The general expression is

T bee = A0
1 (q1)A1

2 (q2) . . . An−1
m (qn) , (1.2)

where the Aij are (4x1) matrices that relate links i and j. It is worth noting that
the latter equation is valid for any open-chain structure. On the other hand, the
mathematical formulation of the inverse kinematics problem is more complicated.
With reference to equation (1.2), the four (3x1) vectors lead to a system of 12
equations to be solved. As just mentioned before, the existence of solutions strongly
depends on the DOFs of the manipulator from which the following system of
equations can be derived

nx = f1(q1, q2, · · · , qn)
ny = f2(q1, q2, · · · , qn)

...
pz = f12(q1, q2, · · · , qn)

(1.3)

where the vectors n, s, a and p are considered. The hidden trigonometric struc-
ture brings non-linear terms in the equations system. It turns out that closed-loop
solutions are difficult to manage. To this end, geometrical and analytical intuitions
have to be leveraged in order to find a solution as the choice of angles to consider
is not unique. Generally, it is worth choosing n, s, a and p to minimize the number
of parameters. In such cases experience in resolving such equations system can be
the game-changer. The worst choice guides the manipulator to redundant (to be
specified) states, whereas multiple solutions exist. However, multiple solutions can
satisfy the equations although some robot postures are preferred. This is the case

7

Background

of elbow-up and elbow-down postures. A schematic representation is illustrated
below.

Figure 1.3: Elbow up and down configurations

Such solutions are admitted analytically even though elbow-up is the desired
solution as it avoids the problem of joint-limits. Considering that a 6-DOF manip-
ulator can generate up to 16 solutions, clearly choosing the best posture became
challenging, even impossible for a larger DOF robot.

In such cases, it may be possible to adopt numerical solution techniques. These
latter benefits of adaption as they can be applied to any kinematic chain and
account for joint limits. Also, the resolution of the inverse kinematics problem
can exhibit infinite solutions. This is the case of kinematic singularities. Such
configurations result in the movement of the end-effector being impeded in certain
directions. Typically, it depends on the number of joints and their types as well as
the kinematic chain.

Another index for robot performance is the so-called workspace, i.e., the region
formed by all possible motions in terms of the end-effector frame. Further analyzing
the possible motions, it can be possible to distinguish two different types:

• Reachable workspace is the region achievable with at least one orientation by

8

Background

the end-effector.

• Dexterous workspace represents the region described by more orientations

In the previous definitions, end-effector is intended as the origin of its reference
frame. Nevertheless, it turns out that dexterous workspace is a subspace of the
reachable workspace. The determination of the reachable workspace leads to solving
the mathematical problem formulation below

pe = pe(q)
s.t.qi,min ≤ qi ≤ qi,max

(1.4)

that leads to five different types of regions: planar, spherical, toroidal and
cylindrical.

1.2.2 Denavit–Hartenberg convention
In robotics, geometric correlations between two or more joints are a crucial topic.
The tool invoked to perform this task is the homogeneous transformation matrix
that allows to completely define the geometric properties between two different
reference frames (RFs). It can be shown that this matrix can be expressed in a
block-divided form:

Aij =
C
Ri
j −Ri

j t
j
i

0T 1

D
, (1.5)

where Ri
j indicates the rotation from Fi the to the Fj and −Ri

jt
j
i represents the

translation vector between the two RFs. In general, the orthogonality property
does not hold and therefore:

A−1 /= AT . (1.6)

The previous expression can be derived for two consecutive joints in order to form
an open chain that correlates the robot base link with the end effector. However,
due to the motion of the robot, this matrix depends on the joints positions. The
analytical expression is given by:

T 0
n (q) = A0

1 (q1) A1
2 (q2) A3

2 (q3) . . . An−1
n (qn) . (1.7)

Generally, joints can be either revolute or prismatic. It follows that specialized
equations for both configurations can be obtained. With reference to equation
(1.5), the subsequent result is that:

• Revolute joints : Ri
j depends on joint position qj while tij remains constant

Arev =
C
Ri
j(qj) −Ri

j(qj) t
j
i

0T 1

D
. (1.8)

9

Background

• Prismatic joints: Ri
j is constant and tij(qj) as a function of qj

Apris =
C
Ri
j −Ri

j t
j
i (qj)

0T 1

D
. (1.9)

Nevertheless, from a pragmatic point of view, it is interesting to formulate a
chain of rules to define the relative position and orientation of two reference frames.
This is what the Denavit-Hartenberg convention actually does. Basically, it is a
parameter-based specialization of the more general homogeneous transformations
that describe the robot geometry for speeding up the computational load. It consists
of 4 parameters ai, αi, di, θi that entirely describe the geometric properties between
two RFs although three out of four parameters are constant. Therefore, only one
is the joint variable: θi for revolute joints and di for prismatic ones. In the more
general form, this matrix looks like:

Ai−1
i =


cθi

−sθi
cαi

sθi
sαi

aicθi

sθi
cθi
cαi

−cθi
sαi

aisθi

0 sαi
cαi

di
0 0 0 1

 , (1.10)

that leads to a complete geometrical description of the manipulator through
homogeneous matrices. Indeed, starting from the base link and repeating this
process up to the end-effector, the relation between two successive links is obtained.
The general transformation T 0

n (q) is obtained by post multiplication. This allows
managing the direct kinematics problem in a more systematic way rather than
geometric intuitions. Moreover, it is usual to construct a table that summarizes
these parameters in order to obtain such a relation.

1.3 Differential kinematics
In the previous chapter, the relationship between end-effector pose and joint
variables was analyzed. However, the latter cannot establish a tight mapping for
velocities as well. The reason lies in the representation of these quantities for which
a more detailed analysis needs to be performed.

Differential kinematics establishes a relationship between the joint and the
end-effector in terms of velocities. In fact, the term differential refers to the time
derivative of kinematic quantities. Therefore, a linear mapping occurs between
the linear and angular velocity of the end-effector and the velocities of the joints.
Such an expression is given by a quantity called Jacobian. Based on the angular
velocity representation, two different types of Jacobians are possible: geometric
and analytical. By deriving the direct kinematic equation, the analytical Jacobian

10

Background

is obtained. It is derived by making the time derivative of the end-effector pose,
expressed in a minimal representation. On the other hand, the geometric Jacobian
refers to the angular velocity.

1.3.1 Geometric Jacobian
Let supposed to get a n-DOF manipulator from which we are aimed to find out
the correlation between joint and end-effector velocities. In order to do this, let
take a (nx1) vector q̇ defined as follows

q̇ = ∂q

∂t
, (1.11)

which represents the joint velocities. Also, the angular velocities vector ω ∈ Rnx1

is considered while the generalized end-effector velocity is defined as

vee =
C
ṗee
ωee

D
, (1.12)

where ṗee = ∂pee

∂t
corresponds to the time derivative of the position for the end-

effector. The geometric Jacobian relates (6x1) vector vee and joint velocities. A
linear mapping is established according to the following equation:

vee = J (q) q̇ , (1.13)

where J is a (3xn) matrix, also known as geometric Jacobian. This latter equation
is the so-called differential kinematics equations.

Since the vee can be decomposed into linear and angular terms, the same can be
made with the Jacobian though. It follows that

vee =
C
JP (q)
Jo (q)

D
q̇ , (1.14)

which points out two different terms, JP and Jo. At this point, the mathematical
relationship is calculated blow both for ṗee and ωee.

• ṗee

With reference to direct kinematics problem, the velocity vector is derived
directly from pee by making the time-derivative as follows

ṗee = ∂pee
∂t

= ∂p

∂q
· ∂q
∂t

= JP (q) q̇ . (1.15)

Hence, Jp = ∂pee

∂q
represents the linear mapping between end-effector linear

velocity and joint velocities.

11

Background

• ωee

Similarly, the relationship with angular velocity can be established. Here,
there are few more steps to accomplish due to the relationship between ωee
and the Euler angles ψ =

è
ϕ ϑ φ

éT
. To this end, let consider a 323 Euler

rotation matrix given by

T323(ϕ, ϑ, φ) =

cφcϑcϕ − sφsϕ −cφcϑsϕ − sφcϕ cφsϑ
sφcϑcϕ + cφsϕ −sφcϑsϕ + cφcϕ sφsϑ

−sϑcϕ sϑsϕ cϑ

 , (1.16)

where T323(ϕ, ϑ, φ) = T3(ϕ)T2(θ)T3(φ) according to the standard notion. The
reader can find the construction of this matrix in the Appendix section. Thus,
it can be shown that, computing the contribution of each angular velocity
with respect the (3x1) vector ψ, the subsequent result is obtained.

ωee = T (ψ) ψ̇ =

0 −sφ cφsϑ
0 cφ sφsϑ
1 0 cϑ

 ψ̇ . (1.17)

Once that a relationship between ωee and ψ̇ is found, the second term of the
Jacobian can be calculated. A few more mathematical steps follow.

ψ̇ = ∂ψ

∂t
= ∂ψ

∂q

∂ψ

∂t
= Jψ (q) q̇ , (1.18)

ωee = T (ψ) Jψ (q) q̇ = Jp(q) q̇ . (1.19)

The Jψ = ∂ψ
∂q

refers to the analytical Jacobian as explained later while Jp =
T (ψ)· ∂ψ

∂q
relates the angular velocity of the end-effector with the joint velocities.

Considering a n-DOF manipulator, an extend version of the equation (1.14) can be
pointed out for each joint. Therefore, the geometric Jacobian is expressed as

J(q) =
C
Jp1(q1) Jp2(q2) . . . Jpn(qn)
Jo1(q1) Jo2(q2) . . . Jon(qn)

D
, (1.20)

highlighting the entries of the matrix as function of the i-th joint. Therefore, the
velocity of the end-effector be computed in the following way:

ṗee = JP q̇ =
nØ

i=1
JPiq̇i , (1.21)

12

Background

while the expression for the angular velocity will be:

ωee = Joq̇ =
nØ

i=1
JOiq̇i . (1.22)

Nevertheless, this expression can be further specialized for the type of joint it is
considered. To this end, let consider the figure below.

Figure 1.4: Basic structure for open-chain manipulator

It can be thought of as the geometric relations between the basic link, the
generic link, and the end-effector. Therefore, we consider the i-th link. According
to Denavit-Hartenberg conventions, the linear and angular velocities for both
revolute and prismatic joints are shown in the following table.

Joint Linear velocity Angular velocity
Revolute ṗi = ṗi−1 + ωi × (pee − pi−1) ṗi = ṗi−1 + ωi × (pee − pi−1)
Prismatic ṗi = ṗi−1 + ḋizi−1 + ωi × (pee − pi−1) ωi = ωi−1

Table 1.1: Velocity expressions for revolute and prismatic joints

Some comments about the above table. From an intuitive point of view, a
prismatic joint cannot add any angular velocity contributions due to its structure.
In fact, it is characterized by a linear movement along the slider which constraints
other motions. Consequently, the angular velocity does not change with respect
the previous joint while the velocity expression must take into account both the
linear motions and the contribution given by the angular velocity. A remainder
of this concept can be found in the Appendix section. On the other hand, the
angular velocity of revolute joints is considered in the expression of ωi and induces
a contribution in the linear velocity. It follows the following considerations:

13

Background

• For prismatic joints:
˙pi, pris = JPiq̇i = ḋizi−1

⇒ JPi,pris = zi−1

ωi,pris = JOiq̇i = 0 ,

⇒ JOi,pris = 0

• For revolute joints
ṗi, rev = JPiq̇i = θ̇izi−1 × (pee − pi−1)
⇒ JPi,rev = zi−1 × (pee − pi−1)

ωi,rev = JOiq̇i = θ̇izi−1 ,

⇒ JOi,rev = zi−1

In conclusion, the expression for geometric Jacobian is derived for both prismatic
and revolute joints according to the DH conventions. A summary is proposed
below.

J =
C
JP
JO

D
=



zi−1

0

 for revolute joints ˙zi−1 × (pee − pi−1)
zi−1

 for prismatic joints
(1.23)

1.3.2 Analytical Jacobian
The direct kinematic equation expresses the pose of the end-effector with respect to
the joint variables. Considering the velocity as the time-derivative of the position,
the latter equation is a suitable candidate in order to establish the relationship
between joint velocities and end-effector linear and angular velocities.

As opposed to geometrical Jacobian, the analytical Jacobian gets a minimal
orientation in terms of orientation. It is described by three independent angles,
yielding the representation of orientation in the 3-D space. Nevertheless, it will be
shown that a correlation between analytical and geometric Jacobian holds. Before
this step, let find the general expression. For doing this, let start from the direct
kinematic equation and derive it, as illustrated below.

x =
C
p(q)
ψ(q)

D
,

ẋ =
C
∂x
∂t
∂ψ
∂t

D
=

C ∂p
∂q
∂ψ
∂q

D
q̇ =

C
Jp
Jψ

D
q̇ ,

(1.24)

14

Background

where JA =
è
Jp Jψ

éT
represents the so-called analytical Jacobian.

It is worth noting that ∂ψ
∂q

does not correspond to ω, generally. In fact, they
display the results of two different operations due to their intrinsic structure. Hence,
the time-derivative of the minimal orientation representation ψ̇ is constructed by
applying three intrinsic velocities around different axis. Conversely, the angular
velocity ω is the vector resulting from the motion around the instantaneous axis of
rotation. The figure below illustrates the concept graphically.

Figure 1.5: Graphical relationship between ∂ψ
∂t

and ω

Thus, in general the two Jacobian representations differ. However, there is a
particular case that leads to an equivalence between them. This case is represented
by a motion around a single axis of rotation.

For opposite cases, the expression differs. It also remarks the main difference
between the two Jacobian representation. However, the following relationship holds:

ω = T (ψ) ψ̇ =

0 −sφ cφsϑ
0 cφ sφsϑ
1 0 cϑ

 ψ̇ , (1.25)

that relates the angular velocity with the minimal representation of time-
derivative orientation. On the other hand, the linear velocity is the same for
both geometrical and analytical Jacobian. The above considerations lead to the
following equation.

J = TA (ψ) JA =
C
I 0
0 T (ψ)

D
JA . (1.26)

This latter shows that a correlation between the Jacobian representations exists. It
only depends on how we are going to express the motion in terms of orientation.

15

Background

Moreover, it shows a feasible way for calculating the analytical Jacobian. In fact,
knowing the DH parameters and the direct kinematics, the geometric Jacobian can
be calculated according to equation (1.23). Afterwards, the analytical Jacobian is
obtained by inverting the equation as follows.

JA = TA (ψ)−1 J . (1.27)

However, the computation of ω = f(ψ̇) is challenging due to representation sin-
gularity of matrix T (ψ). While the combination of ϕ̇, ϑ̇ and φ̇ can always be
expressed as an angular velocity vector ω, the opposite statement does not hold.
In particular, there could be several combinations of the triplet for which, a given
ω, can be expressed.

1.3.3 Kinematic Singularities
A robotic arm is able to move the end-effector through the actuation of motors.
Therefore, a relation between the end-effector and joint velocities can be established
according to equation (1.13).

However, what seem intuitive from a pragmatic viewpoint, gets wrong conclusions
in reality. In fact, joint velocities do not yield necessary to end-effector motion. This
is the case of kinematic singularities. When singularities occur, the manipulator
is no longer capable of accomplishing the desired behavior due to loss of mobility.
Such condition implies the loss of one or more DOF in the kinematic chain. The
result is the impossibility to actuate freely the end-effector. Since v=0, we have
that

J (q) q̇ = 0 , (1.28)

leading to
det (J) = 0 . (1.29)

Therefore, a kinematic singularity is characterized by a null Jacobian determinant.
In other words, this implies a rank deficient matrix for which a loss of mobility
occurs. Thus, even high joint velocities do not produce velocity at the end-effector
or cause very small velocities.

1.4 Control
The trajectory planning problem can be formulated as to determine the right
parameters value for ensuring the manipulator to reach a desired final position. To
this end, a locus of points called path is generated which drive the robot in order
to accomplish its movement. Since the path lies on the manipulator workspace, the
generated points belong into bounded a 3-D space. Conversely, trajectory includes

16

Background

the signal profiles during the motion in terms of kinematic quantities as velocity and
acceleration. Thus, the trajectory can be though as the integration of the timing
law during the path. This can be achieved both in operational and joint space.
In addition, the trajectory in operational space usually considers the presence of
obstacles embedded in the scene. Calculating the trajectory in operational space
can be difficult due to the loss of physical meaning. Such a differentiation is made
to highlight the relevance of acceleration and velocity during the transient.

Motion control is the technique for ensuring the execution of a reference trajectory.
This task involves hardware implementation, control theory and dynamic model.
Based on the control objective, the are two main control tasks [5]. The first one is the
trajectory tracking that can be formulated as follows. Given a time-varying joint
reference trajectory, the control scheme allows the convergence to the desired goal.
With reference to DC motors, the performances strongly depend on the actuator
and their capability to supply current. Therefore, there is a trade-off between
performance and command activity. Also, the joint velocity and acceleration must
be compliant with the actuators in order to not exceed the manipulator limits.

The second control method is the point-to-point-control, also called regulation
according to the implemented control law. In this case, the goal consists of bringing
the joint variables at desired positions despite initial conditions and disturbances.
Thus, it can be formulated as a sub-problem of the more general trajectory tracking.
However, overshooting and rise time cannot be directly handled.

The choice of the type of control has to be done according to the specified task.
Operations that require high precision and repeatability may favor the adoption
of a trajectory tracking controller. For example, it is widely used in industrial
applications like arc welding and assisted surgery. Conversely, point-to-point control
is used in different contexts due to high frequency control. The soft real-time control
with possible on-line corrections can be achieved allowing a wide range of operations
as visual servoing and force control.

1.4.1 Joint space control

Trajectory tracking adopts joint space control to reach a determined position.
Starting from initial joint coordinates q (t) ∈ Rn, this latter aims to design a
feedback control scheme for tracking desired joint positions qd(t) in the case of a
n-DOF manipulator.

Nevertheless, the user is used to specify cartesian coordinates with respect to
the base frame. Therefore, an inverse kinematic solver must be engaged in order
to compute the joint variables q(t) to reach the desired end-effector pose. As
reference, the inverse kinematic problem is solved for the e.DO manipulator in the
next chapter. In general, the control scheme is depicted in the figure below.

17

Background

Figure 1.6: Joint space control

The end-effector pose xd ∈ R3x1 is the input through the user decides final
position and orientation for the end-effector. Notice that other configurations are
also possible. In principle, xd can be chosen as any of the n-joints belongs to the
manipulator with an appropriate modification of the inverse kinematic problem
accordingly. Afterwards, a set of joint coordinates qd ∈ Rn are computed that act as
reference for the overall control scheme. At each iteration, the controller determines
the current to be provided to the DC motors in order to follow the desired motion,
the manipulator moves accordingly while encoders provide an estimation of the
joint variables q (t) to fed back. The goal is the asymptotic convergence of the
tracking error defined as

e(t) = qd − q(t) , (1.30)

ensuring the feasibility for the robot limits. For the Trajectory tracking, an
arbitrary number of waypoints is generated xi,d ∈ R3,1 with i = 1, . . . ,m. Different
criteria for the waypoints generation can be chosen although cubic or linear methods
are usually employed. The above control scheme is repeated m times for each of
the waypoints. Also, trajectory optimizer can be included to make a smoother
trajectory in order to avoid vibrations and noise. Joint space control is suitable for
applications that require a pre-planned motion guaranteeing a great precision. In
addition, obstacle avoidance can be added by imposing further constraints on the
path planning.

1.4.2 Operational space control
Joint space control is quite effective in different applications where the pose to
reach is known a priori. However, only little online modifications can be carried out
and a list of operations cannot be executed through the control scheme proposed
above.

A quite different approach is the so-called operational space control. As the
name suggests, the goal of the operational space control consists of implementing a
control scheme in order to command the end-effector motion. The transformation
between the joint velocities q̇ and task velocities ẋ is established by the Jacobian
matrix J ∈ R3x1 according to

ẋ = J(q)q̇ . (1.31)

18

Background

1.5 Visual servoing
In order to carry out most of the human tasks, new tools need to be implemented.
A new frontier in robotics is visual servoing, which is still an active field of research
due to its multidisciplinary and complexity. This term was introduced by Hill and
Park in 1979 to highlight the visual feedback information rather than the acquisition
of data through sensors. In this case, information is acquired through the camera
in order to extract the so-called visual features. Indeed, the key characteristic
of such a method is the variable measurement because the visual features are
extracted indirectly via computer vision algorithms. Primary importance regards
the algorithms based on image processing and computational vision which fueled
the research in the last few years.

The primary goal of visual servoing consists in controlling the robot through
visual measurements provided by the camera. For doing this, the robot must be
equipped with at least one camera that will provide real-time images. Afterward,
advanced vision control algorithms will extract a set of visual measurements to
analyze the position and orientation of the robot with respect to the target. As
consequence, the accuracy strongly depends on the quality sensors, vision algorithms,
and ability of the control system to track the desired behavior.

Based on the camera position, two main approaches can be distinguished in the
case of mono-camera systems. Configurations, where the camera is placed in a
pre-fixed position, are called eye-to-hand; in this case, the camera is motionless
since it does not track the movement of the manipulator. Conversely, the second
arrangement is a mobile configuration, also known as eye-to-hand configuration.
Thus, the camera is mounted directly on the robot that moves according to the
manipulator. Therefore, the camera field of view changes significantly during
the motion bringing instability, poor parameters estimation, and measurements
variability. However, if properly configured, it can ensure greater accuracy than
standard motion due to real-time measurements.

The camera position can be chosen arbitrarily. Typically, a common position
for the camera is at the end-effector. Nevertheless, convergence to the desired
pose can be achieved both in the operational and image space, leading to different
control techniques. In this project, the visual servoing in the operational space was
considered, also named position-based visual servoing. In such an arrangement, the
feature parameters defined in the image plane are projected into the operational
space. Consequently, the control law generates the velocity commands for ensuring
convergence to the target pose. Whatever the arrangement, a further step is
required. Indeed, in order to capture the feature parameters and lower the tracking
error, the camera calibration process is needed. This latter consists of calculating
intrinsic and extrinsic camera parameters. Intrinsic parameters are calculated from
the optical center and focal length of the camera and are usually computed either

19

Background

using a projective transformation from the 3-D camera’s coordinate into the 2-D
image coordinates or can be directly provided by the manufacturer. On the other
hand, extrinsic parameters associate the location of the camera in the 3-D space.
Therefore, following relationships hold.

Figure 1.7: Relationships among reference frames in visual servoing

With reference to the figure above, it can be shown that:

T eo = T ec T
c
o , (1.32)

where the matrix T ec contains the extrinsic parameters since it determines
the transformation matrix between the end-effector frame to the camera frame.
Therefore, the pose of the object with respect to the end-effector can be computed
through pose estimation algorithms in order to determine the matrix

T co =
C
Rc
o occ,o

0T 1

D
, (1.33)

with occ,o is the relative position vector between the object and camera origin
with respect to the base frame, expressed in the camera frame. This method can
be generalized for a well-known object by defining the feature vector

s =
C
X
Y

D
(1.34)

20

Background

or the corresponding vector in homogeneous coordinates

ås =

XY
1

 . (1.35)

The coordinates are given on the camera image plane and established in advance.
An automated way for determining the object coordinates can be obtained through
a CAD model. Also, it is worth taking n points to better identify the target object,
giving rise to the following feature vector:

s =


s1
s2
...
sn

 . (1.36)

This latter is constructed in order to fully describe the geometric object properties.
In general, the optimal sequence is not known as a priori. Variations about the
choice and number of points can lead to different results in the overall control
scheme. Defining çroo,i as the i-th position vector with respect to the object frame,
they can be mapped in the camera space

çrco,i = T co]roo,i . . (1.37)

The corresponding projection in the image plane is given by

λi åsi = Π T co
çroo,i with (1.38)

Π =

1 0 0 0
0 1 0 0
0 0 1 0

 . (1.39)

Considering the n-points, this latter leads to the system of equation proposed below

λ1

X1
Y1
1

 =

p
c
x,1
pcy,1
pcz,1



λ2

X2
Y2
1

 =

p
c
x,2
pcy,2
pcz,2


...

λn

Xn

Yn
1

 =

p
c
x,n

pcy,n
pcz,n



(1.40)

21

Background

also known as PnP (Perspective-n-Point). In general, multiple solutions may
exist depending on the geometry of the object. The solution for coplanar points is
presented in the Appendix.

Position-based visual servoing is a real-time control in the operational space.
Therefore, the joints are actuated according to the visual features. Obstacle
avoidance and trajectory optimization can be included as far as the object remains
in the camera field of view. In absence of this condition, the system becomes
unfeasible due to the lack of feedback information; thus, the feedback loop turns
out to be open. With a visible object in the camera field of view, the relative pose
of the object with respect to the camera can be extracted from the T co matrix,
according to the procedure described in the appendix. The geometry of the object
must be known in advance in order to provide a valid model for pose estimation.
The relative position vector between the camera and target object in the camera
frame is defined as:

occ,o = oo − oc . (1.41)
Likewise, the relative orientation φc,o is defined as giving the relative pose of the
object with respect to the camera.

xc,o =
C
occ,o
φc,o

D
(1.42)

with φc,o that can be computed from the rotation matrix Rc
o in the form of Euler

angles. Deriving the previous expression with respect to the time, the relative
velocity can be defined

vcc,o =
C
ȯcc,o
φ̇cc,o

D
, (1.43)

where φ̇cc,o = RT
c (ωo − ωc). The angular velocities ωo and ωc refer to the object

and camera movements, respectively. Large values for ωc cause instability and
oscillations for the system with consequential worsening of performance while ωo is
computed by means of pose tracking algorithms. In addition, robot movements
or non-static objects in the camera frame lead to a time-varying feature vector,
denoted as ṡ. The following equation puts in relation the time-varying feature
vector ṡ with vcc,o

ṡ = Js (s, T co) vcc,o , (1.44)
where Js, also called image Jacobian, maps a linear relationship between the

task space and the image plane. It also provides a general expression for further
developing the overall control scheme. Moreover, it can be shown that

ṡ = Jsv
c
o + Lsv

c
c , (1.45)

as the absolute velocities for the camera and object, expressed in the camera
frame, are pointed out. The interaction matrix, denoted as Ls, maps the absolute

22

Background

velocity vcc with the image plane velocity ṡ. Its analytical determination is carried
out for basic geometric primitives.

Afterward, the desired pose of the object in the camera frame is specified in
order to construct the control loop scheme. This matrix is renamed T do , with the
superscript d that denotes the desired pose. Therefore,

T dc = T do (T co)−1 =
C
Rd
c odd,c

0T 1

D
(1.46)

indicates the tracking error matrix that the control scheme aims to reduce.
Similar to the xc,o pose vector, the error vector åx is extracted from the T dc matrix.
Therefore, the control scheme is constructed in order to guarantee the convergence
of åx asymptotically to zero. It is interesting to notice that in this case, the matrix
T do is chosen a priori, assuming a time-invariant tracked object with respect to the
base frame. Finally, the feedback control scheme can be constructed.

Figure 1.8: Scheme for Visual servoing

The goal of the above control loop consists of minimizing the tracking error,
defined as e = xd − xc,o. In particular, the control law must be designed to bring
the tracking error asymptotically to zero. To this end, the camera provides the
real-time position of the tracked object through computer vision algorithms.

It is worth remarking that visual measurements are streamed at a lower frequency
than the motion control loop for allowing the manipulator to move accordingly.
Also, it turns out that bandwidth strongly depends on the computational load
derived by software and tools. Generally, a Visual servoing architecture has to
leverage:

• Object detection: identify an object in an image. It is a computer vision
technique for locating objects of predefined classes either in images or videos.

23

Background

Such techniques can leverage machine learning or deep learning-based ap-
proaches. In ML-based approaches, the object is identified through a-priori
known parameters, also called features, which are representative of the con-
sidered class of objects. Then, linear regression models update the feature
values according to the detected class of objects. On the other hand, DL-based
approaches involve several layers in order to extract the features and classify
the object. Typically, the best choice for suiting a particular application
depends on the collected dataset, as well as by the power of GPU.

• Pose estimation: consists of determining position and orientation i.e., the
pose, of an object. This computer vision technique involves the key points of the
object in order to estimate its pose. The process takes a used-defined reference
pose and compares such information with images captured through a camera.
The task can be achieved by using either ML algorithms or Convolutional
Neural Network, able to extract these kinds of data.

• Camera calibration: correlates the world and pixel coordinates. To this
end, the camera properties and its pose are calculated. They allow to deal
with lens distortion, as well as correlate the pixel and real-world dimensions.
In general, the process invokes two main steps. Firstly, the camera’s pose
must be recognized. Thus, a reference frame is chosen to describe its position
and orientation in the environment. The subsequent rotation and translation,
also called extrinsic parameters, are used to construct the camera matrix.
The further step computes the intrinsic parameters, i.e., the internal camera
characteristic such as distortion, focal length, and skew. It allows mapping
the projection of 3-D camera coordinates into 2-D image coordinates.

1.5.1 ROS Controllers
The achievement of precise movements is a challenging task, especially in unstruc-
tured environments. The main difficulty concerns the disturbances acting in the
system and not being taken into account in the robot model. The second motivation
regards the frequency of the overall control scheme. Control frequency is improved
in the last few years moving from 60 Hz to 250 Hz for modern robots. However,
some tasks require a higher control frequency in order to respond reactively to the
environmental changes. Therefore, different controllers have been developed.

The meta-package (i.e., it contains other packages inside) ros_control [6] is
developed in late 2012 for designing high-frequency control schemes in a robot-
agnostic way. It also includes real-time-safe communication, hardware resource
management and abstraction as well. These characteristics make ROS control
suitable for the visual servoing implementation. Indeed, it requires a velocity-based
controller rather than a discrete plan. Therefore, the controller should be able to

24

Background

accept velocity inputs specified in the operational space. The general architecture
of ROS control is provided in the figure below.

Figure 1.9: Architecture of ROS control

The core is the controller manager which handles resource conflicts between
controllers and provides an interface to start, stop and switch the controller types,
defined in the list_controllers. Generally, an application could be made of several
sub-tasks involving different types of controllers, as in this project. Hence, the
controller lifecycle changes dynamically. The package ros_control makes use of ROS
services to implement such functionalities. It contains many types of controllers
and the main of interest are:

• joint_state_controller: it reads the different positions of all joints and pub-
lishes them

• position_controllers: it transmits position values as input

1. JointPositionController
2. JointGroupPositionController

25

Background

• velocity_controllers: it allows to control manipulator through velocity com-
mands

1. JointPositionController

2. JointVelocityController

3. JointGroupVelocityController

• effort_controllers: only voltage or current values are accepted

1. JointPositionController

2. JointVelocityController

3. JointEffortController

4. JointGroupPositionController

5. JointGroupVelocityController

The list is not full as the package ros_controllers includes other types of
controllers. The main difference between joint_state_controller and the other
types concerns the primary goal.

In fact, the first controller provides the current joint states without sending any
command to the actuators. Conversely, the other types are suitable for generating
commands for the robot. The commands can be of different types (e.g. position,
velocity, or effort) and must be chosen according to the robot properties.

However, the inner control loop can be implemented through different variables.
This defines the overall characteristics of the controller. Therefore, for each
type of controller, a set of controller plugins are provided. For example, the
velocity_controller with JointPositionController accepts velocity command as
inputs but the control loop is designed for ensuring the convergence of the current
position to the desired one, i.e. to get the error posdes − posact = 0. It is worth
noting that the controller must be suitable for actuators and encoders of the
manipulator. The control loop is often performed through a PID controller where
its P,I, and D values can be changed in the configuration file. Such architecture
enhances portability while supporting real-time applications. Since it is a robot
agnostic framework, controllers and hardware are decoupled. Therefore, a custom
hardware interface has to be designed in order to properly communicate with e.Do.
In particular, the control loop consists of three main steps, as described below

26

Background

Figure 1.10: Hardware interface communication in ROS_control

where the read and write states are not robot-agnostic.
Hence, two custom functions have to be written for a complete hardware interface.

The read state takes information through specific topics for the joint sensors data,
while the controller manager is responsible for updating the controller with current
states. Afterward, the commands must be sent out to the manipulator in order to
properly trigger the actuators. The topics where subscribe and publish messages
are robot dependent. To this end, an instance of the robot must be included in the
controller manager to initialize resources and handle them. Therefore, the leftmost
part is suitable for real-time applications while the rightmost portion, responsible
for ROS callbacks, is not real-time. This is the reason why they work on two
separate threads. A computational load in the spinner thread could not respect
the frequency rate established in the control loop. Moreover, communication must
be ensured between control and spinner threads.

The hardware interface has to acknowledge information about mechanical trans-
mission present in the arm. They can be directly included in the URDF through
plugins that shorten the procedure. A basic description incorporates the type,
actuators, and hardware interface for each joint. Information about mechanical
transmissions are exploited to convert the actuator to joint space, and vice versa,
for both read and write functions. In addition, joint limits can be specified for

27

Background

enforcing conformity between simulation and real manipulator. Including the
gazebo_ros_control plugin, it is possible to carry out simulations for testing the
controllers. The proportional, derivative, and integrative gains of the PID controller
were tuned by using the dynamic reconfigure plugin and examined by plotting the
position tracking error.

The simplified process is useful for rapid controller prototyping, as well as
for testing its functionalities. However, the real robot must consider its own
components. Therefore, the main difference lies on the custom functions mentioned
above. The way the hardware interface interacts with the controller manager is
basically the same for both simulations and real tests. Read and write functions
are intended for actuating servos and picking up real-time data from encoders.

1.6 Force analysis
Jenga [7] is created by British board game designer Leslie Scott, co-founder of
Oxford Games Ltd, in the early 1970s in Ghana. The name reflects the main scope
of the game as it is derived from kujenga that means ‘to build’.

It consists of 54 wooden blocks arranged in 18 layers. As consequence, each layer
is initially composed of 3 blocks. An important property is mutual orthogonality
between one layer and the successive one. The geometrical dimensions allow the
construction of the tower as each block is three times longer than its width. The
standard dimension for the block is 1.5 cm x 2.5 cm x 7.5 cm.

The tower is built by one person who has the advantage to get the first move.
Each turn consists of taking one block from any level and placing it at the topmost
layer. The rules admit the usage of only one hand while the extracted block can
be placed in any free available slot at the top of the tower. Increasing the number
of levels of the tower leads to a progressively unstable structure, due to its height
and several uncomplete layers. The game ends either when the tower or any piece
falls. The winner is the last person to perform a pick and place action successfully.
Nowadays, the record for the highest tower belongs to Robert Gleber who made a
tower at 40 2

3 levels. The main difficulties concern the ability to cooperate tactile
perception and visual information, as well as develop physical intuition for the
block choice. Also, master the physical interaction can be challenging due to the
uncertainties in the tower configuration. This is caused by the small, random
variations in the block dimension to create dispersion and unpredictability.

In order to determine the best candidate block to extract, the geometrical
properties of each block and the corresponding position should be known a priori.
It is an analysis beyond the scope of this project. Instead, a stochastic approach is
widely employed covering intuition and tactile-visual cues. Nevertheless, only a
few arrangements [8] ensure the stability of the tower. Those patterns are shown

28

Background

below:

Figure 1.11: Stable configurations in Jenga

Among the seven possible configurations, only five guarantees stability whereas
the other two configurations involve a layer constituted by only one side block.

Considering a fully complete Jenga tower, composed of 3 levels, it is possible to
derive the free body diagram of the system. The ideal case is considered whereas
the geometrical tolerances are neglected, standard wooden blocks are present. In
this case, the treated block is placed at the lowest layer in the right-side position.
The extraction carries out along the y-axis of the block through an external force
Fapp applied at its extremity. For every force, the following notation is used. F j

i

denotes the force that acts on the i-th block in the k-th layer f ji indicates the
friction force on the i-th block, k-th layer. Similar work [9] can be consulted.

Figure 1.12: Force diagram for a single generic block of Jenga

N1
1 −N2

eq −mg = 0 , (1.47)

29

Background

Fapp − fbottom − fslide − ffric = maapp , (1.48)

where N2
eq expresses the equivalent normal force given by the three blocks

b2
1, b

2
2, b

2
3. According to the standard block dimension, each of these three blocks

applies a normal force equal to 1
3mg. Therefore, equivalent refers to the sum of the

normal forces applied on the i-th block. Considering the two layers up, in this case
N2
eq = 2 ∗mg giving rise to:

N1
1 = N2

eq +mg = 3 ·mg . (1.49)

The expression of the normal force admits calculating the friction force acting
on the upper and lower face of the block according to Coulomb’s Law:

f = µsN . (1.50)

Consequently, the friction forces f bottom and fslide act in the same direction but
with different magnitude, due to the normal force intensity they are subject to. In
fact:

fbottom = µsN
2
eq = 2 µs mg , (1.51)

fslide = µsN
1
1 = 3 µs mg , (1.52)

Substituting in the equation (1.48), the next equations are derived:

Fapp − 5 µs mg − ffric = maapp , (1.53)

To determine the maximum Fapp force to keep the block motionless, a further
assumption is needed. This hypothesis concerns the push movement as ffric depends
on the trajectory followed during the extraction process. Assuming a force acting
on the center of the block surface, such a contact point rejects rotation due to the
torque impressed to the block. In such case ffric can be neglected, leading to the
following expression:

Fapp,max = 5 µs mg . (1.54)

For external forces Fapp > Fapp,max , the sliding movement occurs. As mentioned
above, the standard dimension of the Jenga Block is 1.5 cm x 2.5 cm x 7.5 cm. The
set is made of Alder, a tree deriving from the Betulaceae family, that have a density
around 420 − 680 kg

m3 [10]. Considering an approximate density of 500 kg
m3 , gives an

average mass of 14 g per block. At the same way, the static friction coefficient
ranges from 0.3 − 0.71. This results in a force

Fapp,max = 0,27 N . (1.55)

30

Background

The analytic equation for central-side blocks is like the explained one since the
normal force is level-independent under the given assumptions. The further force
to consider is provided by the additional frictional force on the side block. Also,
the free body diagram can be extended to blocks. In such a case, the equation to
be solved is the following:

Fapp − (2n− 1) µs mg − affric = maapp , (1.56)

Where n corresponds to the number of blocks present in the system, a depends
on the position of the block in the layer. In particular, a = 2 for central blocks
and a=1 for side blocks. A recursive procedure can be adopted to calculate the
force on each block of the tower. For doing this, it must set:

Nk
i = Nk+1

i −mg for k = 1,2, . . . , j − 1 (1.57)

with j indicates the total number of layers present in the tower. Also, the friction
force shall be modified accordingly. It is also possible to enlarge the above model to
the case of the tower with missing blocks. Such a case will not be treated due to an
exponential notation complexity, force decomposition, and lacking interest in this
application. Further details about force decomposition are given in [Kumura. . .].

The block extraction operation affects the entire tower stability. During this
operation, if an external force Fapp > Fapp,max is applied, the block starts moving
along the motion axis. Nevertheless, this action influences also the surrounding
blocks since the counteract force depends on the normal force of the block. As
consequence, the underneath layer is able to respond to the friction force by keeping
the block steady. At this level, the higher mass pushing against the block are
sufficient to generate a friction force capable of resisting the motion variation. On
the other hand, the uppermost layer could not be able to cancel out the acting
force arising a double layer’s motion. This movement often happens while playing
Jenga and it is one of the most causes of errors. However, it can happen that
the change in the friction coefficient together with the geometric properties of the
blocks involves, leads the motion to stop.

The above model works in ideal conditions, i.e. in the absence of geometric
differences among blocks, uniformed contact pressure, full tower, and without
applied torque. Any changes in the ideal contact point or in its orientation will
induce a torque τ resulting in the angular acceleration:

θ̈ = τ

I
(1.58)

where I = m(l2+b2)
12 = kgm2 for a single piece. Thus, a high angular acceleration

will be generated. Another source of non-ideality concerns the tolerances on each
block. This is the main dispersion factor in Jenga because it promotes imperfections

31

Background

in the structure and makes the game more challenging. In general, tolerances cannot
be known a-priori and some variability occurs in the arrangement of the layers. As
consequence, the upper levels result in a more misaligned configuration due to the
superposition principle since each layer introduces an error in the successive level.
In addition, the stability of the tower changes over the gameplay. The center of
mass (CoM) is defined as

zCM =
qn
i=1 miziqn
i=1 zi

(1.59)

where zi is the i-th mass position and n is the number of blocks involved. During
the gameplay, the position of CoG tends to raise leading to a more unstable
structure. In fact, according to the Jenga rules, the extracted block is placed on
the top of the tower making the CoG position higher. Likewise, the side block
extraction will move the xCM and yCM far from the stable equilibrium.

In conclusion, considering the mechanics of Jenga and its sources of non-idealities,
a heuristic strategy for block extraction is chosen. The game plan consists of trying
to touch and pull the block away by estimating the action forces on it. If the sensor
force takes over a force greater than a threshold value, the action is stopped and the
robot retracts. On the other hand, the movement continues if the observed force is
relatively small. The threshold value is chosen according to the experimental test
discussed in the last chapter.

32

Chapter 2

Project development

The second chapter aims to provide further details to the reader about the structure
of the project. Here, the theoretical notions are implemented in real hardware and
tested on the manipulator. Frameworks and software tools employed in this project
are discussed in low-level details. The first part introduces the robotic arm, its
general characteristics and settings. Hence, communication problem is discussed by
focusing on the connection with local laptop and how the manipulator exchanges
information over ROS. An overview about the main motion management packages
is depicted highlighting messages, topics and services.

Subsequently, the kinematic insight contained in the previous chapter are further
specialized for this robotic arm. To this end, Denavit–Hartenberg parameters
are leveraged to model the direct kinematic equation. Once the details of the
robot have been examined, the discussion will focus on control methods. Visual
servoing will be presented, justifying this choice according to the required task.
Follows the main steps for configuring this control system such as camera calibration
and velocity controller implementation. Furthermore, problem will be addressed
analytically to generate a suitable control law, following the theory and notions
presented in the previous chapter. To this end, the framework used to construct
the control scheme will be introduced, as well as its characteristics. Core features
were leveraged to accomplish various computer vision challenges such as object
detection and pose estimation. In conclusion, force sensor details can be found at
the end of the chapter.

The numerous modules have been combined in order to provide a strategy for
playing Jenga. Hence, this chapter contains information on integrating camera and
force sensor with the manipulator to communicate properly. Charts, tables and
figures are inserted to facilitate the read. For more material, the reader can go
through Appendix section to delve into hidden mathematical steps.

33

Project development

2.1 e.DO

e.DO is an anthropomorphic manipulator with a spherical wrist, manufactured
by Comau S.p.A. It consists of 6 joints and open-source hardware that allow for
updating firmware and basic functionalities. Each DC motor contains an embedded
circuit board that can be changed internally via CAN bus. The base platform
includes USB, Wi-Fi and Ethernet ports, power supply, and emergency brakes. In
addition, a Raspberry Pi is also included where ROS Kinetic Kame is installed
and nodes can run, exchanging information about the robot’s status, motion data,
and collision checking. These features make e.DO used in both academic and
research fields as it is open source and provides a graphical user interface (GUI)
with which to interact easily. In recent years, the active community has developed
many functionalities in ROS, starting from a valid robot description up to the
implementations of MoveIt functionalities.

Figure 2.1: e.DO

34

Project development

2.1.1 ROS network
ROS communication is an essential part to allow the robot to communicate with
other devices. The standard way to achieve it consists of launching the ROS master
on one device and connect the other ones to the master in order to create a fully
connected network. In our case, the ROS master runs on the Raspberry Pi – a series
of small single-board computers (SBCs) inside the robot – while the other devices can
access the master through an Ethernet cable. Therefore, the ROS_MASTER_URI
was modified with the following IP address: http://10.42.0.49:11311 and laptop
configuration was set accordingly. It is worth noting that no conflicts arise although
the ROS distro is quite different as they are compatible. As mentioned above, e.DO
uses ROS Kinetic Kame while the Noetic distro is installed on the personal laptop.

Once the local console and robot are connected on the same ROS Master, a
calibration phase is needed in order to properly configure the motors and align the
joints. Since the company does not provide a full-documented overview of the ROS
communication, retro-engineering work was done in order to well-understand how
different topics interact among them. Basically, edo_core_pkg initializes the nodes,
configures the communication and acts the e.DO motion planning. Open realistic
Robot Library (ORL) is a real-time control and private Comau library [11] that
contains the implementation of inverse and forward kinematic and supports also
operations in virtual mode. This faithful control allows the user to code high-level
programs and keeps track of error management. In addition, it is ROS compliant.
Messages are defined into edo_core_msg that specify the data format for each
message. The figure below shows the internal e.DO topics.

Figure 2.2: ROS topics of e.DO used for the communication

The ROS topics swap information through 21 custom messages and 7 services,
designed to handle motion, joint positions, feedback results and errors notification.
In general, the control system is arranged in a hierarchical structure starting from

35

Project development

the physical motion execution to higher hardware-level abstraction aimed to action
planning.

For this scope, the edo_control package was exploited. This GitHub reposi-
tory contains several useful tools ranging from calibration process to controller
management. To start the calibration process, the following command line is
launched:

roslaunch edo_control calibrate.launch
that runs a user-interactive script to easily move the joints through the laptop

keyboard. The process involves the internal collision adjustment, robot state update
and disabling the algorithm manager. This is done by publishing in different topics
and call back the service called algo_control_switch_srv.

2.1.2 Kinematics

The e.DO open chain structure is constituted by 7 links rigidly connected by 6
joints, where the first link is the base frame. Hence, it is characterized by 6 DOF
and a kinematic relationship between the base link to the end effector can be
analytically founded [12]. With reference to Equations (1.5) and (1.7), the following
equation holds:

T 0
6 (q) = A0

1 (q1) A1
2 (q2) . . . A5

6 (q6) =
C
R0

6(q) t06(q)
0T 1

D
(2.1)

where R0
6(q) represents the rotation matrix between the first and last robot

link, while t06(q) is the vector that indicates the translation between the two
reference frames. Since the geometric properties are known, a table containing the
Denavit-Harteneberg parameters can be constructed.

n ai (mm) αi (rad) di (mm) θi (rad)
1 0 π

2 0 θ1

2 210.50 0 0 θ2

3 0 π
2 0 θ3

4 0 −π
2 268.00 θ4

5 0 π
2 0 θ5

6 0 0 174.50 θ6

Table 2.1: DH parameters for e.DO

36

Project development

Applying the equation (2.1), the following equation is obtained:

T 0
6 (q) = A0

1 (q1) A1
2 (q2) . . . A5

6 (q6) =
C
n0

6(q) s0
6(q) a0

6(q) t06(q)
0 0 0 1

D
(2.2)

where q is a (n x 1) vector of joint variables and n0
6 (q) , s0

6 (q) , a0
6 (q) , t06(q)

are the unit vector that expresses the relative position and orientation of the last
link with the robot base frame [13]. They can be expressed in function of the joint
variables, obtaining:

n0
6 (q) =

c1 (c23 (c4c5c6 − s4s6) − s23s5c6) + s1(s4c5c6 + c4s6)
s1 (c23 (c4c5c6 − s4s6) − s23s5c6) − c1(s4c5c6 + c4s6)

s23 (c4c5c6 − s4s6) + c23s5s6



s0
6 (q) =

c1 (−c23 (c4c5s6 + s4c6) + s23s5s6) + s1(−s4c5s6 + c4c6)
s1 (−c23 (c4c5s6 + s4s6) + s23s5s6) − c1(−s4c5s6 + c4c6)

−s23 (c4c5c6 − s4s6) + c23s5s6



a0
6 (q) =

c1 (c23c4s5 + s23c5) + s1s4s5
s1 (c23c4s5 + s23c5) − c1s4s5

s23c4s5 − c23c5



t06 (q) =

a2c1c2 + d4c1s23 + d6(c1 (s23c4s5 + s23c5) + s1s4s5)
a2s1c2 + d4s1s23 + d6(s1 (c23c4s5 + s23c5) − c1s4s5)

a2s2 − d4c23 + d6(s23c4s5 − c23c5)



(2.3)

For sake of clarity, ci and si indicates stand for the cos(qi) and sin(qi), while cij
and sij are the cos(qi + qj) and sin(qi + qj), respectively. In addition, it is interest-
ing to note the effectiveness of a systematic procedure like Denavit–Hartenberg
convention when many joints are involved. For more analytical details, please take
a look at the Appendix section. Besides this, it is interesting to notice that in this
current application, the (3x1) vector a0

6 (q) points towards the block, i.e., in the
push direction. Likewise, s0

6 (q) lies on the so-called sliding plane, normal to the
previous vector while n0

6 (q) completes the right-handed frame.

2.2 Visual servoing
In this project, Position-Based Visual Servoing (PBVS) is used in order to improve
the accuracy of the motion. Although operational space control guarantees valuable
precision for pre-planned trajectories, such a control method is not able to correct
the pose of the robotic arm in function of the target in real-time.

Therefore, accuracy in Cartesian space strongly depends on the estimation of
the target pose, as well as the kinematics and calibration of the robot. As this task
requires millimetres precision, operational space control becomes no longer suitable

37

Project development

because world noises and internal robot tolerances produce poor results, especially
for low-quality measurements. For example, considering the pose estimation for a
single Jenga block, it can be shown that the visual information introduces movement
errors for which block extraction became unfeasible. Therefore, the idea of a hybrid
control comes up.

It concerns the development of a pre-planned motion in the operational space,
integrated with a real-time control method to adjust the pose of the manipulator
according to the target. Once a pre-determined position has been reached through
operational space control, visual servoing turns on to complete the approach of
the block. The camera is mounted on the end-effector, also called eye-in-hand
configuration, and provides real-time images for each block of the tower through an
instance segmentation technique. The camera is fixed with two screws on the upper
base of the support. It moves according to the last joint through a 3-D stamped
support, specifically designed for the manipulator and RealSense d435i. The CAD
model is presented below in the SolidWorks interface while overall in the figure the
overall system is presented.

Figure 2.3: 3-D printed support for RealSense d435i

2.2.1 Camera calibration
The first step entails camera calibration. The general procedure involves the usage
of Hand-Eye Calibration, a GUI provided by MoveIt for servo applications. This
package includes the necessary plugin to perform a hand-eye camera calibration
either in the eye-to-hand or eye-in-hand configuration.

38

Project development

Intrinsic parameters can be easily obtained through the Intel® RealSense™ SDK
2.0 offered by the company. It is open-source and contains few code samples for
fast development. On the other hand, the extrinsic parameters are derived through
a dataset of images from which the position of the camera with respect to the
end-effector is computed. Since the target pose should be detected through ROS
topics, the ROS wrapper called “realsense2_camera” is used for the integration
which includes a variety of information through ROS nodes. In fact, the process
gets started with an ArUco printed image reliably located to ensure the feasibility
of the camera field of view. In our case, a 4x5 tag is used as depicted in the
figure (2.4). Then, the nodes provided by the package were exploited to read the
camera information and get visual images. This is done by subscribing to the
/camera/color/camera_info and /camera/color/image_rect_color. The result of
this operation can be seen with rqt_image_view tool and it should look like:

Figure 2.4: ArUco marker Figure 2.5: Frame of RViz during cam-
era calibration process

Once the image is displayed and the detection highlights the tag correctly, the
parameters must be set. In particular, the configuration type, frames selection and
the camera pose initial guess was provided. Thus, a considerable number of images
are from different perspectives. Each sample contains the end-effector’s pose with
respect to the e.DO base link and the target’s pose in the camera frame. According
to the equations in chapter 2.6, an estimation of the camera pose with respect to
the end-effector is obtained. The number of samples to be recorded is not known a
priori, although empirical observations prove that 15 samples are enough for the
algorithm convergence.

39

Project development

2.2.2 Feedback control loop
After the camera calibration process, the control scheme is implemented. To this
end, a brief regression about the main quantities involved is needed. This analytical
validation [14] allows enlarging the concept introduced in the previous chapter.

The main goal consists of finding the set of feature parameters in the image.
The feature vector is denoted with s and it is a kx1 vector, defined as

s =
C

x
log (z

z∗)

D
(2.4)

with x,z that are called feature parameters. In particular, x is a 2-D point in the
x-y plane while z and z∗ are the distance point-camera and desired its desired value,
respectively. Therefore, the main goal of the control scheme is the convergence of s
to s∗. It can be shown that the following equation holds

ṡ = Lsv (2.5)

which maps the time variation of the visual features and the relative camera-
object kinematic screw v. Let Js be the features Jacobian, the transformation into
the joint space can be pointed out:

ṡ = Jsq̇ + ∂s

∂t
(2.6)

The q̇ represents the (nx1) vector containing the joint velocities, while ∂s
∂t

indicates the time variation of s due to the object motion. Therefore, in the case of
a motion-less target, the equation is simplified

ṡ = Jsq̇ (2.7)

This latter equation can be specialized by considering the type of adopted
configuration. For an eye-in-hand system Js = Ls V

c
n J

n
n raising to the following

equation:
ṡ = Ls V

c
n J

n
n (q) q̇ (2.8)

where some important quantities are introduced. In particular:

• Jnn is the robot Jacobian expressed in the end-effector reference frame Rn

• Ls is the interaction matrix that defines the absolute camera velocity vcc and ṡ

• V c
n is the homogeneous transformation between the camera frame and Rn

given by

40

Project development

V c
n =

C
Rc
n [tcn]X Rc

n

0T Rc
n

D
(2.9)

where [tcn]X is the skew matrix of t and Rc
n is the transformation of the camera

frame with respect to the end-effector frame. As mentioned above, the goal of the
control law is to bring the feature vector s to its desired value s∗. This can be
achieved by imposing ṡ = 0. As consequence:

lim
t→∞

s− s∗ = 0 (2.10)

arise the following expression for the control law

v = −λäL+
s (s− s∗) (2.11)

where an approximation of the interaction matrix is given by äL+
s = äL+

s (s, r) with
r that indicated the current position of the visual feature. It is worth noticing that
the control law implementation is defined in the operational space through (6x1)
velocity vector indicating linear and angular velocities. Therefore, the controller
must accept velocity inputs. The overall control scheme is illustrated below:

Figure 2.6: Position-based visual servoing control loop

The speed of convergence can be regulated manually by tuning the λ parameter.
After a trial-and-error procedure, it turns out that λ = 1.2 is a suitable trade-off
between performance and command activity. Initial high velocities are imposed
on the manipulator which decreases as the robot approaches the target. Once the
target pose is reached, velocities tend to zero and the robot stops the movement.
The frequency of the overall control loop is strongly affected by computer vision
algorithms which require a high computational load. As consequence, strict pose
estimation algorithms may not be employed.

41

Project development

2.2.3 Tracking
The extraction of visual features becomes challenging for complex objects. Indeed,
the system must guarantee to recognize an object from camera images, estimate its
pose and follow the identified object across frames. Although such topics have been
deepened individually over the last years, the Visual Servoing Platform (ViSP)
provides the tools for combining these elements. Such integration allows closing the
feedback control loop proposed in figure (2.6). For doing this, the system has to
extrapolate information concerning geometrical shape, dimensions, number of faces
and further optional properties of the object. To this end, ViSP makes use of CAD
model for providing such characteristics, specified in a particular file format called
cao. In this project, a single block for Jenga is constructed in the following way.

Figure 2.7: CAD model for model-based tracking in ViSP

First, a certain number of points are specified representing the vertices for
the parallelepiped. Then, each point is represented in a fixed reference frame
placed in vertex 0. Therefore, this vertex will have zero-coordinate. The other
vertices have been specified according to the physical dimension of Jenga block, i.e.,
1.5 cm x 2.5 cm x 7.5 cm. Afterward, knowing the vertices position, it is possible
to construct the faces. Therefore, each face of the block is built from four points.

A further step consists in associating the internal properties of the camera with
frames. Thus, intrinsic parameters are leveraged for projecting the 3D points into
the image plane. In particular, the (3x3) calibration matrix K is constructed by
the focal length of the lens f and the size of pixels l in meters, as well as it involves
the coordinates in pixels of the projected 3D point. Therefore, relationships can be
found among these variables.

px = f

lx

py = f

ly

(2.12)

In the absence of distortion, pixels of projected 3D point (u,v) are found starting
from the coordinates of the image center (uo, v0).

u = uo + xpx//v = v0 + ypy (2.13)

42

Project development

In conclusion, the K-calibration matrix is constructed as it follows:

K =

px 0 u0
0 py v0
0 0 1

 . (2.14)

Expressing intrinsic parameters and dimensions of CAD model, the system is
able to associate geometric dimensions of the object with the representation in
pixels. Consequently, pose estimation is carried out based on such information
while tracking is performed by recognizing the object over frames. To this end, an
initialization process is needed. Basically, it requires to identify the points declared
in the cao model in order to validate the object. Number of points for initialization
process can be chosen arbitrarily although they must be at least four. According
to the task requirements, six points guarantee robustness to the system without
overfitting problem. The figure below shows the results after the initialization
process.

Figure 2.8: Initialization by user click for tracking

From the six initialization points, the single block becomes outlined of green
lines which define the overall shape. It is worth noting that the full CAD model is
displayed, including the hidden contours. Afterward, tracking is performed on the
basis of the following parameters:

• mask_size: defines the size of the convolutional mask.

• nb_mask: number of masks for the object contour.

• range_tracking: range on both sides of the reference pixel along the normal
of the contour used to track a moving edge.

43

Project development

• edge_threshold: likelihood threshold used to determine if the moving edge is
valid or not.

• mu1: minimum image contrast.

• mu2: minimum image contrast.

• sample_step: minimum distance in pixel between two discretized moving
edges.

Such parameters are tuned manually to find a fair trade-off between detection
and stability over time.

Figure 2.9: Tracking of a single Jenga block

The figure above displays the tracking for a single Jenga block which reference
frame is placed at the upper left corner. In particular, the RGB notation is used:
red for x-axis, green for y-axis and blue for z-axis.

2.2.4 Velocity Controller
The visual servoing control law calculates the velocities that the robot has to assume
in order to reach the desired position. Therefore, the manipulator must accept
velocity inputs to accomplish such a task, also called velocity controller. During
this project, two velocity controllers were tested. The first one is directly provided
by ros_control. For doing this, the hardware interface is properly configured to
allow communication between the manipulator and velocity commands. The main

44

Project development

advantage of such a solution is the ease of implementation, as well as inherent
resource management and portability. On the other hand, complex 3D tasks require
different types of controllers, triggered in specific moments. Furthermore, advanced
control loops involve multi-sensor fusion whose integration with a manipulator is
laborious. For these reasons, ros_control may not be the best solution in several
contexts. Also, the latter considerations lead me to deploy a custom velocity
controller.

Given a vector vee ∈ R6x1, representing the velocities in the Operational space as
input, the subsequent (nx1) vector q̇ is computed. It represents the joint velocities
for achieving the end-effector’s linear and angular velocities as illustrated below. A
coherency of notation with theoretical chapters is maintained.

vee =
C
ṗee
ωee

D
= J (q) q̇ (2.15)

q̇ = J−1 (q) vee (2.16)

qk+1 = f (qk, q̇) = qk +
Ú tk+1

tk

q̇ (ζ) dζ (2.17)

|qk+1, i| ≤ |qlim,i| (2.18)

where qk and qk+1 are the joint velocities for two successive time instants while
q̇ (ζ) dζ represents the incremental joint position due to input velocity. It is worth
noting that ζ must be chosen according to the control loop frequency. Moreover, it
must be short enough to ensure the validity of the equation (2.17). Therefore, it
can be represented in the following way.

Figure 2.10: Control scheme for the velocity controller

It turns out that the velocity controller involves a position control in the inner
loop. Therefore, a trajectory is generated as a sequence of position waypoints
which asymptotically tends to qk+1. During the entire motion, reachable workspace
limits must be preserved. Therefore, joints limits are included in the control law to
guarantee a safe movement.

45

Project development

2.3 Overall strategy

Game tactics are now being examined to provide a pattern for playing Jenga.
To this end, decisions are currently supported by analytical and experimental
results, whereas possible, which will highlight the main differences with similar
works. Also, an overview of the current limitations will be further provided in the
appropriate section. Tools and frameworks used for the design will be recalled,
maintaining the theoretical foundations discussed previously. Proprioceptive and
exteroceptive sensors are used to improve quantitative results and design new
functionalities as well. For this scope, the Intel RealSense D435i and the force
sensor have been integrated to detect visual and tactile information, as well as
to enable the construction of robust control systems. Trials are documented in
the next chapter. Decision modules are used for the graphical representation to
facilitate user readability. Since multiple topics are involved in this project, each
module is colored to indicate the major area to which it belongs. The main topics
cover control theory, fusion sensing, artificial intelligence, and sensor fusion. A
minimal representation of the general strategy is proposed with the following figure.

Figure 2.11: Tactics for playing Jenga

46

Project development

The branches are divided into two categories: motion control and artificial
intelligence. The inner loop starts with a complete tower description in which the
poses of the blocks are known in advance. The position of the tower with respect
to the manipulator is measured before the game begins. Thus, when a block is
identified as a candidate for removal, its pose is calculated. Starting from cartesian
coordinates, joints parameters are computed to reach such a block. This is what
inverse kinematic does. In particular, motion consists of two phases:

• Robot prepares extraction the block as it approaches the tower

• The removal operation is performed

In the first phase, the orientation of the end-effector plays a key factor since it
determines the alignment for the subsequent extraction. An inaccurate pose can
lead to approaching the block in an unparallel way, causing the tower to collapse.
Knowing the pose of the block, movement occurs in operational space by specifying
an intermediate pose for the manipulator. At this point, the second phase begins
and visual servoing is triggered to achieve a greater task accuracy.

In detail, the pose of the block has to lie within the robot workspace, so that it
can be reached. To this end, post-processing is required to ensure a collision-free
trajectory. In fact, the collision between the robotic arm and the tower must
be avoided during the entire movement. Thereafter, the pre-fixed path planning
ends and visual servoing starts working. It allows dealing with uncertainties and
world noises, as well as operate at larger bandwidth. Such a system is designed
to push the block more precisely than cartesian movements. The visual system,
realized through a camera, sends real-time measurements of the block and ensures
a rapid convergence to the desired position. Considering the physical dimensions
of the Jenga blocks and the gripper width, the accuracy of the overall control loop
must be about a few millimeters. Visual servoing supports such precision through
eye-in-hand configuration. At this point, manipulator starts pushing the block.
The force sensor, mounted on the gripper, detects the force values applied to the
block in order to understand its status. If the block is stuck and removal cannot
be performed, the manipulator retracts; conversely, extraction occurs. It is worth
noting that a successful removal strongly depends on the alignment between the
manipulator and block orientation. At this point, the policy of blocks is updated
to provide information about the extracted pieces and the stacked ones.

2.3.1 Motion
This section aims to provide further details about e.DO movements for a block
removal attempt, according to the general scheme suggested previously. In par-
ticular, it will be discussed how the two movement phases are combined. As a

47

Project development

reminder, the first step ensures the robot to reach a predetermined position for
approaching the block while the second phase completes the operation by pushing
the block. During the first movement, the manipulator must be able to reach a
specific piece of the tower without colliding with it. Indeed, there could be target
poses for which trajectories overlap tower arrangement. In order to avoid such a
situation, the entire tower is seen by the robot as a potential object to avoid. The
pipeline of the movement is depicted in the figure below.

Figure 2.12: First phase of the movement for approaching the block

First, a generic block is chosen and its coordinates Sare obtained. Since the
position of the camera and the tower are known a priori, the two homogeneous
matrices, T be and T eo , are calculated. These matrices respectively provide the
direct kinematic equation and the pose of the end-effector with respect to the
candidate block. Once the pose of the block is known, the matrix T bo is calculated
and a ROS message geometry_msgs/PoseStamped conveys the relative position
of the block with respect to the base link. At this point, the robot performs
inverse kinematics as well as trajectory optimization. As mentioned above, collision
avoidance allows the robot not to hit the tower during this movement. In RViz, it
is approximated as a box with the same physical dimensions as the real tower, i.e.,
7,5 cm x 7,5 cm x 27 cm.

To maximize the manipulator workspace and ensure full visibility, the tower
is placed in a particular position. The tower, in fact, is rotated in such a way as
to guarantee the extraction of all possible blocks. Such a choice was made due to
e.Do workspace limitations. In this way, the robotic arm can reach all the blocks
either from the left or right side.

48

Project development

Figure 2.13: Trajectory to achieve the
left configuration

Figure 2.14: Trajectory to achieve the
right configuration

The figures and the table shows the quaternions for the left and right pattern
when the game starts, i.e., without any misalignment in the initial layout of the
tower.

Configuration qx qy qz q0

Left −0.271 −0.653 −0.271 0.653
Right 0.271 −0.653 0.271 0.653

Table 2.2: Orientation, expressed in quaternions, for the two possible configura-
tions

It is worth noting that, in the rest position, e.DO is in a kinematic singularity
as it is totally bent at the boundary of the reachable workspace. To conclude
the first movement phase, an offset = 0.25 m from the selected block is imposed.
Therefore, the robot approaches the block remaining away from it, as shown in
the second image of the sequence depicted above. Such a movement is important
to orient the manipulator with respect to the normal direction of the block. In
fact, possible misalignment can lead to an unsuccessful removal attempt. To this
end, the collision object, made in the first phase, is now removed to allow the
gripper-block contact. Also, a favorable starting position improves visual servoing
performances.

In fact, this control system starts when the approach position is reached. It
allows to track the block and respond quickly to world noise and error measurements
through a higher frequency control loop. A benchmark was carried out with standard
and combined control techniques to demonstrate that results are significantly
improved through the visual servoing control method. Its strength lies in the
robustness, efficiency, and speed of response to visual information acquired with
the RealSense camera. A fast convergence to the center of the block is ensured in
seconds. The following figure shows the steps involved for the second part of the
movement.

49

Project development

Figure 2.15: Second phase of the movement for pushing the block

The process begins by identifying each block of the tower. To do this, computer
vision algorithms are exploited. In particular, the YOLOACT Neural Network
(NN) was trained on synthetic data to perform an instance segmentation technique
for detecting individual tower blocks. Choosing a block means extracting that
mask from the NN, as it is possible to see in the figure above. At this point, visual
servoing can use that mask to constantly track and estimate the pose of the block
as the robot approaches it. Although the system works well in several attempts,
the manipulator may fail to push the block due to detection and segmentation
errors. During the advancement, the force sensor processes data to understand
the feasibility of the movement. The attempt is aborted in the case of a blocked
piece. Therefore, the last phase is concluded when the block is pulled away from
the tower.

A further step should consist of a pick and place operation for locating the
block on the topmost layer. Unfortunately, this latter move cannot be performed
due to workspace limitations. Indeed, the experiments to get around the tower
have shown negative results. Depending on the block position, the physical robot
dimensions deny the execution of this operation. In addition, workspace limitations
account for a further problem. In fact, the constrained motion during the last
phase involves the DOF loss for the manipulator. Consequently, only limited block
choice is possible. Such restriction affects the gameplay and sets a limit about the
maximum number of blocks extracted. Possible workarounds for these problems
are discussed in the last section.

2.3.2 Planning adapters
According to the task requirements, robotic arms can use different motion plan-
ners for achieving complex movements. In this section, two different controller
implementations are proposed. The first controller is entirely built with MoveIt, a

50

Project development

motion planning framework [15] used to handle advanced robotics applications. Its
installation requires a ROS distro already configured and a catkin workspace for
packages and project development. The user can benefit from several tutorials to
get started with the framework and develop their projects.

The motion can be carried out in both operational and joint space through
C++ and Python scripts. It uses a variety of planning components to add more
functionalities to the motion planning problem. In fact, it allows to set up dif-
ferent kinematic solvers, trajectory optimizers, and collision checkers, specify the
constraints, as well as handle grasping operations and sensor management. The
system architecture is illustrated in the figure below.

Figure 2.16: System architecture of MoveIt

The core of the system architecture is the move_group node that interfaces the
various planning components with the user interface in order to accomplish the
required action. To this end, the robot information is acquired and constantly
updated to provide joint positions, motion state, transformation across the robot,
and more. The essential robot description is offered through a particular extension
format called Unified Robot Description Format (URDF). It contains the list of
links for which the name, geometry and visual information are specified; moreover,
each joint is filled with a parent and child link for the tree construction. Other
details as material, sensors and dynamic properties can be added. One of the main

51

Project development

advantages of this XML format file is the facility for user-reading. Thus, URDF
files can be created either from scratch or through SolidWorks with particular
extensions. Consequently, the robot transforms are extracted and passed under
ROS messages to the move_group for a complete geometry description.

Figure 2.17: Integration of e.DO and MoveIt

Such a step is important to implement the kinematics as the forward kinematics
solver propagates the robot’s geometry according to the joint positions. On the
other hand, for the motion in the cartesian space, an inverse kinematics solver is
needed. Since the solver choice is non-unique because it strongly depends on the
application, a list of planners are available in MoveIt:

• Open Motion Planning Library (OMPL) is an open-source motion planning
library for randomized motion planners.

• Pilz Industrial Motion Planner is a deterministic generator for circular and
linear motions

• Stochastic Trajectory Optimization for Motion Planning (STOMP) is an
optimization-based motion planner capable of producing smooth trajectories.
In addition, it can handle object avoidance by introducing manifold constraints
in the cost function

• Covariant Hamiltonian Optimization for Motion Planning (CHOMP) is a
gradient-based algorithm that encapsulates the planning problem to the tra-
jectory optimization in order to produce a collision-free trajectory

These solvers are configurable directly on MoveIt with many libraries that
provide the main functionalities. For doing this, MoveIt Setup Assistant was used.

52

Project development

It is a graphical user interface that allows the configuration of the robot with
MoveIt in few steps. The main goal consists of creating an advanced version of
the URDF, called Semantic Robot Description Format (SRDF). Basically, further
details are contained such as joint groups, default configurations, and collision
checking information. The main steps are:

1. Creation of a xacro file that contains the fundamental robot information

2. Generation of a self-collision matrix

3. Add virtual joints for attaching the robot to the world

4. Construct the planning groups

(a) Define the kinematics solver and its properties
(b) Specify joints and links for each planning group
(c) Add the end effector group

5. Include pre-fixed poses

6. Label the end-effector

7. Indicate passive joints (i.e., not actuated joints of the robot)

8. Generation of SRDF for Gazebo

9. Add ROS controller

(a) Choose the controller type
(b) Add the related joints

Once completed, the above process will result in the generation of several files.
They can be used either in simulation or with the real robot and can be modified
according to the current needs. In this project, several trials have been performed
in order to choose the best kinematics solver-motion planner, modifying the related
files accordingly. The first modification concerns the kinematic solver. Among the
solver plugins, the KDL (Kinematics and Dynamics Library) was chosen to get
started. Despite its popularity, some failures have been tested with this selection.
Firstly, the kinematics solver gets stuck in local minima with subsequent luck of
repeatability due to motion stop. Then, convergence is not guaranteed for robots
with joint limits. Additionally, it requires a computational capability greater than
other solvers. Therefore, the IKFast solver was used. It analytically solves the
inverse kinematics equations by attempting to move the end effector in different
positions while maintaining the constraints the robot is subject to. For doing

53

Project development

this, a collada file was created in Blender and converted from the original URDF.
Next, the chain was defined according to the available IK types already present
in OpenRAVE [16]. At this point, optimized C++ files have been generated that
result in stable solutions for many manipulator configurations. The closed-form
solution ensures convergence of about 4 µs on modern processors. Moreover, the
null space of the solution set can be entirely explored.

Afterward, the motion planner was selected among the three options: OMPL,
CHOMP and STOMP. To this end, a simulation was performed in RViz and Gazebo
for testing the different configurations. An obstacle was inserted in the scene to
prove the effectiveness of each motion planner on its own. Specifically, a cube
with dimensions 0,2 cm was created and placed on the table surface and a floating
cylinder was added behind the manipulator, as shown in the following figure

Figure 2.18: Simulation to test the different planning adapters

where the path from the rest and target position was initially planned and then
executed to reach the green ball displayed above. The chosen criteria to validate
the results concern the simulation time, number of attempts and smoothness of
trajectory. The result shows that, with a single motion planner involved, STOMP
produces smooth trajectories since it explores the workspace by applying a Gaussian
noise to the current trajectory and optimize a cost function based on smoothness
and obstacles. Likewise, OMPL converges to a solution very quickly compared to
the other motion planners although there is no guarantee about the path quality.
Among the different planners in OMPL, the RRT was chosen. In addition, as it is
a probabilistic generator, the results suffer from poor trajectory repeatability.

Starting to a different position close to the original one, the generated path
might be different. On the other hand, CHOMP has given the worst results in
terms of time processing and trajectories raising to jerky movements along the
whole path. Additionally, the concept of planning adapter was included in the

54

Project development

trial to improve the results. The general idea consists of calculating an initial plan
employing a motion planner and optimize that trajectory through a further motion
planner. Therefore, four different combinations were tested:

• OMPL as a pre-processor for CHOMP takes the initial guess produced by
OMPL to be further optimized with CHOMP.

• CHOMP as pre-processor for STOMP

• OMPL as pre-processor for STOMP

• STOMP as pre-processor for CHOMP

In general, the planning adapter techniques show better results for single motion
planners in terms of smoothness and trajectory length in the presence of obstacles.
However, the computational load increase significantly. In conclusion, afford results
are obtained with OMPL+STOMP in which OMPL produces the initial guess and
STOMP optimizes it.

2.4 Force sensor
According to the analysis performed in the previous chapter, each block is subject to
different force values depending on their position. The main factor is constituted by
the geometrical properties whereas the tolerance differs for each block. Consequently,
a piece can be in a different status depending on the force applied for the extraction.
Free blocks can be safely removed by applying small external forces. In this status,
the normal and friction forces are not sufficient to deny the block movement when
an external force is applied. Conversely, a block is constrained when the external
force is lacking with respect to the internal forces the block is subject to. In this
case, either a small displacement or a tower collapse can be observed.

Therefore, a force sensor is employed in this project to decide the extraction
block feasibility. To this end, a Honeywell FMA MicroForce sensor is used. It
is a piezoresistive-based force sensor with digital output for reading force and
temperature. The small form factor (5x5 mm) allows being mounted directly on
the end-effector to sense the force when the manipulator-block contact occurs.
The sensor can measure a 5N force range with a contact sphere and outputs the
results through a SPI communication. The 3.3V dc supply voltage is provided by
an Arduino Nano 33 BLE that operates at the same voltage. Therefore, there is no
need to build a voltage divider circuit in order to adequate the voltage of the two
devices. The USB cable is used to supply the board from a local laptop. The force
sensor has 6 pins according to the datasheet:

55

Project development

Figure 2.19: Top and front view of
Honeywell FMA MicroForce sensor

Figure 2.20: Pinout of the sensor

where pins 1 and 3 are used to build the electrical circuit while pins 2,3 and 4
are the three unidirectional bus lines for data communication used for the Serial
Peripheral Interface (SPI). More details about the SPI are provided in the Appendix
section.

In order to mount the sensor directly on the end-effector of the manipulator, an
equipment for the force sensor has been designed with SolidWorks and 3-D printed.
This support allows the connection with the gripper and covers the wires for the
pins. The force sensor accommodates within the main whole bounded by three
walls. The sphere comes out of the sensor interlocking to favor the compression
while the base support is attached to the right hand of the gripper. The design is
presented below.

Figure 2.21: CAD design for the force support

Next, a ROS node is created in order to read the sensor data. To this end, a
Bluetooth communication is established between the Arduino Nano Ble and the

56

Project development

laptop. This connection admits having wire-free system and large bandwidth for
communication. The python script for the data readout involves the setup for the
service (Service ID and characteristic UUID), as well as the publisher node and the
frequency loop. The ROS node synchronically connects to the device via Bluetooth
and publishes the data value into a specific topic at 10 Hz. The frequency rate has
been chosen to preserve the quality data according to the overall control scheme.
In addition, the BLEAK library has been used for the Bluetooth connection.

The value provided by the node has also been exploited to conduct an experimen-
tal analysis of the external forces acting on the block. The analysis was performed
on seven blocks in different positions and orientations. In order to avoid pressure
distribution modifications and contact area change, the tower was rebuilt after any
measurement. The main goal was to determine the force range for both constrained
and free blocks, pointing out the differences between the lower and the higher layers
of the tower. Layers are numerated starting from the bottom to the top of the
Jenga tower. Different samples for each extraction were recorded to construct a
signal force. On the basis of the result operation, each block has been discretized
into two classes: Free and Constrained. The criterion for the discretization concerns
the full and safe extraction for the free blocks and the uncompleted removal for
the constrained ones. Afterward, a noise reduction operation and data processing
has been conducted. In particular, from the different samples, linear regression is
performed on MATLAB in order to have smoother signals. The following figures
output the obtained results.

Figure 2.22: Force-time graph for free blocks in different tower positions

57

Project development

Figure 2.23: Force-time graph for constrained blocks in different tower positions

The results highlight a bridge for the values obtained into the two classes. Indeed,
there is a discrepancy of the external force values applied in the case of free and
constrained blocks. Looking at figure (2.22), it is possible to observe a maximum
force of 0.12N. This value was recorded on one of the lowest layers. Specifically,
this block was placed in layer 4 at an external position. Blocks situated in higher
positions suffer from a lower force, as consequence of the normal force the blocks are
subject to. In fact, the block placed at the top (Layer 16, central position) can be
safely removed by applying a tiny force. It is interesting to note that all the signals
present a similar behavior: an initial rising edge, followed by a decreasing force
profile. The force that must be applied for starting the body motion is F = µsN
followed by F = µdN for the movement maintenance. Since it can be shown that
µs ≥ µd, the force applied for the static breaking must be greater according to the
figure (2.22).

On the other hand, figure (2.22 shows that constrained blocks suffer from a
larger force. A peak of 0,92N occurred in the lowermost piece placed in layer 4,
central position. Its behavior proves the removal attempt by applying a greater
force up to the peak. However, a small displacement was observed without a
succeeded extraction. Also in this case, a correlation between the external force
applied and the related block position can be derived. The rows closest to the
bottom of the tower require higher forces for their extraction. The exception comes
out with the layer 8 and 10, respectively denoted by yellow and blue colors in
the figure. In this case, the geometrical properties favor a reversed attitude as
the block situated at a higher position requires a bigger force. Tolerances make
Jenga moves unpredictable. Nevertheless, the highlighted force discrepancy between
the two-block status allows a simple but effective implementation for the control

58

Project development

scheme. In this implementation, a decision block is inserted in the motion control to
provide a criterion for either stopping or pursuing the movement for the extraction.
To this end, a threshold force value is fixed. If the manipulator senses a large force
the movement is stopped; conversely, the robot carries on the operation. According
to the data in figure (2.22), the threshold value is set to 0,1N . It can be resumed
in the following figure.

Figure 2.24: Force loop scheme

More advanced force/torque control schemes have been examined, although
similar results arise with the decision to prefer a simpler configuration. The behavior
in the case of the hard-removal block is shown in the following sequence of images.

Figure 2.25: The sequence of movements when robot perceives a stuck piece

The sequence shows the movement of the robot as long as the threshold force
value is reached. At this point, the robot interrupts the movement for the extraction
and retracts the end-effector along a predefined trajectory.

59

Chapter 3

Experimental results

This last chapter discusses the results obtained from experimenting with the
proposed control schemes. The first experiment concerns the speed of convergence
for Visual servoing which is obtained by appropriately modifying the gain of
the control law. Several curves are then plotted to show the different behaviors
as a function of λ. A brief discussion follows in which the optimal value is
chosen, considering the performance/command activity trade-off imposed by the
manipulator. The second experiment evaluates the accuracy of operating space
control when an estimated pose is given as input. Specifically, an eye-to-hand
configuration is adopted - the camera is located in a fixed position during the
motion - for this scope. Thus, a statistical analysis is performed considering the
displacement between the desired and final pose. Similarly, the third test employs
the same criteria to evaluate the accuracy of visual servoing. The quantitative
results show the effectiveness of the proposed control systems for this application.
Therefore, a comparison of operating space control and visual servoing in terms of
mean and variance follows.

3.1 Related works
Manipulation skills are a vital topic in robotics and have inspired much research
in an effort to further understanding. In addition to the difficulty of the Jenga
game, the following section will review similar work in the literature. In this
regard, one of the most interesting projects is provided by [17]. In my opinion,
it is the best work ever done for this type of application. They built a Bayesian
hierarchical model to allow the robot to play Jenga, as well as a force control system
to improve performance. However, differences in control strategies and learning
approach emerge compared to this work. Another similar work is presented in
[18] where tactics to remove blocks from Jenga are discussed. However, the way

60

Experimental results

the manipulator approaches the block is different from this implementation even
though analogies arise in the basic principle for choosing the block.

3.2 Gain tuning for visual servoing
The goal of this test is to find the optimal value for the gain of the control law,
according to the task requirements. To this end, an error and trial procedure is
employed to recognize the physical limitations of the robotic arm while ensuring a
smooth path along the entire trajectory. With reference to the previous chapter,
employed control law in Visual servoing shapes the following expression

v = −λäL+
s (s− s∗) , (3.1)

where the tracking error e = s− s∗ is expressed in terms of visual features while
the approximation of the interaction matrix äL+

s depends on the current position of
the object in the camera field of view. It follows that only the λ parameter can be
modified to impose higher or slower velocities. Therefore, the importance of this
test arises in the trade-off performance-command activity and in the ability of the
manipulator to track the desired trajectory without mechanical failures. In fact,
higher velocities can lead the manipulator to exceed joints limits with consequent
hard-stop breaking. Another possible failure could lie when an inadequate joint
step is imposed. It can be shown that a large step between two successive waypoints
can cause unstable trajectories. In this case, a bouncy movement is observed with
small jumps along the path. Such behavior is emphasized at motion start due to
higher velocities. On the other hand, narrow movements make convergence slower
and can cause instability to the movement. Thus, the gain parameter is selected
considering the following factors:

• Time for convergence [s]: employed time for ending the movement

• Accuracy [m]: displacement between target and final position

• Trajectory: indicates either smooth or bouncy trajectory

To evaluate the co-existence of such criteria, the following experimental setup is
chosen. First, the manipulator should be able to recognize a target. To this end,
an ArUco marker is employed to facilitate the target identification. This marker
is placed at a fixed distance din = 1.25 m from the robot’s end-effector while
the starting position of the robot in the Cartesian space is always the same, as
illustrated below.

61

Experimental results

Starting position for the manipulator
Linear Angular

x −0.15 qx 0.00
y 0.00 qy −

√
2

2
z 0.64 qz 0

q0
√

2
2

Table 3.1: Position and orientation for the starting pose

where the pose is indicated with respect to the robot base frame. Thus, the
reference frame of the end-effector is oriented in such a way to get the z-axis aligned
with respect to the target. Therefore, the manipulator starts from the reference
position and gets closer to the marker. When the target position is reached, the
motion is stopped. It is worth noting that motion runs along the z-axis of the
end-effector. Such a position allows measuring the displacement between reference
and final position. This dimension is estimated through the stereo camera of the
RealSense and further validated by manual measurement. The image below refines
the context.

62

Experimental results

Figure 3.1: Settings to tune the λ parameter

During the motion, the camera tracks continuously the target, calculate the
matrix T eo from pose estimation and outputs the desired velocities which the
manipulator has to follow to reach the final distance from the marker. It is worth
observing that the target must remain in the camera field of view for a successful
outcome. Afterward, input velocities are transferred to the velocity controller for
producing the final path. To this end, a ROS topic is used for communicating
both linear and angular velocities. Then, a custom velocity controller acquires
such information by subscribing to the velocity topic and plan the movement.
Considering the computational load induced by computer vision algorithm, current
control loop runs at 25 Hz. The sequence of motion is displayed in the next images.

63

Experimental results

Figure 3.2: Manipulator movement to approach the target

As it is possible to see in this sequence of images, the robot starts the movement
in a pre-fixed configuration and get closer to the target until a certain distance
dfin = 1.10 m is reached. Meanwhile, velocity values are recorded and stored. Such
process is repeated for each value of lambda as illustrated below.

Figure 3.3: Velocity-time chart for different values of λ

64

Experimental results

The above image is generated in MATLAB starting from a .csv file. Regression
technique is used to fit data through a fourth-degree polynomial while filtering out
noise in the measurements. In general, such curves points out a non-increasing
behavior over time. However, time for convergence changes significantly for different
values of lambda. A higher lambda value will make the curve converge faster,
decreasing the convergence time. Nevertheless, it causes massive initial velocities
that can lead manipulator to break. On the other hand, small lambda values make
convergence too slow. Therefore, a conservative approach is chosen to preserve
reliability while ensuring a rapid convergence. According to such principles, it turns
out that λ = 1.2 satisfies the requirements for this task.

3.3 Accuracy for eye-to-hand configuration

The initial idea was to reach a particular block in Cartesian Space through Op-
erational space control. In this regard, the pose of a block is estimated with a
camera and computer vision algorithms to enable identification of both the entire
tower and individual blocks. Since the camera is placed in a fixed location, the
configuration is also called eye-to-hand. Thus, block detection and pose estimation
plays a key factor in such a scheme. Therefore, the following experiment aims to
evaluate the feasibility of this system considering the tracking error between the
desired and final position of the manipulator. In order to carry out this experiment,
the real situation is depicted in the figure below.

Figure 3.4: Settings to evaluate accuracy of eye-to-hand configuration

65

Experimental results

Some mathematical steps follow. The homogeneous matrix between base frame
of the manipulator and the camera frame has to be calculated according to the
following equation:

T bo = T bc T
c
o (3.2)

whereT bc represents the homogeneous matrix between base frame of the manipu-
lator and the camera frame and T co represents the matrix derived from the pose
estimation process. Hence, T bo can be also represented in the following way

T bo =
C
Rb
o tbo

0T 1

D
. (3.3)

Consequently, the displacement between the desired and final position can be
calculated as

e = tbo,des − tbo , (3.4)

that is the quantity for evaluating the accuracy of such a control system. There-
fore, the statistical analysis for control accuracy is reported below. The quantities
are expressed in cm.

Figure 3.5: Accuracy of eye-to-hand configuration

66

Experimental results

This bar graph shows that the mean of the error is about 1.5-2 cm for all axes,
while the variance is greater for the x and y axis the z one. It turns out that such
a control system is not able to provide the required accuracy for the Jenga game.
In fact, considering the finger width and standard block size, the results indicate
the unfeasibility of this control system , in terms of precision, for playing Jenga.
Also, the minimum displacement on the z-axis - along the tower height - shows a
further inconsistency. From a practical point of view, if the manipulator decides to
hit a certain block, the block on the top layer would also be affected due to the
size of the gripper. Furthermore, a low repeatability in the action is confirmed by
the variance.

3.4 Accuracy for visual servoing
Considering the overall task, one of the most crucial parameters for this application
is precision. Importance arises not only into trying to push the selected block, but
also in the stability of the tower. In fact, approaching the block with a higher
speed can disrupt the tower causing it to collapse. Also, the direction in which
the manipulator hits the individual block plays a key factor in the stability of the
tower. Hence, the system was designed with these aspects in mind. Visual servoing
supports these characteristics from the knowledge of the CAD model. In fact, the
model-based tracking adopted in this project allows the robotic arm to manage the
movement despite noise and inaccurate measurements. By recognizing the block, a
set of visual features are extracted in such a way as to enable continuous tracking
of the target.

Figure 3.6: Model-based tracking for a single Jenga piece

According to the results obtained in the first trial, the following feedback loop

67

Experimental results

control law is used
v = −1.2 ∗ äL+

s (s− s∗) , (3.5)
since it guarantees satisfactory performance results with a tracking stability. In

fact, a challenging aspect consists of keeping the tracking of the block during the
entire motion. Starting from the rest position of the manipulator and measuring the
displacement between the desired and final pose, the following results are obtained.

Figure 3.7: Accuracy of visual servoing with model-based tracker

In this case, the metrics used for measurements are the same as in the previous
test. However, with this control technique, better results are obtained in terms
of accuracy. The real time trajectory enhances the capability of the manipulator
to converge to the block pose more precisely. In fact, the overall discrepancy is
reduced along the three axes. In particular, the x and z axes show similar behavior
with a mean around 0.7cm. Although this is an improved result, such accuracy
does not imply safe extractions. The pushing operation could still involve multiple
blocks resulting in damage to the tower. However, the lower variance indicates more
consistency in the operation and makes the system more robust to disturbances.
On the other hand, the y-axis shows a lower mean but higher variance. To this
end, it is worth remarking that results are affected from camera calibration process.
Therefore, it is likely to think about inaccurate extrinsic parameters.

Nevertheless, analogies and differences can be pointed out between the eye-to-
hand configuration and visual servoing. First, results show that not solely visual
servoing improves accuracy about 65%, but it exhibits lower variance with respect
the other control method. This insight remarks the ability of visual servoing to

68

Experimental results

respond quickly to disturbances. Then, a further observation is made about the
stability of the two systems. While in the eye-to-hand configuration, the target
always remains in the camera field of view, for model-based tracking servo systems
this task becomes challenging due to the moving arrangement. Furthermore, the
camera calibration process also changes for the proposed control systems. Extrinsic
parameters are estimated only once for servo visual systems, while the other
configuration needs careful calibration every time the camera position changes.

3.5 Conclusions and future developments
The comparison of the two control systems, proposed in this project, drew a line for
future improvements. Operational space control can only be used when accurate
measurements are present as a result of tower segmentation and single block pose
estimation. In the absence of such conditions, visual servoing demonstrated great
compliance with the task requirements. In particular, model-based tracking is able
to estimate the target pose at runtime from knowledge of the CAD model of the
Jenga block. Such features increase the robustness of the visual servoing system,
ensuring that the manipulator is able to correct the pose based on the target,
despite the noise acting on the system.

These considerations may inspire both students and researchers to continue this
work. Here, a short list for further development.

• Motion accuracy can be improved by trying different control laws.

• Instance segmentation results can be improved, allowing for greater visual
performance.

• The interaction between the manipulator and the block can be managed
through compliance control from the dynamic model of the robotic arm.

69

Appendix A

Linear Algebra

A.1 Matrix properties
Let u be a (3x1) vector, a skew-symmetric matrix S (u) is defined as:

S (u) =

 0 −u3 u2
u3 0 −u1

−u2 u1 0

 (A.1)

where ui corresponds to the i − th entry of the vector u. Denoting with Sij
the entry in the i− th row and j − th column of the matrix S(u) , the following
property holds:

Sij = −Sji (A.2)

Consequently, it satisfies the condition ST = −S.

70

Appendix B

Rigid body

B.1 Kinematics
Let consider two reference frames F1 = 01, þI, þJ, þK and F2 = 02, þi, þj, þk. In-
troducing a particle in the system, the position with respect the two RFs can be
computed:

P = XþI + Y þJ + Z þK

Po = Xo
þi+ Yoþj + Zoþk

r = xþi+ yþj + zþk

(B.1)

where P indicates the position of the particle in F1, Po denotes the origin of F2
and r is the position of the particle in F2. It can be shown that the correlation
between the coordinates X, Y, Z and x, y, z is given by:

X = P · I = (Po + r) · I = Xo + xþI ·þi+ yþI ·þj + zþI · þk
Y = P · J = (Po + r) · J = Yo + x þJ ·þi+ y þJ ·þj + z þJ · þk

Z = P ·K = (Po + r) ·K = Zo + x þK ·þi+ y þK ·þj + z þK · þk

(B.2)

Therefore, the projection along each axis is computed although a more compact
form can be pointed out.

XY
Z

 =

Xo

Y0
Z0

 +R

xy
z



R =


þI ·þi þI ·þj þI · þk
J ·þi þJ ·þj þJ · þk
þK ·þi þK ·þj þK · þk


(B.3)

71

Rigid body

R is called direction cosine matrix (DCM) and contains 9 entries, corresponding
to the dot product between the two RFs. Rotation matrices are linear transforma-
tions and belong to the orthogonal matrices class. Therefore, they are characterized
by |detR| = 1 and the following relationship holds:

R−1 = RT (B.4)

In addition, it is possible to consider a general expression for expressing position
and orientation through the homogeneous transformation defined as it follows:

T =
C
R t
0T 1

D
(B.5)

where t = [tx ty tz]T indicates the translation between the two RFs. Thus,
the T matrix consists of 3x3 rotational matrix and a translation vector 3x1. The
inverse of this matrix is computed accordingly.

T−1 =
C
RT −RT t
0T 1

D
(B.6)

This shows that the inverse homogeneous matrix is not a simple transpose
operation for each entry, but a more complex relationship holds. In particular, the
inverse of the translation points out geometrical consideration since the orientation
strongly depends by the applied rotation matrix. At the same time, the minus sign
displays the change in orientation due to RFs swapping.

Considering the position of the particle in F2, r, the velocity is obtained through
derivation in the following way. Some mathematical steps occur.

r = xþi+ yþj + zþk (B.7)

ṙ = ẋþi+ ẏþj + żþk + xi̇+ yj̇ + zk̇ (B.8)

Therefore, the velocity is divided into two elements: the time-derivative of the
position in the body frame and the derivative of the versos þi, þj,þk. This latter
expression needs further considerations. Let us take a generic versor, bi, and
suppose to rotates it about an infinitesimal angle dθ as illustrated in the figure
below.

72

Rigid body

Figure B.1: Infinitesimal rotation for vector bi

Follows these equations:
dbi = dθ × bi ,

dθ = ωdt ,

dbi = ωdt× bi ,

ḃi = ω × bi

(B.9)

Coming back to the general expression of the velocity ṙ, the generic versor bi
is substituted by x, y, z. Therefore, it turns out that: ṙ = ṙ0 + ω × r where
ṙ0 = ẋþi+ ẏþj + żþk expresses the derivative in the body frame.

B.2 Euler angles
The orientation of a rigid body can be described by three parameters. In fact, a
rotation matrix is composed by nine elements constrained by 6 equations due to
orthogonality conditions. As consequence, only three parameters are needed. The
Euler angles are denoted by ψ =

è
ϕ ϑ φ

éT
which correspond to the triplet of

angles for describing every rotation in the 3-D space. This latter is the so-called
minimal representation as it is described by three independent parameters. They
are built from elementary rotations matrices, defined as follow.

Tx(φ) =

1 0 0
0 cφ −sφ
0 sφ cφ

 (B.10)

Ty (θ) =

 cθ 0 sθ
0 1 0

−sθ 0 cθ

 (B.11)

73

Rigid body

Tz(ϕ) =

cϕ −sϕ 0
sϕ cϕ 0
0 0 1

 (B.12)

For clarity of notation, the Tx(φ) notation indicates the rotation of an angle φ
about the x-axis. It is worth noting that, for a Tx(φ), the rotation occurs in the
y-z plane while the axis of rotation remains unchanged. Therefore, it is possible to
obtain a generic rotation through the Euler angles by applying three elementary
rotations. In particular, since the following equations holds

Ti (φ) Ti (θ) = Ti (φ+ θ) (B.13)

the sequence must be composed by two successive rotations around different
axes. In opposite cases, the parameters are no longer sufficient for describing the
full orientation in the 3-D space. Therefore, there exist 12 possible combinations
with non-sequentially repeated indexes. If a rotation is described through the three
axis it is called Tait-Bryan. Otherwise only two axes can be used as Euler angles
although they must be non-sequential. In this case, we deal with Euler rotations.

With reference to geometric Jacobian, the Euler 323 will be formed below. It is
composed by the following rotations: T3(φ), T2(θ), T3(ϕ).

T3(φ) =

cφ −sφ 0
sφ cφ 0
0 0 1

 (B.14)

T2 (θ) =

 cθ 0 sθ
0 1 0

−sθ 0 cθ

 (B.15)

T3(ϕ) =

cϕ −sϕ 0
sϕ cϕ 0
0 0 1

 (B.16)

Consider an initial reference frame with axes x, y, z; the final rotation matrix
is constructed as follows:

• Rotation about the z-axis leads to (xÍ, yÍ, z)

• Rotation about the yÍ-axis leads to (xÍÍ, yÍ, zÍ)

• Rotation about the zÍ-axis leads to (xÍÍÍ, yÍÍ, zÍ)

74

Rigid body

The figure below clarifies the situation.

Figure B.2: ZYZ intrinsic rotation

The latter is also denoted intrinsic rotation as the rotation is applied to the
rotating frame. The resulting rotations is obtained by multiplying these matrices.

T323 (ϕ, ϑ, φ) = T3 (φ)T2 (θ)T3 (ϕ) =

=

cφcϑcϕ − sφsϕ −cφcϑsϕ − sφcϕ cφsϑ
sφcϑcϕ + cφsϕ −sφcϑsϕ + cφcϕ sφsϑ

−sϑcϕ sϑsϕ cϑ

 (B.17)

Hence, the minimal representation allows to describe every possible orientation
in the 3-D space through three angles.

B.3 Denavit–Hartenberg
B.3.1 Chain of rules
The general process to compute the DH involves two main steps. The first phase
requires the establishment of the reference frames attached to each joint. With
reference to the figure below, the following procedure is adopted to define the
reference frames. Let Fi the reference frames attached to joint i which connects
Link i− 1 to Link i. The consecutive reference frame is determined in the following
way:

• Choose axis zi along the axis of Joint i+ 1

• Locate the origin Oi at the intersection of axis zi with the common normal to
axes zi−1 and zi. Also, locate OiÍ at the intersection of the common normal
with axis zi−1.

75

Rigid body

• Choose axis xi along the common normal to axes zi−1 and zi with direction
from Joint i to Joint i + 1.

• Choose axis yi in order to complete a right-handed frame.

Figure B.3: Geometric relationship between two successive links according to the
Denavit-Hartenberg conventions

It is worth noting that this procedure is not deterministic. Thus, if an indetermi-
nacy arises, a logic and pragmatic approach can be adopted in order to univocally
determine the reference frames.

The next step consists of computing the four parameter values n (q) , s (q),
a (q) , t(q). Also in this case, a rigorous policy is built in order to guarantee
consistency with previous conventions.

• Link length ai : it corresponds to the distance between Oi and OÍ
i

• Link Twist αi : it is the angle along thexi-axes formed between zi−1 and zi

• Link offset di: displacement of OiÍ with respect Oi along the zi−1 axes

• Joint angle ϑi: it is the angle along the zi−1 -axes formed between xi−1 and xi
76

Rigid body

B.3.2 Anthropomorphic Manipulator
Considering the DH parameters given in table (2.1) six transformation matrices
containing the full geometry of the robot can be computed according to the equation
(2.1). Thus:

77

Appendix C

Hardware settings

C.1 Force sensor

The data transfer is based on the exchange signals of SCLK, MISO and SS. In
particular, the process begins by switching off the Sensor Select (SS) line. Then,
the clock signal is activated and the communication between SCLK and MISO
arises. The square wave signal of the SCLK is bounded by a rising and fall interval.
During the falling edge of the clock, the MISO gets the transition according to
the binary data to sample. As result, the digital output can be easily read. An
example of one byte SPI data transfer is provided below.

Figure C.1: Signals for data acquisition

78

Hardware settings

The binary data 01100101 is converted into the corresponding digital output.
At the same way, the two-to-four-byte data readout can be employed. For this
project, the Two Byte Data Readout is used. According to the figure below, the
first two bits indicates the sensor status while the others 14 bits are used for the
data reading.

Figure C.2: Two byte data readout

Therefore, the operating range spans up to a digital value equal to 214 = 16384.
It is worth noting that, once the two data byte has been read, the clock was stopped
and the SS line deactivated as well. However, the data reading must take into
accounts the transfer function limits between the force and the digital output. In
this case, the compensated force range covers the 20 to 80% of the transfer function.
Consequently, the following equations has to be used to calculate the output:

Output = (Outputmax −Outputmin) %
RatedForceRange

ForceApplied +Outputmin (C.1)

where Rated Force Range is the sensor physical limit perceived (5N), while
Outputmax and Outputmin are determined by the transfer function limits and they
are equal to 80% and 20%, respectively. Inverting the equations, it is possible to
find the Force Applied according to the following equation:

ForceApplied = (Output−Outputmin)
(Outputmax −Outputmin) RatedForceRange (C.2)

From this general form, the quantities involved can be calculated.

• Outputmax = 0.8·14 = 13107 [counts]

• Outputmin = 0.2·14 = 3277 [counts]

• RatedForceRange = 5N

79

Hardware settings

Therefore:

ForceApplied = (Output− 3277)
(13107 − 3277) · = (Output− 3277)

9830 · (C.3)

80

Bibliography

[1] Stanford Artificial Intelligence Laboratory et al. Robotic Operating System.
Version ROS Melodic Morenia. May 23, 2018. url: https://www.ros.org
(cit. on p. 1).

[2] N. Koenig and A. Howard. «Design and use paradigms for Gazebo, an open-
source multi-robot simulator». In: 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566). Vol. 3.
2004, 2149–2154 vol.3. doi: 10.1109/IROS.2004.1389727 (cit. on p. 4).

[3] Hyeong Ryeol Kam, Sung-Ho Lee, Taejung Park, and Chang-Hun Kim. «RViz:
A Toolkit for Real Domain Data Visualization». In: Telecommun. Syst. 60.2
(Oct. 2015), pp. 337–345. issn: 1018-4864. doi: 10.1007/s11235-015-0034-5.
url: https://doi.org/10.1007/s11235-015-0034-5 (cit. on p. 4).

[4] Robotics : modelling, planning and control / Bruno Siciliano [et al.] eng.
Advanced textbooks in control and signal processing. London: Springer, 2009.
isbn: 978-1-84628-641-4 (cit. on p. 5).

[5] Wankyun Chung, Li-Chen Fu, and Su-Hau Hsu. «Motion Control». In:
Springer Handbook of Robotics. Ed. by Bruno Siciliano and Oussama Khatib.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 133–159. isbn:
978-3-540-30301-5. doi: 10.1007/978- 3- 540- 30301- 5_7. url: https:
//doi.org/10.1007/978-3-540-30301-5_7 (cit. on p. 17).

[6] Sachin Chitta et al. «ros_control: A generic and simple control framework
for ROS». eng. In: Journal of open source software 2.20 (2017), p. 456. issn:
2475-9066 (cit. on p. 24).

[7] Jenga. Aug. 2021. url: https://en.wikipedia.org/w/index.php?title=
Jenga&oldid=1036975421 (cit. on p. 28).

[8] Shinya Kimura, Tsutomu Watanabe, and Y. Aiyama. «Force based manip-
ulation of Jenga blocks». In: 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems (2010), pp. 4287–4292 (cit. on p. 28).

[9] Jason Ziglar. «Analysis of Mechanics in Jenga». In: 2006 (cit. on p. 29).

81

https://www.ros.org
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1007/s11235-015-0034-5
https://doi.org/10.1007/s11235-015-0034-5
https://doi.org/10.1007/978-3-540-30301-5_7
https://doi.org/10.1007/978-3-540-30301-5_7
https://doi.org/10.1007/978-3-540-30301-5_7
https://en.wikipedia.org/w/index.php?title=Jenga&oldid=1036975421
https://en.wikipedia.org/w/index.php?title=Jenga&oldid=1036975421

BIBLIOGRAPHY

[10] Density of Various Wood Species. https://www.engineeringtoolbox.com/
wood-density-d_40.html (cit. on p. 30).

[11] Miller Stiven Espinosa Muñoz. Mobile manipulation with the TIAGo robot:
perception and task manager. eng. 2019 (cit. on p. 35).

[12] Antonio Paolo Passaro. «Development of a multi-environment platform com-
posed by a robot and an autonomous guided vehicle». Ottobre 2020. url:
http://webthesis.biblio.polito.it/16001/ (cit. on p. 36).

[13] Stefano Pesce. «Simulation and advanced control of a professional manipulator
the educational Robot e.DO». Apr. 2018. url: http://webthesis.biblio.
polito.it/7582/ (cit. on p. 37).

[14] E Marchand, F Spindler, and F Chaumette. «ViSP for visual servoing: a
generic software platform with a wide class of robot control skills». eng. In:
IEEE robotics & automation magazine 12.4 (2005), pp. 40–52. issn: 1070-9932
(cit. on p. 40).

[15] David Coleman, Ioan Sucan, Sachin Chitta, and Nikolaus Correll. «Reducing
the Barrier to Entry of Complex Robotic Software: a MoveIt! Case Study».
eng. In: (2014) (cit. on p. 51).

[16] Rosen Diankov and James J. Kuffner. «OpenRAVE: A Planning Architecture
for Autonomous Robotics». In: 2008 (cit. on p. 54).

[17] N. Fazeli, M. Oller, J. Wu, Z. Wu, J. B. Tenenbaum, and A. Rodriguez.
«See, feel, act: Hierarchical learning for complex manipulation skills with
multisensory fusion». In: Science Robotics 4.26 (2019), eaav3123. doi: 10.
1126/scirobotics.aav3123. eprint: https://www.science.org/doi/pdf/
10.1126/scirobotics.aav3123. url: https://www.science.org/doi/
abs/10.1126/scirobotics.aav3123 (cit. on p. 60).

[18] Shinya Kimura, Tsutomu Watanabe, and Yasumichi Aiyama. «Force based
manipulation of Jenga blocks». In: 2010 IEEE/RSJ International Conference
on Intelligent Robots and Systems. 2010, pp. 4287–4292. doi: 10.1109/IROS.
2010.5651753 (cit. on p. 60).

82

https://www.engineeringtoolbox.com/wood-density-d_40.html
https://www.engineeringtoolbox.com/wood-density-d_40.html
http://webthesis.biblio.polito.it/16001/
http://webthesis.biblio.polito.it/7582/
http://webthesis.biblio.polito.it/7582/
https://doi.org/10.1126/scirobotics.aav3123
https://doi.org/10.1126/scirobotics.aav3123
https://www.science.org/doi/pdf/10.1126/scirobotics.aav3123
https://www.science.org/doi/pdf/10.1126/scirobotics.aav3123
https://www.science.org/doi/abs/10.1126/scirobotics.aav3123
https://www.science.org/doi/abs/10.1126/scirobotics.aav3123
https://doi.org/10.1109/IROS.2010.5651753
https://doi.org/10.1109/IROS.2010.5651753

	List of Tables
	List of Figures
	Acronyms
	Background
	Software
	ROS
	Gazebo
	RViz
	rqt

	Kinematics
	Direct and Inverse Kinematics
	 Denavit–Hartenberg convention

	Differential kinematics
	Geometric Jacobian
	Analytical Jacobian
	Kinematic Singularities

	Control
	Joint space control
	Operational space control

	Visual servoing
	ROS Controllers

	Force analysis

	Project development
	e.DO
	ROS network
	Kinematics

	Visual servoing
	Camera calibration
	Feedback control loop
	Tracking
	Velocity Controller

	Overall strategy
	Motion
	Planning adapters

	Force sensor

	Experimental results
	Related works
	Gain tuning for visual servoing
	Accuracy for eye-to-hand configuration
	Accuracy for visual servoing
	Conclusions and future developments

	Linear Algebra
	Matrix properties

	Rigid body
	Kinematics
	Euler angles
	Denavit–Hartenberg
	Chain of rules
	Anthropomorphic Manipulator

	Hardware settings
	Force sensor

	Bibliography

