
POLITECNICO DI TORINO
Master’s Degree in DATA SCIENCE AND ENGINEERING

Master’s Degree Thesis in collaboration with Tierra S.p.A

An autoencoder-based clustering
strategy for usage pattern detection on
heavy duty’s vehicles’ CAN bus data

Supervisors

Prof. Francesco VACCARINO

Prof. Luca CAGLIERO

Dr. Silvia BUCCAFUSCO

Candidate

Ruggiero FRANCAVILLA

Company Tutors

Dr. Lucia SALVATORI

Dr. Riccardo LOTI

October 2021

Summary

This thesis work addresses a real case problem that concern heavy duty’s vehicle
and patterns. Due to the diffusion of IoT devices and the establishing of cars
connected mobility in firms, the connectivity of heavy-duty in-vehicle is becoming
a more and more important task in pattern identification tasks.

This work is developed in Tierra S.p.A., a company that creates innovative
solutions in advanced telematics and IoT fields and that is part of the collaboration
between the applied research and data analytics department and Politecnico di
Torino.

The purpose of this work is the identification of pattern thresholds in heavy duty’s
vehicles, due to clients’ failures in manual detection. For this task, multivariate time
series data analysis with an innovative autoencoder-based technique is presented.
After a first exploration of signals, and the identification of the most relevant ones for
the task, a proper combination of series with different sampling rates is performed.
Then, for data preparation purposes, a segmentation strategy for the multivariate
time series based on VALMOD algorithm, is proposed. Moreover, combined action
of autoencoder models and clustering techniques is used for the pattern identification
task. In particular, this approach looks at finding patterns in data, by exploiting
the reconstruction ability of signals of autoencoder models. Therefore, different
usage patterns are identified with the application of a clustering technique on a
customized dissimilarity matrix based on autoencoders reconstruction error. Finally,
a score-based strategy helps at identifying thresholds between usage patterns.

As last step, after a manual validation with the help of experts, with visualization
tools, a silhouette-based approach analyzing clustering results coming from different
distance measures is described analyzing both separability and cohesion of groups,
and the usage patterns detected.

ii

Acknowledgements

Ringrazio prima di tutto il mio relatore, il Professor Francesco Vaccarino, per
avermi offerto la possibilità di entrare a far parte di questa realtà e per le preziose
indicazioni, la sua costante presenza ed il sostegno non solo dal lato universitario,
ma anche morale in questo percorso.

Vorrei inoltre ringraziare i miei correlatori, il Professor Luca Cagliero, per la
supervisione costante del mio lavoro, e per essere stato sempre fonte di possibili
soluzioni, ed alternative durante il lavoro di tesi, e la Dottoressa Silvia Buccafusco,
la mia guida in questo percorso, senza le cui indicazioni, consigli e disponibilità in
qualsiasi momento, avrei avuto molte più difficoltà durante questi mesi.

I miei più sentiti ringraziamenti vanno all’azienda Tierra S.p.A., ed ai suoi
rappresentanti con cui ho avuto il piacere di collaborare, tra cui Lucia Salvatori
e Riccardo Loti. I meeting settimanali non solo mi hanno dato una dimensione
aziendale, ma sono stati utili per i vostri continui suggerimenti e attenzioni che mi
avete rivolto in questo lavoro di tesi.

iii

Table of Contents

List of Tables vii

List of Figures viii

Acronyms xi

1 Introduction and Relative Work 1

2 Controller Area Network Bus Data Analysis 4
2.1 Controller Area Network Bus Data 4

2.1.1 CAN Bus Data Introduction 4
2.1.2 CAN Bus Data Exploration 6

2.2 Signal Processing . 14
2.2.1 Signal Processing Fundamentals 14
2.2.2 Stochastic Processes . 16
2.2.3 Univariate Time Series Analysis 17

3 Multivariate Sequences Processing and Analysis 23
3.1 Theoretical Introduction . 23

3.1.1 Discrete-Time Systems . 23
3.1.2 Linear Shift-Invariant Systems 25
3.1.3 Discrete-Time Fourier Transform 25
3.1.4 Multi-Rate Sequences . 28

3.2 Multivariate Time Series Analysis 29

4 Auto Encoder-based Model for Time Series Analysis 34
4.1 Auto Encoder-based approach . 34

4.1.1 Data Preparation Procedures 34
4.1.2 Introduction to Auto Encoders 37
4.1.3 Autoencoder-based Deep Learning Approach for Analysis of

Time Series Data . 39

v

4.2 Time Series Clustering . 45
4.2.1 Introduction to Clustering 45
4.2.2 K-medoids Clustering Approach 48

5 Experimental results and evaluation 50
5.1 Qualitative Validation of Clusters 50
5.2 Quantitative Validation of Clusters 57

6 Conclusions and Future Works 59

Bibliography 61

vi

List of Tables

2.1 SPN description . 8
2.2 Percentage of duplicates per SPN where repetitions are present . . . 9
2.3 Modes and sampling rates approximations per SPN 12

4.1 Top 20 VALMOD found motifs . 42
4.2 Architecture of each of the autoencoders 44
4.3 Silhouette values for different number of clusters 49

5.1 Number of clusters found and Silhouette measure value associate to
cluster assignments, for each measure 58

vii

List of Figures

1.1 Tierra Solution . 3

2.1 SAE J1939 Message . 6
2.2 Dataset under analysis . 7
2.3 Time Series plot: SPN 4360 with unfeasible values (a), and after

data cleaning (b) . 10
2.4 Number of observations per date 11
2.5 Interarrivals distributions for SPNs 183, 94 and 110 11
2.6 Number of observations per SPN 12
2.7 Working cycles duration . 13
2.8 Relation between SPN 110 and working cycles 14
2.9 Time Series plot: SPN 247 . 18
2.10 SPN 247: Correlogram and Partial AutoCorrelation 18
2.11 Time Series plot: SPN 3509 . 19
2.12 SPN 3509: Correlogram and Partial AutoCorrelation 19
2.13 Time Series plot: SPN 190 . 20
2.14 SPN 190: Correlogram and Partial AutoCorrelation 20
2.15 Box plot of SPNs: 94, 108, 110, 183, 190, 247, 514, 1127, 1761, 3509,

3609, 4360, 30000 . 22

3.1 Graphical representation of a system [7] 23
3.2 Frequency response of an ideal low-pass filter [3] 27
3.3 Frequency response of an ideal high-pass filter [3] 27
3.4 Block diagram representation of Upsampling by N [7] 28
3.5 Block diagram representation of Downsampling by N [7] 28
3.6 Pearson Correlation matrix . 31
3.7 Correlogram of different pairs of SPNs 32

4.1 Architecture of an autoencoder based on deep neural network [22] . 38
4.2 Boxplot of SPN, showing effects of normalization 40
4.3 Time series window definition . 41

viii

4.4 Proposed approach: an autoencoder-based model for time series
analysis . 41

4.5 Number of motifs occurrences per length 42
4.6 Data input generation process . 43
4.7 Time series split . 45

5.1 K-Medoids + Silhouette application 50
5.2 SPN 30000 Boxplots for Moving/Working Cluster and Idle Cluster . 51
5.3 Vehicle Off fragment . 51
5.4 Vehicle Ignition fragment . 52
5.5 Vehicle Shutdown fragment . 52
5.6 Time series plots Moving/Working Cluster 53
5.7 Time series plots Idle Cluster . 54
5.8 Time series plots Vehicle Off Cluster 55
5.9 Box plot of the found clusters . 56
5.10 Mapping of Euclidean distance (a) vs. mapping of DTW distance (b) [39] 57

ix

Acronyms

AE
AutoEncoders

AI
Artificial Intelligence

ANN
Artificial Neural Network

AWS
Amazon Web Service

BIBO
Bounded-Input Bounded-Output

CAN
Controller Area Network

CAN FD
Controller Area Network Flexible Data-Rate

CNN
Convolutional Neural Network

DL
Deep Learning

DTFT
Discrete Time Fourier Transform

xi

FIR
Finite Impulse Response

GPS
Global Positioning System

IIR
Infinite Impulse Response

IoT
Internet of Things

LSI
Linear Shift-Invariant

LSTM
Long Short-Term Memory

LTI
Linear Time-Invariant

ML
Machine Learning

MSE
Mean Squared Error

OBD
On-Board Diagnostics

PGN
Parameter Group Number

RNN
Recurrent Neural Network

SAE
Society of Automotive Engineers

xii

SGD
Stochastic Gradient Descent

SPN
Suspect Parameter Number

VAE
Variational AutoEncoder

VALMOD
Variable Length Motifs Discovery

xiii

Chapter 1

Introduction and Relative
Work

In this section, the main topics covered by the work are presented. Moreover, an
overview of the chapters is provided.

Machine Learning (ML) is a set of methods useful to automatic detection
of patterns in data, with the objective of using it to support decisions under
uncertainty, or to use them for future data prediction. It is a branch of Artificial
Intelligence (AI), composed of different algorithms, automatically improved through
experience and use of data. Deep Learning (DL) is instead a class of ML that uses
multiple layers to progressively extract higher-level features from the raw input.

The spread in these years of these topics, often related to big data, a large
amount of information, make them the most important computer science areas.

Learning is, of course, a very wide domain, and consequently, several subfields
have been generated from the principal one, each dealing with different learning
tasks types. Since learning involves an interaction between the learner and the
environment, two different categories can be identified by looking at the nature of
these interactions.

Supervised learning, or predictive learning, has the aim of mapping an input
to output by looking for a model that explains the relationships between input
and output variables. The main goal of these kinds of algorithms is to forecast an
unknown response variable for new observations. In supervised learning context,
each example in the dataset is associated with a label or target, that "is provided" by
an instructor or a teacher that supervises the ML system. Examples of supervised
algorithms are bayesian networks, decision trees, support vector machines...

On the other hand, unsupervised learning tries to learn patterns from untagged
data. The learner processes input data to come up with a summary or a com-
pressed version of that data. In these algorithms, there is no supervision, so the

1

Introduction and Relative Work

learning must have sense without an instructor’s guide. One of the most important
unsupervised algorithms is clustering.

The method proposed in this work involves the combination of unsupervised
DL and ML techniques to solve a real case problem in the Internet of Things (IoT)
field.

IoT provides a description of the network of "things", physical objects, that
with the help of sensors, software and other technologies aim to connect devices
and systems each other and enable exchange of data over the Internet.

Thanks to the spread of IoT devices and the establishing of cars connected
mobility in firms, heavy-duty in-vehicle connectivity is becoming a more and more
important task in patterns identification field.

This work exploits heavy-duty vehicles’ data for identifying usage patterns and
workload states from Controller Area Network (CAN) bus data. The information
coming from these kinds of vehicles is not frequently subject of analysis although
several car usage patterns identification tools can be found in the literature. These
data are used by clients through the computation of some statistics.

An important criterion for the management of the clients’ requests, is the
identification of the states of the vehicles, and the detection of thresholds between
different patterns, to avoid clients’ failures in manual detection. IoT devices allow
firms to monitor their equipment from the large number of sensors installed on
each type of vehicle. ML algorithms can be very useful for the identification of
hidden relationships in data and detect patterns.

Specifically, this work concerns heavy-duty vehicle patterns and workload states
identification from CAN bus data, generated in the vehicle at high frequency,
gathered by a controller, and finally sent to centralized servers. In this work, a
Z55 device, an experimental on-board data logger provided by the company Tierra
S.p.A. collects CAN bus data. Data are then transmitted by a SIM card to Tierra
cloud infrastructure and can be visualized and handled by their clients through a
customized web-based remote management system.

The thesis is organized into 6 chapters, which can be summarized as follows.
In Chapter 2, after a theoretical introduction to CAN bus data and signal

processing fundamentals, a preliminary univariate analysis of CAN bus signal is
described. To this purpose, details about data cleaning and data preprocessing
steps required by the kind of data under analysis are provided.

In Chapter 3 after Multi-rate systems description, a proper combination of time
series, preceded by signals synchronization, is performed to obtain a multivariate
object. Then, it follows a deeper analysis exploiting relations between variables in
the multivariate time series.

2

Introduction and Relative Work

Figure 1.1: Tierra Solution 1

In Chapter 4 an innovative autoencoder-based method to cluster multivariate
time series is employed to solve the problem under analysis. Since it requires data
segmentation, the most appropriate segment length is inferred as an application
of VALMOD, an algorithm to discover variable-length repeated patterns in data.
Furthermore, it is described how different usage patterns are detected with an
application of a clustering algorithm and Silhouette measure for the correct number
of clusters.

Given the clusters obtained in the previous chapter, Chapter 5 consists of a
qualitative and quantitative evaluation of results. The former exploits domain
experts knowledge to compare obtained results with expected ones. A quantitative
evaluation can be instead obtained by comparing the silhouette score of the proposed
method with the ones achieved by applying standard clustering with classical
distances.

Therefore in the last chapter, conclusions, and further improvements are high-
lighted.

1www.tierratelematics.com

3

www.tierratelematics.com

Chapter 2

Controller Area Network
Bus Data Analysis

In this chapter, a brief theoretical introduction to CAN Bus Data, the relative
protocol, and signals processing fundamentals is provided. Then, details about
the preliminary phases of data collection, data cleaning and data preparation are
described.

For each CAN signal, a univariate analysis is firstly performed, while interactions
between physical quantities are deeply analyzed in the last part of the chapter.

2.1 Controller Area Network Bus Data

2.1.1 CAN Bus Data Introduction
CAN bus is a robust vehicle bus standard designed to allow devices data com-
munication with many applications in automotive fields. Specifically, CAN is a
message-based protocol developed in 1983 at Robert Bosch GmbH and officially
released in 1986. CAN 2.0, published in 1991, is the last released version of the
CAN specification. The CAN bus standard is used in almost all vehicles and many
machines due to its simplicity and low cost, because it is fully centralized, extremely
robust, and efficient.

Some of the most common standards include:

• SAE J1939 for heavy-duty vehicles (e.g. trucks and buses)

• OBD2 (On-board diagnostics), which is a self-diagnostic and reporting capa-
bility used to identify car issues.

• CANopen, that is used in embedded control application.

4

Controller Area Network Bus Data Analysis

• CAN FD, an extension of classical CAN bus with flexible data-rate.

Since this thesis concerns data extracted from heavy-duty vehicles, J1939 protocol
is considered in the following. This protocol is used for all kinds of mobile industrial
vehicles, including emergency vehicles, trucks, dozers, buses, cranes, etc. It is also
used in mining, agriculture, forestry, generators, oil and gas, ships, military, and any
diesel engine. More specifically, J1939 runs over CAN Bus, its physical "medium",
as a standardized communications “language”.

J1939 speeds are typically 250 kbps or 500 kbps and it is built on CAN2.0B,
which is an extended 29-bit message identifier [1]. An SAE J1939 message typically
consists of a minimum of 93 bits, and it is composed of an identifier and its
associated parameters, all coded into a hexadecimal format. The first part of
the signal (29 bits) is the "message", is used to identify the source, whereas the
remaining part (64 bits) represents the signal associated with the message, 8-byte
data parameters. The identifier contains:

• A Parameter Group Number (PGN), a unique ID to identify the message
function and the related data parameters. It is composed of three different
parts: the first 3 bits indicate the message priority, the following 18 bits
represent the PGN, while the remaining 8 bits are related to the source
address.

• A Suspect Parameter Number (SPN) to completely identify the measured CAN
parameter, and also to define message priority, which is inversely proportional
to the SPN value. A single PGN can be associated with different SPNs.

For priority purposes, standard messages are CAN messages characterized by
SPNs smaller than 30000, while the other, associated with higher SPNs, can be
customized.

5

Controller Area Network Bus Data Analysis

Figure 2.1: SAE J1939 Message1

2.1.2 CAN Bus Data Exploration
In this work, CAN bus data are collected by a Z55 device, an experimental
data logger installed on the vehicle that is capable of uploading data on Amazon
Web Service (AWS) storage platform. Raw data are then manipulated by Tierra
and showed, with some statistics, on the company web platforms and mobile
applications.

For this research, data are collected from an excavator employed in real con-
struction sites. It is a heavy-duty vehicle expected to perform a wide range of tasks
for which it is designed during the period of data collection, ranging from ignition
to high workloads, as well as idle phases.

At first, Z55 data logger locally saves raw data, then sends them to the Amazon
storage service in two different cases: when there is a shutdown of the vehicle or if
the file reaches the maximum memory size of 3.6 MB. Information from raw data
is decoded by a parser script developed by Tierra. During this phase, only CAN
IDs with structure and number of parameters known can be decoded. The parser
output consists then of two different files:

• Parsed.txt: it includes decoded messages for CAN IDs found in Tierra
databases, enriched with additional information provided by the company.

• notFound.txt: it includes raw messages that cannot be decoded because of the
lack of information.

For Parsed files, through the combination of the decoded information with some
metadata, each row of the resulting files is composed of 7 fields:

• Source address

• PGN

1https://www.electriciansjournal.com/home/can-bus-j1939

6

https://www.electriciansjournal.com/home/can-bus-j1939

Controller Area Network Bus Data Analysis

• Timestamp (UNIX format)

• Message description

• SPN

• Measured value for the considered SPN

• Unit of measurement

Data are collected from 27 November 2020 to 24 March 2021, resulting in a
dataset composed of 19328161 rows, with no null and no missing values. In the first
steps of processing, to limit computational costs, the subset of columns containing
relevant information for the following analysis is extracted from Parsed.txt files
namely, timestamp, SPN and the measured value for that SPN at that timestamp,
with its unit of measurement (Figure 2.2).

Figure 2.2: Dataset under analysis

The resulting dataset is composed of 34 SPNs, which are the subset of CAN
messages IDs sent by the vehicle which are registered in Tierra databases. However,
the number of parameters is significantly higher, since additional data about the
remaining SPNs is contained in notFound.txt files. However, since Tierra does
not have sufficient information to properly decode them, they cannot be used for
further analysis.

The list of the analyzed SPNs and the corresponding description and feasible
range, can be found in Table 2.1

7

Controller Area Network Bus Data Analysis

SPN SPN description Feasible Range
80 Washer Fluid Level 0 to 100%
81 Engine Diesel Particulate Filter Inlet Pressure 0 to 125 kPa
90 Power Takeoff Oil Temperature −40 to 210 deg C
94 Engine Fuel Delivery Pressure 0 to 1000 kPa
108 Barometric Pressure 0 to 1000 kPa
110 Engine Coolant Temperature −40 to 210 deg C
114 Net Battery Current −125 to 125 A
164 Engine Injection Control Pressure 0 to 251 MPa
183 Engine Fuel Rate 0 to 3212.75 L/h
190 Engine Speed 0 to 8031.875 rpm
247 Engine Total Hours of Operation 0 to +∞ h
441 Auxiliary Temperature 1 −40 to 210 deg C
514 Nominal Friction - Percent Torque −125 to 125%
1127 Engine Turbocharger 1 Boost Pressure 0 to 8031.875 kPa
1380 Engine Oil Level Remote Reservoir 0 to 100%
1761 Aftertreatment 1 SCR Catalyst Tank Level 0 to 100%

2433 Engin Exhaust Gas Temperature −273 to 1735 deg CRight Manifold
2809 Engine Air Filter 2 Differential Pressure 0 to 12.5 kPa
3216 Aftertreatment 1 Intake NOx −200 to 3012.75 ppm
3485 Aftertreatment 1 Supply Air Pressure 0 to 6425.5 kPa
3509 Sensor supply voltage 1 0 to 3212.75 V

3515 Aftertreatment 1 SCR Catalyst −40 to 210 deg CReagent Temperature 2
3609 Diesel Particulate Filter Intake Pressure 1 0 to 6425.5 kPa

3830 Aftertreatment 1 Secondary Air −250 to 251.99 kPaDifferential Pressure
4077 Aftertreatment 1 Fuel Pressure 2 0 to 6425.5 kPa

4331 Aftertreatment 1 SCR Actual Dosing 0 to 19276.5 g/hReagent Quantity (instantaneous)

4335 Aftertreatment 1 SCR Dosing 0 to 2000 kPaAir Assist Absolute Pressure

4360 Aftertreatment 1 SCR Catalyst −273 to 1735 deg CIntake Gas Temperature

4374 Aftertreatment 1 SCR Catalyst Reagent 0 to 32127.5 rpmPump Motor Speed
30000 Engine Load 0 to 250%

Table 2.1: SPN description
8

Controller Area Network Bus Data Analysis

As preliminary step of data cleaning, an analysis of duplicated values is performed.
Because of CAN network nature or device’s and transmitting failures, it might
happen both that the same identical message is repeated several times, both that for
a given SPN and fixed timestamp, different values are measured. Table 2.2 shows
the list of SPNs with repetitions and the corresponding percentage of duplicate
rows. The variable not in table, does not show duplicated values. As can be
noticed, repeated values are only a small portion of available data, hence for each
pair (SPN, timestamp) the percentage of duplicates is computed. Once duplicated
values are detected, the first value sent is kept, since the second could be related
to transmission errors of malfunctioning of the data collecting device.

SPN Percentage of duplicates
90 0.0009%
183 0.0006%
190 0.11%
514 0.0002%
3216 0.0003%
3226 0.0002%
4331 0.0005%
30000 0.0007%

Table 2.2: Percentage of duplicates per SPN where repetitions are present

Feasible ranges are an important information for data cleaning purpose, since
SPNs signals are particluarly noisy, both because of decoding and transmitting
errors. If wrong or unexpected values are identified, they can be removed if
completely misleading or replaced by estimated values. Comparing feasible ranges
with the data under analysis, it is possible to notice that the Aftertreatment 1 SCR
Catalyst Intake Gas Temperature (SPN 4360), shown in Figure 2.3-(a), takes some
unfeasible values, in correspondence of the signal peaks. Since they are more likely
to be due to errors, they are removed. The resulting signal is shown in Figure
2.3-(b).

9

Controller Area Network Bus Data Analysis

SPN 4360: "Aftertreatment 1 SCR Catalyst Intake Gas Temperature"

(a)

(b)

Figure 2.3: Time Series plot: SPN 4360 with unfeasible values (a), and after data
cleaning (b)

Data, as shown in Figure 2.4, is not heterogeneously distributed over all working
days from November to March. This behaviour is mainly due to the highly variable
time of work per day typically associated with this type of vehicle.

The CAN bus standard specifies a maximum signaling rate of 1 Mbps and,
depending on the specific version and its characteristics, the CAN messages can be
transmitted at different rates [2]. Because of non constant sampling rates, SPN
observations will be not equally spaced in time. Figure 2.5 shows the histogram
plots of interarrivals, i.e. the elapsed time between two consecutive messages for a
given SPN. Not only CAN messages regarding the same SPN will be sent at different
rates, but it also changes depending on different SPNs. This will result in some
signals with more observations, whose average sampling rate will be higher than
others, as demonstrated in Figure 2.6. Exploiting the representation of interarrivals
distribution, all the signals are regularly sampled, as indicated from the single
peak in the graph, saying that very often, the time passed from one observation to
another was the same (Figure 2.5).

10

Controller Area Network Bus Data Analysis

Figure 2.4: Number of observations per date

Figure 2.5: Interarrivals distributions for SPNs 183, 94 and 110

11

Controller Area Network Bus Data Analysis

Figure 2.6: Number of observations per SPN

Following the study on interarrivals, with all the distributions with an approx-
imable centered shape, and stated that the mode of the distribution corresponds
to its mean value, it is possible to find sampling rates for all the considered signals.
For centered distributions, the sampling rate is approximable to the inverse of the
mode value. The found modes and therefore the sampling rates of the signals are
resumed in Table 2.3.

SPN Mode Approximate Sampling Rate
94 0.51 sec 1.96 Hz
108 1 sec 1 Hz
110 1 sec 1 Hz
183 0.1 sec 10 Hz
190 0.02 sec 50 Hz
247 0.51 sec 1.96 Hz
514 0.237 sec 4.2 Hz
1127 0.51 sec 1.96 Hz
1761 1 sec 1 Hz
3509 1 sec 1 Hz
3609 0.51 sec 1.96 Hz
4360 0.51 sec 1.96 Hz
30000 0.06 sec 17 Hz

Table 2.3: Modes and sampling rates approximations per SPN

12

Controller Area Network Bus Data Analysis

Since most of the algorithms commonly applied in multivariate time series
context require synchronized and equally spaced in time observations, a strategy
to align SPNs series will presented in Chapter 3.

From a preliminary visualization of SPNs series variations over time, it is possible
to identify 21 constant signals. These variables are reported to domain experts for
future investigations and not considered in further analysis since it is not ensured
that they are characterized by constant behaviour.

As last step of data exploration, a procedure for detecting working cycles is
presented. It is relevant for fleet management and maintenance issues. Because
of the nature of CAN network and data logger specification, CAN messages are
collected only when the vehicle is on, but information regarding ignition and
shutdowns are not available. It is then studied the interarrivals distribution
between subsequent observations of the same variable, to detect the sampling rate
for each signal and the working cycles.

However, sufficiently long interarrivals can suggest the shutdown of the vehicle.
For the sake of simplicity, working cycles are inferred basing on the SPNs sampled
"more regularly", SPN 94 (Figure 2.5): "Engine Fuel Delivery Pressure", as it can
be seen from its interarrivals distribution. Then, to establish when the vehicle is
turned on after a shutdown, a threshold value equal to the 99.97th percentile is set
on interarrivals. The final result is the detection of 54 working cycles, of variable
duration as can be deducted in Figure 2.7.

Figure 2.7: Working cycles duration

The proposed procedure, can be validated by other information, such as SPN 110,
Engine Coolant Temperature: indeed, its values typically reach lower temperatures
when the vehicle is restarted after a shutdown since the cooling fluid had time, in
the meanwhile, to cool down. This kind of behaviour is highlighted in Figure 2.8,
where it is clearly visible that the working cycles start in correspondence with the
decrease of the temperature.

13

Controller Area Network Bus Data Analysis

Figure 2.8: Relation between SPN 110 and working cycles

In the case of the vehicle under analysis, the identified working cycles can be
verified thanks to additional information collected by a second device installed on
the vehicle. Device AM53 is a marketed product developer by Topcon for tracking
and data acquisition, often used in automotive applications, including heavy-duty
vehicles. This device is able to collect also information regarding actual vehicle
ignitions and shutdowns, that can be compared with the ones obtained with the
proposed procedure. Crossing the working cycle timestamps found with the over
mentioned approach with the information coming from this device, the results of
the procedure are validated.

2.2 Signal Processing
Since each SPN describes a physical quantity over time and can be interpreted as
a univariate signal, in this chapter some basic notions about signal processing are
introduced to the purpose of applying them to the real case data under analysis.

2.2.1 Signal Processing Fundamentals
(Theoretical concepts of this chapter are borrowed from [3]).

A signal is a variable physical quantity to which some form of information is associated.
This information could be of different nature: the light intensity and color on a screen in
the case of a television signal, the electrical voltage or the current for a signal measured
on an electric circuit. The evolution of many monodimensional signals, which depend on
only one variable, relies on time.

Another distinction of signals can be done according to the values of the independent
variable.

• Continuous-time signals, where the independent variable takes values in the set of
real numbers.

14

Controller Area Network Bus Data Analysis

• Discrete-time signals, for which the domain of the function has the cardinality of
natural numbers.

A similar classification can be done based on values assumed by signals.
• Signals of continuous amplitude, that can continuously assume real values of an

interval (eventually unlimited).
• Signals of discrete amplitude, having a countable set as codomain.

Continuous-Time signals and of continuous amplitude are said to be analog signals, while
the ones with discrete-time and amplitude are digital signals. Furthermore, a signal is
said to be a samples sequence if it is discrete-time but real-valued, while it is quantized if
discrete-valued and defined at each point in time.

For each analog signal x(t), it is possible to define the associated energy to it as:

Ex ,
Ú +∞

−∞
|x(t)|2dt

The integral result is convergent for all the physical signals, since each signal describing
a physical system is a carrier of finite energy. Alternatively, finite power signals can be
considered: they are ideal signals associated with unlimited energy, not physical and not
existing in nature, for which the power is defined as:

Px , lim
T→+∞

1
T

Ú +T
2

−T
2

|x(t)|2dt

For discrete-time signals, energy and power are defined in the following way:

Ex ,
+∞Ø

n=−∞
|x(n)|2

Px , lim
N→+∞

1
2N + 1

+NØ
n=−N

|x(n)|2

Moreover, the main operations that could be done on signals are the following:
• Translation of t0: it consists of shifting the axis of the indipendent variable of t0,

that is:
Tt0(x(t)) = x(t− t0)

If the independent variable is the time, and if t0 > 0, then the signal is said to be
delayed of t0, anticipated otherwise.

• Overturning: It consists of reflecting the signal with respect to the ordinate axis,
that is:

O(x(t)) = x(−t)

• Axis scaling: Given a real number α > 0, the operation of axis scaling by α is:

Sα(x(t)) = x(αt)

a change of scale reflects the following transformation: x(t)→ x(at).
If α > 1, the signal has been shrunk, while is 0 < α < 1, the signal has been
expanded.

15

Controller Area Network Bus Data Analysis

• Convolution between signals: Given two analog signals x(t) and h(t), the convolution
product between two signals is defined as:

y(t) = x(t) ~ h(t) =
Ú +∞

−∞
x(τ)h(t− τ)dτ

The convolution ~ is a commutative operation, enjoys associative property, and is
distributive with respect to the sum operation.

From now on, only digital signals, will be considered, because applications of this
thesis work.

2.2.2 Stochastic Processes
Stochastic processes are considered one of the most widely used object for mathematically
modelling systems and physical phenomena. In this chapter, basic notions are provided.
(The concepts of this section are borrowed from [3])

Definition 2.2.1 Taking values in a measurable space S, a stochastic process is a
collection of S-valued random variables, that can be written as:

{X(t) : t ∈ T}

A discrete-time stochastic process X is a countably infinite collection of jointly dis-
tributed random variables {..., x0, x1, x2, ...}.When the index represents time, a stochastic
process is often called time series.

Due to its inherent randomness, differently from a deterministic process, it is not
possible to characterize a stochastic process in terms of evolution over time.

The definition of the principal characteristics of a statistical process, without the full
knowledge of it, is allowed through the use of some statistical functions [3].

Definition 2.2.2 The mean function of a univariate time series X(t) such that
E[X(t)2] <∞, is defined as:

µX(t) = E[X(t)]

Definition 2.2.3 The variance function of a univariate time series X(t) is defined as:

σ2
X(t) = E[(X(t)− µX(t))2]

The standard deviation function is defined as:

σX(t) =
ñ
σ2
X(t)

Definition 2.2.4 The covariance function of a univariate time series X(t) is defined as:

γX(t, s) = Cov(X(t), X(s)) = E[(X(t)− µX(t))(X(s)− µX(s))] ∀t, s ∈ R

16

Controller Area Network Bus Data Analysis

Definition 2.2.5 The correlation of a univariate time series X(t) is defined as:

ρ(t, s) = Cov(X(t), X(s))
σX(t)σX(s)

Definition 2.2.6 A stochastic process X(t) ∈ Z is said to be stationary if
• E[X(t)2] <∞ ∀t ∈ Z
• E[X(t)] = µ ∀t ∈ Z
• γX(s, t) = γX(s+ h, t+ h) ∀s, t, h ∈ Z

Specifically, a process X(t) is said to be strictly stationary if the joint distribution
of (Xt1 , Xt2 , ..., Xtk) is the same as that of (Xt1+h, Xt2+h, ..., Xtk+h), for all h, while a
process is weakly stationary if µX(t) is independent on t and γX(t+ h, t) is independent
on t for each h.

Given a process X and a lag h, autocovariance function γX and autocorrelation
function ρX , related to the process periodicity over time are respectively defined as:

γX(h) = γX(h,0) = γX(t+ h, t) ∀t ∈ T

and
ρX(h) = γX(h)

γX(0) ∀t ∈ T

Finally, there could be a statistical dependence between consecutive lags. Given a
temporal lag h > 1, the correlation between two different observations could be influenced
by correlation of them with intermediate values. Indeed, the time series tends to carry
information from previous observations. Partial autocorrelation function is a measure
of correlation between the series X(t) and its lagged version X(t + h) without taking
into account the correlation with the middle values (Xt+1, ..., Xt+h+−1). At lag h, it is
defined as:

PACF (h) = E[(Xt − µ)(Xt+h − µ)|xt+1, ..., xt+h−1]
E[(Xt − µ)2|xt+1, ..., xt+h−1] ∀t ∈ R

2.2.3 Univariate Time Series Analysis
Univariate signals, time-varying quantities representing physical quantities, can be easily
represented by time series. Given the preliminary feature selection performed in previous
sections, in the following the selected 13 signals are considered.

As first step of univariate time series analysis, SPNs series plots over time are
fundamental to proceed, since they highlight trends and cyclical variations, as well as the
presence of outliers or other inconsistencies. A time series plot of the most representative
SPNs of each kind is showed, followed by a study of correlation and partial correlation,
useful tools to discover systematic patterns in time series, and inspect stationarity.

The three main internal characteristics that can be used to describe systematic
patterns in time series are:

17

Controller Area Network Bus Data Analysis

• Seasonality, that represents periodic and repetitive variations;

• Trend, that can be defined with a downward or an upward movement;

• Cyclical changes, that are repetitive movements not characterized by a fixed period.
Typically, this component is considered as part of trend.

In trend analysis, the objective is the estimation of a monotonous component, in the
long run. Autocorrelation function will be an important tool to discover seasonality
behaviours in signals. Indeed, the correlation dependency at lag k defines seasonality of
order k. For this reason, correlogram and partial autocorrelation plot, can be useful for
further analysis about it [4].

Engine Total Hours of Operation (SPN 247), showed in Figure 2.9, Aftertreatment 1
SCR Catalyst Tank Level (SPN 1761), and Barometric Pressure (SPN 108) represent
signals clearly showing trends, due to their specific nature. For example, SPN 247 shows
a clear upward trend, indeed the total hours of operations of the engine cannot diminish
if not manually set to zero, as it probably happened almost at the beginning of data
collection. Because of its linearity trend, it is expected that the autocorrelation will be
significant for multiple consecutive lags (Figure 2.10).

SPN 247: "Engine Total Hours of Operation"

Figure 2.9: Time Series plot: SPN 247

Figure 2.10: SPN 247: Correlogram and Partial AutoCorrelation

18

Controller Area Network Bus Data Analysis

Categorical variables, such as the Sensor supply voltage 1 (SPN 3509), show different
behaviours. As it can be seen from Figure 2.12, there is no significant correlation even
for smaller lags.

SPN 3509: "Sensor supply voltage 1"

Figure 2.11: Time Series plot: SPN 3509

Figure 2.12: SPN 3509: Correlogram and Partial AutoCorrelation

The remaining SPNs, represented by Engine Speed shown in Figure 2.13, are charac-
terized by a cyclical behaviour. These measures are obviously related to working cycles,
since most of the time in one working cycle, the vehicle is expected to repeat the same
basic operations, reflected in these signals. In this case, the correlogram shows a positive
correlation for a significant number of lags (Figure 2.14).

19

Controller Area Network Bus Data Analysis

SPN 190: "Engine Speed"

Figure 2.13: Time Series plot: SPN 190

Figure 2.14: SPN 190: Correlogram and Partial AutoCorrelation

As conclusion of univariate analysis, a box plot representation for each SPN is presented.
Box plot is a standardized, non-parametric way for displaying a five-number summary:
the minimum and the maximum, lowest and higher data point for the considered measure,
excluding outliers, the measure median and first and third quartile, respectively intended
as the median of the lower and of the higher half of the dataset. In Figure 2.15, box
plot representations of informative variables on which the final analysis is performed are
shown.

20

Controller Area Network Bus Data Analysis

21

Controller Area Network Bus Data Analysis

Figure 2.15: Box plot of SPNs: 94, 108, 110, 183, 190, 247, 514, 1127, 1761, 3509,
3609, 4360, 30000

As it can be seen in Figure 2.15, some of the variables are characterized by outliers,
samples showing significant deviation from the rest of data. Their presence can lead
to inflated error rates or substantial distortion of parameter and statistic estimates
[5].Outliers Detection is a process useful to detect these data. They can be due to different
reasons, such as human errors in collecting and recording, or they can be the result of
from intentional or motivated misreporting, sampling error, incorrect assumptions... [6]
These values can be detected with many different approaches.

One of these, make use of box plots.Box plot method can be useful to identify them,
as the values which fall outside the interval:

[Q1 − 1.5 ∗ IQR,Q3 + 1.5 ∗ IQR]

where IQR is the Inter-Quartile range, calculated as the difference between the third and
first quartile, respectively denoted as Q3 and Q1.

22

Chapter 3

Multivariate Sequences
Processing and Analysis

In this chapter, a deeper analysis of signals is performed by studying their interaction
considering them as components of a multivariate time series.

To this purpose signals are aligned and synchronized in time to allow Pearson correla-
tion and cross-correlation analysis.

Finally, drawing conclusions from the described analysis, feature selection is performed.

3.1 Theoretical Introduction
In Sections 3.1.2, and 3.1.3, some theoretical concepts due to constitute the basis for
aligning and synchronizing signals are introduced.

3.1.1 Discrete-Time Systems
(The concepts of this section are borrowed from [7])

A physical system is an operator that takes one or more inputs and reacts by producing
one or more outputs. Graphically it is represented as a rectangle (sometimes called black
box), with two oriented branches, one entering, and one exiting the system (Figure 3.1).
The relation between these branches is typically indicated inside the box.

Figure 3.1: Graphical representation of a system [7]

Discrete-time systems are operators having discrete-time signals as their inputs and
outputs. Specifically, it is an operator S, that maps an input sequence x ∈ V into an

23

Multivariate Sequences Processing and Analysis

output sequence y ∈ V .
y = S(x)

Definition 3.1.1 A discrete-time system S is linear if, for each inputs x and y and each
α, β ∈ C,

S(αx+ βy) = αS(x) + βS(y)

Sometimes it will be useful to use a matrix representation for a linear system, especially
when matrix structure reveals characteristics of the system. A linear operator has a unique
matrix representation once bases have been chosen for the domain and the codomain of
the operator.

Definition 3.1.2 A discrete-time system S is memoryless if, for any k, integer value
and inputs x and xÍ,

1{k}x = 1{k}x
Í =⇒ 1{k}S(x) = 1{k}S(xÍ)

where it is used the domain restriction operator defined as:

1{k}x =
I
xn, for n ∈ N;
0, otherwise

The matrix of a memoryless system will be diagonal.

Definition 3.1.3 A discrete-time system S is called causal when, for inputs x and xÍ,
and integer k

1{−∞,...,k}x = 1{−∞,...,k}x
Í =⇒ 1{−∞,...,k}S(x) = 1{−∞,...,k}S(xÍ)

Lower-triangular matrix representation of a system will indicate a linear and causal
system.

Definition 3.1.4 A discrete-time system S is said to be Bounded-Input Bounded-Output
stable, or BIBO stable, when given a bounded input x, the system produces a bounded
output y = S(x) such that:

supi|xi| <∞ =⇒ supi|yi| <∞

Definition 3.1.5 A discrete-time system S is said to be shift-invariant if, for any integer
value k and input signal x,

y = S(x) =⇒ yÍ = S(xÍ), where xÍ
n = xn−k and yÍ

n = yn−k

Definition 3.1.6 A discrete-time system S is called periodically shift-varying of order
(L,M) when, for any integer k and input x,

y = S(x) =⇒ yÍ = S(xÍ), where xÍ
n = xn−Lk and yÍ

n = yn−Mk.

24

Multivariate Sequences Processing and Analysis

3.1.2 Linear Shift-Invariant Systems
(Theorems and definitions of this chapter are borrowed from [7])

Linear Time-Invariant (LTI) or Linear Shift-Invariant (LSI) systems are desirable for
their mathematical properties.

Definition 3.1.7 A sequence h is the impulse response of LSI discrete-time system S
when, given the Kronecker delta sequence δ as input, it produces an output h.

h = Sδ

where

δk =
I

1, if k = 0
0, if k /= 0

The causal linear system impulse response h always satisfies hn = 0, for all n > 0.
Considering a LSI system S, given an input x, it can be written as:

xn =
Ø
k∈Z

xkδn−k ∀n ∈ Z

Then, the output obtained applying S to x can be expressed as:

y = Sx =
Ø
k∈Z

xkSδn−k =
Ø
k∈Z

xkhn−k = h~ x.

The impulse response of a system is often called filter, and the convolution operation
with the impulse response is called filtering. Some basic classes of filters are described in
the following:

• Causal filters, such that for all n < 0, hn = 0.
• Anti-causal filters, such that for all n > 0, hn = 0.
• Two-sided filters, neither causal nor anti-causal.
• Finite Impulse Response (FIR) filters, filters having only a finite number of coeffi-

cients hn /= 0.
• Infinite Impulse Response (IIR) filters, having infinitely many nonzero terms.

Theorem 3.1.1 An LSI system is Bounded Input Bounded Output (BIBO)-stable if and
only if it is characterized by an impulse response that is absolutely summable.

3.1.3 Discrete-Time Fourier Transform
(Concepts of this chapter are borrowed from [7])

Fourier’s methods play a prominent role in sequences analysis and discrete-time
systems [7]. Indeed, as previously introduced, the computation of the response signal of
a LTI system requires a convolution operation. However, thanks to Fourier algorithms
optimization, it is a commonly adopted strategy to map the signal from time to frequency
domain by applying the so-called Fast Fourier Transform algorithm to simplify the
convolution computation.

25

Multivariate Sequences Processing and Analysis

Definition 3.1.8 The Discrete-Time Fourier Transform (DTFT) of a sequence x is

X(ejω) =
Ø
n∈Z

xne
−jωn, ω ∈ R

If this expression converges for all ω ∈ R, the DTFT is well defined.

Definition 3.1.9 The inverse DTFT of a 2π−periodic function X(ejω) is

xn = 1
2π

Ú π

−π
X(ejω)ejωndω, n ∈ Z

If the Discrete-Time Fourier Transform exists, we denote the DTFT pair as

xn
DTFT←−−→ X(ejω)

The DTFT is always a 2π-periodic function, since e−jωn is a 2π−periodic function of
ω for every n ∈ Z.

The existence of the DTFT is strongly dependent on the sequence x and on its
convergence. This immediately implies the existence of the DTFT for all sequences in
l1(Z).

For series not in l1(Z), the convergence of x is not directly ensured. For extension
beyond l1(Z), a limiting process and a sense of convergence must be specified.

Considering the partial sums,

XN (ejω) =
NØ

n=−N
xne

−jωn, N = 0,1, ...

if the following limit exists, the discrete-time Fourier transform is defined as:

X(ejω) = lim
N→+∞

XN (ejω)

Hence, if it is assumed the DTFT to exist whenever the sequence of partial sums
converges under the L2([−π, π)) norm, then it exists for all sequences in l2(Z).

In the following, some basic properties of the DTFT, are shown.
• Linearity: The DTFT operator is a linear operator:

αxn + βyn
DTFT←−−→ αX(ejω) + βY (ejω)).

• Shift in time: The DTFT pair which corresponds to a shift in time by n0 is

xn−n0
DTFT←−−→ e−jωn0X(ejω).

• Scaling in time

(i) Downsampling: The DTFT pair corresponding to scaling in time by N is

xNn
DTFT←−−→ 1

N

N−1Ø
k=0

X(e
j(ω−2πk)

N)

.

26

Multivariate Sequences Processing and Analysis

(ii) Upsampling: The DTFT pair which correspond to scaling in time by 1
N isI

xn
N , for n

N ∈ Z;
0, otherwise

The Discrete-Time Fourier Transform of a filter h is called the frequency response:
H(ejω) =

Ø
n∈Z

hne
−jωn, ω ∈ R.

On the other hand, the inverse DTFT of the frequency response recovers the impulse
response,

hn = 1
2π

Ú π

−π
H(ejω)ejωndω, n ∈ Z

The magnitude and the phase of the frequency response can be also written separately:
H(ejω) = |H(ejω)|ej arg(H(ejω))

where the magnitude response is a 2π−periodic real-valued, nonnegative function, and
the phase response is a 2π−periodic real-valued function taking values between −π and
π.

The frequency response of a filter is typically used to design a filter that satisfies
desired properties, letting some frequencies pass (the passband), while blocking others
(the stopband). The magnitude response of an ideal filter is constant in its passband and
zero outside its passband.

A system with frequency response, as in Figure 3.2, is called ideal low-pass filter [3].
This kind of filter leaves unchanged some frequencies f, corresponding to the passband,
for which H(f) = 1. On the other hand, an ideal high-pass filter, (Figure 3.2) is a filter
that blocks the passband while leaving unchanged the remaining frequencies (H(f) = 0).

Given the frequency B, representing the band limit, the frequency response of an ideal
low-pass filter (Figure 3.2), named HLP , can be defined as:

HLP (f) = rect(f2B)

The frequency response of an ideal high-pass filter (Figure 3.3), named HHP , is
instead:

HHP (f) = 1− rect(f2B)

Figure 3.2: Frequency response of
an ideal low-pass filter [3]

Figure 3.3: Frequency response of
an ideal high-pass filter [3]

27

Multivariate Sequences Processing and Analysis

These filters are non-causal systems, and then physically not feasible. Therefore, it is
also important to explore some examples of filters with realizable frequency responses,
such as Finite Impulse Response (FIR) or Infinite Impulse Response (IIR) filters.

An FIR filter is characterized by finite duration impulse response, meaning that it
settles to 0 in finite time. If this is not the case, it is a IIR filter.

FIR filters, unlike IIR ones,
• require no feedback, making implementation simpler.
• are inherently stable, being the sum of finite multiples of input values.
• can easily be designed to be linear phase, for phase-sensitive applications.

3.1.4 Multi-Rate Sequences
(The theoretical concepts are borrowed from [7])

In multi-rate sequence processing, the index of different sequences may refer to different
physical times [7]. The introduction of Multirate Operations, such as Downsampling or
Upsampling, allows aligning different components along the same time axis.

The Upsampling operation corresponds to the increase of the sampling rate by an
integer factor N. This is graphically resumed in Figure 3.4.

Figure 3.4: Block diagram representation of Upsampling by N [7]

Given a sequence x, the corresponding sequence upsampled by N , positive integer, is

yn =
I
x n
N
, for n

N ∈ Z;
0, otherwise

The corresponding DTFT is
Y (ejω) = X(ejNω).

The Downsampling operation, also called Decimation, corresponds to the decrease
of the sampling rate by an integer factor N. This is graphically resumed in Figure 3.5.

Figure 3.5: Block diagram representation of Downsampling by N [7]

Given the sequence x, a positive integer N , the downsampled-by-N sequence y is:

yn = xNn

28

Multivariate Sequences Processing and Analysis

Since both operations are performed by scaling the rate of an integer value, upsampling
and downsampling processes can be combined to obtain the desired rate.

However, to avoid undesired aliasing phenomena due to the scaling of frequencies,
these operatores are combined with suitable filters. Specifically, downsampling operator
is preceded by a filter, while upsampling operator is followed by an ideal low pass filter.

3.2 Multivariate Time Series Analysis
The definition of a multivariate time series needs the synchronization of the signals.

As previously seen from the time delta representation of variables (Figure 2.5), data
are not transmitted at constant rates but irregularly sampled. Since upsampling and
downsampling operators require equally spaced in time observations, nearest interpolation
is applied to align each SPN series to its own average sampling rate. This operation is
not introducing bias in the SPNs series since observations are just shifted in time by
milliseconds and, at the same time, the measured quantities are not expected to have
rapid and unexpected variations since they refer to physical quantities associated with
heavy-duty vehicles, typically characterized by slow changes over time.

Once the signals are characterized by constant sampling rates, it is possible to proceed
with signals synchronization. It can be achieved with different strategies:

• Resampling each signal to the highest average sampling rate of SPN;
• Resampling signals to the lowest average sampling rate of SPN.
The first option has the main drawback of generating extra points, potentially intro-

ducing noise and distortion [8]. On the other hand, downsampling is a cheaper operation
in terms of computational costs, and moreover it is coherent with heavy-duty vehicles’
data, which are expected to change gradually, in a slow way.

For the reason explained, signals are downsampled to the lowest average sampling
rate of SPNs, which in this application corresponds to 1 Hz. To this purpose, depending
on the average sampling rate of the considered signal, different operations are performed.

• Signals with an average sampling rate of 1 Hz are left unchanged. This is the case
of SPNs 108, 110 247, 1761 and 3509.

• Signals with an average sampling rate that is an integer multiple of 1 Hz, namely
SPNs 190 and 183, are downsampled with a downsampling factor equal to desired
sampling rate / SPN sampling rate. As seen in theory (Section 2.2.1), the down-
sampling operator consists of a downsampling operation preceded by a filtering
operation, with an anti-aliasing filter, that in this specific case is an FIR filter.

• Finally, there is a set of SPNs - namely SPNs 94, 514, 1127, 3609, 4360 and 30000,
for which does not exist any integer downsampling factor to obtain the desired rate.
In this case, it can be achieved by the sequential combination of an upsampling
followed by a downsampling operator.

The set of described operations allow signals alignment necessary to treat the dataset
as a multivariate time series with 13 features corresponding to the 13 SPNs, each obviously

29

Multivariate Sequences Processing and Analysis

depending on time. From now on, having a multivariate object some other contents to
perform a deeper analysis of signals interactions are introduced, specifically observing in
deep relations between different SPNs.

From [9]:
"In the realm of statistics, cross-correlation functions provide a measure of
association between signals"

It is a procedure that quantifies the degree of similarity between two different sets of
numbers. The common practice is to shift one time series with respect to the other, to
inspect dependencies even if a parameter change affects the curve with a certain delay.
The cross-correlation, at lag h, that is the number of samples of the shift performed, is
defined as:

τx,y(h) = σx,y(h)ñ
σx,x(0)

ñ
σy,y(0)

where xt and yt are the two time series, bot composed of N observations, µx and µy
respectively indicate their means and σx,y(h) is instead, the cross-covariance function
defined as:

σx,y(h) = 1
N − 1

NØ
i=1

(xt−h − µx)(yt − µy)

Now, since σx,x(0) = σ2
x and σy,y(0) = σ2

y represent the variances of the time series x
and y, then it is possible to define the Pearson correlation between the two variables as:

τx,y(0) = σx,y(0)
σxσy

The Pearson Correlation Matrix between each pair of SPNs is displayed in Figure 3.6
From the analysis of Pearson correlation, it can be noticed that there is a set of highly

correlated SPNs, describing the vehicle engine. This value is justifiable and does not
represent a problem when variables are dependent on each other, because does not bring
to multicollinearity problem, which concerns independent variables [10]. Removing these
features would mean losing relevant data, and possible hidden information between these
variables.

On the other hand, the variables showing trends, namely SPNs 108, 247, 1761,
in general show low correlations with all the other variables, except between them.
Considering the trivial trend previously noticed, and the high correlation between them,
these variable can be discardable.

At last, variable 3509 is the only variable, showing none correlation with all the others.

30

Multivariate Sequences Processing and Analysis

Figure 3.6: Pearson Correlation matrix

Further analysis can be done exploiting Cross-correlation plots. This plots display
the behavior of cross correlation between two variables for strictly positive lags, since it
is a symmetric function. Due to computational costs, this plot reports only 7200 lags,
corresponding to 2 hours. Since it is a higher value than the average length of working
cycles, this value is appropriate for cross-correlation description between parameters.

Figure 3.7 shows different correlograms. In these plots, the thin blue lines represent
upper and lower limits of coefficient correlation, while zero value is denoted by the red line,
indicating no correlation. The first plot shows cross-correlation between SPN 190 and
SPN 30000, and it is representative of all the other highly correlated variables of the first
analyzed group. After a strong correlation coefficient at the first lag, it slightly decreases
until zero is reached, and then it almost has a constant behaviour around zero, sometimes
showing smooth and not significant oscillations. The opposite behavior is displayed in
the second plot, where the most negative highly correlated features are exploited, SPN

31

Multivariate Sequences Processing and Analysis

110 and SPN 514. Instead, looking at the cross-correlation plot between two poorly
correlated features, it is noticeable the constant zero behaviour of the coefficient. An
example is provided from the correlogram between SPN 514 and SPN 247 in the third
plot.

Figure 3.7: Correlogram of different pairs of SPNs

Moreover, keeping in mind the goal of this work, and the previous analysis, some
variables are considered not useful, keeping few informative data for the task. For this
reason, the following variables are no further considered:

• SPN 108 - Barometric Pressure refers to ambient conditions, that have no relation
with the task. Specifically, the barometric pressure sensor responds to pressure
changes in the atmospheric pressure.

• SPN 247 - Engine Total Hours of Operation: this variable, as previously introduced
shows a trivial upward trend independent on vehicle states.

• SPN 1761 - Aftertreatment 1 SCR Catalyst Tank Level: as previously seen, this
measure, indicating the tank level of the Catalyst, shows a downward trend, inter-
rupted with a tank refill. Following the same reasoning as the previous case, it can
be discarded.

• SPN 3509 - Sensor Supply Voltage 1: even if it is a useful indicator to power up
sensors with a certain voltage, it is not informative for clustering purposes.

From now on, data are stored in a multivariate time series composed of the most
informative 9 SPNs extracted from raw data:

• SPN 94: "Engine Fuel Delivery Pressure"
• SPN 110: "Engine Coolant Temperature"

32

Multivariate Sequences Processing and Analysis

• SPN 183: "Engine Fuel Rate"
• SPN 190: "Engine Speed"
• SPN 514: "Nominal Friction - Percent Torque"
• SPN 1127: "Engine Turbocharger 1 Boost Pressure"
• SPN 3609: "Diesel Particulate Filter Intake Pressure 1"
• SPN 4360: "Aftertreatement 1 SCR Catalyst Intake Gas Temperature"
• SPN 30000: "Engine Load"

33

Chapter 4

Auto Encoder-based Model
for Time Series Analysis

In this Chapter, an innovative autoencoder-based method for time series clustering is
applied.

To prepare data, several steps of preprocessing are performed as data segmentation
using VALMOD algorithm and data normalization.

Then, autoencoders are introduced. In this context, the reasons which led to the
exploitation of this special kind of artificial neural networks for time series data analysis
are explained. Furthermore, details about their architecture and the training process
parameters are provided.

Finally, as final phase of this work, after an introduction of the Clustering process,
describing its goals, and the different ways by which this process can be performed, a
clustering method is applied on the distance matrix, described in the following.

4.1 Auto Encoder-based approach
This procedure is based on the Regression Cluster concept [11], according to which
similar objects are characterized by similar regression function. The regression function
that is exploited in this task is the autoencoder, while the objects under analysis are
homogeneous multivariate segments extracted from the original time series object. It is
expected that autoencoders will be characterized by the same performances when tested
on series describing the same duty of the fragments on which they are trained.

4.1.1 Data Preparation Procedures
Data preparation is a process of manipulating data, to the purpose of transforming them
into a more structured and useful form for the following analysis. This is a critical part
of the pipeline since the way in which data are treated can greatly affect the models that
are learned.

34

Auto Encoder-based Model for Time Series Analysis

Data can be prepared in different ways, strongly depending on the analytic objective
and the specific adopted learning techniques. It is relevant for different reasons: algorithms
require input data with a specific format and normalized.

An important step of data preparation is normalization. The effectiveness of any
learning algorithm is heavily dependent on the normalization method [12]. In neural
networks, unscaled input variables can result in a slow or unstable learning process,
whereas normalize them not only speeds up learning but leads to faster convergence and
better results [13].

Even if a high number of normalization techniques are available in the literature, a
brief description of some of them is provided in the following.

Min-Max Normalization is an approach in which the data is scaled to a range of
[0,1] or [−1,1]. For the conversion of an input value x of the attribute X to the range
[low, high], it is used the formula

xnorm = (high− low) ∗ (x−min(X))
max(X)−min(X)

where min(X) and max(X) are the minimum and maximum values of the attribute X
of the input set.

Z-score Normalization, transforms data to obtain zero mean and unit variance obser-
vations. Here, the conversion of the value x of the attribute X is obtained applying the
formula

xnorm = (x− µ(X))
δ(X)

where µ(X)and σ(X) are the mean value and the standard deviation of the feature X.

VALMOD Algorithm
(Definitions in this Section are borrowed from [14])

Time series segmentation is discussed in the literature in different contexts. It is a pre-
processing step that aims at finding a partitioning of a time-series X into c homogeneous
segments [4]. In modern production systems, a huge amount of historical process data
are recorded with distributed control systems, and the segmentation of multivariate time
series is especially important in the analysis of this kind of data. In the literature, many
algorithms have been proposed for the representation of time series in their segmented
form, and for the determination of an adequate number of homogeneous segments. In
the multivariate context, however, there are not many applications, and the individual
segmentation of each variable, followed by a combination of results sometimes cannot be
sufficient for a correct segmentation.

To infer optimal length of segments, since no multivariate procedure exists, what is
typically done is to monitor some principal components[15].

Specifically, in this work it is used VALMOD algorithm [14], a scalable one-dimensional
approach to discover the repeated patterns of variable length in data.

This algorithm, in order to find the optimal length of segments, given a user-provided
range [L,U] and a univariate time series X(t) finds the subsequence pairs, characterized
with the smallest Euclidean distance of each length.

35

Auto Encoder-based Model for Time Series Analysis

Definition 4.1.1 A subsequence Xi,l ∈ Rl of a data series X is a continuous subset of
values from X of length l starting from position i.

Xi,l = [xi, xi+1, ..., xi+l−1]

The motif pairs are instead identified as the subsequence pairs characterized by lowest
Euclidean distance.

Definition 4.1.2 Xa,l and Xb,l is a motif pair if:

dist(Xa,l, Xb,l) ≤ dist(Xi,l, Xj,l) ∀i, j ∈ [1,2, ..., n− l + 1]

where a /= b and i /= j, and dist is a function which computes the z-normalized Euclidean
distance between the input subsequences.

All the distances between a subsequence and all the other subsequences of the same
data series is an ordered array called distance profile.

Definition 4.1.3 A distance profile D ∈ R(n−l+1) of a data series X regarding subse-
quence Xi,l, is a vector that stores dist(Xi,l, Xj,l) ∀j ∈ [1,2, ..., n− l + 1], where i /= j.

Finally, for the location of the data series motif, it is necessary the computation of
the matrix profile.

Definition 4.1.4 A matrix profile MP ∈ R(n−l+1) of a data series is a metadata series
that stores the distances between each subsequence and its nearest neighbour, where n is
the length of the data series and l is the given subsequence length.

In order to find the data series motif, the two lowest values in the matrix profile must
be exploited. It could be possible to have trivial matches, with a pattern matched or
overlapped with itself, and to avoid this, the matrix profile incorporates an exclusion
zone, a region before and after the location of a given query, that should be ignored,
heuristically set to l

2 .
As output, VALMOD algorithm returns the list of most similar pairs with the

associated distance. However, since it searches for different length segments, ranking
motifs requires computing a normalized distance, taking into account the segments length.
The adopted distance is the Euclidean distance, where a normalization factor equal toñ

1
l with l equal to the segments length, is introduced.
To limit computational costs, VALMOD exploits the idea that, if the nearest neighbor

of Xi,lmin is Xj,lmin , then probably the nearest neighbor of Xi,lmin+1 will be Xj,lmin+1.
However, this is not always true and another rank-preventing measure is exploited
to accelerate the computation. It is created and sorted a new vector called lower
bound distance profile, containing the lower bound distance between Xi,l+k and Xj,l+k,
∀k ∈ [1,2, ...] which can be helpful to prune the number of needed computations.

The first step to evaluate the lower bound distance profile is the definition of the lower
bounding Euclidean distance. Supposed the knowledge of the z-normalized Euclidean

36

Auto Encoder-based Model for Time Series Analysis

distance dli,j between two subsequences of length l, Xi,l and Xj,l, the distance of two
longer subsequences of length l + k, dl+ki,j , can be estimated by finding a lower bound
function LB(d) such that

LB(dl+ki,j) ≤ dl+ki,j

In this work, the task is to find the most frequent lengths among the top k repeated
patterns in order to find the most suitable length for segmentation.

4.1.2 Introduction to Auto Encoders
The method applied for time series clustering is based on autoencoders, a specific type of
neural network architectures.

Artificial Neural Networks (ANN) are artificial adaptive systems inspired by human
brain processing functioning [16], able to modify their internal structure in relation to an
objective function. The basic elements of the ANN are the nodes, also called neurons
and the connections, named synapses. The idea behind neural networks is to carry out
complex computations through the communication of many neurons linked together [17].

Each single neuron is modelled as a simple scalar function, called activation function,
and compute its output as the weighted sum of its inputs. Each edge in the graph links
the output of some neuron to the input of another neuron and corresponds to a certain
weight.

Neurons are organized in layers, where the first one is the input layer, and contains
n+ 1 neurons, with n dimensionality of the input space. Then, it is followed by hidden
layers, whose nodes are connected with the nodes of the previous layer, and the first
one linked to the input. The output nodes, collectively referred as output layer, are
linked with the last hidden layer and are responsible for transferring information from the
network to the outside world. The values of weights are initially unknown and learned
and updated through an iterative process, also called learning process. The process of
learning of a neural network aims to find a configuration for the weights that minimize
the training error and consists of two main processes:

• Forward propagation process consists of the propagation of the input, up to the
intermediate units, until it arrives to the output layer, where the output is computed
[18].

• Backward propagation process aims at computing the gradient of the loss one layer
at the time, to the purpose of finding the values of the weights that minimize the
training loss.

From [19]:
"An Autoencoder is a bottleneck architecture that turns a high-dimensional
input into a latent low-dimensional code (encoder), and then performs a recon-
struction of the input with this latent code (decoder)"

Using two multilayer networks, where one provides dimensionality reduction and
another reconstructs the input [19], it represents a nonlinear generalization of Principal
Component Analysis (PCA). However, the non-linearity of neural networks allows property
handle more complex and nonlinear data [20]. The main characteristic of autoencoders is

37

Auto Encoder-based Model for Time Series Analysis

the representation of input in a more compressed form, obtained as output of the encoder,
in the latent space. Latent space is relevant since its value is at the deep learning’s
core: learn the features of data, and simplify data representations for the goal of finding
patterns. Data compression wants to encode information with fewer bits with respect to
the original representation. The encoded representation focuses on the most important
features, typically resulting in removing noise or external alterations. It is very useful in
many clustering and classification applications.

Bias-variance trade-off is an important autoencoder trade-off. The architecture must
be able to provide a good reconstruction of the input, and at the same time to produce a
latent space able to generalize to a meaningful one [21].

Figure 4.1: Architecture of an autoencoder based on deep neural network [22]

Starting with random initialization of weights of the network, it is trained by mini-
mizing the error between the original data, input of the encoder, and the reconstruction
of the decoder. Considering f the encoding function defined from the input space to the
latent space, and g the decoding function, mapping data from latent space to output
space, the learning process can be easily described as minimizing a loss function

L(x, g(f(x)))

where L is a loss function penalizing g(f(x)) for being dissimilar from x.
The required gradients are easily obtained by using the chain rule to backpropagate

error derivatives first through the decoder network, and then through the encoder network.
Autoencoders are very popular in many applications for their variety. Some of the

main kinds of autoencoder are briefly described in the following [21]:
• Undercomplete Autoencoders are the simplest kind of autoencoders. Hidden layer

38

Auto Encoder-based Model for Time Series Analysis

has a smaller dimension in comparison to the input layer, since the goal is obtaining
representative features from the data.

• Deep Autoencoders exploits depth of the network. This can exponentially lead to a
reduction of computational costs for the representation of some functions, but also
to an important decrease of the needed training data for learning purposes. For
these models, there are higher chances for overfitting to occur.

• Convolutional Autoencoders are simple autoencoders characterized by convolution
layers in the encoding network and deconvolution or upsampling layers in the
decoding network.

• Sparse Autoencoders handle the autoencoders trade-off enforcing sparsity on the
hidden activation. They consist of the introduction in the autoencoder optimization
objective, of a regularization term, as L1 regularization, inducing sparsity, or KL-
divergence, that is a measure of the distance between two probability distributions.

• Denoising Autoencoders can be viewed in two different ways. It is used as a robust
autoencoder for error correction or even as a regularization option. Indeed, the
approach followed in these models is to disrupt the input with some noise, forcing
the autoencoder to reconstruct the cleaned version of it.

• Variational Autoencoders (VAE) use a variational approach for latent representation
learning, by making strong assumptions on latent variables distribution. VAEs are
models exploiting a probabilistic distribution, in order to describe data generation.

4.1.3 Autoencoder-based Deep Learning
Approach for Analysis of Time Series Data

As previously introduced, some data preparation steps are performed.

As seen in Section 4.1.1, different data normalization methods are available, and for
each of the previously described ones, a box plot representation is graphically displayed in
Figure 4.2 to the purpose of evaluating results. MinMax Scaler is a technique to rescale
data in the range between 0 and 1, while Standard scaler transforms input observations
to obtain zero mean and unit variance data. In multivariate context, each component is
treated separately. In this work, to preserve the general shape of input data that are not
likely to be drawn from a normal distribution, minmax scaler is applied.

39

Auto Encoder-based Model for Time Series Analysis

Figure 4.2: Boxplot of SPN, showing effects of normalization

Since the aim of the thesis work is to find repeated patterns describing different
workload states, the multivariate time series must be divided into segments, possibly
homogeneous. For this purpose it is important to identify a proper window size.

The larger the window, the more information about time series can be taken into
account. On the other hand, this can incur heterogeneous segments describing more
than one vehicle state. For this reason, with the help of domain experts, an iterative
approach is used to properly identify the window length. According to domain experts,
the searched fragment length ranges from 5 to 10 minutes, by looking at a trade-off
between too tiny windows, that would not be enough informative to support the analysis,
and too wide fragments, leading to heterogeneity. Starting from the lower limit of the
indicated interval, the segment length is iteratively increased until a sufficiently high
number of observations is available to train, for each segment, an autoencoder. This

40

Auto Encoder-based Model for Time Series Analysis

procedure leads to 6 minutes segments, resulting into 328 windows explained by the 9
considered features (Figure 4.3).

Figure 4.3: Time series window definition

Each segment is then used to train an autoencoder, resulting in 328 different models.
The objective is to define an object able to learn how to distinguish different vehicle
states homogeneously described by fragments. Once the training phase of each model is
ended, there will be 328 autoencoders able to recognize and then reconstruct different
patterns.

Figure 4.4: Proposed approach: an autoencoder-based model for time series
analysis

Each model is trained on subfragments extracted from each previously identified win-
dows. In this case, the choice of the windows’ dimension is critical since a smaller window
size will result in more subsegments to train the network, while too tiny subsegments
risk to be not informative. For this reason, VALMOD algorithm is applied to infer the
proper subsegment length. To extend the algorithm to multivariate context, it takes as
input the principal component extracted from the original dataset [23], since VALMOD
is a scalable one variable approach. The algorithm returns the rank of most similar
subfragments pairs, with lengths from 30 to 50 seconds. Then, counting the number of
motifs per length in the top 20 motifs and taking the length that maximizes that count,
the most suitable size for subsegments results equal to 30 seconds.

41

Auto Encoder-based Model for Time Series Analysis

Figure 4.5: Number of motifs occurrences per length

Offset1 Offset2 Normalized distance motif length (s)
216 1722 0.019662 35
217 1723 0.019817 34
215 1721 0.019846 36
218 1724 0.020739 33
219 1725 0.021369 32

42569 42813 0.021539 30
42568 42812 0.021764 31
221 1726 0.022058 31
881 58118 0.022072 32
880 58117 0.022133 33
220 1725 0.022139 32
882 58119 0.022229 31
883 58120 0.022443 30
225 1727 0.023137 30
222 1724 0.023360 30
224 1726 0.023661 31
874 58111 0.023710 39
873 58110 0.023730 40
875 58112 0.023882 38
876 58113 0.023980 37
872 58109 0.023981 41

Table 4.1: Top 20 VALMOD found motifs

42

Auto Encoder-based Model for Time Series Analysis

In order to increase the available training data for each model, overlapping fragments
with dimensions of 30×9 and stride = 1, are considered. The described approach, applied
to each segment, will lead to 330 subfragments of shape 30× 9 per segment (Figure 4.6).

Figure 4.6: Data input generation process

The architecture of each model, described in Table 4.2, is mainly inspired to [24],
and it is based on convolutional neural networks, widely used for time series analysis,
thanks to their ability of extracting spatial features given their great success in images
processing [25], [26].

The size of the input of the encoder, which is the same as the output of the decoder,is
then a tensor of shape (30,9,1). The autoencoder architecture is built considering the
hints in [27]. Then, in order to improve generalization in terms of reconstruction error,
and speeding up training, the height and width of the bottleneck are kept large, as
well as the number of channels. Each autoencoder is trained with a loss composed of
the Mean Squared Error (MSE) term plus a term of regularization, equal to the L2
norm of the coefficients weighted with λ = 0.05 to the purpose of improving the network
generalization power.

Mean Squared Error is a way to measure the model performances [28]. In general, if
x̂ represents the output of decoder, x represents the input, and n the input size, then the
MSE is given by:

MSE =
qn
k=1(xk − x̂k)2

n

L2 regularization introduces additional information to avoid overfitting phenomena.
It introduces, as a penalty to the loss function, the squared values of the magnitude of
the coefficients. This penalty is weighted with a parameter λ.

L2 = λ
nØ
i=1

ω2
i

Another option is L1 regularization, which instead introduces as penalty term, absolute
magnitude of coefficients. L2 is useful with collinearity or with codependent features
since it tends to uniformly shrink the coefficients, while L1 is typically useful for feature
selection since it shrinks coefficients of the less important features to zero.

As optimizer, Adam method has been selected. Adam [29], exploits estimates of first
and second moments of the gradients for the computation of different parameters of
individual adaptive learning rates. It differs from Stochastic Gradient Descent (SGD)

43

Auto Encoder-based Model for Time Series Analysis

Encoder

Layer Num. Kernel Stride Input Output Act.
filters size Size Size Func

Conv2D 16 3 1 (?,30,9,1) (?,30,9,16) ReLU
BatchNorm (?,30,9,16) (?,30,9,16)
MaxPool2D (2,1) (?,30,9,16) (?,15,9,16)
Conv2D 32 3 1 (?,15,9,16) (?,15,9,32) ReLU

BatchNorm (?,15,9,32) (?,15,9,32)
Conv2D 32 3 1 (?,15,9,32) (?,15,9,32) ReLU

BatchNorm (?,15,9,32) (?,15,9,32)
Conv2D 64 3 1 (?,15,9,32) (?,15,9,64) ReLU

BatchNorm (?,15,9,64) (?,15,9,64)
Conv2D 32 3 1 (?,15,9,64) (?,15,9,32) ReLU

BatchNorm (?,15,9,32) (?,15,9,32)
Conv2D 16 3 1 (?,15,9,32) (?,15,9,16) ReLU

BatchNorm (?,15,9,16) (?,15,9,16)
Conv2D 8 3 1 (?,15,9,16) (?,15,9,8) ReLU

BatchNorm (?,15,9,8) (?,15,9,8)
Decoder

Layer Num. Kernel Stride Input Output Act.
filters size Size Size Func

Conv2D 8 3 1 (?,15,9,8) (?,15,9,8) ReLU
BatchNorm (?,15,9,8) (?,15,9,8)
Conv2D 16 3 1 (?,15,9,8) (?,15,9,16) ReLU

BatchNorm (?,15,9,16) (?,15,9,16)
Conv2D 32 3 1 (?,15,9,16) (?,15,9,32) ReLU

BatchNorm (?,15,9,32) (?,15,9,32)
Conv2D 64 3 1 (?,15,9,32) (?,15,9,64) ReLU

BatchNorm (?,15,9,64) (?,15,9,64)
Conv2D 32 3 1 (?,15,9,64) (?,15,9,32) ReLU

BatchNorm (?,15,9,32) (?,15,9,32)
Conv2D 32 3 1 (?,15,9,32) (?,15,9,32) ReLU

BatchNorm (?,15,9,32) (?,15,9,32)
UpSample2D (2,1) (?,15,9,32) (?,30,9,32)

Conv2D 16 1 1 (?,30,9,32) (?,30,9,16) ReLU
BatchNorm (?,30,9,16) (?,30,9,16)
Conv2D 1 1 1 (?,30,9,16) (?,30,9,1) ReLU

Loss MSE + L2

Table 4.2: Architecture of each of the autoencoders

44

Auto Encoder-based Model for Time Series Analysis

that considers a fixed learning rate for the entire training process. Adam is faster with
respect to SGD [30].

Finally, batch normalization after each convolutional layer is adopted to reduce the
vanishing gradient problem, while the usage of small filters is helpful to have fewer
parameters and at the same time increase the nonlinearity.

Before starting the training process, the last 20% of the dataset is extracted in order
to be used for testing autoencoders performances. Moreover, for parameters tuning
purposes, a grid search on learning rate, batch size and number of epochs is performed.
It is combined with a 3-fold cross-validation process, which in time series fields consists
of splitting training and validation sets into contiguous observations, as shown in Figure
4.7). In the process, the validation set is equal to the 10% of remaining observations.
Finally, early stopping technique is used to prevent overfitting phenomena.

Figure 4.7: Time series split1

The trained autoencoders will be used in the clustering process that will be explained
in the next sections.

4.2 Time Series Clustering
4.2.1 Introduction to Clustering
Data clustering is the process useful to identify clusters or natural groupings in a
multidimensional context by exploiting some similarity measure [31]. Intuitively, data
within the same cluster show greater similarity to each other in comparison to patterns

1https://scikit-learn.org/stable/modules/cross_validation.html

45

https://scikit-learn.org/stable/modules/cross_validation.html

Auto Encoder-based Model for Time Series Analysis

that belong to different clusters [32]. The assortment of techniques for representing
data, grouping them by measuring proximity between data elements, has produced a rich
variety of clustering methods. Clustering is a very useful tool in several machine learning
realities, grouping, decision-making tasks, and exploratory pattern-analysis situations.

Given an objective function which it is denoted by G, the goal of a clustering algorithm
is finding, through the use of an appropriate search algorithm, a clustering C, for a given
input (χ, d), so that G((χ, d), C) is minimized [17].

Because of the specific purpose of this thesis work, the following considerations
concern pattern clustering. Considering a pattern x as a single data item used by the
clustering method, it typically consists of a vector of d vector components called features
x = (x1, .., xd), where d is the dimensionality of the pattern space. In this case, a class
indicates a state of the nature that control the generation process of the patterns [32].

The goal of the clustering techniques is to group patterns in such a way that the
obtained classes offer a representation of the different patterns obtained from the process,
in the pattern set. The goal is not only the maximization of the similarity of observations
clustered in the same group, but also the maximization of dissimilarity of patterns that
are grouped in different clusters.

In case of pattern clustering, the analysis becomes more challenging because of the
introduction of dependencies over time [33]. In addition, the kind of problem under
analysis typically deals with:

• Unlabeled data: time series data are less likely to be associated with data labels,
making impossible to apply supervised learning techniques. On the other hand,
unsupervised learning procedures can be useful tools for understanding data and
finding unknown patterns, not easily findable with standard methods;

• High dimensionality: time series data are commonly associated with several compo-
nents. However, it is very important to identify the contribution of each feature
with the aim of summarizing the informative content into few parameters;

• Hidden features: the most critical issue is represented by the possible existence of
some hidden features that can be missed when conducting direct data analysis.

Some of the most standard methods for time series clustering are briefly described in
the following:

• Hierarchical time series clustering: A hierarchy is generated using:

– Agglomerative (bottom-up) approach: starting from the situation in which each
item is considered as a cluster, with a certain appropriate measure, clusters are
merged together.

– Divisive (top-down) approach: starting situation is a single cluster that includes
all items, that will be continuously split.

• Partitioning time series clustering: it is an approach consisting of the generation of
k clusters, exploiting their similarity (e.g. K-means).

• Density-based time series clustering: this class of methods defines a cluster as a
subspace of dense objects (e.g. DBScan [34]).

46

Auto Encoder-based Model for Time Series Analysis

• Grid-based Time-series clustering: the clustering operations are performed on a
grid structure built quantizing the object space into a finite number of cells.

• Model-based Time-series clustering: a model is built for each cluster, with the aim
of finding the best fit of input data.

• Multi-step time series clustering: it improves the cluster representation quality by
combining different methods.

The focus in this work is on partitioning clustering. The most relevant partitioning
clustering methods are K-means [35] and K-medoids [36].
(The following definitions are borrowed from [17])

K-means algorithm partitions the dataset into disjoint sets C1, ..., Ck, with centroids
µ1, ..., µk providing a representation of them. A centroid is computed for each cluster
and it is the element used by the algorithm ti represent all the items assigned to that
cluster. K-Means algorithm iteratively assigns data items to the cluster with the closest
centroid, that corresponds to solve the following optimization problem:

min
C1,C2,...Ck

KØ
i=1

Ø
x∈Ci

d(x, µi)

where µi =
q
x∈Ci x/|Ci| is the cluster centroid and k and d, respectively the number

of desired clusters and the distance to be used in computations, are user-specified
hyperparameters. As it can be noticed, the centroid of each cluster is not necessarily an
element of the dataset.

The main difference between K-means and K-medoids algorithms is that the latter
forced centroids, referred as medoids, to be elements of the dataset. For this reason, it
is not sensible to noise and outliers. Since the data under analysis are noisy for nature,
K-Medoids will be the method that will be exploited in this thesis work.

The K-medoids algorithm is resumed in Algorithm 1

Algorithm 1 K-medoids algorithm
Inputs: Input set (x1, ..., xn), Number of desired clusters k and the distance to use
Output: Clusters assignments (C1, ..., Cn)
1: Random selection of k samples from (x1, ..., xn) as the initial medoids

(µ1, ..., µk).
2: repeat:
3: Form k clusters by assigning all points to the closest medoid
4: Recompute the centroid of each cluster and take the closest example as the

medoid of the cluster.
5: until the medoids don’t change.
6: return Cluster assignments (C1, ..., Cn)

The evaluation of clustering results, in unsupervised context, take into account several
aspects [37]:

47

Auto Encoder-based Model for Time Series Analysis

• Internal or unsupervised validation

– Clustering tendency determination in data;
– Determination of the correct number of data clusters;
– Quality assessment of the clustering results without needing extra information.

• External or supervised validation

– Comparison of the obtained clustering assignments with true labels;
– Comparison between different sets of clusters.

In general, in unsupervised context, two types of validation metrics are considered:

• Cohesion within each cluster;
• Separation between different clusters.

Silhouette score combines in a single value these two metrics. It ranges in the interval
[−1,1], where high separation is indicated from positive values, while poor clustering
performances are characterized by negative values.

For each example i in the data set, Silhouette score is defined as:

s(i) = b(i)− a(i)
max{a(i), b(i)}

Averaging silhouette coefficients for each example, the global Silhouette coefficient, is
obtained:

S = 1
n

nØ
i=1

s(i)

4.2.2 K-medoids Clustering Approach
Since an hyperparameter of the K-Medoids algorithm is the distance to be used in
computation, in this specific application a distance based on the reconstruction errors
of autoencoders is exploited. Once the training phase of the 328 autoencoders is ended
and autoencoders are tested on respective test sets previously extracted, the objective is
to define a distance measure useful to distinguish different fragments, and mainly the
representing states.

Given two 6 minutes fragments x̂ and ŷ, considering the set subsegments x =
(x1, ..., xN) and y = (y1, ..., yN) extracted respectively from them, the distance exploited
in clustering is defined as:

dist(x̂, ŷ) =

1
N

!-- NØ
i=0

(xi−AEy(xi))2−
NØ
i=0

(xi−AEx(xi))2--+-- NØ
i=0

(yi−AEx(yi))2−
NØ
i=0

(yi−AEy(yi))2--"
where AEx indicates that this autoencoder is trained on the subfragments set x =
(x1, ..., xN), and AEy indicates that this autoencoder is trained on the subfragments set
y = (y1, ..., yN).

48

Auto Encoder-based Model for Time Series Analysis

This distance measures how much the subfragments extracted from a segment are
close to the reconstruction of the autoencoder trained on the other segment. The idea is
that the more the input segments are similar, the better they will be the reconstruction
performed by the autoencoders. It can be noticed that the formula actually defines a
distance since it is non-negative, it satisfies the symmetric properties and it is null for
ŷ = x̂.

To run the K-medoids algorithm, the number of desired clusters must be specified as
input parameter. However, real life applications as the one under analysis, the number of
desired cluster is often unknown. The common strategy adopted to solve this problem is
to iteratively evaluating the performance achieved by multiple runs of the algorithm by
varying the number k of desired clusters. At the end, the optimal value of k is determined
as the k that maximizes the silhouette score [38]. In this application, the number of
desired clusters is ranging from 2 to 9, and the better performances are achieved by 3
clusters, with a silhouette score equal to 0.58, as shown in Table 4.3.

Number of clusters Silhouette
2 0.13
3 0.58
4 0.41
5 0.37
6 0.46
7 0.37
8 0.38
9 0.37

Table 4.3: Silhouette values for different number of clusters

49

Chapter 5

Experimental results and
evaluation

In this chapter, results obtained by applying the proposed strategy are deeply analyzed
and evaluated, both qualitatively and quantitatively.

5.1 Qualitative Validation of Clusters
Once the clustering algorithm has generated different clusters, these are evaluated by a
deep exploration with the experts’ supervision.

Exploiting boxplot visualizations of the measures, separately for each cluster as shown
in Figure 5.9, as well as time series plots over time, with the help of domain is possible
to assign duties to the identified groups (Figure 5.1).

Figure 5.1: K-Medoids + Silhouette application

50

Experimental results and evaluation

The first cluster, composed of 67 fragments, is characterized by fragments with SPNs
that take the highest values (Figure 5.6). Engine Speed, as displayed in Figure 5.9, takes
values around 2000 rpm, indicating probably a moving or working duty, that can be
confirmed also by the higher load associated with this cluster with respect to the others.

The second group, which consists of 156 fragments, is the most populated one. Engine
Speed is ranging between 800− 1000 rpm as can be noticed in Figure 5.9, is probably
denoting a vehicle turned on, but without moving or working. Even if engine load values
are close to values assumed by moving/working segments, in this case they show a more
stable and stationary behaviour with respect to the irregular one characterizing the
cluster associated with higher workloads (Figure 5.2).

The same behaviour can be noticed also for the remaining measures, shown in Figure
5.7, typically denoted by stationary conditions at medium levels.

Figure 5.2: SPN 30000 Boxplots for Moving/Working Cluster and Idle Cluster

Finally, the last group is composed of 105 segments during which SPNs take the lowest
values. The segments of this cluster are associated with periods in which the engine
is off but the instrument panel of the vehicle is on, meaning that the CAN network is
transmitting messages. As can be noticed in Figures 5.3, 5.4 and 5.5 the engine can be
off for all observations of the segment, or an ignition or a shutdown can happen.

Figure 5.3: Vehicle Off fragment

51

Experimental results and evaluation

Figure 5.4: Vehicle Ignition fragment

Figure 5.5: Vehicle Shutdown fragment

A global overview is provided by the time series plot in Figure 5.8.

52

Experimental results and evaluation

Figure 5.6: Time series plots Moving/Working Cluster

53

Experimental results and evaluation

Figure 5.7: Time series plots Idle Cluster

54

Experimental results and evaluation

Figure 5.8: Time series plots Vehicle Off Cluster

55

Experimental results and evaluation

Finally, a global view of the clusters found during the application of K-Medoids
method is given by SPNs box plots, separately for each cluster.

Figure 5.9: Box plot of the found clusters

56

Experimental results and evaluation

However, the context of this analysis is completely unsupervised. Hence, it is not
possible to confirm results with respect to ground truth labels.

5.2 Quantitative Validation of Clusters
To further validate results from a quantitative point of view, obtained clusters are
compared with the performance achieved by standard distances commonly employed in
time series clustering. The metric used in this unsupervised comparison is once again the
silhouette score.

The purpose of this final analysis is to demonstrate that the proposed distance, with
the drawback of higher computation costs, is preferable over standard measures since it
allows to achieve better performances in time series clustering.

To this purpose, two different kinds of distances are analyzed, namely a lock-step
measure that, given two segments, compares pairs of observations at the same time index,
and an elastic measure, that creates a non-linear mapping to shift in time one signal
with respect to the other. As representative distance for the first group of measures,
the Euclidean distance is considered, while for the last group Dynamic Time Warping
(DTW) is used [39].

(a) (b)

Figure 5.10: Mapping of Euclidean distance (a) vs. mapping of DTW distance (b)
[39]

The dynamic time warping technique exploits a dynamic programming approach
for time series alignment in order to minimize some distance measure [40]. Given two
time series X = (x1, x2, ..., xN), N ∈ N and Y = (y1, y2, ..., yM), M ∈ N, these can be
arranged in a N − by −M grid, where each point corresponds to the alignment between
the elements of the two sequences xi and yi. Once the distance measure to use in the
algorithm is defined, it is introduced a warping path W = (w1, w2, ..., wk), that aligns the
elements of the different sequences, in such a way that the distance between X and Y is
minimized. So the dynamic time warping problem can be formally defined as:

57

Experimental results and evaluation

DTW (X,Y) = min
W

[
kØ
i=1

dist(wk)]

where dist is the distance measure exploited.
Similarly to previous introduced strategy, a distance matrix is built for each of the

considered measures that is used as input for the same clustering process. The number
of desired clusters is once again empirically determined by silhouette approach, leading
to results shown in Table 5.1.

Distance measure Number of clusters Silhouette measure
Customized 3 0.58
Euclidean 2 0.46
DTW 2 0.46

Table 5.1: Number of clusters found and Silhouette measure value associate to
cluster assignments, for each measure

As it can be noticed, the silhouette score for clusters obtained setting Euclidean and
DTW distances are quite similar, but the score achieved with customized distance is
significantly higher.

Clusters have been qualitatively validated with the help of domain experts and are
coherent with the expected ones, given the set of activities performed by the vehicle
during data collection, and quantitatively validated with comparison with other measures.
Their plots and their descriptions can support domain experts during duties levels
identification.

58

Chapter 6

Conclusions and Future
Works

This work has pointed out the importance of automated process for the identification, in
heavy-duty vehicles field, of usage patterns and workload states. Instead of manually
detecting the states of the vehicle, CAN bus data analysis with appropriate developed
techniques can overcome the main drawbacks related to domain experts manual settings.

As previously seen, CAN bus data are generated at high frequencies by sensors installed
on the vehicle with irregular sampling rates. Then, once stored in Tierra infrastructure,
data are parsed by exploiting the database firm information, and handled to be more
human-readable and for performing analysis on them. Being generated at high frequency,
then gathered, and at last sent to a centralized server, where managed, this data can be
easily subject to transmission errors or other errors of different nature.

From a preliminary data selection analysis, only a limited number of informative
measures are identified. Then, since messages over the CAN network are sampled at
different and non constant sampling rates, in order to obtain a multivariate time series,
signals are aligned and synchronized by applying a suitable combination of upsampling
and downsampling operators in the frequency domain.

Further analysis is performed before the process definition, taking into account how
the autoencoder model must be fed in the following step. Considering the nature of data,
and exploiting VALMOD algorithm for detection of variable length repeated patterns in
time series, signals are divided into fixed length segments, with the aim of generating a
high number of homogeneous multivariate time series describing single usage patterns of
the vehicle.

Finally, an autoencoder-based clustering is applied. In this work, a convolutional deep
autoencoder is exploited, considering the nature of data.

An autoencoder is trained for each segment to the purpose of defining a distance
between segments based on the reconstruction ability of autoencoder. The distance is
used in the selected clustering algorithm, k-Medoids, applied to identified duties. Since
the number of desired clusters is unknown, it is empirically identified by assessing the
silhouette score achieved by multiple runs, varying the number of clusters k. The value

59

Conclusions and Future Works

of k that maximizes the silhouette results equal to 3, leading to the identification of 3
duties, that can be interpreted as vehicle off, idle and moving or working. Results have
been validated by domain experts and are considered coherent with the expected once,
given the activity performed by the vehicle during the data collection phase. In addition,
a quantitative evaluation based on silhouette scores achieved by the same clustering
method with standard distances such as the euclidean distance and the dynamic time
warping, demonstrated the better performance achieved by the proposed method.

This thesis work represents a real life application of an innovative clustering method
capable of achieving significantly higher results, but of course it represents just a starting
point. As future work, several improvents can be made: first of all, the number of
signals sent on the network can be reduced to save storage and computational costs.
Furthermore, the framework can be extended to handle variable length fragments, proba-
bly characterized by more homogeneous behaviour. Finally, the proposed autoencoder
architecture can be improved, for example considering Recurrent Neural Networks (RNN)
or Long Short-Term Memory (LSTM) networks, commonly employed with time series
data thanks to their memory properties.

60

Bibliography

[1] Uwe Koppe. «Combining CANopen and SAE J 1939 networks». In: 2013
(cit. on p. 5).

[2] Fugiglando Umberto, Massaro Emanuele, Santi Paolo, Milardo Sebastiano,
Abida Kacem, Stahlmann Rainer, Netter Florian, and Ratti Carlo. «Driving
Behavior Analysis through CAN Bus Data in an Uncontrolled Environment».
In: IEEE Transactions on Intelligent Transportation Systems PP (Oct. 2017).
doi: 10.1109/TITS.2018.2836308 (cit. on p. 10).

[3] Marco Luise and Giorgio M. Vitetta. Teoria dei segnali. McGraw-Hill, 1981.
isbn: 88-386-0809-1 (cit. on pp. 14, 16, 27).

[4] Janos Abonyi and Balazs Feil. Cluster Analysis for Data Mining and System
Identification. 2007. isbn: 978-3-7643-7987-2. doi: 10.1007/978-3-7643-
7988-9 (cit. on pp. 18, 35).

[5] Zimmerman Donald. «A Note on the Influence of Outliers on Parametric and
Nonparametric Tests». In: Journal of General Psychology - J GEN PSYCHOL
121 (Oct. 1994), pp. 391–401. doi: 10.1080/00221309.1994.9921213 (cit. on
p. 22).

[6] Osborne Jason and Overbay Amy. «The Power of Outliers (and Why Re-
searchers Should Always Check for Them)». In: Pract. Assess. Res. Eval. 9
(Jan. 2004) (cit. on p. 22).

[7] Martin Vetterli, Jelena Kovacevic, and Vivek K. Goyal. Foundations of Signal
Processing. Cambridge Univ. Press, 2014 (cit. on pp. 23, 25, 28).

[8] Huybrechts Thomas, Vanommeslaeghe Yon, Blontrock Dries, Van Barel Gre-
gory, and Hellinckx Peter. «Automatic Reverse Engineering of CAN Bus
Data Using Machine Learning Techniques». In: Jan. 2018, pp. 751–761. isbn:
978-3-319-69834-2. doi: 10.1007/978-3-319-69835-9_71 (cit. on p. 29).

[9] Derrick T.R. and Thomas J.M. «Time series analysis: The cross-correlation
function». In: Innovative analyses of human movement: Analytical tools for
human movement research (Jan. 2004), pp. 187–206 (cit. on p. 30).

61

https://doi.org/10.1109/TITS.2018.2836308
https://doi.org/10.1007/978-3-7643-7988-9
https://doi.org/10.1007/978-3-7643-7988-9
https://doi.org/10.1080/00221309.1994.9921213
https://doi.org/10.1007/978-3-319-69835-9_71

BIBLIOGRAPHY

[10] H. M. Blalock. «Correlated Independent Variables: The Problem of Mul-
ticollinearity». In: Social Forces 42.2 (1963), pp. 233–237. issn: 00377732,
15347605. url: http://www.jstor.org/stable/2575696 (cit. on p. 30).

[11] Zhang B. «Regression clustering». In: Third IEEE International Conference
on Data Mining. 2003, pp. 451–458. doi: 10.1109/ICDM.2003.1250952
(cit. on p. 34).

[12] Nayak Sarat, Misra Bijan, and Behera Dr. H. «Impact of Data Normaliza-
tion on Stock Index Forecasting». In: International Journal of Computer
Information Systems and Industrial Management Applications 6 (Dec. 2014),
pp. 357–369 (cit. on p. 35).

[13] Sola J. and Sevilla J. «Importance of input data normalization for the appli-
cation of neural networks to complex industrial problems». In: IEEE Transac-
tions on Nuclear Science 44.3 (1997), pp. 1464–1468. doi: 10.1109/23.589532
(cit. on p. 35).

[14] Linardi Michele, Zhu Yan, Palpanas Themis, and Keogh Eamonn. «Matrix
Profile X: VALMOD - Scalable Discovery of Variable-Length Motifs in Data
Series». In: May 2018, pp. 1053–1066. isbn: 978-1-4503-4703-7. doi: 10.1145/
3183713.3183744 (cit. on p. 35).

[15] J. Abonyi, Balazs Feil, S. Németh, and P. Arva. «Principal Component
Analysis based Time Series Segmentation:A New Sensor Fusion Algorithm».
In: 2004 (cit. on p. 35).

[16] McCulloch Warren S. and Pitts Walter. «A Logical Calculus of the Ideas
Immanent in Nervous Activity». In: Journal of Symbolic Logic 9.2 (1944),
pp. 49–50. doi: 10.2307/2268029 (cit. on p. 37).

[17] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning:
from theory to algorithms. http://www.cs.huji.ac.il/~shais/Understan
dingMachineLearning. Cambridge University Press, 2014. isbn: 978-1-107-
05713-5 (cit. on pp. 37, 46, 47).

[18] Kevin P. Murphy. Machine Learning: a probabilistic perspective. MIT Press,
2013 (cit. on p. 37).

[19] G. E. Hinton and R. R. Salakhutdinov. «Reducing the Dimensionality of
Data with Neural Networks». In: Science 313.5786 (2006), pp. 504–507. doi:
10.1126/science.1127647. url: https://www.science.org/doi/abs/10.
1126/science.1127647 (cit. on p. 37).

[20] Tyler Manning-Dahan. «èCA and Autoencoders». In: (2017) (cit. on p. 37).
[21] Dor Bank, Noam Koenigstein, and Raja Giryes. Autoencoders. 2021. arXiv:

2003.05991 [cs.LG] (cit. on p. 38).

62

http://www.jstor.org/stable/2575696
https://doi.org/10.1109/ICDM.2003.1250952
https://doi.org/10.1109/23.589532
https://doi.org/10.1145/3183713.3183744
https://doi.org/10.1145/3183713.3183744
https://doi.org/10.2307/2268029
http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning
http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning
https://doi.org/10.1126/science.1127647
https://www.science.org/doi/abs/10.1126/science.1127647
https://www.science.org/doi/abs/10.1126/science.1127647
https://arxiv.org/abs/2003.05991

BIBLIOGRAPHY

[22] Nam Kounghoon and Wang Fawu. «The performance of using an autoencoder
for prediction and susceptibility assessment of landslides: A case study on
landslides triggered by the 2018 Hokkaido Eastern Iburi earthquake in Japan».
In: Geoenvironmental Disasters 6 (Dec. 2019), p. 19. doi: 10.1186/s40677-
019-0137-5 (cit. on p. 38).

[23] Tanaka Yoshiki, Iwamoto Kazuhisa, and Uehara Kuniaki. «Discovery of Time-
Series Motif from MultiDimensional Data Based on MDL Principle». In:
Machine Learning - ML 58 (Feb. 2005), pp. 269–300. doi: 10.1007/s10994-
005-5829-2 (cit. on p. 41).

[24] yıldırım Özal, Tan Ru San, and Acharya U Rajendra. «An Efficient Compres-
sion of ECG Signals Using Deep Convolutional Autoencoders». In: Cognitive
Systems Research 52 (July 2018), pp. 198–211. doi: 10.1016/j.cogsys.
2018.07.004 (cit. on p. 43).

[25] Liu Chien-Liang, Hsaio Wen-Hoar, and Tu Yao-Chung. «Time Series Classifi-
cation With Multivariate Convolutional Neural Network». In: IEEE Transac-
tions on Industrial Electronics PP (Aug. 2018), pp. 1–1. doi: 10.1109/TIE.
2018.2864702 (cit. on p. 43).

[26] Jastrzebska Agnieszka. «Lagged encoding for image-based time series clas-
sification using convolutional neural networks». In: Statistical Analysis and
Data Mining: The ASA Data Science Journal 13 (Mar. 2020). doi: 10.1002/
sam.11455 (cit. on p. 43).

[27] Manakov Ilja, Rohm Markus, and Tresp Volker. «Walking the Tightrope: An
Investigation of the Convolutional Autoencoder Bottleneck». In: (Nov. 2019)
(cit. on p. 43).

[28] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016 (cit. on p. 43).

[29] Kingma Diederik and Ba Jimmy. «Adam: A Method for Stochastic Optimiza-
tion». In: International Conference on Learning Representations (Dec. 2014)
(cit. on p. 43).

[30] Ruder Sebastian. «An overview of gradient descent optimization algorithms».
In: (Sept. 2016) (cit. on p. 45).

[31] Sibei Yang, Tao Liangde, and Gong Bingchen. «Introduction to Clustering
Algorithms and Applications». In: (Aug. 2014) (cit. on p. 45).

[32] Jain A. K., Murty M. N., and Flynn P. J. «Data Clustering: A Review». In:
31.3 (1999). issn: 0360-0300. doi: 10.1145/331499.331504. url: https:
//doi.org/10.1145/331499.331504 (cit. on p. 46).

63

https://doi.org/10.1186/s40677-019-0137-5
https://doi.org/10.1186/s40677-019-0137-5
https://doi.org/10.1007/s10994-005-5829-2
https://doi.org/10.1007/s10994-005-5829-2
https://doi.org/10.1016/j.cogsys.2018.07.004
https://doi.org/10.1016/j.cogsys.2018.07.004
https://doi.org/10.1109/TIE.2018.2864702
https://doi.org/10.1109/TIE.2018.2864702
https://doi.org/10.1002/sam.11455
https://doi.org/10.1002/sam.11455
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1145/331499.331504
https://doi.org/10.1145/331499.331504
https://doi.org/10.1145/331499.331504

BIBLIOGRAPHY

[33] Tavakoli Neda, Siami Namini Sima, Khanghah Mahdi, Soltani Fahimeh, and
Siami Namin Akbar. «Clustering Time Series Data through Autoencoder-
based Deep Learning Models». In: (Apr. 2020) (cit. on p. 46).

[34] Ester Martin, Kriegel Hans-Peter, Sander Joerg, and Xu Xiaowei. «A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with
Noise». In: vol. 96. Jan. 1996, pp. 226–231 (cit. on p. 46).

[35] Jin Xin and Han Jiawei. «K-Means Clustering». In: Jan. 2011, pp. 563–564.
doi: 10.1007/978-0-387-30164-8_425 (cit. on p. 47).

[36] Jin Xin and Han Jiawei. «K-Medoids Clustering». In: Jan. 2016, pp. 1–3. doi:
10.1007/978-1-4899-7502-7_432-1 (cit. on p. 47).

[37] Palacio Niño Julio. «Evaluation Metrics for Unsupervised Learning Algo-
rithms». In: (May 2019) (cit. on p. 47).

[38] Wang Fei, Franco-Penya Hector-Hugo, Kelleher John, Pugh John, and Ross
Robert. «An Analysis of the Application of Simplified Silhouette to the
Evaluation of k-means Clustering Validity». In: July 2017. isbn: 978-3-319-
62415-0. doi: 10.1007/978-3-319-62416-7_21 (cit. on p. 49).

[39] Amaia Abanda, Usue Mori, and Jose A. Lozano. A review on distance based
time series classification. 2018. arXiv: 1806.04509 [stat.ML] (cit. on p. 57).

[40] Donald J. Berndt and James Clifford. «Using Dynamic Time Warping to
Find Patterns in Time Series». In: KDD Workshop. 1994 (cit. on p. 57).

64

https://doi.org/10.1007/978-0-387-30164-8_425
https://doi.org/10.1007/978-1-4899-7502-7_432-1
https://doi.org/10.1007/978-3-319-62416-7_21
https://arxiv.org/abs/1806.04509

	List of Tables
	List of Figures
	Acronyms
	Introduction and Relative Work
	Controller Area Network Bus Data Analysis
	Controller Area Network Bus Data
	CAN Bus Data Introduction
	CAN Bus Data Exploration

	Signal Processing
	Signal Processing Fundamentals
	Stochastic Processes
	Univariate Time Series Analysis

	Multivariate Sequences Processing and Analysis
	Theoretical Introduction
	Discrete-Time Systems
	Linear Shift-Invariant Systems
	Discrete-Time Fourier Transform
	Multi-Rate Sequences

	Multivariate Time Series Analysis

	Auto Encoder-based Model for Time Series Analysis
	Auto Encoder-based approach
	Data Preparation Procedures
	Introduction to Auto Encoders
	Autoencoder-based Deep Learning Approach for Analysis of Time Series Data

	Time Series Clustering
	Introduction to Clustering
	K-medoids Clustering Approach

	Experimental results and evaluation
	Qualitative Validation of Clusters
	Quantitative Validation of Clusters

	Conclusions and Future Works
	Bibliography

