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Abstract

Gravitational waves are ripples in the fabric of space-time, that propagate almost undis-
turbed throughout the universe. These are generated by some of the most energetic and
violent processes that take place in the universe, such as colliding black holes, supernovae,
colliding neutron stars and more. The scientific community is measuring gravitational
waves by using large scale interferometers. An Earth-based large scale interferometer
basically consists of a building with two very long arms (in the case of LIGO 4km) that
contain vacuum pipes where light can travel and be reflected by extremely accurate mir-
rors. The main issue with these type of detectors is that the Earth’s seismic activity
affects their measurement spectrum below 10 Hz, and it is below this frequency where
most of the interesting information about celestial events is contained. To solve this in-
herent limitation of ground interferometers an alternative solution has been proposed: a
laser interferometer space antenna (LISA).

LISA is a space–based gravitational wave detector, confirmed by ESA to be the third
large class mission of the Cosmic Vision program. This kind of detection requires ex-
tremely high accuracy from laser–based sensor measurements; therefore impacts with
meteoroids constitute a real threat to the mission, causing a waste of time and resources.
In this work, this problem is addressed by comparing different possible recovery control
systems. The recovery control system is composed by a set of controllers, each of which
solves a specific recovery task. These tasks are the outcome of a preliminary data analysis
of the impact data provided by ESA. In this data analysis a Spacecraft of the LISA sys-
tem is modeled as a state machine and each impact–induced state transition is considered.
Two main PID control recovery systems are selected, that make use of different sensor
configurations: the first one requires the Constellation Acquisition Sensor, whereas the
other can function without, but requires a model of the solar pressure disturbance. Fi-
nally, a set of complete impact simulations is performed in order to validate both recovery
control systems.
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1 | Introduction

Gravitational waves are ripples in the fabric of space-time, that propagate almost undis-
turbed throughout the universe. These are generated by some of the most energetic and
violent processes that take place in the universe, such as colliding black holes, supernovae,
colliding neutron stars and more.
For this reason GW provide a large amount of information about celestial bodies and
gravity itself, therefore they are of major interest for the scientific community.

Their existence was first predicted by Einstein in 1916 as part of a much larger theory,
known as General Relativity. A first proof of their existence arrived in 1974 by two
astronomers observing a binary pulsar and since then different researchers found the
same type of evidence, but still of an indirect and mathematical nature, not from direct
sensing.

Direct measurement of GW was not possible until 2015, when LIGO physically mea-
sured undulations in space-time caused by gravitational waves generated by two colliding
black holes 1.3 billion light-years away.

1.1 The LISA Observatory

The detection of gravitational waves is an extremely difficult task that requires incredible
precision. While the events that generate them can be catastrophic and violent, the huge
distances that divide the location of measurement from where the event itself took place,
make the received signals extremely small.

Detecting GW means being able to measure a variation in length of one part in 1021,
that is the equivalent of measuring a variation equal to the thickness of a human hair of
the distance between Earth and Alpha Centauri [2].

The scientific community is measuring gravitational waves by using large scale inter-
ferometers. An Earth-based large scale interferometer basically consists of a building with
two very long arms (in the case of LIGO 4km) that contain vacuum pipes where light can
travel and be reflected by extremely accurate mirrors.

The main issue with these type of detectors is that the Earth’s seismic activity affects
their measurement spectrum below 10 Hz, and it is below this frequency where most
of the interesting information about celestial events is contained. Detecting activity in
this low frequency band could shed light on some of the most fundamental questions of
astrophysics and cosmology, such as the formation of the first massive black holes and the
nature of gravity near them [7, p. 6].

To solve this inherent limitation of ground interferometers an alternative solution has
been proposed: a laser interferometer space antenna. This antenna consists of a set of
three spacecrafts orbiting in a triangular constellation. Each edge of the constellation is
a laser communication between two of the spacecrafts. The constellation orbits the sun

1



Wave Detection 2

(a) Geodesics of two Test Masses (b) Two Test Masses under disturbance

Figure 1.1: TM Geodesics

trailing the Earth by approximately 20°.
In 2015 LISA Pathfinder was launched: a preliminary system that allowed to study

the requirements of the involved technologies and allowed to collect a lot of useful real
data until 2017. The success of LISA Pathfinder, together with the first observations of
gravitational waves by means of ground-based interferometers, resulted in the selection of
LISA as the third large class mission in the ESA Cosmic Vision program. Hence, as part
of the mission preparation, ESA started several development studies such as the system
Phase-A and the LISA DFACS (Drag Free and Attitude Control System) design.

1.2 Wave Detection

Gravitational waves are undulations that propagate in the fabric of space-time. According
to General Relativity two free falling masses will follow a path in space-time known as
geodesic, a path on a curved hypersurface. A gravitational wave that happens to cross the
geodesics of two free falling masses will perturb their relative distance: it is by measuring
this tiny variation that one can detect them.

The task of detection can be seen as composed of two different problems: the first
is the problem of measuring the relative distance between two masses with the required
level of accuracy; the second is the task of ensuring that the two masses are actually free
falling, that is, they are not subjected to any external force or disturbance.

1.2.1 Principles behind space detectors

In the simplified case of a one-arm space detector, there are two masses, also called Test
Masses in the specific context of LISA, travelling free of every disturbance, along their
respective geodesics, as predicted by General Relativity. In general there cannot be a
truly drag free orbit of the two masses, because there will always be a certain amount
of disturbances acting on them, e.g. solar pressure, noise from actuators. The direction
along which lies the line connecting the two masses’ center of mass is called drag free
dimension and is shown in Fig. 1.1a, it is along that direction that the measurement has
to be as accurate as possible.
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External sources of disturbance could shadow the tiny variations caused by the GW
themselves, making the detection impossible. That is why an active disturbance rejection
device is needed in order to make the masses’ movements as similar as possible to the
drag free ideal case. Each of the spacecrafts employed in the LISA system serve a twofold
purpose: it measures very accurately the distance between the two TMs along the drag
free direction and it acts as an active disturbance rejection system. If the disturbance
rejection system is accurate within the required performance along the drag free direction,
then every other variation of the relative distance of the two TMs is due to gravitational
waves.

The simplified case of only two free falling masses has already been tested for two
years by the LISA Pathfinder mission. In this configuration only one spacecraft has
been employed, it contained two test masses inside the spacecraft itself, floating in small
vacuum chambers. All the science was done inside the Technology Package, shown in
Fig.1.2a.

(a) Technology Package (b) Spacecraft

Figure 1.2: LISA Pathfinder [1]

If tiny variations in distance are to be measured with such high accuracy then very
sophisticated and advanced tools are required. In the context of gravitational waves
advanced versions of the Michelson interferometer are employed.

The principle behind this class of measurement tools is simple: they measure the
difference in round-trip time of two light beams, travelling in non-parallel directions.
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1.3 The DFAC System

The LISA observatory is much more complex than the simplified case discussed above.
First of all, in LISA there are three different spacecrafts orbiting in a triangular configu-
ration around the sun, trailing the Earth by about 20°, where the average length of one
edge is approximately 2.5 · 106 km, as shown in Fig. 1.3b. Each SC contains two optical
assemblies that have the vacuum cage with the TM on one end. The OA also handles the

(a) Model of a LISA spacecraft (b) LISA orbit

Figure 1.3: LISA System

laser link that forms the edge of the constellation triangle and is equipped with extremely
accurate sensors that are able to measure azimuth and elevation of the incoming laser
beams, generated by the other two SCs.

At the inner end of the OA there is a sealed module called Gravity Reference System,
that contains a small cubical vacuum cage were the TM is kept suspended by six electrodes
placed in pairs in correspondence of each of the cage’s surfaces. These electrodes act both
as actuators and sensor of the TM’s attitude and position inside the cage. A model of
the whole SC is illustrated in Fig. 1.3a

After being brought in orbit, this complex system goes through different mission
phases:

1. Test Mass Release
The Test Mass is initially kept fixed to the cage by some metal pins. During this
phase these pins are removed and the TM has to be suspended, using the electro-
static field generated by the GRS electrodes. In addition the controller has also to
maintain the spacecraft’s attitude.

2. Constellation Acquisition
The three spacecrafts have to perform some attitude maneuvers in order to establish
the laser links between each other’s optical assemblies.

3. Drag Free
This is the final mode where the actual detection process takes place. During this
phase the controller has to keep the constellation by controlling the attitude of the
spacecraft and act as a noise shield along the drag free direction for both TMs at
the same time.
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The DFACS is the controller that handles the main and last mission phase with a
duration of several years. The main disturbances that it has to reject are solar pressure,
meteoroid impacts and various noises injected from sensors and particularly from actua-
tors. By using GRS electrodes it can control directly the Test Mass’ attitude and position
along all dimensions except for the drag free dimension. For this last dimension it has to
use the thrusters mounted on the spacecraft sides, that is, it has to move itself around
the Test Mass and cannot act upon it directly. This is because GRS electrodes are too
noisy and they introduce tidal accelerations that cannot be present in the data coming
from the interferometer.

One last task that the DFACS has to perform is the correct pointing of the optical
assemblies. This comes from the fact that the constellation triangle has breathing angles.
This means that in order to maintain the communication with the other two SCs of the
formation, it is not enough to keep the OAs in a fixed position, with a nominal angle of
60°, but instead the angle has to vary slightly during the whole mission, with a range of
±1°.

1.4 Objectives of this study

This work is based on an already developed and tested system of controllers for the three
different mission phases previously described. The detailed work can be found in [3]. That
preliminary study contains the description of the whole system, review of the literature
and extensive testing of the nonlinear models and of the mission controllers, including the
DFACS.

The need to study the effects of meteoroid impacts on the LISA system arose after
the ESA provided extensive data on meteoroids impacts, that can happen during the
LISA orbit around the sun. The DFACS designed in [3] is a linear H∞ controller that
can guarantee the required performances. Although it was accurately designed, tested
and tuned and thus provided a very good performance, it was still a linear controller
that worked best around the working point. After doing extensive simulations the results
showed that for some particularly intense impacts the system was unstable, causing the
satellite to spin excessively, making it lose the established laser links.

When a LISA spacecraft loses the links, it has to enter in Constellation Acquisition
phase again and the process of acquiring the constellation is very slow and requires several
hours. Considering the frequency at which impacts could happen, the final effect of leaving
the system as is, would be that of spending most of the mission time (and money) in
reacquiring constellation, instead of performing science, the goal of the whole mission.

The general objectives of this study can be described as follows:

1. Analysis of the impact data provided by ESA and research of stability and perfor-
mance boundaries by means of simulations;

2. Design and implementation of a solution. This will lead to the creation of a controller
that will be integrated in the system of controllers provided in [3] and will operate
to assist the already designed DFACS;

3. Testing and validation of the combined system by performing a set of simulations
and analysis of the results.



2 | LISA Spacecraft

In this Chapter the detailed structure of a LISA spacecraft is presented. All the details
were extracted from the work [3] and works referenced by it. It is important to remember
that during the present study the system is still under development (only Phase A was
completed), thus, a complete description of all the physical components is not available.
Some of them are known thanks to the LISA Pathfinder mission, that provided useful
information. In particular, for those components also noise and uncertainty ranges are
available, allowing for a more accurate modelling and control.

The spacecraft used in LISA is composed of different modules and subsystems:

1. Micro Propulsion System

2. Optical Measurement System

3. Gravity Reference System

4. Star Tracker

5. Constellation Acquisition Sensor

The latest concept available [12] can be modelled as a truncated cone section with a
solar panel of area 14 m2 on the upper surface.

The sketched structure of the SC is shown in Fig. 1.3a, where in particular the two
optical assemblies, with their respective TMs, are highlighted. The incoming laser beams
are also shown, reflecting off the lateral surfaces of the cubic masses. The mass of the
whole SC will vary during the whole mission, because of propellant consumption. The
estimated values are 1500 kg at Begin of Life and 1360 kg at End of Life. In Table 2.1 the
nominal mass and inertia parameters of the main parts are reported.

2.1 Micro Propulsion System

Detailed information is available about the MPS used in the spacecraft employed during
the LISA Pathfinder mission. The configuration consisted in six thrusters grouped in
three pods, that were mounted 120° apart on the lateral surface of the science module.
The propulsion was obtained by expelling cold nitrogen gas. No thrusters were pointed
towards the +z direction, because in order to reduce propellant consumption the solar
pressure was exploited as a virtual thruster. Nonetheless this reduced also the actuation
authority of the MPS, that is, the system was not able to directly provide a thrust directed
in the −z direction. The system is shown in Fig. 2.1.

The LISA SC is three times more massive with respect to the one of LISA PF, so the
LISA MPS will be able to provide more thrust than the previous propulsion system. In

6
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Quantity Value
SC Mass 1500 kg BoL – 1360 kg EoL

SC Inertia
JBoL =

800 13 10
13 800 12
10 12 1000

 kgm2

JEoL =

778 11 6
11 751 11
6 11 953

 kgm2

OA Mass 71 kg
OA Inertia 17 kgm2

OA Stiffness 90000 Nm/rad
OA Damping 80 Nms/rad

OA Mounting point
from barycenter

36 cm

TM Mass 1.96 kg

TM Inertia JTM =

0.6912 0 0
0 0.6912 0
0 0 0.6912

 · 10−3 kgm2

Table 2.1: Spacecraft inertia and mass nominal values

Figure 2.1: LISA PF MPS [16]

addition, in every lateral pod there will also be one of the three thrusters pointed in the
+z direction, in order to increase the actuation authority and facilitate the rejection of
disturbances that could make the SC drift out of its orbit.

The obtained output resolution was 1µN with an estimated delay within 300 ms, as
reported in [15] and the forces recorded by the AOCS were, in general, within ± 5% of
the commanded values. The response of the MPS is not immediate, but it behaves like a
first/second order system.

The noise of the LISA PF MPS was reported in [15] and in [13] and the corresponding
frequency plots are shown in Fig. 2.2
In Table 2.2 all the available parameters from ESA are summarized.

2.2 Optical Measurement System

The optical subsytem of a LISA SC is composed of two telescopes mounted at a nominal
angle of 60° with the inner side near to the SC’s center. The goal of this system is to
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(a) Noise Mask as reported in [15] (b) Noise Mask as reported in [13]

Figure 2.2: LISA PF MPS Noise

Measurement Value
Maximum thrust 500µN
Minimum thrust 1µN
Thrust resolution 0.3µN (1 – 100µN)

1µN (100 – 500µN)
Bias and linearity error 0.5µN ( < 4µN)

2µN ( > 4µN∧ < 150µN)
Response time at 95% of thrust < 2 s
Thrust overshoot 2% of steady state
Thrust direction bias 0.5°
Thrust update rate 10 Hz
Noise Figure 2.2

Table 2.2: Parameters of LISA PF MPS

emit a laser beam, to receive the incoming laser beam from the other SCs and to perform
the interferometry and angle-of-arrival measurements. In order to collect this data the
laser needs to reflect on the Test Mass contained inside the GRS, located behind each
telescope. An Optical Measurement Unit is a device that is interposed between the GRS
and the telescope, that comprises different parts:

• Reference Laser Unit that generates the laser beam;

• Laser Modulator that splits the laser beam into many beams;

• Optical Bench that contains the set of mirrors and performs laser interferometry;

• Phasemeter the unit responsible for computing the phase of the received signals by
means of photodiodes;

• Data management unit an on-board computer interfaced to the system with an
ADC.

The overall structure is shown in Fig. 2.3.
Functionally the OMU is able to compute the following quantities:
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• azimuth and elevation angles of the incoming laser beam by means of a technique
called Differential Wavefront Sensing;

• pitch and yaw of the Test Mass reflecting the laser beam, also by DWS;

• the distance between the two OMUs on the two spacecrafts or inter-spacecraft dis-
tance;

• the local distance between the OMU and the Test Mass in the adjacent GRS or
local TM-spacecraft distance.

The total distance between the two Test Masses along any arm can be computed as the
sum of one inter-spacecraft distance and the two corresponding TM-spacecraft distances.
The DWS technique provides very accurate measurements of the angles of the incoming
laser beams, data that can be used to control the SC’s attitude with respect to the
constellation during the science mode, phase during which the Star Tracker system is
turned off on purpose.

Measurement ranges and noises affecting this module, that is planned to be used in
LISA, were provided by ESA in [13] and are listed in Tab. 2.3.

Measurement Range Noise Spectral Density

Local SC–TM distance along drag free dim. 100µm 1.5 pm√
Hz

√
1 +

(
2 mHz
f

)4

Inter-spacecraft distance along drag free dim. – 2.25 pm√
Hz

√
1 +

(
2 mHz
f

)4

DWS angles: TM pitch/yaw 2µrad 5 nrad√
Hz

√
1 +

(
0.7 mHz

f

)4

DWS angles: laser beam azimuth/elevation 2µrad 0.15 nrad√
Hz

√
1 +

(
0.7 mHz

f

)4

Table 2.3: LISA OMS Sensing Performance

Due to the orbit dynamics the angle between the two OAs cannot remain fixed at 60°,
but has to vary. This effect is called breathing angle. For this reason an Optical Assembly
Actuator is present, that allows to control the OAs inter-angle. No information is avail-
able on this part, because the system is currently still under study. Nonetheless a few
considerations can be made in order to estimate some of the parameters:

1. the pivot axis of rotation of both OAs should pass through the GRS’ cage center in
order to reduce disturbance on the TMs due to induced apparent forces;

Figure 2.3: Optical Measurement System
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2. the rotation range is expected to be ±1° per year, this implies that the instantaneous
rate shall not be greater than 6 nrad

s
in absolute value;

3. the rotation angle is assumed to be measurable within required precision.

Given these considerations a list of estimated parameters for the two OAs is reported in
Table 2.4, where a white noise with constant spectral density and a resolution compatible
with consideration 2 have been assumed.

Parameter Value
Measurement range ±1°
Angular resolution 1 nrad
Max. tracking speed 5µrad/s

Noise (assumed) 1 nNm/
√

Hz

Table 2.4: Parameters of the OA Actuator

2.3 Gravitational Reference System

This subsystem is a complex devices that can be seen as composed of the following parts:

• Test Mass a cubical mass made of a particular gold–platinum alloy, that makes it
reflective, engineered to weigh exactly 1.96 kg;

• Electrostatic Suspension a set of six electrodes, one for each surface of the cubical
structure, that allow to control position and attitude of the Test Mass;

• Caging mechanism a mechanism that keeps the mass fixed in place during early
stages of the mission;

• Charge Management System a system to manage the charge accumulated on the
TM’s surfaces;

• Vacuum Chamber that contains the whole system and manages the residual gas
particles inside.

The Electrostatic Suspension is a device that contains the TM and can control all of the
six DoFs at the same time. Each electrode is opposite to one of the outer surfaces of the
TM and together they can be seen as two opposite armatures of a capacitor. By applying
a voltage this will induce a charge into the TM and electrostatic forces can move and
rotate the mass.

The mass is free to move so the distance that separates it from the surrounding
electrodes will change over time. This will change the measured equivalent capacity of the
virtual capacitors, therefore the GRS can also act as a sensor that is able to measure both
position and attitude of the TM. The measurements are quite noisy when compared, for
example, to the high precision DWS measurement obtained from the OMU. In particular,
also the sensing capabilities of the GRS are subject to saturation; hence even if the gap
between the TM and the cage is of 4 mm, only positions within 2 mm can be measured.
ESA provided all the data regarding sensing capabilities, that are reported in Table 2.5.
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Figure 2.4: The Electrodes (left) and the Caging Mechanism (right)

The Caging Mechanism is a way of ensuring that the TM is stable and fixed in place
during early phases of LISA, when high accelerations could make it impact the lateral
surfaces of the cage, causing scratches and thus modifying the homogeneity of the mass
and its measurement accuracy for the purpose of wave detection. Once LISA has reached
orbital stability, the first phase is indeed Test Mass Release, during which the caging
mechanism is released and the controller has to catch the TM by means of the Electro-
static Suspension before any impact with the cage can occur. The electrodes and caging
mechanism are shown in Fig. 2.4.

It has been proven by LISA PF that the kinetic energy exchanged by trapped residual
gas particles with the TM, during their Brownian motion, can be a major source of
disturbance during the scientific activity. The Vacuum Chamber is thus equipped with a
system that is capable of expelling regularly these trapped particles maintaining a good
level of disturbance attenuation.

The Charge Management System has the task of managing the level of charge that
is accumulated over time on the metallic TM by the GRS’ electrodes and cosmic rays.
It can autonomously discharge the mass by using UV lamps exploiting the photoelectric
effect and keeping the voltages at the required levels.

The GRS has two different working modes: Wide Range (WR) mode and High Res-
olution (HR) mode. In WR the electrodes can apply a higher voltage, thus obtaining a
higher actuation authority on the TM, at the price of increasing noise. This makes it
not suitable to control the mass during science, where accuracy is of paramount impor-
tance, during which HR mode is recommended instead. The higher actuation authority
makes WR mode useful during the Test Mass Release phase, where extremely bad initial
conditions make the control problem challenging.

Noises of these actuators are provided in [11] and shown in Fig. 2.5. An important
observation is that actuation noises on the linear forces on the y and z dimensions are up
to 15 times worse with respect to the ones experienced on the x dimension. In addition,
the torque noises along every dimension are up to 100 times lower w.r.t. the linear forces
along the same directions. ESA provided the saturation values, that are reported in Table
2.6.
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Mode DoF Range Saturation Noise

Wide Range

X 100µm 2 mm 25 nm√
Hz

√
1 +

(
1 mHz
f

)
Y 100µm 2 mm 25 nm√

Hz

√
1 +

(
1 mHz
f

)
Z 150µm 2 mm 40 nm√

Hz

√
1 +

(
1 mHz
f

)
Φ 9 mrad 100 mrad 3 µrad√

Hz

√
1 +

(
1 mHz
f

)
Θ 5 mrad 100 mrad 1.8 µrad√

Hz

√
1 +

(
1 mHz
f

)
Ψ 9 mrad 100 mrad 3 µrad√

Hz

√
1 +

(
1 mHz
f

)

High Resolution

X 25µm 100µm 1.8 nm√
Hz

√
1 +

(
1 mHz
f

)
Y 25µm 100µm 1.8 nm√

Hz

√
1 +

(
1 mHz
f

)
Z 25µm 150µm 3 nm√

Hz

√
1 +

(
1 mHz
f

)
Φ 2.5 mrad 9 mrad 200 µrad√

Hz

√
1 +

(
1 mHz
f

)
Θ 2 mrad 5 mrad 120 µrad√

Hz

√
1 +

(
1 mHz
f

)
Ψ 2.5 mrad 9 mrad 200 µrad√

Hz

√
1 +

(
1 mHz
f

)
Table 2.5: Sensing performance of the GRS

2.4 Star Tracker

The Star Tracker is a device that allows to measure the attitude of the SC with respect to
the Heliocentric Inertial Reference System, also called inertial attitude. Two redundant
star trackers are installed along the x-axis of the spacecraft’s local reference system to-
wards the constellation center. For what concerns the star trackers mounted in LISA PF,
they were the Terma HE–5AS described in [18], which provided an attitude quaternion
in the Hipparcos inertial reference frame. The attitude accuracy of 4.8µrad around x–y
axes and 48µrad around z axis is not enough to acquire and keep the constellation links.
Star trackers are used only during the first two phases and then turned off during science
mode. Nonetheless they could be of use in this work because they are the only sensor to
be able to measure the inertial attitude. For this reason in Table 2.7 are reported all the
characteristics of the aforementioned Star Tracker taken directly from the data sheet [18].

2.5 Constellation Acquisition Sensor

The CAS is a CCD matrix of photodiodes, that is able to detect an incoming laser beam.
It is placed inside the Optical Assembly and assists it in the acquisition and maintenance
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Mode DoF Saturation Value

Wide Range

X 998 nN
Y 1056 nN
Z 595 nN
Φ 11 nNm
Θ 16 nNm
Ψ 9 nNm

High Resolution

X 5.4 nN
Y 5.7 nN
Z 3.2 nN
Φ 0.02 nNm
Θ 0.03 nNm
Ψ 0.015 nNm

Table 2.6: GRS saturation values

Figure 2.5: Noises of the GRS electrodes [11]

of the laser link. This sensor is mainly used during the Constellation Acquisition phase,
but could also be employed to detect when a laser link has been lost, for example after a
meteoroid impact.

For completeness the performance values of this sensor are reported in Table 2.8, taken
from [13].

2.6 Disturbances

In the work [4] an extensive simulation is done of the disturbances affecting the TM at
1 mHz. The results show that the prevalent disturbances are the following, in descending
order of magnitude:

1. Electromagnetic noises these are induced by on-board electronics, Lorentz acceler-
ations due to interplanetary magnetic fields and cosmic radiation;
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Parameter Value
Field of View 22°× 22°

Attitude accuracy
< 1 arcsec on the x–y axis
< 5 arcsec on the z axis

Attitude re-acquisition
3s typical

10s worst case

Slew Rate
< 3°/s at full performance

> 0.3°/s ∧ < 2°/s at reduced performance
Sampling Time 250 ms

Table 2.7: HE–5AS Star Tracker performance

Parameter Value
Measurement Range ±250µrad
Angular Resolution 1µrad

Angular Noise –
Max. Tracking Speed 2.5µrad/s

Table 2.8: CAS Performance

2. Pressure related noises these are induced from momentum exchange with electro-
magnetic waves, out-gassing of the Test Masses, pressure from the laser reflecting
off the surface, residual gas particles in the vacuum chamber and solar pressure.

3. Thermo-elastic noises these are due to the distortions in the spacecraft’s mass dis-
tribution due to thermal effects and the time-varying self-gravity that exerts the SC
on the TM itself.

For some of this disturbances estimated models are available, derived from theoretical
studies or from real data collected during the LISA PF mission.

2.6.1 Test Mass Stiffness

The Test Mass can be seen as composed of an infinite number of infinitesimal volumes.
Each of these volumes is attracted by the spacecraft’s mass in different ways, according
also to the position and attitude of the TM. The relative position of these tiny volumes
with respect to the volumes of mass of the SC is also changing as a function of time, due
to thermo-elastic deformations of the SC and propellant consumption. The macroscopic
effect of all these disturbances is that the TM will have couplings between all of its Degrees
of Freedom. According to [10] it can be modelled as a system of linear and torsional virtual
springs connecting all of its DoFs:

ax
ay
az
αx
αy
αz

 =

[
STT SRT
STR SRR

]

δx
δy
δz
δφ
δθ
δψ

 =


kxx kxy kxz kxφ kxθ kxψ
kyx kyy kyz kyφ kyθ kyψ
kzx kzy kzz kzφ kzθ kzψ
kφx kφy kφz kφφ kφθ kφψ
kθx kθy kθz kθφ kθθ kθψ
kψx kψy kψz kψφ kψθ kψψ




δx
δy
δz
δφ
δθ
δψ


Where ax, ay, az are the linear TM accelerations, αx, αy, αz are the angular TM acceler-
ations and δx, δy, δz, δφ, δθ, δψ are the linear and angular displacements.
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There are works that estimated the values of the stiffness matrix, such as [4] and [8], but
during the mission lifetime there are certain parameters that are subject to variation, such
as the Spacecraft mass due to propellant consumption, the consequent inertia variation,
properties of center of mass and pivot locations. For most of these parametric uncertainties
accurate estimations were not available as of the present study, among these also the TM
stiffness. Therefore in [3] the stiffness matrix is assumed to vary within a symmetric
interval around the null matrix, making its average value during mission the null matrix
itself and simplifying subsequent computations. Nonetheless, in order to account for
all possible disturbances and to effectively test the robustness of the designed drag free
controller, during simulation some disturbances were considered with nominal values.
TMs are acted upon by constant linear and angular disturbances, given by self-gravity:

dsg1 =

1
2
2

 · 10−9 N

dsg2 =

 1
−2
2

 · 10−9 N

Dsg1 =

1
1
1

 · 10−11 Nm

Dsg2 =

1
1
1

 · 10−11 Nm

In addition, every dimension of position and attitude is affected by a jitter component ob-
tained by filtering a white noise. The linear acceleration filter and the angular acceleration
filter have the following transfer functions:

HTMd(s) =
2 · 10−15 (s+ 9 · 10−3) (s+ 1.62 · 10−3) (s+ 2.88 · 10−4) (s+ 5.1 · 10−5)

(s+ 7.74 · 10−3) (s+ 8.8 · 10−4) (s+ 1.3 · 10−4) (s+ 1.8 · 10−5)

HTMD(s) =
9.2 · 10−17 (s+ 9 · 10−3) (s+ 1.62 · 10−3) (s+ 2.88 · 10−4) (s+ 5.1 · 10−5)

(s+ 7.74 · 10−3) (s+ 8.8 · 10−4) (s+ 1.3 · 10−4) (s+ 1.8 · 10−5)

The frequency response of both the noises is reported in Fig. 2.6. As concerns the stiffness
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Figure 2.6: Frequency response of Self-Gravity noise filters

the latest available estimate [10] was used, obtained by means of a FEM model:[
FmjStiff

MmjStiff

]
=

[
STT SRT
STR SRR

]

STT =

−5 · 10−7 −6 · 10−8 −6 · 10−8

−6 · 10−8 −2 · 10−6 −6 · 10−8

−6 · 10−8 −6 · 10−8 −2 · 10−6


SRT =

−4.6 · 10−10 −4.6 · 10−10 −1 · 10−9

−4.6 · 10−10 −4.6 · 10−10 −4.6 · 10−10

−1 · 10−9 −4.6 · 10−10 −4.6 · 10−10


STR =

−1.1 · 10−6 −1.1 · 10−6 −2.2 · 10−6

−1.1 · 10−6 −1.1 · 10−6 −1.1 · 10−6

−2.2 · 10−6 −1.1 · 10−6 −1.1 · 10−6


SRR =

−2 · 10−6 −6 · 10−8 −6 · 10−8

−6 · 10−8 −1 · 10−6 −6 · 10−8

−6 · 10−8 −6 · 10−8 −1 · 10−6



2.6.2 Solar Pressure

Data regarding the Solar Pressure disturbance was reported in [11]. It is modelled as
composed of two contributions: a static DC component, that depends only on the SC’s
attitude and distance with respect to the Sun, and a jitter component whose spectral
density is reported in Fig. 2.7.

In order to compute the vectorial disturbance to apply during simulation, the following
computation, presented in [14], is implemented:

1. Computation of the disturbance norm: the norm is the sum of a constant term
and a jitter component obtained by filtering white noise. The constant term is
kdSC = 6.3513 · 10−5 N and the linear filter transfer function is

H�press =
7.875 · 10−11 (s+ 7.09 · 10−2) (s2 + 0.00578 s+ 2.954 · 10−4)

(s+ 4.712 · 10−3) (s2 + 0.004 s+ 4 · 10−4)
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Figure 2.7: Solar Pressure Jitter

2. Computation of the spacecraft IRF position: the position of the SC expressed in the
Inertial Reference Frame, with center in the Sun, and x axis in the direction of the
Earth–Sun line at Vernal Equinox and z axis perpendicular to Earth’s orbital plane,
can be approximately expressed as

rI
S ≈

 1
1

8.3 · 10−3

 ∗ sin

1.9924 · 10−7

1.9924 · 10−7

1.9924 · 10−7

 t+

 π
2

0
3π
2


where ∗ is the element-wise product of two abstract vectors.

3. Coordinate transformation from IRF to SRF : this is implemented by measuring the
attitude quaternion qSI of the SC with respect to the IRF, obtained from the DFAC
system, and converting it to the corresponding DCM matrix T(qSI). Then applying
the following expression:

r̂ISI =
1

‖rISI‖2

rISI

dS
� = (kdSC + H�press ε) T(qSI) · r̂I

S

where ε represents the white noise.

4. Applying the Absorption coefficients : the original method applied also some absorp-
tion coefficients γ in this way

γ =

γ1

γ2

1


d�press = γ ∗ d�

however for this application the coefficients were all assumed equal to 1.
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The vector d�press is the force generated by the Sun on the SC. The torque D�press is
computed in the following way:

D�press =

 0 −0.6 0
0.6 0 −0.1
0 0.1 0

 d�press

2.6.3 LISA Pathfinder Meteoroid Impacts

In this section the preliminary data derived from the LISA PF mission is presented. It
comprises the measurements of linear and angular momentum transfers [5, 6]. This data
and analysis was used in [3] to assess the performance and stability of the DFACS. Later
in this work the new data will be presented with a more detailed study.

According to [6], the majority of impacts occurred on the lateral +y, +z, −x and
−z surfaces of the spacecraft, as shown in Fig. 2.8. The frequency and intensity of the
impacts was also depending on the spacecraft position on the Lissajous orbit around L1.

Figure 2.8: LISA PF Meteoroid Impacts [6]

The maximum transferred linear momentum was 230µNs and a duration of 0.1 s has
been used in [3]. This yields a maximum impulsive linear force of 2.3 mN. If the impact
causes an angular displacement that is greater than the DWS measuring range the laser
links are lost and the only solution is to enter again in acquisition phase, wasting several
hours of useful science. The angular tolerance is 1µrad, after that degree of rotation the
other SC is not illuminated by the laser beam anymore, this situation is sketched in Fig.
2.9.

A set of MC simulations done in [3] highlighted that an error higher than 10−7 rad was
experienced in the 28% of the cases. Only 2 simulations out of 30 exceeded the threshold
of 10−6 rad: in this case the impact occurred on the panel perimeter and with a force
modulus of 2.3 mN. Due to the higher modulus and the higher arm lengths, stronger
disturbance torques were generated.

The laser beam can be seen as a cone of aperture 2µrad and by considering an arm-
length of 2.5 ·106 km, it approximately corresponds to a circle with a radius of 5 km at the
receiving end. If the SC1 rotation induced by the micro-meteoroid impact is higher than
1µrad, it means that SC2 will be no more illuminated by SC1. However, since SC1 is
still illuminated by SC2 and SC3, its long-arm DWS sensor can still detect the incoming
laser beams. The SC1 attitude control loop can still reconstruct the constellation frame
and control the SC1 attitude recovering the pointing error.
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Figure 2.9: Condition for link loss

Figure 2.10: Effects of meteoroid impacts on TM acceleration



3 | Nonlinear Model

Although the complete final nonlinear model was already developed and validated in [9],
in this chapter a possible derivation is still presented, in order to correctly identify the
way in which each term enters into play, highlighting in particular the disturbances. All
the figures that represent the model are taken from the cited work. Obviously, the final
resulting equations will be the same, so the validation done in [9] is equally valid here.

The derivation starts by identifying the reference frames into play, the signals to be
controlled (outputs) and the signals directly controlled (inputs); then proceeds with the
simplifying assumptions.

During the three mission phases, already presented in Section 1.3, there are different
sets of sensors available, thus, different quantities can be measured, with different accu-
racy. In this chapter the focus is put on the last of these stages, the Drag Free phase,
so were necessary the operating conditions that characterize the sensors and actuators
during that mission phase are assumed.

3.1 Reference Systems

Figure 3.1: LISA Reference Systems

The general configuration of all the Reference Systems, or Reference Frames, is de-
picted in Fig. 3.1. The following frames are defined:

• Inertial Reference Frame IRF: is a quasi-inertial frame, that can be assumed inertial
for this application, with its origin in the Sun. The I3 unitary vector is directed
perpendicular to Earth’s orbital plane around the Sun, I1 is directed along the line

20
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that connects the Sun to Earth at Vernal Equinox and I2 is obtained by the right-
hand rule. It is defined by the set {OI, I1, I2, I3} and represented with the letter
S;

• Constellation Reference Frame CRF: this is a reference frame that is reconstructed
on board and allows the spacecraft to evaluate its attitude with respect to the
constellation formation. The origin is in the spacecraft’s center, c3 is perpendicular
to the plane defined by the two non-parallel incoming laser beams, c1 lies on the
same plane and is defined as the bisectrix of the angle formed by the two incoming
laser beams. CRF is defined by the set {OC, c1, c2, c3} and represented with the
letter C;

• Spacecraft Reference Frame SRF: this is the traditional frame of reference fixed
with the spacecraft’s body. Its origin is on the SC’s center. The s3 unitary vector
is orthogonal to the plane defined by the two Optical Assemblies, s1 lies on the
same plane and is defined as the bisectrix of the nominal inter-telescope angle. It is
defined by the set {OS, s1, s2, s3} and represented with the letter S;

• Two Optical Reference Frames ORF: these have their origins on the OA’s pivot
point. The o1j unitary vector is directed along the longitudinal symmetry line of
the telescope, o3j is parallel to s3. They are defined by ORFj = {Ooj,o1j,o2j,o3j}
and represented by the letter Oj;

• Two Test Mass Reference Frames TMRF: these are the frames fixed with the two
TM’s bodies and have their origins at the respective TMs’ centers. The m1j unitary
vector is directed out of the TM’s surface that faces the drag free direction at working
conditions, m3j points out of the top surface. They are defined by TMRFj =
{Omj,m1j,m2j,m3j} and represented by the letter Mj.

It is useful to notice that the ORFs are not just rotated by a fixed amount around the z
axis with respect to the SRF; but instead they also include the additional rotation of the
OAs with respect to their nominal positions 60° apart.

This total of seven different Reference Frames are either directly measurable or com-
putable on-board. Specifically, the CRF should be computed by implementing the follow-
ing algorithm (here assumed to be carried out on Spacecraft 1, without loss of generality):

1. Laser Beam Vector : in this step the unitary vectors `S
j are computed starting from

the measured azimuth αj and elevation θj angles (measured by DWS). These unitary
vectors represent the direction of the incoming laser beams in the local SRF. The
subscript j refers to the three different spacecrafts, that are numbered 1 to 3. Thus,
for example, SC1 will receive lasers `2 and `3. Recalling that the azimuth angle
is the rotation from o2 in the direction of o1 along the o1–o2 plane and elevation
is the angle from the o1–o2 plane, positive towards the o3 direction; to derive the
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expression it is sufficient to apply the sequence of rotations to o2:

R = Rz(−αj) Rx(θj) =

 cos(αj) sin(αj) 0
− sin(αj) cos(αj) 0

0 0 1

1 0 0
0 cos(θj) − sin(θj)
0 sin(θj) cos(θj)


`

Oj
j = Ro2 =

sin(αj) cos(θj)
cos(αj) cos(θj)

sin(θj)


`S
j = TS

Oj
`

Oj
j (3.1)

where TS
Oj

is the attitude DCM of the Spacecraft with respect to the j-th Optical
Assembly, more details are given later;

2. Constellation Plane Normal : computes the orthogonal vector to the plane P con-
taining both laser vectors. The orthogonal unitary vector is obtained by using the
cross-product:

c3 =
`S

3 × `S
2

‖`S
3 × `S

2‖2

(3.2)

then a unique plane P is defined by

P = {x ∈ R3 | c>3 · x = 0} (3.3)

notice that the order of the two vectors in the cross-product is such to allow c3 to
have a positive component along s3;

3. Bisectrix Computation: the vector on plane P that bisects the angle between `S
2 and

`S
3 can be found by noticing that both the laser vectors are unitary vectors, thus,

they constitute the edges of an isosceles triangle, that has its main vertex in the
origin. Therefore, c1 can be computed by finding the mid-point of the basis of the
triangle and then normalizing it:

∆` = `S
2 − `S

3 basis segment

`M = `S
3 +

1

2
∆` =

1

2
`S

2 +
1

2
`S

3 mid-point

c1 =
`M

‖`M‖
=

`S
2 + `S

3

‖`S
2 + `S

3‖2

(3.4)

4. Remaining Axis : the remaining unitary vector c2 is obtained by imposing the frame
to be right-handed. In a right-handed frame it holds that c2 = c3× c1, where c1 an
c3 were computed in the previous steps.

This algorithm was slightly modified with respect to the one presented in [3]. Specifically,
the implementation of Step 3 reported here is simpler.

The new version has been tested on MATLAB with 100 million randomly generated
laser vectors. The test ensured the following properties in the resulting bisectrix c1:

• c>3 · c1 = 0, that is, the bisectrix should belong to the plane P defined by the
incoming laser beams;

• ‖c1‖2 = 1, because the vector has to be of unitary norm;

• arccos(`S>

2 ·c1) = arccos(`S>

3 ·c1), that is, the angles between the bisectrix and both
`S

2 and `S
3 should be equal, by definition of bisectrix.



Relevant Variables 23

3.2 Relevant Variables

During the Drag Free phase the controller should be able to perform the following tasks:

• Maintain the Laser Links : control the attitude of the spacecraft and the telescopes
inter-angle in a way that keeps the lasers connected;

• Control the Test Mass position: the controller has to keep the TMs at the center of
the cage. It can achieve it by moving the spacecraft around the Test Masses using
the MPS or by directly affecting the single Test Mass. Note that a specific more
stringent performance is required for position control along the Drag Free direction;

• Control the Test Mass attitude: the controller has to regulate the TM cube attitude
so that the laser can reflect off its surface properly.

The aforementioned requirements make the following quantities relevant for control:

• qSC the attitude of the spacecraft with respect to the constellation frame;

• ro1
m1o1

and ro2
m2o2

the position of the Test Masses with respect to the respective cage
centers, in ORF coordinates;

• qm1o1 and qm2o2 the Test Masses’ attitudes with respect to their ORFs;

• ξ1 and ξ2 the rotation angle of the two Optical Assemblies with respect to their
nominal positions.

These quantities can be obtained in different ways:

• qSC can be locally reconstructed starting by the SC–SC DWS measured angles, that
allow for the reconstruction of the CRF frame, from which the quaternion rotation
qSC can be computed;

• ro1
m1o1

and ro2
m2o2

can be completely measured by the GRS or partially (only x–axis)
by the local SC–TM interferometer;

• qm1o1 and qm2o2 can be completely measured by the GRS or partially (pitch and
yaw) by the SC–TM DWS;

• ξ1 and ξ2 are assumed to be directly measured.

3.3 Spacecraft Attitude

In order to maintain both laser links during orbit, the SC attitude should follow the
constellation attitude as close as possible. This is achieved by regulating qSC to zero.

First of all the attitude quaternion can be obtained from the angular velocity by
integrating the following kinematic relationship:

q̇SC =
1

2
qSC ⊗

[
0
ωS

SC

]
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The angular velocity of the spacecraft with respect to the constellation is simply

ωS
SC = ωS

SI − TS
Cω

C
CI

where the SI or CI subscripts indicate the inertial attitudes and TS
C is the coordinate

transformation from the CRF to the SRF.
The angular velocity is affected only by applied torques, thus it is obtained by inte-

grating the expression of its time derivative:

ω̇S
SC = ω̇S

SI − TS
C ω̇

C
CI − Ṫ

S

Cω
C
CI = ω̇S

SI − TS
C ω̇

C
CI + ωS

SC × TS
Cω

C
CI

In this expression ωC
CI and ω̇C

CI depend on the directions of the incoming lasers and, in
general, from the rotation of the whole satellite formation. In [3] approximate expressions
were obtained by simulating LISA orbits:

ωC
CI ≈

 1.7266 · 10−7

1.7266 · 10−7

−9.9687 · 10−8

 ∗ sin

1.9924 · 10−7

1.9924 · 10−7

0

 t+

π20
π
2

 (3.5)

ω̇C
CI ≈

3.4425 · 10−14

3.4425 · 10−14

0

 ∗ sin

1.9924 · 10−7

1.9924 · 10−7

0

 t+

ππ
2

0

 (3.6)

The Inertial angular acceleration of the Spacecraft can be derived from the Angular Mo-
mentum HI

SI:

Ḣ
S

SI = JS ω̇
S
SC

HS
SI = TS

I HI
SI

Ḣ
S

SI = TS
I Ḣ

I

SI + Ṫ
S

I HI
SI = TS

I Ḣ
I

SI − ωS
SI × TS

I HI
SI

JS ω̇
S
SI = Ḣ

S

SI − ωS
SI ×

(
JSω

S
SI

)
where JS is the SC Inertia Matrix with respect to the SRF.

The conservation of Angular Momentum provides the relation for Ḣ
S

SI:

Ḣ
S

SI = External Torques− Internal Torques

External Torques = MS
T + DS

T + DS
�press + MS

met

Internal Torques =
∑
j=1,2

TS
oj

Izz ξ̈
oj
j + TS

oj
M

oj
Ej

+ bS
j ×

(
TS

oj
F

oj
Ej

)
Overall the attitude equations are

q̇SC =
1

2
qSC ⊗

[
0
ωS

SC

]
(3.7)

ω̇S
SC = ω̇S

SI − ω̇S
CI + ωS

SC × TS
Cω

C
CI (3.8)

ω̇S
SI = −J−1

S ωS
SI ×

(
JSω

S
SI

)
+ J−1

S

(
MS

T + DS
T + DS

�press + MS
met

)
+

− J−1
S

∑
j=1,2

TS
oj

Izz ξ̈
oj
j + TS

oj
M

oj
Ej

+ bS
j ×

(
TS

oj
F

oj
Ej

)
(3.9)

TS
C = R(q∗SC) (3.10)

TS
o1

= Rz(
π

6
+ ξ1) (3.11)

TS
o2

= Rz(−
π

6
+ ξ2) (3.12)
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Where

• JS is the SC Inertia Matrix with respect to the SRF;

• MS
T is the Torque provided by the thrusters, that is given in SRF coordinates;

• DS
T is the torque noise of the thrusters;

• DS
�press is the Torque from Solar pressure described in Section 2.6.2;

• MS
met is the Torque exerted by the Meteoroid impact onto the SC;

• Izz is the Inertia of both Optical Assemblies along the z–axis, that passes through
the pivot point;

• ξoj
j is the rotation vector that represents the rotation of the j-th OA, expressed in

the ORF:

ξ
oj
j =

 0
0
ξj

 , ξj ∈ R3, ξj ∈ R

• M
oj
Ej

is the Torque generated by the j-th GRS electrodes on the j-th Test Mass, in
ORF coordinates;

• F
oj
Ej

is the Force applied by the j-th GRS electrodes on the j-th Test Mass, in ORF
coordinates;

• bS
j is the position with respect to the SC CoM (the SRF origin) of the cage center

of the j-th GRS.

3.4 Optical Assembly Rotation

Another task that the controller needs to fulfill in order to keep the laser link active is
the breathing of the OAs inter-angle. Previous works on LISA orbits showed that the
internal angles of the triangular formation varies of ±1° per year, due to the particular
orbit dynamics.

The rotation is relative to the OA’s nominal position. The acceleration on the OA is
due to the Spacecraft’s motion and to the OA’s motion itself:

ξ̈S
ojS

= ξ̈S
oj

= ξ̈S
ojI
− ω̇S

SI

The angular acceleration of the Optical Assembly depends on its angular momentum
H

oj
ojI

:

Ḣ
oj
ojI

= Izz ξ̈
oj
ojI

, Izz ∈ R

H
oj
ojI

= T
oj
I HI

ojI

Ḣ
oj
ojI

= Ḣ
oj
ojI
− ξ̇oj

ojI
×H

oj
ojI

= Ḣ
oj
ojI
− Izz ξ̇

oj
ojI
× ξ̇oj

ojI
= T

oj
I Ḣ

I

ojI

Izz ξ̈
oj
ojI

= Ḣ
oj
ojI
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This last equation shows that for the OA, the variation in angular momentum in the ORF
coordinates is simply given by the total torques acting on the part:

Izz ξ̈
oj
ojI

= M
oj
OAj

+ D
oj
ξj
−M

oj
Ej

Where

• Izz is the inertia of the OA, it is assumed that both have same inertia;

• M
oj
OAj

is the input torque from the OA actuator;

• D
oj
ξj

is the actuation noise;

• M
oj
Ej

is the torque applied by the j-th GRS electrodes to the j-th Test Mass. It
appears with the negative sign because it is a reaction torque.

The response of the OA is assumed to be of the second order, like a torsional spring with
damper. Therefore, other forces have to be included:

Izz ξ̈
oj
oj

= −Izz T
oj
S ω̇

S
SI + M

oj
OAj

+ D
oj
ξj
−M

oj
Ej
− kξ ξ

oj
oj
− β ξ̇oj

oj

ξ̈oj
oj

+
β

Izz
ξ̇oj

oj
+

kξ
Izz
ξoj

oj
= −T

oj
S ω̇

S
SI +

1

Izz

(
M

oj
OAj

+ D
oj
ξj
−M

oj
Ej

)
Where kξ is the proportional constant and β is the damping. Recalling the general form
of a second order system, the characteristic parameters are

ωn =

√
kξ
Izz

Natural Frequency

ζ =
β

2
√

Izz kξ
Damping Coefficient

Overall the equations of the OAs rotation are

ξ̈oj
oj

=
1

Izz

(
M

oj
OAj

+ D
oj
ξj
−M

oj
Ej

)
− T

oj
S ω̇

S
SI −

β

Izz
ξ̇oj

oj
− kξ

Izz
ξoj

oj
(3.13)

To1
S = TS>

o1
= Rz(−

π

6
− ξ1) (3.14)

To2
S = TS>

o2
= Rz(

π

6
− ξ2) (3.15)

The term ω̇SSI is given in Eq. 3.9.

3.5 Test Mass Attitude

The Test Mass attitude is controlled by means of the GRS electrodes. It is important to
keep the Test Mass aligned with the cage frame in order to let the lasers properly reflect
off its front surface.

As for the SC attitude case, it is achieved by regulating the relative attitude qmj
to

zero. This quantity represents the relative attitude of the mass with respect to the cage
frame. It is obtained by integration of the following kinematic expression:

q̇mj
=

1

2
qmj
⊗
[

0
ω

mj
mjoj

]
, qmj

= qmjoj
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The angular velocity ω
mj
mjoj is given by the difference:

ωmj
mjoj

= ω
mj

mjI
− Tmj

oj
ξ̇oj

oj
− T

mj

S ωS
SI

which implies the following expression for the accelerations:

ω̇mj
mjoj

= ω̇
mj

mjI
− Tmj

oj
ξ̈oj

oj
− T

mj

S ω̇S
SI − Ṫ

mj

oj
ξ̇oj

oj
− Ṫ

mj

S ωS
SI =

= ω̇
mj

mjI
− Tmj

oj
ξ̈oj

oj
− T

mj

S ω̇S
SI + ωmj

mjoj
× Tmj

oj
ξ̇oj

oj
+ ω

mj

mjI
× T

mj

S ωS
SI

Again Angular Momentum provides the relation for finding the inertial angular accelera-
tion of the Test Mass:

Jmj
ω̇

mj

mjI
= Ḣ

mj

mjI
− ωmj

mjI
×
(

JmjIω
mj

mjI

)
Ḣ

mj

mjI
= Tmj

oj

(
M

oj
Ej

+ D
oj
Ej

+ M
oj
mjStiff

)
where

• Jmj
is the inertia matrix of the cubic Test Mass;

• M
oj
Ej

is the torque applied by the j-th GRS electrodes to the j-th Test Mass;

• D
oj
Ej

is the noise on the torque provided by the GRS electrodes;

• M
oj
mjStiff = Jmj

α
oj
mjStiff is the stiffness torque discussed in Sec. 2.6.1.

Overall the equations describing the Test Mass attitude are

ω̇mj
mjoj

= ω̇
mj

mjI
− Tmj

oj
ξ̈oj

oj
− T

mj

S ω̇S
SI + ωmj

mjoj
× Tmj

oj
ξ̇oj

oj
+ ω

mj

mjI
× T

mj

S ωS
SI (3.16)

ω̇
mj

mjI
= J−1

mj
Tmj

oj

(
M

oj
Ej

+ D
oj
Ej

)
+α

oj
mjStiff − J−1

mj
ω

mj

mjI
×
(

JmjIω
mj

mjI

)
(3.17)

ξ̈oj
oj

is given in Eq. 3.13

ω̇S
SI is given in Eq. 3.9

Tmj
oj

= R(q∗mj
) (3.18)

T
mj

S = Tmj
oj

T
oj
S (3.19)

T
oj
S are given in Eq. 3.14, 3.15

3.6 Test Mass Position

The SC position is not directly controlled. Instead, it is controlled by acting on the
quantity r

oj
mjoj . This position is actuated by the GRS electrodes only along the x and y

directions inside the ORF. Along the Drag Free direction it is the SC itself that follows
the Test Mass by using the MPS. This is done in order to reduce the actuation noise that
affects the TM along that direction.

The relative position between the TM and the Spacecraft can be obtained by the
inertial position rI

mjI
expressed as the sum of different offsets, as shown in Fig. 3.2:

rI
mjI

= TI
oj
roj

mjoj
+ TI

oj
boj

m + TI
S b

S
S + rI

SI

roj
mjoj

= T
oj
I r

I
mjI
− boj

m − T
oj
S b

S
S − T

oj
I r

I
SI

where
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Figure 3.2: TM1 vector schema

• boj
m is the position of the cage center with respect to the pivot point of the OA, in

ORF coordinates;

• bS
S is the position of the OA pivot point with respect to the Spacecraft’s CoM;

• rI
SI is the inertial position of the Spacecraft in the Heliocentric Inertial reference

frame.

The relative velocity and acceleration of the TM can be found by taking successive time
derivatives:

ṙoj
mjoj

= T
oj
I ṙ

I
mjI
− T

oj
I ṙ

I
SI − ω

oj
ojI
× T

oj
I

(
rI

mjI
− rI

SI

)
+ ω

oj
ojS
× T

oj
S b

S
S =

= T
oj
I ṙ

I
mjI
− T

oj
I ṙ

I
SI − ω

oj
ojI
× roj

mjoj
− ωoj

ojI
× boj

m − T
oj
S ω

S
SI × bS

S

r̈oj
mjoj

= T
oj
I

(
r̈I

mjI
− r̈I

SI

)
− ω̇oj

ojI
× roj

mjoj
− ωoj

ojI
× ṙoj

mjoj
− ω̇oj

ojI
× bm+

+ ω
oj
ojS
× T

oj
S

(
ωS

SI × bS
S

)
− T

oj
S ω̇

S
SI × bS

S − ωojI × T
oj
I

(
ṙI

mjI
− ṙI

SI

)
(
ṙI

mjI
− ṙI

SI

)
= TI

oj
ω

oj
ojI
× roj

mjoj
+ TI

oj
ṙoj

mjoj
+ TI

oj
ω

oj
ojI
× boj

m + TI
Sω

S
SI × bS

S

ω
oj
ojI

= T
oj
S ω

S
SI + ω

oj
ojS

Finally, by substituting and cancelling all the terms:

r̈oj
mjoj

= T
oj
I

(
r̈I

mjI
− r̈I

SI

)
− 2ω

oj
ojI
× ṙoj

mjoj
− Ω(ω

oj
ojI

) roj
mjoj
− Ω(ω

oj
ojI

) boj
m +

− T
oj
S Ω(ωS

SI) b
S
S

Ω(ω
oj
ojI

) = [ω̇
oj
ojI
×] + [ω

oj
ojI
×]2

Ω(ωS
SI) = [ω̇S

SI×] + [ωS
SI×]2

where

• −[ω̇×] represents the terms relative to the Euler force or Azimuthal force: a fictitious
force acting in the inverse direction of the tangential velocity, generated from the
angular acceleration of the Optical Assembly with respect to the inertial frame;

• −[ω×]2 represents the terms relative to the centrifugal force: a fictitious force push-
ing the TM radially away from an axis parallel to the axis of rotation of the OA
and passing through the cage center;
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• −2 [ω×] represents the terms relative to the Coriolis force: a fictitious force acting
always orthogonal to the motion of the Test Mass and to the axis of rotation of the
OA.

The previous equations show the effects of rotating frames on the relative acceleration
between Test Mass and Spacecraft. They suggest also that in order to reduce accelerations
on the TMs due to OA and SC rotations, the quantities ‖bm‖ and ‖bS‖ should be as small
as possible.

In order to derive a complete expression, the inertial accelerations have to be examined
by using simple Newtonian mechanics. First the forces acting on the Test Mass:

mj r̈
I
mjI

= −µ�
mj∥∥∥rI
mjI

∥∥∥3

2

rI
mjI
− µ⊕

mj∥∥∥rI
mjI

∥∥∥3

2

rI
mjI

+ TI
oj

(
F

oj
Ej

+ d
oj
Ej

+ F
oj
mjStiff

)
where

• µ� and µ⊕ are the Gravitational Parameters respectively of the Sun and the Earth;

• mj is the mass of the j-th Test Mass;

• d
oj
Ej

is the disturbance on the force provided by the GRS electrodes;

• F
oj
mjStiff = mj a

oj
mjStiff is the force applied by the Stiffness term discussed in Section

2.6.1.

Next the forces acting directly on the Spacecraft:

mS r̈
I
SI = −µ�

mS

‖rI
SI‖

3

2

rI
SI − µ⊕

mS

‖rI
SI‖

3

2

rI
SI −

∑
j=1,2

TI
oj

(
F

oj
Ej

+ d
oj
Ej

)
+

+ TI
S

(
FS

T + dS
�press + FS

met

)
− ṁS ṙ

S
SI

where

• FS
T is the force generated by the thrusters;

• dS
�press is the force generated by the Solar pressure discussed in Section 2.6.2;

• FS
met is the force generated by the Meteoroid Impact.

In addition, the following simplifying assumptions have been made:

1. ṁS/mS ≈ 0 because in science mode, during the main mission phase, the amount
of thruster propellant expelled at any given instant is very low, because it is used
only to apply small corrections;

2. perturbations due to Earth’s gravity have been considered approximately zero in
[9];

3. the Gravity Gradient has been approximated in the following way:

−µ�

(
rI

mjI∥∥rmjI

∥∥3

2

− rI
SI

‖rI
SI‖

3

2

)
≈ kg ∆rI

SI

where ∆rI
SI is a small displacement vector.
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The final equations are

r̈oj
mjoj

= T
oj
I kg ∆rI

SI +
1

mj

(
F

oj
Ej

+ d
oj
Ej

)
+ a

oj
mjStiff −

1

mS

T
oj
S

(
FS

T + dS
�press + FS

met

)
+

+
1

mS

∑
i=1,2

Toj
oi

(
Foi

Ei
+ doi

Ei

)
− Ω(ω

oj
ojI

) boj
m − T

oj
S Ω(ωS

SI) b
S
S − 2ω

oj
ojI
× ṙoj

mjoj
+

− Ω(ω
oj
ojI

) roj
mjoj

(3.20)

Ω(ω
oj
ojI

) = [ω̇
oj
ojI
×] + [ω

oj
ojI
×]2 (3.21)

Ω(ωS
SI) = [ω̇S

SI×] + [ωS
SI×]2 (3.22)

ω
oj
ojI

= T
oj
S ω

S
SI + ω

oj
ojS

(3.23)

ω
oj
ojS

= ξ̇
oj
j (3.24)

ωS
SI given in Eq. 3.9

T
oj
I = T

oj
S TS

I (3.25)

T
oj
S are given in Eq. 3.14,3.15

To2
o1

= To1>
o2

= To2
S To1>

S (3.26)

To1
o2

= To2>
o1

= To1
S To2>

S (3.27)

3.7 Linearized Model

The DFAC System was designed by means of the mixed sensitivity H∞ design. Therefore,
it is based on the linearized plant.

The linearized plant can be obtained from the nonlinear model by neglecting the
nonlinear terms and by linearizing all coordinate transformations.
In addition, instead of considering a whole three dimensional vector for the angular posi-
tion of each Optical Assembly, only one scalar variable ξ is used. Indeed the vector ξ

oj
j has

always the same structure, with the first two components equal to zero and the last one
that determines its norm. The breathing angle effect requires the whole OA inter-angle
to vary of ±1° per year. This implies that each of the telescopes needs to independently
rotate of the same amount each year, with opposite signs. For this reason the following
relations hold true:

ξ = ξ1 = −ξ2

ξ̇ = ξ̇1 = −ξ̇2

MOA = MOA1 = −MOA2

This simplification assumes that the OA assemblies will be rotated by the controller in
such a way to only follow the breathing angles, and not, for example, to correct other
rotations or disturbances. In other words, the OA actuation is only partially exploited,
because it is just assigned with the task of tracking the nominal varying angles. This is
part of the decoupling principle applied during the design process of the DFACS in [3],
that will explained later in this section. If, on one hand, this technique leads to an extreme
simplification of the design procedure, on the other hand, it could also limit the control
effectiveness in certain situations, such as a meteoroid impact, when it could be handy to
slightly adjust the OA rotations in order to better track the moving lasers coming from
the other Spacecrafts in the formation.
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The state is defined by the vectors

p =
(
qSC, r

o1
m1o1

, qm1o1 , r
o2
m2o2

, qm2o2 , ξ
)

, p ∈ R16

v =
(
ωS

SC, ṙ
o1
m1o1

, ωo1
m1o1

, ṙo2
m2o2

, ωo2
m2o2

, ξ̇
)

, v ∈ R16

x =

[
p
v

]
, x ∈ R32

and the input vector by

u =
(
FS

T, MS
T, fo1

E1
, Mo1

E1
, fo2

E2
, Mo2

E2
, MS

OA

)
, u ∈ R17

f
oj
Ej

=

[
0 1 0
0 0 1

]
F

oj
Ej

, f
oj
Ej
∈ R2

where the electrode along the direction o1 is not employed to apply a force on the TM’s
CoM.
The linearization of the quaternion derivative is simply:

q̇ ≈ 1

2
ω

and the linearization of the coordinate transformations:

T̄
o1
S = Rz(−

π

6
) (3.28)

T̄
o2
S = Rz(

π

6
) (3.29)

T̄
o1
o2

= Rz(−
π

3
) (3.30)

T̄
o2
o1

= Rz(
π

3
) (3.31)
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The final state space representation of the linear model is

ẋ =

[
ṗ
v̇

]
=

[
App Apv
Avp Avv

]
x+

[
0
Bv

]
u (3.32)

App = 0

Apv =



1
2

I3 0 0 0 0 0
0 I3 0 0 0 0
0 0 1

2
I3 0 0 0

0 0 0 I3 0 0
0 0 0 0 1

2
I3 0

0 0 0 0 0 1



Avp =



0 0 0 0 0 0
0 STT STR 0 0 0
0 SRT SRR 0 0 0
0 0 0 STT STR 0
0 0 0 STT STR 0

0 0 0 0 0 − kξ
Izz


Avv =

[
0 0

0> − β
Izz

]

Bv =


0 J−1

S −J−1
S b1 × T̄

S
o1
P> −J−1

S T̄
S
o1
−J−1

S b2 × T̄
S
o2
P> −J−1

S T̄
S
o2

0
−m−1

S T̄
o1
S 0 (m−1

S + m−1
M )P> 0 m−1

S T̄
o1
o2
P> 0 0

0 0 0 J−1
M 0 0 0

−m−1
S T̄

o2
S 0 m−1

S T̄
o2
o1
P> 0 (m−1

S + m−1
M )P> 0 0

0 0 0 0 0 J−1
M 0

0 0 0 0 0 0 1
Izz


P =

[
0 1 0
0 0 1

]
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In this Chapter the DFAC System designed in [3] is briefly presented, with particular
emphasis on the architectural aspects that are relevant for the work of this thesis.

The DFAC System was already in place and this Thesis builds on top of it. It performs
both the drag–free control and the Spacecraft attitude control, during the Science phase
of the mission, when the actual gravitational wave detection takes place. The drag–free
control is the task of controlling the SC’s position and the TM’s attitude and position
simultaneously, in such a way to ensure a drag–free movement of both TMs along their
respective geodesics. It has to take into account the disturbances affecting the three
bodies and reject them within the requirements reported in the SoW. While the SC
Attitude control is the task of correctly rotating the SC in order to be able to maintain
laser contact with the satellite formation during the whole mission.

4.1 Decoupled Architecture

One of the main difficulties in designing this DFACS system was the large number of
coupled degrees of freedom of the complex multi–body system (SC + TMs + OAs). In
order to reduce this complexity, a special decoupled architecture is employed.

Typically, a decoupled architecture would consist in a series of parallel SISO con-
trollers, each of which would control a single DoF; then, each of the signals would be
multiplied by a decoupling matrix that yields the final commands u to be forwarded
to the actuators. For example, a possible decoupling matrix in this case could be the
pseudo-inverse of Bv:

B†v = B>v (Bv B
>
v )−1 ∈ R17,16 : Bv B

†
v = I16

where 16 SISO controllers would generate a command vector uSISO ∈ R16 (one for each
DoF to be controlled), then to obtain the 17 actuator commands u, the decoupling product
would be performed u = B†v uSISO ∈ R17.

Nonetheless, in the specific case of this DFAC system, there were additional constraints
on the actuators, that prevented the application of such a simple decoupling approach.
Specifically, there is a constraint that prevents the position of the TMs along the z-axis
to be controlled only by the GRS electrodes in High Resolution mode. The way it was
designed forces the average TM height to be controlled by means of the MPS thrusters
and the differential TM height to be controlled by the GRS electrodes; the average and
differential heights are defined in the following way:

zavg =
zm1 + zm2

2

zdiff =
zm1 − zm2

2

33
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Another constraint prevents the control of the TM’s position along the x-axis (drag–free
direction) through the GRS electrodes: it can only be performed by using the thrusters.

In order to fulfill all these constraints and to keep as much decoupling as possible,
an optimization problem has been solved. The problem has been slightly simplified by
noticing that the Optical Assemblies are already completely decoupled from the rest of the
DoFs in the linearized model, as can be seen in Eq. 3.32. For this reason we can define

a smaller matrix B′v, such that Bv =

[
B′v 0
0 I−1

zz

]
, with B′v ∈ R15,16. The optimization

problem returns as a result the matrix Bi
v ∈ R16,15. The relationships between the DFACS

controller outputs and the decoupled actuator inputs are reported here:

FTx = −355.3605ux1 − 355.3605ux2
FTy = −549.659ux1 + 549.659ux2
FTz = −783.0415uzavg

MT =

790 0 0
0 780 0
0 0 980

 uθSC
FE1x

= FE2x
= 0

FE1y
= 1.9574uy1 − 0.0013uy2

FE1z
= 1.96uzdiff

FE2y
= 1.9574uy2 − 0.0013uy1

FE2z
= −1.96uzdiff

ME1 = 6.9123 · 10−4 I3 uθm1

ME2 = 6.9123 · 10−4 I3 uθm2

where

• uxi , uyi , i = 1, 2 are the commands from the TM’s x and y position SISO controllers;

• uzavg , uzdiff are the commands from the average and differential TM height con-
trollers;

• uθSC are the commands from the SC attitude controllers;

• uθm1 ,uθm2 are the commands from the TMs attitude controllers.

4.2 SISO Controllers

The DFAC System employs a total of 16 SISO LTI controllers, obtained from the mixed–
sensitivity H∞ procedure, in order to fulfill all the requirements contained into the SoW.
The exact details of the design procedure can be found in [3]. In this Section, they
are presented in general, with a focus on the correspondence between sensor signals and
controllers.

All controllers have been designed in the continuous domain and then discretized
afterwards at 10 Hz, with the Tustin method, that allows to keep the frequency response
the closest to the continuous version.
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4.2.1 Spacecraft Attitude Control

During Science mode the constellation is maintained and the lasers are always used as a
source for the SC attitude control, because the SC–SC DWS sensors are very accurate
and have fast sampling frequencies. The main goal of managing the SC’s attitude is to
keep these sensors in their operating ranges, that is, to maintain laser contact between
satellites. This can be achieved by solving two distinct control problems:

1. the SC attitude control, actuated by the MPS thrusters;

2. the OA inter–angle control, actuated by a specific motor.

As concerns the first problem, it is handled by 3 SISO LTI controllers. They have
16 internal states and are not strictly proper systems (D matrix is not zero). The error
signal, used as input to the controller, is the vector part of the error quaternion qSC , that
represents the rotation from the desired inertial Spacecraft attitude qCI to the real inertial
attitude qSI . The qCS quaternion (inverse w.r.t. the error signal) is computed online by
starting from the angles measured by the SC–SC DWS sensors and then following the
steps of the algorithm shown in Section 3.1.

The second problem is handled by a single SISO LTI controller. It is a second order
system, also not strictly proper. The reference angle is the nominal pulsating inter–
telescope angle and is assumed to be modelled by a sine wave with amplitude 0.5° and
angular frequency of 2.2856 · 10−7 rad/s. The error signal, used as input to the controller,
is simply the difference between the reference value and the actual value measured by an
ad hoc sensor.

4.2.2 Drag–Free Control

The Drag–Free Control is divided into different control problems:

1. the TM position control;

2. the SC position control, that happens indirectly as a byproduct of the previous task;

3. the TM attitude control.

The first problem is managed by six different SISO controllers in total: two for each
TM’s x and y axis translations and two for the average and differential heights. The ref-
erence signals are all zeros, that is the goal is to keep the TMs in the center of the cage, at
the origin of their frame of reference. The measurements of the x-axis translation for each
TM, comes from the respective local SC–TM interferometer. While the measurements of
the y and z axis translations for each TM, comes from the GRS electrodes, that can act
both as actuators and sensors, as explained in Section 2.3.

The second problem is indirectly solved by distributing the control output signals com-
ing from the TM position controllers across the MPS thrusters and the GRS electrodes.
A critical aspect here is that if there happens to be an unmodeled constant disturbance
acting on one of the TMs along the x-axis (drag–free direction), given that there is no
actuator directly acting on the TM along this direction, the SC will find itself “following”
the drifting TM, with no force counteracting this movement.

As regards the third control problem, it is handled by six SISO LTI controllers (three
for each TM). The error signal used as input to the controllers is the vector part of the
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conjugate of the TM attitude quaternion q∗mi . The attitude of the Test Mass during
science mode is measured by mixing the internal SC–TM DWS laser measurements (more
accurate and fast) with the GRS electrodes measurements. Specifically, the internal SC–
TM DWS can output the pitch and yaw angles, but not the roll angle, that is taken from
the GRS.

4.3 Simulation

In this Section a series of results with plots, taken from a simulation of the DFAC System
designed in [3], are shown in order to give the full picture of the performances achieved
before going into the issue of meteoroid impacts. The simulation was done via Simulink
r2019b, with the fixed–step ode-4 solver (Runge-Kutta), step–size equal to 0.01 s and
duration of 10000 s.

Figure 4.1a shows the SC attitude rotation error signal, converted to rotation vector
θSC or, equivalently, to Roll–Pitch–Yaw angles. A constant steady–state error on the
y-axis is visible from this simulation. This is due to the particular initial orientation of
the Spacecraft and the constant term of the Solar pressure, that is constantly pushing
on it. The counteracting torque from the SC attitude controller can be seen both from
the direct output in Fig. 4.3a and from the torque applied by the MPS system on the
spacecraft’s center of mass, Fig. 4.4b.

Figure 4.1b shows the tracking error signal of one of the OAs.

(a) SC attitude w.r.t. CRF θSC (b) OA angle tracking error

Figure 4.1: DFACS – SC Attitude Control System

Figure 4.2 shows the position and the attitude converted to rotation vector θmioi , for
both TMs.

Figure 4.3 shows all the outputs from the SISO LTI controllers in the DFAC System.
These output are the ones that get combined by the decoupling matrix to generate the
commands for the actuators, as illustrated in Section 4.1.

Figure 4.4 shows the outputs from all of the actuators available on the Spacecraft.



Simulation 37

(a) TM1 position w.r.t. ORF1 ro1
m1o1 (b) TM2 position w.r.t. ORF2 ro2

m2o2

(c) TM1 attitude w.r.t. ORF1 θm1o1 (d) TM2 attitude w.r.t. ORF2 θm2o2

Figure 4.2: DFACS – Drag–Free Control
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(a) SC attitude control (b) TM x position control

(c) TM y position control (d) TM average z position control

(e) TM differential z position control (f) TM1 attitude control

(g) TM2 attitude control

Figure 4.3: DFACS – SISO LTI controllers outputs



Simulation 39

(a) MPS force (b) MPS torque

(c) GRS1 force on TM1 (d) GRS2 force on TM2

(e) GRS1 torque on TM1 (f) GRS2 torque on TM2

Figure 4.4: DFACS – Saturated actuator commands to the plant



5 | Meteoroid Impact Analysis

This Chapter describes the first step of the work of this thesis. First an analysis of the
available meteoroid data is performed, in order to characterize the type of meteoroid
objects that are of concern for this mission, according to the ESA. Then the task of
extending the dataset with labels is solved.

One major goal has been to come up with efficient ways to label the data. Label-
ing process consists in categorizing each meteoroid impact according to its convergence
properties and laser loss behavior. As regards convergence labels, an analysis of the con-
vergence boundaries of the system already in place (DFAC System) is conducted, in order
to establish some approximated classification thresholds, to reduce the number of impacts
for which a complete simulation is required. Finally, the laser loss problem is analyzed,
and again data is labelled following an efficient, but approximated approach, refined by
complete simulations on a smaller dataset.

5.1 Data Analysis

After the preliminary study that was conducted in [3], briefly presented in Section 2.6.3,
the conclusion was that for the majority of impacts, the DFAC System, already active
during Science mode, was sufficient to keep the whole system convergent and under con-
trol. In rare cases these impacts were strong enough to cause divergence issues and force
the controller to switch back to the Constellation Acquisition phase. The problem with
reacquiring the constellation is that this process is forced to be very slow, with an acqui-
sition time that can be of several hours. Nonetheless, the critical impacts were thought
to be rare enough to not justify an ad–hoc recovery system.

Later on, ESA sent new data with updated meteoroid impacts that can be expected
during the orbits designed for the LISA mission. This new data dramatically changed
the situation, because it contained numerous high–energy impacts that would require the
whole system to perform a complete laser link re-acquisition maneuver. If the mission
were to be interrupted every time by a strong impact requiring several hours of recovery,
then a non negligible percentage of the mission’s time and money would be wasted in
recovery, instead of the actual gravitational wave detection process.

The data from ESA consists of 219728 impacts, each one described by the following
features:

1. Particle Linear Momentum p: the norm of the linear momentum of the particle;

2. Transferred Linear Momentum pi: the linear momentum transferred to the SC
during impact, along each axis;

3. Transferred Angular Momentum Hi: the angular momentum transferred to the SC
during impact, along each axis;

40
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4. Speed Variation ∆v: the variation in the norm of the particle’s speed due to impact;

5. Angular Speed Variation ∆ω: the variation in the norm of the particle’s angular
speed due to impact;

6. Impact Point ri: the impact point on the outer surface of the Spacecraft.

All vectors are in SRF coordinates, hence the missing S superscript.
A first set of information, that can be inferred easily from this data, concerns the

shape of the Spacecraft. Figure 5.3 shows all the impact points contained in the file from
ESA from different points of view.

A sanity check has been performed in order to confirm that the transferred angular
momentum reported in the file is obtained as the cross product of the transferred linear
momentum and the impact position: Hi = ri × pi. This implies that, depending on the
impact location, the SC could experience high torques due to the points that are further
away from the SC’s center of mass. Particularly, the top solar panel and the bottom
antenna are critical points in this regard.

The main quantities affecting the SC are the transferred linear and angular momenta.
These features span several order of magnitude, for this reason the impacts were first
grouped using this criteria. Different signs are treated as different groups. Table 5.1
reports them in detail.

Number of Cases
Id Range px py pz Hx Hy Hz

G−7 [−10−2; −10−3) 29 35 183 164 60 54
G−6 [−10−3; −10−4) 296 362 1393 967 809 355
G−5 [−10−4; −10−5) 1745 1687 4922 3507 3186 2274
G−4 [−10−5; −10−6) 6492 6137 11785 8528 8063 7451
G−3 [−10−6; −10−7) 12781 12943 14571 13489 12598 13011
G−2 [−10−7; −10−8) 15392 13287 18999 17637 17110 15796
G−1 [−10−8; −10−9) 19116 18499 24869 18250 19324 19167
G0 [−10−9; 10−9] 110054 110696 89421 89032 96773 104099
G1 (10−9; 10−8] 18199 20079 16265 20101 19833 18924
G2 (10−8; 10−7] 14550 15225 15553 18639 17040 15364
G3 (10−7; 10−6] 12421 12424 12325 13936 12813 12925
G4 (10−6; 10−5] 6302 6111 6599 9727 8042 7277
G5 (10−5; 10−4] 1911 1942 2319 4434 3255 2406
G6 (10−4; 10−3] 426 295 455 1157 721 584
G7 (10−3; 10−2] 14 6 54 153 86 41

Table 5.1: Impact grouping by order of magnitude of transferred momenta

As can be seen clearly from Figure 5.1, that shows the distribution of impacts across
the groups, most of the transferred momenta are in the range of group G0, that represents
orders of ±10−10 and smaller. These are very low–energy impacts and do not cause any
convergence issues.

Figure 5.2 shows, on a per group basis, the percentage distribution on the three x, y
and z axis. A few remarks can be drawn from it:
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(a) Transferred Linear Momentum (b) Transferred Angular Momentum

Figure 5.1: Samples count for each impact group

1. most of the stronger hits in the negative axis directions (-x, -y and -z) transfer the
linear momentum along the -z direction, this is mainly due to the wide solar panel
on the top of the Spacecraft (area ≈ 13.5 m2);

2. among the stronger hits in the positive axis directions (+x, +y and +z) the linear
momentum transfer are more evenly spread out, even if a slight preference for the
+z direction can be observed for the most powerful impacts;

3. most of the stronger impacts transfer angular momentum along the x axis, this again
is due to the long rectangular solar panel, that when hit on the border furthest from
the SC’s CoM offers a long rotation arm to the meteoroid, exerting higher torques
on the SC’s x axis.

(a) Transferred Linear Momentum (b) Transferred Angular Momentum

Figure 5.2: Percentage distribution on the three axis for each group

5.2 Convergence Boundaries

Within the context of data labeling, a first categorization of the impacts is done according
to the convergence properties, that is, if an impact causes or not divergence and, if it does,
in what parts of the system.



Convergence Boundaries 43

(a) Perspective

(b) Left side (c) Right side

(d) Top side (e) Front side

Figure 5.3: Impact points from the ESA file
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One approach would be to start a complete simulation for each impact contained in the
database, but this would require a huge amount of time, considering that a simulation of
1000 s requires approximately from 20 to 70 seconds, that (in the best case) would require
in total slightly more than 50 days of continuous simulations.

The approach followed in this Section is to explore the convergence boundaries of the
simulator itself by pushing it to the limits of convergence with artificial impact values and
then infer from these some approximate thresholds to be used for fast impact classification.
Then, most of the impacts can be classified immediately using these thresholds and only
a small fraction will need a complete simulation in order to be classified.

In all simulations the impacts happen at instant ti = 500 s, a time window that allows
any initial transient effect to dissipate before impact.

ESA did not provide any information regarding impact duration. Therefore, a duration
of ∆ti = 0.1 s has been assumed, even if, tests with different duration values suggest that
this quantity does not affect in a relevant way the simulation results. Indeed, the shorter
the duration the greater the force and torque exerted by the meteoroid on the SC’s CoM,
but these great force and torque are then applied for shorter time intervals, making it
almost equivalent to a slightly larger impact duration, with smaller force and torque, but
applied for a longer time.

By experimenting with the impacts the following preliminary remarks can be made:

1. if the Spacecraft’s attitude becomes divergent, then the whole system becomes di-
vergent over time, including the Test Masses, in short:
SC attitude divergent =⇒ TM attitude and position divergent;

2. if the Spacecraft’s attitude remains convergent, then the TM’s attitude will remain
convergent too, for both TMs, in short:
SC attitude convergent =⇒ TM attitude convergent;

3. if the Spacecraft’s attitude remains convergent, the TM’s position can still become
divergent over time, due to the linear momentum transferred by the meteoroid.

These remarks suggest mainly two ideas: that there is some degree of separation between
the attitude divergence problem and the position divergence one and that the SC attitude
and TM attitude are strongly coupled, from a convergence point of view, thus could be
treated as a single critical factor in the convergence analysis.

Figure 5.5 shows some relevant signals taken from a simulation of one of the strongest

impacts, having the following features: impact id 1, pi =
[
−2.5 −0.9 14.9

]> · 10−3 Ns,

Hi =
[
−4 19.9 0.6

]> · 10−3 Nms and rS
i =

[
−1.421 −0.301 0.528

]>
m. The impact

point for this meteoroid is on the border of the solar panel, generating a large torque in
the +y rotation direction, as shown in Figure 5.4.

5.2.1 SC and TM Attitude Convergence Boundary

First step of the analysis is to find the convergence boundaries for the SC attitude.
A preliminary remark that simplifies this analysis is that the SC’s attitude convergence

is almost not affected (or affected very little) by the linear momentum transferred during
impact. This can also be seen from Equation 3.9, where the only terms indirectly affected
by the linear momentum are

−J−1
S bS

1 ×
(
TS

o1
Fo1

E1

)
− J−1

S bS
2 ×

(
TS

o2
Fo2

E2

)
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Figure 5.4: Meteoroid (id 1) impact point (red dot)

where Fo1
E1

and Fo2
E2

are the forces generated by the two GRSs on the TMs, that try to
compensate the transferred linear momentum while controlling the TMs’ positions. In
Fig. 5.5g the saturation limits of the GRS force are visible:∥∥∥Foj

Ej

∥∥∥
∞
< 6 · 10−9 N =⇒

∥∥∥Foj
Ej

∥∥∥
2
< ≈ 1.0392 · 10−8 N, j = 1, 2

this also puts an approximate bound on how large these two aforementioned terms can
be in norm:

1.
∥∥∥bS

j ×
(

TS
oj

F
oj
Ej

)∥∥∥
2
≤
∥∥bS

j

∥∥
2

∥∥∥Foj
Ej

∥∥∥
2
< 1.0392 · 10−8

∥∥bS
j

∥∥
2

2.
∥∥bS

j

∥∥
2
< 5 · 10−1 m

(1) + (2) =⇒
∥∥∥bS

j ×
(

TS
oj

F
oj
Ej

)∥∥∥
2
< ≈ 5.1962 · 10−9

Furthermore, considering that the SC’s inertia matrix JS is nearly diagonal, it can be
assumed that

J−1
S ≈

1.3 0 0
0 1.3 0
0 0 1

 · 10−3 kg−1

it can be noticed that a product by the J−1
S matrix will further reduce the euclidean norm

of the vectors contained in the terms above.
To summarize, even after one of the strongest impacts available in the dataset, the

maximum order of magnitude of the acceleration terms due to the GRS forces, trying
to counteract the transferred linear momentum, is 10−9 or less. All other terms in the
SC attitude dynamics do not depend on the linear momentum of the meteoroid. The
angular momenta involved in the loss of convergence, that will be explored later in this
Section, are increased with steps of order 10−5 Nms and will involve impact torques of order
10−4 Nm (assumed impact duration 0.1 s). For this reason it is reasonable to conduct the
exploration process by fixing the impact transferred linear momentum and only varying
the transferred angular momentum, thus reducing the dimensionality of the search.

As already stated, the exploration process consists of simulating different artificial
impacts, with fixed transferred linear momentum pi, and variable transferred angular
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(a) SC attitude w.r.t. constellation frame (b) TM1 attitude

(c) TM1 position (d) Force output by MPS thrusters

(e) Torque output by MPS thrusters (f) Torque output by GRS1 electrodes

(g) Force output by GRS1 electrodes

Figure 5.5: Strong impact simulation of DFAC System
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momentum Hi. As regards the fixed pi, a worst–case value has been used. Specifically,
the value of the meteoroid impact with id 1, one of the strongest impacts available in

the dataset: pi =
[
−2.5 −0.9 14.9

]> · 10−3 Ns. The search is performed by varying
Hi, one component at a time. First, the starting value should be a vector that keeps the

SC’s attitude convergent, found by simulation: Hi =
[
1 1 1

]> · 10−3 Nms; then, three
iterations follow (one for each component of Hi), where, each component is increased by
steps of value 0.01 · 10−3 Nms, until divergence is reached.

The first outcome of this exploratory procedure is that the coupling between the
degrees of freedom is negligible with this value of step size; in other words, each axis has
an independent convergence boundary, when we consider increments of 0.01 · 10−3 Nms,
and the value of transferred angular momentum along the other axis has no influence. So,

for example, from a SC’s attitude convergence standpoint, Hi =
[
2.83 0 0

]> ·10−3 Nms

is equivalent to Hi =
[
2.83 2.83 3.5

]> · 10−3 Nms.
The second outcome is that there does not appear to be any difference in changing the

rotation direction, or equivalently changing the sign of the transferred momentum, with
this step size value.

Finally, the convergence boundary on the SC’s attitude found by simulation is

|Hi| =

|Hix|
|Hiy|
|Hiz|

 ≤H∗i =

2.87
2.83
3.53

 · 10−3 Nms (5.1)

As expected the boundary is larger for the z-axis, where the Spacecraft’s inertia is higher,
so it can withstand a higher angular momentum transfer.

Having found the SC Attitude convergence boundary one can label all the impacts by
applying the following implications:

1. |Hi| ≤H∗i =⇒ SC Attitude convergent =⇒ TM Attitude convergent

2. ∃j ∈ {1, 2, 3} : |Hij | ≥ H∗ij + 10−5 =⇒ SC Attitude divergent
=⇒ TM Attitude and Position divergent

Luckily enough, both these rules cover the entire dataset and do not leave out any im-
pact, so for the label SC Attitude Convergence and TM Attitude Convergence no complete
simulation is required.

5.2.2 TM Position Convergence Boundary

In labeling impacts based on the TM Position Convergence property, the initial simplifi-
cation regarding the separation between transferred angular and linear momenta, already
used in the previous labeling process, does not fully apply. For angular momenta with
values near to the attitude convergence boundary, both the transferred angular and linear
momenta can influence the TM Position Convergence property, thus, in general, one can
not analyze them independently.

Nonetheless, some simplifications can still be made. In particular, with the previously
found threshold H∗i for the SC Attitude convergence property, it is possible to already
label the few impacts (only 89 in total), that correspond to divergent SC attitude, as
divergent also in TM position. This is due to the simulation result number 1 presented at
the beginning of Section 5.2, which states that when the SC’s attitude becomes divergent,
every part of it becomes divergent.
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For the remaining impacts, which have convergent SC attitude, the transferred an-
gular momentum is kept fixed to a convergent value of H∗i =

[
2 2 3

]
· 10−3 Nms, that

simulations show not to influence the convergence boundary on the linear momentum.
Again, the boundary search has been conducted by increasing pi with steps of size

10−5 Ns, until divergence is reached, starting from convergent values (found by simulation)

of
[
1 1 1

]> · 10−3 Ns.
With this step size and slightly lower angular momentum values, the coupling between

the degrees of freedom is negligible for the linear momentum, thus, each DoF can be
explored independently.

An additional issue is that depending on the sign of the component of pi that is being
explored the value of the boundary can vary. For this reason a conservative boundary is
estimated by taking the smallest among the ones found with both positive and negative
signs, for each axis.

The conservative convergence boundary is

|pi| ≤ p∗i =

5.93
5.69
3.35

 · 10−3 Ns when |Hi| ≤

2
2
3

 · 10−3 Nms (5.2)

The impacts for which a complete simulation is required are 54 (less than 0.03% of the
dataset), of which 47, that transfer an angular momentum too close to the convergence
boundary, plus additional 7 impacts, for which there is at least a component of pi that
exceeds the conservative threshold.

5.2.3 Incoming Laser Loss

Another useful label to assign to each impact, is whether it is strong enough to make
the SC lose the incoming laser beams (at least one of the two). The SC will lose the
incoming beam when at least one among the azimuth or elevation angles exceeds the
2µrad threshold.

The problem can be analyzed by focusing only on the transferred angular momentum,
because the influence of the linear momentum is negligible, as shown at the start of Section
5.2.1.

Unfortunately, the threshold on each axis of the angular momentum are coupled to-
gether, that is, the threshold on one axis will be higher or lower depending on the mo-
mentum values along the other axis.

First the maximum boundaries for each axis are found by setting the momentum
on the other axis to zero, leading to the following values: 1.75 · 10−3 Nms for x axis,
1.26 · 10−3 Nms for y axis and 1.35 · 10−3 Nms for z axis. A new vector is defined by these
values:

H`i
i =

1.75
1.26
1.35

 · 10−3 Nms (5.3)

Then all combinations of values on the three axis are tested by simulation, 300 in
total. The ranges tested for each axis are the following:

Hix ∈ {0.8 · 10−3, 0.9 · 10−3, 1 · 10−3, . . . , 1.7 · 10−3}
Hiy ∈ {0.8 · 10−3, 0.9 · 10−3, 1 · 10−3, 1.1 · 10−3, 1.2 · 10−3}
Hiz ∈ {0.8 · 10−3, 0.9 · 10−3, 1 · 10−3, 1.1 · 10−3, 1.2 · 10−3, 1.3 · 10−3}
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where each set is obtained with increments of 0.1 · 10−3 Nms. With these known data
samples two norm spheres are fitted on the data: one that encloses only convergent values
and one that excludes only divergent values. The two radius values are rs = 1.57 · 10−3,
the convergent sphere, and ru = 1.95·10−3, the sphere that excludes only divergent points.
So by applying the following implications most impacts can already be labeled:

1. |Hi| ≤H`i
i ∧ ‖Hi‖2 ≤ rs =⇒ no incoming laser loss

2. ∃ j ∈ {1, 2, 3} : |Hij | > H`i
ij
∨ ‖Hi‖2 > ru =⇒ incoming laser loss

A total of 53 impacts are not covered by these rules and require a complete simulation.

5.2.4 Outgoing Laser Loss

The last categorization of impacts that was considered is the outgoing laser loss label.
The outgoing laser is lost when at least one among SC2 and SC3 cannot receive the laser
coming from SC1, assuming the point of view is on SC1. This happens when the absolute
rotation angle between the outgoing laser beam and the incoming one is greater than
1µrad, as illustrated in Figure 2.9.

The procedure is analogous to the previous one for the incoming laser loss property.
First, the maximum thresholds are found separately for each axis, leading to the following
new vector:

H`o
i =

1.19
0.82
0.88

 · 10−3 Nms (5.4)

Then all combinations of values on the three axis are tested by simulation, 200 in
total. The ranges tested for each axis are the following:

Hix ∈ {0.4 · 10−3, 0.5 · 10−3, 0.6 · 10−3, . . . , 1.1 · 10−3}
Hiy ∈ {0.4 · 10−3, 0.5 · 10−3, 0.6 · 10−3, 0.7 · 10−3, 0.8 · 10−3}
Hiz ∈ {0.4 · 10−3, 0.5 · 10−3, 0.6 · 10−3, 0.7 · 10−3, 0.8 · 10−3}

where each set is obtained with increments of 0.1 · 10−3 Nms. With these known data
samples two norm spheres are fitted on the data: one that encloses only convergent values
and one that excludes only divergent values. The two radius values are rs = 0.81 · 10−3,
the convergent sphere, and ru = 0.83·10−3, the sphere that excludes only divergent points.
So by applying the following implications most impacts can already be labeled:

1. |Hi| ≤H`o
i ∧ ‖Hi‖2 ≤ rs =⇒ no outgoing laser loss

2. ∃ j ∈ {1, 2, 3} : |Hij | > H`o
ij
∨ ‖Hi‖2 > ru =⇒ outgoing laser loss

A total of 16 impacts are not covered by these rules and require a complete simulation.
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5.2.5 Boundary Visualization

An attempt has been made to visualize in an approximate way the convergence boundary
on the momentum transferred by meteoroids, by also taking into account the impact
point.

In this framework a meteoroid is represented by a particle, therefore it has no angular
momentum associated with it. In general, it will only have a linear momentum due to its
mass and velocity properties. When it impacts the SC on a certain location, depending
on the distance of this location from the Spacecraft’s center of mass and depending on
the impact angle, it will transfer a different angular momentum vector.

In order to visualize the limits on the linear momentum of the meteoroid particle,
for each impact point, two thresholds must be considered simultaneously: the first is the
threshold on the linear momentum, that affects the TM’s position convergence property;
the second is the threshold on the angular momentum, that affects the SC’s and TM’s
attitude convergence properties. The goal is to assign to each impact point in the plot a
single scalar value, that represents the the maximum euclidean norm of linear momentum,
that the system can withstand in that point, while remaining convergent under the control
of the DFAC System.

Unfortunately, there are too many variables that cannot be shown in a single 4D
plot. To restrain the visualization to a 4D plot (3D spacial + 1 color) an approximate
conservative bound on the maximum linear momentum norm is considered.

The first step in the procedure is to apply a group of linear momentum transfers to
each impact point contained in the dataset. These vectors will have the maximum norm
possible for TM’s position convergence, reported in Equation 5.2, but will be orientated
in different directions. In order to eliminate the problem of the impact angle, the “star”
of momenta lies on a plane perpendicular to the impact point vector ri and the different
vectors that compose it are evenly spread around a 360° angle, as shown in Fig. 5.6. The
orthogonality to ri allows to consider a worst–case impact angle, that is, an impact angle
that will maximize the angular momentum generated, related to the linear momentum by
the following relationship:

Hi = ri × pi =⇒ ‖Hi‖2 = ‖ri‖2 ‖pi‖2 sin(θrp)

This will also take into account impact directions that would never happen in reality, be-
cause for each impact point there could be some directions that are impossible. Nonethe-
less, by still considering them, the estimate is only more conservative, an acceptable
approximation for the goal of visualization.

The second and last step of the procedure is to compute the Hi corresponding to each
linear momentum applied to that impact location and check whether it exceeds or not the
convergence boundaryH∗i for SC attitude convergence, defined in Equation 5.1. If none of
the angular momenta exceeds theH∗i threshold, then the scalar associated with the impact
point ri is just ‖p∗i ‖2. If there is at least one of the angular momenta that exceeds the
H∗i threshold, then the scalar associated with impact point ri is the maximum euclidean
norm among the angular momenta that exceed the convergence threshold, divided by the
norm of ri.

At the end of the procedure for each location ri there will be an associated scalar
value, representing a conservative worst–case estimate of the maximum norm of linear
momentum, that the system can withstand, while remaining convergent.

The resulting plot can be seen in Figure 5.7. The darker the color, the less linear
momentum is required to make the system divergent.
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Figure 5.6: “Star” of linear momentum impulses

Figure 5.7: Convergence boundary visualization

The plot shows visually that the Spacecraft is more resistant to higher linear mo-
mentum transfers around the center of the top solar panel and around the center of the
bottom surface; whereas, the borders of the panel and, to a certain extent, also the bottom
high–gain antenna are critical regions that can withstand only much smaller impacts.

5.3 LISA States

This Section gives a more detailed explanation regarding all the states that the LISA
system can be found in, after an impact.

In order to define all the LISA states, the following system properties have to be
considered:

• P1 Spacecraft attitude convergence, with values convergent/divergent;

• P2 Test Mass attitude convergence, with values convergent/divergent;
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• P3 Test Mass position convergence, with values convergent/divergent;

• P4 incoming laser link loss (DWS sensor), with values loss/no loss;

• P5 outgoing laser link loss (DWS sensor), with values loss/no loss.

Table 5.2 lists all the states that the system can attain, among the 32 possible combi-
nations of properties P1–5.

State ID P1 P2 P3 P4 P5
S0 convergent convergent convergent no loss no loss
S1 convergent convergent convergent no loss loss
S2 convergent convergent convergent loss no loss
S3 convergent convergent convergent loss loss
S4 convergent convergent divergent loss loss
S5 divergent divergent divergent loss loss

Table 5.2: LISA States

The S2 state corresponds to a scenario where another Spacecraft is hit by a meteoroid,
say SC2, and starts rotating, breaking at some point the laser link. In this case, it is
possible for SC1 to lose the incoming laser link (the one coming from SC2), without
necessarily losing the outgoing one (SC2 could still receive the laser from SC1).

Another important remark is that for the DFAC System, as implemented at the be-
ginning of this thesis, all the states different from S0 will cause some sort of issue: in
states S1–3, the SC attitude controller cannot use anymore the high–accuracy DWS sen-
sor, that is based on laser links; in states S4 and S5, in addition to the loss of the DWS,
the controller itself has to be replaced by a recovery system.

From the list of states one can derive all the possible recovery tasks that are needed
in order to cover every possible scenario:

• R1 Spacecraft attitude recovery, to be executed in state S5;

• R2 Test Mass position recovery, to be executed in states S4 and S5;

• R3 incoming laser loss recovery, to be executed in states S3, S4 and S5;

• R4 waiting mode, to be executed in state S2.

State S1 does not require any specific recovery task, because in that case the impact
is very light and the DFACS system, with the DWS sensors already enabled and working,
is enough to return to state S0. In this scenario, at least one of the other two Spacecrafts
will transition to state S2, requiring a waiting mode to be activated on that SC.



6 | State Observers

In Chapter 7 extensive use of state observers has been made, due to the fact that LISA
is only equipped with sensors that can measure angular and linear positions, but not
velocities and accelerations. In this Chapter two state observers or differentiators are
considered and evaluated.

6.1 Filtered Differentiator

This type of differentiator is a discrete time linear system, defined by the following Z
transform transfer function:

F (z) =
N (z − 1)

z − 1 +N τ

The τ parameter is simply the time interval of the filter. The N parameter determines
the speed of convergence to the numerical derivative. The filter has a pole at 1 − N τ ,
therefore, the closer N is to the filter frequency 1/τ , the faster the response to changes in
the input.

In the architecture proposed here, this filter is used to estimate the angular error
velocity of the SC attitude ωSC from qSC, measured by the SC–SC DWS and CAS sensors.
The main equations are

ˆ̇qSC[k] = N (qSC[k]− qSC[k − 1]) + (1−N τ) ˆ̇qSC[k − 1] (6.1)

ω̂SC = 2 q∗SC ⊗ ˆ̇qSC (6.2)

where ˆ̇qSC is the estimated error quaternion derivative and ω̂SC is the estimated angular
error velocity. Equation 6.2 is the inverse quaternion kinematics relation. Figure 6.1
shows the estimation performance during a recovery maneuver. The filter has been tuned
on the 89 impacts that cause SC attitude instability.

Furthermore, this filter is used also to estimate the velocities of the two Test Masses
vm1 and vm2 . The filter takes as input the positions, as measured by the SC–TM DWS,
the interferometer and the GRS (more details in Section 7.2), and outputs the estimates
v̂m1 and v̂m2 , according to the following equation:

v̂mj
[k] = N (rmj

[k]− rmj
[k − 1]) + (1−N τ) v̂mj

[k − 1], j = 1, 2 (6.3)

Figure 6.1 shows the estimation performance during a recovery maneuver. The filter
has been tuned on the 96 impacts that cause TM position instability.
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(a) vm1 estimation (b) vm2 estimation

(c) ωSC estimation

Figure 6.1: Filtered Differentiator estimation

6.2 Extended Kalman Filter

The EKF is a particular type of discrete–time filter that works by iterating basically two
steps: first, there is a prediction made by applying an internal linear model of the process;
then, the measurement is used to update the internal states of the filter, by weighting
them according to the covariance of the measurement process.

In general, the filter will have an internal linear model in state space form:

ẋ = A(x)x+B u+B du

y = C x+ dy

that can be discretized with the forward Euler method, leading to

xk+1 = Fk xk +Guk + dk

yk = C xk + dyk

where

Fk = I + τ A(xk)

G = τ B

dk = τ B duk
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The filter will take as inputs uk, the same input that is given to the real system, and
yk, the measured output, and will provide an estimate of the system’s real state xk. In
this application the EKF’s time interval is τ = 0.01 s.

Specifically, the detailed algorithm is implemented in the following way:

1. Prediction step: an internally predicted state xpk and the predicted covariance matrix
Pk of the estimation error are computed at time step k:

xpk = Fk x̂k−1 +Guk−1

P p
k = Fk−1 Pk−1 F

>
k−1 +Qd

2. Update step: using also the measurement yk coming from the sensor, the internal
state of the filter (x̂ and P ) is updated by the following rules:

Sk = C P p
k C

> +Rd

Kk = P p
k C

> S−1
k

∆yk = yk − C xpk
x̂k = xpk +Kk ∆yk

Pk = (I −Kk C)P p
k

where Qd and Rd are matrices that can be tuned, representing respectively the covariance
of the input disturbance dk and the covariance of the measurement process dyk.

This filter is used to filter out the noise from the SC inertial attitude quaternion qSI,
measured by the Star Tracker, and to estimate the SC angular velocity ωSI. The EKF

filter provides an estimate of the SC’s attitude state x =

[
qSI

ωSI

]
.

The internal model in state space form is

A(x) =

[
0 1

2
QSI

0 −J−1
S [ωSI×] JS

]
∈ R7,7 (6.4)

QSI =


−qSI1 −qSI2 −qSI3

qSI0 −qSI3 qSI2

qSI3 qSI0 −qSI1

−qSI2 qSI1 qSI0

 (6.5)

B =

[
0

J−1
S

]
∈ R7,3 (6.6)

C =
[
I 0

]
∈ R4,7 (6.7)

The input u is the torque generated by the MPS system, that can be obtained from the
torque command MT of the attitude controller. The output y is the inertial Spacecraft
quaternion qSI measured by the Star Tracker.

The tuning process for this state observer starts by defining the structures of matrices
Qd and Rd, making the same considerations of [3]: Qd will be a 7x7 diagonal matrix where
only the last three diagonal entries are different from zero, because the model disturbance
enters just in the angular acceleration equations, not in the quaternion kinematics; Rd

will be a 3x3 diagonal matrix where the third diagonal entry is 100 times greater than
the other two, because the star tracker has a noise on the z axis that is 10 times greater
with respect to the other axis. Therefore the tuning procedure can focus only on varying
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two real parameters α and β, that will in turn give the EKF matrices according to the
following relationship:

Qd = α diag(0, 0, 0, 0, 1, 1, 1) (6.8)

Rd = β

1 0 0
0 1 0
0 0 100

 (6.9)

This process can then be further simplified by considering that only the ration between α
and β matters, not the individual values. Thus, a scalar α/β represents the single variable
of the tuning process.

Figure 6.2 shows the estimation performance during a recovery maneuver. The filter
has been tuned on the 89 impacts that cause SC attitude instability.

(a) qSI estimation (b) ωSI estimation

Figure 6.2: EKF estimation



7 | Recovery Control System

The goal of this Thesis is to design and test a recovery system for the LISA mission.
Different configurations of controllers and sensors have been tested, summarized in Table
7.1. In this Chapter only the two most effective recovery systems are presented: the
main one is the Configuration 1, that assumes the presence of a CAS sensor to aid the
recovery maneuver and is based on PD/PID controllers; the other one is Configuration 2,
that allows the CAS sensor to be removed, requiring a model of the solar pressure, and
is based on PD/PID controllers too.

ID SC Att. control TM Pos. control CAS State Obs.
1 PD PID yes EKF
2 PD PID no EKF+Solar Press. model
3 PD PID yes Filtered Diff.
4 Sliding Mode PID yes EKF

Table 7.1: Summary of tested configurations

The main problems that had to be solved in its implementation are

1. impact detection, that is to detect when an impact occurs and to predict with the
highest accuracy possible in what state does the LISA system transition into;

2. sensor management, that is to switch the sensors in the correct operating modes and
implement some fusion in order to obtain the most precise measurement available
for each signal;

3. controller design, that is to design some controllers to be evaluated that can fulfil
the recovery tasks determined in Section 5.3;

4. end of recovery (EoR) detection, that is to detect when the LISA system has been
successfully recovered and is ready to switch back to science mode.

For each of these problems a section is dedicated to it, that explains the implemented
solution.

7.1 Meteoroid Impact Detection

Impact detection is the task of detecting when an impact has occurred and, more specif-
ically, in which state the LISA system has transitioned into. The detection happens
through a monitoring system that tracks and processes a group of signals online and is
able to notice when one of the properties P1–5 of the LISA system (defined in Section
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5.3) has changed; according to these properties it is able to output the new state of the
system and consequently start the appropriate recovery tasks.

The more physical states of the LISA system it has available, the better the monitoring
system performance. Unfortunately, the Spacecraft is equipped only with sensors that
can measure linear or angular positions, but not velocities or accelerations. This highly
constraints the performance that can be expected. The detected state will often be based
on some estimated signals, thus the predicted state could sometimes not correspond to
the real one. For this reason there is a safety property that has to be enforced on the
detection system, that is, when the detection is wrong, it should always predict a state
that is “worse” than the real one. A LISA state is considered worse than another, when
it requires the activation of more recovery tasks.

The principles followed here are those of separation of concerns and modularity. For
each of the five LISA properties there is a separate monitoring system that estimates the
value of that property.

Here different monitoring systems are presented for comparison. Specifically, one
monitoring system for each order of signal derivatives considered in the detection process:

• Zero–order monitoring, where only the position signals are used;

• First–order monitoring, where estimated velocity signals are added.

A Second–order monitoring is not presented due to the extremely low acceleration esti-
mation performances.

It is not obvious a priori which system can perform better: in theory, by increasing the
number of signals and the derivatives order, the detection system has more information
available and should perform better; in practice, those signals will be estimated, not
directly measured, thus they will be affected by a higher noise, that could interfere with
the detection process.

7.1.1 P1-2 Spacecraft and TM attitude convergence

The P1 property Spacecraft attitude convergence can have two values: convergent or
divergent. In order to detect which is the value of the property, a basic threshold–based
system is implemented.

First, a zero–order approach is tested, where only the error quaternion qSC, measured
from the DWS sensor during Science phase, is used in the monitoring process. The basic
idea is to have a maximum rotation angle θ∗SC, that constitutes the threshold between the
two values of the P1 property. The absolute rotation angle θSC can be obtained from qSC

by the following relationship:

θSC = 2 cos−1(qSC0)

So, if θSC > θ∗SC, then P1 is divergent, else it is convergent.
In order to tune the threshold θ∗SC and to evaluate the performance of the monitoring

system, the impact dataset is divided into two separate groups based on the SC Attitude
divergence label. Only a total of 89 impacts will make the SC attitude go divergent, so
among the convergent impacts only the strongest 89 impacts are considered. By elimi-
nating the rest of them, the complexity and time required to do the tests is reduced.

The safety rule implies that the false negatives should be zero. False negatives are
strong impacts that cause the SC attitude to become divergent, but are wrongly detected
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as P1 convergent by the monitoring system. On the other hand, false positives are lighter
impacts that keep the SC attitude convergent with the DFACS controller, but are wrongly
classified as P1 divergent by the monitoring system. Therefore, the optimization objective
is to have minimum average detection time and minimum false positives, by keeping the
false negatives to zero.

Figure 7.1 shows the simulation results.

(a) Average Detection Time (b) False Positives and False Negatives

Figure 7.1: Simulation results for P1 zero–order monitoring

Figure 7.1a contains the relationship between the threshold θ∗SC and the average de-
tection time, that is the average across all the tested impacts of the time elapsed between
the impact instant and the instant when the monitoring system outputs its prediction.
From this plot it can be seen that, generally speaking, the lower the threshold the more
sensitive the system is to rotations and the faster it outputs a new detection.

Figure 7.1b contains the relationship between the threshold θ∗SC and the false positives
and false negatives. This plot shows that the lower the threshold, the more false positives
there are.

From these plots the optimal value θ∗SC ≈ 1.43 · 10−5 rad can be inferred. The number
of false positives is 13 and the average detection time is 6.337 s.

Next the first–order detection system is tested with the same performance parameters.
Another threshold ω∗SC is defined for the ωSC signal. This derivative is estimated by a
Filtered Differentiator with N = 4, presented in Section 6.1, that differentiates the DWS
measured quaternion qSC and applies inverted quaternion kinematics. The estimated
signal is ω̂SC. Therefore the detection rule becomes:

‖ω̂SC‖2 > ω∗SC =⇒ P1 divergent

Figure 7.2 shows the results of the simulations.
Figure 7.2a shows the average detection time for the values of the threshold with no

false negatives.
The optimal value for this threshold is ω∗SC ≈ 3.36 · 10−6 rad/s. The number of false

positives is 34 and the average detection time is 1.02 s. The outcome is that by using just
the estimated ωSC, the detection becomes faster at the cost of more false positives.

The P2 property TM attitude convergence is equivalent to the value of P1, so the
monitoring system is one for both properties.
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(a) Average Detection Time (b) False Positives and False Negatives

Figure 7.2: Simulation results for P1 first–order monitoring

7.1.2 P3 Test Mass position convergence

The P3 property Test Mass position convergence can have two values: convergent or
divergent. In order to detect the value of the property, a basic threshold–based system is
implemented.

First, a zero-–order approach is tested, where only the rmj
signals are considered. In

this case the filtered versions r̂mj
from the EKF, presented in Section 6.2, are employed.

A new threshold r∗m is defined and the detection rule becomes

‖rm1‖2 > r∗m ∨ ‖rm2‖2 > r∗m =⇒ P3 divergent

In order to tune the threshold θ∗SC and to evaluate the performance of the monitoring
system, the impact dataset is divided into two separate groups based on the TM Position
divergence label. A total of 96 impacts will make the TM Position go divergent, so among
the convergent impacts only the strongest 96 impacts are considered. By eliminating the
rest of them, the complexity and time required to do the tests is reduced.

The same evaluation parameters of the P1 monitoring are computed during tests:
average detection time, number of false positives and number of false negatives. Again,
according to the safety property the number of false negatives should be zero.

The results for the first tests are shown in Figure 7.3.
From Figure 7.3b it can be seen that the optimal value for the threshold is r∗m ≈

5.45 · 10−6 m. With this choice of threshold the number of false positives is 14 and the
average detection time is 3.74 s.

The next test concerns the first–order monitoring system. The new threshold v∗m is
defined for the following detection rule:

‖vm1‖2 > v∗m ∨ ‖vm2‖2 > v∗m =⇒ P3 divergent

The test results are shown in Figure 7.4.
The optimal value is v∗m ≈ 1.62 · 10−6 m/s, with an average detection time of 10.64 s

and 14 false positives.
In this case, the zero–order monitoring is faster with the same number of false positives.
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(a) Average detection time (b) False Positives and False Negatives

Figure 7.3: Simulation results for P3 zero–order monitoring

(a) Average detection time (b) False Positives and False Negatives

Figure 7.4: Simulation results for P3 first–order monitoring

7.1.3 P4 and P5 Laser Loss

The P4 incoming laser loss and the P5 outgoing laser loss properties are monitored in
hardware. This work makes the reasonable assumption that the laser sensors can detect
whether the laser is hitting the sensor or not and update an internal flag accordingly, that
can be accessed by the controller.

For this reason the detection time will always be very small, in this work assumed to
be 10 ms, depending on the performance of the processor of the on–board computer and
the real time operating system. The number of false positives and false negatives will be
zero, given that the presence and absence of laser is a perfectly detectable fact.

7.2 Sensor Management

The task of sensor managing consists of two important parts: the first, is to correctly
switch each sensor to the appropriate operating mode, during recovery; the second, is
to handle the different sensor measurements in order to output for each signal the most
accurate value at each time.

As regards the first problem, only the GRS sensors are affected. Indeed, they have to
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be switched to Wide Range mode in order to increase their actuation authority on the
TMs. This will also cause an increase in the measurement noise, as reported in Table 2.5.

As regards the second problem, the following remarks are important:

1. the pitch and yaw angles of the TMs are measured both by the GRS and by the
local SC–TM DWS sensor, when available;

2. the x coordinate of the TM position rmj
is measured both by the GRS and by the

local Interferometer, when available;

3. there could be attitudes for which both the SC–SC DWS and the CAS sensors are
active at the same time.

In order to deal with the remarks 1 and 2, the controller will perform a measurement
fusion for both the attitude θmj

and position rmj
of the TMs, that is, when available

the measurement from the laser sensors will replace the corresponding components of the
signals that come from the GRS, making it more accurate. When an impact that activates
the recovery task R2 takes place, that is the recovery of the TM position, the fusion will
be turned off, leaving just the GRS sensor to provide all the measurements. When the
recovery is concluded the fusion will be activated again.

To deal with remark 3, the controller will simply use the most accurate of the mea-
surements available for the qSC signal. When both the DWS and CAS are available, the
CAS measurement is discarded. Whereas, when the DWS is lost the CAS provides its
measurement instead. Finally, when also the CAS sensor is lost the qSC signal will be
reconstructed internally by the controller using the computation qSC = q̂∗CI ⊗ q̂SI, where
q̂CI is an estimate of the desired inertial attitude computed on–board during recovery and
q̂SI is the EKF filtered version of the Spacecraft inertial attitude measured by the Star
Tracker.

The q̂CI quaternion is computed by integration of the following expression:

˙̂qCI =
1

2
q̂CI ⊗

[
0
ω̂SC

]
where ω̂SC is the approximate time dependent function reported in Equation 3.5, obtained
by orbital simulations. The accuracy and performance of the recovery system depends on
how accurate this orbital simulations are. Future work could focus on ways to estimate
this orbital properties directly online, before the impact happens, in order to have a more
accurate estimate of the nominal desired attitude, that does not rely entirely on offline
simulations. This last switching system for the quantity qSC represents the implementation
of the recovery task R3, that handles the incoming laser loss scenario.

Table 7.2 summarizes the different scenarios and what changes will be made to each
sensor.

7.3 Controller Design

The controllers needed for the recovery system are two: one for the SC attitude recovery
(task R1) and the other for the TM position recovery (task R2).
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State ID SC–SC DWS CAS GRS TM–SC DWS+IFO Star Tracker
S0 active active active HR active not used
S1 active active active HR active not used
S2 not used not used active HR active active
S3 not used not used active HR active active
S4 not used not used active WR not used active
S5 not used not used active WR not used active

Table 7.2: Sensor management summary

7.3.1 Spacecraft attitude controller

The main controller design procedure starts from the design of a Sliding Mode controller,
that already showed to be effective in the Constellation Acquisition phase [3].

First step is to design a sliding variable s as a function of the desired state variable,
such that

1. when s = 0, the tracking error tends to 0;

2. ṡ is affected by the input command u.

A possible choice of such variable is s = ω̃ + λ q̃, where λ is a positive real coefficient, q̃
is the vector part of the error quaternion of the Spacecraft attitude during recovery and
ω̃ is the error angular velocity; more specifically, q̃ = q∗CI ⊗ qSI and ω̃ = ωSI −ωCI. With
this choice both the requirements on s are fulfilled:

1. s = 0 =⇒ ω̃+λ q̃ = 0 ⇐⇒ ω̃ = −λ q̃, that means that the dynamics of the error
is an exponential function that tends to zero, approximately with rate λ;

2. ṡ = ˙̃ω + λ ˙̃q = ω̇SI − ω̇CI + λ ˙̃q and the term ω̇SI depends on the command input
u = MT (the torque from the MPS), according to Equation 3.9.

More specifically the derivative of the sliding variable can be expanded with the dy-
namics of the SC attitude (no superscript means represented in the SRF):

ṡ = ˙̃ω + λ ˙̃q = ω̇SI − ω̇CI + λ ˙̃q = f(ωSI) + J−1
S MT − ω̇CI + λ ˙̃q

f(ωSI) = −J−1
S ωSI × (JSωSI) + J−1

S

(
+DT + DS

�press + Mmet

)
+

− J−1
S

∑
j=1,2

TS
oj

Izz ξ̈
oj
j + TS

oj
M

oj
Ej

+ bj ×
(

TS
oj

F
oj
Ej

)
The nonlinear function f can be seen as composed by two terms: the gyroscopic term
and other disturbances due to meteoroid impacts and due to noise in actuators and
GRS electrodes. An approximate dynamics function f̂ is defined in the following way by
neglecting the disturbance terms:

f̂(ωSI) = −J−1
S ωSI × (JSωSI)

The command inputMT can be decomposed in two control laws: a partially linearizing
one and the one that ensures finite–time convergence to the sliding manifold s = 0,
represented with ū. The linearizing command is

MT = JS (−f̂ + ω̇CI − λ ˙̃q + ū)
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When it is applied to the system the equation of ṡ becomes

ṡ = f − f̂ + ū

If f̂ is temporarily assumed to be equal to the exact dynamics f , then the problem
becomes perfectly diagonal, that is the multi–input system ṡ = ū is composed by the
parallel of 3 single–input systems, with dynamics ṡi = ūi, i = 1, 2, 3.

The sliding variable should go to zero in finite time, thus a common known finite–time
convergence law is used [17, p. 62]:

1

2

d

dt
(si)

2 ≤ −η |si|, η > 0

si ṡi ≤ −η si sign(si)

ṡi ≤ −η sign(si)

ūi ≤ |(f − f̂)i| − η sign(si)

From the above inequality regarding ū, it can be seen that, in theory, it should be η >∥∥∥f − f̂∥∥∥
∞

, thus an upper bound on the error in the dynamics due to the neglected terms

should be known. In practice, η can also be tuned on simulations.
Finally, the control law obtained is

MT = JS

(
J−1

S ωSI × (JSωSI) + ω̇CI − λ ˙̃q − η sign(s)
)

(7.1)

where

• ωSI is estimated (ω̂SI) from the Filtered Differentiator, as shown in Section 6.1;

• ω̇CI is the desired angular acceleration, needed in order to track the constellation,
this would also be computed nominally offline from orbital simulations, but it is very
small, as seen by simulations, and can be neglected without affecting the recovery
task;

• q̃ is directly taken from the SC–SC DWS or CAS sensor, when available; otherwise
it is computed as the vector part of q̃ computed from the available signals in the
following way:

q̃ = q̂∗CI ⊗ q̂SI

where q̂CI is the nominal, internally computed, desired SC attitude and q̂SI is the
EKF filtered Star Tracker measurement;

• ˙̃q is the vector part of ˙̃q computed always online by quaternion kinematics:

˙̃q =
1

2
q̃⊗

[
0

ω̂SI − ω̂CI

]
where ω̂CI is the desired angular velocity, internally computed according to Equation
3.5.
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The sign function is applied component–wise to the sliding variable.
A well performing tuning of this sliding mode controller is λ = 1 and η = 1.
A common way to deal with the problem of high command effort and chattering, that

usually affects SM controllers, due to the high frequency switching term contained in the
control law, is to replace the sign function with another, that approximates its behavior
to a certain extent, that can be tuned by means of a scalar parameter ρ. Usually functions
like arctan, sigmoid or saturation are employed as substitutes to the sign. Although not
strictly equivalent to one another, they serve the same purpose of reducing the switching
behavior of the control command. In this design, the saturation function is chosen, that
is so defined:

sat(x) =


−1 x < −1

x −1 ≤ x ≤ 1

+1 x > 1

and has the plot shown in Figure 7.5a.

(a) sat function (b) Parametrized sat function with ρ = 0.5

Figure 7.5: Plot of the sat function

It is easy to make it depend on a scalar parameter to increase or diminish its linearizing
effect. Specifically, the linearizing effect will only be present in the interval [−ρ; ρ], as
shown here:

sat(
x

ρ
) =


−1 x < −ρ
x
ρ

−ρ ≤ x ≤ ρ

+1 x > ρ

and in the plot in Figure 7.5b.
The new control law becomes:

MT = JS

[
J−1

S ωSI × (JSωSI) + ω̇CI − λ ˙̃q − η sat
(

1

ρ
s

)]
(7.2)

From simulations it was found that even very large values of ρ do not affect particularly
the performance of the SC attitude recovery controller, except from reducing the command
activity. The following implication holds in this case:

ρ� |si| =⇒ sat

(
si
ρ

)
≈ si

ρ
(7.3)



Controller Design 66

Therefore, the control law with the saturation term can be rewritten as

MT = JS

(
J−1

S ωSI × (JSωSI) + ω̇CI − λ ˙̃q − η

ρ
s

)
MT = ωSI × (JSωSI) + JS ω̇CI − λ JS

˙̃q − η

ρ
JS ω̃ −

λ η

ρ
JS q̃

that is basically a PD control law, with a partial feedback linearization given by the
gyroscopic term and the inertia tensor.

Furthermore, by applying some transformations, a tuning for the PD control law, that
makes the performance equivalent to that of the SM controller, can be obtained:

1. substitution of the parameters with the following values: λ = 1 and η = 1, from the
previous SM tuning, ρ = 1 found from simulations, because the order of magnitude
of any si is very small, so the linearizing assumption (Equation 7.3) can be applied;

2. neglecting the desired angular acceleration term ω̇CI, because it is very small in
norm and does not impact appreciably the performance of the SM;

3. the signal ˙̃q is computed by simple quaternion kinematic from q̃ and ω̃, that are
already in the control law, thus it can be removed from the sum;

4. also the gyroscopic term is very small with the rotations that generate from a micro–
meteoroid impact, or at least it is very small when compared to the P. D. terms in
the control law, therefore it is removed.

These transformations lead to the final PD attitude recovery control law:

MT = −JS ω̃ − JS q̃ (7.4)

A problem that could arise from using only the vectorial part q̃ of the attitude error
quaternion is the quaternion unwinding phenomenon. This problem arises from the fact
that quaternions provide a double coverage of the orthogonal 3 by 3 matrix group SO(3),
that is used to represent rotations. When using quaternions in a closed feedback PID

control configuration, there are usually two equilibrium points q̃ =
[
1 0 0 0

]>
and

q̃ =
[
−1 0 0 0

]>
, that are respectively stable and unstable. A common heuristic

to prevent this issue is obtained by multiplying the vectorial part by the scalar part,
obtaining the following control law:

MT = −JS ω̃ − JS q̃0 q̃ (7.5)

Figure 7.6 shows the result for the simulation of meteoroid with id 1, that is one of
the strongest impacts in the dataset, where the impact happens after 100 s.

The general architecture of the Spacecraft attitude recovery controller is shown in
Figure 7.7.
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(a) Spacecraft attitude error (b) Torque requested to the MPS

(c) Recovery R1 activation (d) Laser beam deviation angle

Figure 7.6: Simulation of the SC att. rec. controller

Figure 7.7: General architecture of the Spacecraft attitude recovery controller
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7.3.2 TM position controller

The design for the TM position controller starts directly from a PID control law, that
showed to be effective for the Spacecraft’s attitude control.

The actuators that affect the quantities rmj
are the two GRS and the linear force of

the MPS, thus a total of three different 3–dimensional PID controllers are needed.
Actually, the linear momentum transferred to the Spacecraft during the impact, causes

an acceleration on the Spacecraft, that in turn generates another apparent acceleration on
the relative positions between the TMs and the SC itself. For this reason the controllers
that handle the linear force of the MPS thrusters will compensate the average TM position
r+

m = 1
2

(rm1 +rm2) by moving the SC itself. Whereas, the controllers that handle the two
GRS will compensate the differential TM position r−m = 1

2
(rm1 − rm2), by actuating the

TMs directly.
The PID controllers used are all discrete–time in parallel form, with filtered differen-

tiation. The Z transfer function is

C(z) = P + I τ
1

z − 1
+ DN

z − 1

z − 1 +N τ

where τ is the time interval of the controller, τ = 0.1 s for the MPS controllers and
τ = 0.01 s for the GRS controllers.

In order to tune all the PID controllers, the Simulink PID Tuner was employed on the
linearized plant. The settings used were maximum response speed and robustness. The
parameters found were the following:

• for the MPS force controllers P =
[
225 225 195

]>
, I =

[
3 3 2.5

]>
and D =[

3847 3847 3330
]>

;

• for the GRS1 force controllers P =
[
−200 −200 −200

]>
, I =

[
−2 −2 −2

]>
and D =

[
−3500 −3500 −3500

]>
;

• for the GRS2 force controllers P =
[
200 200 200

]>
, I =

[
2 2 2

]>
and D =[

3500 3500 3500
]>

.

Figure 7.8 shows the result for the simulation of meteoroid with id 1, that is one of
the strongest impacts in the dataset, where the impact happens after 100 s.

The general architecture of the Test Mass position recovery controller is shown in
Figure 7.9.
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(a) TM1 position (b) TM2 position

(c) Force requested to the MPS (d) Recovery R2 activation

Figure 7.8: Simulation of the TM pos. rec. controller

Figure 7.9: General architecture of the TM position recovery controller
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7.4 EoR Detection

The End of Recovery detection is the task of determining online when a specific recovery
controller has successfully accomplished the recovery phase and can be switched back to
the DFAC System.

In particular, only tasks R1 and R2 need to perform EoR detection, because only these
two have a specific controller.

The mechanism is the same for impact detection, that is, a threshold based system. A
main difference is that in this scenario both the position and the velocity have to satisfy
some constraints on their norm, in order to allow the switch back.

In order to determine the value of the angular position and velocity thresholds, the
89 impacts that make the SC attitude go divergent are used in a series of simulations to
determine the steady state average of the norms of attitude angular error θSC and attitude
error angular velocity ωSC. The final EoR rule is

|θSC| ≤ 2.1 · 10−6 rad ∧ ‖ωSC‖2 ≤ 2 · 10−6 rad/s =⇒ End of R1 task

The same procedure is repeated for the EoR of the R2 recovery of the TMs. A
simulation for each of the 96 impacts that make the TMs divergent is performed and
the steady state average values of the TMs positions rmj

and velocities vmj
are used as

thresholds. The final EoR rule is∥∥rmj

∥∥
2
≤ 3.56 · 10−6 m ∧

∥∥vmj

∥∥
2
≤ 2.14 · 10−7 m/s, j = 1, 2 =⇒ End of R2 task

7.5 Configuration without CAS Sensor

As already mentioned at the beginning of this Chapter, it is possible to remove the CAS
sensor and still perform the recovery maneuver (described as Configuration 2).

When the CAS sensor is removed the only remaining laser sensors are the DWS sensors.
These are almost immediately lost after the strongest impacts, requiring the Star Tracker
measurements to be used in combination with the same EKF of Configuration 1.

Simulations show that the spacecraft attitude is not going back to the working point
if no CAS sensor is present. This is visible by comparing the spacecraft attitude error
obtained from the recovery controller and CAS sensor, shown in Figure 7.10a, with the
one obtained from the recovery controller without CAS, shown in Figure 7.10b, and also
by comparing the laser beam deviations for the same configurations, respectively in Figure
7.11a and Figure 7.11b.

The recovery system without CAS is not able to return within the 2µrad error required
to reacquire the DWS sensors. The reason is that the solar pressure is not accounted for
in the EKF model of the SC’s attitude dynamics. This causes over time a steady–state
offset in the angular prediction between the filtered value q̂SI, coming from the EKF, and
the real attitude qSI. This effect is shown in Figure 7.12a. Nonetheless, by adding a
model of torque exerted on the Spacecraft’s center of mass by the solar pressure to the
EKF filter, this offset is greatly reduced, Figure 7.12b.

By adding this model, thus removing the constant offset in the filter’s prediction, the
performance is greatly improved and the recovery controller can be used to return to
drag–free mode.
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(a) Configuration 1 (b) Configuration 2

Figure 7.10: Spacecraft attitude error comparison

(a) Configuration 1 (b) Configuration 2

Figure 7.11: Laser beam deviation angle comparison

(a) No solar pressure model (b) With solar pressure model

Figure 7.12: Error in the EKF filtering of qSI



8 | Simulation Results

In this chapter first the recovery system is shown in action with two of the strongest
impacts available in the ESA dataset. Finally the results of a Monte Carlo simulation
campaign are reported.

8.1 Single impact simulations

The first impact that is shown in Figure 8.2 is characterized by the following features:

impact id 1, pi =
[
−2.5 −0.9 14.9

]> · 10−3 Ns, Hi =
[
−4 19.9 0.6

]> · 10−3 Nms and

rS
i =

[
−1.421 −0.301 0.528

]>
m. The impact instant is ti = 100 s.

In the plot of Figure 8.2a the attitude error of the spacecraft with respect to the
correct orientation is represented as a rotation vector θSC. In the plot of Figure 8.2b the
two deviation angles of each of the laser beams are shown. Each deviation angle represents
the acute angle between the incoming laser beam and the longitudinal axis of the optical
assembly (x axis in the ORF).

An additional simulation is shown in Figure 8.3 of another impact with features:

impact id 2, pi =
[
−2.02 −5.7 −14.94

]> · 10−3 Ns, Hi =
[
19.76 −0.78 −2.38

]> ·
10−3 Nms and rS

i =
[
0.02 −1.1 0.57

]>
m. The impact instant is ti = 100 s.

8.2 Monte Carlo campaign

The Monte Carlo campaign validation process consists in performing a complete simula-
tion for each impact in the dataset that causes at least one LISA state transition (236
impacts) and analyzing the results.

The first parameter that is evaluated is the success rate, that is the percentage of
impacts whose simulation ended without instabilities and with the system back to science
mode. The success rate after these simulations is 100%.

Another set of parameters focuses on the correct or wrong activation of the recovery
tasks R1 and R2. The average number of times the impact detection triggers correctly
a SC divergence is 12, with the maximum as high as 31 times. This happens because
sometimes the attitude parameters will temporarily activate the threshold for impact
detection, causing the activation of a recovery task, and then will oscillate triggering in
sequence the EoR thresholds and again the impact detection thresholds. Such a behaviour
can be seen in Figure 8.1; only by zooming the time scale in the detection area the fast
oscillations can be noticed.

To overcome this problem, a simple solution adopted in this work is to have a 2 min
timer start whenever the detection transitions from convergent to divergent. With this
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Figure 8.1: Impact detection oscillatory behavior

solution, every time there is an impact that causes SC attitude divergence, the impact
detection will only trigger the recovery signal once.

The number of impacts for which the spacecraft attitude was convergent but the
impact detection triggered nonetheless (false positives) is 6. The number to be expected
was much higher, according to the number of false positives of the threshold ω∗SC discussed
in Section 7.1. This means that adding appropriate sensor management and tuning of the
state observers had a positive effect on the impact detection.

The number of misses of the TM detection and SC detection is 0. This is in accordance
with the number found during threshold tuning (Section 7.1) and with the safety rule of
zero false negatives.

The last important performance parameter obtained from the final set of simulations
is the total time required to complete the recovery maneuver: the average time was 5.78
minutes, with a minimum of 83.16 seconds and a maximum of 12.15 minutes.
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(a) SC Attitude error (b) Laser beams angular deviations

(c) TM1 position (d) TM2 position

(e) SC attitude recovery signal (f) TM position recovery signal

Figure 8.2: Recovery system simulation for impact 1



Monte Carlo campaign 75

(a) SC Attitude error (b) Laser beams angular deviations

(c) TM1 position (d) TM2 position

(e) SC attitude recovery signal (f) TM position recovery signal

Figure 8.3: Recovery system simulation for impact 2



9 | Conclusions

In this Thesis the problem of designing a recovery control system for the LISA space
mission has been addressed. First a preliminary analysis of the meteoroid impacts was
performed, analyzing all the possible states in which the spacecrafts may find themselves
in and the outcomes naturally led to the definition of the main recovery tasks to be
implemented in the recovery system. Some of these recovery tasks were easily implemented
by means of simple sensor management, but for the main two, Spacecraft attitude control
and Test Mass position control, additional specific controllers were needed.

The control design for the Spacecraft attitude started from an already developed and
tuned sliding mode controller employed for the Constellation Acquisition phase, and was
simplified down to a PD control law, with the tuning automatically obtained from the
previous one. This suggested that simple PID control laws could be effective also for Test
Mass position control, given that during science mode the spacecraft’s state is near the
working point, where it behaves almost linearly.

Finally, a set of simulations with the most problematic impacts was performed and
some interesting parameters were tracked. This confirmed the effectiveness of the recovery
system, specifically it showed a great reduction in the time needed to complete the ma-
neuver with respect to the time needed for the complete laser link reacquisition maneuver.
This was the main problem that motivated this study.

Additionally, it was also shown that the same maneuver can be carried out even
without the CAS sensor, one of the already few sensors available on board. This can be
done at the cost of needing an accurate model of the solar pressure torque acting on the
Spacecraft’s center of mass.

Further work could be carried out focusing on ways to estimate the nominal reference
for the spacecraft’s attitude during the recovery maneuver, when the laser sensors are no
longer available. This work relied on offline orbital simulations, but accurate enough data
could be difficult to obtain by these means. Instead online estimation of the spacecraft’s
orbit, speed and acceleration could result in more reliable control. These estimation
techniques could then simply be integrated into the recovery system proposed here.
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A | Mathematical Notation

A.1 Basic Notation

In this work extensive use of abstract vectors was made. Basic abstract vectors are
represented using bold font:

v =

v1

...
vn

 , v ∈ Rn

When the abstract vector is represented with respect to a reference frame, the reference
frame is put as an apex. Other information regarding the quantity represented by the
vector is put as a subscript. For example, a vector r ∈ R3, that represents the spacecraft’s
position in the IRF, expressed in the Spacecraft Reference Frame, would appear like this:

rS
SI

The component-wise product between two vectors a and b is defined as

a ∗ b =

a1 b1

...
an bn


A.2 Quaternions

Every rotation quaternion is expressed with a particular font and style. The bold font
is used to remember that it is still a vector, of 4 components in this case, and all useful
information are shown as subscript.

q =

[
q0

q

]
, q ∈ R4, q0 ∈ R, q ∈ R3

where q0 is the quaternion scalar part, and q is the vector part. Notice the difference
between the quaternion q and the quaternion vector part q.
The conjugate of a quaternion q∗ is defined as

q∗ =

[
q0

−q

]
To obtain the DCM matrix corresponding to a given quaternion:

T (q) =

q2
0 + q2

1 − q2
2 − q2

3 2 (q1 q2 − q0 q3) 2 (q1 q3 + q0 q2)
2 (q1 q2 + q0 q3) q2

0 − q2
1 + q2

2 − q2
3 2 (q2 q3 − q0 q1)

2 (q1 q3 − q0 q2) 2 (q2 q3 + q0 q1) q2
0 − q2

1 + q2
2 + q2

3


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From the DCM it is possible to transform a quaternion q to a rotation vector θ by the
following relationships:

φ = atan2(T3,2, T3,3)

θ = atan2(−T3,1, sin(φ)T3,2 + cos(φ)T3,3)

ψ = atan2(− cos(φ)T1,2 + sin(φ)T1,3, cos(φ)T2,2 − sin(φ)T2,3)

θ =

φθ
ψ


The quaternion product ⊗ can be also expressed with a matrix:

q⊗ = Q =


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0


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