
POLITECNICO DI TORINO

Master’s Degree course in Computer Engineering

Master’s Degree Thesis

Design and development of a
system for the analysis of financial

options

Supervisor
prof. Alessandro Fiori

Candidate
Klaus Cuko

October 2021

This work is subject to the Creative Commons Licence.

Acknowledgements

I would like to thank all the people who supported me not only in this last months,
but also throughout my university years.

Firstly, I would like to thank my thesis advisor Prof. Alessandro Fiori, who gave
me the opportunity to work on an interesting project and allowed me to express my
strong interest in data analysis and software development. He mentored me with
his helpful comments and advice, pushing me to do my best. I would like also to
express my gratitude to the to professional trader Marco Rossi who has helped me
better understand the financial world with his huge experience.

I thank all my friends, with whom I shared a lot of beautiful moments.
Finally, I must express my very profound gratitude to my family that has al-

ways believed in me and encouraged me to never give up and to my girlfriend,
Serena, for providing me with unfailing support and continuous encouragement.
This accomplishment would not have been possible without them. Thank you.

3

Alla mia famiglia

Abstract

The thesis focuses on studying and analyzing the financial market with particular
interest in derivative financial instruments such as futures and options. After that
it deals with the design and development of a web trading system able to meet
the requirements of professional traders and reducing the initial effort for anyone
wishing to pursue this activity.

In particular, we will analyze and integrate possible data sources to cover the
American and European market; define efficient data structures to store short-
term information and end-of-day data history for long periods; develop simple and
intuitive user interfaces that allow the user to perform different technical analysis
with those markets.

Contents

List of Figures 4

List of Tables 6

1 Introduction 1
1.1 Overview of the Thesis . 1

2 Trading 3
2.1 Exchanges . 3
2.2 Markets . 4
2.3 Instruments . 5

2.3.1 Derivatives . 6
2.4 Futures . 7

2.4.1 Payoff . 8
2.5 Options . 8

2.5.1 Price . 10
2.5.2 Payoff . 10
2.5.3 Spread . 14
2.5.4 Greeks . 25

2.6 Platforms . 27
2.6.1 Competitors . 27

3 Essentials 33
3.1 Requirements . 33

3.1.1 Stakeholders . 33
3.1.2 Functional and Non-functional 34

3.2 Data sources . 37
3.2.1 Types of data sources . 37
3.2.2 Markets web services . 37

3.3 Architecture . 40
3.3.1 Client and Server . 41
3.3.2 Server-side containerization 42

2

3.4 Technologies . 43
3.4.1 Django . 43
3.4.2 React . 46
3.4.3 MongoDB . 48
3.4.4 Celery . 50
3.4.5 Docker . 50
3.4.6 Nginx . 52

4 Implementation 53
4.1 Database . 53

4.1.1 Collections . 53
4.1.2 Data analysis . 58

4.2 Async tasks . 60
4.2.1 update_cboe . 61
4.2.2 update_cme . 62
4.2.3 update_eurex . 63
4.2.4 update_history . 63

4.3 REST APIs . 64
4.3.1 Security . 65
4.3.2 User APIs . 66
4.3.3 Market APIs . 68
4.3.4 Chain APIs . 69

5 Client application 71
5.1 Data management . 71

5.1.1 Data store . 71
5.1.2 Data flow . 72

5.2 User Interface . 73
5.2.1 Markets . 73
5.2.2 Strategies . 76
5.2.3 Portfolio . 77

5.3 Use cases . 78

6 Conclusions and future works 83

3

List of Figures

2.1 Long and short positions of a future contract (e.g. strike price 100) 9
2.2 Long positions for call and put options contract (e.g. strike price

100 and 40 days to maturity) . 13
2.3 Short positions for call and put options contract (e.g. strike price

100 and 40 days to maturity) . 14
2.4 Bear and bull option spreads for call contracts (e.g. strike price 100

and 40 days to maturity) . 19
2.5 Bear and bull option spreads for put contracts (e.g. strike price 100

and 40 days to maturity) . 21
2.6 Long and short straddle option spreads (e.g. strike price 100 and 40

days to maturity) . 22
2.7 Butterfly option spreads (e.g. strike price 100 and 40 days to maturity) 24
2.8 Calendar option spreads (e.g. strike price 100 and 40 to 160 days to

maturity) . 26
2.9 Underlying section on FiutoBeta . 28
2.10 Grid view in OptionRuler . 29
2.11 Option matrix feature in OptionVue 31

3.1 Client-server architecture . 41
3.2 Docker compose architecture . 43
3.3 Django MVT Pattern . 44
3.4 Redux architectural pattern . 47
3.5 Docker client-server architecture available on this link. 51

4.1 Historical data analysis . 62
4.2 Update CBOE async task . 64
4.3 Update CME async task . 64
4.4 Update EUREX async task . 65

5.1 Data flow example . 74
5.2 Markets interface . 74
5.3 Markets charts interface . 75
5.4 Markets positions interface . 76

4

https://docs.docker.com/get-started/overview/

5.5 Markets futures interface . 76
5.6 Markets chains interface . 77
5.7 Strategies interface . 77
5.8 Portfolio interface . 78
5.9 Creation of a new strategy inside the platform 79
5.10 Implement a butterfly spread strategy 81

5

List of Tables

2.1 Option chain1 example of Eurostoxx50, with underlying price equal
to 3000 and 40 days at expiration. 11

2.2 Bull call spread example, with a stop-loss equal to -3.1 and take
profit equal to 6.9 . 16

2.3 Bear call spread example, with a take-profit equal to 6.8 and stop-
loss equal to -3.2 . 17

2.4 Bull put spread example, with a take-profit equal to 6.89 and stop-
loss equal to -3.11 . 17

2.5 Bear put spread example, with a stop-loss equal to -3.18 and take
profit equal to 6.82 . 18

2.6 Long straddle spread example, with a stop-loss equal to -7.92 18
2.7 Short straddle spread example, with a take-profit equal to 7.92 . . . 20
2.8 Reverse butterfly spread example, with a stop-loss equal to -6.27 and

take-profit equal to 3.73 . 23
2.9 Butterfly spread example, with a take-profit equal to 6.27 and stop-

loss equal to 3.73 . 23
2.10 Calendar spread example, with a take-profit equal to 7.92 25

3.1 Stakeholders . 34
3.2 Functional requirements for the platform 35
3.3 Non functional requirements for the platform 36
3.4 Relation between the URL and HTTP Methods in REST API archi-

tecture . 42

4.1 User document description . 54
4.2 Market document description . 55
4.3 Market expiration document description 55
4.4 Chain document description . 56
4.5 Strike document description . 56
4.6 Option document description . 57
4.7 Future document description . 58
4.8 Group document description . 58

6

4.9 Strategy document description . 59
4.10 Position document description . 60
4.11 Portfolio document description . 61
4.12 Market history document description 61
4.13 Chain history document description 62
4.14 Historical data: collection total size in MB 63
4.15 Historical data: average document size in MB 63
4.16 Schedule time for async tasks . 65

5.1 Use case: create a new strategy . 80
5.2 Use case: implement a butterfly spread strategy 82

7

Chapter 1

Introduction

Over time, banks and online brokers have equipped themselves with valid trading
systems that allow orders to be sent quickly to the market and to carry out basic
chart and technical indicators. These systems, however, should be used above all
for executive purposes, while the analysis and forecasting part should be carried
out using appropriate external platforms. These platforms are more difficult to
find especially in the field of derivatives and options and also presenting high costs
making it difficult for new users to study and start to use them. Furthermore, most
of these platforms are old-time software presenting portability problems with new
operating systems, outdated graphical interfaces and not at all user friendly. The
objective of the thesis is therefore to develop a platform capable of providing all the
necessary tools to analyze the markets and show statistical results on its trend for
both professional and novice traders. This platform must be usable via the web in
such a way as to make it available for all operating systems present to date without
the need for complicated installations.

1.1 Overview of the Thesis

In this document, will be presented all the fundamental arguments and design
choices to achieve the set goal. In particular, with the following Chapter 2 we will
provide a greater context on the financial world dealing with the main suppliers of
futures and options contracts such as CME and CBOE for the American markets
and EUREX for the European one to then deepen the concept of derivative in-
struments. With regard to this, we will describe in detail what futures and options
contracts are, showing their characteristics and context of use with the relative ben-
efits and the possible operational strategies that can be implemented. This step is
important to provide the right context information and to better understand the
functional requirements requested by the user.

1

Introduction

Then we move on to the practical act in the Chapter 3 by analyzing and col-
lecting the user requirements in order to identify and classify the most important
ones for the first version of the application. This information are essential for un-
derstanding what data we need, where to retrieve them and how often their needs
updating. It was therefore possible to proceed with the search for data sources
capable of satisfying these requirements, which ended with the use of the main
providers mentioned above. After that, we moved on to the next step concerning
the most appropriate design and architecture for the development of the system
and closing with the discussion of the architecture and technologies chosen for it.

In Chapter 4 we focused on the implementation of the application. The first step
was to define the entities that best represent our financial concepts and relationships
that best model the user operations. From a practical point of view it translates into
the definition of models and collections for the non-relational database. Then we
moved on to the development of asynchronous tasks with the purposes of contacting
the external data sources and successively mapping their information in the internal
models and then saving them in the database. Finally, various web services were
described to allow the user to view these financial information but also to process
and store their operational choices within the available markets.

Finally, the Chapter 5 deals with the client application to be used by the end
user. Here we will show how the information received from dedicated web services
are stored and displayed and how requests and events coming from the interaction
with the user are managed. Then they will be showed section by section all func-
tionalities available for the user. Furthermore, some typical scenarios and use cases
by the user will be exposed during the normal course of his trading activity.

2

Chapter 2

Trading

Trading is the activity of buying and selling financial instruments such as shares,
options, currencies and futures and whose value is listed during the opening phases
of the world exchanges. Trading success requires the mastery of many subjects,
from strategies to instruments and depends on a trader’s ability to be profitable
over time. Implies active participation in the markets as opposed to investing,
which suggests a buy-and-hold strategy.

In this chapter we will initially try to provide an overview of the components
and main players that are part of the trading and then conceptually provide deepen
knowledge of the financial instruments that are present within the platform.

2.1 Exchanges
An exchange is an open and organised marketplace where financial instruments such
as securities, commodities, derivatives and other are grouped in their related finan-
cial markets and traded. Exchanges have the responsibility to provide equitable,
well-ordered and efficient trading and spread of price information by centralising
the buying and selling of a particular asset and ensure that all trades are executed
at the best available market price. For our purposes we want to focus in particular
on the following exchanges: CBOE, CME and EUREX.

Cboe Options Exchange was founded in 1973 and become the world’s largest
options exchange [6]. Provide contracts for several financial instruments and prod-
ucts like individual equities, indexes, and interest rates, call and put options, thou-
sands of publicly traded stocks, as well as on exchange-traded funds (ETFs) and
exchange-traded notes (ETNs). Finally, the Cboe Volatility Index (VIX) index,
which is the premier barometer of equity market volatility. This Index is based
on real-time prices of near-the-money options on the S&P 500 Index (SPX) and
is designed to reflect investors’ consensus view of future (30-day) expected stock

3

Trading

market volatility.

Chicago Mercantile Exchange is an organized exchange founded in 1898 and
colloquially known as the Chicago Merc [7]. Provide several contracts for the trad-
ing of futures and options in the sectors of agriculture, energy, stock indices, foreign
exchange, interest rates, metals, real estate. It have even recently introduced Bit-
coin futures and weather derivatives.

Eurex Exchange was founded in 1998 and become one of the largest futures and
options markets in the world [8]. Provide products that range from German and
Swiss debt instruments to. It allows traders to operate online and despite being
based in Europe thanks to their electronic access is available from 700 locations
around the world. Nowdays, is part of the Eurex Group and is owned by Deutsche
Börse AG, a transaction services provider that enables access to global capital
markets to investors and financial institutions.

2.2 Markets
As we already said, exchanges contain different types of markets enabling trading of
financial instruments, such as stock, bond, forex, derivatives asset and many more.
In this section a brief introduction is given about the principal market categories
describing the financial instruments they group, which are the main actors that
operate and the purpose of their use.

Stock Markets where shares or common stocks are allowed to buy and sell, and
enable the subsequent trading thereof. Most common participants in this market
are investors and traders, both retail and institutional, as well as market makers
and specialists who maintain liquidity and provide two-sided markets. Instead,
there are some third parties, like brokers, that facilitate trades between buyers and
sellers without take a personal position in a stock.

Index Markets where more than one share is grouped together and the value of a
single index thus represents all the underlying shares. This value can be calculated
in three different ways:

• equally weighted, where all securities have the same weight within the index

• price weighted, where the value depends on the sum of the prices of the Stocks
that compose it (the more expensive Stocks have a greater weight)

• value weighted, where the weight of each security is proportional to its market
capitalization.

4

2.3 – Instruments

Most of the world’s major indices are calculated using the value weighted method-
ology, for example S&P 500 and DAX. While the Dow Jones Industrials expresses
itself through the price weighted method.

Bond Markets also referred as debt, credit, or fixed-income market where cor-
porations and governments issue bond securities to finance projects and operations.
Those securities are used by investors to loans money for a defined period with a
pre-established interest rate.

Money Markets where short term debt financing and investment are provided
and involve large-volume trades between institutions and traders. Individuals may
also invest by buying short-term certificates of deposit (CDs), banker’s acceptances,
certain bills, notes and commercial papers. This market is characterized by a high
degree of safety and a relatively low return in interest.

Derivatives Markets where instruments that derive their value from other un-
derlying instruments like bonds, indexes, stocks and other, can be bought or sold.
Generally those instruments are futures and options contracts used by market par-
ticipants for speculate on the price movement of the underlying without physically
owning it.

Forex Market where exchange rates between currency pairs can be used as spec-
ulation instruments by the participants. Is the most liquid market, decentralized
and composed of a global network of computers and brokers and made up of banks,
investment management firms, and investors.

Commodities Markets where physical goods, such as agricultural products,
energy products or precious metals are exchanged for money, between producers
and consumers.

Cryptocurrency Markets where digital currencies can be traded such as Bit-
coin and Ethereum, is decentralized without the need for an actual exchange au-
thority to facilitate the transactions.

2.3 Instruments
In the financial literature the concept of financial instruments indicates any assets
or contract that can be purchased, traded, created, modified, or settled for. In
terms of contracts, there is a legal agreement between involved parties during a
financial instrument transaction. Financial instruments may be divided into three
types: cash instruments, foreign exchange instruments, and derivative instruments.

5

Trading

Cash Instruments are financial instruments where their values reflecting mar-
kets condition and are divided in two types; securities and deposits, and loans.
In particular, securities are a financial instrument that represents ownership of a
company that is publicly-traded. Those instruments have a monetary value and are
traded on the stock market. Deposits and Loans are monetary assets with contrac-
tual agreement between parties and for this reason are considered cash instruments.

Foreign Exchange Instruments are currency agreements that are represented
on the foreign market and they can be divided into three categories: spot, outright
forwards and currency swap. The first one, are agreements with limited amount
of time, at most two days, for performing the exchange. Outright forwards, are
agreements that allows to perform the exchange of currency “forwardly” but before
the agreed date. Finally, currency swap are agreements based on buying and selling
currencies with different dates simultaneously.

Derivative Instruments are financial instruments with a price that is not au-
tonomous but derives from one or more underlying assets and the price value is
determined by fluctuations of it. The most common underlying assets include
stocks, bonds, commodities, currencies, interest rates and market indexes.

2.3.1 Derivatives
The origin of derivative instruments stems from the trading of raw materials and in
particular from the need to protect the delivery of goods and the main function was
typically to cover the risk of any unexpected fluctuation in prices due to various
causes. Over time derivatives have mostly changed this function and now are used
for speculation. In particular, can be used to hedge a position and speculate on
the directional movement of an underlying asset. Furthermore, the total required
capital to operate with derivatives is lower with respect to other financial markets.
Indeed, with these financial instruments it is possible to invest only a part of the
total value of the underlying asset, which normally corresponds to about 10%. The
five most common examples of derivatives instruments are:

• Synthetic Agreement for Foreign Exchange (SAFE) are contracts that guar-
antees for a period of time a specified exchange rate in the over-the-counter
(OTC) market.

• Forward are contracts where at expiration two parties undertakes an exchange
of derivatives at a specific price.

• Futures are contracts where two parties undertakes an exchange of derivatives
on a determined future date and at a forward exchange price.

6

2.4 – Futures

• Options are contracts where two parties, seller and buyer, undertakes an
exchange of a specific quantity of derivatives and the seller grants the buyer
the right to buy or sell them at a predetermined price within the expiration
date.

• Interest Rate Swap are contracts where each party agrees to pay other interest
rates on their loans in different currencies.

For our purposes, we will discuss Futures and Options more in detail in the next
sections.

Definitions

Before going into detail with derivatives instruments it is important to have in mind
some basic metrics and definitions:

• Payoff is a chart that represents the profit trend in the event that a new
position is opened. On the horizontal axis there are all the possible prices of
the underlying asset while on the vertical axis there are the possible profits
or losses.

• Fair value, generally, represents the theoretical value of the underlying com-
pared with its market prices and verifies whether the prices are overestimating
or underestimating the asset or if the value itself is in equilibrium.

• Volumes are the number of transactions carried out in a given period of time
and indicate the liquidity of a given financial asset. Higher volumes mean
greater liquidity. Few volumes means that the title is not very liquid and
little treated.

• Open interest represents the precise number of contracts left on the market
and can increase or decrease with the opening or closing of positions. It is
particularly important and there are some advanced techniques for reading
the market which cannot be applied without this data.

2.4 Futures
Futures are an agreement between two parties in which they trade a quantity of
an underlying asset, at a forward price and at an expiration date. Both parties
are obligated to fulfill a commitment to buy or sell the underlying asset. Indeed,
the buyer of the future contract opens a long position and committed to pay a
price at a certain date to receive the underlying asset. The seller opens a short
position and undertakes to deliver the underlying asset in exchange for a price, at

7

Trading

an expiration date. If in the meantime the price of the underlying rises, the one
who bought the future makes a profit, while the one who sold the future takes a
loss. Clearly, it is the exact opposite situation if the price of the underlying asset
falls because this kind of contracts are zero-sum. Furthermore, it is important to
add that futures have quarterly maturities: March, June, September and December
and in financial systems these maturities are coded with the following letters: H,
M, U, Z.

By the way a derivative contract, written on a financial asset, is almost never
used with the intent of concluding the transaction with the physical delivery of
the underlying asset. In reality, only 3% of contracts are completed because in the
majority of cases are used for speculation.

2.4.1 Payoff
The term payoff indicates the yield of a single futures contract currently being
traded. By plotting the respective charts for the long and short position (Figure 2.1)
it is possible to notice two completely different profit trends. In particular, when
a long position is opened the profit tend to go up as the price of the underlying
increases, vice versa with a short position the profit go down if the price of the
underlying goes down. The cross with the horizontal axis indicates the price of the
underlying when the position was opened.

Thus, the main characteristic of futures contracts is the possibility to have a
linear dependence on the price of the underlying without actually paying its full
value. In fact, to open a future position it is necessary to pay an initial cost of
the so-called guarantee margin equal to approximately 10% of the real value of the
underlying. This characteristic is called the leverage effect and can be a source of
large profits but also of large losses if not used correctly.

2.5 Options
An options contract is similar to a futures one with the key difference that the
buyer have the right, but not the obligation, to buy or sell a given amount of a
particular underlying asset at a predetermined price, commonly called strike price
1, somewhere in the future. The seller, on the other hand, earn the prize, and has
the obligation to collect or deliver the underlying at the will of the buyer.

Furthermore, options allow to build more advanced speculative strategies for
all underlying assets with the possibility to change the risk profile at any time.
However, options are particularly more complex and do not have the linear profit
and loss payoff of the future contract. They are subject to multiple variables that

1the price at which a put or call option can be exercised

8

2.5 – Options

(a) Long future

(b) Short future

Figure 2.1: Long and short positions of a future contract (e.g. strike price 100)

modify their price and leverage. For this reason before going into detail on the most
common operational strategies it is important to have a look of some definitions
and math prerequisites.

Type of options options are divided in two types: call and put options. Call
options are derivative instruments that guarantees the buyer the right, but not the
obligation, to buy an underlying at a predetermined price at maturity. Put options
are a derivative instruments that guarantees the buyer the right, but not the obli-
gation, to sell the underlying at a predetermined price at maturity. Furthermore,

9

Trading

there is another important geographical division: in the case of European options,
it is possible to exercise one’s right only upon expiry, while American options give
the holder the possibility of exercising at any time within the expiry date. This
wider possibility for American options means that their theoretical price is higher
than that of similar European options (for options with the same duration, the
same underlying and the same strike), and in any case never lower.

2.5.1 Price
The price of an option contract depends on many factors. In particular, the option
pricing formula is based on a model of three mathematicians-economists Black,
Sholes and Merton, more simply called the Black and Sholes model, who were
awarded the Nobel Prize for this theorization. This model tells us that the factors
that affect the price of an option are: price of the underlying, strike price, expiration
date, interest rate, dividends and volatility. Among these the strike price, or the
exercise price of the option, and the relative distance with the underlying price
plays an important role. This distance represents the intrinsic value component
and divide each option type in three price ranges (Table 2.1):

• At the money (ATM) when a put or a call option has the strike price equal
to or close to the underlying price.

• In the money (ITM) when a call option has the strike price lower or a put
option has the strike price higher then the underlying price.

• Out the money (OTM) when a call option has the strike price higher or a put
option has the strike price lower then the underlying price.

The price of an option has also an high dependence with the volatility that,
within the number of days left to the expiration, compose the time value compo-
nent. Volatility is difficult to quantify, represents the measure of the price move-
ments of the underlying. Large price fluctuations lead to increased volatility with
a high probability that a certain option will go from ATM/OTM to ITM, while
small swings lead to low volatility with a high probability that options will expire
worthless. To measure it, statistical tools such as standard deviation are used.

Finally, these two components affect the price based on the price range the
option is in. Indeed, the ITM option price depend on the intrinsic value and time
value, while the ATM and OTM options price depend only on time value.

2.5.2 Payoff
As already mentioned above, in the case of options, the payoff has no longer a
linear dependence on the underlying. In particular, due to their complexity from a

10

2.5 – Options

State Call Strike Put State
ITM 219 2850 69 OTM
ITM 201 2875 76 OTM
ITM 183 2900 83 OTM
ITM 166 2925 91 OTM
ITM 150 2950 100 OTM
ATM 134 2975 109 ATM
ATM 120 3000 120 ATM
ATM 107 3025 132 ATM
OTM 95 3050 145 ITM
OTM 83 3075 158 ITM
OTM 73 3100 173 ITM
OTM 64 3125 189 ITM
OTM 56 3150 206 ITM

Table 2.1: Option chain1 example of Eurostoxx50, with underlying price equal to
3000 and 40 days at expiration.

1 Set of options with the same expiration date

11

Trading

mathematical point of view, two important payoff must be taken into consideration:
"at now" and "at maturity". The payoff at maturity, as in futures, shows what the
profit will be on the contract expiration date. While the payoff at now, present only
for options, shows the trend of the profit in each instant, that is, the gain or loss
compared to the option price in each instant. The distance between those two lines
is defined as a time value. Over time, this value will decrease and consequently the
at now line will get closer and closer to the pay off at maturity until it coincides with
it on the day of maturity. Another important concept to consider is the division of
options into call and put. In fact, starting from this simple division, we can perform
four basic positions that can be opened: Long Call/Put and Short Call/Put.

Long Call

It is a strategy that involves buying a call option to obtain the right to buy the
underlying at a predetermined strike within a certain expiry date; So there is an
initial cost, also called a prize, which is reflected in the graph (Figure 2.2a) with
the payoffs which, at the value of the strike price, start from a negative profit. It
is clear that those who execute a long call strategy believe that the price of the
underlying can rise in the future and then exercise the right to buy it at a lower
predetermined price and resell it immediately to close with a positive profit.

Long Put

Here, instead, the strategy involves buying a put option to obtain the right to sell
the underlying at a predetermined strike within a certain expiry date; The payment
of an initial cost, also called a prize, is reflected in the graph (Figure 2.2b) with
the payoffs which, at the value of the strike price, start from a negative profit. It
is clear that those who execute a long put strategy believe that the price of the
underlying may fall in the future and then exercise the right to sell it at a higher
predetermined price by closing in positive.

Short Call

It is a strategy that involves selling a call option to leave the possibility to other
parties, the right to buy the underlying at a predetermined strike within a certain
expiry date. By selling, you get the prize that was paid by whoever bought the
respective call. For this reason, in the graph (Figure 2.3a) the payoffs, at the strike
value, start from a positive profit. It is clear that those who execute this strategy
believe that the price of the underlying cannot rise above the predetermined strike
value so as not to lose the prize received and close in positive.

12

2.5 – Options

(a) Long Call

(b) Long Put

Figure 2.2: Long positions for call and put options contract (e.g. strike price 100
and 40 days to maturity)

Short Put

It is a strategy that involves selling a put option to leave the possibility to other
parties, the right to sell the underlying at a predetermined strike within a certain
expiry date. By selling, you collect the prize that was paid by whoever buys the
put. For this reason, in the graph (Figure 2.3b) the payoffs, at the strike value,
start with a positive profit. It is clear that those who execute this believe that the
price of the underlying cannot fall below the pre-established strike value so as not
to lose the prize received and close in positive.

13

Trading

(a) Short Call

(b) Short Put

Figure 2.3: Short positions for call and put options contract (e.g. strike price 100
and 40 days to maturity)

2.5.3 Spread

The option spread is a strategy that involves the combined use of two or more basic
buy and sell positions, in order to build a risk profile consistent with the market
and with proper risk management expectations. With the spreads, is possible to
modulate the trade off between being a seller and therefore collecting a small prize
for a significant number of winning trades but facing significant risks, and being a
buyer and therefore paying a small prize with the possibility of ride a big movement
with big gain. The three main categories of spreads are:

14

2.5 – Options

• vertical spread, consisting of options with the same maturity but on a different
strike price

• horizontal spread, consisting of options with different maturities but on the
same strike price

• diagonal spread, consisting of options with different strikes and maturities

Vertical spreads focus on the directionality of trading. While the horizontal ones
benefit from the different time decay and volatility of the different maturities. Fi-
nally, diagonal spreads are useful for benefiting from both directionality and differ-
ent volatility and time decay. Moreover, based on the difference between prize paid
and received, the spreads can be classified into:

• debit spread, when the prize received by selling options is lower than the prize
paid for purchasing options

• credit spread, when the prize received by selling options is higher than the
prize paid for purchasing options

Option spreads are one of the best ways to work with options. The total operating
costs is reduced by collecting prizes through the sale of some contracts and is
possible to obtain strategies with well-defined stop loss and take profit. Some
strategies that can be achieved through option spreads will be discussed in this
section, further highlighting their advantages and disadvantages.

Bull Call

The Bull Call spread is a debt, vertical option spread strategy which can be obtained
by purchasing a call option at a lower strike price and selling another call option
at a higher strike within the same expiration date (Table 2.2). The difference
between the prize received and the one paid represents the total cost of the operation
also called stop-loss2. However, there is also a take profit3 given by the difference
between spread4 and the total cost. It is also possible to understand that the profit-
loss ratio is greater than one, in fact the area above zero is greater the below one
(Figure 2.4a).

This strategy is useful when we want to exploit a possible increase in prices,
perhaps even reaching the strike of the option sold.

2 pre-established risk limit
3 maximum earning limit
4 the difference in strike price between the option sold and the one purchased

15

Trading

Bull Call Spread
Operation Quantity Option Strike Expiration Date Prize

Buy 1 Call 100 Sep 30 -4.07
Sell 1 Call 110 Sep 30 0.97

Table 2.2: Bull call spread example, with a stop-loss equal to -3.1 and take profit
equal to 6.9

16

2.5 – Options

Bear Call

The Bear Call spread is a credit, vertical spread strategy which can be obtained by
purchasing a call option at a higher strike price and selling another call option at a
lower strike within the same expiration date (Table 2.3). In this way the definitions
of stop-loss and take-profit are reversed with respect to the bull call spread. Indeed,
the difference between the prize received and the one paid represents the take-profit
while the stop loss is given by the difference between the spread4 and the take-profit
itself.

Bear Call Spread
Operation Quantity Option Strike Expiration Date Prize

Buy 1 Call 100 Sep 30 -4.07
Sell 1 Call 90 Sep 30 10.87

Table 2.3: Bear call spread example, with a take-profit equal to 6.8 and stop-loss
equal to -3.2

This strategy (Figure 2.4b) is very useful for operating on a market on which
we expect an unchanged or a decrease of the prices, possibly with a movement that
reach beyond the strike of the option sold.

Bull Put

The Bull Put spread is a credit, vertical spread strategy which can be obtained by
purchasing a put option at a lower strike price and selling another put option at a
higher strike within the same expiration date (Table 2.4). The difference between
the prize received and the one paid represents the maximum take-profit that will
have from these operations. Instead the stop-loss is given by the difference between
the spread4 and the take-profit. This strategy is useful when we want to exploit

Bull Put Spread
Operation Quantity Option Strike Expiration Date Prize

Buy 1 Put 100 Sep 30 -3.86
Sell 1 Put 110 Sep 30 10.73

Table 2.4: Bull put spread example, with a take-profit equal to 6.89 and stop-loss
equal to -3.11

an unchanged or possible increase of the prices, perhaps even reaching the strike of
the option sold.

17

Trading

Bear Put

The Bear Put spread is a debt, vertical spread strategy which can be obtained by
purchasing a put option with a higher strike and selling another put option with a
lower strike within the same expiration date (Table 2.5). In this way the definitions
of stop-loss and take-profit are reversed with respect to the bull call spread.

Bear Put Spread
Operation Quantity Option Strike Expiration Date Prize

Buy 1 Put 100 Sep 30 -3.85
Sell 1 Put 90 Sep 30 0.67

Table 2.5: Bear put spread example, with a stop-loss equal to -3.18 and take profit
equal to 6.82

Looking the payoff (Figure 2.5b) is possible to see that the substantial difference
lies in the direction of the price. In fact, this strategy is useful for taking advantage
of a decrease in prices possibly with a movement that reaches the strike of the
option sold.

Long Straddle

The Long Straddle spread is a debt, vertical spread strategy which is obtained by
purchasing an equal amount of call option and put option on the same strike price
and expiration date (Table 2.6). In this case the stop-loss is defined as the sum of
all the prizes paid while the take-profit is not present, so we can say that we do not
have a maximum profit limit.

Long Straddle Spread
Operation Quantity Option Strike Expiration Date Prize

Buy 1 Call 100 Sep 30 -4.07
Buy 1 Put 100 Sep 30 -3.85

Table 2.6: Long straddle spread example, with a stop-loss equal to -7.92

Looking at the payoff chart (Figure 2.6a) is possible to notice that this strategy
becomes useful when you want to exploit large movements in the price, either
upwards or downwards. What matters is that the market moves quickly and deeply,
no matter the direction. The main advantages are the risk limited only by the
prize we paid and theoretically unlimited profit possibilities. The disadvantages
are represented by the total cost of the prize required to enter the market, because
we are buying two options, and if there is no strong directional movement is very
likely to lose all or part of the prize.

18

2.5 – Options

(a) Bull Call Spread

(b) Bear Call Spread

Figure 2.4: Bear and bull option spreads for call contracts (e.g. strike price 100
and 40 days to maturity)

Short Straddle

The Short Straddle spread is a credit, vertical spread strategy which is obtained by
selling an equal amount of call option and put option on the same strike price and
expiration date (Table 2.7). In this case the, there is an inverted situation from
the long straddle spread. There is a take-profit, defined as the sum of all the prizes
received, but there is not a pre-established risk limit.

Looking at the payoff chart (Figure 2.6) is possible to notice that this strat-
egy becomes useful when you want to exploit an unchanged situation in the prices.

19

Trading

Short Straddle Spread
Operation Quantity Option Strike Expiration Date Prize

Sell 1 Call 100 Sep 30 4.07
Sell 1 Put 100 Sep 30 3.85

Table 2.7: Short straddle spread example, with a take-profit equal to 7.92

20

2.5 – Options

(a) Bull Put Spread

(b) Bear Put Spread

Figure 2.5: Bear and bull option spreads for put contracts (e.g. strike price 100
and 40 days to maturity)

What matters is that the market moves slowly, and in a shallow way, without direc-
tionality and statistically this behavior is much more likely. The main advantages
are the low operating costs and an high probability the prices does not change too
much. The disadvantage is that potential losses are high if the price changes a lot
as there is no stop-loss.

21

Trading

(a) Long Straddle Spread

(b) Short Straddle Spread

Figure 2.6: Long and short straddle option spreads (e.g. strike price 100 and 40
days to maturity)

Reverse Butterfly

The Reverse Butterfly spread is a debt, vertical spread strategy and extends the
long straddle spread strategy. In fact, in addition to buying an equal number of call
and put on the same strike price you have to sell an equal number of call and put
on different strikes (Table 2.8). This allows to reduce the disadvantage of having a

22

2.5 – Options

high operating cost, collecting the prizes obtained by the sale of the put.

Reverse Butterfly Spread
Operation Quantity Option Strike Expiration Date Prize

Buy 1 Call 100 Sep 30 -4.07
Buy 1 Put 100 Sep 30 -3.85
Sell 1 Call 110 Sep 30 0.98
Sell 1 Put 90 Sep 30 0.67

Table 2.8: Reverse butterfly spread example, with a stop-loss equal to -6.27 and
take-profit equal to 3.73

Looking at the payoff chart (Figure 2.7a) is possible to notice that we can still
exploit large movements in the price, either upwards or downwards with a reduced
cost but with a maximum profit.

Butterfly

The Butterfly spread is a credit, vertical spread strategy and extends the short
straddle spread strategy. In fact, in addition to selling an equal number of call
and put on the same strike price you have to buy an equal number of call and
put on different strikes (Table 2.9). In this way we lose some profit respect to the
short straddle strategy but we have a covered portfolio thanks to the presence of a
stop-loss (Figure 2.7b).

Butterfly Spread
Operation Quantity Option Strike Expiration Date Prize

Sell 1 Call 100 Sep 30 4.07
Sell 1 Put 100 Sep 30 3.85
Buy 1 Call 110 Sep 30 -0.98
Buy 1 Put 90 Sep 30 -0.67

Table 2.9: Butterfly spread example, with a take-profit equal to 6.27 and stop-loss
equal to 3.73

Calendar Spread

The Calendar Spread is a horizontal spread strategy obtained by buying and selling
options on the same strikes, but employing different expiration dates. This kind of
strategies benefits from the greater temporal decay of the closest-maturing option
sold, while the far-maturing option retains its value. They may be debit or credit
depending on whether the prize paid is higher or lower than the prize received and

23

Trading

(a) Reverse Butterfly Spread

(b) Butterfly Spread

Figure 2.7: Butterfly option spreads (e.g. strike price 100 and 40 days to maturity)

the type of option does not matter as long as they are either all put or all call
(Table 2.10).

24

2.5 – Options

Looking at the payoffs (Figure 2.8) is possible to notice that the debit calendar
spread can be applied when the volatility is low and therefore a slow fluctuation
of the prices. To the contrary a credit calendar spread can be applied in order to
take advantage of the possible strong fluctuations of the price both upwards and
downwards.

Table 2.10: Calendar spread example, with a take-profit equal to 7.92

Type Operation Quantity Option Strike Expiration Date Prize

Debit Sell 1 Call 100 Sep 30 4.07
Buy 1 Call 100 Dec 31 -8.32

Credit Buy 1 Call 100 Sep 30 -4.07
Sell 1 Call 100 Dec 31 8.32

2.5.4 Greeks
Greeks are numerical values useful to understand possible operational opportunities
to use for increase your profit. They measure the sensitivity of the option price to
the various factors that compose it and they are expressed only for the at now
payoff. The main Greeks are:

• Delta represents the first derivative of the option price compared to the
price of the underlying asset. For both put and call instruments, the delta
increases as the underlying price increases and decreases as the underlying
price decreases. In particular, in the case of call options the delta always
assumes a value between 0 and 1, while in the case of put options it always
assumes values between -1 and 0. Furthermore, delta also represents the
probability that the option will expire in the money or out of the money.
Indeed, with the decrease of the days to maturity, delta tends to assume
values equal to 1 or -1 for call and put ITM, equal to 0 for OTM and 0.5 for
ATM.

• Gamma measure how much the delta varies as the underlying market changes.
Generally it has the maximum value for ATM options to decrease as options
become OTM or ITM.

• Vega measures how much an option prize increases as the underlying market
volatility increases. Vega is positive for long calls and long puts, and negative
for short calls and short puts. In fact, if we are buyers we are favored by
the increase in volatility (positive vega) if we are sellers we are disadvantaged
(negative vega).

25

Trading

(a) Credit Calendar Spread

(b) Debit Calendar Spread

Figure 2.8: Calendar option spreads (e.g. strike price 100 and 40 to 160 days to
maturity)

• Theta measure the loss in value of the contract from one day to the next.
It is maximum for ATM options and decreases to almost zero for OTM and
ITM options. On days when the market is closed theta always acts in favour
of the seller.

After this general analysis we can state the following reports.
In the money options has: an high delta practically speculating at the un-

derlying with a tendency to increase as the deadline approaches; a low range and

26

2.6 – Platforms

decreasing as the deadline approaches; a low theta and falling as the deadline ap-
proaches and a low vega and decreasing as the deadline approaches.

At the money options has: an average delta which tends to remain constant
even with the passage of time; an high range and rising sharply as the deadline
approaches; an high theta and falling as the deadline approaches and an high vega
and decreasing as the deadline approaches.

Out of the money options has: a low delta and falling as the deadline
approaches; a low range and decreasing as the deadline approaches; a low theta and
falling as the deadline approaches and a low vega and decreasing as the deadline
approaches.

2.6 Platforms
A trading platform is basically a software tool through which it is possible to make
financial investments and monitor accounts through financial intermediaries. Now
a days there are a wide number of platforms, covering almost all types of markets.

The most important features are to enables investors and traders to place trades,
monitor accounts and real-time quotes with charting tools and even premium re-
search. Oftentimes, various trading platforms offer their members the possibility of
using a demo account, that is basically an account for making virtual investments.
In this way, there is no risk of losing money and it is very helpfully for beginners.

2.6.1 Competitors
For our purposes it is necessary to analyze some competitors that allow us to operate
within the derivatives market. In particular, among the most important software
are: FiutoBeta, OptionRuler and OptionVue. In this section we will analyze these
platforms describing their main characteristics, costs and relative pros and cons.

FiutoBeta

FiutoBeta is a trading platform developed by PlayOptions Srl, an Italian company
operating in the trading sector. The platform is made up of different sections
dedicated to different functions, all reachable through the vertical bar on the left.
In particular, the most important sections are:

• Underlying section, where is possible to load the underlying on which you
want to operate and view some general information such as price history, open
interest and volumes.

• Options section, where there are all the option contracts, call and put, for
all the maturities and all the strikes available on the selected underlying. It

27

Trading

Figure 2.9: Underlying section on FiutoBeta

is therefore possible to add new positions to the current strategy and also
viewing the payoff in real time.

• Analysis section, where you can analyze the current strategy and evaluate
the probability of success

• Search and selection: where you can search for predefined strategies (e.g. bull
call spread, butterfly, etc ...) and apply them to the selected underlying.

• Tools section, which includes all the useful tools to perform calculations of
percentage variation, greeks and implied volatility in real time and insert
alerts to monitor price trends.

• Portfolio section, where you can monitor the global trend of your capital by
viewing the performance of all currently active strategies.

FiutoBeta is suitable for starting a new learning path in financial derivative
instruments such as options, but also to provide support for the first options strate-
gies, from the choice of the underlying to the control of the portfolio.

Pros

• Free software and data feeds

• Possibility to export your strategies

28

2.6 – Platforms

Cons

• Limited number of option contract per maturity date

OptionRuler

OptionRuler is an italian trading platform where is possible to carry out simulations
and set up the purchase and sale strategies of options that are more consistent with
price expectations.

Figure 2.10: Grid view in OptionRuler

The main screen is called Grid and is divided vertically into three sectors: call,
strike price and put options data. Each row of the grid is referred to a single strike
price with two option contract on for the call, on the left, and one for the put, on
the right. Is possible to open the order form by clicking on one of the two sides of
the option row and after that is possible to buy or sale the selected option and add
a new position to the current strategy. After the Grid view there are several other
screens, such as:

• the Calendar view that allows users to compare the median prices of call and
put options of different maturities.

29

Trading

• the Strategy view that allows users to evaluate the profitability of the current
strategy.

• the Portfolio view that allows users to manage temporary or opened orders

The platform does not charge account maintenance fees but commissions for Eu-
ropean market are around € 5 per executed order and for non-European amounted
to 9$. It is a service that embraces a very broad target of investors, ranging from
beginners to those who are more experienced in the sector.

Pros

• Commission structure suitable for all types of investors.

• Possibility to connect the account to various external software.

• Great and fast customer service available 6 days a week, 24/24.

Cons

• High commissions on foreign markets.

• Most of the options are not available.

• Limited offer of foreign products and markets.

OptionVue

OptionVue is an advanced options trading software that includes some important
features such as option matrix, highly customizable charts, reporting and modeling
but also tools for finding the best trade strategy.

More in detail, the options matrix (Figure 2.11) is useful to look per each option
contract, for a particular asset, all the pricing data, premium, volatility and some
relevant greeks. There is the possibility to search for multiple dates and strike
prices and open new positions for the current option strategy. From these positions
OptionVue will calculate profit and loss that can be displayed by some advanced
charts and permit comparison with other option strategies. Furthermore, there is a
TradeFinder tool for scanning different options strategies and finding the best one
that match some initial condition and filters.

Generally, is more suitable for experienced options traders and from the point
of view of costs is a very expensive platform, with the basic fee that starts from
1000$ per year without the cost of data feeds and accessory modules.

30

2.6 – Platforms

Figure 2.11: Option matrix feature in OptionVue

Pros

• Model implied volatility for any asset

• Detailed, interactive profit and loss charts

• Access to model parameters, including volatility calculations

• Includes trade tracking and reporting tools

• Interface and options matrix are fully customizable

Cons

• Very expensive and does not include data feeds

31

32

Chapter 3

Essentials

The idea is to develop a trading platform that includes the main features offered
by competitors analyzed previously. In particular, it will be necessary to provide
a section that ensures the operation on the main derivatives markets and assets
with the consequent management of the strategies created by the user and the
corresponding virtual portfolio.

In this chapter we will explain in more detail these requirements, the main
data sources for the assets we are interested in, the technologies chosen for the
implementation and the final architecture of the platform.

3.1 Requirements
Requirements is about defining the product properties before starting development
and are divided in functional and non-functional requirements and should be both
complete and consistent. They should include descriptions of all features required
and should be no conflicts or contradictions in the descriptions of the system fea-
tures. In reality, producing these documents is not at all trivial and many times
is possible to fall into errors such as inserting features described in an incomplete
or ambiguous way, entering redundant information or omitting important details.
For this reason, predefined software engineering techniques have been developed to
better formalize the requirements and reduce the occurrence of these errors. Some
of these techniques will be presented below to identify the actors involved and the
characteristics of functional and non-functional requirements.

3.1.1 Stakeholders
A stakeholder is a role or person that has an interest in the system to built and may
affect or get affected by the outcome of the project. For example, a stakeholder
can be the user or several user profiles that use the system and the supplier that
pays for it but also the administrator, business analyst and developers. Listing the

33

Essentials

relevant stakeholders is essential to consider relevant points of view, and therefore
relevant requirements, for a system. Looking at Table 3.1 is possible to notice that
many stakeholders are involved in the process

Name Description
Developers Do not use the application directly. They are involved

in the development process of the app.
Users Person using the app directly. After registration

can search, view markets and operate with a virtual portfolio
Admin Manages profiles and markets. Can decide to

enable or disable some markets inside of the application
CBOE System Provide REST API for downloading information about

markets with options and futures contracts.
CME System Provide REST API for downloading information about markets

with options and futures contracts.
EUREX System Provide HTML pages for downloading information

about markets with options and futures contracts.

Table 3.1: Stakeholders

3.1.2 Functional and Non-functional
To define these requirements, a software quality model defined by the ISO1 must
be followed. In particular, the ISO9126/25010[9] standard defines six properties
of software systems: functionality, reliability, usability, efficiency, maintainability,
portability.

Functional requirements, includes only the first property and should provide a
description of services that we are going to implement and should contains terms of
the application domain, explain the behaviors provided by the system and must be
understandable to the customer. The difficult part is to distinguish one requirement
from another and for this reason is important to assign for each functionality an ID
in order to easy identify it and trace throughout the life cycle of the project (Table
3.2).

Non-functional requirements, includes the remaining five properties and for
this reason may be more critical than functional requirements. They are not di-
rectly connected with the functionalities to be implemented, but refer to operating
methods and constraints, such as response times, supported platforms, choice of
languages, required resources, tools and various implementation techniques and

1International Organization for Standardization

34

3.1 – Requirements

must be measurable. As happens for the functional requirements they are identi-
fied with a unique code and in addition to the description, it is necessary to specify
their type associated to the ISO properties and which functional requirements they
refer to (Table 3.3).

ID Description
FR1 Sign-up users by email and password
FR2 Login and logout users and admin users by email and password
FR3 View the Markets page with a list of all the markets available

FR3.1 Search markets form the list with input text filter
FR4 Select a market from the list

FR4.1 Browse information about prices, options and futures contracts
FR4.2 View chart for historical prices, volumes

and open interest of the underlying
FR4.3 View chart for statistics about volatility
FR4.5 View chart for statistics about open interests of options contracts
FR5 Create an empty strategy with a name

and selecting the target market
FR6 Delete an existing strategy
FR7 Update the name of an existing strategy
FR8 Select the strategy you want to operate on

FR8.1 Add or remove temporary positions on options or futures contracts
FR8.2 Open positions from temporary positions on options

or futures contracts
FR8.3 Close positions from open positions on options or futures contracts
FR8.4 View the strategy costs and profit
FR8.5 View chart for the "Payoff"
FR8.6 View chart for the "Greeks"
FR8.7 Enable or disable the "What-if" mode
FR9 View the Strategy page with a list of all active strategies

FR9.1 Search strategies form the list with input text filter
FR9.2 Select a strategy from the list for having a short summary of it
FR10 View the Portfolio page and balance information

FR10.1 View chart for performance history
FR10.2 View table of all closed strategies
FR10.3 Active or Deactive closed strategies

Table 3.2: Functional requirements for the platform

35

Essentials

ID Type Description Refers to

NFR1 Usabilty Application should be used with
no training by any user All FR

NFR2 Performance All functions should complete in
< 0.5 sec All FR

NFR3 Portabilty

System must work on Chrome
from version 70, Firefox from
version 65, Safari from version
10, Edge from version 72

All FR

NFR4 Portabilty No installation is needed All FR

NFR5 Portabilty The support for geolocalization
is not required All FR

NFR6 Security

Accordingly to the GDPR law
(art 13 and 14), since data won’t
be used for commercial goals
and won’t be sent to third
parties, an informative must be
provided to users and gas
stations’ owners, but him/her
consent is not needed

FR1

NFR7 Localisation Decimal numbers use . (dot) as
decimal separator All FR

NFR8 Localisation Currency are € (Euro) and $
(Dollar) FR4.*, FR8.*, FR10.*

NFR9 Reliabilty Downtime allowed is of one hour
per year All FR

Table 3.3: Non functional requirements for the platform

36

3.2 – Data sources

3.2 Data sources
The data source is the starting point for each application and finding the right
source is one of the most important point, but before that it is also essential to
make some consideration of which type of data sources is the best to work with.

3.2.1 Types of data sources
In general data comes from a diverse type of data sources. The most common of
these are:

• Databases an organized collection of data, generally stored and accessed
electronically from a computer system. Where databases are more complex
they are often developed using formal design and modeling techniques.

• Flat files a plain text file, or a binary file where records follow a uniform
format, and there are no structures for indexing or recognizing relationships
between records.

• Web services (WS) a service running on a computer device, listening for
requests at a particular port over a network, serving web documents (HTML,
JSON, XML, images), and creating web applications services, which serve in
solving specific domain problems over the Web (WWW, Internet, HTTP)

• Other sources such as RSS feeds

For our purpose, web services are the easiest type of data source to find and use.
In particular, in recent years efficient guidelines for WS called REST API2 have
spread, which makes accessing the web resources exposed by the service even more
intuitive. For this reason our research has focused on finding valid APIs that can
track all information about finance summary, stocks, quotes, options.

3.2.2 Markets web services
After the analysis of different types of data sources, we are now looking for the
web services exposed by the main exchanges presented in the section 2.1 that are
CBOE, CME and EUREX.

2an application programming interface (API) that queries data, parses responses, and sends
instructions between one software platform and another

37

Essentials

CBOE System

From its official website CBOE exposes various services that allow the user to view
a lot of information about US Stocks and Indexes Options and many other market
information in delayed time (10-15 minutes). In particular, there are two reference
public REST API:

• GET /symbol_book/option-roots.json to download all options cata-
logue info. The response is an array of JSON3 objects and each of them in-
cludes the identifier (option-root) for downloading further information through
other web services.

• GET /options/{option-root}.json to download updated information about
a single option-root. In particular, the response contains information like
open, close prices of the underlying and an array of options contract with
their relative info (e.g. put or call, strike price and maturity date) and prices
(Listing 3.1).

The first API is not used by the application, but is useful to have a list of
how many and which markets CBOE includes. The second one, instead, is used to
download all information about a single market. Indeed, with one call is possible
to obtain all prices and options prices for all expiration of the input market and
this operation is done every 15 minute without any rate limitations from CBOE
System.

1 GET / options /AAPL.json
2 {
3 " timestamp ":"2021 -03 -14 13:19:37" ,
4 " symbol ":" AAPL",
5 "data ":{
6 "high ":121.1699 ,
7 " close ":121.03 ,
8 "open ":120.31 ,
9 "low ":119.16 ,

10 " volume ":40992675 ,
11 " last_trade_time ":"2021 -03 -12 T15 :59:59" ,
12 ...
13 " options ":[
14 {
15 "high ":0.0 ,
16 " prev_day_close ":56.9750003814697 ,
17 "open ":0.0 ,
18 " open_interest ":13.0 ,
19 "low ":0.0 ,
20 " option ":" AAPL210312C00065000 ",
21 " volume ":0.0 ,
22 " last_trade_price ":56.93 ,
23 " last_trade_time ":"2021 -03 -11 T10 :47:59" ,
24 ...
25 },

3JavaScript Object Notation

38

3.2 – Data sources

26 ...
27]
28 }
29 }

Listing 3.1: Example of option-root response for AAPL stocks

CME System

It is very important for our goal to download information about options and futures
contracts of the most important indices such as S&P 500, Nasdaq and Russell 2000.
The main provider of this information is CME, which from its website displays this
content publicly and free. In particular, among all the APIs that CME presents, it
is important to describe the following:

• GET /services/product-slate to download all the list of products or un-
derlying that CME provides to the public. Each element of the list contains
descriptive information of the product and its identifier, called product_id,
which will be essential to obtain the product related futures and options con-
tracts.

• GET /Quotes/Future/{product_id}/G to download all the futures con-
tracts related to a particular product for each available expiry date and their
prices.

• GET /Quotes/Option/{product_id}/G/{expiration_id} to down-
load all the options contracts related to a particular product and expiration
date (Listing 3.2). In particular, the expiration_id is an encoding of the typ-
ical quarterly deadlines related to options and futures: March (H), June (M),
September (U), December (Z).

• GET /Volumes/Details/{product_type}/{product_id}/{last_tr -
ade_date}/P/ to download all statistics data about volumes and open in-
terest of the input future or option contract for a past trading date. Indeed,
the API require a product_type that could be "F" or "O" for future and op-
tion respectively and followed by its identifier and the date they were traded
with "yyyymmdd" format.

The first API it will not be called automatically by the application but it is im-
portant to download the CME product catalog and initialize our internal catalog
with the selected markets. The remaining APIs will instead be contacted at regular
intervals of 15 minutes during the trading hours for updating market, futures and
options data.

39

Essentials

1 GET / Quotes / Option /133/ G/H1
2 {
3 " tradeDate ":"18 Mar 2021" ,
4 " optionContractQuotes ":[
5 {
6 " strikePrice ":"391000.0" ,
7 " strikeRank ":10 ,
8 "put ":{
9 "last ":"14.00" ,

10 " priorSettle ":"3.35" ,
11 "open ":"2.00" ,
12 " close ":" -" ,
13 "high ":"15.50" ,
14 "low ":"1.00" ,
15 " volume ":"3 ,771" ,
16
17 },
18 "call ":{
19 "last ":"18.25" ,
20 " priorSettle ":"67.25" ,
21 "open ":"77.00" ,
22 " close ":" -" ,
23 "high ":"77.00" ,
24 "low ":"18.00" ,
25 " volume ":"363" ,
26 ...
27 },
28 " underlyingFutureContract ":" ESH1"
29 },
30 ...
31],
32 }

Listing 3.2: Example of option quotes response for future E-mini S&P 500

EUREX System

Unfortunately, the public APIs only expose reference information regarding prod-
ucts, contracts and other instruments for trading but do not go into detail on
options and futures. The only free way to access this information is through their
dedicated HTML pages by using some web scraping4 techniques.

In this way, is possible to download various information about options and
futures contracts of the most important European indices, such as EuroStoxx50
and DAX.

3.3 Architecture
In this section will be briefly described the architectures chosen to better understand
the organization of the technologies used and how they interact with each other for

4is a computer technique of extracting data from a website by means of software programs

40

3.3 – Architecture

the realization of the trading platform.

3.3.1 Client and Server

The client-server architecture (Figure 3.1) has been chosen as it is the most rec-
ommended and widespread architecture that allows users to interact with a web
application through an internet connection and in particular with a web browser.
More in general, it is an architecture where a computer, client, connects to another
computer, server, to use one or more exposed services. The server, therefore, is a
component of processing and management of information traffic and provides any
type of service to other components, clients, who request it through specific network
protocols (e.g. HTTP). In addition, for the services exposed by the server there are
different software architecture and guidelines for their implementation. In recent
years, however, there has been a strong trend in the use of Representational State
Transfer API (REST API) guidelines.

Figure 3.1: Client-server architecture

41

Essentials

Rest API

Its operation involves a well-defined URL5 structure that uniquely identifies a re-
source or set of resources and the use of specific HTTP methods for getting (GET),
adding or editing (POST, PUT, PATCH, DELETE) information and other pur-
poses (OPTIONS, etc.).

Table 3.4: Relation between the URL and HTTP Methods in REST API architec-
ture

URL HTTP Methods
GET POST PUT DELETE

Collection
(e.g. http://
api.com/resurces)

Return a
resource list
with some
details on
items belonging
to the
collection

Create a
new item
in the
collection

Replace the
entire collection
with another
collection

Delete
the entire
collection

Element
(e.g. http://
api.com/resources/1)

Return
information
about the
item identified
with the
code "1"

-

Replace some
information
of the item
identified
with the
code "1"

Delete
the item
identified
with the
code "1"

3.3.2 Server-side containerization
The server-side component of the web application can be developed and deployed
using Docker containers. This architecture enable you to package an application
and all its dependencies without having to worry about the hardware or software
features of the physical server. That is because a container carries all its depen-
dencies with it, wherever it goes. Furthermore, with containers it is possible to
run multiple web applications on the same physical server in a isolated way and
significantly reduce data center management cost and administrative overhead as
IT organizations.

For this reason, we decide to develop the trading platform by using Docker con-
tainers. Looking at Figure 3.2 is possible to see all required application organized
and connected with each other by the Docker compose tool.

5Uniformed Resource Locator

42

3.4 – Technologies

Figure 3.2: Docker compose architecture

3.4 Technologies
Starting from the architecture described, the technologies used can be separated
into three distinct parts: Django framework for server-side development, React
framework for client-side development and MongoDB for database management.
In this chapter these technologies will be described showing their main features
and extensions with in addition a small analysis on their alternatives.

3.4.1 Django
Django was born in 2003 as an open source web development framework 6 based on
Python. It offers standard methods for developing new web applications in a rapid
and effective way and allows developers to include inside a project some shared core
applications for increasing modularity and reducing the development time. Django
is widespread among big companies like Instagram, Pinterest and BitBucket and
used by tens of thousands users with a plenty of educational contents available.

Python

Python is a popular high-level dynamic programming language with a lot of fea-
tures. In particular it provides an intuitive object orientation, strong introspection
capabilities, readable and very clean syntax. It has a very high level dynamic data
types, supporting hierarchical packages and full modularity. In addition, there is a

6code library for building scalable web app or web services

43

Essentials

huge community behind Python that develop a lot of extensive standard libraries
and third party modules for every possible task also written in different languages
like C, C++, Java with Jython or .NET languages for IronPython.

For these reasons Python is also used in variety of application domains such
as Web and Internet development, Desktop GUIs, Education and more and it is
more attractive than programming languages such as Java, Ruby, Perl and others.
Finally, Python is easy to learn thanks of the well written documentation and it is
freely distributed and usable even for commercial use since it is under open source
license.

Architectures

Django helps developers to follow best practices and maintains a clean project.
Each application should be independent with others and developed in one place
without repeating it code in other applications.

Furthermore, Django is mainly based on Model-View-Template (Figure 3.3)
software design pattern for developing a web application:

• the model is responsible for maintaining the logical data of the application
and acts as a mediator between the website interface and the database

• the template is a static file that describe with a special syntax how the
content of one or more models will be inserted

• the view handle the user interaction and interact both with the model and
the template in order to give a response to the user

Figure 3.3: Django MVT Pattern

44

3.4 – Technologies

Pros and cons

There are many features that can be found in a newly created Django project and
since from the beginning you can directly work with an highly customizable admin
interface that allows CRUD 7 operations with the database.

Furthermore, there is a built-in authentication system that handles user ac-
counts, groups and cookie-based user sessions and includes security techniques to
avoid attacks like CSRF, Cross-site scripting, SQL injection, and Clickjacking. Pro-
vides support for multiple cache mechanisms, end-to-end application testing and
translating text into various languages, local formatting dates, times, numbers and
timezones. Also, multiple external libraries can help, like REST Framework that
provide supports for building APIs with validators and authentication protocols
with few lines of code.

On the other hand, there are also some relevant drawback, since Django han-
dle a single API request per time. Furthermore, Django Templates failed silently
therefore it is more difficult and time consuming to debug, routing requires some
knowledge of RegExp8 and in general there is high learning curve to master it.

Alternatives

There are several frameworks written in Python that can be evaluated as an alter-
native to Django but few have its community strength and diffusion in enterprise
products. In particular, we will analyze the main features of the following quite
popular alternatives.

Web2py is a framework easy to use which focus on security and development
speed. It cover all functionalities that Django has since it offers a lot of features
out of the box such as a web server, admin panel, database, grid widgets or wiki
and both can be used to fulfil the same tasks. The only difference is that Web2Py
might be a little harder to study and to find help in case of trouble since it is
younger and has a smaller community than Django.

Flask it has a simple but extensible core framework, also called micro frame-
work and has no dependencies on external libraries. This framework offering basic
features of web app but more important are the huge quantity of extensions that
allows to add functionalities for form validation, object-relational mappers, various
authentication technologies, file upload management and more other tools. How-
ever, the choice of extensions and their insertion already requires more work and

7Create, Read, Update and Delete operations
8Regular Expression

45

Essentials

therefore increases the probability of making mistakes. So this framework is rec-
ommended when a high level of granularity is desired or you need to build small
application in a short time.

Pyramid is a lighter version of Django. It includes features like authentications
and routing while for other requirements such as database management or templat-
ing it is necessary to install external plugins. It is convenient to use when dealing
with large systems that require flexibility and lightness but on the other hand it
requires more effort during the development process.

3.4.2 React
React is a JavaScript library developed by Facebook in 2013 primarily used for
developing user interfaces. This flexible front-end solution does not enforce any
particular architectural pattern for handling data, it focuses only on the creation
of views by a composition of React components. These are mostly written in
JSX (JavaScript XML) syntax that allows developers to write elements contain-
ing HTML and JavaScript at the same time and are the smallest building blocks
within an inner state and props that make them flexible and reusable. Data flows
downwards through the component tree using props and also callback functions to
interact among them. In large React applications this composition becomes deep,
tightly coupled, less maintainable and can lead to “props-drilling”. This is one
reason why architectural patterns, like Redux pattern, are necessary for complex
React applications.

JavaScript

JavaScript was originally developed by Netscape Communication Corporation in
1995 for the clien-side web application development. It is a type safe and dynamic
scripting language and the code is not compiled, but executed by the interpreter
contained in the user’s browser. The syntax is similar to that of the languages like
C, C++ and Java and also provide multi-paradigm language (e.g. object-oriented,
imperative and functional programming styles).

JavaScript has a standard called ECMAScript and modern internet browsers
are updated and fully support the ECMAScript v11 (2020).

React Redux

Redux is a JavaScript library used for implementing a pattern similar to the MVC
pattern with the purpose to have more control of the data flow of the application
(Figure 3.4). Redux uses a single store that acts as a single source of truth for the
whole application. Views subscribe to the store and re-renders when it changes,

46

3.4 – Technologies

which makes the data flow uni-directional. Furthermore Redux has the concept
of reducer as a pure functions that take the previous state from the store as an
argument and an action, an object that includes a set of parameters, and returns
the new state of the store. Reducers functions have a set of guidelines:

• They do not rely on any other data than the data sent in as parameters

• The arguments to a pure function are seen as immutable and should not be
changed

Figure 3.4: Redux architectural pattern

React Stock-charts

React Stock-charts[12] is an open-source library built with React and D3JS libraries.
Provides features and flexibility to create stock charts that compete with the likes
of the ones provided by commercial trading systems. Indeed, this library provide
predefined Area, Bar, Line and Candelstick charts but it is also possible to add
custom chart components and indicators or access the svg elements and styling
with CSS. Furthermore, provides fast performance to pan and zoom actions also
for mobile device.

47

Essentials

Alternatives

Below, we will briefly describe some alternatives to using React as a framework for
the front end. It is important to underline that among all the alternatives React is
the best choice if you want to create a stable and well-structured application in a
short time for both simple and complex projects thanks to the use of React Redux.

Angular is a well furnished framework for web application development based on
TypeScript and mainly used for building single-page web applications (SPAs). It
is component-based and structured in Modules, Components and Services and also
include HTML template syntax with special directives to output reactive data and
may render multiple elements. Angular is best suitable for large-scale enterprise
applications and advanced projects that needs complex infrastructure.

Vue is a high performance, front-end Model-View-View-Model open-source JS
library. Its optimal user experience and versatility on a web application have made
it one of the most popular frameworks. Thanks to its quick learning curve is suitable
for solving short-term problems but also for building web apps with animations,
interactive elements or prototyping.

3.4.3 MongoDB
MongoDB[10] is a NoSQL DBMS9 developed in C++ by 10 Gen in 2007 and become
an open-source project in 2009. Thanks to the absence of join, queries are simpler
and faster with high performance in reading and writing. Furthermore, the most
consistent readings can be distributed in multiple replicated servers. The most
important features are:

• document-oriented, that is, data are stored in the form of JSON-style docu-
ments with dynamic schema, according to a very simple and powerful struc-
ture that also allows the representation of complex hierarchical relationships
through nested documents and arrays

• allows indexing of any attribute

• easily allows data replication through high scalable network

• excellent horizontal scalability without compromising any functionality

9Non-relational Database Management System

48

3.4 – Technologies

Pymongo

PyMongo[11] is a Python distribution containing tools and drivers for working with
MongoDB, and is the recommended way to work with MongoDB from Python.

NoSQL vs SQL

NoSQL or non-relational DBMS are document-oriented databases, where the struc-
ture of the data to be stored is not defined and the types of data may vary from
document to document. This makes these databases very flexible and suitable for
projects where it is difficult to define the real data structures but complicates the
job when it is necessary to exploit the relationships between documents. On the
contrary, SQL or relational databases save data in structured and well-defined ta-
bles, rejecting in input anything that does not respect their rules, therefore ideal
in case it is necessary to model many relationships between data because they are
well known.

Alternatives

In this section we will discuss some relational and non-relational databases as al-
ternatives to MongoDB.

PostgreSQL it is a popular, free SQL database with 30 years of continuous devel-
opment with good improvements in terms of scalability, relaiability and availability.
It is used by a large number of developers and can be run in very different platform
also in cloud. It is ACID 10 compliant and highly suitable for financial applications,
therefore ideal for online transactions workloads.

MySQL is a popular community-driven relational DBMS system able to run on
many distribution of UNIX and Linux. It makes database administration easier and
more flexible and can handle any amount of data, up to as much as 50 million rows
or more. Offers built-in tools for query analysis and space analysis and support
memory storage engine for frequently used tables. A great choice for structured
data with the priority for high data security.

DynamoDB is a NoSQL database developed by Amazon Web Services (AWS).
Its supports auto sharding and load-balancing and it is ideal for applications that
stores a large amount of data with strict latency requirements but it is mandatory
to use it on the AWS platform since it is one of their exclusive product.

10Atomicity, Consistency, Isolation, and Durability properties that any transactions must have.

49

Essentials

Cassandra is a highly scalable open-source NoSQL database of the Apache soft-
ware foundation. It is suitable for massively scalable systems and real-time analytics
applications with a large amount of data to process. But it does not allow ad-hoc
queries and it has limited support for aggregation ones.

In front of these valid alternatives, MongoDB was chosen because today it is the
best DBMS when looking for high flexibility and adaptability to real business world
situations and requirements. Furthermore, it is a very easy to scale up and down,
high availability with replica sets and high fault tolerance.

3.4.4 Celery
Celery[1] is a simple, flexible and reliable asynchronous task queue11. Celery
supports both real-time processing and task scheduling through the Celery-beat
tools. Furthermore, supports concurrent task executed either asynchronously or
synchronously. Although Celery is written in Python, the protocol can be imple-
mented in any language and can be easily integrated with a vast number of web
frameworks (e.g. Django).

Redis

Since Celery communicates via messages it usually uses a separate service called
a message broker to send and receive messages between application and workers.
For this purpose, Redis[13] is one of the most recommended message brokers for its
integration with Celery.

3.4.5 Docker
Docker[4] is an open source containerization platform invented by Solomon Hykes
in March 2013. Docker enables developers to package applications into a Docker
image: a lightweight, standalone, executable package of software that combine
application source code with all the operating system libraries and dependencies
required to run the code in any environment. A Docker image become container
when they run on Docker Engine12.

Docker uses a client-server architecture for handling request from the user and
managing images and containers (Figure 3.5). In particular, on the server side a
Docker "daemon" is active which has the task of receiving and executing all the
requests of the Docker client through the CLI13 if both are on the same host or

11task queue is a mechanism used to distribute work across threads or machines
12Open source containerization technology for building and containerizing your applications
13Command Line Interface

50

3.4 – Technologies

through the REST API if the server is remote. The Docker registry, on the other
hand, is a platform that everyone can use to upload or download their public or
private images.

Figure 3.5: Docker client-server architecture available on this link.

Docker Compose

Docker Compose is a tool for defining and running multi-container Docker appli-
cations, also called services. These can be configured through a YAML14 file per
each environment (e.g. production, system or develop) and then, with a single
command, is possible to create and start all of them. More about Docker Compose
provides these features:

• Multiple isolated environments on a single host

• Preserve volume data when containers are created

• Only recreate containers that have changed

• Variables and moving a composition between environments

14Data-orientated human readable serialization language

51

https://docs.docker.com/get-started/overview/

Essentials

3.4.6 Nginx
Nginx is an HTTP web server that can also be used as reverse proxy, mail server,
load balancer and generic TCP/UDP server. Nginx uses an architecture event
driven requests management that allows the server to react to hardware signals
generated to the operations of input and output. This makes it extremely efficient
in managing large quantities of competing requests.

52

Chapter 4

Implementation

Here, the implementation of the trading platform will be dealt with in more de-
tail. In particular, the data models used, the asynchronous tasks for downloading
financial information and the services exposed for the client will be described.

4.1 Database
As already specified in the previous section 3.4.3, for data persistence it is used a
non-relational database and specifically MongoDB. Therefore, in this section we will
describe collections and documents used for saving user and markets information.

4.1.1 Collections
From the beginning we chose to not define Python classes but to use JSON dic-
tionaries directly to compose each collections. In this way, one document can have
a different structure from one other inside of the same collection and this flexibil-
ity reduce the duration of the developing process and require a low effort at the
beginning to identify all data structures.

User

Collection of user documents that contains all the information that identifies and
describes each single user such as email, name and surname but also information
regarding their operation within the platform as we can see in Table 4.1.

Market

Collection of market documents that represents general markets information and
they relationships with options and futures (Table 4.2). In particular, the list of

53

Implementation

Table 4.1: User document description

Fields Description Type
id Unique identifier of the user

inside of the database Number
email/username Unique identifier

for the authentication String
password User associated password

for the authentication String
first_name Name of the user String
last_name Surname of the user String
is_superuser If the user is authorized to be

a super user inside of the application Boolean
is_active If user is still active to

operate with the application Boolean
last_login Last time the user logged

in the application Datetime
date_joined Date and time the user

joined in the application Datetime

expiration that are inside of each market and described in Table 4.3 indicates all
options and futures that are available for trading.

Chain

Collection of chain documents that contains all options that refer to the same
market and the same time to maturity (Table 4.4). Therefore, a chain is identified
as a composition of the market symbol (e.g. SPX), expiration symbol (e.g. EOM,
End of Month) and expiration date in dd-mm-yyyy format (e.g. 08-20-2021). Each
element in the options list contains, for the same strike, the information of both
call and put options (Table 4.5 and 4.6). Globally, a single option is identified
by the contract field composed by the identifier of the chain as explained above
(e.g. SPX-EOM-20-08-2021), the contract type (e.g. PUT or CALL) and the left
zero-padded strike price, with a fixed length of 10 characters (e.g. 0000100000)

Future

Collection of future documents that contains information on a future referring to
the same market and the same time maturity (Table 4.7). Therefore, a future is
identified by the contract field composed with the market symbol (e.g. SPX),
expiration symbol (e.g. EOM, End of Month) and expiration date in dd-mm-yyyy
format (e.g. 08-20-2021). Furthermore, to keep the same format used for option

54

4.1 – Database

Table 4.2: Market document description

Fields Description Type
id Identifier for outsourced systems

like CBOE, CME and EUREX String
groupId Identifier for grouping the market

with other related markets
(relationship with Group data model) String

symbol Symbol of the market used inside
of the application String

label Name of the market String
exchange Symbol of the exchange to which

the market belongs String
country Symbol of the country to which

the market belongs String
currency Predefined currency of the market String
template Type of the market

(index, stock, index futures...) String
exposition Exposition value for related

financial options Number
dividendYield Dividend yield value of the market Number
expirations Array of expiration data models Array
underlying Information related to the

market’s underlying Object

Table 4.3: Market expiration document description

Fields Description Type
symbol Symbol of the expiration String
label Label of the expiration String
dates Array of Datetime data types Array

contracts the system append at the end the contract type equal to FUTURE and
a strike price equal to 0.

Group

Collection of group documents that used to maintain relationships between different
markets. In fact, a group of markets can be composed for example by S&P 500,
E-mini S&P 500 and Micro emini S&P 500, as all three refer to the same S&P 500
index. Modeling these relationships is important for the creation of strategies that
allow the user to operate within the same group of markets (Table 4.8).

55

Implementation

Table 4.4: Chain document description

Fields Description Type
exchange Symbol of the exchange String
symbol Symbol of the market String
expiration Symbol of the expiration String
date Date and time of the expiration Datetime
options Array of option data model Array

Table 4.5: Strike document description

Fields Description Type
strike Value of the strike price Number
put Option object of type "put" Object
call Option object of type "call" Object

Strategy

Collection of strategy document that are able to store all the operational choices
that a user makes with the application for a specific group of markets (Table 4.9).
Therefore, a strategy has a strong relationship with the user and the group of
markets, but is globally identified with an auto-generated id since it is possible
for a user to create multiple strategies for the same group. Inside of the document
there is a list of all market positions that a user decides to open and close and each
position refers to a single option or future (Table 4.10). They are characterized by
the amount of contracts that the user decided to buy or sell and can take on three
different states: temporary, open and close. A temporary position has no effect
on the user’s portfolio, namely no opening costs or possible profit or loss amounts
are charged. Its purpose is purely indicative and allows the trader to understand
what impact it can have on the payoff of the selected strategy. From a temporary
position the user can decide to open, disable or delete it.

An open position has a specific cost on the strategy and consequently on the
portfolio and cannot be canceled or deactivated, the only action allowed is the
closing one. An open position is identified by concatenating the following values:

• contract identifier (e.g. CBOE-SPX-EOM-20210820-CALL-0004405000)

• timestamp in which the position was opened (e.g. 1628070767071)

in this way it is possible to open various positions for the same contract in different
times.

A strategy also has a "whatif" logic that allows the user to modify some param-
eters of one or more positions like initial or final price, volatility, days to expiration
and many others to perform simulations on the strategy payoff.

56

4.1 – Database

Table 4.6: Option document description

Fields Description Type
price Price of the option Number
last Last price of the most recent trade Number
open The first trade price at the open of

the most recent trading day session Number
close The final trade price at the close of

the most recent trading day session Number
settle The final settlement price calculated at

the end of the previous trading day Number
low The lowest trade price during

the trading day Number
high The highest trade price during

the trading day Number
volume The total number of contracts traded

during the trading day Number
openInterest Total open interests of the

option during the trading day Number
type Type of the option String
state State of the option String
contract Contract of the option String

Portfolio

Collection of portfolio documents that are a virtual account that keeps the total
balance of each user. All portfolio starts from a default initial value of € 100,000
and based on the results obtained by the various strategies performed by the user
the balance may increase or decrease (Table 4.11). Currently there is a one-to-one
relationship with the user and his portfolio and for that reason it is identified by
his username.

Market History

Collection of documents that are uniquely identified by the symbol of the reference
market and aggregates in an internal list all the prices that the market assumes
every day with a maximum depth of two years (Table 4.12).

Chain History

Collection of documents that are uniquely identified by the composition of the
symbol of the market, expiration type and date (as for chains) and aggregates all

57

Implementation

Table 4.7: Future document description

Fields Description Type
exchange Symbol of the exchange String
symbol Symbol of the market String
expiration Symbol of the expiration String
date Date and time of the expiration Datetime
price Price of the future Number
last Last price of the most recent trade Number
open The first trade price at the open of

the most recent trading day session Number
close The final trade price at the close of

the most recent trading day session Number
settle The final settlement price calculated at

the end of the previous trading day Number
low The lowest trade price during

the trading day Number
high The highest trade price during

the trading day Number
volume The total number of contracts traded

during the trading day Number
openInterest Total open interests of the

future during the trading day Number
type Type of the option String
contract Contract of the future String

Table 4.8: Group document description

Fields Description Type
type Type of the group of markets String
symbol Identifier of the group of markets String
name Name of the group of markets String
currency Currency symbol shared by all markets

present in the group String

the options in an internal list with the relative prices per each day with a maximum
depth of one month (Table 4.13).

4.1.2 Data analysis
To save and keep the chain and market historical data at the end of the day we
decide to implement the bucket aggregation model[5]. Which consists in having a

58

4.1 – Database

Table 4.9: Strategy document description

Fields Description Type
_id Unique identifier auto-generated

by MongoDB ObjectId
userId Identifier of the user

that create the strategy String
groupId Symbol of the group of markets

which the strategy belongs String
name Name of the strategy given

by the user String
positions Array of position objects Array
created Date and time when the

strategy was created Datetime
disabled If the strategy is disabled

for the portfolio Boolean
closed If the strategy has no more

open position Boolean
whatif Object that contains all information

for the whatif simulation Object

single document for each market or chain in which to group in an array of sub-
documents all the information of the same market or chain sampled day by day.
The size of this array determines the number of days we want to aggregate and is
commonly called the bucket size. In this section will be exposed some analyzes car-
ried out for underlying the effects of this aggregation technique with three different
sizes:

• one document per day, this mean no grouping and every day a new document
will be created

• one document per week, this mean a weekly grouping and every 7 days a new
document will be created

• one document per month, this mean a monthly and every 28 days a new
document will be created

Assuming that every day it is necessary to keep the history of 160 chain docu-
ments and that on average a document occupies 800 kB, if the number of elements
aggregated in a single document is increased, within a few days we obtain:

• less documents within the same collection (Figure 4.1)

• less total space occupied by the collection, due to the reduction of duplicate
fields (Table 4.14)

59

Implementation

Table 4.10: Position document description

Fields Description Type
id Unique identifier of the position String
contract Contract identifier of the chosen

option or future String
active If the position is disabled or not Boolean
status State of the position String
quantity Number of contract bought

(positive value) or sold (negative value) Number
exchange Exchange symbol of the market String
symbol Symbol of the market String
expiration Symbol of the expiration type String
date Date of the expiration Datetime
type Type of the contract String
strike Strike price in case of the option contract Number
price Current price of the contract Number
whatif Object that contains all information at

position level for the whatif simulation Object
startDate Date and time when the user open

the position Number
startPrice The price of the option or future

when the user open the position Datetime
endDate Date and time when the

user close the position Datetime
endPrice The price of the option or future

when the user close the position Number

• more space in average occupied by a single document (Table 4.15)

In conclusion, it is important to find the right trad-off between the number of
documents present within the same collection and the space occupied by a single
document to avoid slowing down the execution of queries, reducing the number
of duplicate information and not to exceed the space limits for a single document
provided by the various databases (e.g. maximum 16MB for a single MongoDB
document)

4.2 Async tasks
Asynchronous tasks are essential for maintaining and retrieving information on fi-
nancial markets. In particular, for each chosen exchange it is necessary to have an

60

4.2 – Async tasks

Table 4.11: Portfolio document description

Fields Description Type
_id Unique identifier auto-generated

by MongoDB ObjectId
userId Username of the user

which the portoflio belongs String
name Name of the portoflio String
value Total balance of portfolio Number
currency Currency symbol used for the portfolio String
created Date of creation Date and time
strategies Array of strategies ids

associated to the portfolio Array

Table 4.12: Market history document description

Fields Description Type
exchange Exchange symbol to which the market belongs String
symbol Symbol of the market String
days Array of day object which contains prices, volume Array

and open interest per each day

asynchronous task that retrieves the daily information of all the markets belonging
to that exchange, with regular intervals of 15 minutes (Table 4.16). At each execu-
tion, all prices, volumes, open interest per market, future and chain of options are
downloaded and processed in such a way as to have a certain uniformity between
documents and after that the database will be updated. While for the maintenance
of historical data, only one task performed at the end of the day is used, which
aggregates the latest updated values in unique documents per each market, futures
and chain of options.

4.2.1 update_cboe
Looking at Figure 4.2 we can say that every 15 minutes during the trading hours
the Django scheduler sends an event to the Celery application through the Redis
message manager asking to execute the update_cboe task. Then celery detaches
a new thread and starts executing it in asynchronous way. Within the task, the
MongoDB database is contacted to extract the list of all the markets that are
part of CBOE and for each of them calls the public API from which is possible to
retrieve financial information. In particular, in response you get all the information
necessary for the prices and statistical values of the requested market and related
futures and options with all available expiration as already explained in section

61

Implementation

Table 4.13: Chain history document description

Fields Description Type
exchange Exchange symbol to which the market belongs String
symbol Symbol of the market String
expiration Symbol of the expiration String
date Date and time of the expiration Datetime
days Array of day object which contain the date, Array

the list of options and the index position
of the last strike price of the day

Figure 4.1: Historical data analysis

3.2.2. After which the answer is processed by building the related documents for
futures and options and then finally saving them one by one in the database.

4.2.2 update_cme

The first steps are similar to the previous one, also here every 15 minutes during
the trading hours, Django ask to Celery for executing the update_cme task asyn-
chronously (Figure 4.3). With the difference that this time the task takes from the
database only the markets related to CME and for each of them the public services,
already presented in section 3.2.2, are called. In particular, there are two separate

62

4.2 – Async tasks

Table 4.14: Historical data: collection total size in MB

Cumulative intervals Per Month Per Week Per Day
7 days 104,27 104,27 104,41
14 days 195,48 195,5 195,77
21 days 286,7 286,74 287,13
28 days 377,91 377,98 378,49

Table 4.15: Historical data: average document size in MB

Cumulative intervals Per Month Per Week Per Day
7 days 0,66 0,65 0,082
14 days 1,23 0,61 0,082
21 days 1,79 0,60 0,082
28 days 2,36 0,59 0,082

APIs to download futures and options prices and two other APIs to obtain statis-
tical information such as volumes and open interests respectively. Within the task
these calls are executed sequentially and the corresponding documents are created
from each response for finally saving them one by one in the database.

4.2.3 update_eurex
As in the previous tasks, here too the regular interval is 15 minutes after which
the task is launched asynchronously (Figure 4.4). Calling up the section 3.2.2 the
information from EUREX are not available via REST API, for this reason we have
chosen to proceed through web scraping 1 techniques. Analyzing the structure of the
website, two distinct paths were identified, one for retrieving information on futures
and one for options and these calls are to be made for each market and each available
maturity. The documents are constructed by extrapolating the information from
the HTML files obtained in response and then being saved individually in the
database.

4.2.4 update_history
Unlike the other tasks, here it is not necessary to contact resources external to the
application. Indeed, the task interacts only with the database where the updated
data at the end of the day are aggregated for each market and option chain into
collections dedicated to maintaining historical data (section 4.2).

1data extraction from websites

63

Implementation

Figure 4.2: Update CBOE async task

Figure 4.3: Update CME async task

4.3 REST APIs
In this section will deal with the most important web services available that allows
the user to operate with the client application and therefore to access the financial

64

4.3 – REST APIs

Figure 4.4: Update EUREX async task

Table 4.16: Schedule time for async tasks

TaksId Schedule Duration
update_cboe Mon-Fri, 8:00-14:00 (America/Chicago) < 1 minute
update_cme Mon-Fri, 16:00-18:00 (America/Chicago) < 10 minute
update_eurex Mon-Fri, 9:00-19:00 (Europe/Berlino) < 5 minute
update_history Mon-Fri, at 20:00 (UTC) < 30 seconds

data retrieved from the various exchanges. These web services follow the REST
guidelines and act as an interface to the following entities: user, market, chain,
future, strategy and portfolio. For each of them specific URLs have been defined
with different HTTP methods. It is important to note that all defined paths are
prefixed by /api to distinguish them from other web services that not require an
authentication and are not part of the REST API model.

4.3.1 Security

Before starting with the description of each APIs it is important to add that all
of them are secured and under HTTPS connection. In fact, every request coming
from an unauthenticated or unauthorized client is discarded and an HTTP 401
Unauthorized error is sent in response.

65

Implementation

Authentication

The server for user authentication use the default implementation provided by
Django Authentication System[2]. In particular, it is a session cookie-based au-
thentication usually consisting of four steps:

1. The client application post an HTTP request to the server with username
and password provided by the user

2. The server looks up the username in the database, hashes the supplied login
password, and compares it to the previously hashed password in the database.
If it is not valid, the access will be denied by sending a HTTP 401 Unautho-
rized error to the client.

3. If the request is valid, a session ID, which uniquely identifies the user’s ses-
sion, will be created and stored in the database, possibly with an expiration
date/time to limit the user’s session. After that it will be attached into a
response cookie to be returned to the client.

4. For every future client request that require the user authentication, cookies
will be attached and the server has only to check if the session ID inside of
the cookies is still valid. If so, the access is granted otherwise a new login
request is required.

CSRF Protection

Django provides protection against Cross Site Request Forgeries[14] with some easy-
to-use features like CSRF middleware and template tag. A CSRF attack occurs
when a malicious website contains a link, a form button or some JavaScript that is
intended to perform some action on your website, using the credentials of a logged-
in user who visits the malicious site in their browser. A related type of attack,
‘login CSRF’, where an attacking site tricks a user’s browser into logging into a site
with someone else’s credentials, is also covered[3].

4.3.2 User APIs
These APIs are responsible for exposing information related to the user but also
to his portfolio and strategies. In fact, as we will see below, there are services that
allow the user to create new strategies or delete the irrelevant one but also to carry
out read and write operations on them by inserting or deleting market positions.

api/users/

Only the HTTP GET method is allowed and return information of the logged-
in user without the need to send in input sensitive information such as username

66

4.3 – REST APIs

or email. In fact, after authentication, Django keeps its identifier in session (e.g.
username) which remains available for all subsequent HTTP requests by the same
user until the end of the session (Listing).

api/users/portfolio/

Only the HTTP GET method is allowed and return data related to logged-in user’s
portfolio. As already explained, a user can have only one wallet, 1:1 relationship,
and for this reason no additional information is required other than the username
already present in the session.

api/users/strategies/

Both HTTP GET and POST methods are available. With the GET method you
can get a list of strategies belonging to the logged-in user and each element contains
information that briefly summarizes a single strategy. In addition, a search string
can be passed as query parameter to filter strategies by their name. With the POST
method, instead, you can create a new strategy in reference to the logged in user.
In particular, when the server receives this request, it checks that in the request
body there are valid:

• groupId field, the identifier of the market group to which the strategy will
refer

• name field, the name of the strategy

If the validation process ends without errors then we proceed with the insertion of
the new strategy in the database and then return the generated id in response.

api/users/strategies/:id/

Both HTTP GET and POST methods are available. By calling with the GET
method the API return data of a single strategy that belong to the logged-in user.
Indeed, once the request has been received, the server checks that the id provided
in input refers to a strategy existing among those of the user. If so, it returns all the
information necessary to view the strategy on the application, otherwise it responds
with an HTTP 404 Not Found error. The POST method instead is used to modify
a single strategy that belong to the logged-in user. The operations allowed are:

• update the strategy name

• insertion, modification and deletion of one or more positions

• update "whatif" values

67

Implementation

For thi The server start first to validate the request body and in case of no errors
checks that the id provided refers to an existing strategy among those of the user,
after which it proceeds with updating the strategy. If there are any changes to
the market positions, additional checks are carried out before proceeding with the
saving on the database. In particular, it is necessary to check that the option or
future contract for which a position is to be opened exists and belongs to the group
of markets in which the strategy can operate, otherwise the positions will not be
entered or updated.

api/users/strategies/:id/:chart-id

Per each single strategy is possible to obtain related chart information by calling
this HTTP GET method. The chart-id is a path parameter and can be enhanced
with profit or greeks respectively for the strategy Payoff and Greeks information.
The API return always an array of JSON object containing data per each single
price that the market can assume.

4.3.3 Market APIs
Market APIs only allow read operations and for this reason, all of the following
APIs can only be called with the HTTP GET method. In particular, they are
mainly dedicated to the client-side display of prices, volumes and open interest but
also for the composition of some charts such as historical volatility, open interest
by maturity and price history.

api/markets/

Returns the entire list of markets where each element contains few information
about them. In addition, a search string can be entered as query parameter to
filter markets by their name.

api/markets/:symbol/

Returns all information related to the market symbol passed in input. In particular,
in response there are data about:

• market characteristics (e.g. exchange, name, country, currency, etc...)

• last market prices

• all the expiration types and dates for futures and options

68

4.3 – REST APIs

api/markets/:symbol/futures/

Returns the entire list of futures for all maturities, belonging to the market symbol
passed as input. But not all markets have this information. It depends on whether
the underlying is a future or not.

api/markets/:symbol/:chart-id

Per each single market is possible to obtain related chart information by calling
this HTTP GET method. The chart-id is a path parameter and can be enhanced
with history, volatility or open-interest respectively for obtaining statistics in-
formation about the values that the market has assumed in the past days, volatility
per each option contract for the next two expiration chains and the sum of option’s
open interests per each chains expiration. The API return always an array of JSON
object containing data per each single price that the market can assume or date.

4.3.4 Chain APIs
As for the markets, Chain APIs are also composed of data reading services only,
for this reason, all of the following APIs can only be called with the HTTP GET
method. In particular, given a market symbol and a deadline, it is possible to
obtain the related list of options but also information processed to obtain some
charts, such as open interest for strikes, breakdowns or pressure.

api/chains/:symbol/:expiration/:date/

Returns the data of a single chain identified by the market symbol, type of expiry
and expiry date. In particular, the response body will contain:

• characteristics of the chain (e.g. exchange, symbol, market prices)

• list of options

• index indicating the position of the ITM option in the list of options

api/chains/:symbol/:expiration/:date/:chart-id

Per each single options chain is possible to obtain related chart information by
calling this HTTP GET method. The chart-id is a path parameter and can be en-
hanced volatility/variation, open-interest or open-interest/cumulative re-
spectively for obtaining statistics information about the volatility variation per each
option contract for the last two days and the sum of option’s open interests and the
variation for the last two days. The API return always an array of JSON object
containing data per each single price that the market can assume or date.

69

70

Chapter 5

Client application

This chapter will explain the data management of the client application, the user in-
terface composed by different sections for different functions and operational needs
of the user and some examples of use.

5.1 Data management
As previously explained in the section 3.4.2, the client application is based on the
React framework and in particular implements the Redux pattern for internal data
management using the React Redux library. The key concept of this pattern is
to have a single source of data within the application which is commonly called
Store. This makes the data easily accessible to all parts of the program and avoids
duplicate and inconsistent data between the different sections of the application. It
also simplifies the development of views where their purpose is only to present the
data they take from the store and send internal signals to manage user requests,
using functions provided by the library itself.

5.1.1 Data store
From a technical point of view, the store is a JSON Object saved in memory within
the browser whose access is allowed only to the application that instantiated it
and its life time is strictly linked to the life cycle of the application itself. In our
specific case the object is made up of other sub-objects, one for each section that
the application presents with the relative data (Listing 5.1). In order to modify
the store, the library provides methods for the definition of Reducer functions,
which accept in input the current state of the store, one Action (a JSON Object
containing the data that must be saved in the store) and return the updated version
of the store. Actions are usually created after an event generated by the user
interaction with the view or inside of an asynchronous task. Furthermore, an
action must not necessarily be handled inside a Reducer but can also be managed

71

Client application

by an Effect, that is a middleware1 provided by the React Redux library where
is possible to put some code for performing some asynchronous operation like an
HTTP call to an external API.

1 {
2 "app ": {
3 "mode ": " Authenticated ",
4 "wait ": 0,
5 "open ": false ,
6 " loading ": false ,
7 " failed ": false ,
8 " groups ": [{" symbol ": "^ GSPC", "name ": "S&P 500" ," type ": " index "}, ...],
9 " exchanges ": [{" symbol ": "CBOE", "days ": [1,2,3,4,5] ,"name ": ...}, ...],

10 },
11 "user ": {" email ": " team@finance .com", "name ": ...},
12 " modal ": {"show ": false , " title ": ""},
13 " markets ": {
14 "open ": true ,
15 " loading ": false ,
16 " failed ": false ,
17 " search ": "",
18 " results ": [{" symbol ": "SPX", " underlying ": {" price ": 441.67 , ...}}, ...],
19 " market ": {
20 " strategies ": [],
21 " futures ": {...},
22 " charts ": {...},
23 " chain ": {...},
24 " strategy ": {... , " whatif ": {}}
25 },
26 "tab ": {...},
27 "tabs ": {...}
28 },
29 " strategies ": {
30 " results ": [...],
31 " charts ": [...]
32 },
33 " portfolio ": {
34 " currency ": "EUR",
35 " value ": 0,
36 " stats ": {},
37 " chart ": {...},
38 " strategies ": [...],
39 }
40 }

Listing 5.1: Example of the application after login store

5.1.2 Data flow
The set of elements that the pattern defines are used to obtain and guarantee a
unidirectional flow of data between the views and the store. Figure 5.1 underlines
this feature and shows the operation flow after the user’s request to retrieve some
information of the selected market from the API:

1some code that you can put between the framework receiving a request, and the framework
generating a response

72

5.2 – User Interface

1. As soon as the user clicks on an element of the market list, an internal event
is launched to which an event handler has been associated

2. The event handler intercepts the event and then creates the specific JSON
object for the requested action, that is LOAD _MARKET with the market
information to be loaded taken from the event itself. Once the object has been
created, it will be passed in input to the textbf dispatch function provided
by the React Redux library.

3. The action enters the input to the middleware which, based on the type of
action, decides to carry out the subsequent operations, in the specific exam-
ple it will perform an asynchronous HTTP GET call to the API /api/mar-
ket/:symbol.

4. The call being asynchronous requires two callback functions as input, one
to handle the response and the other to handle any exceptions. In both
situations, the dispatch function will be used to propagate the server response
through an action (e.g. LOAD_MARKET_SUCCESS or
LOAD_MARKET_FAILED)

5. The action will pass input to the Reducer together with the latest version of
the store and based on the type of the action its status will be updated with
the data received from the API.

6. Once the status has been updated, the React framework recreates the view
showing the new data.

5.2 User Interface
In a trading application it is important to have a simple, functional and flexible lay-
out with good customization views. From these assumptions the following sections
are developed.

5.2.1 Markets
The markets section corresponds to the main section of the application and is
divided into two parts (Figure 5.2). On the left there is a panel that gives to the
user the possibility to view the list of all available markets and to search for the
desired one. On the right, however, once you have selected the market on which
you want to operate, a tab will open with all its details. Furthermore, the platform
allows you to open multiple markets at the same time by saving them in a list of
tabs.

73

Client application

Figure 5.1: Data flow example

Figure 5.2: Markets interface

74

5.2 – User Interface

Tab

Each single tab has a header for the display of information that characterizes the
market itself with its latest prices established by the exchange. Subsequently there
are four dynamic accordions for different purposes:

• charts accordion that contain all visualization and market analysis tools and
can be selected via a drop-down menu (Figure 5.3). Each chart provides a
zoom in and out, vertical and horizontal scroll with the options to download
their content in PNG format, increase or reduce their occupied space on the
screen and activate or deactivate their internal grid.

• positions accordion, consisting of a drop-down menu to select strategies cre-
ated by the user for the current market, but also to create a new strategy or
modify, update and delete the selected one (Figure 5.4). Furthermore, there
are two tables, one for displaying the current opened positions, temporary or
not, and one for the closed ones.

• futures accordion, that contain a single table that displays all the futures for
all available expiration dates with a search bar that allows the user to carry
out a textual search 5.5). In addition, from this table it is possible to open
a temporary future position by entering the quantity of contracts to buy or
sell.

• chains accordion, consisting of a drop-down menu to select options for a
specific deadline. Then a paged table load and show all the options, both put
and call, and the relative prices, volumes and open interest 5.6). From here
the user can open a temporary option position by entering the quantity of
contracts to buy or sell. Finally, there is a text search bar to filter and search
the desired options.

Figure 5.3: Markets charts interface

75

Client application

Figure 5.4: Markets positions interface

Figure 5.5: Markets futures interface

5.2.2 Strategies

This section is for the management of all strategies created by the user. In partic-
ular, it consists of a left panel that shows a list of strategies with the possibility to
filter them with a textual research. While on the right there is an initially empty
three-column grid that can be filled by selecting strategies from the list. This grid
is very useful to view multiple strategies simultaneously and have a brief overview
of their trends and profits (Figure 5.7).

Card

A single strategy is showed as a Card element inside of the grid and contains a brief
summary on the trend in terms of benefits and costs with three small accordions
to view:

• the payoff graph, both at now and at expiration

• the group of markets to which it refers

• the positions currently open

76

5.2 – User Interface

Figure 5.6: Markets chains interface

Figure 5.7: Strategies interface

5.2.3 Portfolio

The portfolio is an important section that allows you to view the balance of the
user’s virtual account but also to graphically represent the trend of his balance over
time. This trend is influenced by the strategies closed by the user and summarized
in a table, showing their total costs and profits (Figure 5.8).

77

Client application

Figure 5.8: Portfolio interface

5.3 Use cases
A use case is a set of scenarios tied together by a common user goal and is
useful to describe the system’s behavior under various conditions as it responds
to a request. For each use case is required to indicate the system being used
treated as a black box, the type of user that interacts with the system commonly
called actor and the functional goal that the actor achieves using the system. A
single scenario is a sequence of steps describing an interaction between a user and
a system. Furthermore it is also required a precondition which must be satisfied
before starting the scenario and a post-condition that will be satisfied at the end
of it. In this section, some use cases will be presented to describe the various
operations that a user can perform such as creating a new strategy, opening new
positions within the same strategy (Table 5.1 or 5.2) enter in what-if mode for
making some simulation.

Create a new strategy user case show how a user can create its own new
strategy. Indeed, after having selected and opened the desired market tab, the user
can open the Positions accordion (presented in section 5.2.1), click on the creation
button and then enter the name of the new strategy in the modal (Figure 5.9). Once
confirmed, the client makes an HTTP POST call to the /users/strategies/ service
providing the name of the strategy inserted by the user and the group’s identifier
of the selected market to link with the strategy. On the server side, the application
after having deserialized and validated the request, check if the market group is
correct and retrieves the user’s username from the active cookie session already

78

5.3 – Use cases

present in the HTTP request and saves the new strategy on the database. If the
operation end successfully, a response is sent to the client with the self-generated
identifier of the saved strategy. Once the response is received, the client continues
its process by making an HTTP GET call to the /users/strategies/:id service to
retrieve the information of the identified strategy. Instead, in case of errors during
the save process, the client will show an error modal informing the user that the
new strategy has not been created.

(a) Open the modal for creating a new strategy

(b) Save the new strategy

Figure 5.9: Creation of a new strategy inside the platform

79

Client application

Table 5.1: Use case: create a new strategy

Actors involved User
Precondition The user U has already authenticated

to the system and opened the selected market
Post-condition The user U has created a new

strategy for the market selected
Normal scenario The user U click on the add button (Figure 5.9a);

Insert a valid strategy name on the opened modal;
Confirm the creation of the new strategy (Figure 5.9b)

Variant The user U insert a non valid strategy
name and the system does not allow
the user to confirm the creation of the strategy

Implement a butterfly spread strategy use case show how a user can add
position within an already created strategy in order to simulate the butterfly spread,
section 2.5.3. Indeed, after having selected and opened the desired market tab,
the user can open the Chains accordion (presented in section 5.2.1), select the
desired expiration date and send the right quantity of call and/or put options to
buy and/or sell, also called positions (Figure 5.10). Once confirmed, the client
makes an HTTP POST call to the /users/strategies/:id service providing the list
of positions in request JSON body. The application running on the server, after
having deserialized and validated the request, verify if the strategy exist for the
user present in the current cookie session and check if all positions are correct by
looking the options contract and expiration date. If all the checks are successful,
proceed with saving the positions and subsequently send a positive response to the
client which reloads the strategy info and showing the new changes. Instead, in
case of errors during the save process, the client will show an error modal informing
the user that the positions have not been added or updated.

80

5.3 – Use cases

(a) Select the preferred expiration date

(b) Insert the number of contract per options in order to implement the strategy

Figure 5.10: Implement a butterfly spread strategy

81

Client application

Table 5.2: Use case: implement a butterfly spread strategy

Actors involved User
Precondition The user U has already authenticated

to the system and opened the
selected market with a new strategy created

Post-condition The user U has built a butterfly
strategy by adding new market positions

Normal scenario The user U select the expiration from the chain section;
Add all necessary market position as temporary
Position through the options table;
Make all temporary position as open to confirm

Variant The user U insert zero values
and the system does not allow
the user to send new position on the strategy

82

Chapter 6

Conclusions and future works

As already anticipated in the introduction, the objective of the thesis is to create
a platform capable of carrying out analysis operations on the derivatives market
and implementing operational strategies to exploit the characteristics of futures
contracts and options easily accessible via the web browser. At the end of the first
version of the platform, we can say that we have reached the main requirements to
make it available online and allow new users to use it immediately for their own
trading purposes. In particular, after a simple registration, it will be possible to
view the main American and European markets available and start operating with
them through the personal virtual portfolio, realizing the traditional operational
strategies such as Long Call/Put and Short Call/Put but also the most sophisticated
ones such as Butterfly or Reverse Butterfly. Furthermore, from a technical point
of view, we can confirm that the technologies used are solid foundations to then
extend the functionalities with future developments and allow the platform to be
distributed through innovative cloud infrastructures.

With regard to future work, there are several fronts that can be developed. In
fact, starting from the current state, the internal functions of the application can
be extended, such as offering the possibility of automatically generating the best
operational strategy based on the latest market conditions. Currently the platform
is not suitable for trading intraday as the public APIs provided by CME, CBOE and
EUREX update the values every fifteen minutes. These APIs can be replaced with
paid ones to obtain data in real time. From the point of view of code and project
management we are currently relying on the Git versioning system and the remote
server is based on GitHub repository. For this reason it would be interesting easily
achievable to create a CI/CD pipeline through the features of GitHub Actions in
order to update automatically the Docker image version present online every time
a new release is created in the repository.

83

84

Bibliography

[1] Celery. Distributed task queue, 2020. URL https://docs.celeryproject.
org/en/stable/. [Online; 14 July 2021].

[2] Django. Django authentication system, 2020. URL https://docs.
djangoproject.com/en/3.2/topics/auth/default/#. [Online; 14 July
2021].

[3] Django. Django csfr protection, 2020. URL https://docs.djangoproject.
com/en/3.2/ref/csrf/. [Online; 14 July 2021].

[4] Docker. Docker overview, 2020. URL https://docs.docker.com/
get-started/overview/. [Online; 14 July 2021].

[5] Alessandro Fiori. Design with MongoDB: best models for applications. Inde-
pendently published, Turin, Italy, 2020.

[6] Gordon Scott, Investopedia. Cboe options exchange, 2021. URL https://
www.investopedia.com/terms/c/cboe.asp. [Online; 11 July 2021].

[7] James Chen, Investopedia. Chicago mercantile exchange, 2021. URL https:
//www.investopedia.com/terms/c/cme.aspp. [Online; 11 July 2021].

[8] Rajeev Dhir, Investopedia. Eurex exchange, 2021. URL https://www.
investopedia.com/terms/e/eurex.asp. [Online; 11 July 2021].

[9] ISO. Software standards, 2021. URL http://www.iso25000.it/styled-8/.
[Online; 11 July 2021].

[10] MongoDB. Introduction to mongodb, 2021. URL https://docs.mongodb.
com/manual/introduction/. [Online; 2 August 2021].

[11] Pymongo. Pymongo documentation, 2021. URL https://pymongo.
readthedocs.io/en/stable/. [Online; 2 August 2021].

[12] Ragu Ramaswamy. React stockcharts, 2015. URL https://rrag.github.
io/react-stockcharts/documentation.html#/overview. [Online; 14 July
2021].

85

https://docs.celeryproject.org/en/stable/
https://docs.celeryproject.org/en/stable/
https://docs.djangoproject.com/en/3.2/topics/auth/default/#
https://docs.djangoproject.com/en/3.2/topics/auth/default/#
https://docs.djangoproject.com/en/3.2/ref/csrf/
https://docs.djangoproject.com/en/3.2/ref/csrf/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://www.investopedia.com/terms/c/cboe.asp
https://www.investopedia.com/terms/c/cboe.asp
https://www.investopedia.com/terms/c/cme.aspp
https://www.investopedia.com/terms/c/cme.aspp
https://www.investopedia.com/terms/e/eurex.asp
https://www.investopedia.com/terms/e/eurex.asp
http://www.iso25000.it/styled-8/
https://docs.mongodb.com/manual/introduction/
https://docs.mongodb.com/manual/introduction/
https://pymongo.readthedocs.io/en/stable/
https://pymongo.readthedocs.io/en/stable/
https://rrag.github.io/react-stockcharts/documentation.html#/overview
https://rrag.github.io/react-stockcharts/documentation.html#/overview

BIBLIOGRAPHY

[13] Redis. Redis documentation, 2021. URL https://redis.io/documentation.
[Online; 14 July 2021].

[14] SquareFree. Cross-site request forgery (csrf), 2020. URL https://www.
squarefree.com/securitytips/web-developers.html#CSRF. [Online; 14
July 2021].

86

https://redis.io/documentation
https://www.squarefree.com/securitytips/web-developers.html#CSRF
https://www.squarefree.com/securitytips/web-developers.html#CSRF

	List of Figures
	List of Tables
	Introduction
	Overview of the Thesis

	Trading
	Exchanges
	Markets
	Instruments
	Derivatives

	Futures
	Payoff

	Options
	Price
	Payoff
	Spread
	Greeks

	Platforms
	Competitors

	Essentials
	Requirements
	Stakeholders
	Functional and Non-functional

	Data sources
	Types of data sources
	Markets web services

	Architecture
	Client and Server
	Server-side containerization

	Technologies
	Django
	React
	MongoDB
	Celery
	Docker
	Nginx

	Implementation
	Database
	Collections
	Data analysis

	Async tasks
	update_cboe
	update_cme
	update_eurex
	update_history

	REST APIs
	Security
	User APIs
	Market APIs
	Chain APIs

	Client application
	Data management
	Data store
	Data flow

	User Interface
	Markets
	Strategies
	Portfolio

	Use cases

	Conclusions and future works

