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Abstract

The topics covered in this thesis work are related to the field of electric vehicles
(EVs) optimization. Thanks to their attractive properties, the majority of EVs
adopt lithium-ion batteries as main energy source introducing new challenges in the
car manufacturer’s world. In order to guarantee the optimal management and the
safety of the operations performed on the battery, a vehicle subsystem, called Bat-
tery Management System (BMS), has to estimate the state of the battery through
two fundamental parameters: the State of Charge (SoC) and the State of Health
(SoH). Precisely knowing these quantities in a real driving context is actually a chal-
lenging task and, for the remarkable industrial value, it has become a hot research
topic in the last decade.

In the first part of the thesis report the key aspects of the problem are introduced
with a top-down approach, and a state of the art analysis is performed by describ-
ing the most relevant SoC and SoH estimation approaches that exist in the literature.

In the second part, the thesis work is presented: in the context of MATLAB
environment, a first principles approach (classical) estimation technique, based on
Extended Kalman Filter, and a machine learning approach are developed and vali-
dated under simulation.
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Chapter 1

Introduction

The topics covered in this thesis work are related to the field of electric vehicles
(EVs) optimization. Thanks to their attractive properties, the majority of EVs
adopt lithium-ion batteries as main energy source introducing new challenges in the
car manufacturer’s world. In order to guarantee the optimal management and the
safety of the operations performed on the battery, a vehicle subsystem, called Bat-
tery Management System (BMS), has to estimate the state of the battery through
two fundamental parameters: the State of Charge (SoC) and the State of Health
(SoH). Precisely knowing these quantities in a real driving context is actually a chal-
lenging task and, for the remarkable industrial value, it has become a hot research
topic in the last decade.

The thesis work consists in developing and comparing two different estimation
schemes for estimating SoC and SoH under simulation by using a dynamic simulator
of a real target system.

The document is organized in the following way:

• Chapter 2 gradually introduces to the main topics with a top-down approach.

• Chapter 3 describes the most relevant estimation approaches that exist in the
literature

• Chapter 4 presents the work and the adopted models
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1 – Introduction

• Chapter 5 and Chapter 6 present the work with respect to the proposed esti-
mation schemes

• Chapter 7 concludes the document by summarizing the entire work and pre-
senting results and discussions

2



Chapter 2

An overview on the main topics

The transistion from internal combustion engine vehicles toward electric vehicles
contributes in solving some problems but introduce new challenges.

The main reason that can be attributed to this transition is relative to air pol-
lution. The exausted gases infact, containing a lot of nocive elements (Particu-
late Matter, Volatile Organic Compounds, nitrogen oxides, carbon monoxide, sulfur
dioxide and greenhouse gases) not only introduce human health diseases (respiratory
infections, heart disease and lung cancer) but contribute to exacerbate the global
warming process and more in general the climate change phenomena. To deal with
these problems, based on the common objectives specified in the vary international
treaties (Kyoto protocol, Doha amendment, Paris agreement), Euro standards have
been introduced with the aim of controlling vehicles emissions. The restrictions
introduced by the standards become more and more restrictive as years pass by,
bringing car manufacturers to find new solutions to the enginering challenges that
born from the respect of these norms.

By looking forward in the near future, another crucial phenomena is the overpop-
ulation. Based on the statistics made by United Nations, the demography growth
trend shows that in the next 30 years the world population might reach about 10
billion people, and at the end of the century even 12.3 billion people [1]. This
phenomenon open the door to unpredicteble scenario and require to be managed
properly right now. The growth in population not only aggravate the impact of
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2 – An overview on the main topics

human activities all around the world on the environment, as the Global Footprint
Network Organization suggests [2, 3], but from a social perspective introduce the
exigence to find a better way to make people and goods move.

A partial solution to these problems can be found in the adoption of full electric
vehicles. Even though, from an ecological perspective, their production is still a
problem, their usage allow to eliminate air pollution problem and can contribute
to the realization of a real transportation revolution. In the optic of addressing
overpopulation problems, electric cars drives in the right direction since their adop-
tion can be inserted in the autonomous guide context making the transportation of
people and goods more efficient and optimized.

The gradual withdrawal from fossil fuel is compensated by the adoption of a
different source of energy, that is retrieved from lithium-ion batteries. These kind
of batteries are taken into account since they have high density energy, light weight,
long time span and low production cost, and thanks to their attractive properties
are placed into the majority of electric vehicles. In order to guarantee their correct
usage, an opportune vehicle subsystem, the Battery Management System (BMS),
takes care to manage the operations performed on the battery. To do so, the BMS
has to estimate the state of the battery by estimating two fundamental parameters:
the State of Charge (SoC) and the State of Health (SoH). Knowing preciselly these
quantities in a real driving context is actually a difficult task but it allow to enhance
the vehicle performances and to increase the vehicle driving range. For this reason
SoC and SoH estimation problem has a remarkable industrial value and has become
a hot research topic in the last decade.

In the next paragraphs the main aspects reguarding the BMS and the battery are
deepened until, in paragraph 2.5, the fundamental parameters of interest, namely
the SoC and the SOH, are introduced.
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2 – An overview on the main topics

2.1 Battery Management System

One important subsystem that can be found inside an electric vehicle is the Battery
Management System (BMS). It is an embedded system that is designed to properly
manage the particular Energy Storage device, which is typically a rechargeable bat-
tery, that is adopted as a source of energy for the entire vehicle. The main tasks
that the BMS has to perform are:

• continuously monitor the battery by acquiring measures of voltage, current
and temperature

• compute parameters that describe the state of the battery like the State of
Charge (SoC) and the State of Health (SoH)

• ensure the safety by guaranteeing that every operation performed on the bat-
tery lies in the Safe Operation Area (SOA), so by avoiding: over-charge, over-
discharge, over-voltage (during charge) and thermal runaway

The below figure illustrates how the main elements interact to each other by
depicting a traditional BMS conceptual schema:

Figure 2.1: Example of a typical BMS conceptual schema
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The main component of the BMS is the control unit that run special algorithms
designed to compute the battery state parameters on the basis of the acquired
measures gathered by the measurement unit. The computed parameters are then
used to manage the battery and forwarded toward external subsystems through the
network bus. More details about each functionality are discussed from the battery
pack perspective in the next paragraph while the main battery state parameters
(State of Charge and State of Health) are discussed in section 2.5.
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2.2 Battery pack, modules and cells

The battery pack represents the energy storage device of an electric vehicle and is
used to stock energy (typically in the form of electrochemical potential) with the
purpose of providing it to the vehicle motor and other subsystems. It is managed
by the BMS and depending on the choices of the manufacturer, presents a complex
inner structure since is composed by many subcomponents that contribute to provide
its overall functionalities. Among the possible components, the main ones consist
in battery cells modules, thermal conditioning system, electric boards and other
auxiliary devices that allow to interface it with an external load/charger. In order
to meet the exigence in terms of voltage, capacity and current, that the battery has
to provide, the number of cells modules, which are connected in series, is variable
and is one of the design aspects. Moreover, every single module is composed by many
cells, arranged in a parallel fashion, that represent the very atomic energy elements
of the battery. Modules embed some electronics that help the BMS to monitor the
state of the cells by acquiring measures of voltage, current and temperature thanks
to the presence of corresponding sensors. In this context the BMS is able to act
a control action in order to ensure the safety of the charge/discharge operations
performed over the cells and to control the temperature thanks to the presence of
a cooling/heating system. The over-charge and over-discharge control is achieved
through the cell equalization mechanism: the BMS on the basis of the state of charge
of the cells can actively or passively redistribute the charge level from more charged
cell to the less charged one in order to have an homogenous charge distribution over
all the cells. The difference between actively and passively equalization consist in the
electronic devices employs in such operation. In the passive paradigm, the energy of
the most charged cells is dissipated through Joule effect on a passive electric element
(resistor) while in the active one the energy is distributed over the cells through an
active element (transistor).
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Figure 2.2: Example of a complete battery system reguarding an ispection of Volk-
swagen Modular Electric drive matrix Battery system (MEB) platform [4]

According to the different chemical constituent nature, there exist many kind
of cells that can be adopted as building element for the vary modules. Nowadays,
lithium-ion batteries are considered the leading battery typology for their attractive
properties since they provide high-density energy, long-life span a low production
cost.
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Depending on the specific battery cell product, the manufacturer can provide
different type of information (often in form of tables and graphs) but in general they
consist in nominal, electrical, mechanical and safety specifications. The following
table, as an example, illustrates the nominal characteristics of a LG Chem lithium-
ion battery cell datascheet information:

Figure 2.3: A schreenshot about a section of a battery cell datasheet illustrating the
main nominal characteristics of a INR 18650 M29 lithium-ion battery cell. [5]
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2.3 Lithium-ion cell electrochemical inspection

The first commercial Lithium-ion battery was introduced by SONY in 1991 [6] and
from that time has become one of the best way to store energy for many electronic
devices and EVs. It is a particular kind of electrochemical cell that converts electric
energy into chemical energy during discharging process (in this case is called elec-
trolytic cell) and vice versa during charging process (in this case is called galvanic
cell). At the simplest abstraction level, the cell is composed by a positive (anode)
and negative (chathode) electrodes (active elements) and an electrolyte (passive el-
ement). The mechanisms of energy conversion, during charging and discharging
processes happen through redox reactions (oxidation and reduction) at the active
components. In these circumstances, electrons migrate from one electrode to the
other by following an external circuit, while generated ions passes through the elec-
trolyte reaching the other side electrode.

]

Figure 2.4: Conceptual diagram of an electrochemical cell undergoing to a discharge
(a) and charge (b) processes [7, 8]

The main components of the electrochemical cell from the perspective of a
Lithium-ion cell are the following:

• electrodes: are based on electrically and ionically conductive materials. The
anode acts like an ion magazine and electron donor (when the cell is full
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charged) and its composition is typically based on graphene. The chatode
acts like an electron acceptor and (when the cell is full discharged) store the
lithium by combining it to a metal-oxide whose elements can be Co, Ni, Fe,
Mn.

• electrolytes: can be of various nature (liquid or polymeric) but the most used
is based on a solution of one or many salts dissolvent in one or many solvents.
It allows to carry ions thanks to its high ionic conductivity.

• separator: In the case that a liquid electrolyte is adopted, a porous separator
with electron insulation property is inserted in between the two electrodes in
order to avoid electrodes touch to each other causing a short circuit.

• current collector: Enhances the electrode by increase the efficiency in the
electrons transportation during charge and discharge processes. They have
not to participate in redox reactions and consists typically in good electric
conductive materials like aluminium or copper.

• casing: Consists in an external enclosure that insulates the electrochemical
cell by avoiding the liquid electrolyte evaporates and protect the cell from the
outside world. It can be composed of plastic or metallic materials and assumes
cylindrical or prismatic shapes.

11
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2.4 Charging/discharging operations

A crucial aspect that has to be addressed properly regards the charging and dis-
charging operations. In fact, an improper usage of the cells during these processes
can lead to damaging the battery by triggering irreversible degrading processes in its
constituent and in the worst case create dangerous situations like fires or explosions.

The reference quantity that is used to characterize the charge and discharge
operation is the C-rate that indicate the amount of current employed to the related
battery capacity. For instance, if a cell is stated to have a rated capacity of 2.9 Ah,
a 1 C charge/discharge current rate means that to fully charge or discharge that
battery a 2.9 A current is adopted and the process lasts for 1 h. Typically multiple
of the rated capacity are used (nC-rates). The time necessary to fully charge or
discharge the battery is inversely proportional to the nC-rate: a 4C charge/discharge
rate corresponds to 15 minutes, while 0.2C (1/5C) corresponds to 5 hours.

There exist three types of charging processes performed by means of a charger
device that is connected to the terminal electrodes of the cell:

1. constant current (CC): it is the simplest charging method and consist in ap-
plying a constant charging current (low value of C-rate are commonly used)
to the battery cell until the cell voltage raising, reaches its upper cut-off value.
The full charge state must be recognized in order to avoid over-charge issues.
The recognition of the full state is obtained by means of either voltage or tem-
perature based approaches. Some kind of batteries (ex: NiMH) when reaches
its full state manifest a drop in terms of terminal voltage, so the difference in
voltage potential over the time can be used in the voltage method to indicate
the full charge state. On the other hand, the same principle is applied in the
temperature based approach. In this case the full state charge is suggested by
an increasing in temperature over time, since the energy is mostly dissipated
through Joule effect when the battery is fully charged.
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Figure 2.5: Comparison of charge control methods based on voltage and temperature
approaches . [9]

2. constant voltage (CV): In the constant voltage charge method, usually the
upper cut-off voltage of the battery cell (suggested by the manufacturer) is
imposed allowing a maximum current to be generated to fed the battery. This
method results to be less time consuming with respect to the constant charge
current one.

3. constant current-constant voltage (CC-CV): It is made by mixing together
constant current and constant voltage methods. The whole process, which is
represented in the figure 2.6, is divided into three different phases consisting
in a CC charging, followed by a CV charge and finally a rest period. In the
last phase the battery undergoes to a self-discharge process characterized by a
low decreasing current that ends when electrochemical equilibrium inside the
cell is reached.

As mentioned before, the charging process is a delicate process and its timing must be
respectful of the electrochemical timing reactions. Other important aspect reguard
fast charge (C-rates biggest then the rated capacity) that have to be possibly avoided
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Figure 2.6: CC-CV charging approach. [10]

and the voltage applied during CV charge doesn’t exceed the one suggested by the
manufactured since it can short the life time of the battery.

Figure 2.7: Capacity degradation induced by high C-rates (a) and over-voltage
during CV (b) charge processes over different cycles. [11, 12]
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When the battery cell is disconnected from any kind of external load, the mea-
sured tension between the positive and negative electrode is called Open Circuit
Voltage OCV. During the discharging process, when a load is connected to the ter-
minal of the battery cell, the voltage decreases due to internal losses. These kinds of
losses are caused by different types of polarization or overpotential that occur when
a current passes through the cell and consist in:

• activation polarization loss is due to the charge transfer at the electrode surface

• concentration polarization loss manifests in presence of a concentration dif-
ference of charged species between the electrode surface and the electrolyte
bulk

• ohmic polarization loss is the dominant loss and is due to the internal resistance
of the cell

Figure 2.8: Different kind of losses during discharge. [13]
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Figure 2.9: Discharge profiles at different discharges rate. [14]
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2.5 State of Charge and State of Health

As discussed in the paragraph 2.1, the BMS by monitoring the battery has to pro-
vide information reguarding its status. These information are summarized basically
through two main parameters namely the State of Charge (SoC) and the State of
Health (SoH).

The SoC is typically defined as the percentage of the residual capacity at a given
time with respect to the maximum capacity of the battery. This concept can be
formulated as following:

SoC(t) = Q(t)
Qn

× 100%, t ≥ 0 (2.1)

The residual capacity Q(t) [A·h] corresponds to the amount of charge that has
to be removed in order to bring the current battery charge state to a full discharge
state. The nominal capacity Qn [A·h] corresponds to the total amount of charge that
the battery has when is in a full charge state. Often, in the literature it is referred
to this quantity through its numerical complement called Depth of Discharge (DoD)
that is obtained through:

DoD = 1 − SoC (2.2)

Figure 2.10: Conceptual representiation of SoC and DoD [15].
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The given definition (eq. 2.1) is an approximation of the real one since, in real
world, SoC depends from different factors such as temperature and battery aging
mechanisms. In particular, the nominal capacity tends to decrease as the battery
cell ages over time.

In every traditional internal combustion engine vehicle, it is common to see the
presence of a fuel gauge on the dashboard, that is the indicator of the available
amount of the fuel in the tank. This device works thanks to the presence of a
sensor which is able to measure the level of the remaining fuel in the tank. In an
electric vehicle, a corresponding sensor, which is able to directly measure the SoC
level, is not possible to realize since the SoC has complex relationships with voltage,
temperature and current. For this reason the BMS has to estimate it starting from
the acquired physical quantities.

In order to characterize the status of the battery from a qualitative perspective,
driven by the aging effects, the other important status battery parameter, taken into
account by the BMS, is the so called State of Health (SoH). It expresses, through
a percentage index, the useful lifetime associated with the battery in a way that
is equal to 100%, when the battery is in its begin of life (BOL), and it decreases
toward 0% as the battery ages. Depending on the application for which the battery
is employed, the End Of Life (EOL) corresponds to a particular threshold value of
the SoH. In the automotive field the reference value for the EOL is in correspondence
of the 80% SoH value.

Although the provided SOH definition is widespread, actually, there is no com-
mon agreement in the industry for the establishment of some metrics that can be
used to retrieve SOH information. Based on experimental evidence, there exist dif-
ferent features that are sensible to the aging mechanisms, called "health indicators"
(HI), that can be monitored to provide such information. Among the measurable
quantities, the best HIs that can be significative to represent the SOH are the battery
internal resistance and the battery capacity. According to these electrical quantities
it is possible to provide different SoH definitions.

18
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Considering the internal resistance, the SoH can be expressed as:

SOH = REOL
int − Rint

REOL
int − RBOL

int

× 100% (2.3)

The superscript EOL and BOL indicate that the internal resistance is evaluated
at the End Of Life and at the Begin Of Life respectively, while Rint represent the
current internal resistence value. When battery ages it is observed that the internal
resistance tends to increase its value and typically when the battery reaches the
end of its life, it doubles. This variation is also exacerbated by the changing in
the internal cell temperature, which is guided by the operating activity and by the
ambient temperature, making the evaluation of the SoH a difficult task. Since in
the HEV application it is important to guarantee power performance, the eq. 2.3 is
frequently adopted [16].

An analogue expression is employed for the SoH definition from the perspective
of the capacity:

SOH = Qn − QEOL
n

QBOL
n − QEOL

n

× 100% (2.4)

The very same syntax with respect to the first expression has been employed and
the capacity simply substitute the respective quantities. The difference in the minus
sign in the two expression indicate that, since the SoH is a positive quantity, the
capacity actually tends to decrease as the battery ages through the so called capacity
fade phenomenon. Another common flavour of this SoH expression considers only
the ratio between the current nominal capacity and the one corresponding to its
BOL:

SOH = Qn

QBOL
n

× 100% (2.5)

An important observation consists in notice how the precise knowledge of the
SOH can influence the computation of the SoC since, as can be seen in the eq. 2.1, it
depends strictly by the value of the nominal capacity. In contrast with equation 2.3,
the relation 2.4 is quite used in the context of EV since it is important to guaranty
a given range autonomy [16].
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It is common to see also an heuristic definition of the SoH that is thought for
the final user since it is specified in the datasheet as it provides an intuitive under-
standing of the current state of the battery [17]:

SOH = residual number of charge and discharge

maximum number of charge and discharge
× 100% (2.6)

Similarly to the case of SoC, is not possible to create a sensor that is able to
measure directily the SoH and for this reason the BMS has to estimate it starting
from the HIs.

Figure 2.11: Conceptual representation about the three main status parameters
(DoD, SoC and SoH) with respect to the battery capacity.

By observing the figure 2.11 it is possible to better understand the relationship
between the three parameters and in particular how the SoC can varying following
limitately a SoH variation. This happens because the two quantity are both related
to the nominal capacity that changes over time. Typically, SoC can vary rapidly
according to the battery usage, while SoH is a slowly changing quantity.
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The quality of the estimated value for both SoC and SoH is crucial for many
reasons:

• Performance: SoC is related to the amount of available energy which can be
used to power the engine and other vehicle’s subsystems, then a good quality
estimation allows to have more trust in the knowledge of the available range
that a car can make on a journey. Moreover, having a reduced bounded un-
certainty on the estimated value permits to better manage the request coming
from the driver by full satisfying the requirement of instant power extracted
from the battery in order to guarantee the right acceleration to the vehicle.

• Longevity: A poor quality estimation increase the possibility of either over-
charge or over-discharge the battery, enabling the main mechanisms that are
responsible to decrease the battery useful life.

• Safety: As described in previous paragraphs, over-charge and over-discharge
operations are dangerous situations and have to be avoided since, in the worst
cases, can cause fire or explosion hazards.

• Reliability: A good estimation has to be guaranteed for different driving pro-
files which change from different countries and depend strictly on the driving
style of the driver.

In the succesive chapter (3), the main estimation approaches that can be found
in the literature are discussed for both SoC and SoH.
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Chapter 3

Available approaches

In the last paragraph of the previous chapter (2.5), the main status battery param-
eters are introduced and the importance of finding an accurate estimation for both
SoC and SoH is explained. The effort of finding a solution to the problematics that
SoC and SoH introduce, has focused the interest of the scientific community over
the years and currently in the research world, the argument has become a hot topic.
The figure below shows the trend of the number of publications per year in the last
16 years.

Figure 3.1: Statistics retrieved from Web of Science database reguarding the number
of publications with respect years. The used searching criterion contained the follow-
ing keywords: "state of charge estimation", "state of health estimation", "lithium-ion
battery", "electric vehicle","hybrid electric vehicle". More details are specified at
[18].
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There exist many kind of approaches that can be found in the literature to deal
with SoC and SoH estimation problem and they can be grouped into the following
two macro categories:

• First principles approaches: The estimator is developed according to the
physical and or chemichal principles.

• Data-driven approaches: The estimator is a model which maps a given
set of data to the target parameter without considering any physical and or
chemical principle.

All the methods of these families of approaches rely on the usage of some set
of data, and for this reason in the next paragrah (3.1) the possible data sources
are described. Paragraphs from 3.2 to 3.3 enter into the details, for each family of
approaches, about the most relevant estimation techniques and an example of their
usage is provided by analyzing some research article. Finally, in the last paragraph
of this chapter 3.4, a conclusive review about the analyzed estimation techniques is
provided.
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3 – Available approaches

3.1 Data sources

In the automotive field, the leading data source is obtained by considering one or
many dynamometer tests. In the circumstance of these tests, typically, the battery
is monitored by acquiring measurement of current, voltage and temperature while
the target vehicle perform a Dynamometer Drive Schedules (driving cycle). A driv-
ing cycle is a collection of speed referencies with respect to time that capture an
average driving behaviour of a typical driver in different road conditions and differ-
ent contexts (i.e. urban, highway, and so on). These tests are important because
the resulting data can capture the peculiarity of the application scenario for which
the estimator is designed. There exist a lot of driving cycles and every country or
company have their own of reference. In European Union the leading one is the
Worldwide Harmonized Light Vehicles Test Cycle (WLTC) which has substituted
the old New European Driving Cycle (NEDC).

There exist many WLTCs and they are applicable to some specific category of
vehicles which are distingushed from their power-to-mass (PMR) ratio.

Figure 3.2: WLTC cycle for Class 3b vehicles. [19]
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Other types of data can be retrieved by performing some tests directly on the
battery system. These tests are typically adopted with the purpose of characterize
the batteries properties and making possible to build batteries datasheets. Along
with the tests (CC, CC-CV) already described in paragraph 2.4) there exist Pulse
Discharge/Charge Test (PDT, PCT), Continuous Discharge/Charge Test (CDT,
CCT) and Hybrid Pulse Power Characterization test (HPPC). Their execution can
be performed using a cycler machine that repeats systematically the tests by alter-
nating full charge and discharge of the battery. In this way is possible to acquire
data during the entire life of the battery and make possible to track its age by mea-
suring the capacity at a given iteration (cycle). For the seek of clarity, the following
figures depict the significant signals reguarding PDT, CDT and HPPC.

Figure 3.3: Example of PDT showing current stimuli and terminal voltage responce,
executed via simulation on a battery model of a Panasonic CGR18650AF. Starting
from a full charged battery, discharge current pulses at 1C stimulate periodically
the battery every 300 s for 35.12 s until the battery is fully discharged.
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Figure 3.4: Example of CDT showing current stimuli and terminal voltage responce,
executed via simulation on a battery model of a Panasonic CGR18650AF. Starting
from a full charged battery, a 1C continuous discharge current stimulate the battery
until it reaches its fully discharged state.

Figure 3.5: Example of HPPC showing the main phases of the test.
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Data can be real-based, namely, obtained by performing tests on the real system
or synthetic-based, that is via simulation by considering an accurate system model.
Since self made experiment can be expensive, real-based data can be found on the
web in the form of datasets which are made public by some authoritative entity like
universities. A common dataset that can be found in the literature is provided by the
NASA’s Prognostics Center of Excellence through its Prognostics Data Repository.
It contains different set of data gathered in the context of many tests performed on
different lithium-ion batteries.
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3.2 First principles approaches

3.2.1 Coulomb Counter

This technique allows to compute SoC by literally “counting the coulombs”, that
is by integrating the battery current over time. A common formulation of the SoC
expression is the following:

SoC(t) = SoC(t0) +
Ú t

t0

ηi · I(τ)
Qn

dτ (3.1)

This equation shows that starting from an initial condition for the SoC at a given
time t0, is possible to compute the current SoC at time t by adding over time all
the contributes which come from the charging/discharging current profiles.

Qn[A ·h] is the nominal battery capacity while ηi is the coulomb efficiency which
represents the ratio of the discharge capacity over the charge capacity during a
discharge/charge cycle. The coulomb efficiency has to be computed empirically but
for simplicity, in the literature can be found that ηi = 1 if “I” is the discharge
current, while ηi = η ≤ 1 if "I" is the charge current [20]. In the expression 3.1
battery capacity is considered to be stationary over time, and then aging effects are
not taken into account [21]. Since the measured signals are sampled over time the
3.1 assume its discretized form:

SoC(k + 1) = SoC(k) + ηi · ∆t

Qn

· I(k), k ≥ 1

SoC(k) = SoC0, k = 0
(3.2)

Where Qn and "I" are respectively the nominal battery capacity and the charge/dis-
charge current considered in the temporal interval [k∆t,(k + 1) ∆t] and ∆t is the
sampling time interval. Since it is possible to measure the current that is pumped
into or requested from the battery, this method results to be simple to implement
and can be used both offline and online, but in order to have high accuracy on the
resulting value of the SoC it is necessary to have clear knowledge on the measured
current. In fact, as it is an integral method it tends to accumulate the error over
time making the SoC value drifts away from the true one. This happens especially
when current sensors are pretty noisy, or even when the nominal capacity is not
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updated in the circumstance that battery aging effects are neglected. A possible
solution to reduce the error is to use this technique together with OCV-based meth-
ods that periodically correct the value of the SoC by looking at the existing relation
between Open Circuit Voltage and SoC. This correcting technique can be used only
in certain conditions that are explained in paragraph 3.3.1. Moreover, a crucial as-
pect reguards the SoC initial condition (SoC0) which has to be estimated correctly,
otherwise a significant error offset source in the overall estimation is introduced.
To avoid issues with the initial SoC, typically the starting scenario refers to a full
charged or discharged state of the battery.

The Coulomb Counting approach can be implemented also to estimate the SoH.
As discussed in [22], the process is divided into the following two steps:

Qdischarged =
Ú T

0
I(t)dt

SoH = Qdischarged

Qrated

× 100%
(3.3)

Starting from a full charged state, the battery is completely discharged and the
relative capacity is obtained through the integration of the discharging current "I".
Then, the SoH is computed by dividing the quantity obtained in the previous step
by the rated capacity. Also in this case the accuracy depend on the goodness of the
measures of current as explained for the SoC case.

Coulomb counter, hence, suffers in correspondence of a poor-quality sensors
(which have to present high resolution and low SNR) and needs helps from OCV-
SoC method for correction purposes. Moreover, is not always possible to completely
charge/discharge the battery online, so, for these reasons, Coulomb Counter is sug-
gested to be used as offline method in the context of a laboratory environment [23]
in order to retrieve ground-truth data for other methods.
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3.2.2 Equivalent Circuit Model based methods

In order to retrieve SoC and or SoH information, a possibility is to build an estimator
based on a battery model which is described by the following general relationship:

Vt = f(SOC,I,T ) (3.4)

The output voltage is function of SOC, the current I and the battery temperature.

Depending on the chosen model typology and on the application purpose the
function f can be different and arbitrarilary complex. In particular, in scenarious
where current is drawn or delivered considering fraction of the capacity rate, the
usage of a simple model is justified due to a low dynamic profile, on the other
hands, when high currents are considered (multiple of the capacity rate) or non
constant current profiles, a more complex model is needed [24].

The most complete representation that can be defined in order to describe the
behaviour of the battery system is an electrochemical model that consider very de-
tailed phenomena happening on microscopic scale in terms of chemical reactions
between active elements present into the cells. These types of models are computa-
tional expensive since are based on a system of several partial differential equation
and present a lot of parameters to be identified, so are not appropriate to be elab-
orated online on BMS but are useful in the cell design process. Equivalent circuit
models (ECM), in contrast, since consider macroscopic effects of microscopic phe-
nomena are simplest but, at the same time, can preserve the useful information that
are necessary to describe well the system dynamic. ECM can be defined at different
granularity levels: starting from the finest level it can represent respectively the
single cell, the single module and at the coarse level the entire battery pack. For
practice purpose, in general, is desirable to work with a model defined at battery
pack level. In the other cases, the overall pack model is built by put together as
elementary blocks the cell/module models in the respective series/parallel fashion.
In other cases the model can be seen as a cell-average model with respect to all the
cells that constitute the battery pack.
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Among the possible ECMs the most common models are the internal resistance
(Rint) ECM, the First and the Second Order Thèvenin ECM (FOTM, SOTM), Part-
nership for a New Generation of Vehicles (PNGV) model and General Non-Linear
(GNL) model. The circuit diagrams of each model, their respective expressions and
description are reported in next discussion.

circuit schema expressions

VT = VOC − RINT · I

Table 3.1: RINT model

The simplest way to model the battery system is to consider the series between a
voltage source representing the Open Circuit Voltage (VOC), and a resistor which rep-
resents the internal battery resistance that is responsible of the voltage drop between
VOC and terminal voltage (Vt). The OCV depends from many factor exaplained in
paragraph 3.3.1, and the internal resistance value depends on it as well. According
to the thesis work "Electro-Thermal Modelling of Lithium-Ion Battery" conducted
by Mohammad Taffal at Politecnico di Torino, this model can be a good choice when
the operations performed on the battery stimulate it according to the limit suggested
by the cell manufacturer. In these circumstances, it is possible to build the entire
battery pack model and starting from the information present in the cell datasheet,
construct the OCV-SoC relationship and find the proper internal resistance values,
for different temperature and discharge/charge condition. The low complexity of
this model allows it to be easily implemented for real time applications.
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circuit schema expressions


dV1

dt
= −V1

τ1
+ I

C

VT = VOC − V1 − RINT · I

where

τ1 = R1 · C

Table 3.2: First order Thèvenin model

circuit schema expressions



dVS
dt

= −VS
τS

+ I

CS

dVL
dt

= −VL
τL

+ I

CL

VT = VOC − VL − VS − RINT · I

where τS = RS · CS

τL = RL · CL

Table 3.3: Second order Thèvenin model

The Thèvenin model starts from the Rint schema and introduce respectively in
the first (table 3.2) and second order (table 3.3) versions, one and two RC networks
with different time constants. These networks introduce more complexity to the
model and permits to describe in more details the short-term and long-term tran-
sient behaviour of the terminal voltage. Physically RC networks model the diffusion
process in the electrolyte and porous electrodes, the charge transfer and double-layer
effect in the electrode [25].
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circuit schema expressions



dVS
dt

= −VS
τS

+ I

CS

dVL
dt

= −VL
τL

+ I

CL

VT = VOC − VL − VS − RINT · I

where

τ1 = R1 · C

Table 3.4: PNGV model

PNGV is builded starting from the respective Thevenin version by adding the
so-called bulk capacitance (CCAP ) between the voltage source and internal resis-
tance. According to [25] the presence of an additional capacitance helps to model
the variation in term of OCV due to discharge current accumulation effect. Thanks
to this additional component, PNGV model reaches often better result if compared
with Rint and first order Thèvenin models.
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circuit schema expressions



dVS
dt

= −VS
τS

+ I

CS

dVL
dt

= −VL
τL

+ I

CL

VCAP = 1
CCAP

Ú
Idτ

VT = VOC − VL − VS − RINT · I

where τS = RS · CS

τL = RL · CL

Table 3.5: GNL model

Finally, GNL model is obtained by adding an extra RC network to PNGV model
in order to consider concentration polarization effect [25].

Every model is characterized by a certain amount of parameters that have to be
identified. This activity is accomplished a-priori or dynamically, and in both cases
empirical data are needed. In the a-priori strategy, parameters are found offline,
namely, before the model is deployed. Therefore, at the first, data are acquired dur-
ing laboratory sessions according to one or more tests described in both paragraphs
2.4 and 3.1. The Open Circuit Voltage is found according to OCV map method
(paragraph 3.3.1). During tests all the interesting measures in term of temperature,
voltage and current are acquired. SoC and or SoH are monitored and recorded using
an offline method, typically Coulomb Counting is applied. The gathered data form
a dataset that is splitted in two subsets in order to create an estimation set, used
to estimate the parameters, and a validation set, used to validate the final model.
A common strategy is to split the whole dataset into 2/3 – 1/3 partitions for esti-
mation set and validation set respectively.

At this point, the model parameters can be found typically by using Least Square
method. This estimation technique can be used only if the model relationship is
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Linear Time Invariant (LTI) and under a certain condition explained later. In these
circumstances, and considering all the estimation data, the equation 3.4 can assume
the following matrix form expression:

y ∼= Φθ

y ∈ RNe ,θ ∈ Rn,Φ ∈ RNe,n,Ne º n
(3.5)

Where y is the output vector containing Ne measurements of the terminal volt-
age, Φ is the regression matrix containing the measures of SoC, current and temper-
ature and finally θ is a vector containing the n model parameters to be found. The
almost equal sign emphasizes the fact that the measures are affected by noise that
is omitted in the expression.

The model parameters then are computed by applying the psudo-inverse of the
matrix Φ to the measure vector and it can be performed only if the matrix ΦTΦ is
non singular.

θ̂LS = (ΦTΦ)−1ΦTy (3.6)

Where the matrix ALS = (ΦTΦ)−1ΦT is the pseudoinverse (Φ†) of the regression
matrix Φ. Since this method involves the calculation of the inverse of a typically big
matrix, LS in this form is used a-priori, namely, offline, because otherwise could be
a bottleneck in term of time spent in performing its calculation. This means that
the parameters estimated from data are static and they don’t update during the
battery operation when the system is working once deployed. Additionally, static
parameters don’t allow to adaptively capture any changing phenomena like battery
aging effects.

For these reasons, Recursive Least Square (RLS) can be take into account for
updating the model parameters in an online fashion. Starting from the LS expression
is possible to retrieve the following set of equations that are needed to estimate the
parameters iteratively:
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

βk−1 = 1 + φ(k)TV (k − 1)φ(k)

V (k) = V (k − 1) − β−1
k−1V (k − 1)φ(k)φ(k)TV (k − 1)

K(k) = V (k)φ(k)

Ô(k) = y(k) − φ(k)T θ̂k−1

θ̂k = θ̂k−1 + K(k)Ô(k)

(3.7)

Where V (k0) = αI; k0 is the starting discrete time instant, I is the n×n identity
matrix, α ∈ R+ is a parameter to be tuned. If α is almost equal to 1 θ̂k converges
rapidly, while if α is much smaller than 1 then θ̂k converges slowly. This technique
is quite used and as can be seen it doesn’t involve any matrix inverse during the
computation process but introduce only an additional cost in term of the number
of simple operations. Other possibilities that can be considered in the parameters
identification process, which can be found in the literature, consists in utilizing
Non Linear Least Square (NLLS), Extended Kalman Filter (EKF), Neural Network
(NN), Genetic Algorithm (GA), Fuzzy Logic (FL).

As mentioned at the beginning of this paragraph, the final SoC/SoH estimator is
built on the basis of the system model. In the literature the most common adopted
model-based estimators are Kalman Filter (KF), Extended Kalman Filter (EKF)
and Unscented Kalman Filter (UKF). In the following subparagraphs, the theory of
each filter is addressed and some example of their usage is provided by citing some
paper.

Kalman Filter

The Kalman approach, considered the optimal state linear estimator, is based on a
probabilistic framework and is associated to a discrete-time LTI system (S), which
can be described in term of state space model by means of the following system of
equations:

S :


x(k + 1) = Ax(k) + Bu(k) + w(k)

y(k) = Cx(k) + v(k)
(3.8)

• k ∈ N is a discrete time instant
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• x(k) ∈ Rn, ∼ (x̄k, Pk) is the state random vector of the system at time instant
k with mean value x̄k and covariance matrix Pk

• u(k) ∈ Rp is the exogenous input vector of the system at time instant k

• y(k) ∈ Rq is the measured output of the system at time instant k

• A ∈ Rn,n is the state system matrix

• B ∈ Rn,p is the input matrix

• C ∈ Rq,n is the output matrix

• w(k) ∈ Rn, ∼ N(0, Q) is a sample drawn from a multivariate normal distribu-
tion which has zero mean value and Q as covariance matrix; it represents the
process noise into the system

• v(k) ∈ Rq, ∼ N(0, R) is a sample drawn from a multivariate normal distribution
which has zero mean value and R as covariance matrix; it represents the noise
afflicting the measurements

• Both w and v are white noises which are correlated considered the same time
instant and uncorrelated with each other if considered at different time in-
stants: E[w(k1)v(k2)T ] = Vδ(k2 − k1)

• A ∈ Rn,n, B ∈ Rn,p, C ∈ Rq,n, Q ∈ Rn,n, R ∈ Rq,q, V ∈ Rn,q are known matrices;
x(k=1) ∼ (x̄1, P1) is an unknown random vector, uncorrelated with w and v,
with known x̄1 ∈ Rn and known P1 ∈ Rn,n, and the output measurements y(k)
are available for k = 1,2,3,...,N

Considering the available output measurements y(k) for k = 1,2,3,...,N, the op-
timal estimate of the state x(N) is obtained thanks to the following set of equations
describing the behaviour of the Kalman filter (KF):

KF :



x̂(k + 1|k) = Ax̂(k|k − 1) + Bu(k) + K(k)e(k)

ŷ(k|k − 1) = Cx̂(k|k − 1)

x̂(k|k) = x̂(k|k − 1) + K0(k)e(k)

e(k) = y(k) − y(k|k − 1)

(3.9.a)

(3.9.b)

(3.9.c)

(3.9.d)
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Where K0(k) ∈ Rn,q is the Kalman filter gain matrix obtained by:

K0(k) = P (k)CT [CP (k)CT + R]−1 (3.10)

This expression involves the state prediction error variance P(k), which is com-
puted iteratively by means of the so called Difference Riccati Equation (DRE):

P (k + 1) = AP (k)AT + Q − K(k)[CP (k)CT + R]K(k)T (3.11)

Where K(k) ∈ Rn,q is the one-step Kalman predictor gain matrix:

K(k) = [AP (k)CT + V ][CP (k)CT + R]−1 (3.12)

The below figure illustrates how the model and the filter interact to each other.

Figure 3.6: Schematic diagram illustrating how system S and Kalman Filter KF
interact to each other.
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The Kalman filter algorithm is implemented iteratively by performing the steps:

1. The Kalman filter gain matrix (K0) and the one-step Kalman predictor gain
matrix (K) are computed at time instant k thanks to equations 3.10 and 3.12
respectively

2. The innovation term e(k) is obtained by means of equations 3.9.b and 3.9.d

3. Using the state estimate at time k and the corrector element, by applying
equation 3.9.c the filtered state is retrieved

4. A one-step prediction of the state is performed using 3.9.a and the new variance
of the state prediction error P(k+1) is calculated through DRE using equation
3.11

5. Time is updated (k=k+1) and the cycle is repeated starting from step 1.

Matrices Q and R can be found according to the a priori statistic information
about the process and measurement noises, otherwise have to be found using a trial
and error approach. Kalman Filter can estimate only SoC: from the perspective
of SoH, since it is related to capacity fade or internal resistance degradation, the
state vector would contain the capacity or resistance term making the system 3.8
non-linear.

In [26] is explored the usage of the Kalman filter based on the Rint model which
was considered to represent a 6.8Ah fresh lithium-ion cell for both photovoltaic and
Hybrid Electric Vehicle (HEV) applications. Measurements were taken in a first test
by stimulating the cell for 7200s with a step current of 10% of the rated capacity,
and in a successive test using a constant current profile. They achieve a maximum
error of 5% in estimating SoC in photovoltaic scenario, good results in estimating
the terminal voltage and resistance for the HEV application. In this circumstance,
SoC was estimated using Coulomb Counting. They observed about 250s before the
estimator reached a steady estimation, and found some troubles in finding suitable
values for R and Q matrices of the Kalman Filter.
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In [27] the continuous time version of the Kalman Filter (called Kalman-Bucy
Filter) is used along with a Thevènin like ECM, to affine the SoC estimation ac-
curacy of the Coulomb Counting online technique. Pulse charging test it has been
performed offline to construct OCV-SoC map and make possible to validate the
proposed method. In order to test the CC-KF method, for the tests it was used a
40Ah-14.6V Valance U1-12XP Li-ion battery pack and the simulation was performed
using National Instruments’ LabView 2009 SP with a portable data acquisition unit
National Instruments myDAQ. Among the different tests performed, one was a pulse
charge. In this test, during charge the CC-KF SoC was computed, and in the idle
moments of 8 s OCV was measured. They were able to estimate the SoC with an
error of ±1.76% in comparison with OCV-SoC map method estimation.

Since Kalman Filter needs an accurate battery model in order to be able to prop-
erly estimate the state of the system, in [28] were analyzed at the first the possible
sources that can lead to model error and proposed a joint estimation algorithm based
on Kalman filter that can overcome to this issue. The method consists in adjoin
to the state of the system, modelled by the first order Thèvenin ECM, a constant
biased term that represents the model error. Then the resulting KF is decoupled
into two parallel parts that interact to each other. The first part is a standard KF
that estimate the state of the system as the model error doesn’t exist, while the
other part is another KF that estimate the model error. The final state estimation
is corrected by computing the corrector term which comes from having estimated
the model error. With the aim of validating the proposed method called Bias Cor-
rected KF (BCKF), three different driving cycles were chosen (UDDS, US06 and
NYCC) along with two different sources of error such us OCV-SOC data drift due
to battery aging and voltage sensor drift. The final results were compared with the
ones obtained with standard KF using RMSE as comparison criterion. In all the
tests BCKF obtains better results with respect to KF. The best one was achieved
under NYCC driving cycle by considering OCV-SOC drifting were BCKF obtain
0.61% and KF 22.04% in terms of RMSE referenced to SoC estimation error. The
proposed method provides more robustness and accuracy in estimating the SoC but
it is stated that the method is only capable to track slowly changing model error
over time.
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Extended Kalman Filter

The linear assumption taken on the system in the built framework of the Kalman
Filter, weakly holds, since in real world most of the systems have a non-linear
dynamic. For this reason, Kalman Filter is extended to embrace the possibility to
estimate the state of the system in the circumstance it is described by non-linear
relationship. In particular, the state space model is rewritten in the following way:

S :


x(k + 1) = f(x(k),u(k),k) + w(k)

y(k) = h(x(k),u(k),k) + v(k)
(3.13)

Where f and h are two well-known differentiable non-linear functions, and the
assumptions made on w and v still hold as in the KF setting.

In order to apply KF in this scenario, EKF linearizes the functions f and h by
evaluating and approximating their first order Taylor expansion around the last
state estimate, input and time instant. In this way the state-transition matrix A
and observation matrix C involved in the KF are obtained:

Â(k|k) = ∂f

∂x

-----
(x̂(k|k),u(k),k)

Ĉ(k|k) = ∂h

∂x

-----
(x̂(k|k),u(k),k)

(3.14)

The Extended Kalman Filter is then described by the following system of equa-
tions:

EKF :



x̂(k + 1|k) = f(x̂(k|k − 1),u(k),k) + K̂(k)e(k)

ŷ(k|k − 1) = h(x̂(k|k − 1),u(k),k)

x̂(k|k) = x̂(k|k − 1) + K̂0(k)e(k)

e(k) = y(k) − ŷ(k|k − 1)

(3.15.a)

(3.15.b)

(3.15.c)

(3.15.d)

Where the matrices K̂, K̂0 are computed in the following way:

K̂0(k) = P (k)Ĉ(k|k)T [Ĉ(k|k)P (k)Ĉ(k|k)T + R]−1 (3.16)

P (k + 1) = Â(k|k)P (k)Â(k|k)T + Q − K̂(k)[Ĉ(k|k)P (k)Ĉ(k|k)T + R]K̂(k)T (3.17)
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K̂(k) = [Â(k|k)P (k)Ĉ(k|k)T + V ][Ĉ(k|k)P (k)Ĉ(k|k)T + R]−1 (3.18)

The algorithm illustrated for the Kalman Filter is modified by introducing the
preliminary linearization step of the function f and h (eq. 3.14) at the beginning
and by referring to respective EKF equations (3.15.a to 3.15.d instead of 3.9.a to
3.9.d, and 3.16 to 3.18 insted of 3.10 to 3.12).

The same consideration, as in the KF case, can be done about matrices Q and
R. In this context both SoC and SoH can be estimated since the system state vector
can contain both SoC and battery capacity or internal resistance.

In [29] a model-driven approach is implemented in order to estimate the SoC
of light electric vehicles. For this purpose was chosen a battery pack produced by
AllCell Technologies made by 40 LG ICR18650MG1 cells, with 2.6 Ah nominal ca-
pacity, arranged in a series of 10 modules containing a parallel of 4 cells. The battery
pack model is represented by an average cell model through a second order Thèvenin
model ECM. Different tests were performed in order to construct the OCV-SoC map
and to characterize the model by finding the respective parameters. It is stated that
the temperature dependence of the model parameters was not considered and the
experiments were conducted at environment temperature. The charge transfer and
diffusion parameters of the RC networks were provided by the manufacturer, while
two different approaches, such as EKF and LS, were adopted and compared with
the aim of identifying the average cell internal resistance. First battery discharge
test was established on the fresh battery pack in order to acquire the measures of
terminal tension corresponding to the respective current profile. Using EKF it was
possible to identifying along with internal resistance also the nominal capacity, prov-
ing the reliability of the data provided by the manufacturer. From the estimated
internal resistance signal was possible to notice the remarkable dependence from the
SoC. This relationship with SoC was emphasized in the least square approach were,
starting from the data it was possible to reconstruct the explicit dependency of the
internal resistance from SoC achieving better results with respect to EKF. Once the
parameters were found, both EKF and Adaptive EKF (AEKF) were implemented
and compared on the SoC estimation task. The difference between the two algo-
rithms lies in the staticity of the covariance matrices of the noises present in the state
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space model. In the AEKF the Q matrix is adaptively updated in order to follow the
estimation error while in EKF is defined offline in function of the matrix R. In both
cases matrix R was found by performing a statistical analysis on the measurement
error. The updating formula in the AEKF was found by means Maximum Likeli-
hood estimation approach. This work concludes that EKF was able to contain the
SoC estimation error into 5% while AEKF allow to reduce the boundary down to 1%.

In [30] the battery cell LG HG2 3.6V, 3.0 Ah was modelled using the second or-
der Thèvenin ECM. Model parameters were identified through pulse discharge test
and, by means of polynomial curve fitting, an explicit dependency on the SoC, for
each parameter, was established. At this point, in order to validate EKF in esti-
mating SoC, different simulations were performed. The first test performed was the
constant current discharge test with 0.5C, 1C, 2C discharge rates. The true values,
provided by Coulomb Counting technique, were compared with the estimated ones
by EKF and the final estimation error was less than 3%. It is stated that other
tests were conducted using Urban Dynamometer Driving Schedule (UDDC) Cycle
but the performance achieved are not mentioned.

In [31] EKF was implemented along with a parameter-dependent first order
Thèvenin ECM. In particular, the dependency of the RC network parameters on
SoC and temperature was explicated and taken into account in the whole estimation
process. A new time-varying variable, related to the RC parameters, was introduced
in the state-space model by applying the gain scheduling technique. The relationship
of these parameters, with respect to SoC and temperature, was established offline
by applying curve fitting using LS on the basis of AC impedence measurements per-
formed in the circumstance of 0.5 C discharge tests with a range temperature from
0°C to 45°C. Then, an OCV-SoC map was obtained by fitting Plett expression with
LS, for each of the different discharge/charge tests performed at 0.02C. The OCV-
SoC map was then averaged over all the experiments. Finally, EKF was applied on
static-model and on the proposed parameter-dependent model. The two different
estimations were subsequentially compared with the ground true SoC obtained by
Coulomb Counting. It was observed that EKF enhanced its accuracy in correspon-
dence of parameter-dependent model and its estimation error remained under 2%
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for the entire validation time interval; while the estimation error of the EKF with
static-parameter model started to diverge from a certain instant of time.

In [32] was employed an EKF on a temperature-dependent battery model includ-
ing hysteresis effects. First, they retained to adopt a generalized Thèvenin ECM
with an arbitrary numbers of parallel RC network since it exposes a good tradeoff
between complexity and accuracy in estimating the terminal voltage. In order to
find the proper number of RC networks, they set up a discharge pulse test made
by 3 minutes of 6.5 A discharge current followed by 30 minutes of rest period, at
the temperature of 20°C. By observing the terminal voltage data, in correspondence
of the SoC range 55%-50%, it was possible to recognize and isolate, in the curve
characteristic, the effects of the internal battery resistance (linear voltage drop)
and the ones due to the RC network (transient response). At this point two curve
models, representing respectively the first and second order RC networks with the
additive internal resistance, were used to fit the transient response of the termi-
nal voltage, and by means of RMSE criterion they showed that the second order
Thèvenin model achieved the highest accuracy in describing the terminal voltage.
At this point the temperature-dependent model was established. The parameters
were found by means of non-linear least square (NLLS) by minimizing the difference
between the estimated terminal voltage and the true one obtained by discharge pulse
test at 20 °C temperature. Afterward, discharge/charge pulse tests were conducted
at different temperature (-20°C, -10°C, 0°C, 20°C, 25°C, 20°C, 60°C) in order to
construct OCV-SoC curve. Both the tests presented 20 cycles of 1 hour rest period
followed by a discharge/charge at C/10 rates which ended when the cell reached
2.7 V for discharge test and 4.2V for charge test. A gap between the OCV curves,
obtained in correspondence of the same discharge/charge current and temperature,
was observed and for this reason the acquired OCV data were averaged over dis-
charge/charge tests in order to take into account the hysteresis effect. Then, the
resulting data were fitted using 6-th degree polynomial for the considered differ-
ent temperatures. For optimization purpose and, in order to give a continuous
range of temperatures, the polynomials were substituted by a single linear inter-
polation that took, as reference offset, the OCV-SoC-20 °C polynomial. At this
point, the proposed temperature-dependent model was enhanced by introducing the
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one-state hysteresis effect. In contrast to traditional hysteresis models, which use
a constant maximum hysteresis voltage, they proposed to adaptively change this
value according to the SoC value and temperature. The hysteresis parameters were
again identified using NLLS algorithm. The overall model (proposed model) was
than validated against the method using only 2 RC networks (2 RC model) and the
temperature-dependent model without hysteresis (conventional model). The vali-
dation was performed through UDDS cycle on the temperature range -20°-60°C,
using an NMC-oxide li-ion battery with 6.5Ah nominal capacity and 3.7 nominal
voltage. The current profile was determined on the basis of another article which
consider a vehicle roughly twice the size of the Honda Insight. The best validation
on the models in predicting the terminal voltage shown how the performance in-
creases when passing from “only 2 RC model” to the “proposed model”. Finally, the
three different models were coupled with EKF and were compared. Again, the best
results were achieved over all the temperature range by the proposed models which
was able to estimate SoC value with an error under 1%.
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Unscented Kalman Filter

The Extended Kalman Filter has become a de facto standard method in many
engineering applications thanks to its versatile in estimating the state, as well as
identifying the parameters, of a non-linear dynamic system. The main characteris-
tics of this estimator consist in approximating the state distribution with a gaussian
random variable which is analytically propagated through the linearized version of
the non-linear dynamic system. This aspect, along with the first order Taylor ex-
pansion used to linearize the system, can be quite good in certain cases but in others
can penalize the accuracy of the computation of the posterior mean and covariance
of the transformed state GRV, bringing to a sub-optimal solution and, sometimes, to
the divergence of the filter. The Unscented Kalman Filter (UKF) take into account
these issues and propose a better solution even if the computational complexity
remains the same as well as in the EKF algorithm. The UKF assumes again a
gaussian distribution for the system state, but represents it by collecting a finite
number of special samples that are able to capture the real mean and covariance,
and when propagated through the non-linear function of the system can capture the
posterior mean and covariance as the EKF might do when utilizing a third order
Taylor Expansion. This remarkable ability is valid for any non-linear function and
is provided by the so called unscented transformation (UT):

Let consider a L dimensional random vector (r.v.) x and apply it to a generic
non-linear function g.

y = g(x)

x ∼ (x̄,Px)
(3.19)
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In order to compute the mean and covariance of the r.v. y, a matrix X containing
2L+1 sigma vectors and the relative Wi coefficient are computed in the following
way:

X0 = x̄

Xi = x̄ + i

ñ
(L + λ)Px, i = 1,...,L

Xi = x̄ − i

ñ
(L + λ)Px, i = L + 1,...,2L

W
(m)
0 = λ

L + λ

W
(c)
0 = λ

L + λ
+ (1 − α2 + β)

W
(m)
i = W

(c)
i = 1

2(L + λ) , i = 1,...,2L

(3.20)

Where λ = α2(L + κ) − L is a scaling parameter that is tunable by properly
adjusting the values for the parameters α and κ, which allow to control the spread
of the sigma points around x̄. The parameter β considers the prior knowledge of the
distribution of x. A typical setting of this parameters is α = 1e − 3 (small value),
κ = 0, and β = 2 is considered optimal for gaussian distributions.

Once the sigma vectors are computed, they are propagated through the non-
linear function g:

Yi = g(Xi), i = 0,...,2L (3.21)

Finally, the statistics in term of mean and covariance of the output vector Y are
given by:

ȳ =
2LØ
i=0

W
(m)
i Yi

Py P
2LØ
i=0

W
(c)
i (Yi − ȳ)(Yi − ȳ)T

(3.22)

In [33], considered with the aim of acquiring inspiration for the theoretical study
of this argument, the UKF is well explained and its performances are compared
against Monte Carlo method, and EKF on different time-series data.
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Figure 3.7: Example of the UT for mean and covariance propagation. a) actual, b)
first-order linearization (EKF), c) UT. [33, Figure 1]

The UKF relies on the following discrete-time non-linear dynamic system:

S :


x(k + 1) = f(x(k),u(k),k) + w(k)

y(k) = h(x(k),u(k),k) + v(k)
(3.23)

In this case, in contrast with EKF, the restriction on the additivity of the noises
w and v is dropped and the general case, where they are input of the respective
known non-linear functions f and h, is considered.
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The algorithm can be summarized in the following steps:

Inizialization:

x̂0 = x̄0 = E[x0]

P0 = E[(x0 − x̄0)(x0 − x̄0)T ]

x̂α0 = x̄α0 = E[xα] =
è
x̄T0 0 0

éT

Pα
0 = E[(xα0 − x̄α0 )(xα0 − x̄α0 )T ] =


P0 0 0
0 Pw 0
0 0 Pv



(3.24)

for k ∈ [1, +∞)],
Calculate sigma points:

X α
k−1 =

è
X̂ α
k−1 X̂ α

k−1 ±
ñ

(L + λ)Pα
k−1

é
(3.25)

Time update:

X x
k|k−1 = f(X x

k−1,u(k),Xw
k−1)

x̂−
k =

2LØ
i=0

W
(m)
i X x

i,k|k−1

P −
k =

2LØ
i=0

W
(c)
i [X x

i,k|k−1 − x̂−
k ][X x

i,k|k−1 − x̂−
k ]T

Yk|k−1 = h(X x
k|k−1,u(k),X v

k−1)

ŷ−
k =

2LØ
i=0

W
(m)
i Yi,k|k−1

(3.26)
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Measurement update:

Pỹkỹk =
2LØ
i=0

W
(c)
i [Yi,k|k−1 − ŷ−

k ][Yi,k|k−1 − ŷ−
k ]T

Pxkyk =
2LØ
i=0

W
(c)
i [Xi,k|k−1 − x̂−

k ][Yi,k|k−1 − ŷ−
k ]T

K = PỹkỹkP
−1
xkyk

x̂k = x̂−
k + K(yk − ŷ−

k )

Pk = P −
k − KPỹkỹkK

T

(3.27)

Where xa = [xTwTvT ]T is the augmented state vector, X a = [(X x)T (Xw)T (X v)T )]T ,
λ is the scaling parameter, L = card(xa), Pw is the covariance matrix of the process
noise w, Pv is the covariance matrix of the measurement noise w, and the coefficients
Wi are computed according to 3.20.

Similarly to the EKF case, UKF allow to estimate both SoC and SoH.

In [34] they chose an overall SoC estimation algorithm composed of a first or-
der Thèvenin ECM, whose parameters were identified online through the RLS with
forgetting factor (RLSFF), and the UKF. The test data were provided directly by
the BMS installed on o a real EV in correspondence of five LiFePO4 battery packs.
The nominal voltage and capacity of each battery were 96V and 72Ah respectively
and every packs contained a series of 30 China Aviation Lithium Battery (CALB)
of 3.2 V and 72 Ah. The BMS acquired voltage, current and temperature measures
and computed the SoC every 5 s. In order to set up the RLSFF algorithm they first
translate the state-space model of the battery into an AutoRegressive eXogenous
(ARX) representation by applying Z transform to the system and find the transfer
function as a polynomials ratio expression. The model parameters were incapsu-
lated into the coefficient of the polynomials. In this context, they approximated the
OCV-SoC curve, provided by the manufacturer, with a linear curve. Afterward the
RLSFF algorithm was setup and applied on gathered tested data for each battery
pack in order to validate it. From this experience they noticed the highly tendency
of the parameters to change with environmental and operative conditions. Finally
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by applying UKF along with RLSFF they were able to estimate the SoC with an
average error of 0.52%. The maximum mean error was 1.23%. They stated that the
results could be better if high quality current sensors were adopted since the BMS
computed SoC with accuracy of 5%.

In [35] it was proposed a theoretical double estimation structure which is able
to both estimate SoC and internal battery cell temperature, but only the portion
which estimate the SoC was studied. For the first piece of the estimator a first order
Thèvenin ECM was adopted, whose parameters depended on SoC, temperature and
sign of the current. Data for both parameters identification and validation were pro-
vided by NASA Prognostic Data Repository and referred to an 18650 cylindrical cell
with nominal capacity of 2.2 Ah and voltage range 4.2V-3.2V. Since the provided
data referred to a small thermal escursion, the dependency of the model parameters
from temperature was considered negligible. They found the OCV-SoC map using a
third order polynomial fitting curve, on the basis of constant discharge current pro-
file data. Then parameters were identified by applying RLS on the AutoRegressive
Moving Average (ARMA) equivalent of the cell model, for both discharge and charge
current pulse data. Finally, random uniformly distributed C-rates discharge/charge
current pulse were used to validate the performance of different SoC estimation al-
gorithm, such us EKF, UKF and Particle Filter (PF). The results showed that both
UKF and PF achieved an error percentage below 1%, but UKF was considered the
best one since it exposes less complexity than PF algorithm.

51



3 – Available approaches

3.3 Data-driven approaches

3.3.1 Open Circuit Voltage map

The simplest method, but also the most accurate one, that can be thought is to con-
struct a one-by-one map (Lookup table) between the Open Circuit Voltage (OCV)
and the SoC and or the SoH. Then, by inverting the relationship in correspondence
of a specific OCV value, the desired battery state parameter is obtained. The below
figure gives an idea of this curve from the perspective of the SoC.

Figure 3.8: An example of OCV-SoC graph obtained by representing tabular data
retrieved from the Samsung 94Ah prismatic cell datasheet.

As can be seen from the figure 3.8, the existing relationship that exists between
OCV and SoC is highly non-linear and depends dramatically from many factors
such as temperature, cell aging status (SoH), and current flow direction (charge/dis-
charge), and for this reason the curve, actually, can be thought as a multidimensional
surface. Depending on the cell manufacturer, the information regarding the OCV
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curve can be given in different forms (tabular or graphs) and can be partial (ne-
glecting some dimension like SoH, temperature, or current sign dependency) since
the construction of the curve is very time expensive and require high quality hard-
ware to be performed. A typical test adopted to retrieve OCV data points is the
PDT (paragraph 3.1). In the context of PDT, by referring to a single cell with a
specifing aging status at a given ambient temperature, without lost of generality, the
acquisition of a data point happens by reading the terminal voltage once a rest time
has passed. This relaxing time is compulsory because it is necessary to wait until
electrochemical equilibrium, inside the cell, is reached. In fact, when no current
transfer is acting into the cell, after a transient time the measured terminal voltage
coincides with the Open Circuit Voltage. Typically, the waiting time needed to get
into this situation can be very long (many minutes or hours) and for this reason,
OCV measures consist in few points. Often, data refer to a fresh battery (100%
SoH) an ambient temperature (25 °C), low C-rate discharge current (charge and
discharge behaviour is assumed to be equal) and are taken for every 5 or 10% of
SoC. The final curve is constructed by means of a curve fitting process which con-
sists in polynomial regression. In the case of SoC the OCV-SoC map can be also
given by the following expression:

VOC = K0 + K1SOC + K2

SOC
+ K3 ln (SOC) + K4ln(1 − SOC) (3.28)

Where the parameter K0,K1,K2,K3,K4 has to be identified on the basis of the
acquired data points. Since is expensive to acquire a lot of data in all the operative
scenario the accuracy of this method can be penalized. For this reason, OCV method
is used as offline method and typically as a complementary or corrective technique
[23].
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3.3.2 Black-Box

Lithium-ion battery is a highly complex nonlinear time varying electrochemical sys-
tem [36] and for this reason is difficult to find a simple model that describe its
behaviour in all the operating contexts. Black-Box methods allow to find a model
reguardless any physical or chemical principle by simply find a relationship that is
able to associate a given input to a given output. In this way is possible to enstablish
a direct relationship that relates the input measurements (current, temperature and
voltage) to the target signals of interest (SoC and or SoH).

The most common black-box methods employed in the literature are based on
machine learning techniques, in particular on Artificial Neural Networks (ANNs).
The final estimator is obtained as output of the learning process that is performed
on the basis of a given set of data:

Figure 3.9: Basic conceptual schema of ANN estimator development. Blue SoC and
SoH are ground truth quantities.

The learning process is performed in a supervised way, namely by providing along
with input signal samples also the target signals that have to be estimated. By per-
forming experimental tests (paragraph 3.1), the input signals (current, temperature,
terminal voltage) can be acquired and then, using an offline method like Coulomb
Counter (paragraph 3.2.1), ground truth SoC and SoH can be enstablished. For-
mally, the dataset can be seen as a collection of pair samples composed by the input
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feature vector x and the ground-truth y.

D = {xi,yi}i, i = 1,2,...,#D (3.29)

Typically, a pre-processing phase on the dataset is needed in order to prepare the
data before applying any machine learning algorithm. Common procedures in data
pre-processing consist in applying data transformations and data normalization.

The training process is never applied on the whole dataset, but on an its subset.
Since the estimator, once delivered, has to work with data that has never seen during
the learning phase, the training process must take into account this aspect. This
problem is solved by partitioning the dataset into a training set Dt and a test set
DT . The training set is used to learn the model while the test set is used to evaluate
the model.
In general, if the dataset is sufficient big a “Holdout” partition criterion is applied:
the training set is typically composed of 2/3 of the whole data while the remaining
1/3 data form the test set, but other choices can be done as well by considering
the sets ratio 70%-30%. The process of building the partitions consists of randomly
sampling, with or without replacing, the starting dataset. Holdout can be applied
iteratively on the training data in order to create new sets of training DtÍ and
validation set Dv. In this case the validation set is used to evaluate the model and
for tuning purpose in the training process, while test set is used to evaluate the final
performance of the final model, emulating unseen real-world data.
If the dataset has medium size, a “k-fold Cross Validation” technique can be applied:
the dataset is sampled and partitioned in k sets, called folds, where k-1 are used as
training set while the remaining 1 is used as validation set. The training process
is repeated k times in a way that, at the end, the role of validation set can be
attributed at all the k partitions. The resulting performance is then the average of
the performances obtained using the different k validation subsets.
In the context of the evaluation of the model, it is required to avoid overfitting by
monitoring the behaviour of the generalization error, namely the difference between
the training estimation error and the validation estimation error, that has to not
increase over time. In fact, a scenario where the training estimation error is low
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while the validation error is high is suggesting that the model is overfitting the
training data, loosing the possibility to perform well on the unseen data provided
through the test set.

The most relevant ANN that can be found in the literature are Feed Forward
Neural Network (FFNN) and Long Short Term Memory Recurrent Neural Network
(LSTM-RNN). The details reguarding each particular NN is discussed in the next
subparagraphs, and some example of their usage is provided for the SoC estimation
problem through the testimoniance of research papers.

Feed Forward Neural Network

ANNs get inspiration from the biology world by emulating the human brain ability
to learn information patterns by means of mathematical models which mimic the
neurons behaviour. The Feed Forward Neural Network (FFNN) is a kind of ANN
and its architecture is depicted in the following figure:

Figure 3.10: General FFNN architecture.

The structure of the network is made by an input layer, a certain number L of
hidden layers and finally by an output layer. Each layer is composed by a certain
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number of neurons that, excepting for the output layer, are linked to the neurons
of the successive layer in a fully connected fashion. The information provided by
the input layer flows through the entire network until it reaches the output layer,
and for this reason the network is called feed forward. Each neuron of the network,
excluding the ones of the input layer present the following inner structure:

Figure 3.11: Neuron inner structure.

A generic neuron computes the weighted sum of its inputs, then adds a bias
term, pass the intermediate result to a non-linear function called activation func-
tion and finally gives the resulting value as output. The activation function is
quite-important and its choice is part of the design process of the network. Typical
functions considered are logistic function, hyperbolic tangent, Rectified Linear Unit
(ReLU), trigonometric functions and Radial Basis Function (RBF). The other pa-
rameters such us the weighs and biases terms are self-learned during the learning
process. Finally, a loss function, which embeds the task that the network is sup-
posed to do, have to be defined. The most-simple typical choice is to assume as loss
function the Mean Square Error (MSE) between the ground-truth and the estimated
output.

L = 1
N

NØ
i=1

(yi − ŷi)2 (3.30)

The entire learning process so can be seen as an optimization problem. The
loss function acts like an objective function that has to be minimized by finding
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the proper set of network parameters with respect to the considered training data.
The update of the network parameters happens thanks to the backpropagation of
the error by means an optimization algorithm that are based on gradient descent.
Typically, the sampled data are forwarded into the network in batch which size is
another parameter to be chosen. It is common to distinguish between network pa-
rameters and hyperparameters: the first ones are characteristic of the model that
the network learn and are found automatically thanks to an optimization algorithm,
while hyperparameters are all the remaining parameters to be chosen for the network
design (typically using trial-and-error approach or other strategies like grid search
or Back Searching Algorithm (BSA)).

The learning process is composite of many steps called epochs ε and all of them
consist on a pair of simple operation:

1. Forward the (batch) training data through the network and compute the esti-
mation error through loss function

2. Update the network parameters by performing backpropagation using the op-
timization algorithm chosen

An epoch ends when all the training data are elaborated by the network according
to the aforementioned steps. The overall learning process can be then summarized
by performing the following steps:

1. Define the loss function, choice the activation function for each neuron and
the optimization algorithm

2. Choice the set of hyperparameters: Define the number of hidden layer L and
the quantity of neurons Hl in each layer l, number of epochs ε , batch-size B,
and the optimization algorithm parameters (e.g learning rate)

3. Initialize all the internal parameters of the network to a rand value

4. Forward batch data through the network until the estimation is computed

5. Compute the loss and use backpropagation in order to update the network
parameters
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6. Continue from step 4. Until all the training data are propagated into the
network otherwise continue from step 7

7. Advance in epoch repeating the process from step 4 until a threshold in terms
of accuracy is met or if the epoch reaches a maximum value

8. Validate the final model by forwarding the validation data through the network
and compute the estimation error

At the end of the process, if the result is not acceptable, is it possible to repeat
the previous step by changing hyperparameters according to some strategy.

In [23] a FFNN with 1-hidden layer and ReLu as activation function was adopted
as estimation algorithm. The dataset was built by performing a test procedure that
combines capacity check, charge/discharge current pulse injection and accelerat-
ing aging on a NMC battery cell. The acquired data consisted in measurements
of current and voltage as well as the ground-truth SoC. The model was trained
for 10000 epochs using 100 and 10000 neurons inside the hidden layer. In both the
circumstances the model achieved, once validated, a SoC estimation error below 2%.

Another example is provided by [37] where they adopted a deep FFNN archi-
tecture on a public domain dataset provided by University of Winsconsin-Madison.
The provided dataset contains nine drive cycles and among them a “NN drive cycle”
was designed for neural network training purpose. The provided cycle power pro-
file was calculated for an electric Ford F150 truck with a 35kWh battery pack that
was scaled for a single 2.9 Ah Panasonic 18650PF li-ion battery cell. Among the
available data, current, voltage, temperature and ground-truth SoC, were selected
to build the dataset which contained, at the end, 116982 samples that were divided
respectively in training, validation and test sets. They tested different architectures
but the one that obtained the best result was characterized by 2 hidden layer with
ReLU activation function, 256 hidden neurons and batch-size 128. They stated that
the network was able to achieve a MAE of approximately 1.60% in SoC estimation.
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Long Short Term Memory Recurrent Neural Network

Another remarkable architecture that can be found in the literature is provided by
RNN. The main characteristic of RNN, in contrast with FFNN, is that it embeds
in its architecture a concept of short-term memory that allows to consider, in the
learning process, along with the inputs at a given time instant, also their history
thanks to the presents of an hidden inner state which acts like a memory. This is a
powerful concept but it introduces more complexity and it might bring to instability
in the learning process by causing gradient vanishing or exploding phenomena, if
not addressed properly. In its basic flavour, the RNN has one hidden layer with one
hidden state which along with the input vector contributes to compute an output. At
every time step, when a new input arrives, the inner state is updated by considering
the current input vector and the inner state at previous time step, and then the
output is computed. The structure of RNN can be figure out in the next picture,
where on the left side a compact version of the RNN is presented, while on the right
part the network is unfolded over time in a manner that the dependence with time
is more clear.

Figure 3.12: Compact version of a one hidden layer RNN structure on the left; time
unrolled version of the same network on the right.

If the purpose of the task is to learn short time dependency in a sequence data,
RNN is an optimal choice, but as mentioned before when sequences become longer,
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the network manifests some trouble in the backpropagation step that bring to van-
ishing or exploding gradient problem. Moreover, train on long sequences a RNN
is also an expensive task because require to unroll the network for a length corre-
spondent to the length of the sequence introducing many intermediate layers. Last
but not least, RNN tend to consider more important information saw recently “for-
getting” the ones processed in the very past. To solve these issues the so called
Long Short-Term Memory (LSTM) were introduced. LSTM-RNN, or simply LSTM
networks are the very same as RNN but the inner layer, called cell, has a different
structure. A new inner state variable is introduced which act as a very memory
cell and thanks to the present of inner gates it is given to the network the ability
to decide when remember an information as well as when forget it and finally how
much of the memorized information to use. All these behaviours happens at every
time step and are encoded through the following system of equation:



ft = σ(Wf [ht−1,xt] + bf )

it = σ(Wi[ht−1,xt] + bi)

ot = σ(Wo[ht−1,xt] + bo)

C̃t = tanh(Wc[ht−1,xt] + bc)

Ct = ft ¤ Ct−1 + it ¤ C̃t

ht = ot ¤ tanh(Ct)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

Equations from 3.31 to 3.33 represent respectively the forgot, input and output
gate which are computed through a sigmoid function that operates on a vector
obtained by the concatenation of the past inner state and current input. In the
equation 3.34 a candidate inner cell state is computed. In equation 3.35 the inner
cell state is computed according to the respective gates: depending on the value the
forgot gate takes (0 or 1) it decides if the past inner state has to be maintained or
forgotten (the ¤ symbol indicates an element-wise multiplication), while the input
gate decides if the candidate inner cell state has to be promoted to participate in the
building process of the inner cell state. Finally, through equation 3.36, the output
gate decides how much of the inner cell state has to be exposed in the inner state.
A graphical representation of the behaviour cell of a LSTM network is presented in
the below figure.
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Figure 3.13: LSTM cell inner structure.

This architecture gives the ability to the network to learn long time dependen-
cies, thanks to the presents of a new inner cell state and the presence of the gates,
solving the short-term memory issue of the classic RNNs. Moreover, the presence of
the simple path associated with the inner cell state (the straight line that links the
previous inner cell state with the current one), makes possible at the same time to
simplify the backpropagation step and to dramatically reduce the chance of having
problem with vanishing or exploding gradient.
There exist many different representations of the LSTM cell that re-arrange the in-
ner gates in a different configuration but the result remains the same. A particular
reformulation, which is commonly used, is called Gated Recurrent Unit (GRU) and
it uses only two gates called reset and update with the purpose of summarizing the
operations that input, forget and output gates do in the classical LSTM cell.

In [38] they examined the SoC estimation performances obtained by using 1 hid-
den layer RNN and LSTM-RNN. The dataset was built by collecting measurements
of current, temperature, voltage and ground-truth SoC with a sampling frequency
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of 10Hz in the context of common discharge tests drive cycles (US06, HWFET,
UDDS, LA92), with different ambient temperatures (0°C, 10°C and 25°C) on a 2.9
Ah LNMC/Graphite 18650 lithium-ion battery cell. The test set was obtained by
selecting randomized portion of the data obtained in the previous mentioned driving
cycles tests. The results proved that the LSTM-RNN was able to outperform the
RNN by achieving an average MAE and MAX estimation percentage error over the
three different temperatures, of 0.97% and 8.7%, in contrast with the RNN that ob-
tained an average MAE and MAX estimation percentage error of 3.15% and 12.92%.

Also in [39] the usage of LSTM-RNN was investigated. The dataset was con-
structed by collecting data through ten unique drive cycles tests which were the
results of a random mix of HWET, UDDS, LA92 and US06 drive cycles at ambient
temperatures of 0°C, 10°C and 25°C. Regenerative braking was considered in the
tests at temperatures above 10°C. Eight out of ten cycles were used as training data
while the remaining portion as validation set. Other two tests cases were considered
for model evaluation purpose that consisted in a 1 C rate charging scenario at 25°C
and in an increasing temperature stress test were temperature raised from 10°C to
25°C. According to the study, the drive cycle power profiles, which were referred to
an electric Ford F150 truck with a 35 kWh battery pack, were scaled to a single 2.9
Ah Panasonic 18650 NCA cell. Different performed training experiments, showed
that by increasing the network time depth (increasing the historically dependency
in input data) the model accuracy increased and the minimal number of driving
cycles in the training set from which start to get a MAE accuracy below 1% was
3. When the network was trained using 500 time depth on the eight training cycle
set at 10°C it was able to achieve in the remaining validation sets a MAE of 0.8%
and 1.2% respectively, while in the charging test case it obtained a MAE of 0.68%.
Afterward the network was firstly trained by considering the nine training partitions
at different temperatures, using a time depth equals to 1000, and then when evalu-
ated on the remaining dataset portion it achieved a MAE of 2.08%, 0.78%, 0.77%
in correspondence of the temperatures 0°C, 10°C and 25°C. Finally the same model
was evaluate on the varying temperature case and it reached 1.6% MAE.
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3.4 Summary

In the previous paragraphs the most relevant SoC and SoH estimation approaches
are analyzed and different research articles are considered as testimonial example of
their usage.

From the utilization perspective, depending on which context is convenient to
adopt a specific method, these estimation approaches can be grouped into offline
and online categories. Offline techniques are useful to acquire data in a laboratory
environment during battery tests, where high quality sensor can be used and a
better control on the battery operations can be guaranteed. Moreover, they allow
to support other methods by providing ground truth data. Offline approaches are
Coulomb Counter (paragraph 3.2.1) and OCV map (paragraph 3.3.1). In contrast,
online methods take support from offline methods in the development step, but can
be implemented on a BMS of a EV vehicle. Online methods are KF, EKF and
UKF from the first principle approaches family (paragraph 3.2.2), FFNN, RNN and
LSTM-RNN from the data-driven family (paragraph 3.3.2).

In the literature is hard to find a clean implementation of these methods and
typically they are modified in order to enhance the estimation performance.

Remarkable is the accuracy in estimating SoC and SoH achieved by machine
learning techniques, that, developed starting from time series obtained from driving
cycle data, are able to overwhelm classical methods (i.e. filters approaches) which,
in contrast, are developed starting from battery datasheets and require additional
battery tests.
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Application scenario

In the first two chapters, an overview on the main topics reguaring the SoC and
the SoH are analyzed using a top-down approach and the most relevant estimation
techniques that exist in the literature are described.

At this point, the objective of this thesis work is presented: The goal consists
in developing and comparing two estimation schemes to estimate SoC and SoH
considering a system simulator. The chosen estimation techniques are taken rispec-
tivelly from the first principles approaches family (classical approach) through an
enhanced version of the Extended Kalman Filter (EKF), and the data-driven family
(machine learning approach) by using a Non-linear AutoRegressive with eXogenous
input Neural Network (NARX-NN).

The target simulated system (described in the next paragraph) emulates an
electric vehicle that undergoes to test bench dynanometric driving cycles according
to WLTP standard at a given ambient temperature. The considered vehicle is a Fiat
Panda and the target battery pack consists in a 28S1P Samsung SDI 94Ah. Among
all the available information that the simulator can provides, only battery voltage,
current and temperature are significative for the estimation techniques: they are
used to feed the estimators in order to estimate the SoC and the SoH of the battery
pack.
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Figure 4.1: Conceptual schema of the estimator.

Before to develope the estimators is necessary to prepare the simulator to be
able to work properly in different battery pack aged scenarios. All the details are
discussed in paragraph 4.1 and 4.2. After the end of the simulator setup, the work
is presented firstly from the perspective of the EKF (chapter 5) and then the NN is
taken into consideration (chapter 6). In the conclusion chapter, the two estimation
approaches are compared and conclusive considerations are presented.
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4.1 Dynamic simulator

The dynamic simulator emulates the behaviour of a vehicle that execute a given
dynanometric cycle test at a specific ambient temperature and road profile. The
principles elements that are included consist in a vehicle dynamic model with a
single degree of freedom, a motor model, a battery model and a thermal model of
the battery and the motor. Among the possible outputs, the simulator allows to
provide the signals of interest such us battery voltage, current, temperature and
ground truth SoC. The Simulink schema that implements the dynamic simulator
has been given and its validity has been proved outside of this thesis work. Its
implementation is provided in appendix (A) at figure A.1.

One important element present in the schema is the battery model, called "datasheet
battery model". As the name suggests, it is based on data that are provided through
the cell datasheets. According to its documentation [40] the needed parameters are:

• Rated capacity at nominal temperature

• Open circuit voltage table data at given SoC breakpoints

• Internal resistance table data with battery temperature and SoC breakpoints

• Topology of the battery pack (number of cell in series and in parallel)

• Initial battery capacity

Unfortunately, the datasheet model doesn’t support aging mechanisms and so
the only way to emulate aged behaviour is to provide the needed parameters at
different aged states of the battery. These information are only partially present
since most of the data provided by the manufacturer refer to fresh cell. For this
reason, another battery model that includes aging mechanisms is considered with
the purpose of providing, at different SoH states, the required parameters for the
datasheet battery model. In the next paragraph the battery model is described
along with the tests performed with the aim of estimate the required parameters.
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4.2 Battery Model

The battery pack to be modeled is composed by a single battery module with 28
prismatic Samsung SDI 94Ah cells combined in a series fashion. The main charac-
teristics of the cells are reported below:

Figure 4.2: Overview on the main characteristics of the Samsung SDI 94Ah cell.

The battery model is based on a Simulink Specialized Power Systems element
block called "Generic Battery Model" (GBM) which implements a generic dynamic
model that represents, amgong the most popular types of rechargeable batteries,
also lithium-ion batteries. According to the GBM documentation, the model shows
a maximum error of 5% during experimental validation: when SOC is between
10% and 100%, for the charge when current is between 0 and 2 C and for the
discharge when the current is between 0 and 5 C. The model is based on a RINT

ECM (paragraph 3.2.2) and can model temperature and aging effects. It accepts
as input a current stimuli and gives as output terminal voltage, SoC, maximum
battery capacity, the age of the battery (Equivalent full cycle) and the internal
battery temperature.
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Figure 4.3: Electric model implemented inside the GBM. [41]

The main assumptions of the model declared in the documentation [41] are the
following:

• The internal resistance is assumed to be constant during the charge and dis-
charge cycles and does not vary with the amplitude of the current.

• The parameters of the model are derived from the discharge characteristics.
The discharging and charging characteristics are assumed to be the same.

• The capacity of the battery does not change with the amplitude of the current
(there is no Peukert effect).

• The self-discharge of the battery is not represented. It can be represented by
adding a large resistance in parallel with the battery terminals.

• The battery has no memory effect.

The adopted equations that describe the particular working mechanisms of the bat-
tery model are reported into its documentation [41].
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The parameters needed to the GBM can be taken from the cell datasheets,
through tabular data and discharge curve graphs at different temperature. The
information then can be adapted in order to represent a given battery pack with a
given cell topology.

In the following table, all the parameters needed to the GBM to model the
considered battery pack are reported:

TAB PARAMETERS CELL PACK
28S1P UNITY

Parameters

Nominal Voltage 3.68 103.04 V
Rated capacity 94 94 Ah
Initial SoC 100 100 %
Battery response time 855 855 s

Discharge

Maximum capacity 94 94 Ah
Cut-off voltage 2.7 75.6 V
Fully charged voltage 4.15 116.2 V
Nominal discharge current 31.33 31.33 A
Internal resistance 0.00073 0.02044 Ω
Capacity at nominal voltage 85.0087 85.0087 Ah
Exponential zone [V, Q] [3.69, 38.96] [103.25, 39] [V, Ah]

Temperature

Initial cell temperature 25 25 ◦C
Nominal ambient temperature T1 25 25 ◦C
Second ambient temperature T2 -25 -25 ◦C
Maximum capacity 76.26 76.26 Ah
Initial discharge voltage 4.14 115.92 V
Voltage @ 90% max. capacity 3.68 103.04 V
Exponential zone [V, Q] [3.97, 4.62] [111.32, 4.62] [V, Ah]
Thermal resistance, cell-to-amb. 0.06 0.06 ◦C/W
Thermal time const., cell-to-amb. 1000 1000 s
Heat loss difference [charge vs discharge] 0 0 W

Aging

Initial battery age (Equivalent full cycle) 0 0 cycle
Aging model sampling time 1.8e4 1.8e4 s
Ambient temperature Ta1 25 25 ◦C
Capacity @ EOL 75.2 75.2 Ah
Internal resistance @ EOL 0.00146 0.04088 Ω
Charge current [Ic, Icmax] [47, 270] [47, 270] [A, A]
Discharge current [Id, Idmax] [94, 413] [94, 413] [A, A]
Cycle life @ 100% DOD, Ic and Id 4000 4000 cycle
Cycle life @ 25% DOD, Ic and Id 28000 28000 cycle
Cycle life @ 100% DOD, Ic and Idmax 3551 3551 cycle
Cycle life @ 100% DOD, Icmax and Id 3900 3900 cycle
Ambient temperature Ta2 5 5 ◦C
Cycle life @ 100% DOD, Ic and Id 3793 3793 cycle

Table 4.1: Generic battery model parameters. See GBM documentation for param-
eters details [41].
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The parameters relative to the cell in table 4.1 are partially taken from the pro-
vided Samsung SDI 94Ah datasheets, and partially from the information contained
in a given CNR report which is about experimental tests on a battery module of the
same battery cell with 10S1P configuration. Missing parameters that are neither
present in datasheet nor in the report are replaced with the default values provided
by the GBM. The parameters relative to the battery pack 28S1P are computed
starting from the cell ones and according to the GBM documentation.

The Simulink schema that implements the battery model is provided in Appendix
A, figure A.2. In order to evaluate the goodness of the GBM, using its Simulink
implementation, a discharge test is performed and the results are compared with
the ones present in the CNR report according to the same test procedure:

Figure 4.4: The terminal voltage responce produced by the GBM is adapted to
the 10S1P configuration in order to be comparable with the one provided by the
CNR. Moreover, the data points of the CNR terminal voltage responce have been
extracted from the relative noisy curve (depicted in an graph) by using a self-made
software tool.
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The obtained results, according to the characteristics and the stated accuracy of
the GBM, are good enough to confirm the validity of the parameters setting.

As mentioned in the previous paragraph (4.1), the purpose of the GBM is to
retrieve information that are needed to the datasheet model of the dynamic sim-
ulator, to work properly at different aged states. In particular, in order to obtain
OCV and internal resistence values for different temperature, SoC and SoH, a First
Order Thévenin (FOTM) ECM is identified through the acquired data obtained
performing some tests on the GBM. The obtained parametric model is also adopted
to support the development of the EKF which is addressed in chapter 5.

The tests are performed using the following sets of ambient temperatures and
equivalent full cycles (Efc) which represent a specific battery aged status in terms of
the number of complete charge-discharge cycles (0 represent battery BOL and 4000
is the EOL according to datasheet data):

Ta ∈ {15,20,25,30,35,40} (◦C)

Efc ∈ {0,400,800,...,4000} (cycle)
(4.1)

The next paragraphs enter into the details on how the needed parameters are
obtained.

4.2.1 SoH ground truth evaluation

As discussed in paragraph 2.5, when battery ages, the maximum capacity tends to
decrease over time under the so called capacity fade phenomenon. So, one possibility
to evaluate the SoH at a given time is to apply equation 2.5. But, since the battery
capacity changes also with battery temperature, the 2.5 must be contextualized to
a given temperature range.
Using the Simulink schema A.2, a 1C constant discharge tests is esecuted on the
GBM according to all the combination of the chosen ambient temperature and Efc,
which are reported in 4.1. The battery is in thermal equilibrium with the ambient
temperature and start in its full charge state (SoC = 100%) at a given Efc.
The test procedure ends when the terminal voltage reaches its cut-off value. At
the end of the tests, the maximum capacity given by the battery model for each
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combination of temperatures and Efcs are mapped into the relative SoH reference
by applying the 2.5.

Figure 4.5: SoH reference points for each combination of temperature and Efc. The
obtained SoH value are assumed to be constant in the temperature range [Tamb,
Tamb + 5] °C.
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4.2.2 Coulomb efficiency computation

Given a fully charged/discharged cell battery of Qn [Ah] capacity, it takes Qn/c
hours to fully discharge/charge when it is stimulated by a constant discharge/charge
current at c C-rate. Actually, this is not always true and the factor η (coulomb
efficiency) has to be found in order to determine how long the battery takes to
fully discharge/charge at different ambient temperature and age conditions. This
parameter is important to allow to compute the SoC or SoH through the Coulomb
Counter technique (paragraph 3.2.1) in order to provide ground truth data.
The parameter η depends on the temperature and particular aged status of the
battery. So, In order to find its values at different temperatures as the battery ages,
different constant discharge tests (CDT) are performed on the battery model by
considering the simulink schema A.2 in appendix A.

In particular the test consists in applying a 1C constant discharge current to
the battery, at a given ambient temperature and at specific aged status in terms
of equivalent full cycles (4.1). The battery is put in thermal equilibrium with the
ambient temperature, and start at its full-charged state and at a specific Efc. The
test ends when the battery terminal voltage reaches its cut-off value.

Starting from equation 3.1, the formula for computing the Coulomb efficiency
is derived accordingly to the performed choices during the tests (I(t) = Qn * 1 C,
t>=0 and SoC(0) = 100%, T = Ti, Efc = Efcj).

SoC(t) = SoC(0) − η(T,Efc)
Qn

Ú t

0
Qn ∗ 1Cdτ

SoC(t) = SoC(0) − η(T,Efc)
Ú t

0
dτ

SoC(t) = SoC(0) − η(T,Efc)t

SoC(tend) = SoC(0) − ηtend

η(T,Efc) = SoC(0) − SoC(tend)
tend

(4.2)

Knowing the relation between Efc and SoH from the previous paragraph, the
obtained values of η are fitted with a one degree polynomial in the SoH variable for
each temperature reference, by using Least Square. The obtained results are the
following:
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Figure 4.6: Coulomb efficiency points and fitted polynomials for different temper-
ature. The eta points and the relative polynomials are assumed to be constant in
the temperature range [Tamb, Tamb + 5] °C.

75



4 – Application scenario

4.2.3 Open Circuit Voltage curve identification

According to the simulink schema A.5 in appendix A, a pulse discharge test (PDT)
is performed for each combination of temperatures and Efcs defined in 4.1, in order
to acquire OCV data points at different SoC percentages level. The chosen SoC
resolution to acquire OCV points is 5% and the Crate is 0.5C. The current profile
according to the test is obtained by alternating constant discharge current at a given
C rate, to relaxing period:

Figure 4.7: Example of a Pulse discharge current profiles. st: stimuli time, rt: rest
time.

The rest time has to be sufficient long in order to make the transient terminal
voltage response ends, and then, make possible to acquire the relative OCV points.
It has been chosen to be 30 minutes long. The stimuli time, used to guarantee a
decrease in term of SoC according to the SoC resolution, is found according to the
following equations:
Given two time instants t2 > t1 > 0:

SoC(t2) = SoC(0) − η

Qn

Ú t2

0
Qn ∗ 1Cdτ (4.3)

SoC(t1) = SoC(0) − η

Qn

Ú t1

0
Qn ∗ 1Cdτ (4.4)
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By subtracting each member of eq. 4.4 from eq. 4.3:

∆SoC = SoC(t2) − SoC(t1) = − η

Qn

Ú t2

0
I(τ)dτ + η

Qn

Ú t1

0
I(τ)dτ

∆SoC = − η

Qn

Ú t2

0
I(τ)dτ − η

Qn

Ú 0

t1
I(τ)dτ

∆SoC = − η

Qn

Ú t2

t1
I(τ)dτ

∆SoC = − η

Qn

Ú t2

t1
Qn ∗ Cratedτ

∆SoC = −ηCrate
Ú t2

t1
dτ

∆SoC = −ηCrate(t2 − t1) = −ηCrate∆t

∆t = − ∆SoC

ηCrate

(4.5)

Where ∆t is the stimuli time and ∆SoC is the resolution.
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As an example, The following images refers to one of the performed tests, which
is relative to 25 ◦C ambient temperature, Efc 1600 (corresponding to 91.68% of
SoH):

Figure 4.8: The acquired sampled (1Hz) data during PDT. During the tests the
coulomb counter estimation technique estimates SoC which is compared with the
one produced by the battery model.
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Figure 4.9: Linearly interpolated OCV data points vs SoC percentage.

The obtained OCV data points at different temperature, Efc, and SoC are used
to find a two variable polynomial surface for different temperature. The chosen
degree is 11 and it has been found using "polyfitn" function [42].

Figure 4.10: The OCV points and the relative surfaces are assumed to be constant
in the temperature range [Tamb, Tamb + 5] 25◦C.
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The obtained OCV points are adapted and compared with the ones provided by
the cell manufacturer:

Figure 4.11: Difference between identified OCV data points and the ones provided
by the cell manufacturer at BOL condition, temperature of 25◦C and 10 % SoC
resolution.
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4.2.4 Equivalent Circuit Model identification

As mentioned in paragraph 4.2, the First Order Thévenin Model is the chosen ECM.
The system of equations that describe its behaviour is:

FOTM :


C

dV1

dt
+ V1

R1
= I

VT = OCV (SoC) − V1 − RintI

(4.6)

By applying Laplace transform, the first equation of 4.6 becomes:

V1 = I

C(s + 1
R1C

) (4.7)

Substituting 4.8 in the second equation of 4.6:

VD = VT − OCV (SoC) = − I

C(s + 1
R1C

) − RintI (4.8)

Then, the transfer function is:

VD
I

= −
Rints + Rint+R1

CR1

s + 1
R1C

(4.9)

By applying the forward rule and passing to z domain (s = (z-1)/∆t) the 4.9
can be rewritten as:

z − 1
∆t

VD + VD
R1C

= −Rint

∆t
(z − 1)I − Rint + R1

R1C
I (4.10)

By anti-transforming from z domain to discrete time, the 4.10 become an ARX
representation of the system:

VD(k + 1) + (∆t

τ
− 1)VD(k) = −RintI(k + 1) + (Rint − ∆t

τ
(Rint + R1))I(K)

(4.11)
Where k is a discrete time instant, ∆t sampling interval and τ = R1C. By

changing variable and parametrizing 4.11:

VD(k) + a1VD(k − 1) = b1I(k) + b2I(K − 1) (4.12)
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where: 

a1 = ∆t

τ
− 1

b1 = −Rint

b2 = Rint − ∆t

τ
(Rint + R1)

(4.13)

Equation 4.14 can be rearranged as following:

VD(k) = −a1VD(k − 1) = b1I(k) + b2I(K − 1)

y(k) = [−VD(k − 1)I(k − 1)I(k)][a1b1b2]T

y = A ∗ θ

(4.14)

Eq. 4.14 can be used along with Least square algorithm in order to identify
parameters a1, b1, b2 and consequently Rint, R1, C, by using N sampled data.

θ = (ATA)−1ATy (4.15)



τ = ∆t

a1 + 1
Rint = −b1

R1 = (Rint − b2) τ

∆t
− Rint

C = τ

R1

(4.16)

The ECM parameters RINT ,R1, C and τ are dependent from battery temper-
ature, SoH and SoC. In order to find their values for all the combination of tem-
perature, SoH and SoC different pulse discharge tests (PDT) at 1C are performed.
Similarly to the previous tests, the temperature and Efc are chosen according to 4.1,
while SoC goes from 100 % to 0 % with a resolution of 5 %. Before applying the
test, the battery is in thermal equilibrium with the ambient temperature, start from
its full-charged state and at a specific aged status (Efc). For each test, the stimuli
time is computed according to equation 4.5.
The necessary data consist in current, terminal voltage samples (acquired at 1Hz)
and OCV which is find at the previous paragraph. Each SoC percentage value is
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associated with a batch of the acquired data and the relative OCV. Batches of data
are chosen in the following way: The first batch at 100 % SoC corresponds to the
discharge part of the voltage responce, while all the other batches at different SoC
level, correspond to the raising part of the voltage responce. The first batch starts
rt/9 seconds before the current raising part and ends when the current pulse ends.
The other batches start on the falling part of the current pulse and ends after 8/9
rt seconds.

Figure 4.12: Example of batches partitioning for SoC interval [85, 100] %. The
signals refers to a 1C PDT at 25◦C and 100% SOH.

83



4 – Application scenario

Inside each batch, the voltage responce, current stimuli and the computed OCV
are used along with equations 4.14, 4.15 and 4.16 to find the ECM parameters in
the relative context.

The obtained parameters at different temperature, Efc, and SoC are used to
find a two variable polynomial surface for different temperature by using "polyfitn"
function [42]. The chosen polynomial degrees are: 8 for RINT , 11 for R2, 2 for C
and 8 for τ .

Figure 4.13: The RINT points and the relative surface at 25◦C.
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Figure 4.14: The R1 points and the relative surface at 25◦C.

Figure 4.15: The C points and the relative surface at 25◦C.
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Figure 4.16: The τ points and the relative surface at 25◦C.

The parameters data are assumed to be constant in the temperature range
[Tamb, Tamb + 5].
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4.2.5 Equivalent Circuit Model comparison

By using simulink schema A.7 in appendix A the identified ECM is compared with
the GBM under a 1C CDT test at ambient temperature of 25 ◦C and 100% SoH.
The voltage responces are acquired for both the models and compare to each other.

Figure 4.17: Comparison between FOTM and GBM under 1C CDT @ 25 ◦C and
100% SoH.

The voltage responce of the ECM is pretty similar to the one produced by the
GBM but become worse when SoC is near to 0. The average error is 0.7368 V,
minimum error -81.5258 (SoC=0%) and the maximum error is 2.4375 V.
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Chapter 5

Extended Kalman Filter

In paragraph 3.2.2 the first principles estimation approaches based on ECMs are
addressed and the theory of the Extended Kalman Filter is explained. In this
chapter the EKF is considered as classical approach and is enhanced with OCVmap
technique 3.3.1 to better estimate SoC and SoH.

One important aspect reguarding the EKF is the system model on which is based.
For its development, the First Order Thévenin (FOTM) ECM is taken into account
since it provides a good compromise between complexity and accuracy in represent-
ing the electrical behaviour of a given battery. The parameters of the model have
been estimated in paragraph 4.2.4.

In order to derive the EKF algorithm, it is necessary to bring the FOTM equa-
tions into the following state-space representation:

S :


xk+1 = f(xk,uk) + wk

yk = h(xk,uk) + vk
(5.1)

The considered FOTM is described by the following system of equations:

FOTM :



dV1

dt
+ V1

τRC
= I

C

VT = OCV − V1 − RintI

τRC = R1C

(5.2)
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The chosen system state vector is:

xk =


SoHk

SoCk

V1k

 (5.3)

The expression for SoHk is obtained by modelling the decreasing behaviour of
the SoH in time according to the calendar life provided by the cell manufacturer:

SoH(t) = − 20
78840000t + 100 (5.4)

Where 78840000 is the equivalent in seconds of 2.5 years, namely, the time esti-
mated by the manufacturer that a cell need to wait until it reaches its EOL starting
from its BOL, in worst operating conditions.

By applying derivative and aproximating it with finite difference:

SoH(k + 1) = − 20
78840000T + SoH(k) (5.5)

where T is considered as sampling time.
The expression for SoCk is derived from the Coulomb Counter expression:

SoC(t) = SoC(t0) − η

Qn

Ú t

t0
I(τ)dτ (5.6)

Passing to discrete time the following substitution are performed:
t = (kÍ + 1)T

t0 = kÍT
(5.7)

Where k’ is a generic discrete time instant and T is the sampling time. The 5.6
become:

SoC((kÍ + 1)T ) = SoC(kÍT ) − η

Qn

Ú (kÍ+1)T

kÍT
I(τ)dτ (5.8)

By changing variable τ = kÍT + σ, 0 ≤ σ ≤ T , the previous eq. is rewritten as:

SoC((kÍ + 1)T ) = SoC(kÍT ) − η

Qn

Ú T

0
I(kÍT + σ)dσ (5.9)
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Assuming a zero-order holder I(k’T + σ) = I(k’T) and then:

SoC((kÍ + 1)T ) = SoC(kÍT ) − η

Qn

Ú T

0
I(kÍT )dσ (5.10)

By solving the expression:

SoC((kÍ + 1)T ) = SoC(kÍT ) − η

Qn

I(kÍT )T (5.11)

Finally, by changing variable k = k’T:

SoC(k + 1) = SoC(k) − ηT

Qn

I(k) (5.12)

By adding SoH dependency to the Coulomb Counter expression, making SoC
and SoH directly dependent, the previous expression become:

SoC(k + 1) = SoC(k) − 100ηT

SoH(k)QBOL

I(k) (5.13)

The expression for V1k is obtained by integrating V1 in time [t0, t] from 5.2.

V1(t) = V1(t0)e
t0−t
τRC + e

−t
τRC

C

Ú t

t0
e

τ
τRC I(τ)dτ (5.14)

Passing to discrete time the following substitution are performed:
t = (kÍ + 1)T

t0 = kÍT
(5.15)

The 5.14 become:

V1((kÍ + 1)T ) = V1(kÍT )e
−T
τRC + e

−(kÍ+1)T
τRC

C

Ú (kÍ+1)T

kÍT
e

τ
τRC I(τ)dτ (5.16)

By changing variable τ = kÍT + σ, 0 ≤ σ ≤ T , the previous eq. is rewritten as:

V1((kÍ + 1)T ) = V1(kÍT )e
−T
τRC + e

−(kÍ+1)T
τRC

C

Ú T

0
e
kÍT+σ
τRC I(kÍT + σ)dσ (5.17)

By Applying zero-order holder I(k’T + σ) = I(k’T) and then:
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V1((kÍ + 1)T ) = V1(kÍT )e
−T
τRC + e

−(kÍ+1)T
τRC

C

Ú T

0
e
kÍT+σ
τRC I(kÍT )dσ (5.18)

V1((kÍ + 1)T ) = V1(kÍT )e
−T
τRC + e

−T
τRC

C
I(kÍT )

Ú T

0
e

σ
τRC dσ (5.19)

By solving equation 5.19 and by performing some simplification:

V1((kÍ + 1)T ) = V1(kÍT )e
−T
τRC + R1(1 − e

−T
τRC )I(kÍT ) (5.20)

By changing variable k=k’T, the final expression is obtained:

V1(k + 1) = V1(k)e
−T
τRC + R1(1 − e

−T
τRC )I(k) (5.21)

So passing to discrete time, equations of the FOTM model (5.2) become:

FOTM :


V1k+1 = V1ke

−T
τRC + R1(1 − e

−T
τRC )Ik

VTk = OCV (SoCk) − V1k − RintIk

τRC = R1C

(5.22)

At this point by considering equations 5.5, 5.13 and 5.22 the state space repre-
sentation of the system is:


SoHk+1

SoCk+1

V1k+1

 =


1 0 0
0 1 0

0 0 e
−∆T
τRCk



SoHk

SoCk

V1k

 +


− 20∆T

78840000Ik
− 100ηk∆T
SoHkQBOL

R1k(1 − e
−∆T
τRCk )

 Ik + wk

yk = OCVk − V1k − RintkIk + vk

(5.23)

where ∆T is the sampling time, τRCk = τRC(Tk,SoHk,SoCk), ηk = η(Tk,SoHk),
QBOL = QBOL(Tamb), R1k = R1(Tk,SoHk,SoCk) and OCVk = OCV (Tk,SoHk,SoCk)
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The system is non-linear and Jacobian matrices Fk, Hk has to be computed:


Fk = ∂f(x,u)
∂x

----
(x,u)=(x̂k,uk)

Hk = ∂h(x,u)
∂x

----
(x,u)=(xp

k
,uk)

(5.24)

According to 5.23, the matrices Fk and Hk can be computed as:

Fk =


1 0 0

f2,1 1 0
f3,1 f3,2 e

−∆T
τRC (Tk, ˆSoHk, ˆSoCk)

 (5.25)

Where:

f2,1 = − 100∆TIk
QBOL(Tamb)

∂η(Tk, ˆSoHk)
∂SoH

ˆSoHk − η(Tk, ˆSoHk)
ˆSoH

2
k

(5.26)

f3,1 = ∆TV1ke
− ∆T

τRC (Tk, ˆSoHk, ˆSoCk)

∂τRC(Tk, ˆSoHk, ˆSoCk)
∂SoH

τRC(Tk, ˆSoHk, ˆSoCk)
2 +

+ Ik
∂R1(Tk, ˆSoHk, ˆSoCk)

∂SoH
(1 − e

− ∆T

τRC (Tk, ˆSoHk, ˆSoCk) )+

− ∆TIkR1(Tk, ˆSoHk, ˆSoCk)
∂τRC(Tk, ˆSoHk, ˆSoCk)

∂SoH

τRC(Tk, ˆSoHk, ˆSoCk)
2 e

− ∆T

τRC (Tk, ˆSoHk, ˆSoCk)

(5.27)

f3,2 = ∆TV1ke
− ∆T

τRC (Tk, ˆSoHk, ˆSoCk)

∂τRC(Tk, ˆSoHk, ˆSoCk)
∂SoC

τRC(Tk, ˆSoHk, ˆSoCk)
2 +

+ Ik
∂R1(Tk, ˆSoHk, ˆSoCk)

∂SoC
(1 − e

− ∆T

τRC (Tk, ˆSoHk, ˆSoCk) )+

− ∆TIkR1(Tk, ˆSoHk, ˆSoCk)
∂τRC(Tk, ˆSoHk, ˆSoCk)

∂SoC

τRC(Tk, ˆSoHk, ˆSoCk)
2 e

− ∆T

τRC (Tk, ˆSoHk, ˆSoCk)

(5.28)

The matrix Hk is computed as:

Hk =
è
h1 h2 −1

é
(5.29)
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Where:

h1 = ∂OCV (Tk,SoHp
k,SoCp

k)
∂SoH

− ∂V1

∂SoH
− ∂Rint(Tk,SoHp

k,SoCp
k)

∂SoH
Ik (5.30)

and

∂V1

∂SoH
=

V1k+1 − V1k
SoHp

k+1 − SoHp
k

=

= V1e
−T

τRC (Tk,SoH
p
k
,SoH

p
k

) + R1(Tk,SoHp
k ,SoHp

k)(1 − e
−T

τRC (Tk,SoH
p
k
,SoH

p
k

) )Ik − V1k
(− −20∆T

78840000 + SoHp
k) − SoHp

k

= −78840000
20∆T

(1 − e
−T

τRC (Tk,SoH
p
k
,SoH

p
k

) )(R1(Tk,SoHp
k ,SoHp

k)Ik − V1k)

(5.31)

h2 = ∂OCV (Tk,SoHp
k,SoCp

k)
∂SoC

− ∂V1

∂SoC
− ∂Rint(Tk,SoHp

k,SoCp
k)

∂SoC
Ik (5.32)

and

∂V1

∂SoC
=

V1k+1 − V1k
SoCp

k+1 − SoCp
k

=

= V1e
−T

τRC (Tk,SoH
p
k
,SoH

p
k

) + R1(1 − e
−T

τRC (Tk,SoH
p
k
,SoH

p
k

) )Ik − V1k

(SoCp
k − η(Tk,SoHp

k
)∆T

Qn
Ik) − SoCp

k

= − Qn

η(Tk,SoHp
k)∆TIk

(1 − e
−T

τRC (Tk,SoH
p
k
,SoH

p
k

) )(R1(Tk,SoHp
k ,SoHp

k)Ik − V1k)

(5.33)
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In order to make more robust the estimation, it has be chosen to make the EKF
adaptive by updating iterativelly the process noise covariance matrix (Q) on the
basis of the innovation terms [43]. Moreover, in order to enhance both SoH and
SoC estimation the OCVmap technique is applied along with EKF on the basis of
the filtered estimation of the state. In the following figure the overall algorithm is
presented:

Figure 5.1: Overview of the EKF estimation algorithm for a k-esime iteration.
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The first two set of equations illustrated in figure 5.3 represent the usual pre-
diction and update step of the EKF, while the equation in step 3 implements a
Q-adaptation based on a sliding window of size NQ. Step 4 implements the OCV
map strategy to update the filtered version of the SoH: using a sliding window of size
NOCV , the SoH obtained in corrispondence of the minimum OCV error (computed
by comparing the a-priori OCV data points and the computed OCV using filtered
state) are collected; so at a given time the filtered value of the SoH is substituted
with the exponential mean of the current filtered SoH and the mean value obtained
through OCV map.
Intial values of the windows for both step 3 and 4 are the zero vector and their sizes
(NQ, NOCV ) along with αOCV become parameters to be tuned. Step 3 and step 4
are introduced to make more robust the estimation for both SoH and SoC.

The implementation of the EKF is presented in figures A.8 and A.9 in appendix
A.
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5.1 Initial conditions and EKF tuning

The system is supposed to start from a full charged state and after a long time is
passed from its last usage, while its SoH is supposed to be unknown. The estimate
of the initial condition is chosen randomly:

x̂0 = x̂(k = 0) =


ˆSoH0
ˆSoC0

V̂10

 =


91.9459
95.6547

0


%
%
V

(5.34)

The true system initial condition is unknown and is modelled as a multivariate
gaussian distributed random vector:

x0 = x(k = 0) ∼ N (µx0 ,Σx0) (5.35)

Although the initial condition is unknown, some assumption on its statistical
parameters can be done. In particular the SoH is supposed to belong to the interval
[80, 100]% with 99.73% of probability. This can be traduced in the following interval
[µSoH0 − 3σSoH0 ,µSoH0 + 3σSoH0 ], where µSoH0 is 90 % and σSoH0 = 10/3%. SoC is
supposed to belong to an interval equal to [µSoC0 − 3σSoC0 ,µSoC0 + 3σSoC0 ], where
µSoC0 is 95 % and σSoC0 = 5/3%. In this way, with 99.73% of probability, the SoC
initial condition of the system belong to the interval [90, 100] %. Similarly to the
previous cases, V10 is supposed to be near to 0. Its variation belong to the interval
[µV10 − 3σV10 ,µV10 + 3σV10 ] , where µV10 is 0.1 V and σV10 = 0.1/3 V.

So the statistical parameters attributed to the state initial condition are known
by assumption:

µ0 =


90
95
0.1


%
%
V

(5.36)
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Σx0 = E
è
(x0 − E[x0])(x0 − E[x0])T

é
=

= E
è
(x0 − µx0)(x0 − µx0)T

é
=

=


σ2
SoH0 σSoH0SoC0 σSoH0V10

σSoC0SoH0 σ2
SoC0 σSoC0V10

σV10SoH0 σV10SoC0 σ2
V10

 =

=


σ2
SoC0 ρHCσSoH0σSoC0 ρHV σSoH0σV10

ρHCσSoC0σSoH0 σ2
SoC0 ρCV σSoC0σV10

ρHV σV10
σSoH0 ρCV σV10

σSoC0 σ2
V10



(5.37)

Where the parameters ρHC ,ρHV and ρCV are the correlation coefficients and are
found by trial and error approach. The EKF matrices R, Q0 and P0 are chosen in
the following way:

• R = E[(ỹk − E[ỹk])(ỹk − E[ỹk])T ], ỹ = yk − ŷk is chosen according to the
statistic properties of the measurement error which is described next.

• P0 = E[(åx0 − E[åx0])(x0 − E[x0])T ],åx0 = x0 − x̂0 is equal to Σx0 .

According to the simulink schema in figure A.1, the WLTP cycle test is performed
at 25 ◦C and for all the SoH reference conditions {100, 97.92, 95.84, 93.76, 91.68,
89.6, 87.52, 85.44, 83.36, 81.28, 79.20} % on the dynamic simulator. The sampled
(1Hz) acquired data in terms of battery voltage, current, and temperature are then
corrupted by measurement random noise uniformly distributed, in order to introduce
disturbances by emulating measurement sensors. The characteristics of the noises
for each measurement are the following:

• max(wV ) = 0.3 V, min(wV ) = -0.3 V, µV = 0

• max(wI) = 0.05 A, min(wI) = -0.05 A, µI = 0

• max(wT ) = 1 ◦C, min(wT ) = ◦C, µT = 0
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The following figure depicts the signals for one sample WLTP test performed at
100 % SoH:

Figure 5.2: Signals contextualized at one WLTP test performed wltp at 25 ◦C
ambient temperature and 100% SoH.
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Referring to the scenario with 100% SoH, the simulink schema A.6 is used to
find the measurement error of the FOTM model and then a suitable value for the
R matrix of the EKF.

Figure 5.3: Signals obtained by comparing data produced by the dynamic symulator
and the FOTM model by performing wltp at 25 ◦C ambient temperature and 100%
SoH.

Referring to the previous figure, the standard deviation of the measurement error
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is σỹ = 6.978(V ), then the matrix R is equal to σ2
ỹ. The chosen tuning scenario for

the EKF parameters refers to the performed test at SoH references {100, 97.92,
93.76, 89.6, 87.52, 83.36, 79.20} %. According to the simulink schema A.8 and to
the tuning scenario data, the EKF parameters are found by trial and error approach.
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In the following picture a sample of the typical signals used in the tuning process
are presented:

Figure 5.4: Tuning scenario signals for 100% SoH.

The final parameters found for the proposed EKF algorithm are:

Parameter value
ρHC 0.3
ρHV 0.001
ρCV 0.831
Q0 0.1 I3
NQ 60 s

NOCV 180 s
αOCV 0.3
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5.2 Test results

The EKF is initialized according to the parameters found in the previous paragraph
and, by considering the Simulink schema A.8, the algorithm is validated on the
WLTP tests conducted on the dynamic simulator A.1 at 25 ◦C ambient temperature
and SoH references that are not used in the tuning process {95.84,91.68,85.44,81.28}
%.

The following figures summarizes the results obtained at each test.

Figure 5.5: Test 1 - signals
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Figure 5.6: Test 1 - errors
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Figure 5.7: Test 2 - signals
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Figure 5.8: Test 2 - errors
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Figure 5.9: Test 3 - signals

106



5 – Extended Kalman Filter

Figure 5.10: Test 3 - errors
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Figure 5.11: Test 4 - signals
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Figure 5.12: Test 4 - errors

As can be observed by looking at the results, when the estimate of the SoH
approaches the truth one the error in the SoC estimation reduces thanks to the
adaptivity of the algorithm. Even if the starting initial condition of the state esti-
mate is different from the truth one, the SoC estimate tends to the reference in a
finite time. The average maximum absolute error for SoC estimate over all the tests
is under 5 %, while the worse is about 10% which is achieved in the Test 3. The best
average error is -0.12% (Test 1) while the worst is -5.22 % (Test 3). It is observed
that the SoH estimate fluctuates near the reference but is not always accurate. This
can be due to the presence of the noise in the measurements and the precision of
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the OCV curve that can penalize the SoH update in time. The best average error
in SoH estimation is about 2 % (Test 1) while the worse is -9.7 % (Test 3).
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Chapter 6

Neural Network

In chapter 3.3 the most relevant data-driven estimation approaches that exist in the
literature are addressed. In this chapter, a machine learning (Black-box) approach
based on Non-linear AutoRegressive with eXogenous input Neural Network (NARX-
NN) is adopted to estimate SoC and SoH in the context of WLTP dynanometric
tests data acquired by using the provided dynamic simulator (paragraph 4.1).

The principle on which the network is based relies on the assumption that there
exist an unknown non-linear relationship between the time delayed inputs of the
system, the past history of the output and the output parameters to be predicted.
In particular the network model this relationship according to the following equation:

y(t) = f(y(t − 1),y(t − 2),...,y(t − dy),u(t − 1),...,u(t − du)) (6.1)

Where:

• u is the input vector containing the measures of voltage, current and battery
temperature

• y is the output vector containing SoH and SoC to be estimated

• du is the maximum time delay for the input

• dy is the maximum time delay for the output
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The following figure represent the architecture of the proposed NN:

Figure 6.1: Architecture of the proposed NARX-NN.

The overall network is based on closed-loop structure which reflects the relash-
ionship 6.1 and contains three layers called respectivelly input, hidden and output
layer. Except for the input layer all the remaining ones contains a given number
of neurons. According to the figure, the hidden layer contains H neurons while the
output layer contains only one neuron.
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Each neuron elaborates its input data and gives a certain output according to
the following figure:

Figure 6.2: Neuron inner structure.

For more details about the meaning and the behaviour of the neuron, the reader
is suggested to read paragraph 3.3.2 where different types of neural networks are
discussed.
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6.1 Dataset

In order to make the network able to learn the unknown function 6.1, a dataset
containing time-series data for both inputs and output is needed.
By considering the Simulink schema A.1, a WLTP test procedure is performed at
different aged status of the battery pack and ambient temperature of 25 ◦C. The SoH
references are taken from the set {100, 97.92, 95.84, 93.76, 91.68, 89.6, 87.52, 85.44,
83.36, 81.28, 79.20 }. The acquired data in terms of battery voltage, current, and
temperature are sampled at 1Hz and then corrupted by measurement random noise
uniformly distributed, in order to introduce disturbances by emulating measurement
sensors. The characteristics of the noises for each measurement are the following:

• max(wV ) = 0.3 V, min(wV ) = -0.3 V, µV = 0

• max(wI) = 0.05 A, min(wI) = -0.05 A, µI = 0

• max(wT ) = 1 ◦C, min(wT ) = ◦C, µT = 0

The following figure depicts the signals for one sample WLTP test performed at
93.76 % SoH:

Figure 6.3: Signals contextualized at one WLTP test performed wltp at 25 ◦C
ambient temperature and 93.76% SoH.
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The ground truth output is based on the ground truth references of SoH and
ground truth SoC provided by the dynamic simulator. The dataset is build by
combining all the acquired data for each SoH reference in such a way to depict an
aging behaviour of the battery pack in time. For visualization simplicity only the
targets output are reported in the next figure 6.4. The total number of available
samples in the dataset is 54654 and they are splitted randomly (preserving causality)
into training, validation and test sets with respectivelly proportions 70%, 15% and
15%.

Figure 6.4: Targets samples obtained by combining all the performed WLTP tests.
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6.2 Training

The training process is performed on the dataset described in the previous para-
graph in a supervised way and by adopting an open-loop strategy: since the inputs
and output targets are all available in the dataset, they are used to fill the delayed
relative quantities during the training process. By opening the loop, the network
become a purely feed forward NN and an efficient traing algorithm can be used.
This strategy allow to get better results with respect the closed-loop one which is
based on the time delayed estimations of the output during the training.
The whole process is performed by using MATLAB Deep Learning tool box that
provides usefull commands to prepare data according to the chosen training policy,
to perform training and visualize results.

The default training algorithm which is suggested by the toolbox for this king
of problems, is called Levenberg-Marquardt and is based on gradient-descent algo-
rithm. It resolves at each training iteration an optimization problem by minimazing
the MSE between estimated target and the ground truth one. The maximum num-
ber of training epochs is 1000.

The activation functions for each neuron of the hidden layer is the sigmoid func-
tion, while for the output neuron is the identity function. The number of hidden
neurons along with the maximum time delay step for input and output are tuning
parameters.

The training procedure is performed automatically and in an optimal way by the
toolbox which stops the process when there is a maximum number of 6 failures in
the improvement of the validation performances, or when the maximum number of
epochs is reached.

Several configurations of the tuning parameters are tested and is observed that
the training process time grows drammatically as the the delays and number of
neurons increase.

In order to make the training process feasible and to avoid to increase the com-
plexity of the network, the number of neurons and delay time steps are chosen to
be adequately small. Moreover input and output delayed time step are chosen to
be equal in value. It is performed a grid search by considering the combination of
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different delays and number of neurons and the best set of parameters found is:

• d = dy = du = 20

• H = 10

The results are presented in the next paragraph.
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6.3 Results

By considering a maximum delay time step of 20 s for both input and output, and
a number neurons of the hidden layer equal to 10, the following results are obtained
after the end of the training of the proposed NARX-NN:

Figure 6.5: Performances obtained during training process respectivelly on the train,
validation and test sets.
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Figure 6.6: Comparison between target test set and network predicted output with
respect target SoH.

Figure 6.7: Comparison between target test set and network predicted output with
respect target SoC.
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As can be observed by looking at figure 6.5, the network achieves the best results
on the validation set at epoch 24 by obtaining the smallest MSE value that is
equal to 0.7413. The process is stopped at that epoch in order to avoid to overfit
training data, allowing to mantain generalization flexibility to unseen data. In the
diagram is reported also the performance obtained on the test set which is not taken
into consideration in the training processs but is purely introduced as proof of the
generalization ability of the network. The MSE obtained on the test set at epoch
24 is approximately equal to 0.07. Finally, from figures 6.6 and 6.7 it can be seen
that the network is able to adequately predict the target parameters.
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Conclusion

In this thesis work two proposed estimation schemes are considered to estimate two
important battery state parameters: the State of Charge (SoC) and the State of
Health (SoH). Both the estimators are developed and validated under simulation,
in the context of a MATLAB environment, according to WLTP dynanometric test
performed through a dynamic simulator of a real target system. The simulator is
composed by different models and the principle ones are used to emulates the road
profile, the vehicle dynamic of a Fiat Panda first series, an electric motor, a 28S1P
Samsung SDI 94Ah battery pack and a thermal model of the battery. The dynamic
simulator has been given and its validity was proved outside of this thesis work.
The synthetic time series data obtained by the tests are contextualized to different
aged states of the battery and consist in noise corrupted measurements of battery
voltage, current and battery temperature sampled at 1 Hz.

The first estimator is taken from the family of the first principles estimation
approaches and consists in an online classical technique called Extended Kalman
Filter. It has been proposed in its Q-adaptive version and has been enhanced by
using a data-driven estimation approach called Open Circuit Voltage map. This
approach mainly relies on the usage of an Electric Circuit Model of the battery
that has been identified according to some preliminary tests. The validation tests,
which have been performed at different aged states of the battery, prove that in
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many circumstances the estimator is able to follow the ground truth target param-
eter references. In particular it has been observed that the estimation of the SoC is
strictly related to the SoH estimation one, in fact the goodness of the SoC estima-
tion increases as the estimation of the SoH approaches the ground truth one. When
the estimation of the SoH becomes worse, also the SoC seems to be affected. The
maximum absolute average error obtained through the simulated tests is about 5 %
for the SoC, and 9.72 % for the SoH, but, some times the error can reach 10 % for
SoC and even 17 % for the SoH.

The second estimation technique is based on a machine learning approach. In
particular it relies on the usage of an Artificial Neural Network called Nonlinear
AutoRegressive with eXogenous input Neural Network. In contrast with the first
approach it needs only time series data in order to be developed. In fact, by per-
forming many tests on the dynamic simulator, at different aged states of the battery,
the acquired data have been rearranged as to build a dataset in order to make pos-
sible to learn a model that is used to enstablish a direct mapping between inputs
and the target parameters. The training process has been performed splitting the
dataset into training, validation and test sets. In corrispondence of the best time
delay step and number of hidden neurons found, (respectivelly 20 s and 10), the
final performance results achieved on the test set in terms of MSE is about 0.07.

By comparing the two approaches it is possible to conclude that the machine
learning technique is a better approach to address the problem since can achieve
better estimation results and require a relative minor development effort.

A possible proposal for a future work can be to test the proposed techniques on
experimental data or to prove other estimation strategies.
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Appendix A

Simulink schemes

Figure A.1: Simulink schema adopted with the aim of performing tests on the
simulated system.
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A – Simulink schemes

Figure A.2: Simulink schema adopted with the aim of performing tests on the
battery model.

Figure A.3: Cycler inner finite state machine.

Figure A.4: Battery model inner structure.
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A – Simulink schemes

Figure A.5: Simulink schema adopted with the aim of performing tests on the
battery model using Coulomb Counter estimation technique.

Figure A.6: Simulink schema of the FOTM ECM.
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A – Simulink schemes

Figure A.7: Simulink schema adopted with the aim of comparing battery model and
FOTM ECM.

Figure A.8: Simulink schema implementing EKF estimator.
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A – Simulink schemes

Figure A.9: EKF inner structure.
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