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Abstract

In digital communications, the throughput demand is rapidly increasing through years.
Since modern standards have already reached throughputs above 1 Gb/s, it is expected,
in the following years, to reach requirements up to 1 Tb/s.

Channel-Coding is a fundamental technique employed in communication links, in order
to identify and correct errors. Therefore, it should be adapted aiming to support the near
future throughput requirements. Turbo-Codes are a promising choice in this scenario,
due to their capability to work close to the Shannon’s Limit. Therefore, the suitability of
Turbo-Decoder architectures is object of study.

Focusing on Turbo-Decoders, this work is proving how high degrees of parallelization are
necessary to satisfy the discussed data-rate requirements. Therefore, a detailed study on
the Concurrent-PMAP architecture, implemented on different radix-orders, is proposed.
The aim is to highlight guidelines to select area efficient implementations, capable to push
throughputs toward the next-future demand.

The results are showing how the presented architecture is a valid candidate for high-
throughputs, considering radix-2 and radix-4 implementations. Moreover, a general ap-
proach to develop a comparison model between architectures is detailed, aiming to speed-
up the selection process among new proposed solutions.
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Chapter 1

Introduction

In digital communications, the capability to detect and correct errors is fundamental to
guarantee the validity of the received information. Another primary parameter is the
amount of useful data that can be transmitted and received per unit time. The two
previous concepts are at the basis of modern wireless communication standards, which
are aiming to manage the transferring of information in a fast and reliable way.

During the previous decades, the demand for high-speed communication services, espe-
cially wireless ones, has increased, setting higher standards for the required throughput.
It is enough to consider that the fifth generation standard for cellular networks, 5G, is
able to achieve throughputs above 1 Gb/s. A projection of this increasing demand in the
following years could potentially lead to throughput requirements in the order of hundreds
of Gb/s, up to 1 Tb/s.

As mentioned before, a remarkable importance is assigned to the error correction capa-
bility in a digital communication system, which is required to be adapted considering the
high-throughput requirements.

Given a noisy channel, errors can be detected and corrected employing the Forward Error
Correction (FEC) or channel coding theory. The key idea is to add redundant information
to the original information to be transmitted, employing it to improve the reliability of
the received data, by identifying and correcting errors.

An Error Correcting Code (ECC) can be described as an algorithm to be applied on the
original information to be transmitted, in order to properly select the redundant infor-
mation. Different ECC can be found in literature, with the common aim of reducing the
error-rate at the receiver side. The maximum boundary for the data rate, considering an
error-free transmission on a noisy channel, is expressed by the Shannon’s Theorem, devel-
oped by Claude Shannon in 1948 [1]. The content of the theorem is briefly summarized
below.
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Given a noisy channel, characterized by a maximum transmission rate (Capacity C), if
considering a generic transmission rate for useful information R < C, it is possible to
establish an ECC which is capable to reduce the error probability at the receiver to an
arbitrary low value.

As an immediate consequence of the theorem, the usage of error correction could poten-
tially lead to an error-free communication, considering a rate really close to the channel
capacity. This powerful result is one of the main reasons why ECC have been object of
study in the past, as well as in the present.

A fundamental step in coding theory is the introduction of Turbo-Codes, carried out by
C. Berrou in 1991 [2]. This specific category of codes is able to work close to the limit
imposed by the Shannon’s Theorem, which makes them optimal when considering rigid
requirements on the information rate. Following these considerations, Turbo-Codes are
one of the main choices for communication standards. Therefore, they will be considered
as a reference ECC in this work.

1.1 The High-Throughput Challenge

Moving toward high throughput requirements, channel coding is expected to be techno-
logically adapted in order to process the information properly. Following this purpose,
the European project EPIC delivered, during 2020, important contributions to the design
of ECC technologies, considering the expected requirements for different use cases in the
near future.

The project highlights the importance of searching for new algorithmic and architectural
solutions, since the improvements in technology, controlled by the Moore’s Law, are not
expected to completely cover the future requirements [3].

The EPIC project considered three different types of codes as feasible candidates: Turbo-
Codes, Low-Density-Parity-Check (LDPC) codes and polar codes. With the aim of com-
paring the different solutions and outline guidelines for the use cases under analysis,
different Key Performance Indicators (KPI) have been established. The KPI list is in-
cluding the throughput definition. Moreover, also the code flexibility is considered as a
fundamental property. Part of the KPI will be discussed in the following chapters and
used as metrics to compare different solutions.
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1.2 Organization and Objectives

This work aims to explore very high-throughput Turbo-decoder architectures, with a
particular accent on the usage of different degrees of parallelization, including high-radix
approaches. The main objectives are presented.

• A classification of the fundamental parallelization degrees, employed in modern
Turbo-decoders architectures, will be detailed, highlighting the main advantages
and disadvantages for each technique.

• A generic approach to model comparisons among different architectural solutions
will be presented, aiming to easily explore large architectural spaces and define the
guidelines to select the best design choices, given a set of requirements. In particular,
the presented model will be adapted to analyze PMAP-based architectures, aiming
to explicit which design choices allow the introduction of high-throughput solutions.

• The use of different radix-orders will be studied on PMAP-based architectures, in or-
der to explicit the suitable choices in terms of high-throughput and area efficiency.
Fundamental solutions will be proposed, aiming to cover the issues presented by
high-radix designs. Moreover, it will be proved how radix-2 and radix-4 architec-
tures can be considered solid choices, depending on the specifications. Furthermore,
guidelines in order to open the possibility for efficient radix-8 and radix-16 imple-
mentations will be discussed.

• The Concurrent-PMAP architecture will be pushed toward high degrees of paral-
lelism, aiming to maximize the achievable throughput. The objective is to prove
the suitability of this Turbo-decoder implementation, especially if compared to the
UXMAP architecture, highlighting the necessity for a more detailed comparison
between PMAP and XMAP based solutions, especially when high degrees of paral-
lelization are employed.

The structure and the content of this work are briefly summarized, considering the in-
cluded chapters.

• Chapter 2 - Channel Coding: This chapter is introducing the concept of channel
coding, considering a generic digital communication link. Important definitions and
metrics are also mentioned, highlighting the coding benefits on the error-correction
performances.

• Chapter 3 - Convolutional Codes: This chapter is presenting the concept of
convolutional codes. First, a focus on the encoding operation is included, introduc-
ing the LTE/UMTS standard code. Then, decoding algorithms are covered, with a
particular accent on the Log-Map algorithm.
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• Chapter 4 - Turbo Codes: This chapter is introducing the definition of Turbo-
Codes, highlighting how encoding and decoding operations are handled. Moreover,
important architectural building blocks are presented.

• Chapter 5 - Parallelization: This chapter is providing a classification of the
fundamental parallelization degrees, suitable for Turbo-decoder architectures. The
main benefits and drawbacks are discussed for each technique.

• Chapter 6 - BER Performance: This chapter is presenting quantitative consid-
erations about the effect of some architectural choices on the error-correction per-
formances. Therefore, guidelines to introduce an acceptable BER are highlighted.
Moreover, quantization techniques employed to represent algorithm parameters in
the architecture are discussed.

• Chapter 7 - State-of-the-Art Architectures: This chapter is reviewing fun-
damental State-of-the-Art architectures, highlighting their main advantages and
disadvantages and comparing some practical implementations. The importance of
introducing high degrees of parallelism is remarked.

• Chapter 8 - High-Radix PMAP Exploration: This chapter is introducing
the guidelines to build a comparison model among different architectures. The
presented steps are employed to explore the use of high-radix approaches in PMAP-
based Turbo-decoders. The development of the comparison tool is detailed. Logic
and memory organizations are discussed in-depth, highlighting the main challenges
and introducing specific solutions.

• Chapter 9 - Model Results: This chapter is presenting the results obtained
with the developed comparison model. The suitability of high-radix solutions in
a PMAP-based architecture is discussed, covering the limitations of radix-orders
higher than 4. Two detailed examples of efficient radix choices are included. More-
over, very high-throughput solutions are analyzed, highlighting the suitability of the
Concurrent-PMAP architecture.

• Chapter 10 - Model Validation: This chapter is validating the results provided
by the comparison model. Synthesis operations are performed in order to collect area
and critical path estimations. Model and synthesis results are compared, showing
the relative errors and introducing key-points to further improve the model accuracy.

• Chapter 11 - Conclusions and Future Works: This chapter is summarizing
the results obtained in this work, introducing possible steps for future studies.
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Chapter 2

Channel Coding

In this chapter, some basic concepts about channel coding will be covered, considering
a generic communication link. Meanwhile, some important notation will be introduced,
as well as the definition of several significant metrics. In the last part of the chapter, a
review of the channel coding benefits on the error-rate is presented.

2.1 Digital Communication Link

A typical point-to-point digital communication link is summarized by the block scheme
presented in figure 2.1.

Source Encoder Modulation

Channel

DemodulationDecoderSink

u c x

ydm

Figure 2.1: Point-to-Point communication link block scheme.

The Source is producing the original information u, which is a K-length sequence of
bits. The Encoder is generating the codeword c, a N -length bits sequence, which is the
encoded information obtained starting from u. Since the Encoder is expected to add
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redundant information, N > K. An important metric to express the amount of redun-
dancy is the code-rate, evaluated as follows.

R =
K

N

During the Modulation, the analog signal employed to transmit the information is prop-
erly modified following a specific modulation policy, in order to embed the codeword infor-
mation in it. The obtained signal x can then be transmitted on the Channel. Different
modulation schemes are available, introducing trade-offs between bit-rate and error-rate.
In this work, the Binary-Phase-Shift-Keying (BPSK) modulation format is considered,
which is working on the phase of the analog signal. The constellation is composed by only
2 symbols, which are selected according to the value of each codeword bit, following the
constellation diagram in figure 2.2. The subscript k in the figure is referring to a single
bit/symbol information in the bit-sequence.

I

Q

ck = 0 ck = 1

xk = 1xk = -1

Figure 2.2: IQ constellation diagram for the BPSK modulation format.

The Channel is expected to add noise to the signal, as well as other effects like distortion
and interference. The Demodulation operation is supposed to retrieve information on
the received codewords. Due to the Channel effects, each symbol is correctly demodu-
lated within a given probability. The demodulated sequence of symbols d is expressed
relying on the definition of Log-Likelihood-Ratio (LLR), a specific metric capable to ex-
press information on the reliability of each demodulated symbol. The LLR definition will
be detailed in the following section.

The last important step to be highlighted is the Decoding operation, which is able,
starting from the LLR information, to generate the estimated received message m. If m
is not affected by errors, it is expected to be equal to u. In a simulation environment,
errors can be estimated by directly comparing u and m.
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2.2 Noise and Errors

As mentioned in the previous section, the channel is typically introducing some noise su-
perimposed to the modulated signal, generating a source for possible errors at the receiver
side. In this work, the channel will be considered as a Additive-White-Gaussian-Noise
(AWGN) one. As a consequence, a received symbol can be written using the following
notation.

yk = xk + nk

nk ≈ N (0, σ2)

The superimposed noise nk is represented as a Normal distribution with average equal to
0 and variance equal to σ2. Starting from this specification, it is possible to write the
conditional probability of the received symbol yk.

P (yk|xk) =
1√

2πσ2
exp

(
−(yk − xk)2

2σ2

)
The Likelihood-Ratio for a received symbol, considering a BPSK modulation, can be de-
rived as follows.

P (yk|xk = 1)

P (yk|xk = −1)
= exp

(
2yk
σ2

)
If a logarithm is applied to the final result, the Log-Likelihood-Ratio (LLR) is defined.

L(yk) =
2yk
σ2

The LLR can be either positive or negative, its sign is embedding the information about
the received symbol yk. The magnitude of this quantity is instead related to the reliability
of the received symbol. For instance a positive and large LLR value is stating that xk is
expected to be equal to 1, with a reliable decision by the receiver.

The overall robustness of the system against errors can be evaluated through the Bit-
Error-Rate (BER), representing the amount of wrong received bits per unit time. Another
useful metric in this scenario is the Frame-Error-Rate (FER), which is considering the
amount of wrong information frames (K-length bits sequences) per unit time. Typically,
those two quantities are strongly related to the Signal-to-Noise-Ratio (SNR) of the system,
which is the ratio between the signal power and the noise power in the channel. However,
in digital systems, it is often employed a normalized version of the SNR, defined as the
ratio between the bit-energy Eb and the noise power density N0. The higher this ratio,
the lower the impact of the AWGN introduced by the channel, resulting in a lower BER.
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A complete view on the error-correction performances of a generic digital communication
system is given by graphically representing the BER as function of Eb/N0. A typical
graph is reported in figure 2.3, extracted from [4].

Figure 2.3: BER as function of Eb/N0 considering different code-rates R.

As expected, considering all the represented coderates R, the curves are presenting lower
BER values for higher Eb/N0. The higher the amount of introduced redundant information
(lower R), the better the error-correction capability.

The BER curve can be generally subdivided in 3 regions.

• Low Eb/N0: In this region, the error-correction capabilities are limited, therefore
the uncoded communication is the best option in terms of BER.

• Medium Eb/N0 (Waterfall region): In this region, the best BER reduction
benefits from the use of codes are found.

• High Eb/N0 (Error floor region): In this region, the BER reduction slope is
decreasing if compared to the waterfall region one, tending approximately to reach
the uncoded slope. This last region is not visible in the graph above.

Codes are typically compared in terms of coding gain, which is the difference, usually
expressed in dB, between two Eb/N0 points, given a specific BER.
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Chapter 3

Convolutional Codes

This chapter aims to introduce the class of convolutional codes, since they are representing
the basic building block for Turbo-Codes. Then, encoding on convolutional codes will be
covered, introducing fundamental definitions and classification metrics. In this section, the
standard LTE/UMTS convolutional code will be presented. A specific decoding algorithm,
the Log-Map, will be discussed in detail.

3.1 Codes Classification

Two main classes of ECC can be defined.

• Block codes: In this class, each message u, with length K, is mapped to a codeword
c of length N , independently of the other messages. Since each message is considered
separately, this type of codes are memory-less. The encoding operation can be
mathematically described employing a (K x N) matrix.

• Convolutional codes: In this class, each message u, with length K, is subdivided
in M sub-messages of length k, so that M · k = K. Each k information bits are
encoded on n bits. As a consequence, the final codeword length is N = M · n. The
encoding operation over k bits is taking into account the k bits to be encoded and
some information on the previous encoding operations, stored in v memory steps.
An example block scheme for a convolutional code is presented in figure 3.1.

A convolutional code can be described by 3 parameters (v, k, n). The code presented in
the example can be characterized as (2, 2, 3). The code-rate R can be evaluated in two
different ways, as K/N or k/n.
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u7 u6 u5 u4 u3 u2 u1 u0

kk

K

Encoder

c5 c4 c3 c2 c1 c0c11 c10 c9 c8 c7 c6

v1 v0

n n

N

Figure 3.1: Convolutional code block scheme, considering v = 2, k = 2, n = 3.

3.2 Encoding

Given the parameters (v, k, n), the encoding operation can be described through a poly-
nomial generator matrix, which is including (k x n) polynomials. An example of this
matrix is presented below, for a code described by the set of parameters (2, 1, 2).

G(Z) = (1 + Z−1 + Z−2 1 + Z−2)

The polynomials included in the matrix are representing a set of digital filters, described
by their transfer functions in Z domain. In this specific case, two codeword bits (n = 2)
are produced starting from a single bit from the original message (k = 1), by employing
the indicated filter functions. The maximum memory depth of the filters is fixed by the
v parameter. A block scheme for this particular encoder function is represented in figure
3.2.

Starting from the characteristics of the filters included in the matrix, a classification for
convolutional encoders can be easily derived.

• Systematic: In this type of encoders, part of the n output bits produced are an
exact copy of the original message bits k, provided at the encoder input. In other
words, the original information is part of the codeword. As a consequence, at least
one filter function included in the matrix is simply represented with a 1.
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D
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D

+

u

c1

c2

Figure 3.2: Encoding block scheme following the example polynomial generator matrix.

• Non-Systematic: This type of encoders are not embedding the original message
bits in the final codeword.

• Recursive: In this type of encoders, at least one of the filter functions in the
polynomial matrix is including a feedback loop. Equivalently, at least one filter is
characterized by an Infinite Impulse Response (IIR).

• Non-Recursive: The polynomial generator matrix for this type of encoders is in-
cluding only filters characterized by a Finite Impulse Response (FIR). Consequently,
no feedback loops are found in the implementation.

3.2.1 LTE/UMTS Standard Code

Universal Mobile Telecommunications System (UMTS) [5] and Long Term Evolution
(LTE) [6] recent standards are declaring, in the Turbo-Code section, the usage of a specific
convolutional code, characterized by the parameters (3, 1, 2). The specific polynomial
generator matrix is reported below, as well as the encoder block scheme, represented in
figure 3.3.

G(Z) =

(
1

1 + Z−1 + Z−3

1 + Z−2 + Z−3

)
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Figure 3.3: Encoding block scheme considering the LTE/UMTS standard code.

As noticeable from the polynomial equations and the block-scheme, this code is both
systematic and recursive. This standard code will be considered as a reference choice in
this work.

3.2.2 Trellis-Diagram

Since each output bit produced by the encoder is a linear combination between the encoder
input and the registers’ state, the overall encoding process can be summarized using a
Finite-State-Machine (FSM). The total number of states is 2v. For instance, the reference
code is characterized by 23 = 8 states. Given a present state, the transition to the next
state is decided by the encoder input and the present state itself. Typically, FSM are
graphically represented employing a State Transition Graph (STG), which is capable to
explicit the transitions between states in a compact way.

However, when dealing with codes, the usage of a Trellis-Diagram representation is sug-
gested. The key idea is to unroll the state transitions on a timeline, in order to explicit
all the possible paths from a state to another. With the aim of better understanding this
representation, the Trellis-Diagram for the reference code is reported in figure 3.4, just
considering a generic state transition from Sk to Sk+1.
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Figure 3.4: Trellis-Diagram for the LTE/UMTS standard code, considering a single Trellis-
section.

Given the exact starting state Sk and the encoder input uk, which is also representing the
systematic information, it is possible to define the arrival state. Moreover, information
about the calculated codeword bit c2k is provided in the representation.

The lines connecting the states are called branches. As a convention, contiguous lines are
related to branches with a systematic bit equal to 1, while dashed lines are representing
branches with a systematic bit equal to 0. The portion of a Trellis-Diagram included
between two generic time instants is defined as a Trellis-section.

Considering a K-bits source information u to be encoded, K adjacent Trellis-sections can
be used to describe all the possible state transitions that could occur during the encoding
operation.
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Figure 3.5: Trellis-Diagram for the LTE/UMTS standard code, considering K Trellis-
sections.

A combination of branches from a generic starting state to a generic arrival state is
considered a path inside the Trellis-Diagram. The red branches in figure 3.5 are defining
an example path.

3.2.3 Hamming Distance

The Hamming distance between two codewords is defined as the number of positional
bits that are different in the analyzed codewords. Given the set of codewords associated
to a specific block of source information, it is possible to define the minimum Hamming
distance, by comparing each codeword with all the others ones. The same approach can
be carried out considering the set of all the possible codewords, called codespace. An
example of Hamming distance calculation is reported below.

Hd(0010, 1000) = 2

The minimum Hamming distance has a strong connection with the error-correction ca-
pabilities of the code: the higher the distance value, the lower the expected BER, due to
the ”higher separation” in the considered set of codewords.
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3.2.4 Code Termination

Typically, when encoding a K-bits information frame u, the initial state of the encoder
is known. For instance, the internal memory elements can be initialized in order to start
from the state S0 = 0. The same assumption cannot be directly considered for the ending
state SK−1. As discussed in the next section, the information on the ending state can
potentially increase the error-correction capabilities. For this reason, a brief review of the
code termination techniques is presented.

• Direct truncation: The final state is completely decided by the frame, without any
information about it. As a positive aspect, no additional complexity is added for the
encoding/decoding operations. On the other hand, the error correction capabilities
are expected to be subjected to a degradation.

• Return-to-zero (tail-bits): At the end of the encoded frame, v additional bits
are added to the encoded information, in order to force the final state to return to
0. Those bits are also known as tail-bits. Following this approach, the final state is
known, with drawbacks on the encoder complexity and the code-rate.

• Circular codes: Following this solution, the initial state S0 is initialized to a
particular known state Sc. The code is organized such that, after encoding the
K-bits source information, the ending state will still be Sc. As an advantage, the
final state is known without adding any additional bits. On the negative side, it is
necessary to ensure that the employed code is supporting the circular sequence of
states.

3.2.5 Puncturing and High Code-Rate

Reducing the amount of redundant information increases the code-rate, introducing a ben-
efit on the useful information bit-rate. When high-throughput requirements are involved,
it is fundamental to guarantee the capability to work with high code-rates.

The immediate solution is the direct use of a specific code intrinsically characterized by a
high-rate. However, in a scenario in which it is desired to work with different code-rates,
this solution is inefficient, since a direct high-rate code is requiring the usage of a specific
encoder and decoder. Therefore, flexibility against different code-rates is not guaranteed.

A more flexible solution consists in puncturing bits/symbols from an original low-rate
code. A punctured bit/symbol will not be transmitted on the channel, increasing the
equivalent rate of the code. Typically, the puncturing operation is performed following
a puncturing pattern, expressed by an n x p matrix, where p is representing the punc-
turing period. A puncturing matrix example is reported below, converting an initial rate
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Ri = 1/2 to a final rate Rp = 4/5.

P =

1 1 1 1

1 0 0 0


The puncturing pattern choice is aiming to introduce an optimal trade-off between a high
code-rate and an acceptable error-correction performance.

At the receiver side, the decoder is aware of the puncturing pattern, and it is performing a
de-puncturing operation. As mentioned before, puncturing is a flexible solution, since both
encoder and decoder are working with the same low-rate mother-code. As a consequence,
different puncturing patterns can be applied, still employing the same encoder/decoder.

3.3 Decoding

Starting from a given encoding algorithm, it is possible to explicit how the decoding
operation will be performed. Depending on the use cases, decoding algorithms can work
with hard-information or soft-information. The former is obtained by representing any
information without giving details about its reliability, while the latter is capable to
provide a metric for the information robustness. For instance, if considering a binary
information bit b, the hard-information is expressed by simply specifying the bit value.
On the other hand, the soft-information may be represented employing a signed integer,
whose sign is representing the bit value, while the magnitude its reliability. As another
example, the Log-Likelihood-Ratio (LLR), produced by after the demodulation, can be
considered as soft-information.

The decoding algorithms can then be subdivided in two main classes.

• Soft-Input-Hard-Output (SIHO): In this class, the input information to be
decoded is required to be represented as soft-information. On the other hand, the
decoded message at the output is provided as hard-information.

• Soft-Input-Soft-Output (SISO): In this class, both the information to be de-
coded and the decoded message are required to be represented as soft-information.
As discussed in the next chapter, this category of decoders is especially convenient
if code concatenation is applied.

A list of fundamental decoding algorithms is including the Viterbi algorithm (SIHO), the
Soft-Output Viterbi algorithm (SISO), the BCJR algorithm (SISO) and its logarithmic
implementation, the Log-MAP algorithm (SISO).
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The focus in this work is centered around the Log-MAP algorithm, largely used in Turbo-
decoders architectures. Therefore, a review of this algorithm is presented, considering its
application on the reference LTE/UMTS standard code.

3.3.1 The Log-MAP Algorithm

The Log-MAP algorithm is a Maximum-A-Posteriori (MAP) based algorithm, directly
derived from the BCJR algorithm. The latter was first proposed in 1974 by Bahl, Cocke,
Jelinek and Raviv [7], which are also giving the name to the algorithm.

The BCJR algorithm aims to estimate the A-Posteriori-Probability (APP) for each possi-
ble received message symbol, considering the full sequence of LLRs information produced
after the demodulation. Then, the most likely received message symbol, given by the
Maximum APP, can be used to extract the hard-information.

As an example, considering the reference code and a BPSK modulation, each message
bit uk is associated with two codeword bits/symbols c1k and c2k. The demodulation is
producing the LLR information L1k and L2k. Starting from the LLR and other funda-
mental metrics, the algorithm is evaluating two APP, first assuming uk = 0 and then with
uk = 1. The maximum APP will include the information about the most likely received
message bit.

It is remarkable how, since MAP-based algorithms are willing to find the most likely
transmitted symbols one by one, the overall sequence of symbols generated after the
decoding operation may not correspond to a valid path inside the Trellis-Diagram.

Since the BCJR algorithm is fully derived in probability domain, many multiplications
between parameters are required. Multiply operators are not particularly suitable for
hardware implementation, especially in terms of complexity. As a consequence, the al-
gorithm can be rewritten in logarithmic domain, exploiting the logarithm property to
convert all the products in additions. Therefore, the Log-MAP algorithm is perform-
ing the same operations stated by the BCJR algorithm, but employing simpler addition
operators.

The application of the Log-MAP algorithm is strongly relying on the usage of the Trellis-
Diagram. Considering the reference code, the evaluation of the Maximum APP is per-
formed on each Trellis-section. As a matter of fact, given a generic path in the diagram, a
Trellis-section k is containing the information related to the transmitted bit uk, expressed
under the form of a codeword.

The soft-information computation for a generic message bit uk is requiring 4 steps: the
branch-metrics computation, the forward-propagation, the backward-propagation and the
soft-output computation.
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Branch-Metrics Computation

Given a Trellis-section k, including the transitions between states Sk and Sk+1, it is pos-
sible to associate a branch-metric Γ to each branch, calculated as follows.

Γ(Sk, Sk+1) = uk(Sk, Sk+1) · La(uk) +
n∑
i=1

cik(Sk, Sk+1) · Lik

Lik is representing the LLR for the codeword bit cik, while La(uk) is representing the a-
priori information, which is an additional information on the bit uk that can be handled
by the decoder. The usage of La is exploited by Turbo-Codes, in order to improve the
error-correction capabilities of the decoding algorithm.

For instance, observing the Trellis-Diagram in figure 3.4, it is possible to evaluate Γ con-
sidering Sk = 2 and Sk+1 = 5. In this case, uk = c1k = 0 and c2k = 1.

Γ(2, 5) = 0 · Lak + 0 · L1k + 1 · L2k = L2k

Before proceeding to the next step, all the branch metrics values for each Trellis-section
should be computed, with k between 0 and K − 1.

Forward-Propagation

The Trellis-Diagram is explored from left to right, recursively calculating the forward
state-metrics A(Sk). Also in this case, a generic state transition from Sk to Sk+1 can be
considered. Since the algorithm for the state metrics computation is recursive, A(Sk+1)
can be directly derived starting from A(Sk) and Γ(Sk, Sk+1) values.

A(Sk+1) = ln

(∑
Sk

eA(Sk)+Γ(Sk,Sk+1)

)

The formula, derived from the BCJR algorithm, is not suitable for a hardware implemen-
tation due to its complexity. However, it is possible to rearrange the equation employing
the Jacobian logarithm, as reported in [8].

ln(eδ1 + eδ2) = max∗(δ1, δ2) = max(δ1, δ2) + ln(1 + e−|δ1−δ2|)

It is remarkable how the max∗ operator is including a simple maximum evaluation between
the involved parameters and a correction term, that typically is pre-computed and stored
in a Look-Up-Table (LUT).

After applying the Jacobian logarithm, the state-metrics computation is indicated as fol-
lows.
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A(Sk+1) = max∗
Sk

(A(Sk) + Γ(Sk, Sk+1))

When considering the Trellis-section k, Sk+1 is representing the arrival state, for which
it is desired to compute the state metric, while Sk are all the possible starting states
connected with Sk+1 with a branch Γ(Sk, Sk+1).

For instance, always considering the figure 3.4, if Sk+1 = 5, the two possible starting
states are Sk = 2 and Sk = 3. Therefore, Ak+1(5) can be computed as follows.

Ak+1(5) = max∗(Ak(2) + Γk(2, 5), Ak(3) + Γk(3, 5))

Backward-Propagation

The Trellis-diagram is now explored from right to left, computing the backward state-
metrics B(Sk). The equation presents a strong similarity if compared to the forward-
propagation one.

B(Sk) = max∗
Sk+1

(B(Sk+1) + Γ(Sk, Sk+1))

In this case Sk+1 is the starting state in the diagram, while Sk is the arrival one.

Soft-Output Computation

The maximum A-Posteriori-Probability (APP) for a generic bit uk, considering the kth

Trellis-section, can be estimated as follows.

max∗
(Sk,Sk+1)|uk

(A(Sk) + Γ(Sk, Sk+1) +B(Sk+1))

Typically, two maximum APPs are computed, considering uk = 0 and uk = 1. The
hard-decision is derived from the maximum APP between the two computed values. Ref-
erencing the Trellis-Diagram, the branches transitioning from Sk to Sk+1 can be divided
in two groups, half of them related to uk = 0, the other half to uk = 1.

Since the algorithm is classified as SISO, the soft-information for the bit uk is computed
employing the following equation.

L(uk) = max∗
(Sk,Sk+1)|uk=1

(A(Sk) + Γ(Sk, Sk+1) +B(Sk+1))−

− max∗
(Sk,Sk+1)|uk=0

(A(Sk) + Γ(Sk, Sk+1) +B(Sk+1))
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The hard-information is computed as follows.

mk =

{
0 if L(uk) < 0

1 if L(uk) ≥ 0

A schematic view of the LM algorithm on the Trellis-Diagram is presented in figure 3.6.

... ...

A0 A1 A2 An An+1 AK-2 AKAK-1

𝚪0 𝚪1 𝚪n 𝚪K-2 𝚪K-1

B0 B1 B2 Bn Bn+1 BK-2 BKBK-1

Forward 
propagation

Backward 
propagation

Ln (An, 𝚪n, Bn+1)

Figure 3.6: A representation of the Log-Map algorithm on the Trellis-Diagram.

An important aspect to be discussed is the state metrics initialization. Since A(Sk) and
B(Sk) are evaluated recursively, the algorithm starts from the assumption that A0 and
BK are known. For this reason, it is fundamental to collect information about the starting
and the arrival states in the Trellis-Diagram. If those states are known, their state metrics
should be initialized to 0, considering the metrics for the other states initialized with the
minimum possible value (ideally −∞). For instance, if the starting state is S0 = 0, then
A0(0) = 0, while A0(1...7) = −∞. Non-initialized state metrics could lead to a BER
degradation.

3.3.2 The Max-Log-MAP Algorithm

A sub-optimal version of the Log-MAP algorithm can be derived by approximating the
max∗ operator with a simple max operator. The correction term included in the Jacobian
logarithm is neglected.

max∗(δ1, δ2) ≈ max(δ1, δ2)

A first direct advantage is found on the hardware architecture, which is not including any
correction factor LUT. Furthermore, the estimated noise variance σ completely disappears
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from the soft-output computation. As a consequence, the algorithm is more reliable
against the noise variance estimation.

A clear negative impact is found instead on the APP estimation, which is affected by
an error. However, a compensation factor, called Extrinsic-Scaling-Factor (ESF), can be
considered on the soft-output values, in order to lower the impact of this error [9]. A
typical value for the ESF is 0.75.
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Chapter 4

Turbo-Codes

This chapter aims to first introduce the concept of concatenated codes, the category to
which Turbo-Codes are belonging, highlighting their main advantages. Then, Turbo-
encoding will be covered, introducing the concept of interleaving. Proceeding in the
chapter, the basic block scheme of a Turbo-decoder will be discussed, explaining the
main organization. In the same section, the concept of extrinsic information will be
introduced. Moreover, a comparison among different decoding algorithms in a Turbo-
decoder architecture is presented, focusing on their error-correction capabilities. The last
section is including a review of the basic building blocks included in a SISO-decoder
architecture.

4.1 Turbo-Encoding

In order to improve error-correction performances, it is possible to encode the same in-
formation source relying on multiple codes. Turbo-Codes are based on this approach.
More specifically, a Turbo-Code is including multiple convolutional codes, which can be
organized in order to follow a serial or a parallel configuration.

The example shown in figure 4.1 is considering two recursive convolutional encoders oper-
ating in parallel, both employing the reference code presented in Chapter 3. The message
bits u are directly connected at the input of the first encoder RSC1. On the other hand,
before entering the second encoder RSC2, the message bits are processed by an interleaver
block, which is applying a scrambling operation, producing a different sequence of bits uπ.
More details about the interleaving process will be given proceeding through this section.

Each RSC is producing two codeword bits cs and cp per each message bit. cs is repre-
senting the systematic information, while cp the parity information. Since the systematic
information generated by the two RSC is the same, it will be considered only once in
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RSC1

RSC2π(...)

cs

cp1

cp2

u

uπ

Figure 4.1: Turbo-encoder block scheme including two parallel RSC.

the final codeword. Therefore, the Turbo-codeword c generated per each message bit is
including three contributions: 2 parity bits and 1 systematic bit.

c = [cs, cp1, cp2]

Given the code-rates R1 and R2, characterizing the convolutional codes involved, the
equivalent Turbo-code-rate can be estimated as follows.

R =
R1R2

R1 +R2 −R1R2

Moreover, if R1 = R2 = R
′
, the equivalent code-rate formula can be further simplified.

R =
R

′

2−R′

For instance, considering the Turbo-Code presented in the example, since R
′

= 1/2, the
resulting code-rate R is equal to 1/3.

4.1.1 Interleaver

As previously mentioned, the interleaver function is scrambling the message bits, apply-
ing a specific interleaving law or permutation law, generally expressed as j = π(i). The
scrambled message uπ is generated as expressed below.

u = [u0, u1, ..., uK−1]
π−→ uπ = [uπ(0), uπ(1), ..., uπ(K−1)]

Interleaving laws are invertible, introducing a de-interleaving function i = π−1(j).
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Scrambling the message bits before feeding them to the second encoder serves two main
purposes.

• Errors are typically generated in bursts by the communication channel, which is
concentrating them in specific parts of the information stream. Interleaving data is
helping to spread the errors, improving the error-correction capabilities.

• The minimum Hamming-distance characterizing the Turbo-Code is depending on
the permutation law. Interleaving functions can be specifically derived in order to
maximize this distance and improve the error-correction performances.

A further aspect detailed in this work is the impact of the permutation law on the decoder
hardware architecture, discussed in the next chapters.

Two main classes of interleavers can be defined.

1. Random based interleavers: In this class, interleavers are deriving the per-
mutation laws by employing random or pseudo-random methodologies. Since the
generation is random based, interleaving data must be stored in a proper memory.

2. Structured interleavers: In this class, interleavers are based on algebraic equa-
tions, from which the permutation laws are derived. The direct advantage is the
possibility to generate interleaving data by implementing in hardware the specific
algorithm, avoiding the memory storage. Common interleavers belonging to this
class are the Quadratic Permutation Polynomial (QPP) and the Almost Regular
Permutation (ARP) interleavers, respectively indicated in the LTE [6] and UMTS
[5] standards for Turbo-Codes.

4.2 Turbo-Decoding

The Turbo-decoding process is summarized by the block scheme in figure 4.2.

Two SISO decoders are applying a specific decoding algorithm, considering the LLR
information extracted from the received symbols. The first module SISO1 is considering
the systematic information Ls and the first parity information Lp1. Ls is also employed,
after a scrambling process, by the SISO2 module, which is also considering the second
parity information Lp2.

It is remarkable how both the SISO decoders are including a third input for the a-priori
information La. Each SISO module, starting from the soft-output information L, is able
to estimate the extrinsic information Le, which is considered as a-priori information by
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SISO1

SISO2
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π(...)
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Lp2
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m2

L2

m1

L1

La2

La1

Le2

Le1

Figure 4.2: Turbo-decoder block scheme including two SISO modules.

the other SISO decoder. As noticeable, proper interleaving and de-interleaving functions
are required to correctly perform the exchange of information.

The decoding process can be repeated iteratively, until the two SISO modules are produc-
ing the same received message. The continuous exchange of extrinsic information during
the different iterations can be visualized as a turbine movement, from which the name
Turbo-Codes.

The extrinsic information Le is computed starting from the soft-output value L, also
known as a-posteriori information, and subtracting to it the systematic and a-priori in-
formation.

Lek = Lk − (Lsk + Lak)

The performed subtractions are necessary to avoid feedback loop related issues.

It is noticeable how the two SISO decoders are performing the same operations on different
data. Therefore, it is possible to alternate the natural and interleaved decoding processes
on a single SISO module. In this case, each performed processing is called Half-Iteration
(HI). A Full-Iteration (FI) is composed by two consecutive Half-Iterations.

The number of Full-Iterations to be performed depends on the desired error-correction
capabilities. Two different approaches can be used to set this number. The first solu-
tion consists in fixing it to a specific value that ensures the BER requirements. Despite
this method is not introducing any further complexity in the hardware architecture, it is
lacking in terms of flexibility. As a matter of fact, the number of Full-Iterations can be
dynamically modified according to the information to be decoded, if a stop criterion is
introduced. Different rules, typically based on observations on the produced LLR values,
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are available to define a stop condition [10]. Introducing a stop criterion is potentially
increasing the amount of decoded bits per unit time. On the negative side, its implemen-
tation is expected to require further hardware resources.

4.3 Algorithms Comparison

It is now possible to compare the error-correction performances of different algorithms on
a Turbo-decoder architecture, based on the reference convolutional code. Different BER
curves, extracted from [4] and represented in figure 4.3, are employed to compare the
following algorithms.

• Soft-Output-Viterbi-Algorithm (SOVA)

• Max-Log-Map (MLM)

• Max-Log-Map (MLM) with ESF = 0.75

• Log-Map (LM)

Figure 4.3: BER as function of Eb/N0, considering different algorithms applied in a
Turbo-decoder architecture.

As visible, the LM and the MLM algorithms are outperforming the SOVA, especially for
higher Eb/N0 values. The approximation introduced by the pure Max-Log-Map (MLM)
algorithm is strongly affecting the achievable BER, especially if compared to the Log-Map
(LM) application. The introduction of the Extrinsic-Scaling-Factor (ESF) is locating the
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MLM algorithm in a sweet spot: the additional complexity introduced by the ESF is
expected to be small, and the BER difference compared to the LM algorithm is noticeable
only for small Eb/N0 values.

For the reasons mentioned above, the Max-Log-Map (MLM) algorithm, including the
usage of the ESF, is expected to introduce an optimal trade-off between architectural
complexity and error-correction performances. Therefore, it will be considered as a refer-
ence algorithm in the next chapters.

4.4 SISO-Decoder Building Blocks

A SISO-decoder architecture working with the Max-Log-Map (MLM) algorithm is includ-
ing three fundamental computational units, listed below. Each of the presented units is
meant to work on the Trellis-Diagram, considering a Trellis-section at a time.

• Branch Metric Unit (BMU): In this unit, channel and a-priori LLR from a
specific Trellis-section k are employed to evaluate the branch metrics Γk.

• Path Metric Unit (PMU): This unit, starting from the results provided by the
BMU, is capable to recursively perform the forward or backward state-metrics prop-
agation. Following this purpose, it is including several Add-Compare-Select (ACS)
units, able to apply the max operator between different candidates for the new
state-metrics values.

• Soft Output Unit (SOU): In this unit, starting from the data produced by the
BMU and the PMU, the a-posteriori information Lk is computed. Then, if necessary,
hard and extrinsic informations can be derived.

BMU

Lsk

Lpk

Lak

PMU

𝚪k

Alpha
memory

SOU

A(sk+1) or B(sk)

B(sk+1) + 𝚪k

A(sk)

Lk

Figure 4.4: SISO-decoder block scheme example.

A basic connection scheme for the listed logic units is depicted in figure 4.4. Since the Path
Metric Unit (PMU) is meant to perform both the forward and backward propagations,
a memory is required to store the forward propagation metrics alpha. Moreover, since
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the PMU processing is recursive, a feedback loop is necessary. As discussed later in this
work, this loop is imposing an important limitation on the critical path of the hardware
architecture.

A single half-iteration is performed by first computing the alpha-metrics, employing the
generated Γ values. Those metrics are saved one by one in the alpha memory. Then, the
PMU is recursively evaluating the beta-metrics, while feeding the SOU proper additions
between the generated beta values and the branch metrics Γ. Meanwhile, the SOU is
loading the alpha-metrics values stored in memory, in order to employ them to perform
the soft-output evaluation.

Lsk

Lpk

Lak

0 𝚪k(00)

𝚪k(01)

𝚪k(11)

max

A(sk)𝚪k

A(sk+1)

8

ACS

A(sk)B(sk+1) + 𝚪k

ACS
ACS
ACS
ACS
ACS
ACS
ACS
ACS

max
max
max
max

Lk

𝚪k(10)

BMU PMU

SOU

max
max

Figure 4.5: Internal structure of the main SISO-decoder logic units.

In figure 4.5, an overview of the internal structure for the different computational units is
given. The represented max operator is meant to be implemented by means of a subtractor
and a multiplexer. It is remarkable how each unit is including many instances of simple
logic operators, such as adders or subtractors.
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Chapter 5

Parallelization

Parallel computation is a fundamental property to be exploited in order to move architec-
tures toward high-throughputs. Therefore, this chapter aims to summarize and classify
fundamental parallelization techniques, widely used in modern architectures, giving an
overview on their main characteristics. The first section is introducing some important
Key Performance Indicators (KPI), including the definition of throughput. Then, different
levels of parallelization will be discussed one by one. Algorithm-parallelism will be ana-
lyzed, introducing the concepts of scheduling and windowing. Then, Trellis-parallelism
or high-order radix will be discussed. Proceeding in the chapter, SISO-parallelism will be
introduced and then Decoder-parallelism, considering both the concurrent and sequential
approaches. In the last section, Iteration-parallelism will be covered. Quantitative con-
siderations about the consequences on error-correction performances will be provided in
the next chapter.

5.1 Key Performance Indicators

As mentioned in the introduction, different KPI were introduced by the EPIC project,
in order to characterize decoders architectures. Part of those metrics will be employed in
this work to perform comparisons among different solutions.

• Latency: It is defined as the total amount of time required by a Turbo-decoder to
fully process an entire information frame.

• Throughput: It is defined as the number of decoded information bits per unit
time.

• Area: It is representing the total area of the Turbo-decoder architecture, typically
expressed in mm2. The area can be used to evaluate the complexity of the archi-
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tecture. An algorithmic complexity estimation can be found instead by counting
the number of elementary operators involved and considering the total amount of
required memory.

• Area Efficiency: It is computed as the ratio between the throughput achievable
by the Turbo-decoder and its total area. The area efficiency is expressing how the
area is well employed in order to reach high-throughputs. As discussed later in this
work, this metric is fundamental when high degrees of parallelization are meant to
be introduced.

• ECC performance: It is expressing the error-correction capabilities of the Turbo-
decoder, measured by the BER as function of Eb/N0.

• Code Flexibility: It is measuring the adaptability of the architecture against dif-
ferent frame-sizes K and different code-rates R. A further degree of flexibility is the
capability to apply a stop-criterion to the Full-Iteration number. As discussed in
chapter 2, employing puncturing could fully cover the code-rate flexibility require-
ment.

A summary of the required KPI is included in table 5.1, for the different use cases con-
sidered by the EPIC project [11]. It is noticeable how area efficiency requirements may
be different depending on the considered technology. The throughput requirements for
all the use cases are in the order of hundreds of Gb/s. Latency is widely ranging between
nanoseconds and milliseconds. Moreover, also the BER is presenting important variations
from case to case, ranging from 10−15 up to 10−6.

Technology 28 nm 7 nm

Use Case BER Latency Throughput Area Efficiency

[Gb/s] [Gb/s/mm2]

Data Kiosk 10−12 - 10−14 0.5 ms 1000 100 220

Virtual Reality 10−6 0.5 ms 500 50 54

Intra-Device Com. 10−12 100 ns 500 50 50

Fronthaul 10−13 1 us 1000 100 100

Back haul 10−8 1 us 250 25 25

Data Center 10−12 - 10−15 100 ns 1000 100 162

Hybrid Wireless Fiber 10−12 200 ns 1000 100 120

High Throughput Sat. 10−10 10 ms 100-1000 100 n/a

Table 5.1: EPIC KPI requirements considering different use cases.
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5.2 Baseline Architecture

Before proceeding with the introduction of several parallelization degrees, a basic Turbo-
decoder architecture is presented, without assuming any parallel computation. The 4
main steps involved in the application of the Max-Log-Map algorithm are performed one
by one in sequence, relying on the three fundamental logic units presented in Chapter
4. Moreover, multiple memories are required to store the several computed metrics, as
illustrated in figure 5.1.

BMU

Lsk

Lpk

Lak

PMU
𝚪k

Alpha
memory

SOU

A(sk+1) or B(sk)

B(sk+1)

A(sk) Lk

Gamma
Memory Beta

memory
𝚪k

𝚪k

π / π -1

Lek

Figure 5.1: Baseline Turbo-decoder architecture, obtained without exploiting parallel
computations.

First, the BMU is employed to compute K branch-metrics, processing each single Trellis-
section. The results, stored in a proper memory, are then employed by the PMU, which is
recursively computing Alpha and Beta state-metrics, performing two consecutive process-
ings on the Trellis-Diagram. Also in this case, results are stored in given memories. As
a last step, the SOU, starting from the gathered branch and state metrics, is estimating
K soft-informations, one per each Trellis-section. Moreover, also extrinsic information
values are produced.

Different Half-Iterations are performed by re-employing the same architecture, considering
the required data permutation, especially for the a-priori information.

As noticeable, this approach is dramatically affecting latency and throughput achievable
by the Turbo-decoder. Indeed, 4 separate processings on K Trellis-sections are required
to be performed. Furthermore, memory organization is poorly optimized, introducing
high storage requirements, since it is necessary to store K branch-metrics and 2K state-
metrics. In order to face these issues, several computations can be parallelized, starting
from the presented basic implementation. The analyzed degrees of parallelism are detailed
in the next sections.
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5.3 Algorithm Parallelism

It is possible to organize the algorithmic steps in a given order, called scheduling policy.
Relying on some algorithm properties, parallelism between sequences of operations can
be introduced. Two different types of scheduling choices are presented in this work, the
Forward-Backward (FB) scheduling and the Butterfly scheduling, applied to the Max-Log-
Map algorithm. Therefore, the steps to be organized are the branch metrics computation,
the forward recursion, the backward recursion and the soft-output computation.

Forward-Backward Scheduling

The block scheme depicted in figure 4.4, introduced while discussing the SISO building
blocks, is a classic example of FB scheduling. First, the Forward propagation is fully com-
pleted, saving the alpha metrics in the proper memory. Then, the backward propagation
is performed and, meanwhile, the soft-output values are computed. The branch metrics
computation is always performed during both the propagations.

A graphical representation of the FB scheduling is depicted in figure 5.2. The algorithmic
steps are represented in time, during the processing of a K-bits information frame. The
gray area is highlighting the required storage memory, in this case for the alpha metrics.
As visible, the full latency to process the frame is equal to 2K time-instants or clock
cycles. The hardware requirements for a SISO-decoder operating with this scheduling are
1 BMU, 1 PMU, 1 SOU and a K-capacity memory.

k

K

t

Ak recursion

Bk recursion 
and soft-output

memory storage

2K

Figure 5.2: Forward-Backward scheduling - graphical representation in time.

Butterfly Scheduling

The forward and backward recursions can potentially be executed in parallel, implement-
ing a Butterfly scheduling. Once both the recursions are halfway through the frame, the
soft-output computation can start, since both alpha and beta metrics are available for
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each Trellis-section. The scheduling is visually represented in figure 5.3.

k

K

t

Ak recursion

Bk recursion 
and soft-output

memory storage

K

Bk recursion

Ak recursion 
and soft-output

Figure 5.3: Butterfly scheduling - graphical representation in time.

As noticeable, the total amount of time necessary to process the entire frame is half the
Forward-Backward scheduling one, giving to the Butterfly scheduling an advantage in
terms of latency and throughput. However, the architectural complexity is expected to
be higher, since the application of this scheduling is requiring 2 BMU, 2 PMU and 2 SOU.
The required memory storage is constant if compared to the FB scheduling one.

A clear throughput-complexity trade-off is present in the choice between the presented
scheduling algorithms. Moreover, other interesting scheduling approaches are available,
as detailed in [12].

5.3.1 Windowing

In order to reduce the memory requirements for the state metrics storage, the frame to
be processed can be divided in different windows of length WS. The specific scheduling
algorithm is applied on each single window, instead of considering the full frame, drasti-
cally reducing the amount of required storage. Figure 5.4 is representing the application
of windowing to both the considered scheduling policies.

The total amount of required memory has been reduced to WS. While the hardware
complexity for the butterfly scheduling is the same, the Forward-Backward solution is
requiring an additional BMU and PMU. Table 5.2 is summarizing some fundamental
parameters for comparison purposes.

The Forward-Backward scheduling appears to be an optimal solution, assuming that the
windows size WS is small enough if compared to the frame size K. Under this assumption,
K+WS ≈ K. Therefore, the Forward-Backward solution is preferred, since it is requiring
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Figure 5.4: Windowing applied to the Forward-Backward and Butterfly scheduling poli-
cies.

Quantity Forward-Backward Butterfly

Latency K+WS K

Memory size WS WS

BMU number 2 2

PMU number 2 2

SOU number 1 2

Table 5.2: Comparison table on windowing applied with Forward-Backward and Butterfly
scheduling.

only one SOU. On the contrary, if K and WS are comparable and high-throughputs are
desired, the Butterfly solution is to be considered.

Observing figure 5.4, the alpha metrics recursion is continuously performed without any in-
terruption, as originally stated by the Max-Log-Map algorithm. On the contrary, the beta
metrics propagation is not continuous, generating a degradation on the error-correction
performances. In order to partially solve this issue, the beta propagation must be initial-
ized with reliable values per each window. There are two main available techniques that
can be used to fulfill this purpose: the Acquisition and the Next-Iteration-Initialization
(NII), both represented in figure 5.5.

The Acquisition is starting the recursive beta-metrics calculation before the beginning of
a given window, as represented by the dashed lines. Therefore, the reliability of the beta
initialization values is increased, with a drawback on the hardware complexity, since a
further BMU and PMU are required.
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Figure 5.5: Acquisition and NII - graphical representation in time.

The Next-Iteration-Initialization is storing, for each window, the final beta metrics from a
generic iteration, in order to use them as initialization values for the next iteration. Also in
this case, the degradation on the error-correction performances is partially solved, with a
drawback on the required memory storage, which is now including a memory contribution
for the beta metrics.

In order to explicit the best solution from case to case, it is necessary to compare the
impact of the additional logic against the additional memory, considering the BER benefits
from the two approaches.

Moreover, if the improvements from a single solution are not enough, it is possible to
combine them. Observing the NII case in figure 5.4, the beta metrics in the first iteration
are not correctly initialized. Therefore, Acquisition could be used to solve this issue and
provide a reliable initialization.

In this work, the Forward-Backward scheduling will be considered as a reference choice,
since an information frame is generally expected to include a large amount of windows.
Moreover, the usage of the computational units is efficient, since, during the central part
of the processing, they are always performing computations. On the other hand, the
SOU in the Butterfly scheduling are not performing any useful computation for half the
processing time.

Regarding the initialization choice, the Next-Iteration-Initialization will be considered
as a reference. The required amount of additional memory is not expected to be large.
Moreover, the Acquisition is increasing the amount of frame data required to be available
at the same time, which is negatively impacting on the memory organization.
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5.4 Trellis Parallelism

As mentioned before, the pure Max-Log-Map algorithm is expected to work with single
Trellis-sections, when performing the forward/backward propagation and when evaluating
the soft-output values. In other words, each algorithmic step is involving a single Trellis-
section, defining a radix-2 approach. It is possible to process multiple adjacent Trellis-
sections at the same time, considering higher-order radix approaches. A radix-N decoder
is meant to process log2(N) Trellis-sections at the same time.

For instance, as depicted in figure 5.6, given a certain amount of time instants, a radix-4
architecture is able to process double the Trellis-sections if compared to a radix-2 archi-
tecture, potentially doubling the throughput.

K

t

K+WS

WS

Radix-2
k

K

t

K+WS

WS

Radix-4
k

Figure 5.6: Radix-4 benefits against a Radix-2 architecture.

A schematic view of the radix-4 approach in a Trellis-Diagram is illustrated in figure 5.7.
It is noticeable how the operations performed by the algorithm are the same, but consider-
ing aggregated Trellis-sections, characterized by aggregated branch metrics. For instance,
a radix-4 branch metric is containing informations about two consecutive Trellis-sections.
Given a combined branch, which is highlighting a path composed by 2 basic branches, the
equivalent branch metric value is given by the sum between all the radix-2 branch met-
rics in the path. Therefore, considering all the combinations, a larger amount of branch
metrics is involved in a radix-4 architecture.

Γ(Sk, Sk+2) = Γ(Sk, Sk+1) + Γ(Sk+1, Sk+2)

Consequently, the complexity of the forward/backward propagations is increased, since
they need to work with a larger amount of paths to be discriminated. The equations for
a radix-4 architecture are reported.
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Figure 5.7: Radix-4 approach represented on a Trellis-Diagram.

A(Sk+2) = max∗
Sk

(A(Sk) + Γ(Sk, Sk+2))

B(Sk) = max∗
Sk+2

(B(Sk+2) + Γ(Sk, Sk+2))

Finally, also the soft-output computation is more complex, since multiple soft-informations
are meant to be evaluated at the same time. In the radix-4 case, it is necessary to simul-
taneously perform similar computations for two message bits, with a higher amount of
involved paths.

L(uk) = max∗
(Sk,Sk+2)|uk=1

(A(Sk) + Γ(Sk, Sk+2) +B(Sk+2))−

− max∗
(Sk,Sk+2)|uk=0

(A(Sk) + Γ(Sk, Sk+2) +B(Sk+2))

L(uk+1) = max∗
(Sk,Sk+2)|uk+1=1

(A(Sk) + Γ(Sk, Sk+2) +B(Sk+2))−

− max∗
(Sk,Sk+2)|uk+1=0

(A(Sk) + Γ(Sk, Sk+2) +B(Sk+2))

Also in this case, a trade-off between better throughput and higher-complexity is present.
The larger complexity is potentially affecting the area efficiency and the critical path of
the decoder architecture. In order to understand which rules could guide to the best
choice in terms of radix order, a more detailed analysis on this approach is presented in
this work.
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It is remarkable how the use of high radix orders is not compromising the error-correction
capabilities of the Turbo-decoder.

5.5 SISO Parallelism

A further level of parallelism is introduced by splitting the K-bits information frame into
N Kp-bits sub-frames. Each sub-frame can be processed in parallel by different SISO
modules, consequently increasing the throughput of the architecture. Different approaches
are available.

Concurrent SISO

As shown in figure 5.8, the key idea is to include multiple SISO modules operating in
parallel on different sub-frames. The total latency has been reduced from K + WS to
Kp + WS for a single half-iteration. Consequently, the throughput is also receiving
benefits from this configuration.
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No concurrent-SISO
k

K

t

2Kp

Kp

concurrent-SISO
k

K

t

Kp+WS

Kp

concurrent-SISO with 
windowingk

WS

Figure 5.8: SISO concurrency, considering FB scheduling and windowing.

A block scheme for the SISO organization is depicted in figure 5.9, considering a single
half-iteration. As visible, N SISO decoders are required.

Sequential SISO

This approach is organizing Kp SISO modules in a pipeline, in order to have the capa-
bility to process different sub-frames at the same time. Each of the Kp steps necessary
to process the sub-frame is associated to its own pipeline segment. As a consequence, it
is possible to enter a new sub-frame in the architecture each clock cycle. The resulting
processing is shown in figure 5.10.
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Figure 5.9: Concurrent SISO half-iteration block scheme.
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Figure 5.10: Sequential SISO considering FB scheduling and windowing.

Also in this case, an important speed-up factor is present, which is improving latency and
throughput. The SISO organization block scheme is depicted in figure 5.11. Since the soft-
output computation starts halfway through the sub-frame, the first Kp/2 SISO modules
are not requiring to include a SOU. Indeed, the name SISO module has been employed
for sake of simplicity, even if the unit is including only a part of the computational logic
units.

Each SISO module is forwarding the useful informations to the next modules by employing
pipelines, in order to perform the algorithm. Consequently, memories to store alpha/beta
metrics are not required.

A fundamental drawback to be discussed is the degradation of the error-correction per-
formances, when SISO-level parallelism is employed. Similarly to the windowing concept,
also in this case the original Trellis is subdivided, partially losing the continuity of the
metrics computation for both alpha and beta metrics. A quantitative analysis of this
degradation is proposed in the next chapter.
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Figure 5.11: Sequential SISO half-iteration block scheme.

However, employing sub-frames is introducing an important advantage in terms of flexibil-
ity, giving the possibility to adapt the decoding process to frame sizes which are multiple
of Kp. In order to ensure this property, a larger complexity is expected on the permu-
tation related hardware, since it is necessary to adapt the interleaving function to the
frame dimension. Typically, two solutions are available: the first one consists in involv-
ing multiple smaller interleavers that are capable to work on Kp-bits sub-frames. This
approach has a negative impact on the error-correction performances, especially when
frames larger than Kp are processed. The second solution consists in giving full control
on the interleaving law, employing flexible hardware (generally crossbars). The BER is
not affected in this case, since the permutation is completely customizable. However, a
large impact on the hardware complexity is expected. Hybrid solutions are also available,
looking for a trade-off between error-correction capabilities and complexity, as suggested
in [13].

Both the concurrent and sequential approaches are valid solutions to improve the through-
put. Moreover, as pointed out in Chapter 7, important State-of-the-Art architectures are
derived employing SISO-level parallelism. In this work, the concurrent SISO parallelism
will be considered as a reference choice, since it is maintaining intact the original recur-
sive nature of the SISO processor. However, the best option typically depends on the
Turbo-decoder specifications, such as frame size and sub-frame size, and consequently it
should be properly selected from case to case.

Shuffled SISO

As presented in the first Turbo-decoder example, in figure 4.2, there is the possibility to
perform the natural and the interleaved processing in parallel, if the total number of SISO
modules is doubled. Following this approach, two half-iterations can be performed at the
same time, reducing the latency and improving the throughput. The main drawback is
on the hardware complexity.
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5.6 Decoder Parallelism

A further degree of parallelization can be introduced by including different Turbo-decoders
processing F frames at the same time. Also in this case, considering a half-iteration, it is
possible to organize the Turbo-decoder instances in a concurrent fashion or in a sequential
one, as shown in figure 5.12.

frame 3

frame 2

frame 1

frame 0

Turbo 3

Turbo 2

Turbo 1

Turbo 0K

frame 0

frame 1

frame 2

frame 3

Turbo 0
(w/o SOU)

D

D

D

D ... Turbo Kp-1
(w SOU)D

Concurrent Sequential

Figure 5.12: Concurrent and sequential Decoder-parallelism block schemes, considering a
half-iteration.

As noticeable, the organization is similar if compared to the SISO-level parallelism. More
specifically, the Turbo modules shown in the sequential approach are composed by many
sequential-SISO units operating in parallel on different sub-frames. In this work, the
choice is focused on the concurrent approach: since all the Turbo-decoders are performing
the same algorithmic steps in parallel, some elements in the architecture, like the control
signals or the memory access addresses, can be shared among the different instances,
reducing the overall complexity. Moreover, it is expected for the different layers of pipeline
registers included in the sequential approach to have a non-negligible impact on the area.

5.7 Iteration Parallelism

A last parallelization level can be explored, considering multiple iterations performed
on different frames at the same time. The Decoder-level parallelism, presented in the
previous section, is meant to process the same half-iteration on multiple frames. As a
consequence, in order to fully complete the decoding process, it is necessary to reuse the
architecture multiple times until the correct number of iterations is performed.

The architectures presented in figure 5.12 can be spatially parallelized, interposing in-
terleaver and de-interleaver functions between them, as shown in figure 5.13. Iteration
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parallelism can be also applied on plain Turbo-decoders architectures, without considering
any Decoder-level parallelization.
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Figure 5.13: Iteration parallelism applied to Decoder-parallelized architectures.

The powerful advantage, for the cases shown in figure 5.13, is the possibility to introduce
new frames in the architecture avoiding to wait for a specific amount of iterations to be
performed.

The throughput benefits come with some drawbacks: the complexity is increasing pro-
portionally to the half-iterations number, due to the additional Turbo-decoders and inter-
leaver blocks. Moreover, the total amount of half-iterations is assumed to be fixed, which
is denying the possibility to easily exploit the usage of a stop criterion, an important
technique to increase the throughput.
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Chapter 6

BER Performance

This chapter aims to analyze the quantitative impact of some architectural choices on
the error-correction performances, giving the guidelines on how to select Turbo-decoders
specifications, in order to maintain an acceptable Bit-Error-Rate. All the presented esti-
mations are performed employing a Turbo-decoder model written in C-language 1, from
which BER data can be extracted and then graphically represented. The last section is
fully dedicated to the quantized representation of parameters in a Turbo-decoder archi-
tecture, considering the Max-Log-Map algorithm.

6.1 BER Analysis

In this section, the BER variation will be analyzed as function of the window size, the
sub-frame dimension, the channel LLR bitwidth, the employed permutation law and the
max∗ operator correction approach. The C-model is capable to emulate a concurrent
SISO architecture, including the usage of windowing.

The parameters indicated in table 6.1 will be considered as default values, when not under
analysis. As a unique exception, when comparing the permutation laws, the frame-size is
lowered to 4096 bits, for compatibility purposes to both the LTE/UMTS standards.

1Turbo-Decoder model available at the VLSI group - Politecnico di Torino
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Parameter Symbol Default Value

Frame-size K 6144 bits

Sub-Frame-size Kp 256 bits

Window-size WS 32 bits

Channel LLR bits w 6 bits

Iterations nI 4

Max∗ correction - ESF

Permutation law - LTE standard

Table 6.1: Reference C-model parameters for the BER analysis.

6.1.1 Window Size

As mentioned during the introduction of windowing, it is expected for smaller windows
to have a negative impact on the error-correction. Different sizes WS have been tested
on the reference model, tracking the BER as function of Eb/N0. The plot in figure 6.1 is
summarizing the results.
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Figure 6.1: BER variation as function of the window size WS.

As visible, the major benefits from increasing the window size are found around 32 bits
or 64 bits. The impact of larger windows on the BER is significantly smaller. For this
reason, 32 bits can be considered as an optimal choice, introducing an acceptable trade-off
between memory storage requirements and error-correction performances.
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6.1.2 Sub-Frame Size

Similarly to windows, also introducing sub-frames is producing a BER degradation, as
shown in figure 6.2.
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Figure 6.2: BER variation as function of the sub-frame size Kp.

Since sub-frames are larger than windows, their impact is less noticeable. From the
reported graph, it is possible to observe that above sizes of 128 bits or 256 bits the
BER improvements are almost not noticeable. Therefore, considering the scenario under
analysis, an acceptable reference value for the sub-frame size could be around 256 bits.

6.1.3 Channel-LLR Bitwidth

As detailed in the next section, the amount of bits over which the channel LLRs are
represented is affecting the accuracy of other fundamental quantities, such as the branch
metrics or the state metrics. A larger bitwidth is positively affecting the BER, introducing
higher precision in the representation. On the other hand, both logic and the memory
areas are expected to proportionally increase with larger bitwidths.

As shown in figure 6.3, working below 5 bits is significantly affecting the BER. On the
contrary, above 6 bits, the improvements are not noticeable from the graph, since the
curves are superimposed. A slight difference is found between 5 bits and 6 bits, especially
for high Eb/N0 values.
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Figure 6.3: BER variation as function of the channel LLR bitwidth.

Representing the channel LLR information on 6 bits is an optimal choice, avoiding to
introduce BER degradation, while maintaining an acceptable complexity.

6.1.4 Permutation Law

The choice of the permutation law can significantly affect the achievable BER. Therefore,
the LTE and UMTS standard permutations have been compared. Respectively, they are
considering a Quadratic Permutation Polynomial (QPP) interleaver and a Almost Regular
Permutation (ARP) interleaver.

Observing figure 6.4, it is noticeable how the two curves are superimposed, considering the
default parameters. Therefore, choosing a specific permutation law between the presented
ones is not expected to introduce any significant improvement.

As mentioned after introducing the interleaving concept, permutation laws are object of
study, mainly due to their impact on the error-correction capabilities. As a consequence,
it is important to consider the possibility for new standards to be introduced in the next
future.
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Figure 6.4: BER variation as function of the permutation law.

6.1.5 Max* Correction

The max operator employed in the Max-Log-Map algorithm is derived from the max*
operator, by neglecting the Jacobian logarithm correction factor, which is included by
the Log-Map algorithm employing the usage of a LUT. In order to partially overcome
the BER degradation, an Extrinsic-Scaling-Factor (ESF) can be employed in the MLM
algorithm, in order to compensate the approximation. Three possible cases are compared
in figure 6.5.

As expected, the ESF is moving the BER curve toward the Log-Map one, which is employ-
ing the LUT correction factor. The ESF will be considered as a reference choice in this
work, in order to improve the BER, while maintaining the usage of the MLM algorithm.
Moreover, the cost in terms of additional complexity is expected to be limited, since it is
simply necessary to scale the soft-output values.

6.2 Quantization and Bitwidths

It is fundamental to define guidelines to determine the amount of bits over which quanti-
ties are represented in the hardware architecture, also called bitwidths, considering their
impact on both the BER and the complexity.

The starting point are the LLRs derived from the channel. As a first step, a quantization
operation needs to be considered, in order to represent the LLRs on two’s complement
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Figure 6.5: BER variation as function of the max* correction approach.

fixed-point numbers, within a given amount of bits. Then, if necessary, quantized values
are required to be saturated. The Log-Likelihood-Ratio equation is recalled below.

L(yk) =
2yk
σ2

Since the MLM algorithm is not affected by the variance estimation, the quantization will
be applied on yk, which is expected to range in a generic interval [−A,A). As proposed in
[10], a typical value for A, considering a Turbo code-rate equal to 1/2, is 1.2. As the rate
increases, the A parameter, known as interval of quantization, is expected to increase.
The quantization and saturation functions are reported below, considering w as the total
amount of selected bits for the representation.

yQk = sat

(⌊
yk

2w−1 − 1

A
+ 0.5

⌋
, 2w−1

)

sat(a, b) =


a if a ∈ [−b, b− 1]

b− 1 if a > b− 1

−b if a < −b

Typical w values are ranging from 3 to 6 bits [10]. As mentioned in the previous section,
the reference value considered in this work is w = 6 bits. The extrinsic information Le
is typically quantized in the range [-2A, 2A), as reported in literature [10]. Therefore,
starting from w, Le will be quantized over w + 1 bits.
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Knowing the quantization for the channel LLR and the extrinsic information, the branch
metrics bitwidth can be derived. Considering the radix-2 case, the worst-case branch
metric is given by the sum between Ls, Lp and La, respectively expressed on w, w and
w + 1 bits. Therefore, the correct bitwidth for the branch metrics is w + 2. When
higher radix orders are considered, the quantization is expected to be performed on larger
intervals. For instance, a radix-4 branch metric is requiring w+3 bits, since it is defined as
the sum between two radix-2 branches. The table 6.2 is reporting the expected bitwidths
up to a radix-16 architecture.

Radix order wΓ

2 w+2

4 w+3

8 w+4

16 w+5

Table 6.2: Branch metrics bitwidths as function of w, considering different radix orders.

Regarding the state metrics quantization, two aspects need to be considered. First, due
to the recursive propagations, their value is expected to increase proceeding through the
Trellis-Diagram. Second, the bitwidth should be set in order to preserve the information
about the differences computed when evaluating the next state metrics or the soft-output
values.

A possible solution to this problem is found by employing the hardware modulo normal-
ization [14]. Given a set of fixed-point numbers, expressed on w bits, the information
about their difference ∆ is preserved if the following condition is met.

∆max ≤ 2w−1 − 1

As shown in figure 6.6, where the full range of values representable on w bits is reported
on a circle, the required condition is met if all the numbers in the given set are falling
inside a precise half-circumference. In the examples, two set of values are represented,
respectively in green and red. The former is respecting the given condition, as a con-
sequence w bits are enough to preserve the difference between those numbers. On the
other hand, considering the red set, w bits are not sufficient to correctly maintain the
information on the difference.

If the given condition is met, the continuous increment of the metrics during the propaga-
tion is correctly handled, since adders will automatically perform a modulo normalization
over a fixed amount of bits, when the overflow condition is reached. This solution is opti-
mal also from the complexity point of view, since it is not requiring any large additional
hardware component to be included.
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Figure 6.6: Modulo normalization condition graphically represented.

It is now necessary to select the bitwidth in order to fulfill the condition. During the
application of the Max-Log-Map algorithm, the worst-case difference ∆max is found when
evaluating the soft-output values, as reported in the following equation.

L(uk) = max∗
(Sk,Sk+1)|uk=1

(A(Sk) + Γ(Sk, Sk+1) +B(Sk+1))−

− max∗
(Sk,Sk+1)|uk=0

(A(Sk) + Γ(Sk, Sk+1) +B(Sk+1))

The computation is considering two times the difference between two state metrics ∆SM

and a difference between two branch metrics ∆Γ. Therefore, ∆max can be estimated as
follows.

∆max = 2∆max
SM + ∆max

Γ

The maximum branch metrics difference is found considering a first metric computed with
all the codeword bits set to 1 and a second metric obtained from a all-zeros codeword. The
table 6.3 is reporting ∆max

Γ considering different radix orders, as function of the channel
information bitwidth w.

Regarding the maximum state metrics difference, it is possible to prove that ∆SM is
bounded when performing the metrics propagation in the Trellis-Diagram [14]. A pos-
sible way to derive this boundary is by simulating the forward or backward recursion,
considering a zero initial condition for the state metrics [12]. The simulation is carried on
until a steady state is reached. Then, ∆max

SM is corresponding to the maximum observable
difference. Employing this technique produced a result equal to 4 · 2w, considering the
standard LTE/UMTS code [4].
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Radix Order ∆max
Γ

2 2w+1

4 2 · 2w+1

8 3 · 2w+1

16 4 · 2w+1

Table 6.3: ∆max
Γ as function of w considering different radix orders.

It is now possible to apply the modulo normalization condition in order to compute the
state metrics bitwidth wSM .

wSM = dlog2(2∆max
SM + ∆max

Γ + 1) + 1e

All the obtained results will be employed in this work in order to set the bitwidths for
all the involved quantities, starting from w and considering different radix orders. The
results for w = 6 bits are summarized in table 6.4.

Radix Order wext wΓ ∆max
Γ ∆max

SM ∆max wSM

2 7 bits 8 bits 128 256 640 11 bits

4 7 bits 9 bits 256 256 768 11 bits

8 7 bits 10 bits 384 256 896 11 bits

16 7 bits 11 bits 512 256 1024 12 bits

Table 6.4: Fundamental bitwidths summarized for different radix orders, considering w =
6 bits.
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Chapter 7

State of the Art Architectures

This chapter aims to review some fundamental modern Turbo-decoders architectures,
focusing on the employed parallelization degrees and pointing out their main character-
istics. The analyzed architectures are the Parallel-MAP (PMAP), the X-MAP (XMAP),
the Fully-Parallel-MAP (FPMAP) and the Unrolled-X-MAP (UXMAP). The architec-
tures will be compared in terms of throughput, latency and logic complexity. The latter
is estimated considering the total amount of logic units found in the architecture. As
highlighted in this work, this kind of complexity estimation is not fully descriptive, since
memory organization plays an important role in Turbo-decoders.

7.1 PMAP

The Parallel-MAP (PMAP) architecture [15] is mainly focused on the usage of concurrent-
SISO parallelism. The original K-bits frame is subdivided in Kp-bits sub-frames. The
architecture is meant to process those sub-frames in parallel employing N = K/Kp SISO-
modules. Moreover, algorithmic level parallelism (scheduling) and windowing are meant
to be employed in this type of architecture.

The block scheme in figure 7.1 is including a total of 4 PMAP-cores. Moreover, a Forward-
Backward scheduling policy is employed, including 2 windows per each sub-block. A first
approximation for latency, throughput and logic complexity is given by the following
equations, considering the working clock frequency f , the clock period T = 1/f and a
generic amount of half-iterations nHI .

Throughput (PMAP) =
K · f

(Kp+WS) · nHI
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Figure 7.1: Scheduling and block scheme organization for the PMAP architecture.

Latency (PMAP) = (Kp+WS) · nHI · T

Logic Complexity (PMAP) ∝ K/Kp · (2 ·BMU + 2 · PMU + SOU)

It is noticeable how increasing the number of sub-frames is generating a trade-off between
better throughput and latency and worse complexity. On the other hand, reducing the
window size is apparently increasing the throughput without affecting the complexity.
However, WS is affecting the internal architecture of a SISO processor, in particular the
memories for the NII and the alpha metrics, as well as the achievable error-correction
performances. For this reason, the presented equations are to be intended as a rule of
thumb to understand the general effect of the parameters on the SISO-level organization.

Following the Forward-Backward scheduling, it is expected for the architecture to include
2N BMU, 2N PMU and N SOU. In case Butterfly scheduling is employed, N additional
SOU would be required.

Focusing on flexibility, the architecture can be adapted to work on frames with multiple
sizes, as explained in Chapter 5. Moreover, puncturing is ensuring the adaptability on
multiple code-rates. As a last aspect, also the half-iterations number is customizable by
introducing a stop-criterion.

7.2 XMAP

The X-MAP (XMAP) architecture [16] is exploiting a sequential-SISO parallelism, in
addition with a Butterfly scheduling. Also in this case, Kp-bits sub-frames are defined,
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which are processed by the XMAP-core, depicted in figure 7.2.
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Figure 7.2: Scheduling and block scheme organization for the XMAP architecture.

As visible, it is possible to start decoding a new sub-frame each clock cycle. As a differ-
ence with respect to the reference sequential-SISO parallelism, presented in Chapter 5,
the XMAP core is including half the expected amount of BMU. The branch metrics eval-
uated during the first part of the processing (orange squares) are forwarded to the second
scheduling region, where soft-output information is computed, employing pipelines. Since
also the state metrics are required to be forwarded, additional pipelines are included.
Following this approach, the SOU can access the required information to estimate the
a-posteriori LLRs. Throughput, latency and logic complexity can be first approximated
considering the equations below.

Throughput (XMAP) =
K · f

(Kp+N − 1) · nHI

Latency (XMAP) = (Kp+N − 1) · nHI · T

Logic Complexity (XMAP) ∝ Kp · (BMU + 2 · PMU + SOU)

Increasing the amount of sub-frames is not always improving latency and throughput.
The main reason is the dependency from the total number of sub-frames N, found in
the latency and throughput estimations. The complexity is now proportional to Kp, in
opposition with the inverse proportionality found for the PMAP architecture.

As noticeable from the equations, the throughputs achievable by the PMAP and the
XMAP architectures are expected to be similar. As a rule of thumb, if Kp � N, the
PMAP architecture is expected to introduce a lower complexity in terms of logic units.
On the contrary, if Kp � N, the XMAP is introducing less computational units.
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In terms of flexibility, also this architecture can be adapted to handle multiple frame-sizes
and different code-rates. Moreover, also a stop-criterion can be introduced.

7.3 FPMAP

The Fully-Parallel-MAP (FPMAP) architecture [17] can be considered as an extreme
application of the concurrent-SISO parallelism, considering a sub-frame size Kp equal to
1. Moreover, this architecture is also exploiting the usage of shuffled-SISO decoders in
order to further improve the throughput. As a consequence, given the frame size K, the
total number of SISO processors is 2K.

Each SISO decoder has the capability, considering a single Trellis-section, to compute the
branch metrics, perform the alpha/beta propagations and compute the extrinsic infor-
mation. More specifically, the evaluated state metrics are exchanged to the neighboring
SISO modules, as shown in figure 7.3.

SISO SISO SISO SISO... SISOSISO

𝚷/𝚷-1

SISO SISO SISO SISO... SISOSISO

A-priori informationBackward propagationForward propagation Extrinsic information

Figure 7.3: Block scheme organization for the FPMAP architecture.

This specific SISO organization is expected to complete a single iteration in a clock cy-
cle, considering the use of shuffled decoding and the dimension 1 sub-frames. Latency,
throughput and logic complexity estimations are reported below.

Throughput (FPMAP) =
K · f
nI

Latency (FPMAP) = nI · T
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Logic Complexity (FPMAP) ∝ 2K · (BMU + 2 · PMU + SOU)

As noticeable, the logic complexity is now depending on the frame size. Therefore, the
required amount of logic units is expected to be higher if compared to the two previous
architectures. The throughput is bounded by the number of iterations, which is expected
to be dramatically increased, due to the BER degradation introduced by the small sub-
frame size. This last issue is drastically limiting the area efficiency of the architecture.

The FPMAP approach is presenting less flexibility in terms of frame size, due to the
architecture’s organization. However, puncturing and stop-criterions are still available.

7.4 UXMAP

The Unrolled-X-MAP (UXMAP) architecture, reviewed in [18], is an evolution of the
XMAP approach, in which a sequential decoder-level parallelization is employed, by in-
cluding multiple XMAP cores in parallel in order to process multiple frames. Moreover,
also iteration parallelism is considered, by spatially replicating the overall structure and
including interleaving/de-interleaving functions, as depicted in figure 7.4.

XMAP 
CORE 3

XMAP 
CORE 2

XMAP 
CORE 1

XMAP 
CORE 0

𝚷

XMAP 
CORE 3

XMAP 
CORE 2

XMAP 
CORE 1

XMAP 
CORE 0

𝚷-1

XMAP 
CORE 3

XMAP 
CORE 2

XMAP 
CORE 1

XMAP 
CORE 0

𝚷 ...

Half-iteration 1 Half-iteration 2 Half-iteration 3

Figure 7.4: Block scheme organization for the UXMAP architecture.

This architecture is capable to start decoding a new frame each clock cycle, reaching the
maximum throughput among the presented State-of-the-Art architectures. Throughput,
latency and logic complexity can be estimated as follows.

Throughput (UXMAP) = K · f
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Latency (UXMAP) = nHI ·Kp · T

Logic Complexity (UXMAP) ∝ nHI ·N ·Kp · (BMU + 2 · PMU + SOU)

As visible, the logic complexity is negatively affected by this architectural approach.
Moreover, interleaving and de-interleaving functions are typically hardwired between the
different stages, affecting the flexibility on the frame-size. In order to partially solve
this last issue, hybrid interleaving connections, including a degree of flexibility, can be
employed [13]. Furthermore, since the number of half-iterations is meant to be fixed,
stop-criterions are not expected to be applied in this scenario. On the other hand, the
architecture is fully flexible on the code-rate, since puncturing can be employed.

7.5 Conclusions

A quantitative comparison between practically implemented architectures is presented in
table 7.1, which is including the evaluation of some fundamental KPI.

Reference [19] [20] [21] [22]

Architecture PMAP XMAP FPMAP UXMAP

Frame-size 6144 6144 6144 128

Sub-Frame-size 384 32 1 32

Window-size 32 32 - -

Radix 4 4 2 4

Max iterations 5.5 7 39 4

Technology [nm] 65 28 28 28

Frequency [MHz] 410 625 252 800

Throughput [Gb/s] 1.0 1.1 39.86 102.4

Area [mm2] 2.5 0.49 24.09 16.54

Area efficiency [Gb/s/mm2] 0.41 2.3 1.65 6.20

Table 7.1: Comparison table between different implemented architectures, considering the
PMAP, XMAP, FPMAP and UXMAP approaches.
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A first noticeable difference is found in the throughputs achievable by the FPMAP and
the UXMAP approaches, far higher if compared to the PMAP and the XMAP ones. This
aspect is highlighting the importance of improving the degrees of parallelization, in case
very high-throughputs are required.

It is remarkable how the XMAP-based architectures are limiting the sub-frame size, in
order to receive benefits from it, in terms of low complexity. For the same reason, the
UXMAP implementation is also working with a much shorter frame, if compared to the
other solutions. Typically, the PMAP and the XMAP architectures are expected to reach
similar throughput performances, around 1 or 2 Gb/s [23]. It is important to consider
that the throughput estimation is strongly related to the working clock frequency involved
and, as a consequence, on the critical path, which is depending on the selected technology.

As expected, considering the FPMAP example, throughput and area efficiency are strongly
limited by the large required number of half-iterations, introduced with the aim to reach
an acceptable error-correction performance. The UXMAP architecture is outperforming
the other presented solutions in terms of throughput, mainly due to the exploitation of
several degrees of parallelization, which are generating an important drawback on the
area.

In order to directly compare the area occupation, it is necessary to consider architectures
implemented on the same technology. If this condition is not met, a scaling factor could
be applied, aiming to introduce a first approximation. As a consequence, also the area
efficiency is affected by the technological node.

High-radix approaches can be applied to all the architectures presented in this chapter.
As visible from the examples in table 7.1, the radix-4 approach is typically considered as
an optimal choice, due to the limited increment in the logic complexity, as well as the
throughput benefit.

Studies on the UXMAP architecture have shown that the overhead in logic complexity
introduced by radix-8 and radix-16 approaches is exceeding the saved area due to the
lower amount of pipelines, resulting in a less efficient choice [18]. As a consequence,
radix-orders higher than 4 should be automatically discarded.

As stated in the introduction, this work aims at finding if the same consideration can be
extended on PMAP-based architectures or if higher-radix orders are available. Moreover,
the suitability of a Concurrent-PMAP architecture is investigated, including multiple
PMAP decoders working in parallel.
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Chapter 8

High-Radix PMAP Exploration

As mentioned in the previous chapters, introducing high degrees of parallelism is a key-
point to move Turbo-decoder architectures toward high throughputs. When paralleliza-
tion is employed, especially at SISO or Decoder level, area efficiency is the reference
indicator to compare different solutions. For instance, if SISO-level parallelization is em-
ployed, the most efficient SISO architecture allows to maximize the amount of modules
in a given area, consequently maximizing the achievable throughput. The same consider-
ation can be extended to multiple Turbo-decoders.

Important informations can be derived by comparing State-of-the-Art implementations.
However, this comparison could not provide a full picture, since the solutions under anal-
ysis could be based on different specifications and realized on different technologies. Fol-
lowing these considerations, it could be difficult to study the effect of the employed algo-
rithmic or architectural choices separately. In order to introduce a fair comparison and
explore the solutions space, a generalized approach is proposed in this work. The aim
of this chapter is to develop an analysis tool capable to accomplish specific comparisons
among different architectures, given their specifications. The objective is to explicit the
guidelines to select the best design choices in order to maximize throughput and area
efficiency.

The first section will introduce a possible methodology to define a comparison model.
The presented steps will be employed in the successive sections to explore area efficiency
and throughput on different radix orders, including SISO and Decoder level parallelism.
Assumptions on the developed model will be declared, as well as the included degrees
of freedom. Proceeding in the chapter, logic area, memory area and throughput will be
discussed in separated sections, introducing proper estimation models for each quantity.
Then, uncertainty estimation techniques will be discussed. In the last part of the chap-
ter, some details on the complete architectural model will be presented, including the
advantages of a Concurrent-PMAP architecture.
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8.1 Methodology

As a first step, it is necessary to list the indicators that will be employed to compare
different architectures. Considering each indicator, a mathematical model is derived.
Each parameter contained in those models is required to be estimated by the analysis
tool.

The next step consists in identifying the solutions space, highlighting the full set of ar-
chitectures to be compared. As detailed in chapter 5, there are many available choices
just considering the available parallelization degrees. Many others aspects can be studied,
such as the usage of different computational blocks or different memory access policies.
Furthermore, also different decoding algorithms can be selected. Each analyzed solu-
tion needs to be detailed enough in order to explicit all the parameters required for the
indicators’ computation.

With the aim of maximizing the model generalization, it is useful, if possible, to estimate
the indicators independently of the employed technology. For instance, areas can be
measured in terms of equivalent number of elementary gates, avoiding to express them in
mm2. During this step, synthesis operations on small architectural blocks can be useful
in order to improve the accuracy of some indicators, as well as analyze their variation as
function of given parameters.

Once every indicator has been modeled, the analysis tool should be able to detail speci-
fications on single architectures, given the set of input parameters. Moreover, it is useful
to introduce the capability to analyze how indicators are modified while exploring the
solutions space, understanding which architectures best answer to given requirements.

A last fundamental aspect to be included is the uncertainty model, since the analysis
tool is based on estimations. Each major quantity should be associated to an error,
typically expressed as a percentage of the nominal value. Those errors can be propagated
in the mathematical models employed for the indicators, by applying the deterministic
approach. A further possibility is to observe the indicators’ sensitivity as a function of
specific quantities. The uncertainty study is fundamental to prove the robustness of the
obtained results.

8.2 Assumptions

In this work, two indicators will be observed: throughput and area efficiency. The latter
is expressed considering the equation reported below. A total of three contributions are
required to be estimated: throughput, logic area and memory area. It is noticeable how
the study on the area efficiency is automatically including a throughput analysis.
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Aeff =
Throughput

Area(logic) + Area(memory)
=

Th

AL + AM

Since this study is centered around the use of high-radix orders, it is expected for the logic
area to exponentially increase with the radix. However, the impact on the area efficiency
strongly depends on how the area is distributed between logic and memory. If the Turbo-
decoder area is dominated by memories, this could potentially open the possibility to
introduce efficient high radix-order solutions.

As expressed in the previous section, each quantity under analysis requires an estimation
model, which is desired to be flexible and adaptable for all the considered solutions under
test. Therefore, the full set of explored architectures is defined, considering the following
assumptions.

• The LTE/UMTS standard code is employed as a reference convolutional code.

• The Max-Log-Map algorithm is adopted, including the usage of the Extrinsic-
Scaling-Factor.

• Each architecture is considering a Forward-Backward scheduling policy.

• The Next-Iteration-Initialization is the reference initialization method.

• All the architectures are PMAP-based, including the possibility for concurrent
Decoder-level parallelism (Concurrent-PMAP).

On the other hand, the following degrees of freedom will be considered by the model.

• Variable Frame size (K).

• Variable Sub-frame size (Kp).

• Variable Window size (WS).

• Variable Channel LLR bitwidth (w).

• Variable Radix order (2, 4, 8 and 16 available).

Other important aspects regarding specific choices in the model will be discussed further
in this chapter. More specifically, the next sections are including a detailed analysis on
logic, memory and throughput.
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8.3 Logic Analysis

Since the PMAP architecture is based on spatially replicating instances of the same SISO
decoder, it is then necessary to focus the analysis on the logic units included in a single
SISO module, analyzing their variation as a function of the radix order and the data
parallelism. The analyzed units are the Branch Metric Unit (BMU), the Path Metric Unit
(PMU) and the Soft Output Unit (SOU). Moreover, considering the Forward-Backward
scheduling, each SISO entity is including 2 BMU, 2 PMU and 1 SOU.

8.3.1 BMU

This unit is expected, starting from the channel LLR, to evaluate all the required branch
metrics, necessary for each algorithmic step. As a first measure of complexity, consider-
ing different radix-orders, it is useful to analyze how many branches are required to be
computed in a radix-N BMU, recalling that a radix-N branch is given by the sum among
all the radix-2 branches in a given path. Table 8.1 is reporting the number of required
branches up to a radix-16 architecture, indicating their bitwidths as function of w.

Radix BM number wΓ

2 16 w+2

4 32 w+3

8 64 w+4

16 128 w+5

Table 8.1: Number of Branch-Metrics requested to be computed by a radix-N BMU,
including their bitwidths.

As visible, the amount of required branch metrics is significantly growing with the radix-
order, as well as the complexity of the involved adders, since the bitwidth is increasing.
A fundamental optimization to be performed in this scenario consists in introducing the
minimum amount of required adders, avoiding redundant calculations. For instance, con-
sidering the radix-2 case, 2 adders are enough to explicit all the 16 branch metrics in a
single Trellis-section, as indicated in figure 4.5.

Multiple radix-2 BMUs (BMU2) are at the basis of higher-order BMUs. For instance,
in a radix-4 architecture, two BMU2 units can be employed in parallel to explicit all
the radix-2 branches, which can be combined to form radix-4 branch metrics. The block
scheme for a generic BMU-N architecture is presented in figure 8.1.
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Figure 8.1: BMU-N block scheme.

As visible, the challenge for a radix-N BMU is to find the best adders network to prop-
erly combine the radix-2 branch metrics, including the minimum amount of adders. As
reported in Appendix A, given a specific code, it is possible to state which additions are
to be performed by recursively exploring the paths in the Trellis-Diagram. As a result,
the required minimum amount of adders up to a radix-16 BMU is reported in table 8.2.

Radix BMU2 number M-adders Total adders

2 1 - 2

4 2 9 13

8 3 54 60

16 4 149 157

Table 8.2: BMU components analysis up to radix-16 implementation, including the total
amount of required adders.

Despite the adders minimization, the architectural complexity is still significantly increas-
ing with the radix-order. Moreover, also a critical path increment is expected, due to the
higher complexity found in the M-adders network. However, since the BMU is a feed-
forward logic block, pipeline can be applied, aiming to reduce the critical path, with a
drawback on the total latency.

8.3.2 PMU

The amount of paths to be discriminated while performing the forward/backward prop-
agations is increasing with the radix order, as shown in figure 8.2. As a consequence, the
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max operators are expected to work with a larger amount of input operands.

Radix-2 
Trellis-section

Radix-4 
Trellis-section

2 paths to be 
discriminated

4 paths to be 
discriminated

Figure 8.2: Amount of paths to be discriminated during a forward propagation, consid-
ering a radix-2 and a radix-4 implementation.
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Figure 8.3: CS2 (Left) and CS4 (Right) block scheme.

The basic building block for the PMU is the Compare-and-Select (CS2) operator, imple-
menting a maximum operation between two operands, as depicted in figure 8.3. Moreover,
a layer of adders is also required to fully compute the next state metrics. If more than two
paths are to be compared, a tree-like disposition of CS2 operators is capable to satisfy
the request. This approach can be followed in order to determine Compare-and-Select
operators working with an arbitrary number of operands. An example of a CS4 operator
is shown in figure 8.3.

It is fundamental to consider the presence of the feedback loop included in the PMU,
required to perform the recursive propagation. Due to this loop, the critical path is
bounded, since the use of pipeline is not available. Therefore, the cascade of logic operators
included in the PMU is potentially defining the maximum working clock frequency for the
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entire Turbo-decoder architecture. Table 8.3 is reporting the expected amount of CS2
operators up to a radix-16 architecture, specifying how many units are found on the
critical path. It is noticeable how the radix-4 critical path is expected to be double
the radix-2 one, nullifying the throughput improvements obtained by processing multiple
Trellis-sections at the same time.

Radix Compared paths CS-N CS2 on the critical path

2 2 CS2 1

4 4 CS4 (3 CS2) 2

8 8 CS8 (7 CS2) 3

16 16 CS16 (15 CS2) 4

Table 8.3: Compare-and-Select operators analysis up to radix-16 implementation.

In order to solve this issue, the Compare-and-Select units for radix-orders higher than 2
can be modified, aiming to reduce their critical path, and accepting a drawback on their
complexity. As suggested in [24], it is possible to implement a faster CS4 architecture by
performing multiple comparisons in parallel, employing their results to drive a selection
multiplexer, as shown in figure 8.4.
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Figure 8.4: CS4-fast block scheme (Left) and CS8 implementation including a CS4-fast
operator (Right).

The LUT is describing a logic function capable to interpret the CS2 results and produce
the correct selection signal for the multiplexer. It is noticeable how the total amount of
CS2 operators is higher if compared to the architecture presented in figure 8.3. However,
the CS2 represented in 8.4 are not requiring any selection multiplexer, since only the logic
result of the comparisons is required.

As an advantage, the amount of CS2 units on the critical path is now half if compared
to the original implementation. Moreover, the new obtained CS4-fast architecture can be
employed as a building block for radix-8 and radix-16 Compare-and-Select units, as shown
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in figure 8.4. Additionally, in this work, the parallel CS2 approach presented in [24] has
been also extended to a radix-8 Compare-and-Select unit, obtaining a CS8-fast operator.
As detailed in Appendix B, the latter is including 28 parallel CS2 units, which results are
employed to control an 8-inputs multiplexer. In the analysis model, a degree of freedom
over which CS8 architecture will be employed is guaranteed, in order to explicit the most
efficient choice. Further details on this last operator and how to derive the content of the
LUTs are included in Appendix B. Furthermore, a possible approach to reduce the CS2
operator critical path is presented, relying on look-ahead logic.

Additional critical path reductions can be carried out considering radix-orders higher or
equal than 16, exploiting the concept of parallel paths [25]. Observing a radix-16 Trellis-
Diagram, composed by 4 consecutive Trellis-sections, if the paths converging to a specific
state are highlighted, several couples of parallel paths can be identified. Two or more
paths are considered parallel if they are sharing the same starting and destination states.

Radix-16 
Trellis-section

Figure 8.5: Parallel paths example considering a radix-16 Trellis-section.

While performing forward and backward propagations, parallel paths can be discrimi-
nated before the PMU, since the starting state metrics are not required to evaluate the
maximum. If this operation is performed, the amount of paths to be compared inside
the PMU is lowered to 8, reducing the critical path. More specifically, if parallel paths
are eliminated, the PMU can be always implemented following a radix-8 implementation,
regardless of the employed radix-order.

The parallel paths’ discrimination can be located, as a last computational step, in the
BMU and it is not representing a boundary for the working clock frequency, since pipeline
stages can be added. The additional complexity found in the BMU depends on the amount
of parallel paths to be compared, which is increasing with the radix-order.
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In this work, the radix-16 BMU will be modified in order to include this feature. As
a consequence, the radix-16 PMU is following the same implementation of the radix-8
one. It is remarkable how discarded parallel paths are still required for the soft-output
computation, therefore completely neglecting those paths, as described in [25], is affecting
the error-correction performances. In this work, this further possibility has not been
considered, since it is desired to maintain the error-correction capabilities independent
from the employed radix order.

8.3.3 SOU

The amount of APPs to be compared, indicated in table 8.4, is increasing with the radix
order. Moreover, multiple message bits are meant to be decoded at the same time. Also
in this case, the basic building blocks are adders and Compare-and-Select units.

Radix (A+ Γ +B) number max() operators

2 16 2 max() over 8 inputs

4 32 4 max() over 16 inputs

8 64 6 max() over 32 inputs

16 128 8 max() over 64 inputs

Table 8.4: Max() operators analysis up to a radix-16 implementation.

Since pipelining is available for the SOU, the critical path is not representing an issue.
On the other hand, the accent is posed on the minimization of the included amount of
CS2 operators. As a matter of fact, the SOU complexity would increase exponentially
if the approach presented for the radix-2 case, in figure 4.5, is extended for higher-radix
orders.

In [26] a minimum complexity radix-16 SOU architecture is presented, illustrated by the
block scheme in figure 8.6. The key point is to group the APPs characterized by the
same sequences of systematic bits, expressed by the subscripts in the figure, and compare
them. After finding the maximum for each systematic sequence, other comparisons are
performed, aiming to isolate specific systematic bits in the sequence. In this work, the
same principle has been extended and adapted to radix-4 and radix-8 SOU architectures.

It is remarkable how, in this case, Compare-and-Select operators working with more
than two operands are not required to follow a fast implementation, since the SOU can
be pipelined. Therefore, the CS2 tree-like structure will be considered as a reference, in
order to limit the complexity.
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Figure 8.6: Minimum CS2 SOU block scheme, considering a radix-16 approach.

8.3.4 Logic Units Summary

As a summary, the logic components included in the analysis model are listed below,
subdivided per each radix-order. Moreover, the contribution of the Extrinsic-Scaling-
Factor unit is neglected, since it is not expected to dramatically affect the logic area.

Radix-2

• BMU: It is including 2 adders (ADD) to evaluate all the required 16 branch metrics.

• PMU: It is composed by 8 comparison units, each containing 2 adders (ADD) and
1 CS2 operator.

• SOU: It is including 16 adders (ADD) to fully evaluate the APPs. Moreover, a
cascade of 14 CS2 operators is employed. A unique subtractor (SUB) is required to
compute the soft-information.

85



8.3. LOGIC ANALYSIS CHAPTER 8. HIGH-RADIX PMAP EXPLORATION

Unit ADD CS2 SUB

BMU 2 - -

PMU 16 8 -

SOU 16 14 1

Table 8.5: Radix-2 required operators.

Radix-4

• BMU: It is including 2 BMU2 units to evaluate the radix-2 branch metrics. Then a
9-adders (ADD) network is required to fully compute the composed branch metrics.

• PMU: It is composed by 8 comparison units, each containing 4 adders (ADD) and
1 CS4-fast operator.

• SOU: It is employing a 32-adders (ADD) layer, required to compute the APPs.
Then, 4 CS8 and 4 CS2 units are employed to discriminate the maximum APPs. 2
subtractors (SUB) are included to compute the soft-informations.

Unit ADD CS2 CS4-fast SUB

BMU 13 - - -

PMU 32 - 8 -

SOU 32 32 - 2

Table 8.6: Radix-4 required operators.

Radix-8

• BMU: It is including 3 BMU2 units to evaluate the radix-2 branch metrics. Then, a
54-adders (ADD) network is required to fully compute the composed branch metrics.

• PMU: It is composed by 8 comparison units, whose architecture can be defined
following two available options: the first one consists in employing 4 CS2 and 1
CS4-fast, the second solution is employing the usage of a single CS8-fast unit. In
both the solutions, 8 adders per comparison unit are required to compute the state-
metrics to be compared.

• SOU: It is employing a first 64-adders (ADD) layer, required to compute the APPs.
Then, 8 CS8 and 6 CS4 are employed to discriminate the maximum APPs. 3
subtractors (SUB) are included to compute the soft-informations.
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Unit ADD CS2 CS4-fast SUB

BMU 60 - - -

PMU 64 32 8 -

SOU 64 74 - 3

Table 8.7: Radix-8 required operators (CS4-fast usage).

Radix-16

• BMU: It is including 4 BMU2 units to evaluate the radix-2 branch metrics. Then,
a 149-adders (ADD) network is required to fully compute the composed branch
metrics. Since parallel paths are expected to be discriminated before the PMU, 64
CS2 units are included.

• PMU: It is composed by 8 comparison units. Their structure is following the same
approach described for the radix-8 PMU. Moreover, 64 additional adders (ADD)
are required to fully compute the sum between Γ and beta-metrics values to be
forwarded to the SOU.

• SOU: It is employing a first 128-adders (ADD) layer, required to compute the APPs.
Then, 16 CS8, 8 CS4 and 8 CS2 units are employed to discriminate the maximum
APPs. 4 subtractors (SUB) are included to compute the soft-informations.

Unit ADD CS2 CS4-fast SUB

BMU 157 64 - -

PMU 128 32 8 -

SOU 128 144 - 4

Table 8.8: Radix-16 required operators (CS4-fast usage).

8.3.5 GE Model

Given the operators included in a specific solution, it is necessary to estimate the logic
area AL. Simply counting the total amount of operators is not enough, since, as visible
from the area efficiency equation, logic and memory areas are required to be expressed
on compatible measurement units in order to be added. Moreover, a generalization with
respect to the employed technology is also desired.

Following these considerations, the selected unit for the area measurements is the Gate-
Equivalent (GE), expressing the equivalent area of a reference gate, which is typically
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selected as a NAND-2 gate with minimum strength. By employing the GE, similarities
between areas estimated on different technologies are expected.

Since all the considered logic units are sharing a common set of basic operators, it is enough
to characterize their areas, expressed in GE. The higher the accuracy in this estimation,
the more reliable the total logic area AL. With this purpose, synthesis on simple operators
have been performed in this work, considering three different technologies (45 nm, 65 nm
and 90 nm).

Before proceeding, since most of the components are including adders or subtractors, it
is necessary to fix a common architectural model for their implementation. Since they
are meant to work with a limited amount of bits, an acceptable trade-off between delay
and complexity is introduced by employing Ripple-Carry-Adders (RCA) or Ripple-Carry-
Subtractors (RCS). Therefore, they have been considered as a reference choice.

Technology

65 nm 90 nm 45 nm

Ripple-Carry-Adder (ADD)

Area [um2] 58.68 127.00 32.45

Area [GE] 40.75 45.03 40.66

Ripple-Carry-Subtractor (SUB)

Area [um2] 66.96 145.35 36.97

Area [GE] 46.50 51.50 46.30

Compare-and-Select-2 (CS2)

Area [um2] 67.32 121.36 38.84

Area [GE] 46.75 43.00 48.67

Compare-and-Select-4 (CS4-fast)

Area [um2] 322.20 582.83 194.18

Area [GE] 223.75 206.53 243.33

Compare-and-Select-8 (CS8-fast)

Area [um2] 1296.36 2364.47 796.67

Area [GE] 900.25 837.87 998.33

Table 8.9: Area synthesis results on the considered operators, considering a bitwidth equal
to 8-bits and three available technologies.
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Moreover, since a dependency is found between the area and the bitwidth, a fixed par-
allelism of 8-bits has been employed for all the operators reported in table 8.9. Then,
considering each operator, the area variation has been studied as a function of its bitwidth.
In every case, a proportionality between area and bitwidth has been noticed. Therefore,
the results reported in the table can be easily adapted to different parallelisms by including
a scaling factor.

As expected, expressing area results in terms of GE is moving the estimations toward
a generalization against different technologies. In this work, the 65 nm technology has
been considered as reference. However, the declared results can be extended to other
technological nodes, considering a limited uncertainty. Referencing the 65 nm node, other
technologies are presenting maximum percentage variation around 10% on the GE values.

8.4 Memory Analysis

A total of 4 memory classes are required to be included in the explored architectures.

• Input-Frame-Memory (IN-FR-MEM): This memory is meant to store the
channel LLR values, including the systematic information Ls and the two parity
informations Lp1 and Lp2. Moreover, it is required to be simultaneously accessed by
all the SISO instances.

• Extrinsic-Information-Memory (EXTR-INF-MEM): This memory is storing
the extrinsic information values Le. Also in this case, the access is guaranteed to
all the SISO-modules in the architecture.

• Alpha-Memory (ALPHA-MEM): This memory is necessary in order to cor-
rectly implement the Forward-Backward scheduling. Each SISO-decoder is includ-
ing a specific Alpha-Memory, which is storing the alpha-metrics values A(Sk).

• NII-Memory (NII-MEM): This memory is required to correctly introduce the
beta metrics initialization. Also in this case, each SISO-module will include a specific
NII-Memory, which is meant to store the initial beta metrics B(Sk) for each window.

As a first step, storage requirements for each considered memory will be covered, under-
standing the effect of high-radix orders. Then, the memory conflicts issue will be intro-
duced, discussing possible solutions. Moreover, informations on the implemented memory
access policies will be provided. Once the memory organization has been defined, a GE
area model will be derived.
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8.4.1 Storage Requirements

Considering the frame-size K, the sub-frame size Kp and the window size WS, the storage
requirements, indicated in table 8.10, are derived, considering a radix-2 architecture.

Memory class N. instances Words Bits per word

IN-FR-MEM 1 K 3 · w

EXTR-INF-MEM 1 K wEXT

ALPHA-MEM K/Kp WS 8 · wSM
NII-MEM K/Kp Kp/WS 8 · wSM

Table 8.10: Memory storage requirements considering a radix-2 architecture.

Radix-orders higher than 2 are potentially affecting the state-metrics bitwidth wSM and
the total amount of alpha-metrics to be computed. For instance, considering a radix-4
architecture, the required amount of alpha metrics to be saved is WS/2, since each al-
gorithmic step is involving two adjacent Trellis-sections. As a consequence, the alpha
memory is reduced in size, since employing a radix-N approach is requiring a total of
WS/log2(N) state-metrics. Observing table 8.10, no other storage contributions are af-
fected by the employed radix-order.

8.4.2 Memory Conflicts

As described while introducing memory classes, stored data are required to be accessible at
the same time by multiple logic blocks. Indeed, Global memories (IN-FR-MEM/EXTR-
INF-MEM) are shared among different SISO-decoders in parallel. Moreover, further mul-
tiple accesses are generated by the Forward-Backward scheduling, since Forward and
Backward logic units are simultaneously accessing Global and Local memories.

Memory conflicts are generated when multiple data are required to be accessed in parallel,
but the memory architecture is not capable to handle the request. Two main solutions are
available: the first one consists in using multi-port memories, able to handle multiple read-
ing/writing operations on different addresses. The second option consists in partitioning
the original single-port memory in smaller memories, with a number of partitions corre-
sponding to the amount of requested parallel accesses. Since multi-port memories have
a significant impact on the area, especially if compared to single-port ones, partitioning
has been considered the reference technique to avoid conflicts.
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By increasing the radix-order, the amount of required parallel accesses from Global mem-
ories is incremented, since multiple Trellis-sections are processed at the same time. There-
fore, a negative impact is found on the total number of required partitions. The estimated
amount of parallel accesses is reported in table 8.11, considering different radix-orders.

Memory Class Parallel Accesses

Radix-2 Radix-4 Radix-8 Radix-16

IN-FR-MEM 2 ·K/Kp 4 ·K/Kp 6 ·K/Kp 8 ·K/Kp

EXTR-INF-MEM 3 ·K/Kp 6 ·K/Kp 9 ·K/Kp 12 ·K/Kp

ALPHA-MEM 2 2 2 2

NII-MEM 2 2 2 2

Table 8.11: Required parallel memory accesses on different radix orders.

Figure 8.7 is visually representing how multiple accesses are generated during a generic
time instant. As visible, considering a single SISO-decoder processing a sub-frame, the
FB scheduling is generating two parallel accesses on the Input-Frame-Memory. On the
other hand, three parallel accesses are generated for the Extrinsic-Information-Memory,
since a further access is required to write the extrinsic-information.
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memory storage

parallel memory 
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Figure 8.7: Parallel accesses visually represented in a generic time instant.
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8.4.3 Access Policies

After properly partitioning the memories, it is necessary to understand how the partitions
or memory banks can be correctly accessed, in order to perform the decoding algorithm.
Also in this case, the accesses should be managed in order to avoid potential conflicts on
single memory banks.

Input-Frame-Memory

A fundamental aspect to be discussed is the access to the systematic information Ls,
which is requested during both natural and interleaved half-iterations. As a consequence,
conflicts should be avoided considering both the access orders. Since it is desired to avoid
increasing the access policy complexity, it is possible to assume that the systematic infor-
mation is requested from the Input-Frame-Memory only during the natural processing,
as represented in figure 8.8.
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Figure 8.8: IN-FR-MEM and EXTR-INF-MEM organization in order to manage the
access to the systematic information.

As visible, the systematic and parity informations are assumed to be saved following
the arrival order inside the Input-Frame-Memory. During the natural half-iterations,
informations on Ls and Lp1 are extracted from the memory. Once the SOU has computed
the extrinsic information Le, the systematic one Ls is re-added, before saving the result in
the Extrinsic-Information-Memory. As a consequence, during the interleaved processing,
data extracted from the Extrinsic-Information-Memory are automatically including the
sum between the a-priori information La and the systematic one, avoiding the interleaved
access for the Input-Frame-Memory. Therefore, during the interleaved half-iterations,
only the second parity information is required from the frame data.

The described policy has a small impact on the decoder complexity, since the additional
logic is expected to be limited.
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Extrinsic-Information-Memory

Also in this case, it is mandatory to guarantee conflict-free accesses during both natural
and interleaved processing. Two approaches are available.

• The first solution consists in employing specific permutation laws capable to guaran-
tee conflict-free accesses. As an advantage, the problem is solved with the minimum
amount of hardware resources and a simple memory mapping. However, this ap-
proach could limit the choice for the permutation law, since both interleaving and
de-interleaving functions are required to satisfy the contention-free property [27],
considering a radix-2 architecture. It has been proved that a small fraction of in-
terleavers are meeting this requirement [27]. It is mentionable how the ARP and
QPP based interleavers are contention-free. If higher radix orders are employed,
additional restrictions are required on the permutation law, since the amount of
memory banks is expected to increase.

• The second solution consists in finding a conflict-free memory mapping and a spe-
cific access policy given a certain permutation law. Therefore, in opposition with
the first proposed solution, the hardware is adapted to the selected interleaving law.
This approach, presented in [28], has been proved to be valid for any employed
permutation law. Therefore, it is ensuring maximum flexibility on the interleaver
choice. On the negative side, hardware complexity is expected to be higher if com-
pared to the first solution, due to the introduction of additional memories and logic
elements.

This work is considering the second approach as a reference choice for all the explored ar-
chitectures, in order to guarantee the maximum flexibility against new possible standards
for permutation laws. The presence of flexible interleaving hardware is also an advantage
if multiple frame-sizes are desired to be processed by the Turbo-decoder.

As described in [28], the memory access organization is based on a mapping-matrix. Fol-
lowing a radix-2 approach, each row is representing a processed sub-frame in natural order,
containing Kp elements. Therefore, a single column is containing a set of N = K/Kp
parallel accessed data from different sub-frames.

Figure 8.9 is including a mapping-matrix example, considering 5 sub-frames and 5 ele-
ments per sub-frame. Since N = 5, a total of 5 memory partitions are needed. There-
fore, the cells in the matrix are indicating in which memory banks the required data are
stored. During the natural processing, parallel accessed data are represented by the ma-
trix columns. As noticeable from the example, the conflict-free property is guaranteed,
since each partition is found at most once per column.

Since conflicts should be avoided also during the interleaved processing, parallel accesses
can be highlighted by employing a tiles-matrix, which is indicating with letters the si-
multaneously accessed data after applying the permutation on the original sequence. By
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Figure 8.9: Mapping-matrix example, highlighting with different colors the parallel ac-
cesses during both natural and interleaved processing.

highlighting the tiles on the original mapping-matrix, it is possible to observe that the
conflict-free property is still satisfied.

If the expressed property is verified on both columns and tiles, the mapping-matrix can be
considered valid and, therefore, it can be used to map the information in the Extrinsic-
Information-Memory. In [28], the steps required to derive a mapping-matrix, given a
generic permutation law, are detailed.

As mentioned, additional hardware is required in order to apply the spatial permutations
in time, following the content of the mapping-matrix. With this purpose, a crossbar is
introduced, allowing to fully customize the data permutations. Moreover, specific mem-
ories are required to store the permutation data employed to control the crossbar and
access the memory-banks in specific locations. These additional hardware requirements,
depicted in figure 8.10, are representing the main drawback of this approach, since they
are expected to have a non-negligible impact on the Turbo-decoder complexity.

The approach presented in [28] is assuming to work with a radix-2 architecture, without
considering a specific scheduling policy. Therefore, a possible extension of the proposed
technique has been studied in this work, with the aim of adapting it to the considered set
of architectures under analysis. More details are included in Appendix C.
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Figure 8.10: Block scheme representing the EXTR-INF-MEM accesses controlled by cross-
bar and memories, which content is derived from the mapping-matrix.

Alpha-Memory

As indicated in table 8.11, each Alpha-Memory is expected to be split in two partitions,
aiming to ensure the concurrent access for the forward/backward units. The access policy
should be organized in order to avoid conflicts. Moreover, it is desired to prevent the
introduction of unnecessary memory locations.

In order to satisfy this last requirement, it is necessary to replace old alpha metrics,
employed by the SOU, with new ones computed by the forward PMU, without wasting
memory space. Therefore, an alternated access to the two memory partitions is proposed,
as illustrated in figure 8.11.

In the proposed example, the forward state metrics are saved by interleaving the access
to the two alpha memory partitions. Then, the soft-output computation is performed in
backward order. Once a branch metric data has been read by the SOU, it is replaced by
new state metrics, belonging to a new window.

As visible, following this policy, the two memory banks are accessed without conflicts. It
is noticeable how the forward accesses are performed in the same locations accessed by
the SOU during the previous clock cycle, opening the possibility to re-use the generated
addresses.
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Figure 8.11: Alpha memory access policy example, considering two windows with 8 Trellis-
sections each.

NII-Memory

The initialization memory is also presenting conflict issues, especially when the end section
of a given window is reached. As a matter of fact, it is required to simultaneously load
new initialization metrics and store the final metrics from a given window. The following
solution is proposed.

Since this superimposition is found only once per analyzed window, it is possible to
organize the two required operations in distinct clock cycles. When the last beta values
from a window are computed, they are stored in a set of temporary registers. Meanwhile,
the NII-Memory is accessed in order to load the initialization metrics. During the next
clock cycle, the temporary stored beta metrics can be saved in the memory, without
generating any conflict. The block scheme in figure 8.12 is summarizing this access policy.
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Figure 8.12: NII-MEM access policy block scheme.

8.4.4 GE Model

After detailing the memories structure and organization, it is necessary to estimate the
memory area impact, expressed in GE. The first analyzed contribution is the presence of
the crossbar, a logic component necessary to correctly manage the access to the extrinsic
information. Following the same approach introduced during the logic analysis, synthesis
operations on different crossbars have been performed, in order to estimate its area as
function of the data parallelism and the number of memory partitions. Moreover, differ-
ent technologies have been compared. The reference crossbar, reported in table 8.12, is
considering wext = 7 and a total of 16 partitions.

Technology

65 nm 90 nm 45 nm

Crossbar

Area [um2] 4199.0 7360.8 2162.0

Area [GE] 2915.6 2608.4 2709.3

Table 8.12: Crossbar area synthesis results on different technologies.

Also in this case, referencing the 65 nm technology, the relative GE area variation is be-
low 10%, if compared to the other technologies. Moreover, a proportionality is observed
between the area and the extrinsic data bitwidth wext. Concerning the amount of parti-
tions, the GE area is presenting a quadratic dependence from it. For instance, doubling
the amount of partitions is increasing the crossbar area by a factor 4.

Concerning the different memory instances, it is useful to establish a GE model which is
able to estimate the total area as function of the memory size, expressed in number of
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bits. In this work, all the considered memories are single-port SRAM, implemented on
the 65 nm technology.

Given a generic memory model, the GE/bit parameter can be computed as follows.

GE/bit =
Area(GE)

words · bits

Analyzing some library memory models, it is interesting to notice how area is affected by
the presence of peripheral circuits, such as column decoders or row multiplexers. Following
this consideration, a possible expression for the memory area is reported.

Area(GE) = Acell · (words · bits) + overhead(words, bits)

The first part of the equation is expressing the cells area, which is obtained by multiplying
the memory size in bits by the static cell area Acell. As noticeable, the overhead added by
the peripheral circuits is function of the memory size. More specifically, considering the
analyzed technology, a significant sensitivity has been observed as function of the required
number of words. Indeed, the higher the amount of words, the lower the relative overhead
contribution affecting the total area. Some reference examples, extracted from available
memory models, are reported in table 8.13. The parameter cell efficiency is representing
the ratio between the static cells area and the total one.

Technology 65 nm

Words Bits Area [um2] Cell Efficiency GE/bit

64 88 18734.3 16% 2.31

256 20 9584.6 28% 1.30

2048 25 47923.2 55% 0.65

4096 16 53791.9 63% 0.57

Table 8.13: GE/bit data on different library memory models, considering the 65 nm
technology.

As expected, memories including a larger amount of words are more efficient in terms
of area occupation. Consequently, the GE/bit parameter is presenting important varia-
tions, which are required to be modeled in order to introduce an accurate memory area
estimation.

In this work, the following equation has been employed to approximate the GE/bit vari-
ation against the involved amount of words.

GE/bit = GEcell +
1

k1 · ln(k2 + |k3 · words|)
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The parameter GEcell is representing the static cell area expressed in GE. As visible, the
key-point of the model is to move the GE/bit parameter toward the ideal GEcell value by
increasing the amount of words and, therefore, the cell efficiency. It can be noticed how
the dependency from the words parameter is not linear. Moreover, it is necessary to fit
the curve considering a set of given true points, by tuning the k constants. Considering
the memory data presented in table 8.13, the fit depicted in figure 8.13 has been obtained.
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Figure 8.13: GE/bit variation model for library memories, as function of the number of
words.

As visible, the curve is well fitting the given reference points. However, the amount
of available memory data is limited, therefore it is necessary to consider a degree of
uncertainty on the obtained results.

It is interesting to notice how, considering words numbers above 1024, the curve can be
well approximated with a linear model, which is expected to be simpler and faster to
be employed. Moreover, it could be interesting to compare memory models obtained on
different technologies, to improve the results’ generalization.

It is now possible to explicit a further negative effect deriving from memory partitioning,
since smaller memory partitions are expected to have a larger impact on the total area.

Since in this work it is often required to implement memories with limited sizes, it is
fundamental to consider the presence of synthesized memories, which are replacing library
memories when the required size is below a specified boundary. The switch point between
the two memory models can be extracted from the library memory documentation, since
a minimum required size is typically declared. In this work, considering a 65 nm static
memory library, the boundary is set to 32 minimum words. As a consequence, below the
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expressed value, memories must be synthesized.

Synthesizing memories is introducing a further drawback in terms of complexity, since
Flip-Flops are employed to store bit informations instead of static memory cells. Also in
this case, synthesis operations have been performed in order to study the GE/bit variation
as function of the memory size. The results are summarized in table 8.14.

Technology 65 nm

Words Bits Area [um2] GE/bit

4 32 1929.8 10.47

8 32 3420.0 9.28

16 32 6709.2 9.10

32 32 13315.3 9.03

16 8 1767.6 9.59

16 16 3439.4 9.33

16 32 6805.1 9.23

16 64 13507.0 9.16

Table 8.14: GE/bit variation on synthesized memories, considering the 65 nm technology.

As noticeable, the GE/bit parameter variations are not significant, while exploring differ-
ent sizes. If considering an average value of 9.5 GE/bit, the maximum relative excursions
are around 10%. The main cause for the limited variation is found in the large GEcell
value, considering a Flip-Flop. The introduced error can be considered acceptable, since
also the library memory model is affected by a degree of uncertainty.

The two models for library and synthesized memories can be combined, as illustrated in
figure 8.14. It can be noticed how the switching point between the two models is found
at 32 words. As visible, it is inconvenient to employ synthesized memories: considering
the switching point, the GE/bit value for a synthesized memory is approximately three
times the library one. However, in some cases, the use of small size memories can’t be
avoided, forcing the synthesized implementation.
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Figure 8.14: GE/bit complete model, considering both library and synthesized memories.

8.5 Throughput

The last parameter to be modeled is the expected throughput from the Turbo-decoder.
The general throughput equation for a PMAP-based architecture is reported below.

Th =
K · f · log2(radix)

(Kp+WS) · nHI

The parameters K, Kp and WS are expected to change when exploring the solutions
space. Moreover, also the radix-order is considered a degree of freedom. The Half-Iteration
number has been fixed to 12 for all the architectures, aiming to obtaining independent
comparisons.

The working clock frequency strongly depends on the critical path, assumed to be found
in the PMU, since it is not pipelinable. With the aim of introducing a fair comparison, a
critical path increment estimation has been carried out in this work, including different
radix orders. Considering the logic employed in the PMU, it is possible to identify a
cascade of fundamental operators defining the critical path. Since those operators have
already been synthesized during the logic area characterization, it is enough to intercon-
nect them and perform again synthesis operations. Delays are expected to be function of
the employed technology, for this reason the critical path increment factor, referred to a
radix-2 architecture, is estimated.

The sequences of logic blocks found on the critical paths are represented in figure 8.15.
As noticeable, two possibilities are available for the radix-8 and radix-16 architectures.
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Figure 8.15: Logic units located on the critical path considering different radix-orders.

In table 8.15, critical path synthesis results are summarized, considering a bitwidth equal
to 11 bits. As mentioned, the radix-2 critical path has been considered as reference. It can
be highlighted how comparing different solutions by employing the CP increment factor
is producing similar results on different technologies, improving the model generalization.
Indeed, considering the 65 nm technology, relative variations below 10% are found against
the other reported technologies.

Technology

65 nm 90 nm 45 nm 65 nm 90 nm 45 nm

Radix Critical Path [ns] Radix-2 CP Ratio

2 1.46 0.91 1.37 1 1 1

4 1.99 1.26 1.80 1.36 1.38 1.31

8/16 (CS4-fast) 3.37 2.13 3.09 2.31 2.34 2.25

8/16 (CS8-fast) 2.64 1.69 2.34 1.81 1.86 1.71

Table 8.15: Critical path synthesis data on different technologies, considering different
radix-orders and data expressed on 11 bits.

The radix-4 architecture is introducing a relative increment around 35%, while the radix-8
solution based on CS4-fast units is more than doubling the original critical path, with
a relative increment around 130%. The last proposed architecture, employing CS8-fast
units, is limiting the degradation on the critical path, lowering the relative increment to
values around 80%.
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In the throughput model included in the analysis tool, the working clock frequency is
computed starting from a reference frequency found for a radix-2 architecture. Then, a
decrement factor is applied, depending on the implemented radix-order. Since the 65 nm
technology is the reference one, the radix-2 maximum clock frequency is fmax = 1/(1.46
ns) ≈ 685 MHz. Therefore, the reference working frequency has been selected equal to
600 MHz. Table 8.16 is summarizing the choices for the working clock frequencies.

Radix Decrement Factor Clock Frequency [MHz]

2 1 600

4 1.36 441

8/16 (CS4-fast) 2.31 259

8/16 (CS8-fast) 1.81 331

Table 8.16: Working clock frequencies included in the developed model considering dif-
ferent radix-orders, with a bitwidth equal to 11 bits.

If different bitwidths are employed, the declared frequencies are required to be properly
scaled. In this work, a proportionality between critical paths and bitwidths has been
considered, since ripple-carry logic is employed. However, a limited degree of uncertainty
is introduced in this estimation, especially when LUTs are included.

8.6 Uncertainty

As mentioned during logic, memory and throughput analysis, different error sources could
affect the reliability of the results declared by the model. A possible way to observe
their effect on the final computed indicators by employing the deterministic uncertainty
propagation.

The deterministic approach is assuming to work with a generic quantity y expressed
through a mathematical model y = f(x1, x2, ...xn). The variables included in the model
are affected by absolute uncertainties δxi. Assuming that δxi � xi, the uncertainty δy
can be estimated as follows.

δy =
n∑
i=1

∣∣∣∣ dydxi
∣∣∣∣
xi

· δxi

The introduced assumption is necessary due to the linearization applied by the partial
derivatives. For this reason, it is fundamental to consider the propagated uncertainty
results as valid only if limited errors are affecting the parameters. In this work, errors are
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found on throughput Th, logic area AL and memory area AM . The error propagation has
been applied to the area efficiency equation, following the approach introduced above.

The deterministic approach is capable to estimate errors on single computed quantities.
However, the developed analysis tool aims to compare different solutions, employing the
computed indicators. Therefore, it is fundamental to understand how uncertainties are
affecting comparisons between architectures or, in other words, if the choice of an efficient
solution is robust against errors.

As an example, given a set of specifications, it can be assumed that the analysis model
declared a radix-4 implementation as the most efficient choice. In order to prove the
reliability of this solution, it is necessary to check if the presence of errors is potentially
able to change the model result, involving for example a different radix-order.

In order to perform a reliability analysis over comparisons based on the area efficiency, a
brute-force approach is proposed in this work, performed in three steps.

1. Starting from the declared errors on throughput, logic area and memory area, three
arrays of values are derived. Each array is including the variation of the analyzed
quantity around its nominal value. For instance, considering a logic area equal to
100 GE and a 20% relative error, the array is ranging between 80 GE and 120 GE.

2. Considering the three obtained arrays, all the possible set of combinations are de-
rived. This step can be algorithmically implemented by employing three nested for
loops. The model is tested on each single set and the provided results are stored.

3. Observing the results obtained from the previous step, it is possible to state if the
model converged to a specific solution (reliable result) or if the best solutions are
spread over different architectures.

It is remarkable how the computational cost of this approach is exponentially increasing as
function of the amount of parameters affected by errors, since all the possible combinations
are required to be tested. Moreover, also the amount of elements per array is dramatically
affecting the performance of this analysis.

8.7 Full Architecture

A generic block scheme for a radix-2 SISO architecture is illustrated in figure 8.16. It
highlights the interconnections between logic blocks and memories. When considering
higher radix-orders, the SISO architecture is modified in terms of logic and memory,
following the models described in the previous sections.
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Figure 8.16: Radix-2 SISO block scheme, showing connections between logic units and
memories.

As a final aspect, Decoder-level parallelization is considered. As highlighted in Chapter
5, Decoder concurrency is a fundamental key-point to satisfy very high-throughput re-
quirements. Moreover, as a further advantage, some architectural elements can be shared
among different Turbo-decoder instances, since they are simultaneously performing the
same operations. If the amount of decoders is high enough, the area impact of the shared
elements can be neglected. Following this consideration, in this work, the control logic
and the memories required to store interleaving data are neglected from the total area
contribution, since they are meant to be shared among concurrent decoders.

Furthermore, Decoder-level concurrency is opening the possibility to avoid the introduc-
tion of multiple global memories for each Turbo-decoder. Indeed, the same memories
can be shared, by including in a single word all the data required to be dispatched to
the several Turbo-decoder instances. A generic block scheme of a Concurrent-PMAP
architecture is shown in figure 8.17.

105



8.7. FULL ARCHITECTURE CHAPTER 8. HIGH-RADIX PMAP EXPLORATION

Turbo 0

bmu fw

Input-Frame 
Memory

Bank

Bank

Bank

bmu bw

pmu fw

pmu bw

soualphaNII

Turbo 1

Turbo 2

Turbo 3

Extrinsic Information 
Memory

Bank

Bank

Bank

C
ro

ss
ba

r

Permutation 
memoryControl Unit

SISO 0 SISO 1

SISO 2 SISO 3

SISO 0 SISO 1

SISO 2 SISO 3

SISO 0 SISO 1

SISO 2 SISO 3

SISO 0 SISO 1

SISO 2 SISO 3

Tu
rb

o 
3

Tu
rb

o 
2

Tu
rb

o 
1

Tu
rb

o 
0

Tu
rb

o 
3

Tu
rb

o 
2

Tu
rb

o 
1

Tu
rb

o 
0
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Chapter 9

Model Results

This chapter is first introducing some specifications on the developed analysis tool, high-
lighting its main features. Then, a solutions space exploration will be presented, analyzing
how indicators are effected by several degrees of freedom. Moreover, some guidelines to
select area efficient architectures will be introduced, including the radix-order choice. Pro-
ceeding in the chapter, two specific solutions will be analyzed and compared in details.
Then, limitations on high radix-order architectures will be discussed, highlighting the
necessary improvements. The last part of the chapter is fully dedicated to explore very
high-throughput solutions, considering concurrent Decoder-level parallelization applied
on a PMAP architecture.

9.1 Tool Organization

The developed analysis tool is based on a group of functions able to compute the necessary
parameters and interact in order to formulate the required results. The obtained data
have the possibility to be exported as text files or graphically visualized through plots.
Functions are grouped in sub-sets in order to distinguish the field in which they operate,
as represented in figure 9.1. From the model parameters group, it is possible to customize
the input data employed by the tool, as well as control the type of analysis to be performed
and set options on how the results will be exported.

The tasks group is including all the possible types of analysis that can be launched. The
tool has two main options: single analysis and multiple analysis. The former is capable,
given a unique set of input parameters, to explicit the most-efficient radix order and
provide details about the implementation. If the reliability option is selected, the provided
solution is tested against errors superimposed to throughput, logic area and memory area.
On the other hand, multiple analysis are meant to be employed for exploration purposes,
in order to study throughput and area efficiency variation within a set of architectures,
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highlighting the guidelines to select efficient implementations.
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Customizable 
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Figure 9.1: Analysis tool block scheme, representing the main function groups included.

Most of the data collected in the previous chapter are employed by the area efficiency
group, which is including a further separation between logic and memory related functions.

More details on additional features will be given in the next sections, while analyzing part
of the exported results.

9.2 Solutions Space Exploration

As a first step in this analysis, it is interesting to analyze throughput and area efficiency
variations against some important specifications for the PMAP architecture. Therefore,
several multiple analysis have been launched, focusing around the parameters listed in
table 9.1. In the analyzed architectures, the CS4-fast based radix-8 PMU has been con-
sidered, depicted in figure 8.4.

Parameter Symbol Default Value Variation Range

Frame-Size K 6144 [1024, 8192]

Sub-Frame-Size Kp 256 [128, 2048]

Window-Size WS 32 [16, 128]

Channel LLR bitwidth w 6 [4, 16]

Table 9.1: Parameters default values and variation ranges for the proposed analysis.

While a parameter is moved in the proposed range, the other ones are fixed on their
default values. In this way, it is possible to study the effect of each single quantity.

108



9.2. SOLUTIONS SPACE EXPLORATION CHAPTER 9. MODEL RESULTS

The first analyzed parameter is the Frame-Size. The analysis results are illustrated in
figure 9.2. As visible from the top chart, the area efficiency is presenting a monotonic
decreasing curve. The reason behind this trend is the presence of the crossbar in the
architecture, since its area is quadratically depending on the amount of SISO-decoders
N = K/Kp. If the crossbar is neglected, throughput, logic area and memory area would
present a proportionality to the Frame-Size, maintaining the area efficiency constant.
Observing just the throughput curve, the latter is presenting a continuous increment,
since the amount of implemented SISO modules is increasing with the Frame-Size.
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Figure 9.2: Area-Efficiency, Throughput variation (Top) and Most Efficient Radix-Order
(Bottom) as function of the Frame-Size K.

The analysis on the Sub-Frame-Size is depicted in figure 9.3. As expected, the throughput
is monotonically decreasing, since the number of SISO-decoders operating in parallel
is reduced. The declared most efficient radix-order is remaining constant to a radix-
4 implementation. The area efficiency is presenting a maximum point, located around
Kp = 256. As a consequence, once the other parameters have been fixed, it is possible
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Figure 9.3: Area-Efficiency, Throughput variation (Top) and Most Efficient Radix-Order
(Bottom) as function of the Sub-Frame-Size Kp.

to find the optimal Sub-Frame-Size, maximizing the area efficiency. Furthermore, it is
interesting to notice how this last curve is including several relative maximum points. As
a first consideration, it is important to notice that Kp values which are divisors of the
Frame-Size K are optimal choices concerning the area efficiency. Indeed, the efficiency
boosts are located at Kp values satisfying this property. Moreover, a larger increment can
be noticed around Kp = 1024. This further efficiency boost is ensured by the possibility
to implement the NII-Memory employing a library model, avoiding the synthesis and
reducing the impact on the total area.

The Window-Size variation is analyzed in figure 9.4. Increasing WS, the throughput curve
is mostly presenting a reduction, as a consequence of the Forward-Backward scheduling.
A fundamental turning point is located around WS = 64. Indeed, for WS ≥ 64, a library
model is available for the Alpha-Memory implementation. Therefore, the overall memory
impact is greatly reduced and, consequently, the declared most efficient radix-order is
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Figure 9.4: Area-Efficiency, Throughput variation (Top) and Most Efficient Radix-Order
(Bottom) as function of the Window-Size WS.

moving from 4 to 2. However, if the employed memory model is constant, incrementing
the windows size is increasing the memory impact and reducing the overall efficiency.
Indeed, it can be noticed how for WS > 120, the best-radix order is returning to a radix-
4 implementation. Also in this case, efficiency boosts are found when the Window-Size is
a divisor of the Sub-Frame-Size Kp.

The last analyzed variation, depicted in figure 9.5, is considering the channel LLR bitwidth
w. As covered in Chapter 6, the bitwidths for all the other internal quantities are fully
derivable from w, therefore they are automatically computed by the analysis tool.

As expected, the throughput is presenting a monotonic reduction, due to the additional
propagation delay found in the PMU. Moreover, also the area efficiency is characterized
by a continuous decrement, since both logic and memory areas are negatively affected by
larger bitwidths. Both those area contributions are expected to grow linearly as function
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Figure 9.5: Area-Efficiency, Throughput variation (Top) and Most Efficient Radix-Order
(Bottom) as function of the Channel LLR bitwidth w.

of w, therefore the most-efficient radix order is not affected by any variation, as visible in
the bottom chart.

After analyzing the effects of the proposed quantities one by one, the tool has the pos-
sibility to study a set of architectures obtained by changing multiple parameters at the
same time. This feature is useful to better explore the solutions space and understand
which are the optimal choices for area efficient architectures. The selected variables in
this case are the Frame-Size K, the Sub-Frame-Size Kp and the Window-Size WS. As
noticeable, the channel LLR bitwidth is not present, since, as visible in figure 9.5, it is
not expected to cause any interesting variation. The considered ranges are expressed in
table 9.2.

The first two graphs in figures 9.6 and 9.7 are summarizing the area efficiency variation, as
well as the most-efficient radix orders that have been selected. From the chart represented
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Parameter Symbol Start Stop Step

Frame-Size K 2048 6144 2048

Sub-Frame-Size Kp 128 512 128

Window-Size WS 32 128 32

Table 9.2: K, Kp and WS proposed variation ranges for the global analysis.
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Figure 9.6: Most efficient radix-orders as function of K, Kp and WS.

in figure 9.6, it is possible to appreciate the efficient radix distribution, selecting for each
architecture the radix-order expected to maximize the area efficiency. As visible, only
radix-2 and radix-4 approaches have been declared, discarding higher radix orders. On
the other hand, considering the chart in figure 9.7, high-efficiency solutions can be easily
spotted. As expected, optimal choices for high-efficiencies are involving low K and WS
values. Moreover, the optimal Sub-Frame-Size is expected to be around Kp = 256. An
alternative parametric representation for the area efficiency distribution is included in
figure 9.8.

Once a solution has been extracted from the efficiency chart, it is possible to observe
the correspondent radix-order on the other presented graph. It is interesting to notice
how efficient solutions are not relying on a unique radix-order. For instance, considering
Kp = 256 and WS = 32, a radix-4 implementation is required. On the other hand,
changing WS to 64 is involving a radix-2 architecture.

A similar analysis can be carried out considering throughput, as shown in figure 9.9. As
expected, high-throughputs Turbo-decoders are considering high Frame-Sizes and small
Sub-Frame and Window sizes. Moreover, it is noticeable how high throughputs are ranging
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Figure 9.7: Area efficiency as function of K, Kp and WS, using the radix-orders indicated
in 9.6.
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Figure 9.8: Area efficiency as function of K, Kp and WS - Parametric plot.

between 1 Gb/s and 2 Gb/s, typical values for PMAP-based architectures [23].

If just a single Turbo-decoder is employed, the highest-throughput solution can be found
by directly considering the depicted graph. However, when Decoder-level parallelism is
involved, area efficiency must be considered as an additional parameter. Ideally, if an
infinite amount of area is available, the best throughput implementation is corresponding
to the one maximizing the area efficiency.
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Figure 9.9: Throughput as function of K, Kp and WS.

In a realistic scenario, different throughput distributions are found as function of the
available area. In figure 9.10 two examples are presented, considering different restrictions
on the maximum areas. The computed throughputs are calculated considering the amount
of parallel Turbo-decoders available in the given area.
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Figure 9.10: Maximum throughput with parallel Turbo-decoders on a given area as func-
tion of K, Kp and WS. Two areas are considered: 4 mm2 (Left) and 16 mm2 (Right).

As visible, considering small areas is limiting the amount of parallel Turbo-decoders,
generating several high-throughput solutions located in different positions. On the other
hand, if the given area is high enough, the parallelization is moving the best choices
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toward the results stated by the area efficiency analysis.

If throughputs in the order of hundreds of Gb/s are required, Decoder-level parallelization
is a fundamental step to be considered. Therefore, the obtained results are proving the
importance of the area efficiency parameter in this scenario.

9.3 Efficient Solutions

Supposing to fix the Frame-Size to K = 6144, for flexibility purposes, it is possible to
search for area efficient solutions by employing the graphs presented in figures 9.6 and 9.7.
To simplify the representation, the plane corresponding to K = 6144 has been isolated
and represented in 9.11.
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Figure 9.11: Most efficient radix-orders (Left) and area efficiency (Right) as function of
Kp and WS, considering K = 6144.

Two solutions from the presented set have been selected, both considering an optimal
Sub-Frame-Size Kp = 256. Regarding the Window-Size, the first implementation is
considering WS = 32, while the second one WS = 64. As noticeable from the left chart,
those solutions are expected to be optimized following two different radix orders. The
following subsections are detailing the single analysis performed on the two architectures.

9.3.1 Architecture 1

This solution is characterized by a Window-Size equal to 32. The full set of specifications
has been included in the model and a single analysis has been launched. As expected,
the analysis tool declared the radix-4 implementation as the most efficient one. Some

116



9.3. EFFICIENT SOLUTIONS CHAPTER 9. MODEL RESULTS

comparison details for the different radix-orders are included in table 9.3, considering a
single Turbo-decoder instance.

Radix Logic Area Memory Area Throughput Area Efficiency

[GE] [GE] [Gb/s] [Gb/s/mm2]

2 106137 (8%) 1135160 (92%) 1.07 0.60

4 324264 (23%) 1041527 (77%) 1.57 0.80

8 741633 (32%) 1539499 (68%) 1.39 0.42

16 1580466 (46%) 1848461 (54%) 1.85 0.37

Table 9.3: Comparison indicators for Architecture 1 considering different radix-orders.

Observing the data reported in the table, it is remarkable how the overall area is typi-
cally dominated by memories. Just for the radix-16 implementation, logic and memory
contributions are expected to be similar. It is interesting to notice how the best area
efficiency choice is not involving the maximum throughput among the analyzed solutions.
A strong area efficiency penalty is found on the highest radix orders, due to the significant
limitations imposed by the logic complexity and the critical path.

Further details on logic and memory, extracted from the analysis tool results, are reported
in tables 9.4 and 9.5, considering the proposed radix-4 solution.

Unit SISO % Logic Area

BMU 9%

PMU 61%

SOU 30%

Table 9.4: Logic units area distribution in a SISO-decoder, considering Architecture 1
and a radix-4 implementation.

As visible, the PMU is expected to be the dominant contribution in the logic area. Re-
garding memories, it is possible to observe how the Input-Frame-Memory and the Alpha-
Memory are covering more than 50% of the total memory area. As expected, the crossbar
area contribution is not negligible. It is remarkable how this solution is implementing
the Global memories employing library models, while the Local ones are forced to be
synthesized, dramatically increasing their area impact.

It is now necessary to analyze the effect of uncertainty over the proposed radix-4 solution.
The reliability analysis approach presented in Chapter 8 has been applied, considering
the relative errors indicated in table 9.6.
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Contribution Model Words Bits Banks % Memory Area

IN-FR-MEM Library 64 18 96 25%

EXTR-INF-MEM Library 43 7 144 11%

ALPHA-MEM Synthesis 8 88 48 31%

NII-MEM Synthesis 8 88 24 15%

CROSSBAR - - - - 18%

Table 9.5: Memory sizes, partitioning and area distribution considering Architecture 1.

Parameter Relative Error

Throughput 10%

Logic Area 20%

Memory Area 30%

Table 9.6: Considered relative errors for the reliability analysis on Architecture 1.

The considered uncertainties are aiming to prove the solution robustness against different
technologies. Moreover, a larger error on the Memory Area has been included to consider
the presence of pipeline registers inside the architecture, which have not been included
in the analysis model. By testing all the possible combinations, the reliability analysis
produced the results reported in figure 9.12.
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Figure 9.12: Reliability analysis results considering Architecture 1.

As visible, even considering the superimposed errors, the analysis model converged to a
radix-4 implementation, without any percentage of cases declaring a radix-2 architecture.
Therefore, the radix-4 order can be considered a robust choice.
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The effects of errors are depending on the differences between efficiencies of the compared
architectures. In this case, the radix-4 implementation is presenting a difference which is
large enough in order to be considered a reliable solution. On the other hand, if similar
efficiencies are found, it is expected a non-convergence from the model, even considering
small errors.

9.3.2 Architecture 2

The second analyzed solution is introducing a Window-Size equal to 64. Also in this case,
a dedicated single analysis has been launched. The fundamental results are reported in
tables 9.7, 9.8 and 9.9.

Radix Logic Area Memory Area Throughput Area Efficiency

[GE] [GE] [Gb/s] [Gb/s/mm2]

2 106137 (11%) 795014 (89%) 0.96 0.74

4 324264 (20%) 1282295 (80%) 1.41 0.61

8 741633 (30%) 1659883 (70%) 1.25 0.36

16 1580466 (44%) 1936013 (56%) 1.66 0.33

Table 9.7: Comparison indicators for Architecture 2 considering different radix-orders.

Unit SISO % Logic Area

BMU 4%

PMU 54%

SOU 42%

Table 9.8: Logic units area distribution in a SISO-decoder, considering Architecture 2
and a radix-2 implementation.

In this case, the most efficient architecture is following a radix-2 implementation. Since
the logic units are including a small amount of operators, the Turbo-decoder area is almost
completely defined by memories.

Observing table 9.9, it is noticeable how a library model is available for the Alpha-Memory
implementation. Since Alpha memories are representing a significant percentage of the
total memory area, their implementation through library models is guaranteeing a high
efficiency for the radix-2 approach. As a matter of fact, the radix-4 implementation is not
capable to guarantee this possibility.
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Contribution Model Words Bits Banks % Memory Area

IN-FR-MEM Library 128 18 48 25%

EXTR-INF-MEM Library 86 7 72 11%

ALPHA-MEM Library 32 88 48 48%

NII-MEM Synthesis 4 88 24 10%

CROSSBAR - - - - 6%

Table 9.9: Memory sizes, partitioning and area distribution considering Architecture 2.

Furthermore, this implementation is relaxing the crossbar specifications, since a lower
amount of partitions is required for the Extrinsic-Information-Memory. Indeed, as vis-
ible, the crossbar impact on the area is drastically reduced if compared to a radix-4
implementation.

A reliability analysis has been launched also for this solution, considering the relative
errors indicated in table 9.6. As noticeable in figure 9.13, all the performed tests are
declaring a radix-2 implementation as the most efficient one. Therefore, the radix choice
robustness has been proved.
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Figure 9.13: Reliability analysis results considering Architecture 2.

The presented examples have shown the fundamental role of the Alpha-Memory in the
choice of the most efficient radix-order. Indeed, since it is representing a large percentage
of the total memory area, its implementation is heavily affecting the achievable area
efficiency.

In the next chapter, the model results obtained for the two considered solutions will be
compared with synthesis data deriving from a full architectural description, in order to
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highlight the model accuracy.

9.4 High-Radix Limitation

As visible from the data presented during the previous sections, radix-8 and radix-16
architectures are not considered efficient choices. Indeed, observing a generic radix com-
parison, for instance table 9.3, it is noticeable how area efficiencies for the radix-8 and
radix-16 solutions are significantly lower if compared to the other available radix-orders.

Efficiency is mostly limited by the critical path increment, caused when a radix-8 PMU
is involved. This statement can be proved by comparing different radix-orders while
removing the critical path increment factors. In other words, it is assumed the all the
radix solutions are working with the same clock frequency, which has been selected equal
to 259 MHz, from table 8.16. A global analysis has been launched, exploring the same
architectural space defined in table 9.2. The obtained results are shown in figure 9.14.
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Figure 9.14: Most efficient radix-orders as function of K, Kp and WS, assuming the same
working clock frequency for all the radix-orders.

As visible, the depicted chart is opening the possibility for efficient radix-8 implemen-
tations. However, these results are valid only under the assumption of a fixed clock
frequency, a condition that may be requested in some practical cases. Although, in this
work, the interest is to find the most efficient solutions and, as a consequence, the working
frequency is representing an important degree of freedom to be included in the study.
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The results obtained from the last analysis are suggesting that decreasing the PMU critical
path for high radix-orders could open the possibility for their efficient use. As mentioned,
during the performed analysis, the CS4-based CS8 model has been employed. In this
scenario, a switch to the CS8-fast model has been performed, in order to test the conse-
quences of the critical path reduction. Therefore, an additional global analysis has been
launched, restoring the clock frequency dependence from the radix-order.

The results are identical to the ones shown in figure 9.6, therefore radix orders higher than
4 have been discarded from the efficient solutions set. However, a slight improvement in
the area efficiency can be noticed by performing a single analysis. For instance, considering
K = 6144, Kp = 256 and WS = 32, a comparison between the different CS8 models can
be carried out.

Radix CS8 Model % Log. Area % Mem. Area Area Efficiency

[Gb/s/mm2]

8 CS4-based 32% 68% 0.42

8 CS8-fast 39% 61% 0.48

16 CS4-based 46% 54% 0.37

16 CS8-fast 50% 50% 0.44

Table 9.10: CS8 model comparisons on radix-8 and radix-16 architectures.

The results reported in table 9.10 are showing how employing the proposed CS8-fast unit
is improving the area efficiency. However, the efficiencies are still limited if compared to
radix-2 and radix-4 implementations. As visible, an important drawback is found on the
logic area contribution, since its percentage over the total area is significantly increased,
due to the larger amount of employed operators.

Following this direction, it is required to find CS8 solutions which are presenting an
optimal trade-off between area occupation and critical path. An interesting possibility
could be to reduce the number of CS2 units in the CS8-fast architecture, lowering the
impact on critical path and area, while introducing an acceptable degradation on the
error-correction performances.

As a conclusion, the presented results are showing how radix-2 and radix-4 implementa-
tions are valuable choices, capable to introduce an optimal trade-off between throughput
and complexity. Depending on the logic and memory organization, one among those two
solutions can be selected in order to maximize the area efficiency. However, higher radix-
orders should not be automatically discarded, since possible improvements on the logic
architecture could lead to acceptable area efficiencies. Moreover, a further advantage of
high radix-order solutions is the latency reduction, which is fundamental for part of the
presented use cases by the EPIC project.
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9.5 Very High Throughputs

In this section, the Concurrent-PMAP model is pushed toward high-throughputs, in or-
der to better understand its limitations and study its applicability. The EPIC project,
following the purpose of a realistic implementation, indicated constraints on some Key
Performance Indicators [11]. A maximum area of 10 mm2 is declared, with a correspon-
dent maximum area efficiency equal to 100 Gb/s/mm2.

Therefore, considering the 65 nm technology, it is possible to estimate how many Turbo-
decoders can be implemented in a given area equal to 10 mm2, highlighting the throughput
distribution over different architectures. A global analysis has been launched, fixing the
maximum area size and allowing the usage of concurrent Turbo-decoders. The produced
results are shown in figure 9.15.
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Figure 9.15: Maximum throughput with concurrent PMAPs on a 10 mm2 area. Technol-
ogy: 65 nm.

As visible, parallelizing PMAP architectures is producing proportional benefits in terms
of throughput. The expected maximum achievable throughput is above 8 Gb/s. The
dimension of the single PMAP-decoder is stating how many instances can be found in
the given area. As a matter of fact, the amount of instances is strongly depending on the
employed technology.

The analysis tool has the capability to estimate results on different technologies, starting
from the reference one and considering a scaling factor on the GE area. As a general
rule, given the scaling factor S, which is the size ratio between transistors implemented
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with different technologies, the area is expected to scale as 1/S2. However, this simple
scaling rule is inaccurate if applied to recent technologies [29], since not all the quantities
are expected to scale as function of a unique scaling factor S. Large differences from the
ideal scaling model can especially be found considering technologies below 45 nm (high-
k dielectrics introduction) and below 20 nm (multi-gate technology introduction). As a
consequence, the authors in [29] proposed a method to properly determine scaling factors,
while keeping into account the issues mentioned above. Part of the area scaling factors
indicated in the article have been extracted and reported in table 9.11, considering as a
starting node the 65 nm technology.

Starting Node Desired Node Area Scaling Factor

65 nm 65 nm 1

65 nm 45 nm 1.5

65 nm 32 nm 3.3

65 nm 28 nm 4.61

65 nm 20 nm 7.1

65 nm 16 nm 7.9

65 nm 14 nm 8.7

65 nm 10 nm 15

65 nm 7 nm 25

Table 9.11: Area scaling factors from the 65 nm technology to other technological nodes.

In order to perform a comparison with the Unrolled-X-MAP architecture, presented in
table 7.1 during the State-of-the-Art review, a scaling factor has been introduced to prop-
erly estimate the results on a 28 nm technology. Moreover, the number of half-iterations
and the maximum working clock frequency are considered equal to the UXMAP imple-
mentation. The global analysis results are represented in figures 9.16 and 9.17.

As visible from the efficiency plot, area efficiencies higher than 7.5 Gb/s/mm2 are ex-
pected to be reached, comparable to the 6.2 Gb/s/mm2 value declared for the UXMAP
architecture. Moreover, the achievable throughput on the same maximum area has been
compared: the Concurrent-PMAP approach is expected to produce throughputs above
100 Gb/s, also comparable with the throughput declared for the reference UXMAP.

As a direct result, concurrent Decoder-level parallelism should not be discarded as a
valuable solution for high-throughput requirements. It is remarkable how these results
should not be used as a detailed comparison metric between the two architectures, since
the area efficiencies are expected to be overestimated by the model, as detailed in the

1Scaling factor obtained by linearly interpolating the 32 nm and 20 nm results.
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Figure 9.16: Area efficiency distribution as function of K, Kp and WS. Technology: 28
nm (Scaled).
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Figure 9.17: Maximum throughput with concurrent PMAPs on a 16.5 mm2 area. Tech-
nology: 28 nm (Scaled).

next chapter. Therefore, the aim of this analysis is simply to prove the suitability of the
proposed architecture and introduce the need for a more detailed comparison against the
UXMAP approach.
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Figure 9.18: Area efficiency distribution. Technology: 7 nm (Scaled).
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Figure 9.19: Maximum throughput with concurrent PMAPs on a 10 mm2 area. Technol-
ogy: 7 nm (Scaled).

Furthermore, it is interesting to scale the solutions space to the 7 nm technology, con-
sidered as a reference technology for comparisons by the EPIC project. Moreover, a
maximum area of 10 mm2 has been considered and the maximum working clock fre-
quency has been fixed to 1000 MHz, following the EPIC comparison methodology. Area
efficiency and throughput distributions are reported in figures 9.18 and 9.19.
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The area efficiency is still far from the 100 Gb/s/mm2 limit, as well as the throughput from
1 Tb/s. Consequently, further architectural and algorithmic improvements are required.
However, it is fundamental to consider an important feature of the concurrent-PMAP ar-
chitecture, which is the possibility to improve the area efficiency by reducing the required
amount of iterations, according to the expected BER. For instance, modifying the total
iteration number from 6 to 4 is guaranteeing a 50% boost on the area efficiency. More-
over, modifying the half-iteration number is not impacting on the total required area, in
opposition with the UXMAP approach.
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Chapter 10

Model Validation

This chapter aims to validate part of the obtained results from the analysis tool, relying on
synthesis operations. First, the main logic units for radix-2, 4 and 8 architectures will be
considered, comparing both areas and critical paths. Moreover, their correct functionality
will be also tested. Then, both SISO and Turbo decoders architectures will be synthesized,
aiming to prove the results estimated in Chapter 9 for Architecture 1 and Architecture 2.

10.1 Logic Units Validation

As mentioned in the introduction, BMU, PMU and SOU have been described in hardware
following different radix-orders. In particular, the radix-8 PMU has been implemented
relying on CS4-fast operators. As a first step, the correct functionality has been tested by
employing a set of testbenches per each radix-order. Reference input data and expected
results, considering a frame size K = 6144, have been extracted from the C-model1,
also employed for the simulations presented in Chapter 6. A group of testbenches on a
given radix-order is organized as illustrated in figure 10.1: the results from each logic
block are employed to emulate a full half-iteration on the given architecture, checking the
correctness of the final produced LLR. Moreover, each block is also singularly tested in
the process.

All the performed testbenches confirmed the correct functionality of the involved logic
units. Therefore, it is possible to proceed with the synthesis operations, in order to detail
informations on area and critical path. All the synthesis proposed in this chapter are
performed employing the 65 nm technology.

1Turbo-Decoder model available at the VLSI group - Politecnico di Torino
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Figure 10.1: Testbench block scheme for logic units.

First, a study on the area occupation is detailed in table 10.1, including a comparison
with the analysis tool results. As visible, the estimations are accurate, since the maximum
introduced error is below 1.5%. Consequently, the proposed approach to estimate the
computational units’ area can be considered reliable.

Radix Logic Unit Area synthesis [GE] Area model [GE] % Error

2 BMU 82 82 0.0%

2 PMU (FW/BW) 1196 1194 0.2%

2 SOU 1875 1871 0.2%

4 BMU 598 600 0.3%

4 PMU (FW/BW) 4097 4155 1.4%

4 SOU 4008 4001 0.2%

8 BMU 3075 3075 0.0%

8 PMU (FW/BW) 8034 8084 0.6%

8 SOU 8600 8584 0.2%

Table 10.1: Logic units area comparison between model results and synthesis results.

Proceeding with the next step, critical delays have been extracted from the synthesized
designs, aiming to verify the critical path increment factors employed by the model.
Comparison data are reported in table 10.2. The estimations performed on the critical
path increment, against the reference radix-2 architecture, have been proved to be valid.
Moreover, as visible, pipeline stages are required in the SOU architecture, in order to
bound the critical path to the PMU. The same consideration is expected to be extended
also for the BMU, when high radix-orders are involved.
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Radix-2 CP Increment Factor

Radix Logic Unit Critical Path [ns] Synthesis Model % Error

2 BMU 0.75 - - -

2 PMU (FW/BW) 1.46 1 1 0.0%

2 SOU 5.02 - - -

4 BMU 1.07 - - -

4 PMU (FW/BW) 1.99 1.36 1.36 0.0%

4 SOU 6.41 - - -

8 BMU 1.63 - - -

8 PMU (FW/BW) 3.37 2.31 2.31 0.0%

8 SOU 7.81 - - -

Table 10.2: Critical path synthesis data and comparison with the increment factors em-
ployed in the developed model.

Developing a complete hardware description of the logic units is a time-consuming task.
Therefore, obtaining accurate estimations starting from the included basic operators is a
remarkable advantage.

10.2 Architectures Validation

This section aims to verify the results obtained for the two area efficient solutions presented
in Chapter 9. Therefore, it is necessary to fully describe in hardware a PMAP Turbo-
decoder architecture.

First, the SISO structure has been defined, including additional hardware elements nec-
essary to fully control the algorithm application. Additional multiplexers were added,
as well as layers of pipeline registers to separate the logic stages. Moreover, also the
Extrinsic-Scaling-Factor logic has been included. In this phase, all the synthesized local
memories are added to the architecture’s description. Then, multiple SISO instances are
included in the Turbo-decoder, introducing Global memories and the required crossbar.
Due to the limited amount of available library memory models, their contribution has
been included considering the estimations produced by the analysis tool.
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10.2.1 Architecture 1

Considering this solution, it is desired to verify the area efficiency improvement deriving
from using a radix-4 implementation against a radix-2 one. Therefore, the two archi-
tectures have been described. As mentioned, it is necessary to collect library memory
data before proceeding with the synthesis. In this case, the memories relying on library
models are the Input-Frame-Memory and the Extrinsic-Information-Memory. Their data
are included in table 10.3.

Radix Memory Size Banks GE/Bit Area [mm2]

2 IN-FR-MEM 128x18 48 1.76 0.280

2 EXTR-INF-MEM 86x7 72 2.07 0.129

4 IN-FR-MEM 64x18 96 2.31 0.368

4 EXTR-INF-MEM 43x7 144 2.62 0.164

Table 10.3: Library memory models for Architecture 1.

Then, radix-2 and radix-4 implementations have been synthesized, and area reports have
been generated. After the synthesis, the library memory areas have been added. From
the gathered informations, it is possible to separate the logic and memory contributions
in the total area, as reported in tables 10.4 and 10.5.

Radix-2

Quantity Synthesis Data Model Data % Error

Total Area [mm2] 1.943 1.787 8.0%

Logic Area [mm2] 0.186 (10%) 0.153 (9%) 17.7%

Memory Area [mm2] 1.757 (90%) 1.634 (91%) 7.0%

Area Efficiency [Gb/s/mm2] 0.549 0.597 8.7%

Table 10.4: Architecture 1, Radix-2 - model and synthesis data comparison.

As expected, observing table 10.4, the synthesized area is larger, due to the additional
logic and pipeline registers, not included in the analysis model. The two mentioned contri-
butions are generating errors respectively on logic and memory areas. As visible, the logic
is particularly affected, since in a radix-2 architecture the computational logic complexity
is limited. However, the error impact on the efficiency estimation is below 10%.

Similar considerations are found for the radix-4 case, except for the error effect on the
total logic area, which is limited. Indeed, the higher logic complexity of the radix-4
architecture is guaranteeing robustness against possible overheads. The introduced area
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Radix-4

Quantity Synthesis Data Model Data % Error

Total Area [mm2] 2.202 1.967 10.7%

Logic Area [mm2] 0.506 (23%) 0.467 (24%) 7.7%

Memory Area [mm2] 1.696 (77%) 1.500 (76%) 11.6%

Area Efficiency [Gb/s/mm2] 0.712 0.797 11.9%

Table 10.5: Architecture 1, Radix-4 - model and synthesis data comparison.

efficiency error is below 12%. The presented comparisons highlight the importance of
detailing the analysis model, if really accurate estimations are desired. However, the
presented errors are acceptable considering the purpose of this work, which is purely
centered around exploring different solutions.

It is interesting to notice how the best radix-order choice is strongly reliable, if the area
efficiency improvement ratio is compared. The model is predicting that employing a
radix-4 architecture is improving the efficiency with a factor 1.34 against the radix-2
solution. The same factor, computed employing synthesis data, is 1.30, introducing a
3.1% error. As a final consideration, the expected efficiency improvement from selecting
the right radix-order is around 30%.

10.2.2 Architecture 2

Also in this case, the first step consists in characterizing memories which are requiring a
library model. As a difference with respect to Architecture 1, the radix-2 implementation
is ensuring a library model also for the Alpha-Memory. The obtained data are included
in table 10.6.

Radix Memory Size Banks GE/Bit Area [mm2]

2 IN-FR-MEM 128x18 48 1.76 0.280

2 EXTR-INF-MEM 86x7 72 2.07 0.129

2 ALPHA-MEM 32x88 48 2.83 0.551

4 IN-FR-MEM 64x18 96 2.31 0.368

4 EXTR-INF-MEM 43x7 144 2.62 0.164

Table 10.6: Library memory models for Architecture 2.

Logic and memory data extracted from synthesis are included in tables 10.7 and 10.8.
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Radix-2

Quantity Synthesis Data Model Data % Error

Total Area [mm2] 1.468 1.298 11.6%

Logic Area [mm2] 0.186 (13%) 0.153 (12%) 17.7%

Memory Area [mm2] 1.282 (87%) 1.145 (88%) 10.7%

Area Efficiency [Gb/s/mm2] 0.654 0.740 13.1%

Table 10.7: Architecture 2, Radix-2 - model and synthesis data comparison.

As visible in 10.7, the errors on the estimated quantities are exceeding 10%. As a general
rule, the smaller the logic and memory areas, the larger their sensitivities to possible
overheads. Depending on how the architecture is organized, it may be necessary to include
the contribution of the additional logic and pipeline registers. Indeed, this work proved the
significant area impact introduced by Flip-Flop memories. Therefore, if a large amount of
quantities are required to be pipelined, it may be necessary to model the required registers.
In case the architecture is based on forwarding data by means of pipelines (XMAP and
UXMAP), an accurate characterization of the included registers is mandatory to introduce
acceptable errors.

Radix-4

Quantity Synthesis Data Model Data % Error

Total Area [mm2] 2.534 2.313 8.7%

Logic Area [mm2] 0.506 (20%) 0.467 (20%) 7.7%

Memory Area [mm2] 2.028 (80%) 1.846 (80%) 9.0%

Area Efficiency [Gb/s/mm2] 0.557 0.610 9.5%

Table 10.8: Architecture 2, Radix-4 - model and synthesis data comparison.

As expected, the radix-4 solution is more robust against the overhead added to the logic
area. Consequently, a smaller error is found on the total area estimation.

Also in this case, the area efficiency improvement factor, considering the choice of a radix-
2 architecture against a radix-4 one, is expressing high reliability. Indeed, the model is
proposing an improvement factor equal to 1.21, while a value equal to 1.17 is derived
from synthesis data, introducing a 3.4% error. Overall, in the considered scenario, the
radix-2 solution is expected to introduce a 15% higher efficiency if compared to the radix-4
implementation.
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10.2.3 Conclusions

This section proved how the developed model can be considered reliable on the choice of
the most efficient radix-order. Therefore, it can be used to test further architectural or al-
gorithmic improvements for high-radix implementations. More generally, area efficiencies
comparisons are expected to produce reliable results.

On the other hand, single area efficiency computations could be improved by adding
further details in the area estimation model. Fundamental error sources are the additional
logic necessary in the SISO architecture and the included pipeline registers. By now, a
limited degree of underestimation must be considered on the total areas provided by the
analysis tool, consequently affecting the area efficiencies.
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Chapter 11

Conclusions and Future Works

This chapter aims to first summarize and review the results presented in this work, fo-
cusing on their impact on modern Turbo-decoder architectures. Moreover, possible steps
toward future works will be discussed, starting from the previously analyzed results.

11.1 Conclusions

In the first part of this work, a review on Turbo-Codes has been detailed, focusing on the
specific use of the LTE/UMTS standard code. The usage of the Max-Log-Map decoding
algorithm, including the ESF, has been justified, considering the optimal trade-off between
BER and complexity.

Then, a set of important parallelization degrees has been presented, focusing on their
impact on throughput, area, BER and flexibility. Moreover, a critical review of the
State-of-the-Art architectures has been included, highlighting the implemented paral-
lelization degrees. In this scenario, the UXMAP architecture is a promising candidate
for high-throughput requirements. However, also PMAP-based solutions with high de-
grees of parallelism should be considered: this work proposed a detailed analysis on the
Concurrent-PMAP architecture, which is including several PMAP-decoders working in
parallel. Moreover, its suitability for high-radix orders has been studied.

A generic comparison model has been developed, aiming to fully explore a given archi-
tectural space, generalizing the results against the employed technology. The central role
of the area efficiency parameter has been highlighted, proving its importance in scenarios
including high degrees of parallelization. The steps necessary to build the comparison
tool have been covered, highlighting the necessary architectural choices for both logic
and memory organization. More specifically, several techniques and methods have been
introduced in this work, in order to face issues presented by employing high radix-orders.
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The results have shown how radix-2 and radix-4 architectures are suitable implementa-
tions, capable to introduce optimal area efficiencies. Depending on the specifications, one
among these two radix approaches should be selected. Moreover, it has been proved how
the memory organization is playing a fundamental role in the choice of the most efficient
radix-order. On the other hand, higher-order implementations are limiting the achievable
area efficiency, mainly due to their critical paths. However, it has been proved how a crit-
ical path reduction is potentially opening the possibility for efficient radix-8 architectures.
Therefore, they should not be a-priori discarded, also considering the latency reduction
that they are able to guarantee.

The area efficiency variation has been studied as function of fundamental PMAP param-
eters, considering the effect of each single quantity separately. Therefore, the required
choices directed toward efficiency maximization have been detailed. It has been proved
how, following the estimated results, the Concurrent-PMAP architecture is expected to
reach comparable throughputs and area efficiencies if confronted with the UXMAP so-
lution. Therefore, the suitability of PMAP-based architectures in the high-throughput
scenario has been proved. Moreover, considering a technological scaling estimation, it
has been noticed how the presented Concurrent-PMAP architecture is not expected to
fully satisfy the throughput requirements expected for the next future use cases. In-
deed, maximum area efficiencies below 36 Gb/s/mm2 are expected to be reached on the
7 nm technology. Consequently, further architectural and/or algorithmic improvements
are required.

As a last aspect, the accuracy of the developed model has been analyzed, confirming its
suitability for comparison purposes among different architectures. The relative uncertain-
ties on the provided numerical results have been detailed, highlighting the possible steps
to further improve the model accuracy.

11.2 Future Works

The presented comparison model has been developed considering a set of assumptions,
which are limiting the architectural space to be explored. Possible future works could
consider an extension of the model, including additional degrees of freedom. For instance,
interesting results could be obtained by comparing the usage of different scheduling poli-
cies. Moreover, accuracy improvements could be introduced by modeling the presence of
pipeline registers in the architecture.

Interesting steps could be also considered toward the implementation of high radix-order
architectures. In this scenario, efforts may be spent in reducing both critical path and
logic complexity, aiming to introduce efficient solutions. A more detailed analysis could
be carried out around fast Compare-and-Select operators, including the possibility to
approximate their results. Moreover, the use of high-radix solutions could be investigated
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on larger architectural spaces, including for instance different scheduling policies.

As highlighted, the Concurrent-PMAP architecture is expected to represent a feasible can-
didate for high-throughput solutions. Therefore, a better comparison is desired between
PMAP and XMAP based approaches, aiming to highlight advantages and disadvantages.
Following this consideration, the analysis model could be extended in order to fully include
architectures based on the XMAP model.

Finally, new algorithmic and architectural solutions are expected to be introduced in the
next future, aiming to satisfy the high-throughput demand. New proposed approaches
could be discriminated following the proposed method, saving time on their full architec-
tural description.
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Appendix A

Recursive Trellis Exploration

When exploring high-radix orders, it is useful, especially for hardware description pur-
poses, to gather informations on the operations required to be performed by the logic
units. Moreover, it is interesting to observe the full set of paths considered by the de-
coding algorithm. Following these purposes, a Trellis-Diagram exploration approach is
proposed.

As a first aspect, it is necessary to model the Trellis-Diagram state transitions in a generic
Trellis-section. In this work, the reference LTE/UMTS standard code has been considered,
however the approach can be also extended to other convolutional codes. As illustrated in
figure A.1, a proper function, called next state(), is defined in order to model the state
transitions. Considering the Trellis-Diagram, the function requires the current state and
the codeword bits to select the proper destination state, which is returned as a result. For
instance, next state(0, 01) will return a destination state equal to 5.

An additional function, named code bits(), is required to return the available codeword
bits, given a generic present state. For instance, given the state 0, two possible codewords
are returned: 00 and 11.

By employing the presented functions, it is possible to select a starting state and re-
cursively explore all the possible paths deriving from it. The key idea is to first call
code bits() to gather informations on the possible codeword bits, and then next state()
to obtain the successive states in the Trellis-Diagram. This sequence of operations can be
recursively repeated on the new obtained states, considering them as starting states.

A stop condition is required in order to block the recursion. Therefore, the recursive
exploration should be aware of the amount of Trellis-sections to be explored, which is
bounded by radix-order. For instance, a radix-4 exploration is requiring only two consec-
utive Trellis-sections to be analyzed.
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Figure A.1: Trellis-Diagram recursive exploration algorithm - block scheme.

The presented approach is meant to be repeated for each possible starting state, obtaining
the full list of paths in the Trellis-Diagram. Each path is described by a sequence of
codeword bits. As a first important information, it is possible to analyze if redundant
paths, sharing the same codeword bits, are found in the analysis. Considering the reference
code, redundant paths are found for both radix-2 and radix-4 approaches.

Moreover, it is possible to collect useful data in order to simplify the implementation of the
three fundamental logic units included in a SISO-decoder. Considering the Branch Metric
Unit (BMU), it is desired to compute all the combined branch metrics, introducing the
minimum amount of additions. During the Trellis-Diagram exploration, it is possible to
rely on a data structure storing the partially computed metrics (sum of radix-2 branches).
When a combined branch is required to be computed, a new addition is introduced only
if the necessary result is not found inside the mentioned data structure.

Regarding the Path Metric Unit (PMU), it is useful to group paths that are sharing the
same starting or destination states, depending on the direction of the propagation. For
instance, if the Forward recursion is performed, 8 set of paths sharing the same destination
states can be identified.

Following the Soft Output Unit (SOU) model employed in this work, it is useful to identify
several groups of paths sharing the same systematic sequences.

If required, other useful informations can be collected. Moreover, this approach can be also
employed to compare Trellis-Diagrams belonging to different convolutional codes. In this
work, the logic units description is relying on data collected from the Trellis-exploration,
which saved a significant amount of time on the hardware description.
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Appendix B

Fast CS Operators

As presented in Chapter 8, critical path reduction is a fundamental improvement necessary
for the Path Metric Unit (PMU). In this context, the main logic operator is the Compare-
and-Select (CS2) unit, capable to discriminate the maximum value among two input
operands. This appendix is covering two fundamental aspects: first, a possible critical
path reduction for the CS2 operator is presented, relying on look-ahead logic. Then, fast
Compare-and-Select operators working with an arbitrary number of input operands are
discussed.

B.1 Look-Ahead Logic CS2

As depicted in figure 8.3, a basic CS2 implementation is including a subtractor, capable to
generate the logic signal employed by the selection multiplexer. It is remarkable how the
subtraction result is not fully required for the correct functionality of the unit. Indeed,
just the Most-Significant-Bit (MSB) is employed to drive the multiplexer.

Starting from this consideration, the subtractor architecture can be directly simplified, in
order to avoid the computation of the unnecessary result bits. More specifically, relying
on look-ahead logic, a critical path reduction is available with a small impact on the area.

Given two N-bits operands a and b, considering a generic bit i in the sequence, it is possi-
ble to estimate in parallel the generate and propagate signals gi and pi, as reported below.
This first computation is illustrated in figure B.1, considering operands expressed on 11
bits, typical bitwidth for state-metrics.

gi = ai · bi
pi = ai ⊕ bi
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Figure B.1: Look-Ahead based CS2.

A generic sum bit si can be computed starting from the propagate bit pi and the input
carry ci, as shown in the equation below. Typically, all the input carry values for each
stage are required to be correctly computed to obtain the complete result.

si = pi ⊕ ci

However, in this case, just the MSB is necessary, therefore it is enough to compute the
logic value of the input carry for the last stage, cN−1. A fast computation can be achieved
relying on Generate-Propagate-Block units, organized in a tree-like structure as shown in
B.1. The generated signals Gx,y and Px,y are embedding information about the carry gen-
eration/propagation between the sum stages x and y. In other words, they are extending
the concepts expressed by gi and pi over multiple bits. Moreover, as visible, those signals
can be combined in order to extend their application ranges. The operations performed
by a GP-Unit are reported.
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Gi,k = Gj+1,k + Pj+1,k ·Gi,j

Pi,k = Pi,j · Pj+1,k

Once G0,N−2 and P0,N−2 have been computed, it is possible to estimate cN−1, knowing
the logic value of the first input carry c0.

cN−1 = G0,N−2 + P0,N−2 · c0

Since a subtraction is performed, c0 is set equal to 1, in order to correctly complement
the second operand. Therefore, the equation can be further simplified. Finally, a XOR
gate is included to produce the output logic result.

As visible, most of the included operators are working in parallel layers, reducing the
propagation delay. More specifically, since the GP-Blocks are following a tree-like dispo-
sition, the critical path is expected to logarithmically depend on the number of bits N .
This advantage is introduced at a cost of a higher complexity in the carry propagation
network, especially if compared to a ripple-carry based approach. However, part of the
logic included in a complete look-ahead subtractor is neglected, since it is not necessary
to fully compute the result.

Synthesis operations have been performed on two CS2 architectures, employing the stan-
dard subtractor approach and the look-ahead implementation. The bitwidth has been
fixed to 11 bits and the 65 nm technology has been employed. Area and critical path
comparisons have been extracted and reported in table B.1.

CS2 Model Area [um2] Critical Path [ns]

Subtractor-Based 93.24 1.36

Look-Ahead-Logic 99.36 0.97

Table B.1: Area and critical path comparisons between CS2 models based on subtractors
and look-ahead logic.

As visible, a 28% reduction factor is found on the critical path, which is compensated by
a 7% area increment. Therefore, the Look-Ahead solution is introducing a better area
efficiency, if compared to the classic subtractor implementation.

B.2 Multiple Inputs CS

Considering radix-orders higher than 2, it is fundamental to work on the delay introduced
by Compare-and-Select operators working with more than two operands, aiming to re-
duce the Path Metric Unit (PMU) critical path. As presented in Chapter 7, a tree-like
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structure including CS2 operators is discarded, considering this purpose. A better option
is proposed in [24], in which a CS4-fast architecture, depicted in figure 8.4, is presented.

In this work, the same approach is extended, aiming to introduce fast Compare-and-Select
operators working with a generic amount of N input operands. The first step consists in
fixing the amount of parallel comparisons to be performed employing CS2 units. Observ-
ing the CS4-fast implementation, a total of 6 CS2 units are required. As visible, all the
possible couple of operands are required to be compared. A possible generic equation to
derive the amount of CS2 comparisons as function of N is indicated below.

CS2 number =
N−1∑
i=1

i

The next step consists in specifying the logic meaning of the comparisons results. An
example, considering the CS4-fast architecture, is shown in table B.2.

It is now necessary to establish the content of the LUT. The algorithmic steps shown in
figure B.2 are proposed: starting from the logic results table, it is possible to define the
function comp res(), capable to return the array of logic results, given a set of input
operands. In other words, it is emulating the parallel CS2 operators. Starting from the
same set, another defined function, max(), is in charge of extracting the maximum value,
returning the correct selection signal for the multiplexer.

CS2 ID Input A Input B Logic Result

0 Operand 0 Operand 1 Op. 0 > Op. 1

1 Operand 0 Operand 2 Op. 0 > Op. 2

2 Operand 0 Operand 3 Op. 0 > Op. 3

3 Operand 1 Operand 2 Op. 1 > Op. 2

4 Operand 1 Operand 3 Op. 1 > Op. 3

5 Operand 2 Operand 3 Op. 2 > Op. 3

Table B.2: Logic results from the set of 6 comparisons included in a CS4-fast operator.

The proposed steps are meant to be applied to all the possible combinations of input sets.
The latter can be obtained considering all the permutations of the N-elements array
[0, 1, 2 ... N-1]. Consequently, the number of input sets to be tested is N!, which is also
representing the number of entrances for the LUT. For instance, considering a CS4-fast
operator, 4! = 24 entrances are required.
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Figure B.2: Proposed steps to compute the LUT content - block scheme.

However, when increasing the amount of input operands, it is not feasible to describe
in hardware a LUT to drive the multiplexer. The main reason is the number of required
entrances, which is dramatically increasing with N. For instance, a CS8-fast operator
would require 8! = 40320 entrances. Therefore, a different approach is proposed, aiming
to implement a proper logic function necessary to drive the multiplexer.

Given a generic operand, N-1 logic results from the comparison table are associated to
it. For instance, considering the Operand 2 in table B.2, the comparisons 1, 3 and 5
are including it. Starting from this set of comparisons results, it is possible to derive a
logic function stating if the operand under analysis is satisfying the maximum condition.
The implementation is requiring a set of AND operations among the logic results of
the involved comparisons. Moreover, if the operand under analysis in connected at the
input B, a NOT logic operator is required before the correspondent logic result, in order
to express it correctly. Proceeding with the Operand 2 example, the maximum logic
function is expressed below, indicating with CSn the logic results of the compare and
select operations.

Maximum(Op. 2) = NOT(CS1) AND NOT(CS3) AND CS5

The maximum logic function can be derived for each operand in the set. Assuming that
the ith operand is the maximum one, the output of the ith maximum logic function will
assume a logic value equal to 1. At the same time, all the other maximum functions in
the set will output a logic value equal to 0. Therefore, an N-input encoder is capable to
directly generate the selection signal necessary to drive the multiplexer. A block scheme
of the presented method is depicted in figure B.3.

The CS8-fast operator employed in this work has been developed following this proposed
approach. Moreover, the correctness of the provided results has been verified through a
set of testbenches on the architecture.
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Figure B.3: CSN-fast, proposed implementation block scheme.

It is interesting to compare area and critical path of CS4-fast operators implemented
either with a LUT or following the proposed method. Therefore, the synthesis results
have been collected and reported in table B.3, considering the 65 nm technology and data
expressed on 11 bits.

Approach Area [um2] Critical Path [ns]

LUT-based 432.36 1.88

Encoder-based 425.16 1.87

Table B.3: Area and critical path comparisons between the two available approaches to
realize a CS4-fast operator.

As visible, the post-synthesis results are presenting a strong similarity. Consequently, the
two approaches can be employed equivalently.
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Appendix C

Radix and Scheduling Aware
Memory-Mapping

As introduced in Chapter 8, the authors in [28] proposed a generic approach to generate
a conflict-free memory mapping, considering any permutation law. As mentioned, the
approach is meant to be applied on a PMAP-based architecture, including N Kp-bits
sub-frames. The access policy for the N memory banks can be derived starting from a
defined mapping matrix, which is requested to satisfy conflict-free properties when ac-
cessed in natural order (columns) or interleaved order (tiles). Hence, columns and tiles
are representing groups of simultaneously accessed memory banks.

The article is assuming to work with a radix-2 approach. Moreover, the usage of a specific
scheduling policy is not specified. The algorithm for the mapping matrix derivation is
described, following two fundamental steps. The first step is guaranteeing the derivation
of a partially filled mapping-matrix. The second step is aiming to complete the void
matrix cells, guaranteeing to respect the conflict-free property on columns and tiles.

Before proceeding, it is useful to graphically analyze how the mapping matrix is accessed
in time, both during natural and interleaved processing. Following the same example
reported in figure 8.9, the parallel accesses in time are highlighted in figure C.1. As
visible, a possible way to extract the conflict-free matrix regions is to analyze, during the
processing, where accesses are performed.

When radix orders higher than 2 are employed, multiple adjacent columns are expected
to be accessed at the same time. Larger tiles are also expected to be generated, as a
consequence of the higher amount of required memory banks. The same conflict-free
properties are required to be satisfied by larger groups of cells in the matrix. A radix-
4 matrix organization example is shown in figure C.2. For the sake of simplicity, only
the natural processing is represented. Indeed, the same concepts can be applied to the
interleaved data sequence, in order to identify the tile-set. Moreover, all the numeric
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Figure C.1: Natural and interleaved parallel accesses in time - Radix 2, no scheduling
policy.

values included in cells are to be intended as a mapping example, since they are not
related to any permutation law.
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Figure C.2: Natural parallel accesses in time - Radix 4, no scheduling policy.

A specific scheduling policy can be also considered while mapping the memory accesses.
Also in this case, it is necessary to highlight where the parallel accesses are located in
time on the mapping matrix. For instance, the Forward-Backward scheduling is requiring
three parallel accesses to simultaneously perform the forward/backward propagations and
store the soft-output values. An example is shown in figure C.3, highlighting the different
windows included in a sub-frame. A radix-2 approach is assumed in this case.

As visible, it is fundamental to highlight in which time instants the parallel accesses are
requested by the scheduling algorithm. Therefore, it is fundamental to take into account
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Figure C.3: Natural parallel accesses in time - Radix 2, Forward-Backward scheduling.

the eventual presence of pipeline stages, which are capable to further separate in time the
required parallel accesses.

Moreover, it is possible to combine the requirements of a high-radix approach and a
scheduling policy. Considering the natural processing, the scheduling algorithm is gener-
ating a set of simultaneously accessed columns, typically separated. On the other hand,
the radix order is potentially increasing the amount of adjacent columns to be considered.
For instance, a radix-4 approach is shown in figure C.4, considering a Forward-Backward
scheduling.

window 0

Forward Read Backward Read Soft-Output Write 

window 1

4 27 15 19 22 8

12 3 16 7 6 21

20 9 23 25 14 5

29 11 2 30 10 26

1 18 24 13 28 17

window 0 window 1

Natural 
processing

Figure C.4: Natural parallel accesses in time - Radix 4, Forward-Backward scheduling.

It is noticeable how the general steps for the mapping matrix derivation, presented in the
reference article, can be still applied. As a difference, the conflict-free requirements to be
satisfied are adapted to the radix order and the scheduling policy.
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