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SUMMARY 

 
Nowadays, increasing peace and improving the quality of life have been becoming 

important issues worldwide. To increase welfare in cities, the use of automatic cars and self-

controllers is very important to reduce the accident rate and its related financial and human losses, 

which depends on increasing human knowledge and the use of powerful technologies such as 

LiDAR sensors. This type of sensor has high efficiency in identifying the objects detection and 

with the help of data that can be provided from this sensor, it is possible for engineers to prepare 

maps and after preparing various maps over time, it is possible to identify the objects location and 

their movement around a car. Therefore, in this thesis, the structure, use and performance of the 

LiDAR sensor have been identified for object detection and mapping. Then, to measure the 

accuracy of the LiDAR sensor, the sensor is installed on a ligament and then the position of various 

objects were measured. Then, the accuracy of the LiDAR sensor was evaluated by measuring the 

exact distance of objects from the sensor location using mean squared error (MSE), normalized 

mean squared error (NMSE), root mean squared error (RMSE), mean absolute error (MAE), 

normalized mean absolute error (NMAE) and mean absolute percentage error (MAPE). Thus, by 

programming at the top, the data collected by the sensor is prepared. Consequently, by collecting 

all the data, 2-D maps of the identified and measured objects have been prepared by using 

Gmapping in ROS from different places. Finally, three artificial neural networks (ANNs) were 

utilized, Levenberg-Marquardt, Bayesian regularization and Scaled Conjugate, for object detection 

instead of using LiDAR sensor by identifying the angle and distance of objects, relative to the 

sensor location which helps to reduce costs and time-consuming. Therefore, the accuracy of 

different networks was assessed and discussed. 

 

 

Keywords: artificial neural network, automation vehicle, LiDAR sensor, 2-D mapping, object 

detection. 
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INTRODUCTION 

In the last several decades there has been a tremendous interest in self-driven vehicles in 
the field of robotics and the industrial sector more in general, and significant growth in the number 
of applications for which these vehicles are employed. The efforts of numerous cars for research 
and development in order to produce increasingly competitive, safe and accurate Autopilots have 
been a striking illustration of this phenomenon. This is also owing to the development of advanced 
onboard computers and extremely accurate and efficient sensors, as well as the emergence of 
remote controls which also seek to provide unparalleled connectivity with the car, particularly 
thanks to a new technology called network slicing. The robotics industry is currently focusing on 
delivering solutions that may encourage and strengthen human-machine collaboration, not just in 
militaries and space exploration as it used to be, in agriculture, as well as in others directly 
connected with the civic field. This year, this process has witnessed an increase in lifestyles, time-
demanding and high car usage and traffic which are the main accident consequences like cost and 
human losses. This circumstance has more than ever underlined the necessity for autonomous 
instruments such as medical equipment and commodities to be transported, without risk of 
interaction with others or the requirement for anyone to depart. Today, self-driven vehicles, 
whether on land, in the air or elsewhere, are one of the most increasing realities. In many 
applications where environmental awareness is essential, such as driverless cars, autonomous 
robotics and enhanced/virtual reality, object detection plays a crucial role. Thus, environmental 
sensing, self-location, path planning and motion control should constitute the framework. The safe 
interplay of these autonomous systems with the environment and humans depends heavily on the 
capacity for the environment to detect, perceive and model. In this among, there have been many 
signs of progress in the field of 2D detection which help self-driving vehicles to detect objects 
located around, and the two main criteria of such 2D object detectors are their robustness and real-
time inference. The 2D objects detection (2DOD) job is specified by a list of specific items to be 
identified, as a task in which the machine can recognize the objects within the scene and locate 
them in 2D space relative positions. 

In this scenario, the objective of this thesis work is the realization of LiDAR sensor ability 
to detect objects and mapping in ROS and its adaptation to the complexities of the environment 
around a car and the position of various objects that may be unpredictably in the position of the 
car and pose a danger to the driver and other passengers. Learn how to connect to the computer 
and enable coding to get high accurate performance and object identification. LiDAR's sensor is 
the usefulness environmental sensor. LiDAR gives 2D and 3D information on the shape of an item 
and the relative distance from the sensor of the object. 2D object detection has the difficulty to 
obtain strong performance for real-life applications, as neither sensor alone can give sufficient 
information. The fusion of 2D data from LiDAR is one of the existing obstacles in multi-modal 
2D objects identification.  



INTRODUCTION                                                                                                                                       13 | P a g e  

  

Conversely, there are a variety of motivations for this phenomenon. One of the many is 
that the technology sector is experiencing exponential growth, both in terms of investment and 
resources expended for research in the field and the ability of new instruments on the market to 
fulfil its aims more efficiently, safely and accurately, in particular in the field of sensors, and of all 
parts of the world. The emergence of artificial robotic programs, one of the aims of which is to 
ensure unparalleled vehicle-to-all communication through its new technologies, the so-called 
"network cutting," contributed to the growth in interest in the field, especially in recent years. One 
final major contribution must definitely be credited to the increased usage of artificial intelligence, 
namely autonomous (or autonomous) learning techniques such as neural networks, machine 
learning and deep learning.  In the realm of object recognition, recent deep learning techniques, 
particularly for two-Data, such as camera pictures, have made important advances. Several new 
detection models for real-time activities such as self-sufficient driving have therefore been created. 
Therefore, developing highly accurate artificial neural networks could help to use the camera 
instead of high-tech LiDAR sensors. But to make sure about the used algorithms connecting the 
camera to the car, the different artificial neural networks should be adopted and validated with the 
object detection outcomes achieved with the LiDAR sensor. 

According to what has been explained above, the importance of using intelligent control of 
vehicles in reducing fuel consumption, as well as casualties and damage from traffic accidents was 
identified. To develop the use of smart devices and equipment in the control of vehicles, various 
methods and assumptions have been made by researchers according to the level of control.  
Security has therefore always been a major concern in the transport industry because all parties 
involved in the supply chain (cost of recipient delays, vehicle repairs and possible medical costs 
of the driver's for the agency, expenses of damaged goods and other complications if safety 
requirements are not fulfilled and accidents occur, have been affected. As technology and markets 
evolve, safety standards for traffic have been strengthened throughout time to suit the market 
requirements (e.g. shorter lead times, lower excess inventory, better tracking) and trade unions 
(working conditions, workplace safety, among many more). But now, when cars and road 
infrastructure are typically dependable and the legislation and rules have come to maturity such 
that all passengers should be safe by road if they comply with legislation, drivers have become the 
major cause of road accidents.  

Therefore, what is examined in this thesis is to answer the following questions: 

✓ To what extent can the identification of different objects while driving be analyzed and 
evaluated? 

✓ How to work with the sensor and the connection between the computer and the sensor to 
identify objects? 

✓ How to use algorithms to identify objects and present a map? 
✓ How accurate are the sensor and algorithm provided in identifying the position of objects 

and preparing a map of their position? 
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✓ Are there other solutions to reduce the cost and increase the use of self-drive, such as using 
an artificial neural network? And to what extent the provision of an artificial neural 
network can help predict the position of objects? 

✓ How much trust is there in neural networks to connect a computer to a simple camera to 
detect the position of objects around a machine? and how accurate the neural networks are 
compared to the in-real time results of the LiDAR sensor 

The current thesis in the field of object detection and tracking is largely based on visualization 
(images and mapping). Multispectral data were worded by visual sensors bids remarkable and 
characteristic features, hence enabling easy division of objects in crowded areas. Multi-objective 
detection and tracking have created these criteria and challenges have the most advanced 
technology in the field of detection and tracking. Though, it is difficult to obtain accurate 2D 
position data only with visual sensors. Similarly, optical sensors are exceedingly exposed to 
lighting conditions. Some attempts have been made to merge two and two-dimensional laser 
rangers and cameras using data integration techniques. The advantages of a laser scanner are 
accuracy in location measurement, straight measurement of three-dimensional situations, 
Infiltration of numerous obstacles and an active sense method that allows it to work daily and 
nightly. Because of these advantages, investigations in the field of detection and tracking with 
LiDAR has been carried out in this thesis. Thus, considering the number of objects and the 
relationship between the objects and continuous and discontinuous frames, mapping was carried 
out in the ROS to find the location of objects in the map. Finally, based on the obtained results 
using the LiDAR sensor, an Artificial Neural Network (ANN) algorithm was developed to predict 
the distance and location of objects based on the location of the sensor. This allows us to find a 
location of objects around the vehicle with no need for a costly and complex LiDAR sensor. The 
overall overview of investigations carried out in this thesis is presented in Figure i. 

 
Figure i. General overview of carried out steps in the current thesis 
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Al in all, the current thesis is provided in the following chapters.  

✓ Chapter 1: A literature review about object detection and using sensors and their algorithms 
have been carried out to highlight the importance of doing the current investigation;  

✓ Chapter 2: In this section, the methodology and basic concepts are discussed about object 
detection. For this aim, the was for using sensor, LIDAR, its performance for data collection 
is discussed; 

✓ Chapter 3: in these sections, the detection procedure and the tracking process for mapping 
are presented in the proposed framework; 

✓ Chapter 4: in this section, the basic concept about the artificial neural network and the 
importance of using ANN is discussed using different algorithms; 

✓ Chapter 5: in this section, the performed formulations and used algorithms in the current 
thesis are presented and discussed in detail; 

✓ Chapter 6: in this section, the use of LiDAR sensors, the accuracy of the used sensor, and 
the obtained results are presented and discussed; 

✓ Chapter 7: in this section, results were presented and discussed in the shape of a conclusion 
and presented the different recommendations to follow this study in future investigations by 
researchers.



 

  

 

 

 

 
 

 

 

CHAPTER 1 
 

A BRIEF INTRODUCTION ABOUT UNMANNED GROUND 
VEHICLE 
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1.1. Introduction  

Self-employed vehicles were established to reduce problems such as collisions, time to travel, 
pollution etc. they should be helpful nowadays. Many individuals go every day from home to work, 
school, fitness areas, parks, etc. Some people travel from one corner of the globe to another, 
whether it's from house to office or from locations across the world. Today, physically and 
symbolically, the globe is swiftly ranking. This movement is facilitated by recent inventions from 
hoverboards to supersonic jets. The increased population need for transport has also increased. 
Increased revenue per person typically indicates a better way of living that can be linked to better, 
pleasant and safer travel requirements. New models such as transportation as a service (TaaS) and 
mobility-as-a-service (MaaAS). The emphasis on individual or corporate car-sharing, have been 
promoted by the increase in demand for travel. Some instances of this may be seen in ride-sharing 
programs such as Uber and country-specific applications, such as Chauffeur Priv'e (in France). 
Low-cost flights, established largely a decade ago, draw most on the aviation market. 

1.2. Various levels of autonomy 

Object detection recognizes instances of semantic objects from other images or data, although 
object pursuing is demarcated as how one or more objects are tracked over a series of time phases. 
Object detection and tracking have been widely investigated for their wide claims in visual 
observation, traffic controlling, robotics, and self-driving. For instance, to provide safety and 
acceptable control for an autonomous vehicle, it must sense, track, and forecast the movement of 
moving objects nearby. The number of objects around a road (such as guardrails, pedestrians, 
animals) varies considerably which have different behaviour, reaction, velocity and size. A moving 
sensor can also make a big difference in the appearance of a fixed circumstantial due to changes 
in perspective. Additionally, obstruction can make objects vanish completely. All of these features 
make it very stimulating to sense and track moving substances in urban acts. The Society of 
Automotive Engineers (SAE) defines  6 levels of driving automation from Level 0 (fully manual) 
to Level 5 (fully autonomous), as described below and shown in Figure 1-1. 

➢ Level 0 (No Driving Automation): The driver plays the most important role for all real-
time events that are required to drive a car, like manual cars on the roads. At this level, there 
are certain automated mechanisms in place to assist the driver. Like, standard cruise control 
and emergency braking system; 

➢ Level 1 (Driver Assistance): The driver is in charge of essential functions like steering and 
braking. But vehicles are equipped with some brand-new automated driving assisted systems, 
for instance, adaptive cruise control and lane control assist. These features have taken the 
control of the safety of the driver and car as well; 

➢ Level 2 (Partial Automation): Advanced Driving Assistance System (ADAS) are the 
crucial aspect of level 2. Braking, acceleration, and steering are done automatically. 
Nevertheless, these vehicles are not fully automated, as the driver should pay full attention 
to the surroundings and remains in control; 

https://www.synopsys.com/automotive/autonomous-driving-levels.html
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➢ Level 3 (Conditional Automation): A level 3 car can drive individually employing an 
automated driving system (ADS) under certain conditions. They are capable of long-distance 
automatic driving; Cooperative Adaptive Cruise Control (CACC) is in the category of level3. 
CACC can produce dramatic increases in highway capacity, from 103% to 273%; 

➢ Level 4 (High Automation): an automated system can perform the driving task and monitor 
the driving environment without the need for a human to take control; nevertheless, the 
automated system can only operate in specific situations and under specific situations; 

➢ Level 5 (Full Automation): an autonomous machine can do all driving activities in the same 
way that a human driver could. 

 
Figure 1-1. Different levels of driving automation (DA) 

Sensors are an important element of the procedure in the background of autonomous driving. As 
already indicated, sensors can collect very required and valuable data in order to construct a model 
environment. For this aim, several kinds of sensors have been created and assessed and often 
integrated to provide a meaningful depiction of the surroundings. Two major groups of sensors 
can be grouped: 

1- Active sensors with their tools that depend on their individual sources of contamination to 
detect the location, shape, distance of substances around the car and other data on the 
environment, by reflecting the propagating signal returned to the origin;  

2- Passive sensors utilise the data already available in the environment to capture radiation, such 
as light, heat, vibration or other environmental events. 
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The primary family of sensors comprises radars, LiDAR and ultrasound sensors. These sensors 
are usually combined with passive, infrared or hyperspecific cameras, RGB cameras, GPS and 
inertial sensors in self-directed driving submissions to get more comprehensive environmental 
illustrations. Moreover, it is worth stating all those sensors that require touching the environment 
they feel. Thermometers, tactile sensors, strain gauges and bumper sensors are these devices. This 
cannot be complicated when it comes to a thorough description of the environment, as a 
multifaceted illustration does not lead to a well outcome. The environment in which the car 
operates relies on this. Of course, as the application is more flexible and broad, the more the image 
can adjust for new occurrences. 

The presentation would, for example, be fairly basic if the intention was to run a combination 
gatherer on a straw arena. For any position correction only two sensors, a GPS and an IMU may 
be required. In such a scenario, the sophisticated and specific representation of this field is not 
essential to produce super accurate and costly sensors. In contrast, it would be necessary to employ 
different sensors, thereby creating a more complicated representation in a multiplicity of settings, 
where there are numerous dynamic barriers, such as people or other moving cars. The most 
frequent forms of illustrations nowadays are: 

➢ Metric maps of topology 1.2 combining a 2D metric and topological frame. In the past 
objects are recognized by accurate coordinates, but are extremely susceptible to noise, 
whereas in the last just locations are regarded as graphs and their connections;  

➢ Complete metric maps, creating a fixed coordinate system for the complete operational 
environment. As highlighted by [11], the tendency in recent years towards this kind of 
illustration is attributable to many causes, including: 
✓ More precise localization methods further enhance GPS integrity, accuracy and 

accessibility owing to technologies such as the GNSS (Global Satellite Navigation 
System).  

✓ More and more influential computers that can store and procedure more and more data 
in fewer time. So these computers can interrelate with ever wider and more 
comprehensive maps;  

✓ More precise sensors like stereo and LiDAR vision; 
✓ Recent advances in procedure planning using these map categories. 

Maps may be produced in real-time either using the car sensors or fully supplied with the 
algorithm if received in advance. We can keep a map updated, static or dynamic while the robot is 
moving. Hybrid versions including the examples above can be utilized for best outcomes, as with 
most engineering solutions. For instance, two illustrations can be utilized simultaneously, one 
globally and one locally. A local illustration with extremely detailed data shows what the robot is 
around, while the global illustration comprises all the data most important to the "perceived" robot 
in the limited surround. The difficulty of each individual depiction leads to this kind of planning. 
Locally, the robot is in danger of showing myopia while overloading its memory and extending its 
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calculation algorithm times worldwide, particularly on extremely big maps with a wealth of 
information. 

1.3. Unmanned ground vehicle 

The unmanned ground vehicle (UGV) to be employed in both simulations and field testing is an 
important and required factor to pick from. Firstly, there will be a definition and an overview of 
the UGV scene. Without the physical presence of humans, the word UGV defends a land vehicle. 
This sort of vehicle is utilized in various applications and fields as well as in three principal forms 
of vehicle control as outlined in [13]: 

1- manual, which generally sends direct commands through a remote radio control to car 
actuators; 

2- Monitoring control, when a human supervision officer remotely delivers extremely general 
orders to the vehicle and can understand these directions properly and divide them into 
simpler, more granular measures. The supervisor may simultaneously verify that the 
vehicle does the duty properly. This is the intermediary phase between manual and 
completely automated control; 

3- Automatic, wherein the car may interrelate with the surrounding environment and decide 
based on the allocated job independently. The most conventional parts of use are those in 
which a UGV has to be employed for risky activities such as disrupting the bomb and 
treating hazardous material, or when the site is not available to a man or even carry large 
things better. As a result, the fields of interest might include military, interplanetary or even 
civilian exploration, such as agriculture, production, mining, and disaster relief. 

Different UGV is available to find the route based on the project using for, environment and 
ground surface conditions. These vehicles move with different velocities and work with a tiny off-
road radio-controlled car capable of achieving speed on flat terrain. Figure 1-2 shows various 
wheelbases and an axle path as examples, even if the vehicle goes up steeply, and also has a wide 
centre surface, which may be utilized for installing several navigational components, shown in 
Figure 1-3. The number of axles, the performance and the rotation of the UGV wheels is very 
important. Because navigation, especially in difficult terrain conditions, provides the UGV with 
the ability to rotate properly and move effectively. This has a significant effect on increasing the 
accuracy of routing. Therefore, the second element is the combination of the 4-wheel and 4-
performance drive suspensions shocks that provide outstanding grip and stability even on difficult 
terrain. The turning radius of vehicles is also fascinating, thus it can navigate even in space. The 
minimum rotational radius must be determined as follows with respect to the maximum angle of 
rotation.  

𝑅𝑎𝑑𝑖𝑢𝑠 =
𝑤ℎ𝑒𝑒𝑙𝑏𝑎𝑠𝑒

tan 𝜃
 (1-2) 
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Figure 1-2. different kinds of UGV 

 

Figure 1-3. View from above the internal anatomy of UGV components. 

Initially, the car depicted here was not ready to attach sensors and thus several 
modifications were performed. The first was the dismantling of the upper body and its support 
framework to achieve a naked design. Those two additional smaller plates were placed on the front 
and back axis, respectively, to be utilized as a basis for the installation of sensors and the flight 
controller, as illustrated in Figure 1-4. This setup, although not final, allowed us to have a 
comfortable supporting surface so that the sensors were more freely adjusted and a certain space 
was provided for the future installation of additional sensors to enhance the truck. The top plate 
attached to the back axle is a noteworthy feature since it gives room to fit the antenna of the GNSS 
module which is detailed in this chapter's hardware section. The antenna is put in an elevated 
location that promotes the reception of satellite signals. The position in which the points of way 
are determined in the algorithm corresponds perfectly. Therefore, it is recommended that a custom-
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made fiberglass board be used as a basis for the installation of the sensors and the flight controller 
should be built on both the front and back axles, with two additional smaller boards attached to the 
board (Figure 1-4). Although not definitive, this configuration allows us to have a comfortable 
supporting surface in order to configure the sensors in a more free manner and to install other sense 
sensors in the future to develop the car. A particularly interesting element is the top plate installed 
on the rear axle since the antenna of the GNSS module is mounted in some room and will be 
detailed in-depth in the hardware portion. This antenna is positioned in a higher place that favours 
the receiving of signals and perfectly coincides with the position where the paths of the algorithm 
are computed. Then a number of holes were drawn on the ground plate to allow the power, steering 
and throttle control cables and on the rear top plate to pass through to fasten the antenna of the 
GNSS module.  

 

Figure 1-4. Vehicle with its tradition made fiberglass support plate. 

To move the vehicle, some hardware components that are compatible with the needs of the 
project (information/instructions provided by the algorithm) act as an intermediary between the 
software part and the vehicle actuators. It is intended for the assembly of hardware components, 
their installation and adjustment of their basic parameters. So only the main aspects will be 
reported. The same software guide suggests different controllers, regarding software choices 
known as Ardupilot’s Mission Planner as a ground control station. Other accessories needed for 

navigation یue to plug & play compatibility, some were recommended by the guide. In this thesis, 
the sample used in the UGV networks plan form is shown in Figure 1-5. 
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Figure 1-5. UGV networks plan [2]. 
 

1.4. Sensor application for UGV 

Common systems comprise RADAR (RAdio Detection And Ranging), LiDAR (Light 
Detection And Ranging), and LADAR (LAser Detection And Ranging). Although their names are 
diverse, they all transmit and receive electromagnetic energy while operating in diverse frequency 
bands [50]. A LiDAR is an active mapping system that actions the distance to the goal by revealing 
the aim with a pulsed laser beam and recording reflected pulses. One of the most common is called 
LiDAR pulse or LiDAR linear mode, which releases a very short but penetrating pulse of Time of 
Fly (TOF) from the moment the pulse is emitted until the signal is reflected by the sensor Received 
records [51]. The range can be calculated by the speed of the pulsed laser beam, which is identified. 
Normal linear mode LiDAR releases Gaussian laser pulses. Reflected pulse waveforms are utilized 
to detect various obstacles. If the width of the laser pulse is also wide, several waveforms are 
mixed as one. So, the resolution of the linear range in LiDAR mode is restricted with the width of 
the laser pulse. Though LiDAR linear mode is presently the most developed technique of 
measuring light [1], LiDAR continuous wave (CW) is attracting increasing attention. LiDAR CW 
does not release a pulse but releases a continuous beam of laser radiation. By measuring the phase 
variance between the conveyed and received beams, the range can be calculated. Because the 
wavelength of a sine wave period can be very short, LiDAR CW can attain more accurate 
measurement outcomes. Based on incessant wave expertise, the LiDAR Continuous Wave 
Frequency Modulation (FMCW) was conceived. FMCW knowledge is best designated as "modern 
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optical radar simulation in performance", so it is occasionally abbreviated as "LADAR" [30]. 
When scanning, the system continuously illuminates a goal. After getting the reproduced 
continuous wave, the system splits the reproduced signal into the measured signal and the carrier 
signals. Compared to the unique reference signal, the variance in phase angle between the reference 
signal and the reproduced signal is found, therefore defining the frequency of the development 
note frequency [30]. To rise the resolution of the range, the signal system conveys a constant 
frequency of waves. The conveyed signal goes up and down sequentially after inflexion, 
respectively. Later the band resolution in FMCW LiDAR is measured by the maximum frequency 
and therefore the straight wavelength [30]. The resolution of the FMCW LiDAR is restricted by 
the controlled signal bandwidth. In summary, FMCW LiDAR has numerous main advantages over 
pulsed LiDAR [30, 52]: 

✓ Collect Doppler images by changing Doppler; 
✓  Measure more range with less power; 
✓ More resolution. 

Although the FMCW LiDAR outdoes the LiDAR linear mode in some respects, it cannot substitute 
the LiDAR linear mode due to its performance. For instance, FMCW LiDAR needs more time to 
achieve scanning [30]. The FMCW LiDAR processing unit is also higher and surges the size, 
weight and power required by the system [30]. We have to choose which mode to employ based 
on the precise goals of the program. For instance, for automatic driving, moving object recognition 
and speed measurement utilizing frequency variations with CW are faster and less prone to fault 
than numerous pulse jumps measurements with LiDAR pulse scans due to the Doppler impact. 
When scanning a moving goal, the amplitude and the Doppler impact both change the frequency, 
resulting in uncertainty in the measurement between range and velocity. The uncertainty is 
detached by a sequence of crickets moving up and down, where the Surface Acoustic Wave (SAW) 
bandages are just one of them [53-54]. 

1.5. Sensor modalities and data representations for UGV 

The representation of data refers to the format in which the sensor data is kept. For effective 
storage and recovery, certain data have various representations. In terms of packing, algorithm 
easy analysis and deference speed, each data format has its own advantages and disadvantages. 

1.5.1. Camera 

A camera delivers visual information about the environment by collecting the incident light 
into pictures or image sequences (video). Compared to other LiDAR, RADAR and stereo cameras 
it is widely available and reasonably cheap. It is available. It offers rich texture and color 
information in real-time (15Hz - 120Hz), however, it does not provide detailed information about 
the vehicle. An image picture frame can be shown in the form of a dense 2D array with a matching 
pixel intensity in each element(pixel) of the array.  The data of the pixels may be represented as 
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RGB, HSV, or greyscale. Inferior 3D geometry from 2D camera data is hard because of a lack of 
depth information. 

1.5.2. LiDAR 

Multi-object tracking is classified based on detection-based tracking and non-detectable 
tracking based on object detection before initial tracking. Detection-based tracking techniques 
need the detection of objects before tracking, while non-detectable tracking techniques need 
several moving objects as input. The detection-based tracking technique is more general because 
it does not need preceding data about the number of objects. Model-based or non-model-based 
techniques can be utilized to distinguish an object from point clouds. Model-based methods 
recognize objects according to the previous model data. Such methods are favoured when the 
intended objectives have been identified and can therefore be pre-modelled. For instance, some 
procedures use foot signatures to locate pedestrians. Adopts multiple hypothesis tracking with 
adaptive occlusion probabilities to track 2D leg signatures in laser range data utilizes a supervised 
learning method with AdaBoost to train a classifier on features of legs in 2D range data to detect 
people. The detected individual persons are tracked with multiple hypotheses tracking as well 
focuses on tracking vehicles, in which the object’s geometry is approximated with a rectangular 

shape of width and length. Besides, a vehicle dynamic scheme is presented which adopts the 
velocity evolves via the addition of random bounded noise and the pose changes by linear 
gesticulation. In place of using discriminative detectors, developing a generative model with the 
capability to detect and track a large number of object classes of varying sizes and shapes.  

1.5.2.1. Sensor data collection procedure 
For a machine to read real-world truth, there must be data to process. Real-world data 

collection is usually done with sensors, and the type of sensor determines the characteristics of the 
data generated. Providing data by sensor consists of a set of coordinates, each return typically 
containing characteristic values to which the return is associated or to the pulse from which the 
return is generated, as below: 

❖ Pulse density: this is a straight function of the footprint distance on the assumption flat the 

surface as pulse density = 1 / (footprint distance2). This is the most constant measurement of 
the two-dimensional determination of the sensor dataset also used in the current thesis; 

❖ Return density: this is the public term utilized to define data sets and is frequently disordered 
with pulse density. This average number of returns in the available data set per unit area is 
typically 1 m2. using the exemption of single-return schemes, the return density is measured 
by the stipulations and procedure of a sensor and by the scanned goal. Assuming that all other 
characteristics remain constant, the density of return created by a system capable of returning 
four square meters at the position of an object is greater than the density created by adjacent 
pastures, as shown in Figure 1-6. Since in the last circumstance, approximately all returned 
energy is in a quantum. As of this scene-dependent difference, users have to set the lowest 
pulse density for an assumed capture instead of a return density; 
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Figure 1-6. False-colour digital inflight photo and corresponding grey-scale raster of LIDAR  

  
❖ Return intensity: this is a feature that defines the scattering power of the beam at the desired 

return. It depends on the characteristics of the goal reflection and can therefore possibly be 
utilized to discriminate against the goal. Due to the dependence on the effects of two-way 
reflection spreading, the distance to the sensor device, the whole number of returns specified 
in the parent beam, the returned rank), its application to object classification is reduced in the 
main beam and the receiver gain factor. The latter term defines the scalability of the receiver's 
compassion to avoid hardware damage if an extremely large amount of scattered energy is 
received, which may happen with high reflective goals. Such a decrease in sensor sensitivity 
is virtually prompt. Reverse scaling, a rise in sensitivity in the attendance of a persistent 
scattering of weak energy, typically takes a few seconds. The attendance of a single, high-
reflection, scanned goal in a straight line can lead to a significant difference in the average 
intensity of the return at the overlap of two head-to-head moving lines; 

❖ Return number: this denotes the efficiency rank between those produced by a beam. This 
only makes sense for schemes that provide multiple efficiencies per beam. The number of 
returns should not be disordered with the number of returns, a beam property. 

Features that a return receives from its original beam comprise the scan angle, which is 
typically documented in degrees. The scan end line is a binary property that designates whether 
the main beam has noticeable the edge of a scan line, and items that are occasionally determined 
at the data processing stage, such as freight line indicators or classification systems, show the exact 
pulse propagation time. Accurate enough to save GPS time, this feature can be used as a unique 
identifier for a pulse.  

LiDAR sensor used in this thesis is developing remote sensing expertise with auspicious 
possible to help map, monitor and evaluate different objects and resources. Compared to analogue 
or digital optical remote sensing, LiDAR proposals palpable benefits, counting almost complete 
recording of spatially spread information and the capability to enter the perpendicular profile of 
an area covering and control its structure. LiDAR has been utilized in numerous fragments of the 
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world to effectively measure the elevation and size of single or base trees, to guess canopy closure, 
capacity, wildlife habitat assessment; and to determine the sensitivity of standing to fre. The 
LiDAR sensor, which functions from the first stage, includes a set of tools: a laser device. The 
laser sensor submitted light pulses to regulate the range up to a distant aim. The distance to the 
goal is resolute by precisely measuring the time lag among the pulse propagation and the detection 
of the reflected signal. In topographic and mapping submissions, the pulse wavelength in the near-
infrared portion of the spectrum is typically between 1035 and 1060 nm. With the LiDAR wave 
shape, the energy returned to the sensor is documented as a continuous signal. Using LiDAR with 
discrete and small steps, the reflected energy is measured at amplitude intervals and recorded at 
exactly the indicated points in time and space. Common substitutes to the time "point" comprise 
"return" and "echo". The energy variety related to each reappearance is known as intensity. 

The main operational stipulations of the LiDAR sensor followed in the current thesis are 
described below: 

➢ Scanning frequency: this is the number of pulses submitted by the sensor in one second. Older 
devices submitted several thousand pulses per second while up-to-date devices support 
frequencies by 167 kHz. Occasionally they can function at frequencies underneath the highest, 
usually 100 kHz, but rarely at short frequencies, such as 10 kHz. The sensed frequency is 
straight associated with the achieved discrete efficiency density;  

➢ Scanning pattern: this is a two-dimensional plan of pulse efficiencies expected from a surface 
and depends on the instrument utilized to straight the pulses in a straight line. In these outlines, 
the pulse is guided by a wavering glass along the scan surface, and the output is incessantly 
generated in the directions of the scan. Although this outline is planned to keep the distance 
between the returns, in practice the pulse density is not uniform and due to the slowing down 
of the glass, the returns "accumulate" at the end of the swat. The non-uniform efficiency gap 
can be reduced to some extent, but not eradicated using galvanometers;  

➢ Beam divergence: Contrasting an actual laser device, the path of the photons in the beam 
submitted by a LiDAR tool diverges somewhat from the emission line (axis) and creates a 
narrow cone instead of the archetypal thin cylinder of real laser schemes. The stretch beam 
divergence denotes a surge in beam diameter that happens as the distance between the laser 
device and the plane increases the axis of the beam growths. Typical beam deviation sceneries 
are between 0.1 and 1.0 mm, as illustrated in Figure 1-7. Since the entire volume of pulse 
energy leftovers continuous nevertheless of the beam divergence, at larger beam divergences, 
the pulse energy is spread through a greater zone, reducing the signal-to-noise fraction. 
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Figure 1-7. Image of LIDAR beam divergence is drawn at horizontal and vertical distances at 

different scales 

➢ Scanning angle: This is the angle at which the axis of the beam moves away from the "focal" 
plane of the LiDAR device. The combination of scan angle and altitude determines the scan 
level followed in the current thesis is shown in Figure 1-8. 

 
Figure 1-8. Image of LIDAR information scanning feature. The aircraft is assumed to run parallel to 

the ground and there is also a chainsaw scanning pattern 

➢ Footprint diameter: this diameter is a beam that is cut by a plane vertical to the axis of the 
beam at a distance from the tool to the object. Therefore, it is a function of the divergence of 
the beam and the distance from the goal. The pulse energy spreading is not uniform in the 
amount of footprint. It declines outward from the centre and can be approached by a two-
dimensional Gaussian spreading. 
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➢ Pulse length: this pulse time is in nanoseconds. Together with the discretization 
surroundings, it determines the determination of the pulse series in several arrival schemes or 
at least the distance between sequential returns of a single pulse. 

➢ Number of returns: this is the highest number of different returns that can be removed from 
a single beam. Some schemes can detect the first or last arrival. Most up-to-date schemes can 
detect multiple efficiencies from a single beam. 

➢ Footprint spacing: this is the nominal distance between the centres of successive beams 
along and between the scan lines, which together with the beam deviation regulates the three-
dimensional determination of the LiDAR information. Footprint distance is an occupation of 
scanning frequency, altitude and speed. 

➢ Discretization settings: These are integral features in the scattered energy processing of a 
pulse to recognize different efficiencies. They are arrangement and proprietary and are 
occasionally denoted as digitization settings. They control the smallest amplitude of energy 
vital to generate a return and, along with the pulse length, regulate the minimum distance 
between consecutive earnings of a pulse. Up-to-date devices can procedure the energy scatter 
of a beam and detect up to six earnings, but most only support up to four. Ideal settings for 
mapping.   
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2.1. Introduction 

This chapter presents the theoretical features and basic concepts of using the sensors that 
are the basis of this dissertation. This chapter begins by describing the benefits of sensors, how 
to use them, and a used methodology in this thesis. In general, this chapter explains the principles 
of object recognition evaluation methods. 

2.2. Object Detection 
Scientists investigate different phenomena by analyzing, forecasting, and identifying 

patterns in the world. Fundamentally, to comprehend the environment, computer images could 
play an effective role in controlling the possible changes. Therefore, object detection is a way that 
is thoroughly associated with computer visualization. This denotes the classification and 
localization of objects of interest in an environment. The localization of items in the framework 
denotes the production of constraint boxes that effort to cover each of the items. Perfectly, a 
limiting box must be as insignificant as possible while holding the whole object. In addition, each 
limited box produced has a ticket that denotes the arrangement of objects. The object recognition 
problem is partially a deterioration problem in terms of locating and sizing the range box and is 
somewhat of an arrangement problem in terms of labelling each of the finite produced boxes. In 
this among, deep learning methods are suitable for object recognition work [38], [27], [39], where 
a deep neural network learns to excerpt structures from the input data and, based on the features, 
restricted boxes labelled with the projected label. The overall flowchart of the proposed detection-
based tracking technique is illustrated shown in Figure 2-1. 

 
Figure 2-1. Overall flowchart of the proposed detection-based tracking technique 
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The class of deep learning object recognition techniques can be divided into five parts:  
feature extraction, regional proposals, classification, regression, and prunin, as described below in 
detail:  

2.2.1. Feature Extraction 

One of the well-known kinds of data for object recognition programs is images. 
Understanding a computer is a challenging task to measure the values of an image, which for the 
computer is only a matrix of variables [12]. In particular, image data varies dependent on varying 
parameters such as lighting circumstances. The solution is to acquire the general structures from 
real data and try to find some images which split the object of interest from the background and 
other objects.  Structures inside an image are usually signified by pixel chunks. Traditional 
approaches such as Histogram of Oriented Gradient [9] and Scale Invariant Feature Transform 
[28-29] by creating the colour of the pixels in the patches, create structures for the furthermost 
variations known as the directional gradient. In the case of in-depth learning, structures are usually 
learned using convolutional neural networks. These kinds of grids can weigh in on specific features 
in patches and represent more abstract features. Networks are trained by showing samples of their 
hypothetical inputs and outputs. Finding the features in the input is vital for making the anticipated 
decision. By providing sufficient examples, preferably, the network can distinguish one class from 
another in general with the use of educated structures. 

2.2.2. Region Proposals 

One problem with object recognition is that the number of things in a location can diverge, 
meaning that the goal output can differ in terms of size. There are some ways to resolve this 
problem. One of the more characteristic approaches is named a descending window, which 
includes, as the name implies, dragging a window onto the input image and removing slighter 
units, in which each unit is accomplished as an area suggestion. This technique controls objects of 
various sizes and scales by grading the input image and then re-running the slider. Proposals in the 
created area can be taken as finite unsystematic boxes, which basically enclose boxes for the model 
rather than whether they comprise substances.  

2.2.3. Classification 

Each of these suggestions in the above area (constraint boxes) is subject to the organization 
to determine if the constraint box contains an item. Classification is completed either over a distinct 
organization scheme or as an essential portion of the area suggestion model. General arrangement 
for each class is likely to exist in the projected range boxes. Classically, an extra class is added 
with reference to the background to remove the restricted boxes with no items in them. 

2.2.4. Regression 

Additional regression is usually used because the generated area bids are not expected to 
enclose items as much as possible. The theory is performed as a classification or individually or 
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as a more integrated part of area propositions. The purpose of regression is to eventually tauten 
the proposed ranges, with compensated values, for better storage of objects. 

2.2.5. Pruning 

Each of the limiting boxes produced by the model is usually pruned. The most commonly 
used way to do this is called Non-Maximum Suppression. The non-maximum suppression includes 
the removal of all constraint boxes whose output is likely to be classified below a specified 
threshold and removes forecasts that the method does not believe are items. Restricted boxes that 
point to the same object are similarly eliminated. This is done by scheming the overlay between 
the boxes, and if the overlay is greater than the specified threshold, only the range box with the 
highest arrangement inevitability is maintained. 

2.3. Intersection over Union (IoU) 
The most common metric utilized in object recognition is the intersection over the union. 

It is utilized to measure the intersection between two figures and is therefore usually used when 
corresponding proposed area frames with basic facts because the overlap is approximately that is 
taken into account in estimates. It does this by separating the overlap part between the boxes by 
the total zone of the boxes. This purpose could be defined, as Equation 2-1 and Figure 2-2.  

Intersection over Union (𝑏1 ∩ 𝑏2) = 𝑏1∩𝑏2
𝑏1∪𝑏2

 (2-1) 

 

 
Figure 2-2. Graphic illustration of the overlapping on the union between two rectangles in 2D 

Another point is that the boxes do not require an axis alignment. Though, if the alignment 
between the boxes is different, the actual intersection over union calculation becomes much more 
complicated. The reason it becomes difficult is that the consistent forms of connections and 
junctions usually turn into asymmetrical forms with complex parts.  

2.4. Hard Negative Mining 

Object recognition is not just the task of discovering objects in stated modules, but also the 
job of finding them. In general, the volume of background in input is much higher than the required 
value, which means that a lot of background arrangement is done. Any constraint box that is 
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confidential as a background is named a negative prediction. Neural network training is done by 
feeding information about the hypothetical results. Therefore, to teach the model of correct object 
recognition, not only optimistic predictions but also background samples are required. 
Categorizing whether a restrictive box has a background can be unpredictably difficult, particularly 
for any item class that is not involved as a precedent. For example, if the model does not follow 
the tram, all trams are measured background. Negative extraction is a common method for 
emphasizing hard forecasts. This is performed through training when the technique provides a 
positive forecast in the default context. Consequently, the programmer put it into the training 
procedure with difficulty, and thus programmer get a network that works better in properly 
organizing the background and thus in properly distinguishing between items and the theoretical 
context.  

2.5. 2D Object Detection 

Methods for deep learning to detect 2D objects can be classified into two categories:  

Detectors with a single stage and two stages [42]. During the first stage of the two-stage 
method, features are extracted and Regions of Interest (RoI) are proposed. Afterwards, probability 
scores and final bounding boxes are calculated for each RoI. Single-stage methods, however, 
usually do not generate ROI. Rather, classification regions and regression regions are selected 
deterministically in advance. Faster Region-based Convolutional Neural Network (Faster R-CNN) 
is among the highest-performing SOTA two-stage detectors. Overall, two-stage methods are more 
accurate compared with one-stage methods. Nevertheless, the training and the actual inference 
processes tend to be slow. Regarding one-stage methods, SOTA has become popularly known as 
the "You Only Look Once" method (YOLO) and the single-shot multibox detector (SSD). 
Compared to the two-stage method, these methods are less accurate but faster. Considering how 
important speed is for AD, these types of methods are particularly suitable for the thesis. As this 
section begins, it will explain the fundamentals of Faster R-CNN, followed by a discussion of 
YOLO and SSD, two-stage detectors. 

2.5.1. Faster Region-based Convolutional Neural Network (Faster R-CNN) 

The previous section described how region proposals were originally generated using the 
sliding-window method, wherein each boundary placement was regarded as an individual input 
image for the classifier. The R-CNN paper by Grigorich et al. [15] introduced a more practical 
approach.  A method was developed using a selective search algorithm [44] to remove region 
proposals without effective objects within them. In simplest terms, the selective search algorithm 
involves grouping similar portions of the input based on colour segmentation. The same authors 
have improved the algorithm further in two iterations, first by releasing Fast R-CNN [14]. 
Comparing the original release to R-CNN, the performance has been significantly improved. In 
order to speed up the process, features were extracted from the input once rather than extracting 
features from each region proposal independently. A process called ROI pooling is used to obtain 
equal-sized feature maps for each region proposal. Each region proposal is turned into a large 
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feature map by using ROI pooling, followed by maximum-pooling (varying in size and stride 
depending on region size), therefore resulting in feature maps of set sizes for all region proposals. 
According to the latest version of the model, Faster R-CNN [39], Gorchich et al. suggest Region 
Proposal Network (RPN) as a means of creating region proposals for the network under training. 
This RPN obviated the computational bottleneck of the selective search method used in previous 
iterations, producing the complete (simplified) network shown in Figure 2-3. An RPN extracts a 
feature map from an initial CNN by applying the sliding-window method to it. 

 
Figure 2-3. The Faster R-CNN method illustrates the simplified flow from an input image to the 

bounding boxes.  

Regarding Figure 2-3, CNN produces feature maps based on input images. The generated 
feature maps are sent to RPNs generating region proposals. By pooling the ROIs, the feature maps 
are combined with the region proposal, and the resulting feature maps are reclassified and 
bounding box offset regressions are carried out to determine the bounding boxes. Following the 
production of bounding boxes, the NMS prunes them to produce the final outputs. In addition to 
the region proposal at each grid location, the network generates multiple bounding boxes based on 
the predetermined bounding boxes sizes, as illustrated in Figure 2-4. Predetermined bounding box 
sizes called anchors are assumed to be the default size for each region proposal. Therefore, RPN 
creates a total of W ×H ×k anchor placements, where W and H refer to the width and height of the 
feature map, while k is the number of anchor boxes. It is necessary to place additional larger anchor 
boxes so that RPN can handle objects of different sizes. Moreover, the RPN uses a simple classifier 
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to predict whether each of the initial anchor placements contains an object (binary classification). 
Using this simple classification, it could be determined whether to keep or remove the anchor 
placement. Furthermore, the bounding box placements generated from the positive anchors (the 
ones predicted to contain objects) are refined by a simple regression algorithm. 

In the next step, the ROIs are merged with the features map by RoI pooling, resulting in 
the regional feature maps. A final classifier and a regression coefficient are applied to each regional 
feature map. As a result, the classification probabilities for each class are produced, with a 
background class that eliminates region proposals. Similar to the RPN, the last regressor attempts 
to refine the bounding boxes (location and size). Refinements include attempting to estimate the 
difference (size and position) between the suggested and actual bounding boxes.  

 
Figure 2-4. There is an example of how to create regional proposals initially using an RPN.  

To perform training, target output should be created, which is produced by matching anchors 
with ground truths. Ground truth is matched with the anchor where it is placed and shaped closest 
to it. The offset and class values are filled into the matched anchors, while the unmatched anchors 
would have the background class applied, which create the supposed targets. Multitask loss[14] 
uses the outputs from the network together with the target outputs for its loss function, which is 
used to train the model. 

2.5.2. Single Shot Multibox Detector (SSD) 
In the SSD model rather than attempting to first propose regions that are then used for 

predicting bounding boxes as in the two-stage models, the SSD model by Anguelov et al. uses one 
deep neural network to predict bounding boxes directly [27]. Unlike two-stage methods where the 
different stages typically require multiple training phases, the SSD incorporates all computation 
into a single, integrated network, which makes it significantly easier to train. As shown in Figure 
2-9, the SSD model places anchor boxes of default size on the produced feature map, similar to 
the RPN model. In SSD, features are not taken directly from the CNN extractor to produce the 
feature map. As a result of combining the features of multiple layers in the CNN architecture, the 
feature map can be created. In this way, the model can detect objects of various sizes by placing 
anchors at different scales of the feature map, as can be seen in Figure 2-5. Feature maps contain 
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a grid where anchor placements are used. A feature map with W × H × k anchor placements, W 
and H being the width and height of the map, where k is the number of anchor placements. 

 
Figure 2-5. The SSD model places anchors in two feature maps of different sizes.  

Anchors are bounding box predictions for two different scales given overlaid with the 
original input image. Different implementations extract different features at different scales, and 
the number of feature maps varies. A simplified version of the SSD flow is shown in Figure 2-6 
along with three levels of feature extraction. The output 3, For each grid location in the feature 
maps, the SSD model yields Related Work in the form of k * (B + C), The anchor number is given 
by k, the bounding box number is given by B, and the class numbers are given by C. 

 
Figure 2-6. Showing how SSD adapts the original CNN architecture to extract feature maps at three 

different levels using the SSD model, simplified.  
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As shown in Figure 2-6, an anchor box is placed on each feature map, and the anchor boxes 
pass through a convolutional layer, generating classification and regression values. Then, NMS 
pruning is applied, which generates the final outputs. In a similar manner to Faster R-CNN, Anchor 
boxes are designed to match ground truths to generate targets. In SSD, ground truths and anchor 
boxes are matched by calculating the IoU between them. Overlapping data above a certain 
threshold is considered a match. Therefore, matching does not occur in pairs, meaning that the 
model can predict several boxes at once, which is typically pruned in the postprocessing stage. As 
a result of this simplification, the generated targets, along with the actual outputs from the network, 
are used to optimize the loss function. 

2.5.3. You Only Look Once (YOLO) 

In 2016, Redmon et al. released the first version of YOLO [36], it used the same concept 
as SSD, one pass through one unified network. The bounding boxes of each grid location are 
predicted based on the produced feature map Related Work. According to the YOLOv2 [37] done 
by the same authors, predictions are introduced as offsets from anchor boxes placed within the 
grid locations similar to the SS and Faster CNN algorithms. To make predictions, a feature map is 
extracted from the input image, using a CNN. Figure 2-7 shows simplified network flow. This 
shows a great deal of similarity to the SSD model. An output of the YOLOv2 network for each 
grid location on the feature map consists of the following form: k(B+1+C), with k indicating the 
number of anchors, B representing a bounding box, C defining classes, and 1 representing the 
additional confidence score. An additional confidence score reflects the likelihood that an anchor 
will contain a particular object regardless of the class it belongs to. 
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Figure 2-7. YOLO's simplified network architecture. The convolutional layer creates a feature map 

based on the input image.  

 In Figure 2-7, Classifiers and regressors are used to yield predictions based on the anchors 
that are placed on the grids of the feature map. A YOLO method is intended for applications that 
require a fast execution time. Therefore, the CNN structure devised after YOLO may not have 
achieved the highest rate of accuracy in these models, but low inference time for 2D object 
detection did reach its limits. Further improvements were made to the YOLO-series with the 
YOLOv3 model [38], which extracts. The CNN structure incorporates multiple layers of related 
work. By using feature maps of different scales, better accuracy regarding the prediction of smaller 
objects, which was one of the main problems in the previous versions of the YOLO series. 

Due to how the encoded point cloud is structured, it can be interpreted as an information-
rich dense image with a depth equal to the number of features output from the point feature 
extractor for each pillar. This makes it possible to effectively process the entire feature map by 2D 
object detection methods. The decoder used in the original PP implementation was a modified 
SSD. The modification added regressional targets in the shape of height, z position and direction, 
along with an additional binary classification for the direction. The purpose of the directional 
classification is to be able to predict the heading of an object in relation to the matched anchor, 
thus being able to more effectively use the anchor boxes original orientation as a point of offsets. 
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All the followed algorithms in the thesis were performed in ROS. Unlike the name indicates it's 
not an operating system, ROS or Robot Operating System. ROS is a middleware that serves as a 
bridge between applications and operating systems. ROS is designed to improve the architecture 
of the robot's hardware and software. ROS is a simple yet elegant message packaging and transport 
service that enables sensor data to be sent onto more than any other process requiring that robot 
control data. Here is some terminology needed to understand ROS: 

➢ ROS Node: The code or software is executable and runs behind the scenes. The publisher, 
subscriber, or both may include the ROS 30 node. ROS is designed in a node unit which is 
the executable minimal unit that has decayed for maximum reusability. The node exchanges 
data with other nodes employing messages building a whole big program. The main notion 
here is the techniques of message transmission between nodes. In addition, you may change 
the settings in the node from the external node. This may also be seen in the wider perspective 
as a form of message transmission. Each theme, service, action and parameter must be used 
for their right purpose for ROS development. Figure 2-8 illustrates the transmission of 
messages;  

 
Figure 2-8. Message nodes communication 

➢ ROS Topic: A subject of ROS may be seen as a newspaper column with a committed 
publisher and a large number of readers (subscribers). For both publisher and subscriber, 
communication on the topic utilizes the same sort of message as illustrated in Figure 2-9. The 
subscriber node gets the publisher node information corresponding to the same theme name 
in the master. The subscriber node is connected to the publisher node directly to receive 
messages using this information. For example, if an encoder value of both wheels of the 
mobile robotic is calculated in the form of odometry information the current robot location 
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may be constantly sent in unidirectional movement via a subject message Asynchronous 
Odometry Information (x, y, i). Because subjects are unidirectional and stay linked to transmit 
or receive messages constantly, they are suited for sensor data requiring regular publication 
of messages. Moreover, a publisher can send several abonnés a message and vice versa. There 
are also several links between publishers and subscribers 

 
Figure 2-9. Communication of the theme message. 

➢ Publisher: A ROS Node can post a ROS message to a ROS subject. The publisher, abonor, 
service server, service customer, action server and action customer can be built separately. 
The connection must initially be created with the aid of a master to exchange messages 
between these nodes. Masterworks as a name server, keeping node names, subjects, services 
and actions and URI address, port number and arguments. In other words, nodes register 
themselves with the master when they are started and get the related information from the 
master of other nodes. Each node then connects directly to the other to communicate the 
message. Figure 2-10 shows this. 
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Figure 2-10. Announcement of the message. 

Publisher nodes are run using 'rosrun' or 'roslaunch' commands, like subscriber nodes. The 
node of the editor records its node name, theme name, message type, URI address and master 
port. As demonstrated in Figure 2-11, the master and node communicate via XMLRPC. 
 

 
Figure 2-11. The node of the editor. 

➢ Subscriber: A subscriber subscribes to a ROS topic and keeps the incoming ROS messages 
updated. Based on the publishing information from the Master, the subscriber node requires 
a direct connection to the publisher node. The subscriber node communicates information to 
the publisher node during the application process, such as the name of the subscriber node, 
the subject name and the kind of message. The editor node and the abonor node are sent 
through XMLRPC; as demonstrated in Figure 2-12. 



CHAPTER 2 (OBJECT DETECTION)                                                                                                   43 | P a g e  
 

 
Figure 2-12. Subscriber node connection application. 

➢ ROS Message: The Publisher sends a ROS message to a ROS theme. It might consist of 
sensor readings or parameters of control or any data in any format, as shown in Figure 2-13. 

 
Figure 2-13. Request and Answer for Service. 

For the generation of robot models, ROS uses a standard called URDF. URDF is a Unified 
Robot Description Format that utilizes and continually broadcasts static transformations between 
frames. ROS creates a transformation tree named tf tree showing the linkages and recent (if any) 
changes between these frames.  
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3.1. Introduction 

As mentioned previous chapter, object detection helps us to find the position of different 
object and their location. Therefore, in this section, the concept of mapping and the used 
methodology in this thesis for mapping are presented and discussed.  The thesis examines the 
effectiveness of the Gmapping algorithm in localizing and mapping simultaneously in an 
extraterrestrial robotic object application. Thus, understanding the underlying theories and 
structures of the algorithm is crucial. SLAM algorithm was used to develop Gmapping. SLAM is 
a complex problem, and EKF solutions are robust solutions, however, they can only be used with 
Gaussian systems. PF-based approaches have been introduced as a way to add to the capabilities 
of SLAM. PFs are constructed using a mechanism in which each particle contains a map of the 
surrounding environment and a robot pose. The obstacles are updated every time the robot moves 
and the map is updated according to the new pose. Furthermore, each particle in the system has its 
own representation of the map and robot orientation, as well as its own weight. It makes use of 
this weight to filter out weaker samples and converge to the strongest representation. Consider this 
as a sort of natural selection process. It is impossible to have an infinite number of particles with 
a map and a pose if a set number of particles is kept. Resampling is possible when the less likely 
particles are removed, and the strength of the estimation is further confirmed. There is an extremely 
high computational complexity due to the significant number of particles, each of which contains 
a map and a pose estimation. In this marginalization, the overall sample space is reduced, thus 
optimizing computational complexity, as discussed below in this chapter.  

3.2. SLAM 

In an unknown environment, SLAM provides a method of autonomously navigating. The 
goal of SLAM is to map an unknown area by using a robot and then to navigate and localize using 
the map. SLAM has been developed to operate in complex environments, including those with 
varied terrains, those with a limited number of landmarks, and even situations in which aerial 
navigation is required. Hugh Durrant-Whyte and John J. Leonard proposed a first step toward 
solving this problem [5]. Extended Kalman Filter (EKF) was proposed as a solution to autonomous 
navigation. The algorithm makes use of geometric beacons as landmarks and their observations 
are matched with a priori maps using robot scanners. For the robot, in this case, the location of 
landmarks is familiar to it already. Using this information in an algorithm allows matching sensor 
data of observed landmarks with their known locations. If the sensors determine that landmarks 
should be in a different location than they actually are, the robot needs to change its pose 
accordingly.  

 SLAM is made robust thanks to the combination of both findings. When a localization 
solution is integrated with a map-building solution, it allows users to localize within an 
environment and map at the same time. Based on Smith, Self, and Cheeseman's pioneering work, 
these developments were built on the first instance of SLAM. Detailed instructions are included in 
the authors' work on constructing stochastic maps. Using a random process to represent a 
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constantly changing system would be called stochastic here. There is an explanation of how the 
map is built, how data is incorporated into it, and how to incrementally improve it. The data from 
both the robot (proprioceptive) and the environment (exteroceptive) is evidently needed for SLAM 
to work. There are numerous ways to generate various types of data. In the current thesis, data 
information was sorted using a LiDAR sensor.  

The main objective of this research is to compare SLAM algorithms that utilize an external 
and proprioceptive LiDAR, camera, IMU and wheel encoder. The external sensors are utilized to 
identify environmental markers that are then used to create a map, by learning to localize them and 
inside the map that was constructed. The SLAM algorithm will seek to link these new landmarks 
with previously seen landmarks when new landmarks have been discovered and processed. 
Specific features might operate as barriers and barriers as markers. The SLAM system sometimes 
identifies and maps landmarks in the robot's real-time path planning. Barriers and markers are 
synonymous with such a planning effort. The SLAM method employs odometry data to evaluate 
the current location of the robot inside the map, while the robot is continuing to explore and scan 
its surroundings. This estimate is compared to environmental measurements collected from sensors 
and to make it easier to rectify if this is not true. The procedure continues until a full environmental 
map is generated. There are five key components of a basic LiDAR SLAM algorithm: landmark 
removal, data association, state estimate, state updated, and landmark update. Figure 3-1 explains 
this procedure. In this chapter, the procedure carried out for GMapping, in the current thesis, is 
described 

 
Figure 3-1. SLAM process flow chart. 
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In Figure 3-1, the state updating step corresponds to the filter updating step. Different 
SLAM approaches often use different filters in the step of updating the state of the target. The 
structure is generally the same. This figure shows laser and odometry data as a tool for producing 
mapping and predicting states. According to Figure 3-1, the following bullet point list, where to 
define point by point should be carried out: 

• Laser Data: Data on the robot's surroundings is the initial stage in the SLAM process. It helps 
to obtain laser data by using a laser scanner. Finally, the laser scanners are incredibly quick 
to use;   

• Odometry Data: The odometry data are a crucial part of SLAM. The purpose of the odometry 
data is to give the robot an estimated position measured by the robot wheels movement. The 
integrated telnet server makes it easy to obtain odometry data from a robot. A text string can 
only be sent on a specified port to the telnet server and the server returns the answer. It is 
tough to get the timing perfect for the dummy data and laser data. When the odometry data is 
found later, the laser data will be obsolete sometimes t. Since the controls are known it is 
easier to extrapolate the odometry data. The measurements of the laser scanner might be 
extremely difficult to anticipate;  

• Landmarks: Landmarks are characteristics that can be easily replaced and recognized from 
the surroundings. The robot uses them to see where he is (to localize itself). One method of 
imagining how the robot operates is to blindfold yourself. Landmarks such as contacting the 
door frame can assist to assess the location of the sensor. Sonars and laser scanners are a 
sensation of touch for robots; 

• Landmark Extraction: After selecting the type of robot operation, it should be able to extract 
them from sensory inputs on robots in reliable ways. There are several methods for extracting 
sights, depending on the type of signal being extracted and the sensors used; 

• Data Association: The data association challenge is that the observed points of reference are 
matched from several (laser) scans. It also refers to that as markers for re-observation. 

The following sections give an overview of the Particle filter and explain other SLAM 
options developed from their initial concept. 

3.3. Extended Kalman Filter-based SLAM 

Based on EKF, SLAM was the first robust method of obtaining object location and is the 
basis for most of the SLAM algorithms that are used today [10]. This process is composed of five 
key steps. First, landmark extraction. An exteroceptive sensor input (laser scanners, sonar, or 
vision system) is used in landmark extraction to identify landmarks. Random Sampling Consensus 
(RANSAC) is the most common method of doing so. A different landmark detection method can 
be found in [11]. RANSAC identifies a best-fit set of lines from a laser scan, which is then 
processed into representations of linear features in the environment, such as walls, and uses outliers 
to pinpoint smaller obstacles. The data in each subset of the sample is selected at random by 
RANSAC. Based on the small set of data, the algorithm constructs a line fitting model. A 
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comparison is then made between the model and the entire dataset to see which data fits [4-9]. 
Outliers are considered data that does not meet a defined tolerance for error. Obstacles are 
identified by taking outliers. Until there is consensus, the process is iterated. Data association is 
the second step of SLAM. 

By this, different laser scans are taken and a common thread among them is identified. 
Every scan in the database is taken by data association and compared to previous ones, and any 
data recording the same landmark is matched up [4-10]. Despite appearing easy, this process can 
be very challenging. Problems associated with identifying earlier landmarks include incorrectly 
identifying previous landmarks, falsely identifying landmarks, and incorrectly associating a new 
landmark with a previous landmark [9-12]. A false landmark association can adversely affect the 
pose estimation algorithm. In order to generate an accurate map and localize the robot, data 
association is crucial. SLAM revolves around a concept called the EKF in its last three aspects. 
An update to the current state of the area, an update to the previously estimated state, and adding 
landmarks to the current state are the main components of SLAM. In the filter update step, the 
previous and current states are updated. In this step, the EKF is used to filter noise from the robot's 
estimated position using the data generated in the previous steps. EKFs remove unwanted 
components from signals as any filter would. The localization process relies heavily on this step, 
which sets SLAM apart from dead-reckoning localization [4-9]. 

To complete the SLAM process, one must complete the map insertion phase. As the last 
step, the new landmarks are added to the current state of the map. The map is updated with any 
unused landmarks from the previous steps. Due to their unassociation, the algorithm determined 
that they were not seen yet. Therefore, their inclusion on the map is necessary. The important thing 
to note here is that the map becomes more complete as the map insertion phase is repeated. A 
degree of uncertainty is included in each landmark's position for initialization purposes [8-9]. As 
a general rule, a map is composed of two parts. State estimates and their variances are these. It also 
shows whether the positions of landmarks are spread out or vary from the mean and a measure of 
how the estimates for each number differ from the mean [13]. It is in the map insertion phase that 
SLAM algorithms complete a complete iteration. The steps of the algorithm are once again iterated 
as the robot moves and the data from the sensors changes. While simultaneously establishing a 
map of an unknown environment, the robot is simultaneously able to localize itself within it. Using 
an illustration of this process, the following diagrams are provided to help with understanding. 
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Figure 3-2. Landmark extraction step. Data is collected by scanning the environment by the robot. 

 
Figure 3-3. Robot moves. Positions moved by the robot  

 
Figure 3-4. Scan & Data Association. Changes to the scan and odometry data are generated. 
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Figure 3-5. Update Step. Both previously collected data and new data obtained from the movement are 

considered by the robot. Actual landmark locations are indicated by dotted outlines. 

SLAM has many moving parts, as shown in Figures 3-2 to 3-5. To find locations of objects, 
the robot must interpret data and also integrate movement information to determine where they 
are. As one can see in Figure 6, the dotted lines in the figure represent the actual location of the 
robot and landmarks in the environment. Between the actual and estimated locations of the robot, 
there are often discrepancies. The complexity of localization has caused this situation. However, 
odometry might indicate that the robot should be at a certain location. Exteroceptive laser scanners, 
however, might estimate the robot's pose differently. The localization estimate provided by 
combining the data is not perfect, but it is more accurate than before. Because there is a lack of 
perfect localization data, the robot has difficulties in providing accurate estimations of the 
positions of objects. The diagrams above show there are still issues with this solution, despite its 
well-vetted status. There are indeed some issues with the localization, mapping, and directions. 
Since its beginnings, SLAM has improved dramatically. 

3.4. Current State of SLAM  

Over 30 years have passed since Smith, Self, and Cheeseman [8] introduced the SLAM 
problem and proposed the first solution. Technology surrounding SLAM has advanced greatly 
throughout the years, from the algorithms and filters required to solve the problem to the 
implementation of mobile robots capable of solving it. An enhanced Kalman Filter is regarded as 
one of the most robust and proven SLAM techniques. SLAM has been developed and explored a 
number of times since, despite its vetting. Algorithms like the FastSLAM algorithm take advantage 
of particle filters, as do solutions based on graph data. The Rao-Blackwellized particle filter 
(RBPF) approach is different from the EKF approach in that RBPFs comprise an individual map 
of the environment and pose estimates based on individual particles [14]. The solution was first 
offered by Murphy, Doucet et al [5] [15] [16]. The authors demonstrate that RBPFs provide more 
accurate estimates than standard particle filters. Although the theoretical underpinnings are the 
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same, RBPFs achieve a higher degree of precision with marginalized variables [12][13][15]. With 
this marginalization, the inefficiencies associated with standard PFs are bypassed. Over one's state 
space, it involves the distribution of probabilities. It means that the algorithm samples over a 
subspace of the distribution to make sure the map is not included in the problem. Particle filters 
are used, and landmarks are mapped to each EKF [15] to predict localization. As a result, the 
sample space is reduced and the complex problem is more efficiently and accurately solved. Using 
the likelihood of each sample representing the posterior correctly, a weight is assigned to every 
instance in the space. New samples are selected from the areas with the highest weights when 
resampling is performed. Convergence towards the best solution results from selecting the 
strongest candidates. 

Using FastSLAM, which estimates the full posterior distribution over robot pose and 
location, while scaling with the number of landmarks on a map recursively [12][17]. It can be used 
effectively in environments with a high number of landmarks owing to the benefits of this new 
method. It is necessary to develop FastSLAM due to the computational complexity of using an 
EKF and standard PFs [12][18]. The complexity of the algorithms limits the number of landmarks 
the algorithms are capable of recognizing. In [12], Montemerlo, Thrun, Koller, and Wegbreit 
present FastSLAM as a means of subdividing the original SLAM problem into subproblems. The 
FastSLAM algorithm handles the parameter estimation of landmarks in the map through the use 
of EKFs and the representation of the posterior of multiple robot paths by means of particles. This 
thesis focuses on G mapping, a strong solution to the SLAM problem, which is based on 
FastSLAM. 

The final type of SLAM uses graphs to solve the problem, as the title suggests. There are 
nodes in the graph for each pose occupied by the robot during mapping. Every node has an edge 
that represents the constraints associated with it. Data about robot movements and the environment 
is used to calculate these constraints. Through graph-based SLAM, the most likely orientation of 
poses can be determined based on the data presented as edges [18]. In an array of applications, 
mobile robots are beginning to use SLAM algorithms to navigate autonomously using these 
algorithms. SLAM has been extensively researched, but there is still much work to be done. SLAM 
has also not been thoroughly studied from many angles and solutions. This presents a particular 
problem when operating robots that rely on SLAM in terrain that contains large undulations, such 
as outdoor environments. Further, there is a need to improve scalability and computing 
performance for SLAM applications. Also, there is little information on laser intensities used in 
SLAM processes or applications for humanoid robots [19]. 

Therefore, we have reached a true turning point. Due to the capabilities of modern 
technology, it has become possible to develop mobile autonomous robots for the general public. 
To deal with the SLAM problem one does not need to have extensive experience in linear algebra, 
EKFs, robotics, and computing systems. Numerous robotics platforms have been used to develop 
SLAM algorithms, many of which are heavily simulated. Most are open source, but some are 
proprietary. Several open-source algorithms are included in Robotic Operating System (ROS), so 
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anyone with an interest in learning about the technology can learn about and use them. Robotic 
systems that utilize SLAM can also be simulated with ROS without the requirement of any 
hardware. By doing so, expensive sensors and robots are no longer required. SLAM is easily 
implemented by simulating a mobile robot. The SLAM community is now accessible to anyone 
who has a computer powerful enough to run ROS. The change has enabled many more people to 
look at the problem, contributing to its growth and development, as you can imagine. A key aspect 
of SLAM for mobile robots is the ability of the system to execute autonomous navigation, which 
has been widely applied since its inception. As SLAM developed, indoor operations were the 
focus. Environments that are similar to the office but are unchanging or semi-dynamic. A large 
part of the solution was determined due to the issue of tracking indoors without using GPS [10]. 
Algorithms developed in the new environment were optimized to work in these contexts. The 
implementation changes were mainly intended to reduce computational complexity and improve 
general performance. This has resulted in SLAM being robust in these environments. Walls are an 
important feature of environments of this type. Most often, the robot will be viewing some kind of 
landmark or wall. For SLAM algorithms to function properly, exteroceptive data must be present 
at all times in order to ensure accurate localization and mapping. The pitfalls of the SLAM 
algorithm become apparent only when robots operate outside on unstructured terrain. If laser-based 
SLAM is used in the outdoors, it is subject to two key challenges. 

 LiDAR data is sometimes unavailable due to its nature of being used outdoors. The scanner 
will not return any useful data unless there are landmarks in its field of view. In contrast, indoor 
environments provide a constant wall presence, allowing the algorithm to work as expected. In 
addition, common LiDAR laser scanners acquire readings as 2D planes. When the terrain is 
undulating, the scanner is often pointing toward the ground as the roll and pitch of the scan change. 
SLAM algorithm is affected by the data generated while scanning the ground. The contribution 
section of this thesis provides more details about this topic and provides support for it through 
findings. Robot Operating System is, in its simplest form, a software development framework for 
robots. Robot behaviour can be built using ROS' tools, libraries, and conventions regardless of the 
platform. The keyword associated with ROS is collaborative. It was created to combine the 
contributions of developers of the robot software. Nodes written by others can be easily integrated 
into ROS systems by users. Researchers involved in robotics and software research can continue 
to push the boundaries of this technology by working together. Moreover, this framework boasts 
a huge community that contributes to its success. Several contributors continuously contribute to 
advancements on ROS Answers [33] through troubleshooting and educational posts. In this thesis, 
ROS is used to create a robust system. Evaluation of the ROS GMapping node will involve the 
use of a simulated robot designed for object detection.  

3.5. Particle Filter-based SLAM 

The most common object-tracking algorithm is the Particle Filter. The Monte-Carlo 
location with particle filters is a typical instance. The Kalman filter presented above ensures 
precision only in a linear and Gaussian noise system. Nonlinear systems are the biggest challenge 
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in the actual world. Based on the small set of data, the algorithm constructs a line fitting model. A 
comparison is then made between the model and the entire dataset to see which data fits. Outliers 
are considered data that does not meet a defined tolerance for error. Obstacles are identified by 
taking outliers, as shown in Figure 3-6.  

 
Figure 3-6. A collection of particles is a faith that the robot poses with a circle. 

To complete the SLAM process, one must complete the map insertion phase. As the last 
step, the new landmarks are added to the current state of the map. The map is updated with any 
unused landmarks from the previous steps. Due to their unassociation, the algorithm determined 
that they were not seen yet. Therefore, their inclusion on the map is necessary. The important thing 
to note here is that the map becomes more complete as the map insertion phase is repeated. A 
degree of uncertainty is included in each landmark's position for initialization purposes. As a 
general rule, a map is composed of two parts. State estimates and their variances are these. It also 
shows whether the positions of landmarks are spread out or vary from the mean and a measure of 
how the estimates for each number differ from the mean. It is in the map insertion phase that 
SLAM algorithms complete a complete iteration. The steps of the algorithm are once again iterated 
as the robot moves and the data from the sensors changes. While simultaneously establishing a 
map of an unknown environment, the robot is simultaneously able to localize itself within it.  

Like other pose estimation techniques, the particle filter predicts the position of the object 
if the mistake is included in the incoming input. The use of SLAM to determine the present position 
of the robot is the odometric value and the measurement data using the distance sensor. A 
collection of particles named samples describes the unknown posture in the particle filter 
technique. In accordance with the robot's motion model and probability, we transfer particles into 
a new estimated location and orientation and progressively measure the weight of each particle by 
its actual measurement value. In the case of a mobile robot, each particle is shown as a particle = 
weight (x, y, i) and each of these particles is an arbitrary tiny particle, which is the predicted 



CHAPTER 3 (MAPPING)                                                                                                                        54 | P a g e  
 
 
position and direction of the x, y, and i robot robots, as well as their weights. The following 5 
processes apply to this particle filter. With the exception of initialization in step 1, steps 2~5, the 
robot posture is estimated periodically. This is a way of assessing the robot's position by updating 
the particle distribution, which demonstrates that the robot is likely to be on the X, Y, coordinate 
plane based on the value of the measurement sensor. 

➢ Initialization: The first location (position, orientation) of the robot is unknown so 
that the particles are placed randomly within the scope of N particles. The weight of each 
original particle is 1/N and the particle weight total is 1. N, generally in centuries, is calculated 
experimentally. The particles are located next to the robot if the original position is known; 

➢ Prediction: Based on the system model defining the robot movement, each particle 
moves with odometry and noise information as the amount of observable motion; 

➢ Update: The probability is computed and the weight value of each particle updated 
based on the calculated probability, based on the observed sensor information; 

➢ Pose estimation: For determining the robot's average weight, median value, 
weight, and orientation, the position, orientation and weight of all participants is calculated; 

➢ Resampling: The process of producing new particles is to eliminate fewer 
weighted particles and generate new particles to inherit the weighted particle information. The 
N particle number has to be retained here. 

 
3.6. FastSLAM and its Derivatives 

The thesis examines the effectiveness of the G mapping algorithm in localizing and 
mapping simultaneously in an extraterrestrial robotic object application. Thus, understanding the 
underlying theories and structures of the algorithm is crucial. RBPF-based FastSLAM algorithm 
was used to develop G mapping. SLAM is a complex problem, and EKF solutions are robust 
solutions, however, they can only be used with Gaussian systems [49]. PF-based approaches have 
been introduced as a way to add to the capabilities of SLAM. PFs are constructed using a 
mechanism in which each particle contains a map of the surrounding environment and a robot pose 
[49-50]. The particles are updated every time the robot moves and the map is updated according 
to the new pose. Furthermore, each particle in the system has its own representation of the map 
and robot orientation, as well as its own weight. It makes use of this weight to filter out weaker 
samples and converge to the strongest representation [14][49]. Consider this as a sort of natural 
selection process. It is impossible to have an infinite number of particles with a map and a pose if 
a set number of particles is kept. Resampling is possible when the less likely particles are removed, 
and the strength of the estimation is further confirmed. There is an extremely high computational 
complexity due to the significant number of particles, each of which contains a map and a pose 
estimation. Rao-Blackwellized particle filters were introduced to reduce the computational 
complexity of this problem. RBPFs was first proposed by Doucet in his work [49-50]. Murphy and 
Doucet argue the Rao-Blackwellization particle filter uses the same basic premise as those 
previously described, however, it takes advantage of the marginalization of state variables. In this 
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marginalization, the overall sample space is reduced, thus optimizing computational complexity 
[49]. This approach, however, still needs a lot of work.
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4.1. Artificial Neural Networks 

Neural networks have been used successfully for predicting objects distance. The purpose 
of this section is to provide an overview of the basic concepts of neural networks and to explain 
how techniques for neural networks have improved the viability of such networks. This section 
covers several activation functions, optimizers and how to avoid common mistakes with a network 
during its training phase [32]. Machine learning techniques like ANNs are designed to mimic the 
brain in a loose way; their fundamental idea is based on the Hebbian theory, which attempts to 
explain how neurons adapt to learning [16]. An artificial neuron is the main building block of an 
ANN. In 1943, Walter Pitts and Warren McCulloch introduced the first model of an artificial 
neuron [31]. During the training phase of an ANN, the goal is to perform analytical tasks based on 
feedback from the performance of previous tasks. It is essential to consider the learning technique 
when providing feedback. This project can be classified as supervised learning, which means that 
the network can be fed feedback based on the relevant training data, or ground truth. There are 
many layers as shown in Figure 4-1a of an ANN that is composed of a series of computer nodes 
called neurons. Depending on the type, these layers may be: 

➢ Input layer: Samples fed into the network are processed first by the input layer, which must be 
capable of representing samples in an appropriate form: In this layer, all that is done is send 
the data to the subsequent layer. 

➢ Input neurons' outputs are then passed sequentially to hidden layers (intermediary neurons 
layers between input and output layers). To perform more complex nonlinear work, these 
layers are essential. In this part, neurons represent abstract features of the input and help to 
generate the correct output. (A neural network with at least one hidden layer can be called a 
deep neural network (DNN). Thus, deep learning is called deep neural networks.) 

➢ Output layer: The last layer is the output layer. Depending on the task, the output should be in 
the form necessary to indicate the required data. (a) Layers in a NN (b) Neuron in a NN. 

 

 

(a) (b) 
Figure 4-1. A neural network is divided into three layers a) layers in a NN and b) neuron in a NN 
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A neuron in an ANN is mathematically represented as the weighted sum of its input plus a 
bias, followed by a decision function that determines which information is to be passed forward. 
Being activated is when a neuron passes information forward. The following mathematical 
formulae are used to calculate a neuron's output: 

𝑂𝑖 = 𝑔(∑𝜔𝑖𝑗

𝑁

𝑗−1

𝑥𝑖 − 𝑏𝑖) (4-1) 

𝑥 is the input, 𝜔 is the learnable weights, and b is the bias. N is the number of input values, 
and g() is the activation function. Basically, every node has a weight wij concerning every input. 
This represents how much attention should be paid to each input. By enabling shifting, the bias 
parameter improves the representation of the desired function. Neurons' output is controlled by the 
activation function. A forward propagation algorithm calculates an output from the input using a 
new input. Backpropagation is the actual learning process; it updates the parameters, weights, and 
bias. The following section describes this technique. 

4.1.1.  Learning 

Weights and bias can be learned by an artificial neuron, as mentioned previously. 
Initializing these parameters with random values and updating them progressively with 
backpropagation are common practices in the training phase [17]. It is necessary to find the value 
of trainable parameters that will result in the smallest loss based on the so-called loss function. 
The loss function is a metric of how far off the neural networks output was from the desired output. 
The Mean Squared Error (MSE) is a simple loss function presented in this manner: 

𝑀𝑆𝐸(𝑂, �̂�) =
1

𝑁
∑(𝑂 − �̂�)

2
𝑁

𝑖=1

 (4-2) 

N represents the number of outputs, �̂� represents the number of desired outputs, and O 
represents the output of the network. A global minimum of the function is the goal of achieving 
the best weights and biases for all neurons with the lowest loss. Optimizers based on gradient 
descent update the learnable parameters by adjusting the parameters according to: 

𝜃 = 𝜃 − 𝜂∇𝐽(𝜃) (4-3) 

∇𝐽(𝜃) is the gradient of the loss function 𝐽(𝜃), where 𝜃 is the parameter to be updated, and 
η is the learning rate. During backpropagation, by taking the partial derivative of the loss function, 
the gradient of the backpropagation algorithm is calculated concerning the parameter that should 
be updated. Partially derivatives for a specific weight depend on all subsequent layers, so the 
backpropagation has to start from the last layer, and it has to go backwards. Chain rules are used 
to determine how a layer's weight depends on a layer below it. According to the concept, more 
updates should be made to the neurons that have the greatest influence on the output. 
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A network's final output is based on a generalization of what it has experienced, i.e., on 
what it has trained on. During network training, it is common to find that the model learned much 
detail from the data. On the training set, the network performed well; however, on the new data, 
the network performed worse. The problem is called overfitting. During the training stage, the 
available data is typically split into two sets: A training set consisting of the majority of the data 
where based on the loss, the network updates its learning parameters. Additionally, a validation 
set is used to test if the model generalizes. 

4.1.2.  Optimizers 

Each of the available optimizers has advantages and disadvantages for updating the 
trainable parameters. Following a network's complete processing of the whole dataset, the gradient 
descent algorithm can perform one update. 

4.2. Theory 

It means, the update takes into account the average of the entire dataset, so it is common to 
converge with a local minimum that is not optimal. For solving the aforementioned problem, 
gradient descent optimizers can be used: 

➢ For each training sample, stochastic gradient descent is performed once. Because of the 
frequent updates, the trainable parameters have a high variance because of the different input 
samples. With the high variance, a more efficient local minimum could be found than with 
the standard gradient descent. Furthermore, oscillations could lead to overestimation of the 
network's updating value and complicate the convergence process. 

➢ Once a set number of samples has been processed (called a batch), the parameters are updated. 
Batches should be smaller than the full training set. This method involves a batch of training 
samples is processed, and then an average loss of the batch is taken as the basis for updating 
the network. Even so, gradient descent and its variations present some challenges, such as 
choosing the right learning rate and avoiding sub-optimal local minima. Listed following are 
some additional techniques that enhance gradient descent, thereby mitigating the above 
challenges. 

➢ By adding a fraction of the update vector from the previous step update V (t − 1) to the current 

update V (t), a technique known as Momentum softens the oscillations of updates. Using the 
following mathematical formula: 

𝑉(𝑡) = 𝛾𝑉(𝑡 − 1) + 𝜂∇𝐽(𝜃),  𝜃 = 𝜃 − 𝑉(𝑡) (4-4) 

In which, θ is the learnable variable, η indicates the learning degree and γ denotes the 
momentum degree, defining the portion of the momentum from the preceding phase that must 
be added in the update [43]. 
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➢ This can be expressed as a three-part definition, with θ being the learnable parameter, η being 
the learning rate, and γ being the momentum rate, which is defined as the fraction of 

momentum from the previous step that needs to be added in the update [43]. 
 

- A specific parameter's learning rate is adjusted based on the frequency with which that 
parameter is updated by Adagrad. A parameter that is rarely updated maintains a higher 
learning rate than one that is frequently updated. With this kind of updating, it is less likely 
that the learning rate would need to be manually calibrated. Using Adagrad also has a 
disadvantage, that it calculates the learning rate through the accumulation of the previous 
gradients, which forces the learning rate to always decrease, resulting in that the model would 
stop learning. 

- An extension of Adagrad named Adadelta, which provides a solution to the decaying learning 
rate issue. This is achieved by only considering a fixed number of previous gradients in 
defining the adaptive learning rate. Similar to how momentum parameters are updated, the 
learning rate is also updated in the same way: a fraction of the previous gradient means is added 
to it. 

- Also, Adadelta, a method that computes adaptive rates of learning for each parameter, is called 
Adaptive Moment Estimation (Adam). Nevertheless, every parameter is also associated with a 
specific individual momentum. Due to this, Adam can calculate both the momentum and the 
learning rate for each parameter and avoids most of the issues. 
 

4.3.  Activation Functions 

The activation functions can be used to introduce non-linearities into the neural networks, 
thus enabling complex nonlinear problems to be solved. Activation functions come in several 
different forms with different properties. Based on the tasks the network is intended to accomplish, 
all are appropriate. The pros and cons of activation functions are discussed in this section. For 
classification problems, the Sigmoid function is widely used [32]. It restricts the neuron's output 
to a range between 0 and 1. As follows: 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
 (4-5) 

Backpropagation is a process in which based on the gradient in the previous layer, the 
weights are updated backwards depending on the backpropagation. The gradients are not steep, as 
shown in Figure 4-2, along the edges of the sigmoid function. As a result, nodes in the last layers 
could have small gradients, which would lead to minimal updates for the first layers. Consequently, 
the learning process for the network is prolonged or completely stopped. A vanishing gradient [19] 
is known as an issue that historically prevented deeper networks from convergent within a 
reasonable period. 

4.3.1. Hyperbolic Tangent (tanh) 
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Tanh, or hyperbolic tangent activation function, is a scaled version of the sigmoid function, 
thus resulting in a steeper gradient. Figure 4-2 shows the Hyperbolic Tangent. it is defined as the 
best formula where, a range from −1 to 1, allowing the values to be zero-centred. However, the 
gradient still vanishes for such activation functions. This is a widely used activation function for 
deeper networks called the Rectified Linear Unit (ReLU) [24]. The figure shows that for negative 
numbers, it outputs zero and for positive numbers, it outputs the input. 

tanh(𝑥) =
2

1 + 𝑒−2𝑥
− 1 (4-6) 

4.3.2. ReLU  

ReLU is a non-linear activation function. This is because gradients of zero or one diminish 
the problem of vanishing gradients. It is possible to ignore neurons that have zero output, reducing 
the number of computations necessary, thus improving the efficiency of the network.  

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (4-7) 

The backpropagation update, however, would be zero if the neuron has negative weight 
and bias, implying that the activation function would be at a zero gradient. For the neuron to start 
emitting anything other than zero again, it will need to be adjusted by some external force, a 
phenomenon called the dying ReLU problem. There is also the issue that the amount of output 
from ReLU is not limited, so activations could blow up (become disproportionally large) [32]. 
Activation functions, such as the one mentioned earlier, have a simpler mathematical formula, 
which may contribute to their increase in computation speeds. ReLU is a method of solving the 
dying linear unit problem called the leaky rectified linear unit (LReLU). This technique changes 
the gradient for negative numbers to make them smaller as: 

𝑓(𝑥) = 𝑚𝑎 𝑥(0, 𝑥) − 𝛼𝑚𝑎 𝑥(0,−𝑥) (4-8) 

 α is set to a small value near zero in the function given by the next formula.  When solving 
classification problems with more than one class, softmax is often activated in the output layer. As 
a result, logit (the raw output scores from the last layer) is converted into probabilities that add up 
to one. This formula has the following form:  

𝑆(𝑦𝑖) =
𝑒𝑦𝑖

∑ 𝑒𝑦𝑗𝑐
𝑗

 (4-9) 

𝑦𝑖 represents the output probability of a particular class i in the output layer, and c 
represents the classes number. 

4.3.3. Regularization 

It is possible to avoid overfitting and achieve a standardized output with the concept of 
regularization. Regularization forces the network to generalize better by making slight 
modifications to it as it learns. There is a regularization technique named dropout. Consequently, 
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each neuron is not able to update its parameter and produce an output with probability P. 
Regularization also can be performed using L2 regularization, which forces the weights to decay 
towards zero by adding a term to the loss function. The technique is described as follows: 

𝐿𝑛𝑒𝑤 = 𝐿𝑝𝑒𝑟𝑣 +
𝜆

2𝑚
∑‖𝜔‖2 (4-10) 

Here the term on the right of the plus sign indicates the L2 regulator, Lnew as the total loss, 
and also Lprev as an arbitrary loss function. The regularization parameter represents by λ, where m 

is the number of outputs and w is the learnable weights. Therefore, the gradient would be affected 
by the addition of regularization when the loss function is different for each weight. 

4.4. Formulation and algorithm of used Convolutional Neural Networks 

In a CNN, the architecture is intended to leverage the structure of the input (typically 
images) to improve the response. Mainly, a network is normally constructed of two building 
blocks, the convolutional layer, and the pooling layer. These two layers are discussed in more 
detail below. By weighting and modifying identifiable characteristics of smaller patches inside 
each layer, these building blocks are used to represent the data as features. By using building blocks 
in this way, the level of abstraction of the input becomes gradually greater as it progresses through 
the layers. Later layers contain more complex information about how specific objects actually 
appear, whereas earlier layers contain simpler structural information. 

4.4.1. Convolutional Layer 

As with any ANN, the convolutional layer is made up of neurons that can be trained. 
Convolutional layers work by learning weights and biases for each neuron in the layer and 
calculating its output based on those values. Alternatively, neurons can be visualized as matrices 
called filters where the weights can be shared between them. By virtue of convolutional filtering, 
the input is applied to these filters. Convolutional operation is applied to all input, both rows and 
columns, by sliding the filter across them. Each location is multiplied element-by-element and 
summed together to produce the result that is included in the output feature map. Each 
convolutional layer has four significant parameters: 

➢ As a first step, specify the number of weights within each filter by specifying the size of the 
filter. As they can handle smaller and local features of objects, filters in the range of 3 × 3 to 5 
× 5  are usually used. In addition, the depth of each filter is adjusted according to the channels 
present within the input; 

➢ The second step pertains to the number of filters, indicating how many will be applied to the 
data on each layer. Based on the number of filters present in a layer, the final output feature 
map contains a set of channels. Figure 4-2 illustrates how five filters can be applied to a simple 
image. An example of output depth when using multiple filters is shown in Figure 4-2. This 
results in a five-depth feature map since five filters have been applied to a three-channelled 
image. 
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Figure 4-2. Example of the output depth by multiple filters 

➢ Third, As the filter slides through the input data, the stride indicates how much it shifts at each 
step. Figures 4-3 shows examples using a stride of one. Increased stride results in a 
significantly smaller output feature map. 

➢ Finally, padding specifies whether and how many padding borders should be added  

 
Figure 4-3. Here's a convolution operation example applied to a single filter. 

An output feature map of each layer has the following dimensions: 

𝑂 =
𝑁 − 𝐹 + 2𝑃

𝑆
+ 1 (4-11) 

N is the input map size, O is the output dimension of a row or column, F represents the 
filter size, P stands for padding row/column size, and also S is for stride. The resulting values are 
rounded towards zero if they are fractions. 
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4.4.2.  Pooling Layer 

The output feature map is downscaled using pooling. As a result, fewer parameters and 
computations will be used in the network, and the amount of overfitting will be reduced altogether 
(by only keeping the most promising features). The most common type of pooling is max pooling. 
According to Figure 4-5, only the maximum value in each region is kept as output. This is done 
by splitting the input feature map into equal-sized regions. Pooling affects output size as expressed 
without padding depending on the size of the regions and the stride. Figure 4-4 shows an example 
of using max-pooling on a 4*4 input feature map with a size of 2 * 2 and a stride of two. An output 
is generated for every section of a 2 x 2 feature map in which the highest value appears. 

 
Figure 4-4. Example of the claim of max-pooling. 

4.4.3. Transposed Convolutional Layer 

The opposite of the convolutional layer reduction in the size of the output feature map can 
be achieved by transposing convolutional layers. Convolutional operations can be reversed to 
perform upsampling of feature maps. The weights could be learned as well as visualized as filters 
in the same way as convolutional layers. The filter is multiplied by the input value for each input 
location, and the result is placed on the output map at the corresponding location where overlaying 
values are summed. There, No padding was added to the stride and the filter was applied. The 
value at each input location is multiplied by the filter's entire parameters and positioned at the same 
location on the output map. The output feature map is a 6×6 representation of the overlapping 
values. 

4.4.4. Unpooling 

A transposed convolutional layer reverses the state of convolutional layers, whereas an 
unpooling layer reverses the pooling layers. To reverse the operation of max-pooling, there is max 
unpooling. In the process, it records the positions of the maximum activations during the max-
pooling [34], where the maximum values during downsampling were found. Afterwards, the 
unpooling reverses the maximum operation while filling the remaining positions with zeroes. In 
Figure 4-5, we can see the same result from max unpooling as shown in Figure 4-4. 
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Figure 4-5. This example illustrates how max-pooling can be applied to a feature map and a stride.  

4.4.5. Fully Connected Layers 

Convolutional layers and pooling layers learn features, and fully connected layers then 
increase the ability to reason with these features at a high level. As they are capable of moving 
from grid representations to single values, fully connected layers heavily depend on the type of 
output intended. By using convolutional networks to represent data, we create feed-forward 
networks. It may prove useful in cases of classification or regression using input data as a whole. 
Data translation occurs through a flatten layer that creates a vector from each matrix feature value 
by translating each position into an input value that is then passed on to each fully connected layer 
following. Figure 4-6 illustrates how a feature map of size 2 × 2 × 2 can be converted into a layer 
containing four neurons through the use of a connection layer. 

 
Figure 4-6. A feature map with a layer of four neurons.  

4.5. Transfer Learning 

Traditionally, deep learning algorithms require a large amount of data to perform their tasks 
effectively. Despite this understanding, there is a workaround known as transfer learning when 
neural networks are large. It becomes possible to transfer weights that have already been learned 
on a model created from the same architecture by using some pre-defined network architecture. 
By using transfer learning, the features extracted from training on larger datasets can be used to 
generate feature representations instead of creating them from scratch. By utilizing this method 
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correctly, it not only increases performance but also reduces your training time. However, to be 
profitable, transfer learning depends primarily on one big assumption, which is that patterns found 
in the original dataset are applicable in the new data. There is essentially no difference in the type 
of data. It can be difficult to obtain information from another network that is trained on images of 
cars when trying to determine whether a tumour is benign or malignant using scanned images. 
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5.1. Introduction  

In this chapter, the performed coding and algorithms used in the current thesis are presented. For 
this aim, this chapter is categorized into three main parts: Object detection, Mapping and Artificial 
neural network, as also shown in Figure 5-1.  

 
Figure 5-1. performed steps in this chapter 

5.2. Object detection algorithm and formulation 

In this section, based on those mentioned in the previous section to find an object using 
LiDAR and ROS and their connection, the formulation and coding performed in this thesis to find 
objects locations and coordinates are discussed. Due to how the encoded point cloud is structured, 
it can be interpreted as an information-rich dense image with a depth equal to the number of 
features output from the point feature extractor for each pillar. This makes it possible to effectively 
process the entire feature map by 2D object detection methods. The decoder used in the original 
PP implementation was a modified SSD. The modification added regressional targets in the shape 
of height, z position and direction, along with an additional binary classification for the direction. 
The purpose of the directional classification is to be able to predict the heading of an object 
concerning the matched anchor, thus being able to more effectively use the anchor boxes original 
orientation as a point of offsets. 

In this thesis, the algorithm accomplishes its function by a pipeline of 4 processes when 
each new scan is received as below and Figure 5-2: 

1. Scan conversion: Object-oriented scan data representation 
2. Clustering: divide scan into different clusters  
3. Identify the closest cluster: Define the closest cluster-object from the rover  
4. Control rover speed: Modify the speed and heading of the rover depending on the 

environmental perception   
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Figure 5-2. Accomplished algorithm used to identify objects 

5.2.1. Laser scan processing 

The source of laser scan is the lidar sensor, a typical lidar sensor that emits pulsed light 
waves into the surrounding environment. These pulses bounce off surrounding objects and return 
to the sensor. The sensor uses the time it took for each pulse to return to the sensor to calculate the 
distance it travelled. Each laser scan has a predefined angular position, thus by arranging the 
totality of range scans, we obtain a  2D space representation from the robot perspective. The lidar 
sensor is widely used in obstacle detection since it gives both the distance and angular position of 
a lying obstacle. In ROS the laser scan message is defined by sensor_msgs/LaserScan type, each 
laser scan is a single scan line at a given moment. The message information is presented in 
Appendix I. Figure 5-3 illustrates the laser scan message components: 
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Figure 5-3. Laser scan message components diagram 

In our case, the laser scan message is obtained in cmd by running a rostopic echo /scan. 
The performed laser scan message coding is provided in Appendix II. 

In our application the lidar sensor is positioned on top of the rover, to make the obstacle 
detection trivial we align the sensor in a way that the transform between its frame and the base_link  
frame of the rover are aligned, thus the x-axis of the laser aligns with the frontal direction of the 
rover which gives an angle of 0 in the vertical direction of the rover, in rospy, to use the laser data, 
the ROS node subscribes to the /scan topic and assigns a function that serves as callback when 
each new laser scan message is received. In the callback the laser scan is processed in the 
scan_processing method, to perform the following tasks: 

5.2.2. Scan data conversion 

To simplify the message representation we convert the scan array (view message 
definition), to object representation: Each range is converted to a measurement object. The 
measurement object consists of the two fields:  

- Range:  
- Angle : 
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The conversion method consists of iterating over the array structure, the angle is obtained 
by adding incrementing the indexes of the scans to angle_min parameter as: 

                        angle = angle_min + idx * angle_increment  
  range = ranges[idx] 

Where idx is the scan index in the array. The values are passed to the measurement object 
constructor and add it as a new item in the measurement list. In the current thesis, the data was 
sorted from objects that existed on the campus of Politecnico di Turino 

5.2.3. Clustering 

The measurement list is passed to the closest_cluster method to perform laser scan clustering 
to define the closest obstacle. Clustering is an approach to divide the scan data points into 
independent groups of points which defines a full object or a portion of a body. Prior to the 
clustering phase, We discard the ranges that are further than a prefixed distance. This allows us to 
avoid unnecessary readings beyond our area of interest as well as enhancing the chances for more 
separate clusters. The separation criteria are explained in Figure 5-4. Additionally, the total 
considered clustering is presented in Figure 5-5. 

 
Figure 5-4. Separation criteria considered in the clustering stage 
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Figure 5-5. Number and distribution of clustering  

According to Figure 5-5, a total of 8 clusters were found as below: 

✓ Cluster 2 is identified by detecting range difference:  The range difference between the first 
point from cluster 2  and the last point of cluster 1 exceeds the  range_diff threshold.  

✓ Cluster 4 is identified by detecting angular difference: The angular difference between the 
first point of cluster 4 and the last point of cluster 2 exceeds the ang_diff threshold.  

✓ In the closest_cluster function which performs in the first part clustering,  we fixed the 
range_d_thres to 0.2 m and the angle_d_thres to 0.17 rad. 

 
5.2.4. Closest obstacle identification  

From the obtained list of clusters that form candidates of the closest obstacle, we form another 
list containing the closeness criterion of each cluster. The closeness criterion is based on the 
horizontal distance noted dy, that separates the object and robot centres, such that    

𝑑𝑦 = |𝑦𝑜 − 𝑦𝑟| (5-1)  

with 𝑦𝑜, the obstacle y coordinate in the robot base_frame and  𝑦𝑟, the robot y coordinates 
in base_frame which is equal to zero. To calculate the y coordinate of the obstacle, We choose the 
centre of the cluster representing the object as the medium-range point, given that scan, points are 
taken in the base_link frame, the y coordinate of the medium point is the projection of range on 
the y axis of base_link frame and this it is calculated as follow: 

𝑦𝑜 = 𝑅 × 𝑠𝑖𝑛𝜃 (5-2)  

Where R is the range of medium point and 𝜃its angle. From Equations 5-1 and 5-2, we 
define the closest cluster by minimizing the function noted below, 
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𝑑�̂� = 𝑚𝑖𝑛|𝑅 × 𝑠𝑖𝑛𝜃|2 (5-3)  

 The cluster with the minimum value is selected as the closest obstacle. Another test is 
performed on the cluster to check the possibility of passing beside the obstacle without collision. 
We fix a value of  1.75 × 𝑊, where w is the rover width as a security distance. If the selected 
cluster is beyond the security distance, the closest_cluster function returns the cluster data, else the 
function returns an empty list. The function output is passed to the velocity control bloc discussed 
in the next paragraph. 

5.2.5. Velocity control 

In the laser callback function, when each new scan data arrives it is processed to identify the 
closest cluster, and depending on whether there is an obstacle or not the velocity commands are 
set as the diagram describes (Figure 5-6): 

In the callback function, the velocity control takes initially forward speed value as it is the 
default navigation mode for the rover, if the closest_cluster function returns a cluster, its centre 
angle is compared to the window_in parameter which represents the navigation direction of the 
robot in our case we set the window_in parameter to 0 rad as it is aligned with the x-axis of 
base_link frame. If the angle of the cluster centre is inferior to window_in, the obstacle is on the 
right side which initiates stopping the rover and turning it left, likewise in the second case. 

 
Figure 5-6. Laser callback function flowchart 
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5.3. Gmapping  

OpenSLAM Gmapping is the most often used LiDAR SLAM-based method, following 
efficient Rao-Blackwellized Particle Filter (RBPF) implementation. The sampling history of each 
particle is a sample of the history and the background of robot postures given the tale of the sample, 
that is, each particle is shown with a map of the environment. The main goal is to minimize the 
number of particles used in an adaptive method. Recent observations are utilized to correct the 
map, rather than depending only on the movement of the robot (the history of the robot positions). 
Previously compared two methods, i.e., online EM and bayesian inference. The map was regarded 
as a fixed parameter at the online EM, whereas the map was viewed as a matrix of random variables 
in the Bayesian inference. The online EM algorithm has been demonstrated to readily stick to a 
local minimum, which makes the robot seen to be lost. Recent observations are utilized to correct 
the map, rather than depending only on the movement of the robot (the history of the robot 
positions). The map was regarded as a fixed parameter at the online EM, whereas the map was 
viewed as a matrix of random variables in the Bayesian inference. The online EM algorithm has 
been demonstrated to readily stick to a local minimum, which makes the robot seen to be lost. 

1. The first guess of the posture of the robot represented by component i is 𝑥𝑡
′(𝑖)

= 𝑥𝑡−1
(𝑖)

+

𝑢𝑡−1. The above position 𝑥𝑡−1
(𝑖)  and odometry measurements 𝑢𝑡−1 obtained from the latest 

update of the filter is computed for this. The operator here is the usual operator for 
compounding; 

2. A scan matching procedure is conducted based on the 𝑚𝑡1
′(𝑖)map starting from the beginning 

𝑥𝑡
′(𝑖). The search is restricted to 𝑥𝑡

′(𝑖) approximately. In the event of an error, poses and 
weights using the motion model are computed and steps 3 and 4 are omitted; 

3. A set of sample points will be picked in an interval around �̂�𝑖
(𝑖) provided by the scan 

matcher. Based on this measure, by assessing the goal 𝑝(𝑧𝑡𝑚𝑡1
(𝑖)
, 𝑥𝑗)𝑝(𝑥𝑖𝑥𝑡1

(𝑖)
, 𝑢𝑡1) at the 

sampling position 𝑥𝑗, the mean and covariance matrix of the suggestion will be determined. 
The weighting factor 𝜂(𝑖) is computed at this step; 

4. Calculate the gaussian approximation 𝑁(𝜇𝑡
(𝑖)
, ∑

(𝑖)
𝑡 ), and the new 𝑥𝑡

(𝑖).  the posture of the 
i particle will be drawn 4; 

5. Weights of significance are revised. The map 𝑚(𝑖) of the particle I shall be updated 
according to the posture 𝑥𝑡

(𝑖) and 𝑧𝑡 observation. 

In the current thesis, based on the steps discussed above, we used the gmapping ROS package 
which is a ROS wrapper for OpenSlam's Gmapping. The gmapping package provides a ROS node 
called slam_gmapping which performs laser-based SLAM. Using slam_gmapping, We obtain a 
2D occupancy grid map from laser and odometry data collected by the rover. To use 
slam_gmapping, It needs a mobile robot that provides odometry data and is equipped with a 
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horizontally-mounted, fixed, laser scanner. The slam_gmapping node transforms each incoming 
scan into the odom (odometry) tf frame.  

To function correctly the node needs:  

- A laser scan source publishing sensor_msgs/LaserScan message;  
- A tf transforms from the base link to the odom link; 
- A tf transform from the laser link to the base link  

The nodes take the following parameters: 

- Base_link: The frame attached to the rover base, we set these parameters to the “/laser” as 

we are using only the range finder; 
- odom _link: the frame attached to the laser link, we set these parameters as the laser link 

frame as they are identical  

Since the base, odom and laser frames are identical there is no transform needed by the node. 
In addition to the map the node provides a transform from the odom frame to a map frame, we set 
the map frame as “/map”. We use the obstacle avoidance node to provide information about the 

location of objects at 5 m or above on the map. The obtained clusters beyond that specific range 
will be processed to determine the obstacle position in the map frame.  

The cluster position is defined by its closest point; we convert the coordinates of this point 
from polar to cartesian by projecting the range value on horizontal and vertical axes.  

The coordinates are calculated as follow: 

𝑥𝑜𝑏𝑠 = 𝑅 × 𝑐𝑜𝑠𝛼 (5-4) 

𝑦𝑜𝑏𝑠 = 𝑅 × 𝑠𝑖𝑛𝛼 (5-5) 

With R the range of the closest of cluster and 𝛼 its angle. Figure 5-7 outlines the calculation 
process. 

http://docs.ros.org/en/api/sensor_msgs/html/msg/LaserScan.html
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Figure 5-7. Object coordinate and location in the map 

Therefore, we associate the position to a visualization marker that will show up in RVIS at 
the object location the position is formatted in a text message displayed. The visualization marker 
definition given by ROS documentation is presented in Appendix III. Furthermore, Figure 5-8 
summarizes the node graph of mapping and obstacle avoidance 

 
Figure 5-8. ROS node graph for Gmapping 
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ROS has a modular structure. Communication between nodes in a network is what makes 
it work. With a structure such as this, it is easier to implement the complex system required to 
control robots autonomously. It is because each node is designed for accomplishing its own 
specialized task. The task at hand is simplified by breaking the problem down into numerous 
smaller ones. Having each node independently controlled reduces the difficulty of debugging. 
When you know what to focus on for a given problem, the time spent on this process and the 
confusion you experience is greatly reduced. The ROS framework is described above. Users can 
create a system of nodes by using packages. Robot operating systems are made up entirely of this 
system of nodes. The nodes each perform a specific function and communicate with each other to 
control the robot. ROS nodes perform computations by definition. An executable is essentially a 
piece of software that communicates with other nodes in the system when it is being executed. By 
publishing information on a topic, nodes are able to communicate with each other. As shown in 
Figure 5-9, this is the case. 

 
Figure 5-9. Communication from node to node via topics. 

Each node has no idea whom it is communicating with. Nodes can subscribe to the data 
they publish to topics when they publish data. Nodes that subscribe to topics, such as /node1 Topic 
X /node2, will view all the data contained within those topics. Streaming communication between 
nodes is accomplished with the use of TCP or UDP, both of which fall under the Internet Protocol 
category. UDP sends data in packets and does not require a connection to send data while TCP 
sends data bidirectionally once a connection is established. ROS assigns a message type to each 
topic to format its sent and received messages. Data can be differentiated using these message 
types. Furthermore, ROS uses a concept known as a service to manage request-reply cycles. 
Messages that constitute a service consist of one item for your request, and another for your 
response. Nodes either wait for a request or send a response after using a service. Upon requesting 
an answer, the node waits for an answer. ROS utilizes bags as a means of storing data for offline 
use or other purposes. By subscribing to one or more topics, ROS bags are generated. Upon saving 
the data, it will be "bagged up" and sent to another node. Subscribing to a certain topic can be 
bypassed this way. Last but not least, one must know the Master to fully grasp the ROS 
architecture. During inter-node communication, the Master helps the nodes to locate each other. 
Topics and services can be matched between publishers and subscribers. This publisher-subscriber 
framework is possible with the Master because it maintains operational complexity. Therefore, in 
the current thesis, the gmapping in ROS was performed. The used Gmapping coding is provided 
in Appendix IV. 
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The G mapping method is based on SLAM and odometry data from a robot, which 
optimizes laser scanner data. Using this data, the algorithm generates a 2D grid map of the robot's 
operating environment [When the lack of odometry is accommodated by using the scanner's high 
update rate, the gaps in useful data can be filled. A map and a localization solution in an unknown 
environment are both viable options. Based on the Navigation Stack I mentioned above, this thesis 
explores the use of the ROS node G mapping in a simulation of a robot. Therefore, using the 
presented algorithm presented above that was utilized in the current thesis, a user can see laser 
scanner data, occupancy grids, as well as paths that have been planned locally and globally using 
this tool. Even though this tool has many capabilities, this research primarily used it for 
teleoperating the robot and viewing and evaluating the map. Robot goals can be chosen as 
waypoints on a map using Rviz. By subscribing to the desired pose, the ROS Navigation Stack 
navigates autonomously until the addressed goal is reached. By adding a mapping node to the G 
node, Rviz displays occupied grid messages. In this way, you can see the map is created and 
monitored in real-time. It is possible to measure the distance between two points on the map using 
the Rviz tool. Using this approach allows the distance between the mapped location of an object 
and an origin point (origin) to be measured. By taking advantage of the recorded data, G mapping 
can be evaluated for its validity and accuracy. Therefore, an example of used mapping with and 
without the objects’ location and coordinate are presented in Figure 5-10.  

  
(a) (b) 

Figure 5-10. An example of obtained mapping in the current thesis a) without objects location and b) 
objects’ location and coordinates 

 

5.4. Application of ANN for navigation 

Several human brain mathematical and software models, which are utilized to address a broad 
variety of science, engineering and application issues in different disciplines, were suggested in 
the field of ANN. Over the last few decades, usage in mathematical processes of intelligent 
systems, particularly ANN, has grown so prevalent that they may be regarded as fundamental and 
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common tools. ANNs have been incorporated into many forms of the computational model, each 
of which is suitable for a variety of applications. A mathematical structure and a set of adjustment 
parameters are considered in all such networks. Using a training process, this whole structure is 
tuned to offer acceptable performance. The model provides In the human brain the learning process 
is produced by weakening or consolidating the connections between the nerve cells. This 
mathematical learning is characterized by certain parameters called weights and it is stated as a 
setting. Figure 5-11 shows the whole network set up with numerous inputs and a single output. 

 
Figure 5-11. General network design with several inputs and one output 

There are three levels in the used network in this thesis. To select data on the network, one 
layer termed the input layer, is utilized. The buried layer includes neurons that are linked to all 
input units. As concealed layers, several layers can be employed. The last layer (output layer) is 
made up of the neurons producing the model output. Each neuronal link has a weight. Each of the 
neurons in the hidden layer and output layer conducts two input operations which are shown in 
Figure 5-12. 
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Figure 5-12. Structure of every neuron in the hidden layer and output layer 

The first thing that was computed as the weighted total (∑ ) of the inputs (𝑥𝑖 , 𝑖 = 1,2, … , 𝑛)  
and deviation (𝑏). The value was mapped using an activation function to other space (𝑓). The 
neuron output I was therefore computed according to the following formula: 

𝑂𝑖 = 𝑓(𝑏 +∑ 𝑤𝑗𝑥𝑗
𝑛

𝑗=1
) (5-6) 

In numerous rounds, neural network training with a considerable influence on network 
performance is performed. The network error value is calculated according to training data in each 
iteration of the loss function. The brain system aims to learn the right weight to minimize loss. 
Backpropagation of errors is one of the most used ways of neural networking training. The first 
stage is to feed the input data into weights and subsequent putting them into a deviation. This 
process comprises two parts. The first step is The network output is computed after this phase, 
which is possibly different from the current result. The loss function value is this difference. In the 
second stage, termed reverse propagation, weight and deviations are modified by the value of the 
loss.   

Many genuine word problems require enormous computer resources and time complications 
to find a suitable answer (sub-optimal). To overcome these issues, optimization procedures like 
statistical, mathematical and stochastic programming must be used.   

These techniques have been used to investigate and improve the fitness of the answer for a 
better generation. CMA-ES is one of the low-time complexity evolutionary algorithms used to 
optimize continuous domain issues. As follows, the life cycle of CMA-ES is: 
1- Initialization; 
2- Set the mean, covariance and step size of each measure; 
3- Generate descendants; 
4- Process for selection and recovery 
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5- Go to step 2 if you do not meet the exit requirements. 
The first stage involves initializing the CMA-ES settings. Includes these parameters: 
• 𝐷: number of dimensions of the issue. 
• 𝜆: The population size of offspring is generally determined by the formula 4 + 3𝐿𝑜𝑔(𝐷). 
• 𝜇: Next-generation parent population and may be estimated with the formulation "free of 

money" and "free." Parents are chosen from the finest options for each generation. The 
following vector is provided to each individual population: 

𝑋𝑖 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝐷]𝑓𝑜𝑟𝑖 = 1,2,3, … , 𝜇 (5-7) 
• 𝑀 and 𝜎: Initial mean and default deviation and update correspondingly for each generation. 
• 𝑃𝑐 and 𝑃𝜎: Path of evolution and cumulative step size. 
• 𝐶: covariance matrix expressing the dependence between distribution variables. The initial 

value for 𝐶 is the identity matrix (𝐼). 
• 𝑔: Contra generation. 
• 𝑐𝑐𝑜𝑣: Learning rate of covariance. 
• 𝑐𝑐: The rate of learning for the upgrade of the cumulation of the covariance matrix is less than 

one. 
• 𝜇𝑒𝑓𝑓: Variance efficient middle mass. It can be equal to𝜆 4⁄ . 
• 𝜇𝑐𝑜𝑣: greater than zero and can be equal 𝜇𝑒𝑓𝑓. 
• 𝑑𝜎: Damping parameter can be about one step-size update. 
• 𝑐𝜎, The cumulation step control learning rate is less than one. 
• 𝑁(0, 𝐼): Normal multivariate distribution of zero average covariance and unity matrix. 

In the second stage, the search distribution must update the covariance matrix, step size and 
mean value: 
• In the second stage, the search distribution must update the covariance matrix, step size and 

mean value: 

𝐶(𝑔+1) ← (1 − 𝑐𝑐𝑜𝑣)𝐶
𝑔 +

𝑐𝑐𝑜𝑣
𝜇𝑐𝑜𝑣

𝑃𝑐
(𝑔+1)

𝑃𝑐
(𝑔+1)𝑇

+ 𝑐𝑐𝑜𝑣 (1 −
1

𝜇𝑐𝑜𝑣
) ×∑𝑤𝑖 (

𝑋1:𝜆
(𝑔+1)

−𝑀𝑔

𝜎(𝑔)
)

𝜇

𝑖=1

(
𝑋1:𝜆
(𝑔+1)

−𝑀𝑔

𝜎(𝑔)
)

𝑇

 
(5-8) 

Where 

𝑃𝑐
(𝑔+1)

= (1 − 𝑐𝑐)𝑃𝑐
(𝑔)

+√𝑐𝑐(2 − 𝑐𝑐)𝜇𝑒𝑓𝑓
𝑀(𝑔+1) −𝑀(𝑔)

𝜎(𝑔)
 (5-9) 

• The following formula updates the step size: 

𝜎𝑔+1 ← 𝜎𝑔 × exp(
𝑐𝜎
𝑑𝜎

(
‖𝑃𝜎‖

𝐸 𝑁(0, 𝐼)
− 1)) (5-10) 

In the third stage, the following formula is used to produce the sample population for the 
next generation: 

𝑥𝑘
(𝑔+1)

∽ 𝑁 (𝑀(𝑔), (𝜎(𝑔))
2
𝐶(𝑔))  𝑓𝑜𝑟 𝑘 = 1,… , 𝜆 (5-11) 

Then, in the fourth phase, the following formula will update a certain new generation (μ): 
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𝑀(𝑔+1) ←∑𝑤𝑖𝑥𝑖:𝜆
(𝑔+1)

𝜇

𝑖=1

 (5-12) 

∑𝑤𝑖

𝜇

𝑖=1

= 1𝑤𝑖 > 0𝑓𝑜𝑟𝑖 = 1, 2, … , 𝜇 (5-13) 

5.4.1. Models Robustness 

The sensitivity analysis was also carried out to assess the accuracy of prediction ANN models. 
The reciprocal information between the two functional rooms defined the mRMR function. 
Increasing the probability of two vectors being shared leads to increased interaction. The mutual 
information between the two variables x and y is calculated as below, based on the probability 
density 𝑝(𝑥), 𝑝(𝑦), and 𝑝(𝑥, 𝑦).: 

𝐼(𝑥, 𝑦) = ∑∑𝑝(𝑥, 𝑦)log(
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)

𝑥∈𝑋𝑦∈𝑌

 (5-14) 

The function 𝑥𝑖 is picked based on the maximum relevant technique if 𝐼(𝑥𝑖, 𝑡) is higher than 
other features of the objective feature t. Maximum relevance is one of the ways of searching for 
optimum features, as given forth in Equation (5-15), based on the average of all common quantities 
of information between the different 𝑥𝑖 function and goal feature t. 

max𝐷(𝑆, 𝑡),𝐷 =
1

|𝑆|
∑ 𝐼(𝑥𝑖, 𝑡)

𝑥𝑖∈𝑆

 (5-15) 

The attributes that are most pertinent to the target feature are selected according to Equation 
(5-15). The significance of the specified characteristics might also be significant. To decrease 
repetition, Equation uses mutual information between the specified functions (5-16) 

𝑚𝑖𝑛𝑅(𝑆), 𝑅 =
1

|𝑆|2
∑ 𝐼(𝑥𝑗 , 𝑥𝑖)

𝑥𝑗,𝑥𝑖∈𝑆

 (5-16) 

The two Equations (5-15) and (5-16) are merged to form Equation (5-17) to get the best feature 
set based on the mRMR-algorithm. 

max
𝑥𝑗∈𝑋−𝑆𝑚−1

[𝐼(𝑥𝑗 , 𝑐) −
1

𝑚 − 1
∑ 𝐼(𝑥𝑗 , 𝑥𝑖)

𝑥𝑖∈𝑆𝑚−1

] (5-17) 

In which, 𝑚 is the designated features number of the set 𝑆. Also, 𝑋 is the features vector.  
In Figure 5-13, we can find the whole research flow chart. After the data set was supplied, 

the mRMR algorithm prioritized the features. The following equations have been computed at each 
phase of model assessment criteria comprising MAE, MSE and run-time: 

𝑀𝐴𝐸 = 
1

𝑛
∑|𝑇𝑖 − 𝑂𝑖|

𝑛

𝑖=1

 (5-18) 

𝑀𝑆𝐸 = 
1

𝑛
∑(𝑇𝑖 − 𝑂𝑖)

2

𝑛

𝑖=1

 (5-19) 
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 Where, 𝑛 is the number of samples. 𝑇𝑖 and 𝑂𝑖 are the target and model output for the 𝑖-th 
sample, respectively. 

 
Figure 5-13. General research flowchart 

 

Therefore, ANN was utilized in MATLAB software to predict the location of objects based 
on their distance. The main advantage of using ANN in auto-driving cars is eliminating the costly 
LiDAR sensor. As a clear issue, using a LiDAR sensor is costly and high tech equipment. 
Therefore, in the light of growing the ANN applications, prediction algorithms could be used with 
a simple camera to find the location of objects. It should be noted that in the current thesis, only 
the ANN algorithm are presented, discussed and their accuracy was examined. So, in future works, 
a camera could be linked to the presented ANN algorithm which was out of the scope of the 
presented thesis. In the current thesis, three defined algorithms bt MATLAB suggested as high 
accurate tools, Levenberg-Marquardt, Bayesian regularization and Scaled Conjugate were utilized. 
There are many different algorithms in MATLAB software but the previous investigations showed 
that the accuracy and performance of Levenberg-Marquardt, Bayesian regularization, Scaled 
Conjugate were superior to others. In this thesis, 2100 objects location including angle and distance 
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were utilized, 80% of data was utilized for training and 20% of data was used for the test. The 
performed coding for artificial neural network prediction is presented in Appendix V.  
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6.1. Introduction 

This study aims to measure object detection using a LiDAR sensor, UTM-30LX model in 
Politecnico di Turino, Italy. In this chapter, the obtained results are presented and discussed. For 
this aim, presented algorithms and theories in the previous chapter have been followed. Following 
the previous chapter, the obtained results are sorted using the steps below, as shown in Figure 6-
1: 

1- The LiDAR sensor was installed and connected to the computer;  
2- The ROS was utilized to find the location of the object and object detection discussed in 

Chapter 2; 
3- The data was sorted using the LiDAR sensor; 
4- After object detection and finding the distance between the sensor and real object, the 

accuracy of the sensor was evaluated by measuring the exact distance using a tape measure; 
5- The results were converted in ROS and maps including the location and coordinate of 

objects were determined using Gmapping using algorithms discussed in Chapter 3; 
6- The obtained results were then used in MATLAB for developing an artificial neural network 

using algorithms presented in Chapter 4. 

 
Figure 6-1. Overall overview of investigation performed in the current thesis and in this chapter 
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6.2. LiDAR installation 

In the current thesis, a LiDAR sensor, the UTM-30LX model is a highly accurate and 
common sensor, as illustrated in Figure 6-2.  

 
Figure 6-2. Used LiDAR sensor  

The UTM-30LX-EW scans a 270-degree semicircular field using a Laser Source 
(Ţ=905nm) (Figure 6-3). It calculates the distance between objects in its range for each angular 
step. The motion-based technique was utilized to detect objects. Though, in experiments, all sorts 
of moving objects could be measured and present in a scene. In addition, in certain claims (eg 
independent driving), the detection of moving objects and the size of speed by scheming numerous 
pulse beats using standard LiDAR pulse scans are slow and error-prone. Consequently, preceding 
studies aim to discourse these barriers and change a modelled detection-based tracking technique 
for sensing and tracking moving objects in point clouds achieved by an advanced UTM-30LX 
model LiDAR sensor. This sensor can not individually collect three-dimensional spatial data, but 
the comparative speed between moving objects and the sensor in the direction of the stright 
direction. 
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Figure 6-3. Diagram of the scanned area of used UTM-30LX model sensor in this thesis 
 

To begin the data collection, first of all, to collect data, the LiDAR sensor was connected 
to the computer, as shown in Figure 6-4.  

 
Figure 6-4. Used sensor and connection to the computer 

 

The exact connection between the LiDAR sensor and computer is a very sensitive and 
important step. A driver for connecting the scanners is already available in ROS. An interface is 
known as urg_node. Our URG series sensors are supported by our urg_node already in the Robot 
Operating System (ROS). To start using the hokoyou utm LiDAR. First of all its primarily 
packages should be installed on the Ros. The robotic operating system has already dedicated some 
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specific node .called urg_node. For interfacing this scanner. Therefore, a total of six-step were 
carried out as shown in Figure 6-5. 

 
Figure 6-5. LiDAR-computer connection steps 

Furthermore, the commend carried out in each step are defined for connecting the LiDAR 
sensor to the computer, as below:  : 

6.2.1. Installing urg_node 

To start data retrieving by the sensor, we have to urg_node using the next code: 
 
sudo apt-get install ros-${ROS_DISTRO}-urg-node 

6.2.2.  Configuring the Hokuyo 

Make sure that the hokuyo_node will be able to access the Hokuyo laser scanner to configure 
the sensor with urg_node. To provide this connection and configuration, the following code was 
used:  

$ ls -l /dev/ttyACM0 
 

6.2.3. Starting a roscore 

After the connection, we need to open the ROS master for data collection. To make to accurate 
collaboration between the ROS master and data collection packages ROS core was employed using 
the next code: 

$ roscore 



CHAPTER 5 (RESULTS AND DISCUSSION)                                                                                   90 | P a g e  
 

6.2.4. Setting Parameters 

Before we can run the hokuyo_node we need to make sure that we have the correct 
configurations loaded on the parameter server. 

$ rosparam set hokuyo_node/calibrate_time false 

6.2.5. Running the hokuyo_node 

Now, the sensor should be turn on and data collection should be started using the next code: 

$ rosrun hokuyo_node hokuyo_node 

6.2.6. Viewing the data 

To observe that everything is working and data is being published to ROS, the next code was 
utilized: 

$ rosrun rviz rviz -d `rospack find hokuyo_node`/hokuyo_test.vcg 

6.3. Data Collection 

 In this section, an object, located at a 2 m distance from the sensor, was considered and the 
data was sensed using the sensor to control the accuracy of the LiDAR sensor. Figure 6-6 shows 
the provided results for one 270oC rotation cycle of the sensor. In this figure, the centre shows the 
location of the sensor and the red point showed the obtained results. Also, the external circle shows 
the area covered in a rotation phase by the sensor. Therefore, the obtained results were compared 
with the exact location of the obstacle (2m), as illustrated in Figure 6-7.  

 
Figure 6-6. Performance of sensor in measuring the distance 
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In Figure 6-7, the red points show the exact distance between the obstacle and sensor and 
the blue points show the obtained distance between the sensor and obstacle using the sensor. There, 
there is an insignificant difference between the real and obtained results up to 0.017 m. In addition, 
the minimum error distance was obtained at 0.005 m. These results showed that the accuracy of 
the sensor is acceptable and the sensor works well.  

 
Figure 6-7. Comparison between the exact values and those obtained using sensor 

6.4. Sensor accuracy 

In this section, to make sure about the performance of the sensor, the accuracy of the 
obtained results is measured. For this aim, different techniques were utilized including: mean 
squared error (MSE), normalized mean squared error (NMSE), root mean squared error (RMSE), 
mean absolute error (MAE), normalized mean absolute error (NMAE) and mean absolute 
percentage error (MAPE), according to Equations. (6-1) to (6-5):  
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In Equations (6-1) to (6-5), Cki indicates the measured value and kiC  represents the 
estimated value (k = c, t and r as a representative of Cc, Ct and Cr, respectively), n is the number 

of considered data and kC is  the average of the measured values. Also, kC shows  the average of the 
estimated values. The results are provided in Table 6-1. Regarding this table, all used models 
showed the low error between the real distance and those obtained by the sensor. In this among, 
the NMSE showed the highest value by about 1.09884 value for the error.  

Table 5-1. Investigation the accuracy of collected data 
Model MSE RMSE MAE MAPE (%) NMSE (%) 
Results 0.00013186 0.011483031 0.011139998 0.011078292 1.098847537 

 
 Table 6-1 provides the general error between the exact distance and those obtained by using 
the sensor. For a better understanding of the accuracy of the obtained results, a side-by-side 
comparison was carried out between the exact and obtained results. The error distribution of the 
side-by-side comparison was also demonstrated in Figure 6-8. According to Figure 5-5, the error 
between each real and it's corresponding obtained result is also low. The maximum distribution of 
16 was observed with the error ranging between 0.0049 and 0.0055 (or 0.49% and 0.55%) which 
showed the high accuracy of the collected data.   

 
Figure 6-8. Error distribution for side-by-side comparison between the real and obtained results in 

terms of percentage (both frequency and absolute error are with no unit) 
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6.5. Data collection results 

After finding the high accuracy of the used sensor and performed coding in this thesis, the 
data collection was developed for different places and again the accuracy of the results was 
measured. For this purpose, three open-loop experiments were run with the LiDAR sensor was 
driven around different locations on the Politecnico di Turino campus, Italy. The first case was a 
comparatively simple case in which the LiDAR was moved along a straight path in a corridor with 
two desks serving as obstacles at different locations. The desks were placed on the side of the 
sidewalk and corners and the UGV was driven between them. The desk was white and the sidewall 
(map) was grey. In the second case, a larger number of obstacles including a white desk, black 
chair and other laboratory equipment were considered and the LiDAR sensor was driven around 
the lab site. Finally, the third case was the main hall with white walls. In this case study, a large 
brown wood wall was kept vertically with the help of a person in a different location of the hall. 
Then the LiDAR sensor was driven around different locations and the data was sorted. These three 
cases were considered as cases 1 to 3, respectively. The considered cases location is presented in 
Figure 6-9.  

  
(a) 

  



CHAPTER 5 (RESULTS AND DISCUSSION)                                                                                   94 | P a g e  
 

(b) 

  
(c) 

Figure 6-9. Considered cases study in the current thesis a) case 1: corridor, b) case 2: computer lab and 
c) case 3: main hall 

The obtained results are presented in Figure 6-10 for three cases studied. In this figure, the 
measured values by the LiDAR sensor and the error between the exact value obtained using a tape 
measure and LiDAR results are presented. Regarding this figure, the maximum absolute error of 
2% was obtained for object detection using the mentioned LiDAR sensor for objects from different 
distances, near and far from the sensor location. Therefore, the installed LiDAR sensor worked 
well and the obtained results had a high accuracy in terms of distance. To better understanding 
about the error between the detected distance and actual results, the error distribution was 
determined using a Histogram chart, as shown presented in Figure 6-11 for three studies cases.  

 
(a) 
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(b) 

 
(c) 

Figure 6-10. Collected data and the absolute error between the obtained results using LiDAR sensor 
and the exact distance for three cases a) case 1, b) case 2 and c) case 3 

 

As shown in Figure 6-11, the maximum error of 2%, 1.1% and 2% was obtained 
respectively for cases 1, 2 and 3, respectively, which show the high performance of the used 
LiDAR sensor. In addition, there is almost the same error distribution and amplification for case 
1. However, the error distribution in case 3 particularly in the case was more concentrated on the 
left side of the graph which shows that error was slightly increased with increasing the distance 
from the sensor. Because the distance of the detected object in case 1 was slightly higher than 
those detected in cases 2 and 3, relative to the location of the sensor.  It should be mentioned that 
in Figure 6-11, the distribution means the number of errors based on their value show in the 
horizontal axis.  
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(a) (b) 

 
(c) 

Figure 6-11. Comparison between the exact values and those obtained using the sensor for three cases 
a) case 1, b) case 2 and c) case 3 (both frequency and absolute error are with no unit) 

6.6. Mapping 

Up to now in this chapter, the accuracy of the employed LiDAR sensor and the results of 
the detected object were presented and discussed. As mentioned in previous chapters, one of the 
main aims of this thesis is mapping and finding the location of detected objects on the map. As 
discussed in Chapter 3, the SLAM package in ROS was utilized to create maps. In this 
investigation, three cases were studied as maps. The obtained results were used and mapping was 
carried out. The results are presented in Figure 6-12 for three studied cases with and without object 
location.  

According to Figure 6-12, three different simple and complex maps were utilized. In the 
left-hand side figures, only maps were presented with no objects location. According to these 
figures, the presented algorithm and utilized LiDAR sensor could be utilized for mapping 
accurately. Additionally, the sensor was able to detect the corners and deference location shapes 
precisely. Conversely, in the right-hand side figures, the location and coordinate of objects are 
presented. Regarding these figures, not only is the LiDAR sensor able to find the location on 
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objects but also it is able to determine their coordinate in terms of x and y-axis. As a result, the 
presented algorithm in the current thesis and coding (Chapter 3) could be utilized for mapping and 
object detection which helps to find important issues such as pedestrian location around a car 
considering the street route and other places around an auto-driving car.  

 

 
(a) 

  
(b) 

  
(c) 

Figure 6-12. Mapping and object coordinations for studied cases a) case 1, b) case 2 and c) case 3 
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6.7. Artificial neural networks performance 

In the previous section, the LiDAR performance, object detection and mapping results were 
presented and discussed. To replace a LiDAR sensor with a simple camera, an ANN algorithm 
should be utilized to connect the simple camera to the computer for object detection prediction. 
Therefore, in this section, three ANN algorithms are presented and their efficiency and accuracy 
in comparison with the real-time detection by LiDAR sensor are measured. For this aim, three 
Levenberg-Marquardt, Bayesian regularization and Scaled Conjugate algorithms are used, as 
described in Chapter 5 and its coding in Appendix V.  The results of networks performance are 
demonstrated in Figure 6-13. According to Figure 6-13. Levenberg-Marquardt showed the fast-
tracking performance in object detection. This issue helps an auto-driving car to detect objects in 
a very short period which increases a high reaction behaviour for a driver and higher safety. This 
could be associated with Levenberg-Marquardt because this is a newly developed algorithm with 
MATLAB company. There, Levenberg-Marquardt, Bayesian regularization and Scaled Conjugate 
detected the distance of objects using 10, 1000 and 88 iteration which show the high performance 
of Levenberg-Marquardt as a fact object detection, relative to two other algorithms. To better 
understanding the performance of algorithms for object detection, their performance was measured 
as well and the mean square error, as illustrated in Figure 6-14.  

  
(a) (b) 
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(c) 

Figure 6-13. General performance of used algorithm a) Levenberg-Marquardt, b) Bayesian 
regularization and c) Scaled Conjugate 

 According to Figure 6-14, there is a very low mean square error between the distance of 
the detected object using the LiDAR sensor and those predicted by ANNs (< 10−1). In addition, 
the results were converged faster in Levenberg-Marquardt and the almost constant high accuracy 
prediction was stable after 4 iterations which the stable prediction was obtained at 1000 and 81 
iterations for Bayesian regularization and Scaled Conjugate, correspondingly. Additionally, the 
error between the train, validation and test results was insignificant that show the high accuracy 
and efficiency of the proposed ANN algorithms in the current thesis. Besides, the mean square 
error for all steps, train and test, was low, between 4 × 10−2 and 3 × 10−1. In addition, the output 
results for the training layer for used ANNs are presented in Figure 6-15.  

  
(a) (b) 
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(c) 

Figure 6-14. Mean square error in the training step a) Levenberg-Marquardt, b) Bayesian 
regularization and c) Scaled Conjugate 

 According to Figure 6-15, the results of predicted and exact values were presented with 
their error. Regarding these figures, the predicted values were the same as those exact values 
obtained by the LiDAR sensor in terms of angle and distance. In addition, in all processes, training, 
test and validation, all algorithms played an effective role to predict the object distance with the 
highest error of 2%. In this among, the minimum error was achieved when the Bayesian 
regularization technique was employed. This could be attributed to the high number of iterations 
performed by this network. Consequently, the Histogram and distribution of error in all three layers 
are presented in Figure 6-16.  

 
(a) 
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(b) 

 
(c) 

Figure 6-15. Validation and error of trained algorithm a) Levenberg-Marquardt, b) Bayesian 
regularization and c) Scaled Conjugate 

 As shown in Figure 6-16, the distribution error for Levenberg-Marquardt and Scaled 
Conjugate was concentrated to the left side of the Histogram graph which shows the error in these 
networks is slightly greater than those obtained by Bayesian regularization. Therefore, generally, 
by considering the performance of networks for training and validation parts, Bayesian 
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regularization was the lowest error and higher efficiency for predicting the distance of objects from 
the sensor location with error ranging from -0.09297 to 0.06467. 

  
(a) (b) 

 
(c) 

Figure 6-16. Histogram graph of the trained algorithm a) Levenberg-Marquardt, b) Bayesian 
regularization and c) Scaled Conjugate 

 In this step, the regression was developed between the predicted and actual values to find 
the R-value. The closer the R-value is to one, the higher the accuracy of the algorithm in predicting 
the distance of objects from the sensor. It should be noted that the Levenberg-Marquardt is a new 
and complex algorithm developed by MATLAB. Therefore, this network can measure the 
accuracy of the prediction values for three steps of training, test and validation by regression, while 
Bayesian regularization and Scaled Conjugate are only able to develop a regression between 
predicted and exact values for two training and testing steps. According to the obtained results, the 
R-value was obtained by 0.98974, 0.98687, 0.99106 and 0.98917 for training, testing, validation 
and general performance steps when the Levenberg-Marquardt ANN algorithm was employed 
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which shows the accuracy and efficiency of this network for object detection. Additionally, using 
the Bayesian regularization ANN, the R-value for steps of training, testing and all results 
performance phases were obtained by 0.99843, 0.99726 and 0.99821, respectively. Therefore, by 
comparison between Levenberg-Marquardt and Bayesian regularization networks, it was found 
that the performance of Bayesian regularization for object detection prediction was superior. 
Conversely, when Scaled Conjugate was utilized, the R-value for training, testing and all results 
performance steps were obtained correspondingly by 0.9715, 0.98554 and 0.9706 which also 
indicates the accurateness and productivity of this network. Up to now, the concentration of the 
presented results was on the accuracy of training performance to find an algorithm for prediction. 
Right now, the used algorithm predicts the new values based on their trained algorithm and the 
obtained results are compared with the new data set to show the ability of used networks for future 
predictions. Therefore, the error of prediction and a new set of testing results (20% of the rest of 
the whole results) are presented in Figure 6-17.  

 
(a) 
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(b) 

 
(c) 

Figure 6-17. Accuracy and R-value of each algorithm a) Levenberg-Marquardt, b) Bayesian 
regularization and c) Scaled Conjugate 
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According to Figure 6-18, there is no significant difference between the error distribution 
of three used ANNs for the new data set testing. However, the higher concentration for Bayesian 
regularization ranging from -0.02926 to 0.06713 shows the performance of this network still is 
superior for the future predictions while the maximum error distribution was ranging from -0.1337 
to 0.3299 for Levenberg-Marquardt and ranging from -0.1787 to 0.284 for Scaled Conjugate. After 
finding the distribution of the error, the fitting curve of a new set of testing results is presented in 
Figure 6-19.  

  
(a) (b) 

 
(c) 

Figure 6-18. Histogram graph of the trained algorithm for the prediction a) Levenberg-Marquardt, b) 
Bayesian regularization and c) Scaled Conjugate 

 As seen from Figure 6-19, the results of predicted and exact values for the new testing set 
of data were presented with their error. Regarding these figures, the predicted values were the same 
as those exact values obtained by the LiDAR sensor in terms of angle and distance for the new set 
of results. In addition, in the testing step, all algorithms played an effective role to predict the 
object distance with the highest error of 2%. In this among, the minimum error was achieved when 
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the Bayesian regularization technique was employed. This could be attributed to a high number of 
iterations performed by this network. Finally, a regression curve fitting was developed between 
the predicted and detected results for a new set of data to find an R-value. The results are presented 
in Figure 6-20.  

 
(a) 

 
(b) 
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(c) 

Figure 6-19. Prediction value and error of predicted a) Levenberg-Marquardt, b) Bayesian 
regularization and c) Scaled Conjugate 

 According to Figure 6-20, the obtained R-value after a curve fitting between the new set of 
detected results and those predicted by ANNs based on their trained algorithm was 0.98824, 
0.99299 and 0.98738 for Levenberg-Marquardt, Bayesian regularization and Scaled Conjugate 
ANNs. These results denote that the used algorithms with high accuracy predict the distance of 
objects from a camera with no need to use of LiDAR sensor. In this among, Bayesian regularization 
showed the highest efficiency and accuracy.  

  
(a) (b) 
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(c) 

Figure 6-20. Correlation between the predicted and exact values using a) Levenberg-Marquardt, b) 
Bayesian regularization and c) Scaled Conjugate 
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7.1. Conclusion  

In this study, the structure, use and performance of the LiDAR sensor have been identified. 
Then, to identify the accuracy of this sensor, the sensor is installed on a ligament and then the 
position of objects with different brightness percentages and different sizes are identified. Then, 
the accuracy of the LiDAR sensor was evaluated by measuring the exact distance of objects from 
the sensor location. Thus, by programming at the top, the data collected by the sensor is prepared. 
In the next step, by accurately measuring the detected distances, the accuracy of the sensor is 
determined. Consequently, by collecting all the data, mapping was performed for three different 
cases using the SLAM package in ROS and objects location. Finally, the artificial neural network 
(ANN) was used to propose a new algorithm for object detection and mapping instead of using 
LiDAR in future studies which helps to reduce costs and time-consuming. According to obtained 
results, the following conclusion could be drawn: 

1- The accuracy of the used sensor was assessed by comparing the exact distances obtained 
with the use of a tape measure tool. The results showed that the LiDAR sensor, UTM-30LX 
model, could be accurately utilized for object detection with a low error of 2% in comparison 
with the exact distance value between the location of the object and sensor. To show the 
accuracy obtained results, the obtained results of the LiDAR sensor was compared with the 
exact distance. In this, the modified SSD algorithm in ROS that was used in the current thesis 
played a crucial role to detect the angle and coordinate of an object from the coordinate of 
the LiDAR sensor. The obtained low error confirm the accuracy of the SSD algorithm for 
object detection. 

2- SLAM packages were used for mapping in this thesis. The comparison between the obtained 
maps and the cases study, and also the exact location of the objects and those provided on 
the maps showed that the used SLAM packages in ROS are a very useful tool for mapping. 
Therefore, the exact shape of maps including the corners, curve shapes and broken surfaces 
could be found. In addition, the coordinates and location of objects could be found on maps. 
This allows finding the location of objects around the car as well as the routs and space;  

3- One of the main aims of this study was to develop a prediction algorithm to find a chance to 
replace the costly LiDAR sensor with a simple camera. To develop an algorithm, the 
collected data from the LiDAR sensor was employed. Therefore, the proposed work 
increases the range of the artificial neural network from a single item to a full range of objects 
detected at a different distance from the vehicle so that the vehicle may plan its route 
accordingly. The artificial neural network is applied in an interaction-enhancing multi-
vehicle environment. More complicated items than artificial neural networks are detected in 
the algorithm as well. Our effort has enlarged the scope of the artificial neural network.  
Much has to be done though to ensure that the UGV is ready to be used in reality. The 
detection of obstacles can be increased such that the UGV can additionally detect and take 
action on any obstacles right before them. The UGV can also be done to scan its environment 
to recognize any obstacles that may arise during its selected route; 
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4- The low error obtained with the prediction artificial neural networks in comparison with 
those values achieved using a LiDAR sensor showed that the artificial neural network 
techniques are very useful tools for object detection by prediction instead of using LiDAR 
sensors which is costly equipment. Therefore, using ANNs, a simple camera could be 
replaced by a LiDAR sensor; 

5- In the current thesis, three ANN techniques were utilized, Levenberg-Marquardt, Bayesian 
regularization and Scaled Conjugate. According to the obtained results, Levenberg-
Marquardt showed a fast-tracking performance in object detection. There, Levenberg-
Marquardt, Bayesian regularization and Scaled Conjugate detected the distance of objects 
using 10, 1000 and 88 iteration which show the high performance of Levenberg-Marquardt 
as a fact object detection, relative to two other algorithms. Therefore, the Levenberg-
Marquardt network can detect the distance and angle of objects around a car very fast. 
Therefore, the results were converged faster in Levenberg-Marquardt and the almost constant 
high accuracy prediction was stable after 4 iterations which the stable predicted was obtained 
at 1000 and 81 iterations for Bayesian regularization and Scaled Conjugate, respectively with 
the error of 1 × 10−1, 4 × 10−2 and 3 × 10−1;  

6- Conversely, by comparison between Levenberg-Marquardt and Bayesian regularization 
networks, it was found that the performance of Bayesian regularization for object detection 
prediction was superior. Conversely, when Scaled Conjugate was utilized, the R-value for 
training, testing and all results performance steps were obtained correspondingly by 0.9715, 
0.98554 and 0.9706 which also indicates the accurateness and productivity of this network. 
Therefore, the accuracy of the Bayesian regularization network in terms of object detection 
was better than Levenberg-Marquardt and Scaled Conjugate;  

 

7.2. Suggestion for future studies 

According to the obtained results and performed evaluations in this thesis, the following 
suggestions are recommended for further work in the same area by future investigations: 

1- A simple camera could be connected to the proposed ANN algorithms instead of using a 
LiDAR sensor. After the connection to the simple camera, the accuracy of  the proposed 
networks should be evaluated; 

2- It is recommended to perform the same procedure to find the accuracy of the used 
methodology in this thesis when a simple camera and LiDAR sensor are mounted o the rover; 

3- It is also recommended to test other mapping and ANN techniques to find the highest 
accurate and efficient way for object detection during a low reaction time 
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Appendix I 

 

# Single scan from a planar laser range-finder 
 

Header  
# stamp: The acquisition time of the first ray in the scan. 
# frame_id: The laser is assumed to spin around the positive Z axis 
# (counterclockwise, if Z is up) with the zero angle forward along the x axis 
 
float32 angle_min # start angle of the scan [rad] 
float32 angle_max # end angle of the scan [rad] 
float32 angle_increment # angular distance between measurements [rad] 
 
float32 time_increment # time between measurements [seconds] - if your scanner 
# is moving, this will be used in interpolating position of 3d points 
float32 scan_time # time between scans [seconds] 
 
float32 range_min # minimum range value [m] 
float32 range_max # maximum range value [m] 
 
float32[] ranges # range data [m] (Note: values < range_min or > range_max should 
be discarded) 
float32[] intensities # intensity data [device-specific units]. If your 

# device does not provide intensities, please leave the array empty. 
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Appendix II 

 

header: 
      seq: 8933 
      stamp: 
          secs: 1623766199 
          nsecs: 464529877 
       frame_id: “laser” 
angle_min: -1.57079637051 
angle_max: 1.57079637051 
angle_increment: 0.0043632309619 
time_increment: 1.73611151695e-05 
scan_time: 0.0250000003725 
range_min: 0.0230000000447 
range_max:60 
ranges: [12.230999946594238, 
12.230999946586,12.236000061035156,12.2419996261596,12.253000259399414, 
12.253999710083008] 

In which, the basic extracted information is:  
 
Angle_min : -1.57  
Angle_max : 1.57  
Angle_increment: 0.0043  
Range_min: 0.02 
Range max : 60. 
Ranges: array of ranges starting from angle_min to angle_max, with a step of 
angle_increment 
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Appendix III 

 

Header                         # header for time/frame information 
string ns                             # Namespace to place this object in... used in conjunction 

with id to create a unique name for the object 
int32 id   # object ID useful in conjunction with the namespace for 

manipulating and deleting the object later 
int32 type # Type of object 
int32 action   # 0 add/modify an object, 1 (deprecated), 2 deletes an 

object, 3 deletes all objects 
geometry_msgs/Pose pose # Pose of the object 
geometry_msgs/Vector3 scale # Scale of the object 1,1,1 means default (usually 1 meter 

square) 
std_msgs/ColorRGBA color # Color [0.0-1.0] 
duration lifetime # How long the object should last before being 

automatically deleted.  0 means forever 
bool frame_locked # If this marker should be frame-locked, i.e. retransformed 

into its frame every timestep 
geometry_msgs/Point[] points  
std_msgs/ColorRGBA[] colors  
string text # Text displayed in rvis 
The set of cluster information is saved in a list and published as 
Visualisation_msgs/markerArray under the /obstacle_list topic 
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Appendix IV 

 

<launch> 
    <param name="use_sim_time" value="true"/> 
    <node pkg="gmapping" type="slam_gmapping" name="slam_gmapping" output="screen"> 
      <param name="map_update_interval" value="5.0"/> 
 
      <param name="maxUrange" value="16.0"/> 
      <param name="sigma" value="0.05"/> 
      <param name="odom_frame" value="laser"/> 
      <param name="base_frame" value="laser"/> 
      <param name="kernelSize" value="1"/> 
      <param name="lstep" value="0.05"/> 
      <param name="astep" value="0.05"/> 
      <param name="iterations" value="5"/> 
      <param name="lsigma" value="0.075"/> 
      <param name="ogain" value="3.0"/> 
      <param name="lskip" value="0"/> 
      <param name="srr" value="0.1"/> 
      <param name="srt" value="0.2"/> 
      <param name="str" value="0.1"/> 
      <param name="stt" value="0.2"/> 
      <param name="linearUpdate" value="1.0"/> 
      <param name="angularUpdate" value="0.5"/> 
      <param name="temporalUpdate" value="3.0"/> 
      <param name="resampleThreshold" value="0.5"/> 
      <param name="particles" value="30"/> 
      <param name="xmin" value="-50.0"/> 
      <param name="ymin" value="-50.0"/> 
      <param name="xmax" value="50.0"/> 
      <param name="ymax" value="50.0"/> 
      <param name="delta" value="0.05"/> 
      <param name="llsamplerange" value="0.01"/> 
      <param name="llsamplestep" value="0.01"/> 
      <param name="lasamplerange" value="0.005"/> 
      <param name="lasamplestep" value="0.005"/> 
    </node> 
</launch> 
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Appendix V 

 

clc 
clear all 
close all 
 
% CHOOSE which training you'd like to use 
% Enter 1 for Levenberg-Marquardt, 2 for Bayesian regularization, 3 for Scaled Conjugate 
Gradient 
val  = 1 ; 
 
% Data Loading 
load data 
x= data(:,1)'; 
t= data(:,2)'; 
 
size(x) 
size(t) 
 
setdemorandstream(10008) 
 
% Now divide data randomly 
net.divideParam.trainRatio = 60/100; 
net.divideParam.valRatio = 20/100; 
net.divideParam.testRatio = 20/100; 
 
% Create a Fitting Neural Network 
switch val 
    case 1 
 
    %PART 1, Levenberg Marquardt 
 
trainFcn = 'trainlm'; 
hiddenLayerSize = 20; 
net = fitnet(hiddenLayerSize, trainFcn); 
  
view(net) 
 
%Now, Train the Network 
[net,tr] = train(net,x,t); 
nntraintool 
 
figure(1) 
plotperform(tr) 
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y = net(x); 
e = t-y; 
 
trainX = x(:,tr.trainInd); 
testX = x(:,tr.testInd); 
validX = x(:,tr.valInd); 
 
trainT = t(:,tr.trainInd); 
testT = t(:,tr.testInd); 
validT = t(:,tr.valInd); 
 
netTrain = net(trainX); 
netTest = net(testX); 
netValid = net(validX); 
netAll = net(x); 
 
figure(2) 
plotfit(net,trainX,trainT,'Train Data',testX,testT,'Test Data',validX,validT,'Validation Data') 
 
figure(3) 
ploterrhist(e,'bins',30) 
 
figure(4) 
plotregression(trainT,netTrain,'Train Data',testT,netTest,'Test 
Data',validT,netValid,'Validation Data',t,netAll,'All Data') 
 
    case 2 
 
    %PART 2, Bayesian Regulation 
     
trainFcn = 'trainbr'; 
hiddenLayerSize = 20; 
net = fitnet(hiddenLayerSize, trainFcn); 
  
%Now, Train the Network 
[net,tr] = train(net,x,t); 
nntraintool 
 
figure(5) 
plotperform(tr) 
 
y = net(x); 
e = t-y; 
 
trainX = x(:,tr.trainInd); 
testX = x(:,tr.testInd); 
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trainT = t(:,tr.trainInd); 
testT = t(:,tr.testInd); 
 
netTrain = net(trainX); 
netTest = net(testX); 
 
netAll = net(x); 
 
figure(6) 
plotfit(net,trainX,trainT,'Train Data',testX,testT,'Test Data') 
 
figure(7) 
ploterrhist(e,'bins',30) 
 
figure(8) 
plotregression(trainT,netTrain,'Train Data',testT,netTest,'Test Data',t,netAll,'All Data') 
 
    case 3 
 
    %PART 3, Scaled Conjugate Gradient 
trainFcn = 'trainscg'; 
hiddenLayerSize = 20; 
net = fitnet(hiddenLayerSize, trainFcn); 
  
%Now, Train the Network 
[net,tr] = train(net,x,t); 
nntraintool 
 
figure(9) 
plotperform(tr) 
 
y = net(x); 
e = t-y; 
 
trainX = x(:,tr.trainInd); 
testX = x(:,tr.testInd); 
 
trainT = t(:,tr.trainInd); 
testT = t(:,tr.testInd); 
 
netTrain = net(trainX); 
netTest = net(testX); 
 
netAll = net(x); 
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figure(10) 
plotfit(net,trainX,trainT,'Train Data',testX,testT,'Test Data') 
 
figure(11) 
ploterrhist(e,'bins',30) 
 
figure(12) 
plotregression(trainT,netTrain,'Train Data',testT,netTest,'Test Data',t,netAll,'All Data') 
 
end 
 
%Simulation 
%Uncomment below and provide your arbitrary data between the brackets 
 
load datasim; 
xtry=datasim(:,1)'; 
ytry=datasim(:,2)'; 
ynet=net(xtry); 
esim=ynet-ytry; 
figure(13) 
ploterrhist(esim,'bins',30) 
figure(14) 
plotfit(net,xtry,ytry,'Simulation Data') 
figure(15) 
plotregression(ytry,ynet,'Simulation regression') 
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