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Abstract

Today the volume of data generated is constantly increasing. Each year it grows by
27%, reaching 94 Zettabytes in 2021, according to the International Data Group.
As this amount increases, the bottleneck due to the transfer of data from where it
is stored to where it is processed is increasingly evident. One of the possibilities to
overcome this obstacle is Computational Storage, able to modify the old paradigm
"Data move to process" in the new "Move process near data".
The following work describes the birth of a Computational Storage (Fixed Com-
putational Storage Service), based on the NVMe protocol, built on FPGA, able
to lighten the computational weight of the Host by exploiting the peer-to-peer
capabilities of PCI-Express. First of all, the realization of an NVMe Controller
is described, based on NVM Express Base Specification version 1.4, capable of
managing communication and data transfer between Host and storage device. Once
the software was tested via QEMU, it was then transferred to the ARM of an
FPGA, and the performance was compared with a real storage device (Samsung’s
SmartSSD). It was subsequently transformed into computational storage following
the draft protocol for such devices presented by SNIA, using a CMB as a buffer for
data processing. Through the SPDK software, it was possible to test the correct
functioning of the device and evaluate its performance.
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Chapter 1

Smart Storage

In today’s world, the amount of data collected increases with each passing day.
According to the International Data Group (IDG), the volume of data generated
each year grows by 27% [2]. In 2021, the volume of data created, acquired, copied
and consumed around the world was estimated at 94 Zettabytes, and it is bound to
double by 2024 [3]. Data is constantly transferred between storage and processing
units and this inevitably favors the birth of bottlenecks. There is both a cost and
a time factor in moving data from where it is stored to where it is processed. The
problem becomes more and more consistent as the volume of data increases.

Computational storage presents itself as a possible solution to the problem,
modifying the old "Data move to process" paradigm with the new "Move process
near data"(Figure 1.1). The creation of a smart storage, capable of processing as
well as archiving, would allow to reduce the amount of data sent to the processing
unit and to lighten its computational load. By bringing the processing power of
processors to traditional storage architectures, it allows an increase in processing
speed, thus allowing accelerated analysis and energy savings [4].

Several companies are proceeding towards computational storage with different
approaches, from integrating the processing unit into the storage unit, to accelerators
that contain no storage space. Most of them take advantage of NVM-Express SSDs
[4]. To allow interoperable and vendor-independent implementations, the need for
a standard arises, capable of delineating architectural models for computational
archiving. In 2018, SNIA (Storage Networking Industry Association), brought
together a technical working group (TWG) made up of representatives of large
organizations (ARM, DellEMC, Eideticom, IBM, Intel, NetApp, NetINT, NGD
Systems, Samsung, ScaleFlux, Seagate) with the purpose of creating the standard,
which is still being worked on (at the moment, a draft, version 0.5, has been
published)[5]. TWG aims to achieve a full version 1.0 and then pass it to an
existing standard organization for future management. One of the most accredited
candidates is NVM-Express organization, given its widespread use in computational
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Smart Storage

Figure 1.1: Comparison of paradigms: "Data move to process" vs "Move process
near data".

storage as the storage interface [4].
An in-depth description and analysis of the NVMe protocol is therefore necessary,

as it is a fundamental part of computational storage and of the work described in
the following chapters (chapter 2 and chapter 3).

1.1 NVM Express
The NVMe standard is a transfer protocol designed for solid state memories able to
allow communication between host and SSD through NVMe controller. A controller
is a logical or physical entity capable of handling communication between two
devices. SSDs originally used the Serial AT Attachment (SATA) protocol, which
was designed primarily for interfacing with mechanical hard disk drives (HDDs).
But with the increase in performance, already in the late 2000s, SSDs began to be
held back by the transmission speed of SATA, making it necessary to create a new
standard [6]. Version 1.0 was released in 2011, the result of the work of the NVM
Express Workgroup, made up of more than ninety companies. In 2014 the working
group was incorporated into the NVM Express, the consortium responsible for the
specification and development of the standard, which today has over one hundred
member companies[7]. The benefits of NVMe are numerous:

• The maximum IOPS (Input/output operations per second) for NVMe reaches
1,000,000, against a maximum of 200,000 IOPS for SATA [8].

• Much higher bandwidths are supported thanks to the use of PCI-express links

2



1.1 – NVM Express

[8]. Suffice to say that in 2019 PCI-Express Gen5 x4 was introduced capable
of reaching 16 GB/s [9].

• End-to-end latency of less than 10 microseconds[8].

• The queues in NVMe technology can have more than 64’000 commands per
queue, against 32 of the Sata protocol [8]. As shown in figure 1.2, each core
can have its own queues, allowing individual threads to have a dedicated queue.
Parallel execution is therefore possible, requiring no I/O block.

• The MSI-X interrupt system is supported. (Appendix A.4).

• NVMe has a simple instruction set, which allows you to use less than half of
the instructions sent to the CPU than SATA [8].

Figure 1.2: Host-Controller Interface. Each core can have one or more I/O queues.
Admin queues are unique.

An analysis by a team of researchers from the University of Southern California,
San Jose State University and Samsung [10] compared SATA and NVMe. Using a
software for the generation of I/O traffic (fio), they generated random reads, 1
request per second, to evaluate the performance of the two protocols. Figure 1.3
shows a breakdown of the time elapsed by each request across different sections of
the I/O software stack. The software overhead for SSD with SATA represents 28%
of the overall access latency. In the case of NVMe it is reduced to only 7.3%.

3



Smart Storage

Figure 1.3: "Break-down of the time spent in different sections of the I/O software
stack" [10].

1.1.1 NVMe Protocol

The version taken as a reference is the 1.4. [1]. This standard is defined for
both over PCI-express and over Fabrics controllers. The first NVMe over Fabrics
specification was released in 2016, with the aim of extending NVMe technology to
Ethrenet, Fiber Channel, Infiniband and RDMA transports, as well as PCI-Express
[11]. NVMe-oF enables the creation of a very high performance storage network
by allowing flash devices to be shared between servers [12]. For the rest of the
dissertation, the reference will be exclusively to the first case, which is the one that
will be used and described in the following chapters (chapter 2 and chapter 3).

The purpose of the protocol is the definition of interface registers between host
and NVMe controller, the commands that must be supported and the optional
ones. The sending of commands is based on the use of circular queues pairs. Each
pair is composed by a submission queue and a completion queue. A queue consists
of a set of elements of a fixed size. As shown in the figure 1.4, a queue is made
up of a Tail pointing to the next free space, and a Head pointing to the next item
to be extracted, unless the queue is empty (Head = Tail). A queue is considered
full when Head = Tail + 1. Submission queues are used to send messages from
the host to the controller. Conversely, completion queues send a message from the
controller to the host once the command has completed. The same completion
can be associated with multiple submissions, but a submission can have only one
associated completion queue. Usually, the queues are allocated on the host memory.

Communication between host and controller is signaled through a Doorbells
system. A doorbell is assigned to each queue. Submission doorbells contain the
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1.1 – NVM Express

Figure 1.4: Physical view in memory and Logical view for a circular queue.

current Tail value of the corresponding queue. The doorbells of completion, on the
other hand, contain the value of the Head of the corresponding queue.

Figure 1.5 shows the command processing cycle:

1. The host inserts the new command, or commands, into the submission queue,
in the first available slot, indicated by the Tail;

2. The host updates the Tail value contained within the Doorbell of the corre-
sponding submission queue. This signals to the controller that there are new
command(s) in the queue;

3. The controller reads the command(s) in the corresponding queue;

4. The controller executes the command and prepares the future entry for inser-
tion in the completion queue;

5. The controller writes the completion queue entry, or the completion queue
entries, starting from the memory location pointed to by the Head indicated in

5
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the doorbell of the corresponding completion queue. In order to distinguish the
new advertisements from the previous ones, a field called PhaseTag (Appendix
A.1), is complemented;

6. The controller, if specified in the settings, generates an interrupt;

7. The host consumes the new entries inserted in the corresponding completion
queue, as long as the PhaseTag remains consistent with the previous one;

8. The host updates the Doorbell Head value of the corresponding completion
queue;

Figure 1.5: Command Processing.

The host can select the arbitration mechanism for selecting the submission
queue to be served. All controllers are capable of supporting the Round Robin
mechanism. Optionally, the controller may be able to support "Weighted Round
Robin with Urgent Priority Class" and/or a vendor specific policy (Appendix A.2).
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1.1 – NVM Express

Submission Queue Entry

Figure 1.6: Generic Submission Queue Entry.

Each submission queue entry, or submission queue command, is 64 bytes in size,
16 DWs. DWs for a generic submissison queue are defined in Figure 1.6.

• Opcode. Opcode of the command to be executed;

• Fuse operation. Used to merge two commands together. This detail is beyond
the scope of this document;

• P. Specifies which method will be used to indicate the addresses for data
transfer, whether the Physical Region Page (PRP) (Appendix A.3), or the
Scatter Gather List (SGL). In this document, only the first case will be dealt
with;

• Command identifier. This field, combined with the submission queue identifier,
creates a unique identifier for the command;

• Namespace identifier. Namespace on which the command operates;

7
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• Metadata Pointer. This detail is beyond the scope of this document;

• PRP Entry 1. First PRP entry;

• PRP Entry 2. Second PRP entry, or pointer to a list of PRPs;

Fields not specified are specific fields for individual commands.

Completion Queue Entry

Figure 1.7: Generic Completion Queue Entry.

Each completion queue entry, or completion queue command, is 16 Bytes in
size, 4 DWs. DWs for a generic completion queue are defined in Figure 1.6 .

• SQ Identifier. Identifies the submission queue from which the command comes.
Fundamental when multiple submission queues refer to the same completion
queue;

• SQ Head Pointer. Reports the current value of the submission queue head of
the queue specified in SQ Identifier;

• Status field. Indicates the status of the command executed;

• P. Phase Tag to indicate that this completion queue entry is new;

• Command Identifier. Coincides with the command identifier invited by the
host in the corresponding submission queue. Together with the SQ Identifier
they form a unique identifier;

DW0 and DW1 are specific fields for individual commands.
Two different types of queues are defined:

• Admin Queues;

• I/O Queues;

8



1.1 – NVM Express

Admin queues are queues for managing administrative commands. These com-
mands deal with the management of queues and single I/O commands, with the
configuration of the controller and with reporting any errors, as well as with the
management of the firmware(Optional commands). Each NVMe controller has one
and only one admin submission queue (Figure 1.2), to which an admin completion
queue is associated. They can contain up to 4K elements. The admin command
set is shown in table 1.1.

Command Required Category
or optional

Create I/O Submission Queue Required Queue Management
Delete I/O Submission Queue Required Queue Management
Create I/O Completion Queue Required Queue Management
Delete I/O Completion Queue Required Queue Management

Identify Required Configuration
Get Features Required Configuration
Set Features Required Configuration
Get Log Page Required Status Reporting

Asyncronous Event Request Required Status Reporting
Abort Required Abort Command

Firmware Image Download Optional Firmware Management
Firmware Activate Optional Firmware Management

I/O Command Set Specific Commands Optional I/O Command Set Specific
Vendor Specific Commands Optional Vendor Specific

Table 1.1: Admin Command Set.

I/O queues are queues used by the host to send and receive commands for
execution. It is possible to have up to 65,535 I/O queues and 65,535 commands for
each queue. The I/O command set is shown in table 1.2.

Some commands are optional. The NVMe controller communicates supported
commands to the host via the admin identify command.

The control register is located in Bar0 and Bar1 of the PCIe. These interface
registers exchange pre-installation and control information between the host and
the NVMe controller, which is required for device configuration. Table 1.3 describes
the register map for the controller.
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Command Required Category
or optional

Read Required Required Data Commands
Write Required Required Data Commands
Flush Required Required Data Commands

Write Uncorrectable Optional Optional Data Commands
Write Zeros Optional Optional Data Commands
Compare Optional Optional Data Commands

Dataset Management Optional Data Hints
Reservation Acquire Optional Reservations Commands
Reservation Register Optional Reservations Commands
Reservation Release Optional Reservations Commands
Reservation Report Optional Reservations Commands

Vendor Specific Commands Optional Vendor Specific

Table 1.2: I/O Command Set.

Controller initializzation

Now that all the elements have been introduced, it is possible to describe the steps
required for the Host to initialize an NVMe controller:

1. Set up the PCI-express registers.

2. Configure the Admin queues, appropriately setting the Admin Submission
Queue Base Address (ASQ), the Admin Completion Queue Base Address
(ACQ) and the Admin Queue Attributes (AQA) within Bar0. In this way the
controller will be able to receive administration commands through the newly
created queues.

3. Through information written by the NVMe controller in Controller Capa-
bilities (Cap), the host is aware of the supported arbitration mechanisms
and memory page sizes. Therefore, it set the Controller Configuration (CC)
register appropriately.

4. Enable the controller via CC.En.

5. Wait for the NVMe controller to finish its internal initialization, signaled by
the RDY bit in the CSTS register.

10
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6. Send two admin identify commands on the previously created admin queue,
to determine the controller configuration (Identify - Controller data Structure)
and the namespace configuration (Identify - Namespace data Structure).

7. Send an admin Set Feature command to determine the number of queues
supported by the NVMe controller.

8. Configure the interrupt registers.

9. Create the completion queues first and then the submission queues. It is
therefore now possible to send I/O commands via the newly created queues
going to modify the doorbell values residing in bar0.

1.1.2 OpenExpress
The work that most allowed us to understand the behavior and structure of an NVMe
controller, and inspired the work described in the next chapters was OpenExpress,
created by Dr. Myoungsoo Jung (KAIST) who kindly shared the project code with
us. In the article "OpenExpress: Fully Automated Hardware-Based Open Search
Framework for Fast NVMe Devices of the Future" [13] introduces OpenExpress,
an NVMe controller built on FPGAs. It uses a Microblaze CPU as a control unit.
The processing path of an NVMe command is completely managed in Hardware.
It offers a maximum bandwidth of around 7GB/s without a silicon fabrication. It
is suitable for high-speed devices such as magnetoresistive memory (MRAM) and
phase change memory (PRAM), in which firmware-based NVMe controllers are
not sufficient as they are for Flash memories. The device consists of 3 modules, as
shown in figure 1.8:

• Queue dispatching module: it handles the receptions in the submission queues
when a value in the doorbells is changed. it fetches submission queue entries
from host memory via PCI-Express and decodes the command.

• Data transferring module: it takes care of the actual execution of the command.
If required, perform data transfer via DMA between host memory and back-end
memory.

• Completion handling module: it is responsible for adding the entry to the
completion queue once the command has been executed. It also takes care of
sending the interrupt to signal a new queue entry to the Host.

This work was a great inspiration for the realization of the controller described
in chapter 2. The division into modules was very useful to make the work more
understandable and orderly. The project is open source. It is not supplied entirely,
but only the main components. The purpose of the works was not the same, but
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the possibility of understanding its structure was of great help. Furthermore, the
excellent use of the context table to catalog the characteristics of each queue has
been resumed.

Figure 1.8: "OpenExpress Overview" [13].

1.2 Computational Storage
It is now possible to move on to an analysis of the computational storage protocol.
As mentioned, the SNIA document is work-in-progress[5]. However, it provides
important definitions and possible architectures that allow the evaluation of the
advantages and possible implementations.

1.2.1 Computational Storage Devices
Computational storage devices are architectures that, combined with a storage
system, are able to lighten the work done by the CPU and reduce the amount of
data exchanged between the processing unit and the storage unit. Figure 1.9 shows
different computational storage devices:

a) Computational Storage Processor (CSP). Component that provides the com-
pute service, without providing the storage service. It is associated with a
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traditional storage device. Accelerators and storage are on the same PCIe
subsystem. In this way the scalability of the two components is independent,
Plugs into standard slots and it is possible to exploit the PCIe peer-to-peer to
obtain high throughput and low latency [14].

b) Computational Storage Drive (CSD). Devices capable of providing both com-
pute and storage services. Besides the ease of use, it allows to obtain an
optimized BW between accelerator and storage [14].

c) Computational Storage Array (CSA). Collection of computational storage
devices, which can be both CSP and CSD. In this way it is possible to exploit
the benefits of the two architectures [14].

Figure 1.9: Generic Completion Queue Entry.

These devices, regardless of the type, may need to be programmed and therefore
called Programmable Computational Storage Service (PCSS). For example, an
image of an operating system could be loaded into the device, which can then be
programmed according to the user’s needs. Alternatively, the device can be a Fixed
Computational Storage Service (FCSS). In this second case, no programming is
required, the device once configured is ready to be used. Application examples are
cryptography, compression or implementation of ordinary expressions.
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1.2.2 Theory of Operation
Computational Storage services initialization goes through 3 steps, independent of
the type of device, necessary for device identification: discovery, configuration and
use.

• Discovery: The device must primarily be discovered. The host must send
an acknowledgment command and receive information about the device in
response. The controller must specify whether it is a Fixed or programmable
device and which functions it can support, thus allowing the Host to adequately
prepare the next instructions to be executed.

• Configure. The host now has the information for configuring the device. At
this stage the PCSS must be programmed. Instead, FCSSs must receive
instructions about the functions to be performed.

• Usage. The device is now configured. The host can continue sending the
commands.

1.2.3 Vendors
Several companies have started computational storage projects, both CSD and
CSP. Newport Platform is a Computational storage device developed by NGD
systems. It is an ASIC that incorporates the functions of an SSD, which can reach
sizes up to 64 TB, with a quad-core ARM Cortex-A53 CPU for data processing,
making it a PCSS (Programmable Computational Storage Service). The device
has the advantage that it can also be used as a simple high-capacity storage
device[15]. Other projects are instead based on the use of FPGAs, such as those
of ScaleFlux and Samsung. The aim is to exploit hardware reprogrammability to
accelerate specific functions. ScaleFlux offers CSD 2000 [16], which uses an FPGA
from Xilinx mainly used for in-line data compression and decompression, erasure
coding and database analytic functions. Samsung made SmartSSD [17], for video
encoding, database acceleration, and machine learning, as well as for compression
and decompression. Also in this case the FPGA is Xilinx and the SSD capacity
reaches up to 8TB.

The World’s first NVMe CSP is from Editicom [18], with NoLoad CSP. It
contains an FPGA and DRAM-based processor, but retrieve and process data
stored elsewhere on SSD using NVM-Express and the peer-to-peer capability of
PCI-Express. The purposes are the same as previously seen for the other devices,
with a particular emphasis on cryptography. It can also be used simply for storage
management. Nyriad [19] CSP takes a different approach, using GPUs for storage
and processing management.
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1.3 Document organizzation
In addition to the first introductory chapter just described, the work is made up of
three other chapters. The second chapter is dedicated to the presentation of the
NVMe Controller created. The first Controller prototype was created in software,
using the C language. A program called Test_Host, written ad hoc, and the QEMU
machine emulator were used to verify the functionality and actual operation of
the NVMe Controller, and to carry out appropriate optimizations. Subsequently,
it was adapted for use on FPGAs, orienting itself in a first phase towards a SW
implementation, single thread on ARM with the minimum in HW. Later some parts
were transformed into hardware to allow an improvement in performance in data
transfer. The chapter concludes with the performance evaluation of all the parts
previously described. The third chapter discusses the transformation of the device
into a Computational Storage Processor (Fixed Computational Storage Service),
able to exploit the peer-to-peer capacity of PCI-Express for the implementation of
data processing. The last chapter is dedicated to conclusions. Some optimizations
and improvements that can be made to the NVMe Controller and Computational
Storage are first described, and then the chapter is concluded with the presentation
of some possible applications.

15



Smart Storage

Start End Symbol Description
0h 7h CAP Controller Capabilities
8h Bh VS Version
Ch Fh INTMS Interrupt Mask Set
10h 13h INTMC Interrupt Mask Clear
14h 17h CC Controller Configuration
18h 1Bh Reserved Reserved
1Ch 1Fh CSTS Controller Status
20h 23h NSSR NVM Subsystem Reset
24h 27h AQA Admin Queue Attributes
28h 2Fh ASQ ASQ base address
30h 37h ACQ ACQ base address
38h 3Bh CMBLOC CMB Location
3Ch 3Fh CMBSZ CMB Size
40h 43h BPINFO Boot Partition Information
44h 47h BPRSEL Boot Partition Read Select
48h 4Fh BPMBL Boot Partition Memory Buf Loc
50h 57h CMBMSC CMB Memory Space Control
58h 5Bh CMBSTS CMB Status
5Ch DFFh Reserved Reserved
E00h E03h PMRCAP PM Capabilities
E04h E07h PMRCTL PMR Control
E08h E0B PMRSTS PMR Status
E0Ch E0Fh PMREBS PMR Elasticity Buffer Size
E10h E13h PMRSWTP PMR Sustained Write TP
E14h E1Bh PMRMSC PMR Controller Memory Space
E1Ch FFFh Reserved Command Set Specific
1000h 1003h SQ0TDBL Submission Queue 0 Tail DB

1000h + 1003h + CQ0HDBL Completion Queue 0 Head DB
(1*(4«DSTRD)) (1*(4«DSTRD))

1000h + 1003h + SQyTDBL Submission Queue y Tail DB
(2y*(4«DSTRD)) (2y*(4«DSTRD))

1000h + 1003h + CQ0HDBL Completion Queue y Head DB
(2y*(4«DSTRD)) (2y*(4«DSTRD))

Table 1.3: Controller Registers definition.
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Chapter 2

Controller NVMe

This chapter describes the work done for designing an NVMe controller. The
project has been divided in two phases. The first phase consists in the creation of
a single thread software version of the controller. The description focuses on the
main functions that compose it, as well as the organization of the registers and
the Controller Memory. Subsequently, to achieve parallelization of the instructions
and an increase in performance, a MultiThread version was created. Initially,
the tests to verify the correct functioning of the Controller were entrusted to a
firmware (called Test_Host). The first program version was written by Enrico
Petraglio, R&D engineer at REDS laboratories, who followed the entire project
with me. Created with the aim of simulating the behavior of a Host, its flexibility
has been exploited to simulate all possible commands supported by the Controller.
Subsequently, the QEMU virtual machine was exploited, capable of simulating
the behavior of the BIOS and of a real Operating System, and therefore also the
initialization and sending of expected commands for an NVMe Controller. In this
way, functional tests were much easier than testing them directly on a board. In
the second part the controller was adapted for the FPGA. In the beginning it was
oriented towards a SW implementation, single thread on ARM with the minimum
of HW. Only at a later time some functions were implemented in hardware, to
increase performance.

The characteristics of implemented NVMe controller are summarized in table
2.1, which will be used as a reference in the following of the discussion. If not
indicated in the table, the value used is the default one described in the protocol
[1]. Minimum and Maximum Memory page size are both set to the same value,
forcing the host to choose 4096 bytes as the Memory page size. The back-end
memory is divided into Logical block (LBA). It is also the minimum amount of
data that can be exchanged between controller and host. The LBA format is set
to 4096. Having LBAs and pages of the same size made it easier to manage. The
maximum size that can be transferred with a single command is set to 131072 (32
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LBA). This value could also be higher, it was chosen to keep it low in order not
to have a large number of PRP readings in the host memory and not to take up
too much space in the controller memory. A possible future optimization could
be the variation of this parameter to find an optimal value. The only supported
arbitration mechanism is Round Robin.

Vendor ID 10ee
Subsystem Vendor ID 10ee

Serial Number C0C0
Model Number NVMeREDS

Max Data Transfer Size 32 LBA
Max Number Of Namespaces 1
Maximum Queue Entries 32

Contiguous Queue Required yes
Arbitration Mechanism Supported Round Robin

Memory Page Size Minimum 4096 Bytes
Memory Page Size Maximum 4096 Bytes

Abort Command Limit 4
Async Event Request Limit 4
Submission Queue Entry size 64

LBA Format 4096 Bytes

Table 2.1: Controller NVMe Features.

2.1 First Software implementation
It is possible to divide the NVMe controller into 3 parts. In the first part, the
submission queues are managed. In particular, the submission queue to be served
is selected. The submission queue entries belonging to that queue are served one
at a time. The second part is dedicated to the execution of commands and to
the transfer of data, if necessary. The last part deals with the management of
completion, in particular the sending of completion queue entries and interrupts.
Figure 2.1 shows a behavioral flow chart, useful for explaining how the controller
works and will therefore be used as a reference. In the same way, the flow chart of
figure 2.2 will be used, in which the main functions performed in a given state are
highlighted. In the figures, the "actual states" in which the program can be found
are shown in blue, while the "internal states", born from a decision within a state,
are represented in orange, in addition to the initial and final states.
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Figure 2.1: NVMe Controller Flow Chart.

First of all, an initialization phase is required. In the START state the internal
registers, the BAR0 and the controller memory (Figure 2.3) are reset, in order to
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Figure 2.2: NVMe Controller Control Flow chart.

be ready for a new processing. Context tables reside in the Memory controller.
These tables are useful for keeping track of all the important characteristics of
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the various queues such as the Head, Tail, the queue size, the queue address and
which submission/completion queue it is associated with. Each queue, therefore,
distinguished by a different ID, has its own context table. Through the function
bar0_reg_cap_init() the CAP registers in BAR0 are appropriately written. Here
the controller communicates to the Host some important characteristics, necessary
for the controller initialization. In particular, supported Memory Page Sizes,
supported arbitration mechanism and the maximum supported queue size are
communicated. In addition, the version of the reference NVMe protocol is specified.
cq_phase_tag_init() restores a register needed for handling phase tags to the
initial value. Each completion queue has a reference bit in this register that
represents the phase tag that must be sent for that queue. The correct value of the
phase tag to insert in the corresponding completion queue entry is the reference
bit contained in the register. Whenever a queue comes to its end and starts from
the starting address, the value of the bit corresponding to the queue in the phase
tag register is updated. Initially they are all set to the value 1b.

Once all registers are initialized, the NVME_CONTROLLER_IDLE status is
reached. The controller is waiting for an enable signal from the Host. This signal is
located in the BAR0 (CC.EN). When it is brought to 1b it means that the host has
set all the registers necessary for the BAR for the initialization of the controller,
such as the size and address of the admin queues, both submission and completion,
as well as the definition of the chosen arbitration mechanism and the size of the
pages.

When the enable signal is activated, the controller in free to move to the
NVME_CONTROLLER_ENABLED state. The controller now has all the infor-
mation necessary to create the context tables related to the admin queues. Queues
are actually created and allocated in Host memory, but the controller, by creating
the context table entry for that queue, becomes aware of it and recognizes it as such.
This is the task of the bar_admin_queue_creation() function, which also takes
care of sending a ready signal to the Host via the BAR0 (CSTS.RDY) to confirm
the recognition of creation of the admin queues.

Now the NVMe controller initializations are finished and the core of the algorithm
can begin with the NVME_CONTROLLER_SQ status. It represents the first
step of the three described above, that is the management of the submission
queues. First of all, the enable signal is checked. If it is brought to 0 it means
that the host needs to restart the controller which should therefore return to the
NVME_CONTROLLER_IDLE state, after having reset all the registers and the
memory and having reinitialized the CAP entry of the BAR0. The next step
depends on the value of valid_len. valid_len is initialized to 0 and is needed
to discriminate whether there are submission queue entries that still need to be
served or not. The first time in this state therefore surely SEL_QUEUE is reached.
Here, the sq_select_submission_queue() function selects the queue to be served
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Figure 2.3: NVMe Controller Memory Map.

according to the Round Robin arbitration mechanism. The Host communicates
which submission queues need to be served by updating the TAIL value through
the doorbell of the corresponding queue in the space provided in the BAR0 (table
1.3). A queue is considered empty if the value of the HEAD is equal to that of the
TAIL. The controller knows the value of the HEAD of the queues. It can therefore
compare this value with the one communicated through the doorbells to find out
if any queue has entries to execute. Once the queue is selected, the controller
assigns a value to valid_len equal to the difference between TAIL and HEAD. In
this way it is possible to know how many entries of the selected queue must be
served. Furthermore, sq_select_submission_queue() retrieves the entries from
the Host memory and copies them to SUBMISSION_QUEUE_ENTRY_OFFSET address

22



2.1 – First Software implementation

of the controller memory, keeping the order unchanged.
If all the queues are empty, a check on the shn bit of the BAR0 is performed.

This bit is set to 1 when the HOST intends to turn off the NVMe controller. In this
case the controller has the duty to conclude all the entries of all the queues that
have been inserted in the submission queues and to start the shutdown routine,
carried out by the shutdown_routine() function. The controller informs the host
that the shutdown has occurred without problems by appropriately setting an entry
in the BAR0 (shst).

At this point, the queue to be served has been selected and the value of
valid_len is non-zero. FETCH_ENTRY is reached. The sq_fetch_sq_entry()
function selects the command, or entry, to be executed. It has been chosen
to continue in order, starting from the entry in the HEAD + 1 position and
continuing up to TAIL. However, this is not mandatory. Once selected, the value of
valid_len can be decremented by 1. The command is ready to be decoded. The
SQ_SEL_ID_ADDR address contains the ID of the selected queue, useful for selecting
the next status. If the content ID is 0 then the server queue is an admin queue.
This leads to the NVME_CONTROLLER_ADMIN_CMD state. Otherwise, the
NVME_CONTROLLER_NVM_CMD status is reached.

The admin_cmds_cmd_execution() function is the heart of the Admin state.
Initially, it decodes the command discriminating among those supported. With
reference to table 1.1, the Queue Management commands act directly on the
context tables, deleting or creating them. The Configuration commands, on the
other hand, have the task of characterizing the controller, providing the Host
with information regarding the characteristics of the device. Status Reporting is
used by the controller to report Controller health messages and errors. Finally,
the Abort command is used to cancel a certain entry of the indicated submission
queue. As specified in table 2.2, some commands must write information in the
Host memory at a certain specified address. In the Single Thread case, when one
of these commands must be executed, it is necessary to consider the PRP1 and
PRP2 fields of the command (Figure 1.6). The NVMe controller creates a list of
PRPs needed to send requested data. This list is saved in a buffer in the controller
memory (DMA_PRP_BUF_OFFSET). If the amount of data is able to reside within a
single PRP, also taking into account the offset, then the list is made up of a single
item. If not, PRP2 completes the list. The maximum amount of data that can be
exchanged through an admin command is 4096 Bytes, which is also the size of a
Host page (value forced by the controller settings). Consequently, two pages are
always sufficient to contain the data coming from an Admin command. A buffer
called DMA_D_BUF_OFFSET_1 is filled with the information to be sent to the Host
memory. At this point, the contents of the buffer are copied to the correct host
memory address.

In case the ID queue is different from 0, an I/O command must be executed. The
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Command Code Reading required Data Size
Delete_io_sq A0 N -
Create_io_sq A1 N -

Get_log_page(lid=0x02) A22 Y 512B
Get_log_page(lid=0x03) A23 Y 512B
Get_log_page(lid=0xC0) A2C

Y 512B
Delete_io_cq A4 N -
Create_io_cq A5 N -

Identify(cns=0x00) A60 Y 4096B
Identify(cns=0x01) A61 Y 4096B
Identify(cns=0x02) A62 Y 4096B

Abort A8 N -
Set_feature(fi=0x01) A91 N -
Set_feature(fi=0x07) A97 N -
Set_feature(fi=0x08) A98 N -
Set_feature(fi=0x0B) A9B

N -
Get_feature(fi=0x04) AA4 N -
Get_feature(fi=0x0C) AAC

Y 256B
Async_event_Req AC N -

Table 2.2: Admin Commands supported.

nvm_cmds_cmd_execution() function in the NVME_CONTROLLER_NVM_CMD
state first takes care of decoding the command. A generic I/O command described
in figure 2.4 are distinguished by four basic fields:

• PRP Entry1: first PRP in host memory to write/read.

• PRP Entry2: second PRP in host memory where to read/write. It can
represent a list of PRPs. (More in appendix A.3).

• Number of Logical Blocks: number of logical blocks to be read/written.

• Starting LBA: it indicates the first LBA of the backend memory from which
the operation must start.

The minimum size of the exchangeable data is an LBA. The Number of Logical
Blocks establishes the size of the data to be transferred. If a Page in the host
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Figure 2.4: Generic I/O Command.

memory is able to contain the amount of data to be exchanged, PRP1 is sufficient
for the operation and the PRP2 field is not used. If, on the other hand, the size
of data to be transferred is larger than a page but less than 2, the second PRP
is used as the address for sending the Bytes exceeding the first page. If not even
two PRPs are sufficient to contain the amount of data to be exchanged, then the
second PRP is interpreted by the NVMe controller as a pointer to a list of PRPs
residing in the host memory. The NVMe controller, once it becomes aware of the
amount of data to be exchanged by decoding the I/O command, creates its own
list of PRPs, in which all the PRPs necessary for the operation are copied. In case
only one PRP is needed, a list with only one element is created. In the Single
Thread case, this list is copied into the DMA_PRP_BUF_ADDR buffer, the same one
used for the admin commands requesting the sending of data. The controller now
has all the information it needs to perform a data transfer between host memory
and backend memory.

Now that the command has been executed, it is time to create the completion
queue entry. In reference to the figure 1.7, the information regarding the corre-
sponding submission queue entry, such as SQ Identifier and command Identifier,

25



Controller NVMe

are taken from it. The phase tag is suitably set following the value contained in
the phase tag register. If there have been no errors, the Status Field reports the
value 0x0, otherwise the appropriate error code is sent. If necessary, the host will
send an admin command Get_Log to get more information about this error. The
newly created completion queue entry is stored in the controller memory. Only
once all entries have been served will all created completion queue entries be sent
to host memory in the corresponding queue.

At this point, if the value of valid_len is different from zero, it means that
there are still entries from the same queue to be served. The submission queue
HEAD is therefore updated and the new entry is fatched. Otherwise, All entries
have been served, the NVME_CONTROLLER_CQ status is reached, so that the
created completion queue entries are sent to Host memory. This is the task of
the cq_completion_pcie_upstream() function, which copies the contents of the
Controller_memory (DMA_COMP_BUF_OFFSET) into the completion queue in Host
memory. It also takes care of sending the interrupt message. The interrupt vector,
useful for identifying the queue sending it, is a parameter passed by the Host when
creating a completion queue. The NVMe controller keeps this information in the
Context table of the corresponding queue.

2.2 Second Software Version: adding multithread-
ing

A Multithreaded version was created with the aim of increasing performance,
parallelizing operations and simulating the behavior of a DMA engine. Copying
data between host memory and device is the bottleneck that needs improvement.
The idea is to entrust the task of managing this transmission to a thread that
works in parallel to the main thread which will instead keep the task of fetching
and decoding new submission queue entries as well as the generation of completion
entries. A semaphore enforces the synchronization between the two threads. As
shown in Figure 2.5, if the transmission channel between host and controller is
occupied by a previous read/write command, the new command that intends to
use the same channel will be put on hold.

Some changes to the command path are necessary to prevent resources from
being occupied and therefore not available when one of the two threads needs
them. This is the case of the buffer for the PRPs (DMA_PRP_BUF_OFFSET), and of
the buffer DMA_D_BUF_OFFSET_1 with the Admin data to be sent, which risk being
overlapped by the next command before it is completed. To overcome this problem,
a double buffer system has been adopted, introducing toggles for buffer arbitrage.
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Figure 2.5: On the left, a simplified flow chart of the command cycle in the single
Thread case. On the right, a flow chart of the comand cycle in the MultiThread
case.
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2.3 Test process
It is possible to divide the Test part into two sections. In the first, a simple program
called Test_Host was created that was able to simulate as much as possible the
behavior of the Host towards the NVMe controller. In the second, the QEMU
virtual machine and its features were used to simulate a connection between a real
operating system and the NVMe Controller, as described below. For this phase,
the help of Rick Wertenbroek, R&D Engineer at REDS laboratories, with whom
I had the opportunity to collaborate, was fundamental. Thanks to a system He
built (described in Appendix A.5) He provided valuable information about the
commands exchanged during the initialization of an NVMe device captured using
the WireShark software, which is able to intercept the signals exchanged between
two devices(in this particular case they were NVMe-OF commands, which were
however very useful to know the expected commands). For the second part, He
initialized the QEMU environment, allowing it to expose its RAM to an external
process.

2.3.1 Test_Host
Test_Host is a simple program with the purpose of simulating the behavior of a host
towards the NVMe Controller. Communication is entrusted to shared memories.
In particular, two are used:

• BAR0_shm: shared memory to simulate the BAR0 register of the PCIe.

• DDR_shm: shared memory used to simulate host memory. The addresses of
the queues reside in this memory area, as well as the addresses sent in the
read and write commands.

The addresses sent by Test_Host do not represent the actual addresses but the
offsets with respect to the base addresses of the shared memories. With reference
to figure 2.6, first of all, the Test_Host, writes the necessary information in the
BAR0_shm, such as size and offset of the admin queues (1). The controller reads
this information from shared memory (2). Now, the host fills the admin queues with
the desired command (3) and waits for an interrupt signal, passed for convenience to
a location not used for these purposes in BAR0. The controller reads the command
(4), executes it and creates the completion queue entry (5). It is written to the
DDR_shm in the completion queue. An interrupt signal is sent. The Host receives
the interrupt and reads the completion queue in the DDR_shm (6) in search of
the new entries received, based on the value of the phaseTag, as done by a real
Host. Having full control of the commands sent to the controller, it was possible
to send them individually so as to evaluate their correct functioning. It was also
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easy to observe that the behavior of the queues was as expected, with a look at
particular cases, such as the end of queue and the sending of multiple entries at a
time. Thanks to the commands obtained from Wireshark, a controller initialization
similar to the real case was simulated, checking that the responses were consistent.

Figure 2.6: Example of communication between Test_Host and Con-
troller_NVMe. In particular, an admin Identify command is sent.

2.3.2 QEMU
QEMU [20] is a free and open source emulator and virtualizer capable of performing
hardware virtualization. The structure used, described in an article published on
the REDS blog [21], makes it possible to communicate between the RAM of the
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hardware platform emulated on QEMU and an external process and, in this specific
case, with the NVMe Controller. A shared memory file was used to represent QEMU
RAM, using the QEMU memory-backend-file option. A more realistic emulation
would have to access host memory via PCIe, but this is the fastest and easiest
way to access memory directly. A shared memory file was also used for the BAR0
space. The code was thus minimally modified, maintaining the structure of shared
memories. The use of QEMU made it possible to discover and test the initialization
commands for an NVMe Controller on PCIe by a BIOS and an Operating System.
The BIOS requires 2 Identify commands to find out the general characteristics
of the device and the size of the supported queues, and then proceed with the
creation of two I/O queues, one completion and one submission. Subsequently, it
brings the value of CC.En to 0, resetting the Controller. The routine performed by
the operating system (Ubuntu 16.04) provides a first identification of the device
through an Identify command and of the health status with a Get Log health
information command. The maximum number of queues that the host can create
is set through a Set Feature and finally two completion and submission queues are
created. At this point, the Host can send I/O commands. The first reading is made
at LBA 0 of the NVMe Controller in order to become aware of the Master Boot
Record (MBR). The MBR is a 512 Bytes disk space, which contains information
necessary for booting an operating system present on the disk and on the existing
partitions. For simplicity, existing partitionsit has been copied from a real NVMe
disk, and the space dedicated to partitions has been cleared. After discovering the
MBR, the Host sends a long series of reads to verify the correct functioning of the
queues, also trying to read several LBAs with a single instruction, and the size
of the Namespace. Figure 2.7 shows an example of the system implemented with
QEMU.

2.4 Tracing
For the Tracing phase, Uftrace [22] was used, a tool capable of analyzing and
tracing programs written in C and C++ language. It is inspired by the ftrace
framework of the Linux kernel, so the use was intuitive. In particular, two features
proved to be very useful:

• uftrace dump –flameGraph. A Flame graph was obtained through this function.
It allowed to quickly identify the most frequent paths of the code [23]. The
more you climb to the top, the deeper you go into the stack. Each rectangle
represents a stack frame. The larger the base of the rectangle, the greater the
time spent in that function. During development, this graph was very useful
for understanding which functions the time was spent in in order to make the
best possible optimizations.
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Figure 2.7: Example of the system implemented with QEMU. (1) Tracing of
QEMU reads and writes in BAR0 and received interrupts. (2) QEMU outputs. (3)
NVMe Controller outputs.

• uftrace dump –chrome. This function for creating a json file that can be read
by Chrome Trace Viewer was important in obtaining a complete view of the
time progress of the software.

The section is divided into 2 parts. In the first one, a comparison between the
Single Thread and Multi Thread version is presented, obtained through the use of
Test_Host. In the second part, some important functions in the management of a
memory are tested through the QEMU platform presented.
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2.4.1 Comparison between Single Thread andMulti Thread
versions using Test_Host

In the following paragraph, the tracing of two significant simulations, called Sim-
ulation 1 and Simulation 2, is described. The purpose is to emphasize, in the
first part, the functions that are used most frequently and, in the second part, the
difference in performance between single thread and multi thread cases. Test_Host
was used for these simulations, in order to have more freedom on the commands
sent. Both simulations have in common 7 admin commands, necessary to initialize
the controller, the queues and their characteristics. Generally, these are the first
commands that are sent by the operating system at boot time. In particular, the
following commands are sent:

• 2 identify commands, to identify controllers and namespaces.

• 1 create_completion_queue, to create a complition queue I/O.

• 1 create_submission_queue, to create a submission queue I/O.

• 1 get_log_page to be notified of any errors.

• 2 set_feature, to set the number of completion and submission queues.

All these commands are loaded into the admin submission queue consecutively,
so the queue is selected only once for all commands, which are obviously fetched
one at a time.

In Simulation 1, after the 7 admin commands, a Read command is sent on the
created submission queue. The command has the following characteristics:

• Namespace = 1;

• LBA statring = 0;

• number of LBA = 1;

Then the reading takes place in the Namespace with ID 1, starting from LBA 0
and the size is 4 KBytes.

Simulation 2 is also simply a reading, as well as the initial admin commands.
This time the features are:

• Namespace = 1;

• LBA statring = 0;

• number of LBA = 32;
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Figure 2.8: Simulation 1 (7 admin commands, 1 reading 4 KB). Above, Flame
graph Single Thread version. Below, Flame graph Multi Thread version.

the size is now 32 LBA (128 KBytes). It is the maximum size for a single I/O
command, set for the NVMe controller.

Figure 2.8 shows the Simulation 1 Flame Graph, single and multi Thread cases.
In both cases most of the time is spent inside the admin_cmds_cmd_execution
function, where the admin functions are executed, as expected. Some of them require
data transfers and, for this reason, they need time to be implemented. This is the
case with identify and get_log_page commands. The admin command rectangle in
the single Thread case is longer than in the multithreaded case(59.75% and 53.26%,
respectively). This is due to the fact that, in the Multithread case, the write
operations in the host memory performed by the dma_dma function are managed
to a dedicated thread, called dma_Thread. Likewise, the nvm_cmds_cmd function
rectangle decreases in width, although more difficult to notice. The difference in
size of these rectangles in the two cases is not very marked, 8,90% in SingleThread
version against 8.33% in MultiThread one. The reason is that only one I/O
command is executed and it requires the smallest possible data transfer (1 LBA).

In Simulation 2, figure 2.9, Single Thread case, the increase in size of the
nvm_cmds_cmd_execution rectangle is evident. Over 19.7% of main is spent in
this function. Using the thread allowed the percentage to be lowered to 13%. As a
result, the Thread rectangle is increased, inheriting the dma_dma function. These
graphs have allowed us to see where to apply many optimizations and others are still
certainly achievable. The creation of the admin queues and the saving in memory
(cq_creating_and_saving function) still requires a lot of time in percentage terms,
it is evident in all the graphs. Once all completion queue entries have been collected
they still need to be submitted by the cq_completion_pcie_upstream function,
which again takes time. One possibility of optimization could consist in sending
the entries to the host memory as soon as possible, as soon as they are created,
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Figure 2.9: Simulation 2 (7 admin commands, 1 reading 128 KB). Above, Flame
graph Single Thread version. Below, Flame graph Multi Thread version.

without saving them in the controller memory, leaving the only task of sending the
interrupt to the cq_completion_pcie_upstream function, to signal that all the
entries have been performed.

The evaluation of the graphs over time has allowed us to appreciate the im-
provements obtained with the MultiThread version. Particularly interesting is the
behavior of the read command. With reference to the Simulation 1, Figure 2.10
shows the details of the graphs over time of execution of the I/O command. In
the Single Thread case, the time taken to execute the nvm_cmds_cmd_execution
function is 12,691 us. The internal function that takes care of the transfer is called
dma_dma and resides in the only available thread, the main one. On the contrary,
in the MultiThread case, the task of transferring the data through the dma_dma
function is entrusted to dma_thread. The time savings are minimal, 0.725 us. The
phtread_cond_signal function takes time and reading a single LBA is insufficient
to notice any advantages in the MultiThread version. The results of the Simulation
2 in figure 2.11 instead underline in a more marked way the time savings obtained
thanks to the thread. The time taken in the nvme_cmds_cmd_execution function
in the Single Thread case is almost 2.5 times compared to the MultiThread case,
with 87.922 us compared to only 35.475 us. The dma_dma function, which occupied
most of the function, is now executed by the thread and therefore all the data
transfers, clearly visible in the figure.

Comparing Simulation 1 and Simulation 2 of the corresponding versions, it is
easy to see that part of the execution of the command is spent on the creation
of the PRP list thanks to the nvm_fetch_prp function. In Simulation 1 the time
is very short, 0.461 us and 0.357 us. In this case, in fact, the controller has to
copy only one LBA and therefore needs only one PRP. The page address is passed
directly into the command of the submission queue, the controller simply has
to copy this value from the command to the list, which will consist of only one
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Figure 2.10: Above, reading one LBA (4 KB) in Single Thread. Below, reading
one LBA (4 KB) in Multi Thread.

element. Not surprisingly, therefore, the greater importance this function assumes
in Simulation 2. Not only is a single PRP insufficient, but even two PRPs cannot
contain the totality of the data. Hence, the second PRP is to be understood by
the controller as an address to a PRP list that is to be copied from host memory
to the controller’s PRP list. The operation takes time and the function is satisfied
after 4,796 us (Single Thread) and 6,405us (MultiThread).

The simulations just presented are intended to underline the advantages of the
MultiThread version created. As shown, if a single command requires the exchange
of a large amount of data, in this specific case 32 LBA, the time gain is evident.
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Figure 2.11: Above, reading 32 LBA (128 KB) in Single Thread. Below, reading
32 LBA (128 KB) in Multi Thread.

The same cannot be said for multiple small transfers. If the simulation had included
32 different commands, each with 1 LBA, using one thread would not have been so
effective. A reading would in fact have to wait for the end of the previous one to
be able to access the dma_thread. So the advantages in terms of time would not
be significant.
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Figure 2.12: Above, the output obtained via the NVMe list command on the host
terminal. Below, the admin identify commands received from the NVMe controller.

2.4.2 Function analysis through QEMU
The following section aims to verify the functionality through the QEMU platform.
In particular, various utilities, intended as Linux commands, were tested to un-
derstand what the requests are and verify the responses of the NVMe controller.
Two significant examples are now described, the first for identifying the controller
and the second for writing and reading. The example of figure 2.12, describes the
response to the nvme list command, of the NVMe-cli package, useful for getting
to know the main characteristics of the NVMe devices connected to the Host. There
are only two commands sent to the controller:

• Identify Namespace data (in blue): used to know the device namespace number
and their size. As mentioned, in the case described the name space is 1 of size
2.15 GB.

• Identify Controller data (in red): informs the host of the device name, model,
version and LBA format.

This information is written by the controller in the PRPs specified in the submission
queue entries to DW6 and DW8. It was the first command tested, it ensured
communication between host and NVMe controller.

To test the read and write functions, the utility dd was used, capable of copying
the specified amount of data from an input file to an output device and vice versa.
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Figure 2.13: Above, the dd utility sent by the host. Below, the write command
received from the Controller.

A 4 KB file named MINE_LBA0 was written entirely in the NVMe controller
LBA1. Considering the size of the file, two PRPs are enough to hold the data. In
the cases described, no offset is specified in PRP1, so the second PRP is unused.
The number of LBAs required is in fact always 1. As shown in Figure 2.13, the
controller has successfully received the write request to the desired LBA. DW6 and
DW8 represent the PRP in which the controller can find the data to be written
in the backend memory. Once the writing has been completed, a reading routine,
identical to the one performed during the initialization of the operating system, is
executed, useful for verifying once again the correct response of the device.

The test continued with reading the first controller LBA. The controller receives
the command to read LBA 1 (Figure 2.14)before starting the usual test read routine.
The data is written to a file called MINE_LBA1, so it can be compared with the
initial file, MINE_LBA0. As expected, the two files are identical.
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Figure 2.14: Above, the dd utility sent by the host. Below, the read command
received from the Controller.

2.5 Performances (QEMU)

As mentioned, the work done up to now with Test_Host and with QEMU has had
the purpose of verifying the functioning and understanding the requests received
by the Host, without dwelling on performance. Also this section has the same
purpose, to exploit a tool for evaluating the performances like Fio to be able to
verify the functionality in a more in-depth way, looking for errors that had not
yet been encountered. Fio is a tool capable of generating a series of threads and
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processes that perform I/O actions according to specification. Samsung used it
in the SmartSSD userGuide [17] to show the performance of their product. The
same settings used in the guide for Fio will be applied to the NVMe Controller in
the chapter dedicated to performance on FPGA, but they have also been used on
QEMU and described here to validate the considerations made previously on the
SingleThread and MultiThread versions. Fio was found to be a very useful tool for
verifying the functionality, it allowed to confirm that the controller did not lock in
some state due to escaped bugs as well as to obtain a first view of the performance
of the device. The following Fio features, the same ones used in the SmartSSD
UserGuide, were used for all the tests described:

• ioengine = libaio: the way in which the I/O are issued is the native asyn-
chronous way of Linux.

• iodepth = 256: Number of I/O units to keep flying over the file.

• direct = 1: Unbuffered I/O.

• numjobs = 12: number of processes/threads executing the action.

• runtime = 60: execution time.

The bs option, the block size per I/O unit was initially set to 4KB. Four tests
for each version of the controller were done, with the intention of sending random
reads, random writes, sequential reads and sequential writes. Table 2.3 shows the
results for the single Thread version, while table 2.4 shows those of the MultiThread
case. RW specifies which type of read/write is performed. IO indicates the amount
of I/O done in total, BW shows the observed bandwidth.

RW IO BW
Random read 675868 KB 11257 KB/s
Random write 701120 KB 11681 KB/s
Sequential read 699776 KB 11659 KB/s
Sequential write 705336 KB 11741 KB/s

Table 2.3: Results obtained through Fio in the Single Thread version, bs = 4KB.

As expected, there are no substantial differences between the random and
sequential cases. There are no advantages or disadvantages of choosing one type
of transfer over the other. Comparing the two tables it is clear that the Multi
Thread case does not bring advantages in terms of performance, but rather in some
cases it worsens them slightly. Random reads go from a bandwidth of 11257 KB/s
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RW IO BW
Random read 560076 KB 9331 KB/s
Random write 716464 KB 11936 KB/s
Sequential read 569460 KB 9488 KB/s
Sequential write 757988 KB 12623 KB/s

Table 2.4: Results obtained through Fio in the Multi Thread version, bs = 4KB.

in the SingleThread case to just 9331 KB/s in the MultiThread case. The same
behavior occurs with sequential reads. Writings, on the other hand, have a slight
improvement both in the random case (from 11681 KB/s to 11936 KB/s) and in
the sequential case (from 11741 KB/s to 12623 KB/s). This is due to the fact that
bs is set to 4 KB so reads/writes are done on only 1 LBA at a time. Each command
the controller receives requires a transfer of 1 LBA at most. The main thread
gets to request the use of the communication channel managed by the dma_thread
before it has even finished. The improvements are not obvious, quite the contrary.

RW IO BW
Random read 20328 MB 346835 KB/s
Random write 18224 MB 310681 KB/s
Sequential read 19334 MB 320995 KB/s
Sequential write 18345 MB 310998 KB/s

Table 2.5: Results obtained through Fio in the Single Thread version, bs =
128KB.

Subsequently bs was therefore raised to 128 KB, with the intention of forcing the
host to request larger readings of the single LBA, which needed PRP lists up to the
maximum limit of 32 LBA. Tables 2.5 and 2.6 show the results. The performance
in the case of Multi-Thread improved significantly in all four tests carried out,
precisely because the host started sending 128 KB read and write requests which
therefore require transfers of more LBAs at a time and not just one. The random
reads go from 346835 KB/s to 373871 KB/s, as well as the sequential reads which
register a +51716 KB/s. Both writes also follow the same trend going from just
over 310000 KB/s to over 360000 KB/s. This confirms the hypothesis made in
the previous sections: The Multi-thread version involves appreciable improvements
only if the single read and write command requires a sufficiently large amount of
data.

For comparison, the same Fio commands with bs = 4KB were used on a QEMU
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RW IO BW
Random read 21916 MB 373871 KB/s
Random write 21258 MB 362555 KB/s
Sequential read 21888 MB 372711 KB/s
Sequential write 21228 MB 360451 KB/s

Table 2.6: Results obtained through Fio in the Multi Thread version, bs =
128KB.

native NVMe simulated device. This was useful for verifying that performance was
consistent with existing simulated NVMe devices. The results reported in table 2.7
show worse performances than those obtained with the NVMe Controller reported
in table 2.3.

RW IO BW
Random read 465784 KB 7758 KB/s
Random write 437388 KB 7280 KB/s
Sequential read 422452 KB 7034 KB/s
Sequential write 493024 KB 8213 KB/s

Table 2.7: Results obtained through Fio in a QEMU native NVMe simulated
device, bs = 4 KB.

2.6 FPGA implementation
The last phase of the NVMe Controller project was the implementation on FPGA.
The Xilinx Vivado [24] software suite was used for synthesis and analysis. The
Vivado IP integrator made it possible to quickly integrate and configure IP, Intel-
lectual Property, from the Xilinx IP library. The Advanced eXtensible Interface
(AXI), multi-master and multi-slave communication interface, is used. AXI uses
well defined master and slave interfaces that communicate via five different channels:

• Read address

• Read data

• Write address

• Write data
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• Write response

The channels are shown in figure 2.15. The address channel contain address and
control information when performing a basic handshake between master and slave.
A master reads and writes data to a slave. The read response information is
inserted into the read data channel, while the write response information has a
dedicated channel. In this way the master can verify that a write transaction has
been completed. Each data exchange is called a transaction. A transaction includes
address and control information, data sent, and any response information. Actual
data is sent in bursts that contain multiple transfers [25].

Initially the intent was to bring the NVMe Controller design to a Zynq processor,
test its functionality and evaluate its performance, and then gradually adding
hardware components to obtain optimizations. Xilinx FPGA ZC706 was used. The
first version made used the following main IPs:

• Axi memory mapped to pci express: for communication with the pci express.

• Block Memory Generator to generate a memory space (BRAM) used as BAR0
for communication between host and NVMe controller.

• Zynq-7000 processing system: the heart of design. Via the Vivis platform, the
NVMe controller script is loaded onto the processor.

• Axi Interconnerct: for the connections of the various blocks.

• Axi Uart lite: to be able to control the operation of the Controller via the
terminal.

The code did not need many changes, other than an adaptation for the translation
of the addresses between the AXI domain and PCIe domain and vice versa. A
250 MB BAR Axi has been opened to manage the addresses referring to the host
memory. In this window the address of the PCIe space is mapped, while two Axi
Base Address Translation Configuration Register are used to contain the most
significant part of this address. Each time a PRP is supplied, it must therefore be
transformed into a Bar Axi address and the Translation configuration addresses
appropriately set.

Figures 2.16 and 2.17 show the Design Layout with the blocks used.

2.7 Performances (FPGA)
As already mentioned above, the performance of Samsung’s SmartSSD, presented
in the userGuide [17], has been used as a reference and shown in table 2.8.
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Figure 2.15: Axi Interface example: A read and write burst consisting of 4 beats
or data transfers.

Through Fio, the performance of the device subject to repeated reads and
writes for 60s both random and sequential was evaluated as previously done in the
simulations with QEMU. The following Fio features were used for all the tests
described:

• ioengine = libaio.

• iodepth = 256.

• direct = 1.
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Figure 2.16: NVMe Controller Design Layout for FPGAs - part 1.
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Figure 2.17: NVMe Controller Design Layout for FPGAs - part 2.
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RW IO BW
Random read 174809 MB 2913.2 MB/s
Random write 149439 MB 2490.5 MB/s
Sequential read 196587 MB 3253.1 MB/s
Sequential write 191090 MB 3171.2 MB/s

Table 2.8: Performance of Samsung’s SmartSSD under the stimulus of Fio for
the four types of transfer.

• numjobs = 12.

• runtime = 60.

• bs = 4 KB:

The first version of the NVMe controller on FPGA used a Zynq clocked at 50
MHz. The results are shown in Table 2.9.

RW IO BW
Random read 724 MB 12.100 MB/s
Random write 382 MB 6.362 MB/s
Sequential read 787 MB 12.900 MB/s
Sequential write 411 MB 6.602 MB/s

Table 2.9: Performance of the NVMe Controller clocked at 50 MHz under the
stimulus of Fio for the four types of transfer.

Comparing the results of table 2.8 with table 2.9 , a very substantial difference
is evident, of two orders of magnitude. The NVMe controller does not exceed
12.9 MB/s, compared to 3253.1 MB/s for the SmartSSD. It is therefore necessary
to understand where the optimizations can be made to approach the case taken
as a reference. Embedded CPU is moving data, no DMA is being used. With
PCIe DMA IP or XDMA IP you could get much higher numbers, having the
built-in CPU doing memcpy() instead of proper DMA explains the numbers we see.
In the Zynq-7000 technical reference manual ([26], table 228) it is compared the
bandwidths of all interfaces (CPU I/O vs PS DMA vs PL DMA on GP, HP, ACP
ports etc ...). The maximum CPU I/O value is approximately 25 MB/s. Another
factor that makes this memcpy() even slower is because Zynq’s AXI interface is
clocked at 50MHz at 32bit wide (compared to PCIe IP it is 128bit at 125MHz).
Therefore the results obtained are not surprising, as the maximum bandwidth is
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about 25 MB/s and in addition, you have to take into account the overhead to read
the host queues, schedule the translation from AXI to DMA for each transfer etc.

The first optimization was to increase the clock speed for the Zynq AXI interface
to 125 MHz. The performance is shown in table 2.10.

RW IO BW
Random read 1116 MB 18.600 MB/s
Random write 471 MB 7.845 MB/s
Sequential read 1229 MB 19.300 MB/s
Sequential write 503 MB 8.124 MB/s

Table 2.10: Performance of the NVMe Controller clocked at 125 MHz under the
stimulus of Fio for the four types of transfer.

Performance has improved although not yet significantly. Random read went
from 12.1 MB/s to 18.6 MB/s. The least noticeable improvements are found in the
writes with an increase of only 1483 KB/s for the random and 1522 KB/s for the
sequential. The sequential read reached a maximum bandwidth of 19.3 MB/s, the
highest recorded value. The result is still not surprising, the gap with the limit of
25 MB/s has been reduced, but it is still unsurpassable. It was necessary to bypass
the barrier by inserting an IP CDMA (AXI Central Direct Memory Access) and
inserting a new function (DoSimpleTransfer()) to replace memcpy(). The results
are shown in the table 2.11.

RW IO BW
Random read 6442 MB 131 MB/s
Random write 6442 MB 120 MB/s
Sequential read 6451 MB 131.3 MB/s
Sequential write 6449 MB 120.4 MB/s

Table 2.11: Performance of the NVMe Controller clocked at 125, with the addition
of the DMA block, MHz under the stimulus of Fio for the four types of transfer.

The 25 MB/s limit now no longer exists, a maximum bandwidth of 131.3
MB/s could be reached for the Sequential Read case reducing the gap with the
SmartSSD reference case to only one order of magnitude. At the moment it is the
DoSimpleTransfer function that takes care of releasing DMA, but only 4 KB at a
time. Furthermore, bs is set to 4KB which forces the Host to send 1 LBA read or
write commands which generates the worst case in terms of performance, as seen in
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the previous sections. The performances achieved by the Samsung Device are still
far away, but further optimizations and possible improvements will be described in
the 4 chapter, in the section 4.1, "Optimizations and Improvements".
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Chapter 3

Computational Storage

As anticipated in the introductory chapters, Computational storage does not
currently have a defined standard. SNIA is currently working on it, but at the
moment only one draft is available [5]. In the document drawn up by SNIA there
are some illustrative examples that have made it possible to obtain a trace to
reach a first prototype of Computational Storage. Of particular inspiration was
the example B.4.1 of the document in which a PCIe OpenCL-based Programmable
Computational Storage Drive (CSD) is presented (figure 3.1). OpenCL [27], a
framework based on the ANSI C and C++ language with a host-device structure
that can be run on a variety of platforms, takes care of data processing, while an
NVMe Controller is entrusted with the task of managing the transfers. The two
devices communicate via a PCIe bar called, in figure 3.1, Bar Peer To Peer.

In short, following the theory of operations presented in the first chapter:

• Discovery: Both NVM Express and OpenCl have a robust Discovery routine.
In the case of NVMe, the Identify command deals with the identification of
both the Namespace and the Controller. Furthermore, Bar0 contains spaces
for device identification information.

• Configuration: OpenCL provides a rich set of APIs to configure the CSP.

• Usage: This phase consists of 3 operations:

1. The host sends a read request to the NVMe controller. This reading will
be written in the P2P bar. As it always has, the controller will send a
completion queue entry and an interrupt.

2. OpenCL must process the data by taking it in the P2P bar and entering
the result in the same bar.

3. A write request must be sent to the controller to store the result in a
location on the disk.
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Figure 3.1: SNIA illustrative example: PCIe OpenCL-based Programmable
Computational Storage Drive (CSD).

The idea of Computational storage described in the example revolves around
the concept of Peer To Peer and the use of a support bar to be used as a buffer
register for processing. The Peer to Peer therefore needs a deepening.

3.1 PCie Peer-to-Peer Communication
PCIe peer-to-peer (P2P) communication is a PCIe feature that allows two PCIe
devices to directly transfer data between each other without using host RAM as
temporary storage. Swapping between two devices over PCIe with DMA normally
involves two steps. First, the reading device copies the data from its back-end
memory to the Host DRAM. Subsequently the writing device takes the data just
written in the DRAM and writes them in its memory. This takes time and host
DRAM occupation. As shown in Figure 3.2, P2P uses a memory space called CMB
as a transfer buffer for DMA between two devices on PCI Express, avoiding the
use of host DRAM. The CMB (Controller Memory Buffer) is a PCIe bar, first
introduced in the NVMe standard in 2014 in version 1.2, which can be used for
certain specific data types. It can be set up to place queues that usually reside
in host memory, or it can contain PRP lists, for example. Also it can be used
as a DMA buffer for offloaded NVMe copies. This can improve performance and

52



3.1 – PCie Peer-to-Peer Communication

Figure 3.2: Contrast between traditional DMAs and Peer-2-Peer DMA.

offloads the host CPU.
Changes had to be made to the NVMe Controller in order to include the

Controller Memory Buffer. As described in the [1] protocol in the chapter dedicated
to the CMB, in BAR0 two registers must be set for the description of the CMB
properties:

• CMBLOC (Controller memory Buffer Location): specifies which BAR of the
PCIe has been chosen as CMB and, if necessary, the offset.

• CMBSZ (Controller Memory Buffer Size): Here is defined the size of the CMB
and what abilities it has, if it is possible to save the completion and submission
queues, if it is possible to save the PRP lists and if possible use it to read and
write data.

The CAP.CMBS field is used to communicate to the Host the ability of the device to
support the CMB. When the host intends to use the CMB it must appropriately set
the CMBMSC register of the BAR0 to communicate the Controller Base Address.
If the controller receives an I/O command with PRP between the address indicated
in the Controller Base address and this address added to the size of the CMB bar,
then the Controller must write or read in the CMB BAR and not from the Host
memory.

The adaptation of the NVMe controller started with the addition of a new BAR,
as well as with the setting of the registers described above. In the version used on

53



Computational Storage

QEMU it was enough to add a new shared memory called shm_CMB. A Check on
the PRP received at each transaction to compare it with the address contained in
the Controller Base Address has been included, so as to divert the command to
the BAR CMB if necessary. In the version for FPGA it was necessary to add a
second Bar, called Bar2, in the PCIe and the consequent memory to be used as a
bar. Once the device is made capable of supporting the use of the support buffer
for P2P, it is possible to use this space as the support buffer for the computational
storage. The data to be processed can be taken from a second device using the
P2P mode or from the same device. In particular:

• The controller receives from the Host a read request with PRP corresponding
to an address in the BAR CMB, used as a buffer.

• A data writing in the BAR CMB triggers a data processing.

• the controller receives a write request with PRP corresponding to the same
address in the BAR CMB sent for reading. Now the data transcribed in the
Back-end memory will be the ones that have been processed, without the need
to involve the CPU.

It is therefore essential to handle P2P, a real key tool for computational storage.
Once implemented and tested, it will be sufficient to add the desired processing
functions of the data contained in the CMB bar.

3.2 Validation
For validation, Storage Performance Development Kit (SPDK) [28] was used. SPDK
provides a set of tools and libraries for writing high performance, scalable, user-
mode storage applications. It provides some tools for Peer-to-Peer, although they
are currently marked as experimental. In particular, SPDK’s identify example
application shows whether the selected device is capable of supporting the CMB
and which options can be used. This is the command to use, by properly entering
the PCI ID of the device:

Before running an SPDK application, some huge pages need to be allocated and
any NVMe devices need to be disconnected from the native kernel drivers. This is
possible by running the script:

sudo scripts/setup.sh
SPDK’s identify example application shows whether the selected device is capa-

ble of supporting the CMB and which options can be used. This is the command
to use, by properly entering the PCI ID of the device:
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Figure 3.3: SPDK identify command output.

./build/examples/identify -r traddr:<pci id of ssd>

cmb_copy example application copies NLBAr starting from the SLBAr LBA
from the Nr namespace on the read NVMe SSD to the NLBAw starting from the
SLBAw LBA from the Nw namespace on the write NVMe SSD using the CMB of
the device specified in -c as a DMA buffer.

./build/examples/cmb_copy -r <pci id of write ssd>-Nr-SLBAr-NLBAr -w
<pci id of write ssd>-Nw-SLBAw-NLBAw -c <pci id of the ssd with cmb>

3.2.1 QEMU
The validation of the operation and of the necessary settings for P2P and compu-
tational storage are initially entrusted to QEMU, to exploit once again the great
flexibility. As mentioned, a new shared memory, called CMB_shm has been added
to the design. Through the CAP.CMBS register the characteristics of the P2P bar
have been set. Bar2 was chosen as the PCIe Bar to host the CMB space. A 4MB
space has been reserved for the CMB Bar. Data reads and writes to the CMB are
obviously supported, while Submission Queue and Completion Queue writes to
that space are not. The SPDK Identify command in figure 3.3 confirms that the
desired settings have been correctly interpreted by the Host.

For the P2P validation test, a native QEMU device, called NVMeQEMU, was
used as support, in addition to the NVMe controller, to simulate the passage of
data from one device to another. Note that the NVMeQEMU has 512B LBAs.

The test consists of two SPDK cmb_cpy commands. The first is as follows:

• r: ControllerNVME-1-0-1

• w: NVMeQEMU-1-2-8
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Figure 3.4: Read command received from the NVMe Controller from SPDK.

• c: ControllerNVME

This means that a single LBA, LBA 0, of the NVMe controller must be written
to the disk at the LBA2 of NVMeQEMU through the CMB Bar made available
by the ControllerNVME device. NVMeQEMU requires that the last field of the
command be set to 8 because the LBA is at 512B and not at 4096B. Figure 3.4
shows the read command sent to the NVMe Controller. PRP1 in DW6 contains the
address of bar2 of the NVMe Controller, verifiable through the use of the lspci
-vvv command, added to a certain offset. Specifically, the address is 0xf9000000
with an offset of 0x001FB000. Unexpectedly, however, this address is not indicated
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Figure 3.5: Write command received from the NVMe Controller from SPDK.

in the CMBMSC register of Bar0, as specified in the standard. However, this does
not result in an error in the execution of the command.

The second SPDK command sent is:

• r: NVMeQEMU-1-2-8

• w: ControllerNVME-1-2-1

• c: ControllerNVME

This means that the previously written NVMeQEMU LBA2 must now be written
to the disk at the NVMe Controller LBA2 via the CMB Bar made available by
the NVME Controller device. Figure 3.5 shows the write command sent to the
NVMe Controller. The PRP is again the same used in the previous command. The
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Figure 3.6: NVMe Controller LBA0
content.

Figure 3.7: NVMe Controller LBA2
content.

result of these two serial operations should result in the NVMe controller LBA0
and LBA2 being identical. The result shown in figure 3.7 confirms this hypothesis.

Once the P2P mechanism was validated it was easy to add data processing. A
simple function, called Computational_Sum(), is triggered when a read command
with corresponding PRP from the P2P Bar, with any offset, is received by the
NVMe Controller. The function simply adds 1 to all received 32-bit data. The
previous simulation was repeated, this time activating the Computational_Sum()
function. Figure 3.8 shows the obtained results.

3.2.2 FPGA
Once verified the correct setting and functioning of the peer-to-peer through QEMU,
the test was extended to the implementation on FPGA. The same CMB settings
presented in figure 3.3 have been maintained. To obtain a 4MB Bar to be used as
a CMB it was not possible to use a BRAM as done for the BAR0 due to lack of
space. It was necessary to use the DDR of the ARM.

It is not currently allowed to use cmb_copy with a single device. It was therefore
necessary to create a new setup, which included two devices, loaded on two FPGAs,
with identification C0C0 and C1C1. In both, the use of DMA was initially disabled.

LTTng [29], an open source tracing framework for Linux, was used for the tracing.

58



3.2 – Validation

Figure 3.8: Contents of LBA2 after using Computational storage.

The first test involved sending and processing 1MB (256 LBA) between the C0C0
device and the C1C1 device using the C1C1 CMB as a buffer. The parameters set
for cmb_copy are the following:

• r: ControllerNVME_C0C0-1-0-256

• w: ControllerNVME_C1C1-1-2-256

• c: ControllerNVME_C1C1

To allow a comparison between the use of the CMB and the use of host memory
as a buffer for exchanging information between two NVMe devices, some changes to
the cmb_copy code have been made. Through the use of spdk_dma_malloc which
allows to allocate memory space in the Host memory, it was possible to replace
the CMB address with a Host memory address, creating an easy way of comparing
the two implementations. The MBR is 4MB, the data rate taken as a reference
is 1MB, not very high but sufficient to understand the features and compare the
performances. The times have been taken from the sending of the reading until
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Figure 3.9: Comparison between serial and parallel implementation of
cmb_copy.c. Read (R) reading phase. Write (W) writing phase. (C) compu-
tational phase.

the reception of the DONE sign of the writing, thus excluding the generation part
of the address. The results are shown in table 3.1.

Buffer Number of LBA Time [ms]
CMB 256 28,050687
Host 256 729,351561

Table 3.1: 1MB transfer and processing times from C0C0 device to C1C1 device
using CMB and Host memory as buffer.

With the use of the CMB the time taken for reading, processing and writing is
about 28 ms, compared to more than 729 ms using the host memory, more than 25
times faster.

Parallel implementation

Some changes to the cmb_copy code have been made to allow for an improvement
in performance. cmb_copy uses a serial approach (figure 3.9 (a)).

After the initialization phase and after selecting the buffer address, the spdk_nvme
_ns_cmd_read function is executed to read the desired number of LBAs. This
function manages the sending of reading commands to the C0C0 device. Once
the read.done signal has been obtained, the writing phase on the C1C1 device
begins with the spdk_nvme_ns_cmd_write function until completion signaled by
the write.done signal. The implementation can therefore be defined as "serial".
To speed up the execution, a parallel version was created as shown in figure 3.9 (b).
The spdk_nvme_ns_cmd_read function is first executed on the first LBA to be read.
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Then cmb_copy enters a loop where the spdk_nvme_ns_cmd_write functions are
performed on the first LBA previously read and spdk_nvme_ns_cmd_read on the
second LBA. The loop restarts by updating the LBAs value to be taken into con-
sideration once the write.done and read.done signals have been obtained. Once
the loop is completed, the write function of the last LBA is performed. Figure 3.10
shows two examples of tracing through Flame chart of the serial (above) and parallel
(below) implementation. The first executes function spdk_nvme_ns_cmd_read and
spdk_nvme_ns_cmd_write, and its sub-functions, at the beginning of the cmb_copy
function and approximately in the middle of it. In the second, however, such func-
tions from only one LBA at a time are performed continuously in a loop until the
desired number of LBAs are consumed.

Table 3.2 shows the times for parallel implementation using the CMB and host
memory.

Buffer Number of LBA Time [ms]
CMB 256 92,300754
Host 256 601,038201

Table 3.2: 1MB transfer and processing times from C0C0 device to C1C1 device
using CMB and Host memory as buffer with cmb_copy parallel implementation.

By comparing table 3.1 and table 3.2, in the case of buffering in host memory
there is an improvement in performance, from 729,35ms to 601,03ms. In the
case of CMB, on the other hand, there is a clear worsening (from 28,05ms to
92.30ms), due to the wait times for read.done and write.done. The problem of
the slowness of the parallel implementation is due to the number of NVMe I/O
commands that have to be sent to the device. In the parallel implementation, the
spdk_nvme_ns_cmd_write and spdk_nvme_ns_cmd_read functions are executed
at each cycle, requiring a transaction of 4KB each. The host is therefore obliged
to send to the controller a read/write request of only one LBA (4KB) at a time.
For the serial implementation (original cmb_copy) instead, it is true that read and
write do not work in parallel, but the host can send read and write commands
larger than 4KB, using the PRP lists. Having to wait less interrupts the serial
implementation is faster.
To make the most of the NVMe I/O commands, the number of LBAs to read/write
at each cycle has been changed. In this way the commands sent from the Host to
the device will not have the maximum limit of 4KB each command but will be able
to exploit the entire PRP list (Up to a maximum of 32 LBAs per command, set as
the maximum limit). The graph 3.11 shows the time taken for a transaction (+
processing) of 1MB as the number of pages per cycle varies. The red line is the
serial reference (28.05ms). With only one LBA per cycle it is well over the line,
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Figure 3.10: Above, cmb_copy flame chart with serial implementation. Below,
cmb_copy flame chart with parallel implementation.
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Figure 3.11: Transfer + processing time of 1MB as the number of LBAs per cycle
changes in the parallel implementation of cmb_copy (NO DMA).

92,30 as seen. By increasing the number of LBAs per cycle, the time is reduced
until a minimum of 32 LBAs is reached as expected, with 18,56ms, well below the
serial threshold. It then grows again until it corresponds to the reference value
when each cycle corresponds to 1MB, therefore identical to the serial case. Even if
the host memory is used as a buffer, with a higher number of pages per cycle the
time for the transaction decreases, passing from 601.04ms to 576.11ms. Table 3.3
shows the numerical results just described. For the case with the CMB as buffer,
the times are shown as the number of LBAs per cycle varies, while for the buffer in
the Host memory only the minimum value with 32 LBAs per cycle, in addition to
the initial case with only one LBA per cycle.

Insertion of the DMA

In the measurements just described, the DMA block was deactivated, as mentioned,
so that all transactions, both the CMB writes and the host memory writes, were
performed via memcpy. Table 3.4 shows the same measurements previously seen
but this time with the DMA block activated.

The major improvements are present when working with host memory, in the
serial case it becomes 20 times faster, going from over 700 ms to just 36.02 ms,
while in the parallel one with one page per cycle 6 times, reaching 22.53 ms .
When using the CMB instead there is a minimal change of a few milliseconds. The
minimum, at 32 LBAs per cycle, goes from 18.56 ms to 17.57 ms, saving just 1
ms. This is due to the fact that only the read command received from the C0C0
device enjoys the benefits of DMA, while C1C1 copies the data from the CMB
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Buffer Number of LBA pages per cycles Time [ms]
CMB 256 1 92,30
CMB 256 2 53,01
CMB 256 4 35,71
CMB 256 8 24,11
CMB 256 16 20,56
CMB 256 32 18,56
CMB 256 64 21,48
CMB 256 128 22,17
CMB 256 256 28,77
Host 256 1 601,04
Host 256 32 576,11

Table 3.3: Transfer + processing time of 1MB as the number of LBAs per cycle
changes in the parallel implementation of cmb_copy, with both CMB and host
memory as a buffer.

Type Buffer Number of LBA pages per cycles Time [ms]
serial CMB 256 - 27,24
serial Host 256 - 36,02
paral CMB 256 1 93,55
paral CMB 256 2 42,13
paral CMB 256 4 33,01
paral CMB 256 8 21,62
paral CMB 256 16 18,57
paral CMB 256 32 17,57
paral CMB 256 64 19,03
paral CMB 256 128 21,47
paral CMB 256 256 27,61
paral Host 256 1 100,83
paral Host 256 32 22,53

Table 3.4: Transfer + processing time of 1MB as the number of LBAs per cycle
changes in the parallel and serial implementation of cmb_copy, with both CMB
and host memory as a buffer, using DMA.
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Figure 3.12: Transfer + processing time of 1MB as the number of LBAs per cycle
changes in the parallel implementation of cmb_copy (DMA).

buffer to the back-end memory via memcpy. The cycle still has to wait for both
operations to be concluded so it does not gain much time. The graph of the time
as the number of LBAs per cycle changes, shown in figure 3.12, however, remains
consistent with expectations.
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Chapter 4

Future steps and Conclusion

The main purposes of the following chapter are to describe some optimizations
and improvements to be applied to the described devices and to draw the final
conclusions, with particular emphasis on the possible applications.

4.1 Optimizations and Improvements
The section retraces the previous chapters to highlight possible optimizations that
may lead to improvements in terms of costs and speed.

Management of completion queue entries

In chapter 2, it has been underlined how the completion queue entries, once created,
are saved in the memory of the controller and kept until all the submission queue
entries of the selected queue have not been all served. Then they are written
into the host memory and, once the writing is complete, the interrupt is sent. In
both Flame graph 2.8 and 2.9 it is evident how these operations managed by the
functions cq_creating_and_saving and cq_completion_pcie_upstream require
a large amount of time, as well as cost for the storage space of completion queue
entries in the controller memory. A first possible solution could be to write the
completion queue entry directly into the memory once it is generated. Once all
the Submission queue entries have been served, the interrupt is sent. This method
would save both time, since it is no longer necessary to copy the completion queue
entry into the memory of the controller and read it again during the sending phase,
as well as cost saving, freeing up space in the controller memory.

Another possibility to improve costs and speed of execution is to use the CMB
to store the Completion Queues and access the content directly. In the CMBSZ
field of BAR0 it is possible to set Completion Queue Support (CQS). The controller
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thus signals to the host that it can support completion queues within the Controller
Memory Buffer.
The same path could be followed for the Submission Queues. By appropriately
setting Submission Queue Support (SQS) in the BAR0 it would be possible to
use this space to store the queues, allowing you to access them when necessary,
without having to save them in the controller memory as is currently done, saving
additional space.

DMA on FPGA

In chapter two, in the section 2.6 dedicated to the performance analysis of the
NVMe Controller on FPGA, it was seen how the addition of an IP CDMA allowed
to improve the performance of the device, reaching only one degree of magnitude
from the Samsung SMART Storage device taken as a reference. Currently, however,
as specified in the chapter, the DoSimpleTransfer function, which takes care of
sending the transfers and which is memcopy, is limited to only 4KB at a time. The
DMA block will therefore be able to transfer a maximum of 4KB at a time, thus
requiring several cycles for transfers of large sizes. One way to get even closer to
the reference could be to create a DMA block capable of accepting a list of PRPs
and managing it internally, so as to be able to perform writes and reads on the
host memory of more than 4KB, limited only by the maximum number of LBAs.
transferable with a single NVMe I/O command, currently set to 32, as seen.

Maximum number of LBAs per I/O command

The table 2.1 shows the characteristics set for the NVMe controller and for the
Computational Storage accordingly. Max Data Transfer Size is the maximum
number of Bytes that can be transferred with a single I/O command. It is set
to 131072, which is 32 LBA. This value has been selected keeping the settings
used in the OpenExpress [13] project, considered at first suitable for the purpose.
Having a maximum value of LBAs per transfer made it possible to save the list of
PRPs in the controller memory, making it easy to handle. However, during the
evolution of the project it emerged that this setting has important consequences
on performance. As seen in Chapter 3, Table 3.11 and 3.12 table, the shortest
transfer and processing time for parallel implementation is achieved precisely at
transfers of 32 LBAs at a time. By varying the maximum number of transferable
LBAs at a time, this minimum could be further lowered, until the optimal value
is found. As seen in the previous section 4.1, by creating a DMA block capable
of handling PRP lists, the maximum number of PRPs that can be handled by a
single transfer would currently be 32. Also in this case, by varying the Max Data
Transfer Size it would be possible to improve performance for large data transfers.
By appropriately setting the mdts field in the Admin Identify Controller Data

68



4.2 – Applications and Conclusions

command, it is possible not to impose limitations on the maximum number of
Transfers per I/O command. This would not make it possible to save the contents
of the entire list into controller memory as it is currently done. A possible solution
could be to manage each PRP individually by extracting it from the list in the
host memory one at a time. Or you could re-exploit it in CMB. As already seen
previously for submission queues and completion queues, the Controller Memory
Buffer is able to host also the PRP lists, by appropriately setting the LISTS field
inside the BAR0.

SPDK problems and p2pmem

SPDK was very useful for testing the functioning of the CMB and Peer-To-Peer.
As seen in chapter 3, cmb_copy was used between two Controller_NVMe, using as
Buffer the CMB of the device that receives the write command, as described in
figure 3.2. On the other hand, difficulties have been encountered in carrying out the
same operation but using the CMB of the device receiving the read command as a
buffer. Taking the example of chapter 3 with C0C0 reading and C1C1 writing, the
C0C0 device correctly receives the read command and fills its own CMB. However,
the C1C1 device does not seem to be able to read in the BAR2 of C0C0 dedicated
to the CMB. Also, as described in the specification [1] and mentioned in the chapter
3, the register 0x50 in the BAR0 called Controller Base Address should contain
the address of the BAR2 where the CMB assigned by the Host resides. Using
SPDK, this register is never set forcing to enter the address manually. SPDK is
not standard and uses its own drivers and not the native Linux ones. A further
step will surely be to move towards using p2pmem [30]. P2pmem is a Linux kernel
framework to allow PCIe devices to exchange DMA while under the control of
the host CPU. The use of p2pmem was tested on QEMU after recompiling the
kernel by adding the appropriate settings in Kernel Configuration/Device Drivers,
but not all intel processors allow p2p, only a few are whitelisted in the kernel.
Unfortunately the one available is not among them.

4.2 Applications and Conclusions

4.2.1 Applications
The document "Computational Storage Architecture and Programming Model" [5]
written by SNIA, as already seen in the previous chapters, specifies the definitions
of the world of Computational Storage dictates some guidelines on the possible
structures that can be used for the realization through different application examples.
It also provides some possible uses in the chapter called "Computation Storage
Services". Among the possible Fixed Computational Storage Services applications,
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in addition to the application of a simple expression on the data as seen in the case
described in the previous chapters, the following are highlighted:

• Compression: Read data from a certain location, compress/decompress them
and write the result to a destination location. The compression algorithm could
be set during the "Configuration" phase allowing greater flexibility. Likewise
it can be used for both single stream and multiple stream video compression
to allow parallel compressions.

• Encryption: in the same way it could be used for encrypts or decrypts the data,
varying both algorithm and keying information during the "Configuration"
phase.

• Encoding and Decoding.

• Data Deduplication: also for deduplication or, on the contrary, for Duplication,
the computational storage can be easily adapted, specifying the starting
location, the target location and the selected algorithm.

• Pipeline: combine several commands previously described together, performing
a series of operations on the data according to a specification of the data flow.

The application possibilities are therefore varied and find space in different
fields. Another example could be the applications in the field of mining, or rather
farming, of emerging cryptocurrencies such as Chia [31] that promise to solve the
problem of the enormous energy consumption required by blockchains such as
Bitcoin, replacing the "proof of work" paradigm, which requires the sharing of
computational power, with the "proofs of space and time" paradigm, where the
storage space is shared. In short, this operation consists of two moments:

• Plotting: consists of 4 phases. The first stage generates all your free space
tests by creating seven cryptographic hash tables and saving them in your
temporary directory. Stage 2 propagates back through the hashes, stage 3
algorithmically sorts and compresses these hashes into the temporary directory
as you begin building the final file, and stage 4 completes the file and moves
it to the final texture file.

• Farming: in which the created plots are checked against each new Chia network
block.

This seems to be the path taken by NGD Systems with Chia-AutoPlot CSD
[32], a computational storage device that automatically tracks Chia and moves it
to the hard disk, thus relieving the CPU of the burden of managing the plotting.
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4.2.2 Conclusions
The world of computational storage is constantly evolving and will probably be
widely implemented in the years to come. The latest NVM Express version Base
Specification 2.0 [33] released on 23 July 2021, incorporates a completely new Key
Value Command set, which is added to the I/O command set presented in the
chapter 2, which winks at the world of Computational Storage as underlined by
SNIA in the presentation entitled "Key Value Standardized" [34].

As described in "Key Value Command Set Specification, version 1.0" [35], the
NVMe-KV command set provides the key to store a corresponding value on an
NVMe memory, then retrieves that value from the media by specifying the key
corresponding. Access is therefore not done by address but by key. In this mode,
the data will no longer be addressed by a Logical Block Address, but by a key,
which will also allow not to have blocks of fixed size, but variable. The main
operations available are:

• Storing: Data is stored as a single value associated with a key.

• Retrieving: Data is received as a single value associated with a key.

• Deleting: key-value pair may be deleted.

• Listing: List all the keys present on the device.

SNIA has standardized a Key Value API [34] that works with NVMe Key Value,
allowing access to data on a storage device using a key instead of a block address.
The use cases are varied, from storing photos or videos as a single addressable object
to storing records associated with a unique identifier, but also for computational
storage with filtering by key or compression and decompression.

The computational storage device presented is the first step for the creation
of a performing device that allows in the future to achieve the performance of
devices on the market. There are several optimization possibilities as presented
in this last chapter. This work has allowed us to enter the world of NVMe and
computational storage which, as we have seen, is currently in its infancy, awaiting
the "Computational Storage Architecture and Programming Model 1.0" promised
by SNIA that officially draws the standard.
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Appendix A

Insights NVMe protocol

A.1 Phase Tag

Figure A.1: Phase tag example.

The phase tag (P) is a bit defined in the completion queue entry to indicate if
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that entry has just been entered. In this way the host can know if it is new without
having to consult any register.
Initially the reference completion queue is completely empty. The bit corresponding
to the PhaseTags are therefore all 0 (fig.A.1, (a)).
Completion queue entries begin to be inserted into the queue. These entries have
a PhaseTag value of 1. In the example in figure fig.A.1, (b) 3 completion queue
entries have been added. The host, by checking the phase tags, will be able to
determine how many new entries have been inserted.
Once the end of the queue is reached, all the positions of the PhaseTag bit of
the queue will be at a value equal to 1. The controller from now on must send
completion queue entries with phase tag equal to 0 to allow the host to distinguish it
from the previous entries (fig.A.1, (c)). When the queue is full again, the controller
will return to sending 1 as the phase tag, and so on.
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A.2 Round Robin and Weighted Round Robin
with urgent priority class

Figure A.2: Round Robin.

In the nvme protocol it is possible to have more than 64000 queues. An arbitra-
tion mechanism is needed to determine which queue is to be served.
The simplest method is called Round Robin (figure A.2). All queues are assigned
the same priority, the order of execution is based on the order of arrival in the Ready
list in a circular manner. It is also the easiest method to implement, not having
to manage any priorities. All NMVe controllers must be able to handle this method.

An optional method for NVMe controllers is the Weighted Round Robin with
urgent priority class. In this case each queue is associated with a certain priority
which establishes which queue has the right to be served before the others (figure
A.3). Normally, the admin queue is associated with a higher priority. Queues
with the same priority are served following Round Robin arbitration. Priority is
assigned when creating the submission queues through the QPRIO field.
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Figure A.3: Weighted Round Robin with urgent priority class.

A.3 Physical Region Pages
The Physical region pages entry is a pointer to a 64-bit physical memory address. It
is used as a mechanism for data transfer between the controller’s back-end memory
and host memory. As shown in figure A.4 The PRP is made up of two parts: Page
Base Address and Offset. The value of n is determined by the physical memory
page size, which is specified in the CC.MPS field of the BAR0 (Table 1.3). For
example, if the memory pages are 4KB then bits 11: 0 represent the offset, while
the remaining 52 bits are the Page Base Address. The offset is DW aligned, so the
first 2 bits should be 00b.
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Figure A.4: PRP field.

In case the data exchange between controller and host exceeds the size of a
physical page, the NVMe commands have a second field for the PRP. It is possible
to divide it into two cases: adding a second PRP is sufficient or it is necessary to
add more PRPs.
If it is sufficient to add a second PRP (figure A.5) it will simply be indicated in
the appropriate field as for the first PRP with null offset.

Figure A.5: Case 1: two PRPs are sufficient for the amount of data to be
transferred.

In the second case, the second field of the PRP must not be interpreted by the
controller as a simple PRP, but as a pointer to a list of PRPs (figure A.6). Each
PRP in the list will have a null offset.
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Figure A.6: Case 2: two PRPs are not enough. The second PRP therefore
represents a list of PRPs.

A.4 MSI-X Advantages

Message Signaled Interrupts (MSI) are an alternative in-band method to signal
an interrupt, they use messages to send the interrupt and therefore do not need
dedicated pins, which makes the device simpler, cheaper and more reliable. They
are supported by version 2.2 of PCI-Express.
PCI defines two extensions for message signaled interrupts: MSI and MSI-X. The
former can send up to 32 interrupts, while the latter up to 2048 to facilitate
communication with more processors.
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Figure A.7: System architecture to intercept NVMe commands sent using Wire-
Shark.

A.5 Wireshark
• Target:

– Lauches SPDK_OF Target.
– Configures the SPDK target.
– Waits...

• WireShark:

– Captures packets on bridge.

• Host

– Connects to target.
– Check if NVMe drive is found.
– Check if partitions exists (if not creates it and formats the disk).
– Mounts partition.
– Write "Hello REDS!" to file.
– Unmounts partition.
– Disconnects drive.
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