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1 Introduction

Semisupervised learning finds its place between unsupervised and supervised learning, in the panorama of machine
learning algorithms. A semisupervised algorithm works on a partially labelled dataset, i.e. a dataset with a (usually
small) fraction of labelled data and a (large) fraction of unlabelled ones. Many real problems fall in the category of
semisupervised learning because of the scarcity of labelled data and the aboundance of unlabelled ones, mainly due
to the difficulty or cost of the labelling process carried by humans or by expensive experiments [35, 28], opposed
to the breakthrough of data collections that characterizes these last few years [17].
The study of semisupervised learning is motivated by its practical value in building better computer algorithms,
as well as by its theoretical value in understanding the learning process in machines and humans [14]. Since it
merges features of supervised and unsupervised techniques, semisupervised learning is theoretically difficult and
not always helpful [4, 10]. Indeed, blindly selecting a semisupervised learning method for a specific task, using
the wrong model assumption, can lead to a worse performance with respect to other types of learning [2]. These
difficulties are perhaps the causes of its still modest popularity.

A classification task consists in an inference process where we have to cathegorize unlabelled data, on the ba-
sis of some assumptions and partial or noisy observations.
Among several proposed approaches to perform classification, graph-based methods involve three steps: graph
creation, graph weighting and inference [16, 27]. The creation of a graph G = (V,E) consists in assigning to each
vertex a data point and representing the observed similarities through the edges. If the similarities are quantified,
to each edge is assigned a weight Jij . The assumption behind graph-based methods is that labels are smooth with
respect to the graph, in the sense that if two nodes are connected by a large positive edge, they tend to have the
same label, if else the edge is small, or negative, they tend to have different labels [35]. In other words, if two
data points are found to be very similar, with high probability they will belong to the same class. After graph
construction and weighting, the next step to perform the inference is to identify a cost function to minimize, that
penalizes edges with large positive weight to be assigned different labels and viceversa.
In this sense, many different cost functions have been proposed for unsupervised learning, that are expressed in the
form of ŷAŷ, where ŷ is the vector of predicted labels and A is a generic matrix, depending on the cost function,
whose spectral properties are informative for the detection of classes (e.g. adjacency matrix, Laplacian [21],...).
The algorithms based on the spectrum of such matrices are then called spectral algorithms.

The minimization of the cost function is however an arbitrary method and gives a hard binary classification.
Moreover, standard spectral algorithms turn to be suboptimal or even fail to predict classes for sparse graphs
(graphs with a low average connectivity), for a multiplicity of reasons [32]. We can refine the inference by applying
statistical physics tools, through a Bayesian approach (see [31] for an exhaustive review). In this way, many fea-
tures can be understood for simple generative models, such as the Stochastic Block Model (SBM, see section A) or
the Censored Block Model (CBM). For the Stochastic Block Model, for example, it has been conjectured that no
polynomial algorithm can detetect classes below a certain threshold [8]. Furthermore, efficient spectral algorithms
that manage to detect communities down to this threshold have been recently developed by the statistical physics
community and proved to be optimal for the SBM, namely Non-Backtracking [18] and Bethe-Hessian [24, 7]. These
have been then adapted to the unsupervised Censored Block Model in [26].

In a semisupervised framework, the cost function must include also the information surplus given by the reve-
lation of some true labels, or any other kind of surplus information. Efficiently embedding this information is part
of the graph construction (and weighting) and is a hard and important problem.
The standard way to proceed is to modify the algorithms of unsupervised learning in order to encode this surplus
of information [35]. For example, to the minimization of the cost function with the Laplacian matrix is added
the constraint of labelled data to be assigned their revealed true label (Laplacian regularization, see [1, 19]). As
the other more standard algorithms, also the recent spectral algorithms developed by statistical physicists have
been adapted to semisupervised learning, although not much has been done in this sense yet. In [25], the authors
try to adapt the Non-Backtracking matrix to a semisupervised problem by constantly fixing the labelled nodes to
their true value in the iterative process to find the Non-Backtracking eigenvector. Morevover, in [33] and [12] is
conjectured that the detectability threshold disappears for a SBM of two classes, as soon as we know a fraction of
labelled nodes.
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The scope of this work is to study a simple generative model such as the Censored Block Model in a semisu-
pervised setting, considering for simplicity the case of binary classification. We tackle the problem from a different
perspective with respect to [25], i.e. we focus on efficiently embedding the semisupervised information on the graph
and then we apply and analyze standard unsupervised algorithms on the derived configurations, namely naive mean
field (section 5) and adjacency matrix (section 6). Interestingly, we find that the inference with the latter, with the
proposed graph modification, is substantially unbalanced towards the semisupervised information (section 6.1). In
other words, the algorithm does not learn from unlabelled data. A similar problem, for high dimensional gaussian
generated data, has been noticed for the standard regularized Laplacian by [20] and solved in [19] with the intro-
duction of a centered adjacency matrix as well as a constraint on the norm of the prediction vector, controlled by
a hyperparameter. Similarly, we fix the problem of unbalancing by adjusting the adjacency matrix of the modified
graph (section 6.2). Last, we try to give an estimation of the modification factor, initially left as a hyperparameter
(section 6.4). Algorithms, simulations and possible extensions are reported in the last two chapters.
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2 The Censored Block Model

Starting from a set of n nodes assigned to two classes, the Censored Block Model consists in an Erdős–Rényi ran-
dom graph with probablity of drawing an edge between two nodes equal to c/n, c determining the level of sparsity
of the graph. Moreover, weights Jij are attached to the edges. They are binary random variables (±1) sorted in
the following way: considering that σ∗i and σ∗j are respectively the true classes (σ∗i = ±1) of nodes i, j and p ∈ [0.5, 1],

Jij =


σ∗i σ

∗
j w.p. p

−σ∗i σ∗j w.p. 1− p
(1)

In other words, for each edge, with probability p the informative coupling is taken (true information), with prob-
ability 1 − p the uninformative one (misleading information). The task is to construct an inference vector σ̂ that
maximizes the similarity with the vector of the true planted assignment σ∗.

2.1 An example: horse or donkey?

In order to better understand the Censored Block Model, let’s consider the following example.

On a table there are n pictures, n/2 representing a horse and the rest n/2 a donkey. A child, who has never
seen horses and donkeys before in his life, wants to learn how to distinguish these two, similar, species. He has no
other information but a tool that, choosing randomly a couple of pictures, tells him if the depicted animals are of
the same species or not. Unfortunately, this tool does not work perfectly: with some probability p > 0.5 it tells
the truth, else it tells a false information. In addition, the tool has a limited battery: for each possible couple of
pictures, it is applied only with probability c/n (the higher is c the more powerful is the battery).
The child, trying to divide the pictures in the group of horses and the group of donkeys, is exactly attempting to
solve the Censored Block Model!

2.2 Mapping to Ising Spin Glass

The Censored Block Model is also called Planted Spin Glass since it is pretty easy to map it to an Ising Spin Glass
model with couplings generated according to a planted assignment of spins as in (1). One can write the probability
of a coupling Jij to be equal to J = ±1 as

P (Jij = J |σ∗i , σ∗j ) = p1(Jij = σ∗i σ
∗
j ) + (1− p)1(Jij = −σ∗i σ∗j ) (2)

Defining a specific inverse temperature that we call βN

βN =
1

2
log

p

1− p
(3)

we can rewrite

P (Jij = J |σ∗i , σ∗j ) =
eβNJσ

∗
i σ
∗
j

2 coshβN
(4)

that can be intended as the likelihood of observing (Jij) having (σ∗i , σ
∗
j ) as planted assignment. With coupling

extracted indipendently from the above distribution, we find that the posterior probability of a configuration σ
given the observations (Jij), is given by Bayes theorem

P (σ|(Jij)ij∈E) =
P (σ)

∏
ij∈E P (Jij |σi, σj)
P ((Jij)ij∈E)

(5)

Assuming a uniform prior, the posterior probability of the configuration σ given the observations (Jij) is the
Boltzmann distribution of an Ising spin-glass model

P (σ|(Jij)ij∈E) =
eβN

∑
ij∈E Jijσiσj

Z
(6)

Note that a similar calculation can be performed for more than two classes, in which case we would end up with a
Potts model [23].
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2.3 Gauge invariance and Viana-Bray model

We can go further considering that any Ising Model is invariant under the following transformation (Gauge invari-
ance): for any τi = ±1, i = 1, ..., n

σi → σ̃i = σiτi Jij → J̃ij = Jijτiτj (7)

It is easy to check indeed that the transformed Boltzmann distribution P̃ verifies P̃ (σ̃) = P (σ). Choosing τi =
σ∗i i = 1, ..., n, we have that the couplings J̃ij are positive if informative and negative if uninformative, in other
words

P (J̃ij = J) =
eβN

2 coshβN
1(J = 1) +

e−βN

2 coshβN
1(J = −1) (8)

and the planted assignment of the transformed model is

σ̃∗i = +1 ∀i (9)

So we recovered another mapping, this time to an Ising spin-glass with nodes belonging all to the same class and
couplings with a ferromagnetic bias, i.e.

E[J̃ij ] = tanhβN > 0 (10)

as soon as p > 0.5. This setting corresponds to the Viana-Bray model, one case of Ising spin-glass with couplings
following a Bernoulli distribution like (8). The Viana-Bray model has been analytically studied by the statistical
physics community [29] and has the phase diagram reported in figure 1. Following [6], the phase is determined by
the temperature at which we decide to solve the problem T = β−1 and by the ferromagnetic bias of the couplings
E[J̃ij ]. The latter, as we have seen in (10), depends on βN , called Nishimori temperature. For large β and βN
(corresponding to a large ferromagnetic bias E[J̃ij ]), the system is in the ferromagnetic phase, where the typical
configuration tends to have all the spins aligned. For large β and small βN , instead, the system is in the spin-
glass phase, where the global magnetization is null ( 1

n

∑
iE[σi] = 0) but local order of the spins can be observed

( 1
n

∑
iE[σi]

2 6= 0). For small values of β (large T ) and sufficiently small ferromagnetic bias, the system is in the
paramagnetic phase, where the average magnetization of each spin is null.
Since the planted assignment of the Viana-Bray model to which we mapped the original problem corresponds to
all the spins in the same class, the inference is possible if and only if the average magnetization of the Viana-Bray
model is different from zero, i.e. if and only if it is in the ferromagnetic phase.
The Nishimori temperature βN , that can be computed exactly with the knowledge of the generative model through
(3) (i.e. knowing the reliability of the tool used by the child), comes from the application of Bayes theorem and
corresponds to the optimal temperature at which solving the model to get the best inference. This can be seen also
in the phase diagram, as it can be proved that the system at βN is either in the paramagnetic (undetectable) or in
the ferromagnetic (detectable) phase (see the red line in fig. 1). The value of βN at the paramagnetic-ferromagnetic
transitions thus determines the detectability threshold. After applying conjectures on the location of transition
lines (and thus tricritical points)1, the detectability threshold turns to be exactly the one predicted in (68) for the
Censored Block Model with two classes,

c >
1

(2p− 1)2
(11)

Replacing, or erroneousely estimating, βN with another β will lead to a decrease in performance. For example,
looking for the ground state configuration corresponds to set β → ∞, which within this picture is manifestly
suboptimal. This being said, many algorithms (included the adjacency matrix proposed later) solve the inference
problem looking for the ground state of the constructed Hamiltonian2, so neglecting any entropic term (the typical
configuration of extracted Jij is generally not the most probable one) and setting far from the Bayes optimal
(Nishimori temperature) regime. This may be justified when we do not dispose of any information on the generative
model (i.e. when the child does not know at all how well his tool performs) or in the trivial case of no uncertainty
on similarities, p = 1; indeed there βN →∞.

1The calculus of the localizations of the transition lines is not reported, see [23] for a slightly more specific treatment.
2Looking for the ground state of a cost function, e.g. the coupling Hamiltonian, corresponds to the so called MinCut problem [3]

and it is also NP-Complete.
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Figure 1: Phase diagram of Viana-Bray model. In red the Nishimori line that passes through the tricritical point
and never enters in the spin glass phase. Image taken from [23].
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3 The Semisupervised Censored Block Model

The paragraphs before refer all to unsupervised models, i.e. where no further information than the one carried by
the edges is present. Now we introduce the Semisupervised Censored Block Model, in which the true label of some
nodes is revealed.

In other words, a teacher, who knowns if the pictures represent a donkey or a horse, comes and helps the child by
revealing him the correct animal (true label) depicted on some of the pictures.
By exploiting the further information given by the teacher, the child can implement a better prediction on still
unknown pictures: he is solving the Semisupervised Censored Block Model!

Intuitively, as soon as the child can apply once his tool, if he perform his prediction on an unlabelled data only
considering the similarities, if there are, with the labelled ones, then on average he would infer better than random
guess. This is essentially why, as soon as c > 0, the detectability threshold disappears. Once again, we could know
the generative model (so the probability p, and thus βN ) and being automatically in the Bayes Optimal setting, or
not. In the second case, the child can estimate the tool’s efficiency (p) by looking at how well it performed on the
labelled dataset, as it is better explained at the end of this section.

3.1 Formulation

The graph is the same Erdős–Rényi with average degree c and couplings whose weights are given by (1). Then the
true labels of some nodes are revealed, in number nl = νn, with ν the fraction of labelled nodes. We refer to nu as
the number of unlabelled nodes, U,L respectively to the set of unlabelled and labelled nodes, σu, σl as the vectors
of respectively unlabelled and labelled, σ̂u as the vector of inference of the unlabelled belonging classes. By σi or
σj we refer instead to single spins.
The goal is to optimize the inference only on unlabelled nodes, which corresponds to maximize

O(σ̂u) =
1

nu
σ̂Tu σ

∗
u (12)

Since this quantity (12) which we refer as ”overlap” is O ∈ [−1, 1] we define alternatively the following quantity,
which we call ”score”

S(σ̂u) = 2

∣∣∣∣ 1

nu

∑
i∈U

1(σ̂i = σ∗i )− 0.5

∣∣∣∣ (13)

which has the property to be S = 0 for random guess and S = 1 for perfect recovery. Moreover, since in the
configurations where we can apply spectral algorithms (where only couplings are present) the two true classes are
defined unless a global spin flip, (13) takes into account this fact producing the same score for σu → −σu. This is
why in the simulations that will follow we estimate the algorithm performance through the score defined in (13)
instead of the overlap (12).

3.2 Semisupervised Ising Spin Glass

There are various possible ways to embed the information surplus deriving from the knowledge of the true label of
some nodes, which we call semisupervised information. For example, the semisupervised information can be seen
as prior in the Bayes equation (5), or else embedded through modification of the couplings between labelled nodes
that become always informative and with infinite modulus. This is the way we procceed in the next section. For
now, it is sufficient to see that the semisupervised information, if encoded in the Bayes derivation (5), brings in
any case to a different posterior and thus an Ising model that cannot be mapped anymore to a Viana-Bray model.
Let’s pretend that we decided to encode the information of the true label of some nodes in the form of a prior, (5)
becomes

P (σ|(Jij)ij∈E) ∝ e
∑
i∈L hiσieβN

∑
ij∈E Jijσiσj (14)

where hi = ±∞ are the infinite field related to the labelled nodes and pointing towards their revealed true polar-
izations.
Looking at the new Ising model of (14), one can ask if the temperature βN calculated as (3) is still the optimal
temperature at which solving the Ising model (i.e. if considerations made in the section before are still valid), or
not: on one side βN comes from a Bayesian inference and it should be exact, on the other side the semisupervised

8



information is encoded in a totally arbitrary way. However, if we have the certainty on the true label of some
nodes, we set the fields to infinity and no problem arises: the Ising model can be reduced to only unlabelled nodes
and βN will still be optimal3. As soon as we do not have the certainty on the label, but only a higher probability
for some nodes to be in a class rather than in another, fixing the correct field hi is tricky as it would influence
the whole model (temperature included). The second is an interesting case and very likely in real-life (even the
labelling process is not 100% correct!), but for the sake of simplicity is not treated here.4

Considering this, we will continue to use βN to solve the Ising model associated to the Semisupervised CBM. More-
over, we will exploit the fact that βN , even if not known a priori, can be empirically estimated in a semisupervised
setting from labelled-labelled connections as

p̂ =

∑
ij∈~E,i,j∈L 1(Jij = σ∗i σ

∗
j )∑

ij∈~E,i,j∈L 1
(15)

and thus

β̂N =
1

2
log

p̂

1− p̂
(16)

3Actually βN will still be Bayes optimal, but in principle nothing guarantees that it is also the best temperature to solve the new
”semisupervised” Ising model. However, arguments for the analogy of the Bayes optimal temperature and the Nishimori temperature
for a general model can be found in [31].

4One further point argued by [13] is that the introduction of labelled nodes (further constraints) increases frustration, enlarging the
Spin-Glass phase and making the free energy landscape more ragged: if we solve numerically the problem with Montecarlo methods at
a generic temperature β, with high probability they get stuck in local suboptimal minima.
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4 How to include the information on labelled nodes?

In graph-oriented semisupervised clustering we have the advantage of possessing some further information on some
nodes, i.e. knowing their true label. The game is then to find a good strategy that reduces the initial problem to
an efficiently solvable one. The considerations in this section are not only linked to the Censored Block Model, but
can be easily generalized to any model that can be mapped to an Ising Spin Glass.

In the unsupervised setting, the probability of a configuration in the Ising model correspondent to the CBM
is, as we have seen,

P (σ) ≡ P (σu, σl) =
eβ

∑
<ij>∈E Jijσiσj

Z
(17)

In a semi supervised problem we have information about the labels of some nodes, i.e. σl are no longer random
variables but are fixed to a value σ∗l = ±1 according to their true class. We could represent this gain of information
as a difference in entropies

∆S = S[P (σu, σl)]− S[P (σu, σl|σl = σ∗l )] (18)

where the probability of the first term of the r.h.s. has been defined before and the one of the second is actually
restricted on the unlabelled nodes and reads

P (σu|σl = σ∗l ) =
eβ

∑
i,j∈U, Jijσiσjeβ

∑
i∈U,j∈L Jijσiσ

∗
j eβ

∑
i,j∈L Jijσ

∗
i σ
∗
j

Z
(19)

For simplicity of notations, < ij >∈ E or i, j : i < j have been omitted under every sum (notice however that when
the edge is not present it just contributes with a factor 1). We are interested in finding equivalent forms of (19), in
order to reshape the semisupervised problem in a convenient way. Indeed, being approximations, algorithms may
work better (or being better understood) on a configuration rather than on another.
The section is organized as follows: first we see two ways to polarize labelled nodes, the second one using only
edges and thus permitting the application of spectral algorithms. Then we derive another configuration for the
semisupervised problem that reduces the graph to the unlabelled subgraph, paying the price of introducing finite
fields. From this perspective, it will be straightforward to identify the two kinds (semisupervised and unsupervised)
of information and to notice how in a semisupervised setting the threshold disappears. Last, we introduce another
configuration, this time consisting of an approximation of (19), but whose highest probability vector (i.e. its ground
state) is shown to be equivalent to the one of (19).

4.1 Polarizing labelled nodes

The most intuitive way to artificially make a labelled node polarize is by adding in the Hamiltonian an infinite
local field that points towards the direction of its assigned class. In other words, for each labelled node we insert a
prior in the Bayes theorem equation (5) and we end up with

PIF(σu, σl;C|σ∗l ) =
eβ(

∑
i,j∈U Jijσiσj+

∑
i∈U (Cσ∗i )σi)

Z ′
(20)

with C →∞. We call this configuration ”Infinite Fields”. This is similar to what has been done in one of the first
papers on the topic [30], although there the fields to polarize labelled nodes are set finite. Obviously, the marginal
distribution of the unlabelled PIF (σu) =

∑
σl={±1} PIF (σu, σl;C|σ∗l ) is the same as (19), as the probability of a

configuration with some labelled polarized oppositely w.r.t. their fields is null.
However, the presence of fields does not allow us to implement spectral algorithms, that can take as inputs only
pairwise couplings. Thus we propose another method to artificially polarize labelled nodes using only edges,
consisting of setting infinite labelled-labelled couplings, ferromagnetic (+∞) if the two labelled nodes belong to
the same class, antiferromagnetic (−∞) otherwise. This corresponding to an Ising model here called ”Infinite
Couplings”

PIC(σu, σl;C|σ∗l ) =
eβ

∑
i,j /∈L Jijσiσjeβ

∑
i,j∈L(σ

∗
i σ
∗
jC)σiσj

Z
(21)

with C → ∞. In order to ensure a correct polarization, one may have to draw a Minimum Spanning Tree (MST)
on the subgraph of labelled nodes, otherwise there could be clusters with uncoherent polarizations. Anyways,
this turns not to be the case for sufficiently high average connection c of the original ER graph and sufficiently
high percentage of labelled nodes ν. Similar ideas have been used in the context of the Stochastic Block Model

10



by [9], where the authors modify the corresponding Potts Hamiltonian enclosing in further edges the information
given by the revelation of some labels. The method is well described and inserted in a wider context in [34].
Although inserting in the graph potentially infinite cuplings (anyways, in other more general problems C could
be set not necessairly to ∞ but tuned in order to reflect the reliability of the semisupervised information), this
configuration preserves the local tree-like structure of a the original graph, if it is sparse. Last, one can check again
that, unless an uninfluential global spin flip symmetry (PIC(σu, σl) = PIC(−σu,−σl)), the marginal probability
PIC(σu) =

∑
σl={±1} PIC(σu, σl;C|σ∗l ) with C →∞ is the same as (19).

4.2 From nodes to fields

The last factor in the numerator of the r.h.s. of (19) is just a constant, so (19) can be rewritten as

P (σu|σl = σ∗l ) =
eβ

∑
i,j∈U Jijσiσjeβ

∑
i∈U,j∈L Jijσiσ

∗
j

Z ′
(22)

Defining for each unlabelled node i ∈ U a field that encodes its connection with labelled nodes as

hi =
∑

j∈L:<ij>∈~E

Jijσ
∗
j (23)

we find that the probability of a configuration after revealing the labels of a set of nodes L becomes the Boltzmann
weight of an Ising model restricted to the unlabeled nodes i ∈ U with fields given by (23), i.e.

PFF(σu|σ∗l ) =
eβ(

∑
i,j Jijσiσj+

∑
i hiσi)

Z ′
(24)

which goes under the name of ”Finite Fields” and corresponds exactly to (19) restricted to unlabelled nodes.
It is easy to see that independently from the couplings Jij as long as the vector of fields h 6= 0nu (so for c > 0 and
ν 6= 0) and β = βN 6= 0, the expected value of the local field points towards the true magnetization of the node, i.e.
σ∗i E[hi] > 0 and thus solving the Ising model would give predicted magnetizations averagely aligned with fields,
thus on average a performance better than random guess. This argument supports once again the disappearance
of the threshold in semisupervised problems, showed for the Stochastic Block Model for two classes by [33], which
is claimed more rigorously in the upcoming sections. The proposed configuration (24) represents an improvement
with respect to [30], since the system to solve has n − nl = nu nodes. Moreover, it is clear from the Hamiltonian
of (24) that we isolated two different kinds of information:

• the term
∑
i,j Jijσiσj encodes the ”unsupervised” information through the couplings {Jij}

• the term
∑
i hiσi encodes the ”semisupervised” information through the fields {hi}

Artificially enlarging one term rather than another would correspond to rely more on semisupervised or unsupervised
information.

4.3 From fields to edges

Now let’s try, starting from (24), to shift the information exclusively on edges, in order to be able to devise spectral
algorithms. Basically, we add a further node to the unlabelled graph, namely the new spin σ+, and rewrite each
field associated to a node i as a coupling between node i and the added node. Doing so, we end up with the
configuration

PFC(σu, σ+|σ∗l ) =
eβ(

∑
i,j Jijσiσj+

∑
i hiσiσ+)

Z ′′
(25)

which we call ”Finite Couplings”.
Computing the marginal on unlabelled of (25)

PFC(σu|σ∗l ) =
∑

σ+=±1
PFC(σu, σ+|σ∗l ) =

eβ(
∑
i,j Jijσiσj+

∑
i hiσi)

Z ′′
+
eβ(

∑
i,j Jijσiσj−

∑
i hiσi)

Z ′′
(26)

we notice that it does not correspond anymore to (19). However, the most probable configuration (i.e. the ground
state) of (25) restricted to unlabelled and (24) are the same:

arg max
σu

PFC(σu|σ∗l ) = arg max
σu

PFF(σu|σ∗l ) (27)
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We can understand this by noticing that depending on the polarization ±1 of the spin σ+ in (25), the unlabelled
spins σu will arrange to minimize the Hamiltonian in one of the two symmetric configurations +σu or −σu.
Being the coupling term invariant under this global spin flip, whatever polarization σ+ there will be one of the
two symmetric configurations +σu or −σu that equivalently minimizes the Hamiltonian. Moreover, these two
configurations correspond to the same inference. Thus, the ground state configuration does not really depend on
the polarization of the added node σ+.
Another way to see this is rewriting (26) as

PFC(σu|σ∗l ) =
eβ(

∑
i,j Jijσiσj) cosh(β(

∑
i hiσi))

Z ′′
(28)

Arguing that configurations with spins (partially) aligned with fields have a much higher probability to happen
and noticing that for this kind of configurations the hyperbolic cosine will be dominated by one of its two terms,

cosh(β(
∑
i

hiσi)) ≈ eβ(
∑
i hiσi) (29)

unless constants, and the approximation is more valid the greater is β, then (26) will resemble at (19). Specifically,
setting β →∞, the configurations turn to be exactly the same (which means that their ground state is the same,
too). Having similar free energy profile and same ground state, for not too hard problems and sparse graphs we
take (25) as a good approximation of (19) and use it to perform the inference through the adjacency matrix. Indeed
in the next section we interpret the adjacency matrix as a ground state search with relaxed constraints as well as
the hessian of the mean field free energy. We preferred the Finite Couplings configuration rather than the Infinite
Couplings, since the perturbation on the unsupervised adjacency matrix is more tractable (as well as the matrix
has reduced size).

12



5 Inference with Naive Mean Field

5.1 Theoretical background

Before applying the algorithms on the derived configurations, we briefly revisit the derivations and interpretations of
the mean field approximation and the adjacency matrix spectral algorithm. The complete derivations are reported
in the ”Theoretical Background” section of the appendix and will be used in the successive sections.
The Naive Mean Field approximation is derived by the minimization of the mean field variational free energy
(section B.1), to underline the analogy with the derivation of Bethe-Hessian (not reported), where instead the
variational free energy has to be minimized under Bethe distribution. If the mean field variational free energy
brings to a fixed point equation (Naive Mean Field Equation), the Bethe free energy minimization is made through
its (Bethe-)Hessian calculated at the paramagnetic m = 0 point. The eigenvector correspondent to the smallest
eigenvalue of the Hessian represents the steepest directions for which the paramagnetic point is unstable, thus it
points towards a minimum of the related free energy and corresponds to an assignment of spin magnetizations
correlated to their true classes. We can still apply an analogous idea to the simpler mean field free energy: doing
so, we get that the Hessian is bijectively linked with the adjacency matrix J (section B.2). Moreover, we find that
in this minimization the inverse temperature ceases to play a role (the eigenvectors of the Adjacency Matrix stay
the same under a rescale of the couplings). Thus the adjacency matrix, not including temperature, does not operate
in the Bayes optimal regime. This is confirmed by the ideas in section B.3, where it is shown that the adjacency
matrix identifies the ground state of an Ising Hamiltonian with no fields (so a problem independent on the inverse
temperature β) relaxing the constraint of discreteness of spins. The latter represents a consistent approximation
of the original problem. In the last paragraph of the relative section in the appendix, we deepen the connection
between Mean Field approximation and the adjacency matrix, that turn to be equivalent if we set β for the mean
field as β = 1

λmax
, where λmax is the largest eigenvalue of the correspondent adjacency matrix, once 1

λmax
is small

enough.

5.2 Naive Mean Field on the derived semisupervised configurations

Calling m the magnetization vector and β the external parameter interpreted as the inverse temperature, the Naive
Mean Field algorithms gives an approximation of the average magnetization of each spin by looking for a fixed
point of the celebrated mean field equation, so gives a m̂ such that

m̂ = tanh (β(Jm̂+ h)) (30)

where J is the Adjacency matrix of the graph and h is the vector of fields. If we apply the Naive Mean field algorithm
to the different exactly derived semisupervised configurations listed in section 4, we find that they correspond to
the same mean field equation and we get exactly the same performance. Indeed, for example for the configuration
with IC whose Hamiltonian is

−H(σu, σl) =
∑
i,j /∈L

Jijσiσj +
∑
i,j∈L

(σ∗i σ
∗
jC)σiσj (31)

the naive mean field equations are for labelled L and unlabelled U nodes respectively

i∈ L mi = tanh

(
β(
∑
j∈∂i,j∈U Jijmj +

∑
j∈∂i,j∈L(σ∗i σ

∗
jC)mj)

)
i ∈ U mi = tanh

(
β(
∑
j∈∂i Jijmj

)
(32)

For the labelled nodes i ∈ L, the infinite term, always present by construction, dominates and they always correctly
polarize to mi = σ∗i . Once labelled polarized, the system is reduced to unlabelled with equations

i ∈ U mi = tanh

(
β(

∑
j∈∂i,j∈U

Jijmj +
∑

j∈∂i,j∈L

Jijσ
∗
j )

)
(33)
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This is exactly the mean field equation that we would have obtained with finite fields, indeed

hi =
∑

j∈∂i,j∈L

Jijσ
∗
j (34)

so of the configuration with Hamiltonian

−H(σu, σl) =
∑
i,j∈U

Jijσiσj +
∑
i∈U

hiσi (35)

and so on for other configurations.

5.3 Disappearance of detectability threshold

More interestingly, we look at results in section B.4 where we showed that the paramagnetic-ferromagnetic transition
for the mean field happens at temperature

βPF =
1

λmax
(36)

Specifically, for β > βPF the naive mean field has a ferromagnetic solution while for β < βPF it is in the paramag-
netic phase. Note that the ferromagnetic solution is always correlated with the planted assignment since exploiting
the Gauge invariance we can map the problem to another one with all spins belonging to the same class. Now if
we take the configuration (25) with finite couplings, its adjacency matrix reads

J =

 JU h

hT 0

 (37)

In the worst case in which the matrix of the unlabelled graph JU is very sparse, for a non null percentage of labelled
nodes ν > 0, the largest eigenvalue λmax of J will be dominated by the dense ”semisupervised” perturbation (i.e.
the field vector h) as soon as p > 0.5 and in the appendix C it is shown that

λmax ∼
√
nu (38)

So

βPF =
1

λmax
→ 0 (39)

in the thermodynamic limit nu →∞, showing that the mean field has always a ferromagnetic solution, as long as
p > 0.5. Since every ferromagnetic solution has a non null score in the Gauge transformed model, this proves the
absence of the detectability threshold.
A straightforward alternative way to see this, is to neglect at all the connections among unlabelled nodes and
apply the mean field equation to the finite field configurations modified in this way. We would obtain the trivial
expression of the average magnetization of each node

mi = tanhβhi (40)

and build the inference vector
σi = sign(mi) = sign(tanhβhi) = sign(hi) (41)

As soon as we are provided with the information of the true label of some nodes, i.e. semisupervised ν > 0, and the
problem is solvable p > 0.5, the expected value of hi is greater than zero and points towards the direction of the
true assignment, then 1

nu
σTσ∗ > 1

2 and the performance is better than random guess. This trivial algorithm that
simply takes the sign of hi, when it is different from zero, will be called ”Simple Comparison” and corresponds to
a trivial supervised classification.
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6 Inference with Adjacency Matrix

The inference with the adjacency matrix consists in taking as prediction the sign of the entries of the eigenvector
associated to the largest eigenvalue λmax of the adjacency matrix J , built from the Hamiltonian of a configuration
without fields. Although it might be far from being the optimal polynomial algorithm to infer the planted structure
of a semisupervised Censored Block Model, the inference method based on the adjacency matrix still reveals in-
teresting features of semisupervised learning. Indeed, we will notice how if we blindly apply it to a semisupervised
configuration (so where in theory we dispose of the same information of the unsupervised case, and a surplus)
sometimes we end up with a poorer performance with respect to the unsupervised case. This is like if the child,
euphoric for having being helped, is not able to ponder his intuitions by balancing the sources of informations,
and surprisingly gets worse than before. This is not only specific of the model we have been working with, but
poorer performance of semisupervised models with respect to unsupervised or fully supervised with just the la-
belled dataset have been identified partout in literature [2, 20]. Being suboptimal (and also more complicated!)
than unsupervised or fully supervised represents the defeat of a semisupervised learning algorithm. Deeper studies
to understand its complexity and exploit the surplus of information are needed. Of course, this is just an innocent
and specific perspective on the problem.

Once derived the semisupervised Finite Couplings configuration (25), we look for the eigenvector associated to
the largest eigenvalue of the adjacency matrix built from the Hamiltonian (which has only couplings) of (25), i.e.

the vector f̂ = (f̂u, f̂+), f̂u ∈ Rnu , f̂+ ∈ R, such that

J f̂ ≡
[
JU h
hT 0

] [
f̂u
f̂+

]
= λmax

[
f̂u
f̂+

]
(42)

and then take as predictions the sign of the entries of f̂u

σ̂u = sign(f̂u) (43)

We showed in the section before that the normalized vector (f̂u, f̂+) is the one that solves the unconstrained
Hamiltonian minimization

max
f

1

2
fTJf = max

fu,f+

∑
i,j∈U

Jijfifj +
∑
i∈U

hifif+ (44)

”unconstrained” in the sense that the entries of the vector f can be real numbers (with the constraint of unitary
norm, not reported in the equation above), differently from discrete spins σi = ±1 in the original ground-state
search

max
σ

1

2
σTJσ = max

σu,σ+

∑
i,j∈U

Jijσiσj +
∑
i∈U

hiσiσ+ (45)

6.1 The inference is unbalanced: two ways to show

We show that the proposed inference through (43) is deeply unbalanced towards the semisupervised information,
i.e. the information coming from the connections with labelled nodes.
From the eigenvalue equation (42) we get a system of nu + 1 equations{

JU f̂u + hf̂+ = λmaxf̂u

hT f̂u = λmaxf+
. (46)

which substituting

JU f̂u +
hhT

λmax
f̂u = λmaxf̂u (47)

thus we have for the inference eigenvector of unlabelled f̂u

(JU +
hhT

λmax
)f̂u = λmaxf̂u (48)

The largest eigenvector of the adjacency matrix in (42) with JU not dense goes as

λmax ∼
√
nu (49)
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and the calculus is reported in the appendix.
Once we know this we can get an intuition on how the inference is performed by expliciting the equation (48): for

every f̂i, f̂i ∈ f̂u, i ∈ U

f̂i =
1

λmax

(∑
j∈∂i

Jij f̂j +

n∑
j=1

hihj
λmax

f̂j

)
(50)

The first term of the r.h.s. represents the unsupervised information and it is a sum, on average, of c elements. The
second, which represents the semisupervised information, is instead a sum of nu terms, divided by λmax. It is easy
to understand that the second term is

√
nu times larger than the first: in the thermodynamic limit, the inference

will be based only on the second term

f̂i ≈
1

λmax

( n∑
j=1

hihj
λmax

f̂j

)
(51)

that corresponds to
hhT f̂u = λ2maxf̂u (52)

which is solved by λ2max = hTh and

f̂u = h (53)

the prediction vector would be equal to the vector of fields, and so the sign. Thus the inference would be very
similar to the trivial algorithm called ”Simple Comparison” explained in the section 5. Not equal because, in the
case in which h has some entries hi equal to zero, the term that encloses the semisupervised information vanishes
and the inference would be guided by the unlabelled connections, i.e. the first term in the r.h.s. of (50).

Now we try to develop another way to look at the same problem, i.e. the overrating of the semisupervised in-
formation in our proposed setting.

It is easy to see that the solution of the eigenvalue equation (42) for f̂u, assuming without loss of generality
that the returned eigenvector is normalized, reads

f̂u =

√
1− ||f̂u||2 ·

[
(λmaxInu − JU )−1h

]
(54)

where since we infer through taking the sign, the factor in front turns to be irrelevant

sign

(√
1− ||f̂u||2 · (λmaxInu − JU )−1h)

)
= sign

(
(λmaxInu − JU )−1h

)
(55)

We then manipulate the expression (54)(
λmaxInu − JU

)−1
h =

(
λmax(Inu −

JU
λmax

)

)−1
h =

1

λmax

(
Inu −

JU
λmax

)−1
h (56)

and discard from now on the 1
λmax

factor. Since || JUλmax
|| ≡ maxij | Jijλmax

| < 1, then5 the expression before becomes
proportional to (

Inu +
JU
λmax

+
J2
U

λ2max
+

J3
U

λ3max
+ ...

)
h (57)

Thus if ∣∣∣∣∣∣∣∣( ∞∑
γ=1

JγU
λγmax

)
h

∣∣∣∣∣∣∣∣ << ∣∣∣∣h∣∣∣∣ (58)

then sign(f̂u) ≈ sign(h) and the information coming from the unlabelled connections is systematically ignored in
the inference process. Intuitively, the condition is fulfilled for a sufficiently sparse matrix JU , and a sufficiently
high labelled percentage ν. However, the quantity (58) is difficult to estimate a priori and also numerically. In any
case, if λmax stayed finite, with high probability the condition is not fulfilled, since the number of non-vanishing
elements of the powers of JU is proportional to nu. Indeed, in the next paragraph we propose a modified adjacency
matrix J̃ whose largest eigenvalue λ̃max stays finite.

5If ||A|| < 1, then (I −A)−1 ≈ I +A+A2 +A3 + ...
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6.2 (Un)Intuitively rescaling the labelled-unlabelled connections

From the discussion of the orders of the terms in equation (50), it appears intuitive to rescale by a factor of
order O( 1√

nu
) the overweighted term encoding the semisupervised information, in order to make the two terms

comparable. This can be done by rescaling the vector of fields h, representing the connections between labelled
and unlabelled in the way

h −→ α
√
nu
h (59)

where α ∈ R is a factor of order 1, left free for the moment. Thus the modified adjacency matrix J̃ reads

J̃ =

[
JU

α√
nu
h

α√
nu
h 0

]
(60)

Through the same calculus of before, we get that now the maximum eigenvalue of J̃ stays practically constant in
nu, λ̃max ∼ O(1).

The direct expression, solution of the eigenvalue equation, of the inference vector
ˆ̃
fu now reads

ˆ̃
fu =

√
1− || ˆ̃fu||2 ·

[
(λ̃max(α) Inu − JU )−1

α
√
nu
h

]
(61)

where the dependency of the largest eigenvalue by α is explicit, λ̃max(α), and it is practically the only change
with respect to the correspondent equation of the unmodified case (54), since the factor α√

nu
is irrelevant for the

inference (same for

√
1− || ˆ̃fu||2 ).

Intuitively, the factor α controls the balance between the two sources of information:

• α→ 0 cancels the contribution of the semisupervised information, thus recovering the performance of unsu-
pervised learning

• α → +∞ gives infinite weight to semisupervised information, recovering the performance of the unmodified
algorithm

There will exist then a finite α∗ for which the inference is optimally balanced.

6.3 Analogies with Regularization with centered similarities

The derived expression (61) is very similar to the one that the authors of [19] derived from their proposed algorithm,
which reads

f̂ (Mai)
u = (λInu −W )−1h′ (62)

that comes from the constrained maximization problem
maxfu f

TWf

||fu||2 = nue
2

. (63)

where the only differences are that W is the centered adjacency matrix6, h′ = Wulσ
∗
l so as before but using the

labelled-unlabelled connections of the centered adjacency matrix, and λ(e) is a specific function of the parameter
e, left free. They proposed the maximization above after having identified that the standard semisupervised
Laplacian’s effective learning from unlabelled data was negligible, at least for high-dimensional gaussian generated
data, in order to try to fix this problem. Through a rigorous theoretical analysis, in [19] is claimed that

• e→ 0 recovers the starting unmodified algorithm, in this case Laplacian regularization

• e→ +∞ recovers the performance of unsupervised classification

6The original adjacency matrix J is centered through the projection matrix P as W = PJP , where P = (In− 1
n

1n1Tn ). Our matrix
J , instead, is centered by construction.
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• there always exist a e∗, between the two extremes, that leads to a performance gain over Laplacian regular-
ization

Last, note that the function to maximize reads

fTWf =

n∑
i,j=1

wijfifj ≡ Q(f) (64)

So, the approximation in [19] resides in the choice of a somewhat arbitrary cost function to minimize, i.e. Q(f). The
inference is regularized by an ”estensivity” condition on the norm of the predicted unlabelled vector and controlled
by the hypermarameter e.
In our proposed algorithm, we start by an exactly derived posterior distribution and arrive through an approxima-
tion to identify a cost function to minimize very similar to (64), for a different generative model. The approximation
resides in passing from this true posterior to the configuration with Finite Couplings (25), whose marginal for the
unlabelled (26) is slightly different from (19).
Then we use the adjacency matrix to predict the average magnetization of each spin in the Ising model, which
we have seen (appendix B.3) that it can be interpreted also as an unconstrained ground state search. To improve
this approximation, after noticing that the inference is unbalanced, we modify the adjacency matrix by scaling the
labelled-unlabelled connection of a factor α/

√
nu. This, with α appropriately set, forces the algorithm to learn also

from the unlabelled connections, exactly like the constraint on the norm of f̂u does in (63). Indeed, α plays the
same (inverse) role of e in the method of [19].
Even though we lack of a rigorous mathematical analysis like the one of [19], the cost function that we proposed
comes from a somewhat clear derivation. Exploiting this fact, we try to push further and devise a procedure for
setting α, at least for some problems, while the correspondent value e in [19] was left as a hyperparameter.

6.4 Estimating the optimal α for easy problems

The exact procedure, once we know the true posterior, would consist in calculating the marginal probability of
each node i to be in each class and then take as inferred class the one correspondent to the highest probability.
This is of course impossible to obtain in polynomial time, since in order to get the marginals one would have to
calculate the probability of each possible configuration: the number of possible configurations scales exponentially
with the number of nodes n. Thus there exist algorithms that looks for approximate solutions. One consists
in approximating the partition function sum with its highest term, corresponding to the ground state of the
Hamiltonian in the posterior distribution. This is still an NP-complete problem and it is justified if the entropy
does not play a significant role, i.e. when the temperature of the derived Ising model is low (βN high, easy problems),
and the partition function sum is dominated by its highest term.
In our derivation, however, we performed another approximation: we passed from the exact posterior (19) to
the Finite Couplings configuration, which has marginals slightly different from (19), as 2 cosh

(
βN
∑
i∈U hiσi

)
6=

eβN
∑
i∈U hiσi . Once again, for high βN one of the two terms of the hyperbolic cosine is negligible with respect to

the other, at least for the configurations whose probability really contributes (the one with spins at least partially
aligned with the fields). Indeed, the ground state (correspondent to β →∞) of (25) to (19) for σu are the same.
These considerations motivate us to claim that taking as inference the ground state of the Hamiltonian of the Finite
Coupling configuration is a valid approximation for the inference, at least for large βN (easy problems). Thus, we
set α to be the one whose related inference maximizes the value of the opposite Hamiltonian of (25).
In other words, we

• Choose an initial α to start

• Perform the adjacency matrix inference with fields rescaled of α√
nu

, obtaining a prediction vector f̂ =

(f̂u(α), f̂+(α))

• Take as inference the sign of this vector, i.e. σ̂u(α) = sign(f̂u(α)) and σ̂+(α) = sign(f̂+(α))

• Calculate the value of the opposite Hamiltonian at that configuration, −H(σ̂u(α), σ̂+(α))

• Repeat for different α and choose the one for which −H(σ̂u(α), σ̂+(α)) is maximal
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A good point is that we do not really know when this approximation is valid. Indicatively, from simulations
with two equal classes and low percentage of labelled nodes ν, we observe that the approximation is consistent
approximately after the unsupervised detectability threshold, i.e. for c and p such that c(2p− 1)2 ≈ 1, so once we
know c for p > 1

2 (1 + 1√
c
).
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7 Proposed algorithms and Simulations

From the considerations of the previous paragraphs, the following algorithms are proposed:

Algorithm 1: Semisupervised CBM with Naive Mean Field (2 classes)

Input: An undirected graph G = (V,E) with couplings (Jij)ij∈E = ±1, a set of labelled nodes L ⊂ V with
label vector σ∗l ∈ R|L|

Output: Classification vector of unlabelled data, σ̂u ∈ R|U |, U = V \ L
1. Compute the entries of the field vector h as (23)

2. Estimate the coupling reliability p through (15), if not known a priori, then the optimal temperature βN
through (16)

3. Iterate the constructed mean field equation (30), where β = βN and J is the adjacency matrix restricted to
unlabelled-unlabelled connections, called JU in (42), until convergence to a fixed point m̂ ∈ R|U |

4. Build the classification vector σ̂u = sign(m̂)

Algorithm 2: Semisupervised CBM with adjacency matrix (2 classes)

Input: An undirected graph G = (V,E) with couplings (Jij)ij∈E = ±1, a set of labelled nodes L ⊂ V with
label vector σ∗l ∈ R|L|

Output: Classification vector of unlabelled data, σ̂∗u ∈ R|U |, U = V \ L
1. Compute the entries of the field vector h as in (23)

2. Define the adjacency matrix J as in (37). Compute the eigenvector f̂ = (f̂u, f̂+) associated to the largest
eigenvalue of J

3. Build the classification vector σ̂∗u = sign(f̂u(α∗))

Algorithm 3: Semisupervised CBM with adjusted adjacency matrix (2 classes) for easy problems (suffi-
ciently large c and p, see section 6.4)

Input: An undirected graph G = (V,E) with couplings (Jij)ij∈E = ±1, a set of labelled nodes L ⊂ V with
label vector σ∗l ∈ R|L|

Output: Classification vector of unlabelled data, σ̂∗u ∈ R|U |, U = V \ L
1. Compute the entries of the field vector h as in (23)

2. Define the Hamiltonian of the configuration with Finite Couplings as H(σu, σ+) =
∑
i,j Jijσiσj +

∑
i hiσiσ+

3. Consider the adjusted adjacency matrix for a general α, J̃(α) as in (60)

4. Choose a set of possible factors α and repeat the procedure described in section 6.4 using the Hamiltonian
above, in order to calculate the best factor α∗

5. Build the classification vector as σ̂∗u = sign(f̂u(α∗))

7.1 Simulations

The algorithm used in simulations are the three above plus the Unsupervised Adjacency Matrix (that operates like
the unmodified adjacency matrix but simply neglecting the semisupervised information, so correspondent to set
α = 0) and the one with adjusted matrix but setting the optimal α∗ by optimizing the correspondent scores7.
Figure 2 shows the defeat of the semisupervised unmodified adjacency matrix (Algorithm 2): for some p, the
performance of semisupervised adjacency matrix is poorer than unsupervised adjacency matrix on the same data!
In other terms, the inference is strongly biased towards the semisupervised information, as discussed in section

7Fixing α∗ using the feedback of the performance, which is an unrealistic case: if I already know the planted assignment why should
I infer it? Indeed, such algorithm is used just to investigate the reliability of Algorithm 3.
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Figure 2: Performances of unsupervised and semisupervised inference with unmodified adjacency
matrix (Algorithm 2). Performances (the score as in (13)) of the unsupervised (ν = 0) and semisupervised
unmodified algorithm for a labelled percentage ν = 0.1 (10% labelled), as a function of the easyness of the problem
p. Other parameters: n = nu + nl = 10000, c = 10, planted assignment of equally sized classes. Performances are
averaged over 30 trials.

6.1, which gives a manifestly suboptimal performance for easy problems. However, the community detection with
semisupervised adjacency, as predicted, does not show any threshold, contrairly to its unsupervised analogous.
Figure 3 shows how this problem can be solved adjusting the adjacency matrix by rescaling fields, whose perfor-
mance for optimal α∗ is always beyond the ones of Unsupervised and unmodified Semisupervised, as discussed in
sections 6.2 and 6.3.
Figure 4, instead, shows how reliable is setting α∗ through the Hamiltonian minimization, i.e. applying Algorithm
3. It is evident, indeed, that for difficult problem (small p) the approximations mentioned in section 6.4 are not
valid and the algorithm does not perform well. For easy problems, instead, the α predicted by the procedure of
section 6.4 seems to be approximately the optimal one. In the graph is showed how an estimated threshold for this
two regimes can be given by the unsupervised detectability threshold, although this remains an heuristic deduction.
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Figure 3: Performances of modified adjacency matrix with best possible parameter α, compared with
unsupervised and semisupervised inference with unmodified adjacency matrix (Algorithm 2). The
graph is the same as fig. 2, and so are the parameters. Here the only addition is the performance of the adjusted
adjacency matrix algorithm, with parameter α artificially fixed in order to maximize the score. Remarkably, the
performance of such algorithm stays always above the one of both unsupervised and unmodified semisupervised.
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Figure 4: Comparing the performance of the adjusted adjacency matrix with α set through the ground
state with best possible alpha and with unmodified adjacency matrix. Three cases, correspondent
to three different average connectivities c, are reported. Different colors correspond to different average
connectivities (levels of sparsity) c. For each color, the different lines represent the performances (the score as in
(13)) of different algorithms as function of the easyness of the problem p. The dense line represents the adjusted
adjacency matrix algorithm with α set in order to produce the best performance, the light dotted line represents the
unmodified semisupervised adjacency matrix algorithm, i.e. Algorithm 2. The dashed line represents the adjusted
adjacency matrix algorithm with α set as to maximize the ground state of the correspondent Hamiltonian, i.e.
Algorithm 3. For each color (i.e. each c), the dots on the Score=0 axis represent the correspondent unsupervised
detectability thresholds. They give a rough estimation on when the Algorithm 3 starts to have good performances.
Other parameters: n = nu + nl = 5000, 5% labelled (ν = 0.05), planted assignment of equally sized classes.
Performances are averaged over 30 trials.
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8 Conclusions

From the results, overall of sections 4 and 6, we can derive the following conclusions and perspectives:

• The semisupervised CBM, as long as c ≥ 1 and ν > 0, has no detectability threshold.

• The configuration of Finite Couplings (25) does not come exactly from the Bayes derivation, but it is an
approximation of the correspondent Ising model, whose limits of validity are pretty unclear. However, their
ground state are equivalent and thus the adjacency matrix gives still good results.

• The use of a centered similarity matrix avoids that the Min-Cut problem is solved by cutting the minimum
number of edges, i.e. assigning most of the nodes to the same class. In other terms, this is the same problem
noticed by Mai in [20] and solved indeed by proposing the centered adjacency matrix. Our generative model,
the CBM, produces naturally a matrix with positive and negative weights, thus this problem does not hold
and we developed indeed a very similar algorithm as [19].

• What we did is basically to perform a classification only with labelled-unlabelled connections (a sort of easy
supervised classification), then we encoded this information on unlabelled under the form of a prior, for each
unlabelled node. Such prior is represented in the graph as a positive or negative connection of the unlabelled
with one added node, representing the labelled. In the algorithm used for the inference on such graph, the
inference might be consistently unbalanced towards one of the two kinds of information, as we showed in the
case of the adjacency matrix. The weight (or in other terms, the reliability) of the prior is controlled by the
introduction of a further parameter α. How to choose this α is still an open problem, but it seems reasonable
(and consistent with simulations, at least for easy problems) to choose the one whose correspondent prediction
vector minimizes the hamiltonian of the the Finite Couplings configuration. This is a general structure that
can be repeated in more realistic problems, when the couplings are not binary random variables but general
similarity measures.

• Although already the adjacency matrix gives good performances, the natural extension of this work is to
apply to the derived semisupervised configurations the recently proposed Bethe-Hessian (Non-Backtracking)
algorithms. We can ask if Bethe-Hessian, that comes from a more fine approximation and that considers also
temperature, may work better than the adjacency matrix for difficult problems also in this semisupervised
setting. The answer seems to be positive.
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A Where does the Censored Block Model come from?

In this section we give a context to the synthetic generative model used in the dissertation, the Censored Block
Model. We show how it can be intended as a specific case of the Labelled Stochastic Block Model, which is in turn
a generalization of the Stochastic Block Model.

A.1 The Stochastic Block Model

One of the most used generative model for community detection is the Stochastic Block Model (SBM) [5], which
basically consists in an Erdős–Rényi random graph in which the probability of drawing an edge between two vertices
is not uniform, but depends on latent variables carried by the vertices (i.e. their classes). Roughly speaking, for
an assortative graph the probability pσ,σ′ of drawing an edge between the vertices σ, σ′ is higher if they belong to
the same class (σ = σ′) than to different classes. This disomogeneity, that reflects the class structure, allows an
algorithm to infer the latent variables of the nodes, i.e. estimate their true class and perform a classification task.
Recently, it has been proved that detection for the SBM is feasible only in a certain regime [8]: setting pσ,σ′ =

cσ,σ′

n ,
where n is the number of vertices, for the case of equally sized communities we have that

cσ,σ′ = cin1(σ = σ′) + cout1(σ 6= σ′) (65)

where cin is the average connectivity for a node with vertices of the same class, cout as the average connectivity
with vertices of different classes. The average connectivity of the whole graph, c is then

c =
cin + (q − 1)cout

q
(66)

where q is the number of classes. The conjecture of impossibility of detection claims that a polynomial algorithm
can detect the hidden communities on a SBM graph better than random guess, for n→∞ and equal sized binary
classes if and only if

|cin − cout| > q
√
c

Standard spectral algorithms, such as Laplacian or adjacency matrices, are well adapted for dense graphs (large
connectivities) but for a series of reasons, some mentioned in this text, their performance becomes poor or even null
close to the detectability threshold, characterizing inference in sparse graphs. It is important to study this regime
since real-life graphs are usually sparse [11]. Recent progresses in detecting communities down to the threshold
have been made through the introduction of the non-backtracking matrix [18] and Bethe-Hessian [24], which ensure
a detection as soon as it is theoretically feasible.

A.2 The Labelled Stochastic Block Model

The Labelled Stochastic Block Model (LSBM) is a generalization of the Stochastic Block Model in the sense that
the information carried by the edges is not anymore capture only by their presence/absence, but also by the weight
(label) attached to each edge. Note that the label is intended as weight, although in the text we call ”label” the
latent variables specifying the class assignment of a node, not to the edges. As for the presence/absence of an edge,
the probability of having the label l on an edge reflects the latent class assigment and is given by

pσ,σ′(l) = pin(l)1(σ = σ′) + pout(l)1(σ 6= σ′) (67)

In [15] it is conjectured that in symmetric LSBM with equal classes size, for two classes q = 2, detection is possible
if and only if

1

2

∑
l

(cinpin(l)− coutpout(l))2

cinpin(l) + coutpout(l)
> 1 (68)

Note that for pin(l) = pout(l) = pin(l′) for whatever ”labels” (weights) l, l′, we recover the Stochastic Block Model.

A.3 The Censored Block Model as a specific case of LSBM

The Censored Block Model is a specific case of the LSBM [23] in which the connectivity does not reflect the latent
assignment anymore, exclusively encoded by the labels (weights) attached to the edges. Specifically, cin = cout = c,
the labels (weights) can be l = ±1 and pin(+1) = pout(−1) = p, for some p ∈ [0.5, 1] and the other two probabilities
as consequence of normalization pout(+1) = pin(−1) = 1− p. Substituting these specific values in the equation of
the threshold (68), we note that for sufficiently small p and c the inequality is not satisfied and detection becomes
impossible, showing the presence of a phase transition.
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B Theoretical background

B.1 Naive Mean Field derivation from Variational Free Energy

It is possible to show that for any distribution over the states of the system q = {qσ} the correspondent free energy
F(q) will be always greater or equal that the free energy F of the Boltzmann distribution p. In other words

F = min
q
F(q) p = arg min

q
F(q) (69)

where F(q) is made of an energetic and an entropic term

F(q) =
∑
σ

qσEσ +
1

β

∑
σ

qσ log qσ (70)

The aim is to use an arbitrary trial distribution, e.g. pMF (σ), and minimize the correspondent free energy F(pMF ).
Choosing

pMF (σ) = p1(σ1)p2(σ2)...pN (σN ) (71)

noticing that the average magnetization for each spin i

mi =
∑
σi

σipi(σi) = pi(+1)− pi(−1) (72)

can be used to parametrize the single node marginal

pi(σi) =
1 + σimi

2
(73)

the mean field variational free energy of the Ising model with Hamiltonian

H = −
∑
i

hiσi −
∑
i<j

Jijσiσj (74)

can be written only in terms of the local average magnetizations

F(m) = −
∑
i

himi −
∑
i<j

Jijmimj +
1

β

∑
i

∑
σi

1 + σimi

2
log
(1 + σimi

2

)
(75)

So looking for stationary points of the above variational free energy, i.e. setting the condition

0 =
∂F
∂mi

(76)

we get the Naive Mean Field equation (30) for each node i

mi = tanh (β(
∑
j∈∂i

Jijmj + hi)) (77)

The case Jij = J > 0, hi = h = 0 corresponds to the well-known Ising Ferromagnetic model that presents an
average magnetization mi = m, different from zero if m = 0 is an unstable extreme of the mean field free energy.
The stability of m = 0 depends on the coupling constant {Jij} and on the inverse temperature β. For non-uniform
couplings and fields, things are more complicated: the free energy profile may get more and more rugged and
present multiple (suboptimal) minima with different entropies. As discussed before, the phase diagram gets more
complicated (see fig. 1). Anyways, as we will see later, we can still use the (in)stability of the paramagnetic point to
extract information, as long as it is an extreme, which is always the case in the absence of fields in the Hamiltonian.
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B.2 Adjacency Matrix as Hessian of the Mean Field Free Energy at the paramagnetic
point

Starting from the mean field free energy expressed in terms of the local average magnetizations (75) in the case of
no fields (so when a spectral algorithm can be applied)

F(m) = −
∑
i<j

Jijmimj +
1

β

∑
i

∑
σi

1 + σimi

2
log
(1 + σimi

2

)
(78)

If we compute, as before, the gradient of the free energy we find that the paramagnetic point m = 0 is an extreme.
Following [6], if we compute the Hessian of (78) at the paramagnetic point we get (after multiplying by β)

HMF (m) = In − βJ (79)

where In is the identity matrix and J is the adjacency matrix of the graph. The eigenvector associated to the
smallest eigenvalue of the Hessian gives the steepest direction for which the paramagnetic point is a maximum.
Relying on the fact that this eigenvector points towards the direction of the minimum of the variational free energy,
we can assume that this eigenvector is correlated to the true assignment of spins and thus is optimal for the
inference. From the equation above we see that the eigenvector associated to the smallest eigenvalue of the Hessian
of the variational free energy is equal to the one associated to the largest eigenvalue of the adjacency matrix. Thus
one can implement an algorithm that simply calculates the largest isolated eigenvalue of the adjacency matrix J
and infer the class of each node by taking the sign of the entries of the associated eigenvector. The problem, for the
unsupervised case, is that the spectrum of the Adjacency matrix J often does not have an isolated largest eigenvalue
as soon as it is theoretically possible to perform the inference, due a series of reasons. The most important one is
that for sparse graphs the eigenvector associated to the largest eigenvalue of J is much influenced the node with
highest connection degree and poorly correlated to the structure of the graph. This is why alternative methods,
such as Bethe-Hessian (Non-Backtracking), have been proposed by the community for sparse graphs and proved to
work down to the detectability threshold [18, 24]. It is useful to remark that in this picture, the inverse temperature
β does not play any role. In other terms, the problem is not set in a Bayes optimal setting. Other minimizations
of variational free energy, such as Bethe-Hessian, perform the inference taking into account β and thus potentially
in a Bayes optimal setting.
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B.3 Adjacency Matrix as solver of ground state search with continous spins

In this section we sketch another idea to see the Adjacency Matrix, alternative and orthogonal to the one proposed
in the context of minimizing variational mean field free energy. As said, when dealing with an Ising model we
have to minimize the free energy, made of an energy and an entropic term. The entropic term is negligible only
at T = 0 (β → ∞), where the only possible state is the ground state. Thus, by ignoring the entropic term we
set in a specific regime β → ∞ which is far to be Bayes optimal. Anyways, since the generative model is usually
unknown and estimating the Nishimori temperature is hard, one can think that performing inference by neglecting
completely the temperature and just estimating the ground state can still make sense. Notice that we are kind
of overfitting, as we are giving too much importance to the observed coupling realization (strongly influenced by
the noise) and nothing to the assumptions on the generative model. Indeed [22] explains that finding the ground
state is equivalent to take the Maximum A Posteriori estimator (MAP) while the more correct way to infer the
planted assignment is to derive the marginals of each vertex and assign it to the most likely class (for two classes
it corresponds to evaluating the sign of the average magnetization m, as we have done so far). Finding the ground
state corresponds to minimize the Hamiltonian, i.e. maximize

−H(σ) =
∑
i,j∈~E

Jijσiσj +
∑
i

hiσi (80)

that when fields are not present consists in

max
σ={±1}

∑
i,j∈~E

Jijσiσj (81)

Now if we relax the constraint of spins to be boolean variables and we call them fi ∈ R, we have the associated
continous maximization problem

max
fi∈R

∑
i,j∈~E

Jijfifj (82)

which can be rewritten calling f ∈ Rn the vector of continous spins and J the Adjacency matrix as

max
f∈Rn

fTJf (83)

unless an irrelevant 1/2 factor. It is easy to see that the problem is solved by setting f equal to the eigenvector
associated to the greatest eigenvalue of the adjacency matrix J . Notice that setting the constraint of f to be of
unitary norm fT f = 1 just makes the problem convex and does not affect the inference once we take

σ̂ = sign(f) (84)
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B.4 Adjacency Matrix and the high T expansion of the Naive Mean Field Equation

We propose another relation between the Adjacency Matrix and the Naive Mean Field method. In the section
before the adjacency matrix came out in searching the ground state, i.e. at T = 0 so neglecting completely the
entropic term. Now we set in the high temperature regime, β → 0, when the only contribution for the typical
configuration comes from the entropy. The Naive Mean Field Equation without fields reads

m = tanh (βJm) (85)

becomes for β → 0, from the Taylor expansion of tanhx,

m ≈ βJm (86)

equal to
1

β
m ≈ Jm (87)

Now recall the eigenvalue equation for the Adjacency Matrix

Jm = λm (88)

(87) and (88) are equivalent for

β =
1

λmax
(89)

Moreover, looking at the linearized mean field equation (87), for βλmax < 1 there is no other fixed point than
m = 0, that corresponds to the paramagnetic phase, while for βλmax > 1 a different fixed point exists, which
corresponds to the ferromagnetic phase. The temperature that satisfies βλmax = 1, i.e.

βPF =
1

λmax
(90)

is thus the temperature of the mean field ferromagnetic-paramagnetic transition.
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C Order of the largest eigenvalue of J and J̃

Here we show an approximate calculus to obtain the dependency on nu of the largest eigenvalue λmax on the
symmetric adjacency matrix J ∈ Rnu×nu , made by the sparse block JU and the dense vector h, hi ∼ O(1)

J =

[
JU h
hT 0

]
(91)

as well as the largest eigenvalue λ̃max of the adjusted adjacency matrix J̃ , whose expression is the same as J but
with hi ∼ O( 1√

nu
), since the fields are rescaled.

The eigenvalue equation [
JU h
hT 0

] [
f̂u
f̂+

]
= λmax

[
f̂u
f̂+

]
(92)

rewritten {
JU f̂u + hf̂+ = λmaxf̂u

hT f̂u = λmaxf̂+
. (93)

{
(−JU + λmax)f̂u = hf̂+

f̂+ = hT f̂u
λmax

. (94)

(−JU + λmax)f̂u = h
hT f̂u
λmax

(95)

so for each f̂i ∈ f̂u, i ∈ U
λmax(−(JU f̂u)i + λmaxf̂i) = hi(h

T f̂u) (96)

taking the order of terms, considering that −(JU f̂u)i ∼ O(c)O(f̂i) ∼ O(f̂i) since JU is sparse, while hT f̂u ∼
O(nu)O(h2i )O(f̂i) since h is dense, then O(f̂i) simplifies and

O(λmax)
[
O(1) +O(λmax)

]
= O(h2i )O(nu) (97)

Thus, for J , O(hi) ∼ O(1)
λmax ∼

√
nu (98)

while for J̃ , O(hi) ∼ O( 1√
nu

)

λ̃max ∼ O(1) (99)
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