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Abstract

In fundamental physics, a crucial and unsolved problem is that of understanding
the behavior of glassy liquids. In these materials the viscosity or any other
characteristic time increases very quickly (about 13 orders of magnitude) when
the temperature is varied by only a few tens of percent around a characteristic
temperature Tg, without any obvious change in the geometrical structure of their
elementary constituents. This raises the question: is structure important to glassy
dynamics? Several studies have shown that a lot of information about the dynamical
behaviour of these materials is contained into the static structure, but how to
extract this information is still an open question. A recent branch of research
focuses on applying machine learning (ML) methods to extract information from
static structure. Here we pursue this direction by combining a powerful family of
ML models, Graph Neural Networks, with expert knowledge in the field to reach
better understanding of these materials and develop new ML tools.
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Chapter 1

Introduction

In fundamental physics, a crucial and unsolved problem is that of understanding the
behavior of glassy liquids. In these materials the viscosity or any other characteristic
time increases very quickly (about 13 orders of magnitude) when the temperature is
varied by only a few tens of percent around a characteristic temperature Tg, without
any obvious change in the geometrical structure of their elementary constituents.
This raises the question: is structure important to glassy dynamics? Several
studies [1][2][3] have shown that a lot of information about the dynamical behaviour
of these materials is contained into the static structure, but how to extract this
information is still an open question. Physicists have been trying for years to
characterize the so called dynamic glass transition, looking for a diverging length-
scale. This requires defining a suitable order parameter and measuring its relative
correlation function, but no satisfactory answer was found. Another branch of
research focuses on applying machine learning (ML) methods to extract
information from static structure. Here we pursue this direction combining a
powerful family of ML models, Graph Neural Networks, with expert knowledge
in the field to reach better understanding of these materials and develop new ML
tools.

1.1 Supercooled liquids phenomenology
In our work we are going to focus on supercooled liquids. These are liquids that
are equilibrated under the melting temperature Tm into a metastable phase in
such a way that time-translation invariance (and thus the fluctuation dissipation
theorem) holds. In short, supercooled liquids show the amorphous, disordered
structure of classical liquids at equilibrium under the melting temperature. In
the following we will characterize the phenomenology of these materials following
the steps of [4] which is an excellent introductory review in the field.
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Introduction

To obtain supercooled liquids one must adopt a particular cooling protocol
in order to avoid two processes: crystallization and going out of equilibrium.
Under Tm the actual equilibrium state of the system is the crystal phase, indeed,
in numerical models of glass-forming liquids, the lowest energy is reached with a
regular, ordered, arrangement of particles. Thus when we cool our sample we have
to avoid the nucleation of the stable phase (crystal) from the metastable one
(liquid). At the same time we want to keep the sample at equilibrium: if the liquid
is cooled too quickly it cannot equilibrate, time translation invariance is broken,
two-times correlation functions do not depend simply on the difference of times
anymore and the fluctuation dissipation relation is broken. When this happens
we say that we are dealing with a glass. A glass is fully out of equilibrium, its
relaxation time is too large compared to our experimental time and aging (i.e.
dynamics that depends on the initial time at which the glass was formed) is observed.
Thus the cooling protocol to form a supercooled liquid depends on the trends of
relaxation time τR and crystal nucleation time τN versus the temperature. τR(T )
is monotonously increasing as T decreases while τN(T ) diverges at Tm and T = 0
with a minimum in the middle (discussed more in depth in [4]). In experimental
settings a nonlinear cooling protocol is adopted: at high temperatures cooling
is faster, since τR is small (the liquid equilibrates quickly) and τN is big (there’s
no risk of forming a crystal since it would take long time), at low temperatures
cooling is slower, since τR increases (need more time to equilibrate) and also τN does
after having reached its minimum (this allows to slow down the cooling without
formation of crystals).

Regardless of the cooling protocol, when the liquid is brought at a characteristic
temperature, referred to as Tg, it cannot be equilibrated anymore since its relaxation
time (viscosity) blows up: the dynamic glass transition takes place. By varying
the temperature in a relative narrow range around Tg viscosity can increase by up
to 14 decades. This dramatic growth is common to many liquids with very different
microscopic structures, including polymers, as you can see in Fig. 1.1. The glass
transition is one of the most interesting open problems in condensed matter
physics and thus the definition of Tg is not sharp. One common way of addressing
it is as the temperature where the relaxation time τR exceeds the experimental
time texp:

τR(T < Tg) > texp (1.1)
Even though the definition of the transition is based on the experimental time,

this is still a good definition because the increase in viscosity is so sharp that the
dependence of Tg on texp is really weak (less than logarithmic). Still this definition
lacks something, it’s somewhat artificial, arbitrary. To tell if something interesting
is going on we need to observe some qualitative change in the structure/dynamics
of these materials.
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Figure 1.1: Angell’s plot: Logarithm of the viscosity vs. rescaled inverse
temperature for many substances. Taken from [5].

On the static structure side, there’s no interesting change. Supercooled liquids
around Tg, glasses under Tg and liquids well above Tg show the same qualitative
structure of particles with only minor changes while the viscosity varies of
many decades. This can be observed on the radial distribution function g(r)
which tells us what is the probability to find a particle at distance r from a certain
focal particle:

g(r) = 1
N

1
4πr2ρ

〈
N∑
i

N∑
j /=i

δ(r − rij)
〉

(1.2)

where N is the total number of particles, ρ the density, rij the relative distance
between particles i and j and < . > represents the ensemble average over many
realizations of the system. The radial distribution function is very good at dis-
tinguishing phases: a structured g(r) with very sharp peaks that do not decay
in space will point to an high degree of order in the phase, while weak, decaying
peaks describe a disordered material. The g(r) has no major changes at the glass
transition and qualitatively looks like the one of a simple liquid. This is soon clear
looking at Fig. 1.2, where the static structure factor S(q) (a simple Fourier integral
of the g(r), more accessible experimentally) is plotted for the same glass-forming
liquid at different temperatures:

The dynamics of particles, instead, shows a strong qualitative change. This is
evident when looking at the incoherent intermediate scattering function:

Fs(q, t) = 1
N

N∑
k=1
〈δρk(q, t)δρk(q,0)〉 (1.3)

where δρk(q, t) = exp [−iq · rk(t)] is the Fourier transform of the density fluc-
tuations of particle k at fixed "spatial frequency" q. Being a correlation function,
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Figure 10: The static structure factor - The static struc-
ture factor S(q) in a Lennard-Jones liquid at three different
temperatures. The relaxation time τR increases by almost 4
orders of magnitude, and yet the structure factor shows no
particular change. (Reprinted with permission from [8]).

on than what is shown in Fig.10. We conclude that it is
impossible to use the structure factor, or any other stan-
dard structural quantity, to understand whether or not
the sample is close to the glass transition.

The weak modification of the structure factor with
temperature also implies that any lengthscale that can be
reasonably extracted from S(q) or g(r) shows a depress-
ingly weak dependence on T near the glass transition
[45, 46, 47, 48]. This is surprising. The common wisdom
is that the presence of a sharply increasing (or diverging)
relaxation time should be associated to a sharply increas-
ing (or diverging) correlation length. The wisdom comes
mainly form the theory of critical phenomena [50], and
the argument is basically that a large relaxation time de-
rives from the need to rearrange larger and larger corre-
lated regions. Even though common indeed, such wisdom
deserve some carefulness anyway. First, we cannot stress
too much the (obvious) fact that in a system with a finite
number of degrees of freedom, the relaxation time must
be equally finite. A real divergence can only occur in
the thermodynamic limit and only in presence of a phase
transition. Still, the time can be very large, typically be-
cause of the presence of large energy or free energy bar-
riers to relaxation. In general, a barrier could arise from
an external potential, and in this case there is no need to
invoke the existence a large length scale. However, in all
interesting systems barriers almost invariably arise from
the internal interaction among the degrees of freedom. In
this case, increasing barriers (and thus increasing relax-
ation times), are indeed due to the increasing number of
degrees of freedom that must be rearranged together to
relax the system. Hence: large time, large length.

This argument makes sense, but of course in order to

detect a sharply growing correlation length, we need to
identify a suitable correlation function. This is the cru-
cial point: in very viscous liquids and glasses we are com-
pletely lost when it comes to identify the correct order
parameter. Structural correlation functions are not up to
the job and fail to provide any exciting characterization
of the viscous and glassy phase. This is unfortunately
true for all other standard static correlation functions.

The reason for this can be either because we are using
the wrong correlation function, or simply because there
is no sharply growing lengthscale (the common wisdom
could be wrong!). In fact, we will see at the end of these
notes that the first hypothesis is the correct one. For now,
we simply note that the standard structural observables
are not good enough to say something about the deeply
supercooled phase. Structure remains qualitatively the
same going through the glass transition. Supercooled
liquids and glasses are structurally unexciting.

E. Equilibrium fingerprint of glassiness: two steps
relaxation

The failure of a standard static approach to find a sig-
nature of the glass transition is, in fact, not surprising.
The very definition of the glass transition is purely dy-
namic in nature, and therefore if something new happens
close to Tg, the dynamics, rather than the static struc-
ture, should detect it. In particular, the viscosity, which
marks the onset of glassiness, is the integral over time
of a dynamic correlation functions, namely the shear re-
laxation function, see equation (11). The same is true
for the diffusion coefficient, related to the time integral
of the velocity-velocity correlation function (18). An in-
tegral wraps up an entire function into a single number,
thus loosing a lot of information. Hence, it seems a good
idea to check the dynamic correlation functions, rather
than their integrals, to see whether they show some qual-
itative signature of Tg.

Let us consider, in full generality, the dynamic corre-
lation function,

C(t1, t2) =
1

N

N∑

k=1

〈ϕk(t1)ϕk(t2)〉 , (54)

where ϕk(t) is a generic quantity relative to particle k,
observed at time t. If the system is at equilibrium, then
time translation invariance (TTI) holds, and the corre-
lation function only depends on the difference of times,
t = t2 − t1, so that C(t1, t2) = C(t), and we can write,

C(t) =
1

N

N∑

k=1

〈ϕk(t)ϕk(0)〉 . (55)

In liquids, a typical choice for ϕk(t) is the Fourier trans-
form of the density fluctuations of a tagged particle k,
δρk(q, t) = exp[−iq · rk(t)], at fixed momentum q. In

Figure 1.2: Static structure factor: S(q) in a Lennard-Jones liquid at three
temperatures with very different relaxation times τ . Taken from [4].

Fs(q, t) measures how correlation between density fluctuations of one particle
decay in time. Looking at its evolution in temperature (Fig. 1.3) we can point
out peculiarities of glassy relaxation dynamics. At high temperatures, after a
short-time ballistic regime where particles move freely without interactions with
the others, there’s a dissipative regime where collisions between particles determine
an exponentially decaying correlation. Approaching Tg, after the initial ballistic
regime, there’s a quick relaxation to a plateau (referred to as β relaxation) followed
by a second, really slow, nonexpoential relaxation (α relaxation). This is what is
called two steps relaxation and it’s the footprint of glass transition: approaching
it, the dynamics of particles changes qualitatively and cannot be described in
terms of one time-scale anymore.

Figure 1.3: Two steps relaxation: (left) Fs(q, t) evaluated at the value of q
where S(q) has the main peak and at different temperatures. (right) MSD as a
function of log-time. Computed on numerical simulations of a LJ glass-forming
liquid. Taken from [4].

To shed more light on the dynamics in supercooled liquids we will look at the
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mean square displacement of particles:
〈
r2(t)

〉
= 1
N

N∑
k=1

〈
||~xk(t)− ~xk(0)||2

〉
(1.4)

As you can see in Fig. 1.3, at high temperatures, it shows the typical diffusion
behavior with the initial ballistics regime in which 〈r2(t)〉 ∼ t2 followed by the
diffusive regime 〈r2(t)〉 ∼ t. Approaching Tg, the ballistic and the diffusive regime
are separated by a plateau whose length increases decreasing the temperature that
matches the one observed in the intermediate scattering function. The most spread
interpretation of these curves is the cage picture: a tagged particle moves in a
ballistic fashion for a very short time, then it gets trapped in the cage formed
by its nearest neighbors and keeps vibrating inside it. After a long time, it can
escape the cage and the diffusive motion is observed. The caging dynamics is a
collective behavior: particles hops correspond to rearranging of different cages,
indeed at random times, a number of cages is dismissed and new ones are formed.
This is an high localized phenomenon in the sense that in a glassy liquid one can
distinguish patches with high mobility (frequent rearranging) and patches with low
mobility (purely vibrating particles). These patches are observed also in numerical
simulations of glass-forming liquids (shown in Fig 1.4), they are self-correlated in
time and studying their dynamic structure might be of fundamental importance for
the understanding of the glass transition. This phenomenon is known as dynamic
heterogeneity.

Figure 1.4: Dynamic heterogeneity: particles are colored according to the
difference of their mobility from the mean. Red is above the mean (mobile particles),
white below (vibrating particles). Take from [6].

To conclude this short review of super-cooled liquids phenomenology, one should
note that the cage picture is just a simplified description of glassy dynamics. In
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numerical simulations indeed, different behaviors are observed: particles can make
jumps on different length-scales and also smooth transitions over long times are
present. Nevertheless it is a useful picture because it relates the diverging viscosity
of the fluid to the dynamics of its constituents.

1.2 Machine Learning for glassy liquids
The idea of using Machine Learning to attack the problem of glassy liquids is
rather recent: the first work dates back to 2015 [2], and this line of research has
continued [7][8][9] up to very recently [3]. These work aim mainly at leveraging
the information contained in the static structure of the glassy systems to predict
the mobility of the particles. They show that some weighted combinations of
local expert features, like the g(r) of each particle, are strongly correlated with
the rearrangement dynamics of glassy systems. Thus they support the idea that
a structural order parameter pointing at the glass transition should exist and
should be a complex combination of these expert features. The major drawback
of these works is that they rely on simple ML technology as SVMs [2] or trees
(XGBoost) [10] and they perform a rather simplified task: binary classification of
mobile and steady particles.

A parallel line of research [6] focuses on unsupervised learning, where instead
of predicting mobilities, clustering methods are applied to distinguish different
neighborhoods of particles. Mobility of different clusters are analyzed to confirm
that the dynamics is strongly correlated with local static structure.

1.3 Graph Neural Networks
Most of the successes achieved by Machine Learning in the last decade rely on
availability of large datasets and computational resources as well as on the ability of
building architectures that are able to exploit intrinsic biases present in data. One
of the most prominent examples is the success of Convolutional Neural Networks
that, implementing locality and translational invariance, yielded impressive results
on visual data. The biggest limitation of CNNs is their ability to handle only data
lying on a regular grid, an issue which is solved by Graph Neural Networks.

GNNs are able to reason on graph-based data i.e. information is processed
by these machines in the form of a graph were nodes represent objects and edges
relation between them. Nodes and edges are endowed with features which can
be scalar or multidimensional arrays and a forward pass of the GNN consists in
updating recursively these features based on local rules (shown pictorially in Fig.
1.5) which are implemented thanks to message passing routines (explained in
deep in Sec. 2) and that can adapt to different local geometries. This can be
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seen simply as a generalization to irregular grids of convolution kernels
used in CNNs. Thus, as in the case of CNNs, learning consists in modifying
local update rules which usually are implemented through multi-layer perceptrons.
So the learning process boils down to the update of MLPs weights. Thanks to
this approach, GNNs learn how to update nodes and edges features based on
their neighborhood independently of its specific structure. Thus they are able
to generalize to unseen graphs with completely different geometries. In other
words, GNNs are able to reason about a never-seen system because they’re able to
draw analogies by aligning relational structures as human mind does [11].

Figure 1.5: GCN: Generalization of continuous kernel to irregular geometries [12].
The central node feature is updated on the basis of a convolution of a continuous
kernel with the node features of neighboring nodes.

The versatility of the graph structure has drawn a lot of attention to GNNs
in the past 2-3 years. Applications range from relational learning [11], to
social networks analysis, where one can classify parts of the graph [13] to
biochemistry, for predicting proteins interactions [14], to physics, for quantum
properties prediction [15][16] or for accelerating molecular dynamics simulations on
meshes [17]. Some applications are present also in the field of materials sciences
dealing mostly with crystalline materials. Our purpose is to apply this paradigm to
amorphous materials where everything becomes harder because of the irregularity
of the static structure.

1.4 State of the art

Recently, there has been a first attempt at using Graph Neural Networks on glasses
[18], which outperforms all previous methods pertaining to the same task
family.
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The work focuses on the study of data coming from molecular dynamics simu-
lations of a binary 80:20 Kob-Andersen-type Lennard-Jones mixture at different
temperatures (relaxation times). The goal is the one of predicting particles
mobilities on different timescales, starting from the static structure of the
liquid, embedding its geometry in the graph network.

The training dataset is composed of 400 MD snaphsots of N = 4096 particles
for each state point. From each snapshot a graph is built (Fig. 1.6a) taking
particles as nodes and their type (0 for A and 1 for B) as node feature, two
nodes are connected by an edge if their distance is less then a fixed threshold
and the feature of the directed edge is the relative position of the nodes it is
connecting. Labels are computed through the propensity approach: each particle
is labeled with the average ∆ri(t) computed on 30 trajectories ran with the same
initial positions (the ones of the snapshot) and different initial velocities drawn
from a Maxwell-Boltzmann distribution.

The task is the one of regressing the propensity of particles of type A. The GNN
trained to do this has a rather simple architecture (Fig. 1.6c):

Figure 1.6: GNN for glasses: Essential steps involved in [18]. a) From the
three-dimensional inputs, nodes at a distance of less than 2 LJ-units (defined in
Sec. 2) are connected by two directed edges to form a graph. After processing, the
network predicts propensities for each particle of type A b) Message passing routine:
edge updates are based on the features of the given edge and of its associated nodes.
Node updates are based on the features of the node and on the sum of its associated
updated edge features. c) Structure of the GNN: encoder, nrec applications of the
message passing routine G and decoder. Each recurrence increases the shell of
nodes contributing to the final value of a central node.

• Encoder: nodes and edges of the input graph are encoded independently
with two two-layer multilayer perceptrons (MLP).
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• Recursive Message Passing: nodes and edges are updated recursively
thanks to a message passing routine (Fig. 1.6b): edge updates are based on
the features of the given edge and of its associated nodes, concatenated and
passed through an MLP. All edges are updated in parallel using the same
MLP (edge MLP). Node updates are based on the features of the node and
on the sum of its associated updated edge features, concatenated and passed
through another MLP. Again, all nodes are updated in parallel using the same
MLP (node MLP) which is different from the edge MLP. This routine allows
to update all nodes and edges in the graph based on the same rule in the spirit
of weight sharing of CNNs, where the same convolution kernel is used for the
whole grid of data.

• Decoder: nodes and edges of the last recurrent layer are decoded indepen-
dently with two two-layer MLP to regress towards propensity.

Also skip connections are used to stabilize learning and stochastic gradient
descent is used in the learning process.

With this setting it’s possible to outperform all previous methods, but this work
represents more a proof of concept than a conclusive solution: they’re still far
away from reaching the upper bound for predictions correlation (see Suppl. Mat
[18]) and there’s a lot of room for improvement, both on the architecture which is
rather simple and on the way the physical information is encoded in the ML task
(labels and data features). In next sections we are going to characterize formally
the architecture of the GNN and discuss in depth possible improvements.

1.5 Goals and perspectives
The goal of this work is primarily understand and critically assess the perfor-
mance of state of the art GNN and ultimately pave the way for future perfor-
mances improvement of the latter by exploiting information coming from expert
features, designing new architectures or defining better measures of mobility to
predict.

We explore mainly two directions:

• Inclusion of expert features: we introduce the gi(r) = 1
4πr2

∑N
j /=i δ(r − rij)

or its dimensionally reduced version for each particle as node feature and
consequently adapt the architecture to leverage the additional information
provided to the GNN. This line aims at bridging the gap between old ML
approaches in which information-rich features were combined with simple,
less expressive models and new Deep-Learning approaches in which raw data
is fed to highly complex models.
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• Definition of better measures of mobility: in most of ML applications
to glassy systems, measures of mobility used to compute the labels are really
simple (e.g. propensity used in [18]). Here we study two different measures
that are able to give more information on the trajectory itself and not only on
the total displacement: phop introduced in [3] and Wavelets transform which
is a new tool never used in this field.

We are not able to pair or beat the current state of the art, but our task is
significantly harder, as explained in deep in next sections. We conclude that
predicting single particle raw dynamics is an hard task for the GNN we have
implemented and approaches like iso-configurational mean or spatial coarse-graining
of the labels are needed to improve performances. Many advances could be done also
on the architecture side, introducing attention mechanism or a new update
routine, exploiting for example generalized continuous convolutions from [12].
Finally, once a very accurate model is built, due to high interpretability of
GNNs, studying the learning dynamics and discerning the most relevant features
for the model to learn will help to build explainable models and make advances
in fundamental physics.
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Methods

2.1 Dataset: molecular dynamics simulations
The data we analyze in this work are obtained from molecular dynamics simulations.
We simulate an 80:20 Kob-Andersen mixture of N = 64.000 particles: 80% of
them are the bigger A particles, 20% the smaller B ones. The interaction potential
used for the simulations is the classic LJ potential, for two generic particles of types
X and Y we have:

VXY (r) = 4εXY
((

σXY
r

)12
−
(
σXY
r

)6
)

(2.1)

with parameters
εAA = 1 εAB = 1.5 εBB = 0.5 (2.2)

σAA = 1 σAB = 0.8 σBB = 0.88 (2.3)

The potential is actually cut at r = rcut and put to 0, in the neighborhood of rcut
it’s also smoothed in order to have vanishing first and second derivative in that
point. The form of the smoothed LJ potential comes from the HOOMD library
[19] used for the simulations. On the basis of the Lennard-Jones potential, we
define dimensionless units and measure distances in units of σAA, time in units of
τ =

√
mσ2

AA

εAA
and temperatures in units of εAA

kB
where kB is the Boltzmann constant.

We use double precision, time steps of dt = 0.0025 LJ-time units and record frames
once every 40 steps, corresponding to an inter-frame time step of 0.1 LJ-time units.
The simulated system is composed of 64.000 particles in a simulation box of linear
size L = 37.64144, thus the number density is ρ = 1.2 particles per unit volume.

We want to study the supercooled regime of the liquid, so we simulate the
dynamics at one state point, T = 0.43 which is close to the mode coupling
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temperature TMCT = 0.435, the transition temperature predicted by Mode Coupling
Theory [20] (not treated here since the purpose of the work is not theoretical).
Indeed we observe the typical glassy behaviour in our simulations, see Fig. 2.1.

Figure 2.1: RMSD: Root mean square displacement of particles computed
numerically on our simulations at temperature T = 0.43. It shows the typical
glassy behavior (see Fig. 1.3). The black dashed line locates the plateau.

To prepare a sample at low temperature, a series of simulation steps are per-
formed. At first, the system is equilibrated at high temperature T ∼ 1: starting
from random particles positions an NVT simulation with Nosé-Hoover thermostat
is run. Then, to reach the Ttarget = 0.43, another NVT simulation with Maxwell-
Boltzmann thermostat is run at T ∼ Ttarget. The dynamics implemented in the
M-B thermostat allows the system to thermalize quickly even though is less physical
than N-H. So, after the thermalization, a final long NVT run with N-H thermostat
is performed exactly at T = Ttarget. Once the system is equilibrated at Ttarget NVE
simulations are run to record trajectories. NOTE: before starting NVE runs, we
want the instantaneous energy, which in the NVT was fluctuating around the mean,
to be exactly equal to the mean. To do so, particle velocities are rescaled by a
constant quantity.

When simulating low temperature dynamics one has to check that the sample
has not crystallized. One of the checks that have been done is looking at the
time evolution of τα which is defined as the ∆t for which the self intermediate
scattering function is equal to 1/e: Fs(q, τα) = e−1 evaluated at q s.t. S(q) has its
first maximum. This quantity describes the characteristic time of alpha relaxation
and it depends on the level of super-cooling. It simply measures the time needed
to have a fraction 1/e of particles that has not moved. τα is of order 6 ∗ 103 for
particles A and 3 ∗ 103 for particles B for our system at T = 0.43. If parts of the
system crystallized, it would increase by orders of magnitude so we check the time
evolution of τα computed numerically on our simulated trajectories to make sure
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that this kind of behavior is not observed. Fig. 2.2 shows a typical shape of τα vs
time curve.

Figure 2.2: Tau alpha vs time: computed numerically on simulations at
temperature T = 0.43, for particles A (left) and B(right)

To build the dataset, we simulate 8 separate copies of our system initialized
differently in a random way. For each one the whole process described above is
done independently, thus we get 8 instances of the same liquid thermalized at low
temperature. Starting from these, we run NVE simulations to record trajectories.
In order to maximize the information contained in the dataset and reduce
the correlation between samples, for each system, we repeat multiple times the
following procedure: we run an NVE simulation of duration 30τα to forget previous
positions and record an NVE trajectory of duration 1τα to build features and labels.
In this way we are sure that, between one sample and another one, most of the
particles have moved as you can see in Fig. 2.3
Once we have a set of 1τα-long independent trajectories we extract one sample
from each of them as explained in the next sections.
In the end our standard dataset is made of 28 snapshots of N = 64e3 particles
for training and 8 snapshots of the same size for test.

2.2 Graph: node and edge features
To feed the GNN we build one graph for each sample. Following the notation
of [11], we define a graph as a 3-tuple G = (u, V, E) where u is a global at-
tribute, V = {vi}i=1,...,Nv is the set of nodes with vi as feature of node i and
E = {(ek, rk, sk)}k=1,...,Ne is the set of edges with ek as feature of edge k, rk receiver
node and sk sender. Building the graph means defining the set of nodes and
directed edges, and attribute features to them.

Graph structure We take one snapshot from the middle of a 1τα trajectory and
associate each particle to a node, two nodes are connected by a couple of directed
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Figure 2.3: PDF of displacements: Probability density function (PDF) of
displacements at different timescales at temperature T = 0.43. Computed numer-
ically on a 30τα trajectory, building, for each timescale, an histogram from the
displacements of all the particles in the system. For the curve related to t = 5.8τα
a bi-modal distribution is observed, this reflects the presence of two populations of
particles, one which is caged and one which have hopped outside of the cage.

edges if the distance of the particle associated to them is less than a certain
threshold:

(ek, rk, sk) ∈ E ⇐⇒ |~rrk − ~rsk | < rthr (2.4)

rthr = 1.5 is chosen as the distance at which the g(r) has the first minimum, i.e.
particles are connected by edges if they’re first neighbors.

Edge features Each edge is endowed with the distance between the particles it is
connecting

ek = |~rrk − ~rsk | (2.5)

Note: two nodes are connected by two directed edges with opposite direction and
the same feature, it’s a way of implementing un-directed edges.

Node features Various possibilities are explored in this work.

• Particle types: each node has a 1-dimensional feature T which is a binary
variable: 0 if the particle is of type A and 1 if B.

• gi(r): we feed the GNN with an expert feature which is known to strongly
correlate with the dynamics of particles in supercooled regime [3]. Considering
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a particle i we build a vector ~G(i) of 160 descriptors of the local structure
around it as follows:

GY,α(i) = 1
4πr2

α

∑
j∈{Y }

I|~rj−~ri|∈[rα,rα+1] (2.6)

where Y denotes the type of particles (A,B) and rα = {0.70,0.75, ...,4.70}
is an 80-point binning of the distance (see Fig. 2.4). These descriptors are
just a discretization of the gi(r), indeed GY,α(i) is equal to gi,Y (rα) up to a
proportionality constant, where gi,Y (r) = 1

4πr2
∑N
j∈Y δ(r− rij) is just the radial

distribution function computed for particle i and types Y .
In the end each node is fed with 161 features:

vi = (Ti, ~GA(i), ~GB(i)) (2.7)

Figure 2.4: Descriptors: graphical representation of how descriptors are built.
Numerically one has to count how many particles belongs to a shell at distance rα
from particle i and normalize this number by the surface of the shell.

• Dimensionally reduced gi(r): we reduce the dimensionality of the descrip-
tors in order to introduce less parameters in our model. Reducing the number
of features present on the nodes means simplifying the encoder architecture.
The main goal of this approach is reducing over-fitting. We perform a principal
component analysis on a dataset D = {(T si , ~Gs(i))} where s = 1, ...,28 is the
number of the train sample and i = 0, ...,63999 the particle number in each
sample. So we fit the PCA model to the train dataset, in Fig. 2.5 you can see
the cumulative explained variance as a function of the number principal com-
ponents considered. Once the number of components is chosen (we try with
{10,30,100}) all the (T si , ~Gs(i)) are projected on these components and their
dimensionally reduced version is fed to the nodes rather than the complete
one.
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Figure 2.5: PCA of g(r): cumulative fraction of explained variance of the
dataset as a function of the number of selected principal components. No knee is
observed meaning that linear combinations of these features cannot explain the
whole variance of data.

2.3 GNN architecture
The GNN architecture can be characterized formally following the notation of
[11]. It’s the same architecture as the one introduced in section 1.4 with a classic
encoder - recurrent update - decoder structure.

The encoder encodes independently nodes and edges of the input graph with 2
two-layer MLPs with default size (64,64) and ReLu non-linearity: given that the
initial graph is in the form G0 = (u0, V 0, E0) the encoder will process its features
as

u1 = u0

v1
i = Encv(v0

i ) = MLP(64,64)(v0
i )

e1
k = Ence(e0

k) = MLP(64,64)(e0
k)

(2.8)

Once the graph is encoded, its features are updated recursively based on what we
will call Graph Network (GN) block, according to [11]. A GN block is made of
update functions φ and aggregation functions ρ and it works in the following way:

1. Each edge feature is updated on the basis of its previous value, its associated
nodes features and global features through an update function which is im-
plemented as a two-layer MLP of default size (64,64) and ReLu non-linearity:

e′k = φe(ek,vrk ,vsk ,u) = MLP(64,64)(ek||vrk ||vsk ||u) (2.9)
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where || represents concatenation.

2. Updated edges features are aggregated to update nodes. All the features of
edges that are pointing at node i are aggregated into a single feature ē′i that
will be used for the update of node i feature:

ē′i = ρe→v(E ′i) =
∑
k:rk=i

e′k (2.10)

where E ′i = {(e′k, rk, sk)}rk=i;k=1,..,Ne

3. Each node feature is updated on the basis of its previous value, the aggregated
edges computed at the previous step and the global features. The update
function is implemented as a two-layer MLP of default size (64,64) and ReLu
non-linearity:

v′i = φv(ē′i,vi,u) = MLP(64,64)(ē′i||vi||u) (2.11)

4. Updated edges and nodes features are aggregated separately to update the
global features:

ē′ = ρe→u(E ′) =
∑
k

e′k

v̄′ = ρv→u(V ′) =
∑
i

v′i
(2.12)

where E ′ = {(e′k, rk, sk)}k=1,...,Ne and V ′ = {v′i}i=1,...,Nv .

5. Global features are updated on the basis of their previous value and the
aggregated edges and nodes features. The update function is implemented
as an identity function since in this work global features are not used
(initially put to 0):

u′ = φu(ē′, v̄′,u) = I(u) (2.13)

The GN block is applied recursively for a number of times 0 < nrec < 7. At each
recurrence, node update functions are shared between nodes, same thing for edge
update functions, in the spirit of weight sharing of CNNs filters. Thus at each
recurrent step two MLPs are instantiated, one for node update and one for edge
update and their weights are adjusted during the training procedure. Furthermore,
at each recurrent step, skip connections are implemented by concatenating to
current edge and node features the ones of the initially encoded graph.

At the end of the process, features are decoded in order to regress node features
of particles A to their mobility. The decoder is implemented as a two hidden layers
MLP with default size (64,64) and ReLu non-linearity plus one non-activated
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single-layer perceptron for regression: given that the final graph is in the form
Gnrec = (unrec , V nrec , Enrec) the decoder will process its features as

ud = unrec

vdi = Decv(vnreci ) = MLP(64,64,1)(vnreci )
edk = Dece(enreck ) = MLP(64,64,1)(enreck )

(2.14)

The GNN is implemented in TensorFlow following the work of [18].

2.4 Labels
Most of previous works on ML for glassy systems use very rough definitions of
mobility to compute regression targets or classification labels. For example Bapts
et al. [18] use the propensity approach introduced in section 1.4. This approach
gives little information about the true dynamics of particles because it
considers only the total displacement on a fixed timescale and averages it over
the iso-configurational ensemble. Predicting the iso-configurational dynamics at a
single particle scale is not equivalent to predicting the true dynamics, according
to [1], while this might be true at larger scales. Indeed the iso-configurational
mean averages out the initial velocities contribution to the dynamics and keeps
just information coming from the static structure. Thus they perform a task which
is rather simplified. We introduce labels that a) are able to capture qualitative
differences in particle dynamics b) are not averaged over the iso-configurational
ensemble so describe the true dynamics.

In the following we explore two measures of mobility to build the regression
labels: phop and Wavelets transform of trajectories.

Phop As explained in section 1.1, the dynamics of particles in the supercooled
regime is characterized by a long period of fluctuations around a given average
position (the caging) and rare, sudden jumps that correspond to the escape from the
cage. A useful measure, capable of detecting this kind of behaviour, is phop. Here
we present the steps of computation of phop even though we do not go into much
detail, since it was not the focus of the internship, but rather a tool. Following [3]:

phop(i, t) =
√
〈(~ri − 〈~ri〉U)2〉1/2

V 〈(~ri − 〈~ri〉V )2〉1/2
U (2.15)

for each particle i and all t ∈ W where W = [t1, t2] is the time window of the
trajectory we are studying. Averages are performed over time intervals U = [t1, t]
and V = [t, t2]. One wants to separate the trajectory, distinguishing jumps from
caged oscillations, so we compute t∗ = argmaxt∈W (phop(i, t)) which is the time
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that best separates the trajectory ~ri([t1, t2]) into two sub-trajectories ~ri([t1, t∗])
and ~ri([t∗, t2]). We record p∗hop(i) = phop(i, t∗) and the process is iterated on each
sub-trajectory. In this way, if the initial trajectory is made of oscillations inside
the cage, the value of p∗hop(i) is small and corresponds to the cage’s size, while if
there’s a jump, it corresponds to the amplitude of the jump. Iteration is interrupted
when p∗hop(i) < pc where pc is taken as the value of the RMSD at the plateau (see
Figure-2.1). In this way, only displacements larger than the RMSD plateau are
considered jumps. Finally, to keep into account that jumps are not instantaneous,
p∗hop(i) is assigned to all phop(i, t) for t ∈ [t∗− tf , t∗+ tf ] where tf = 5 LJ time units.

For each 1τα simulation of the system, phop is computed for all the particles and
one value is assigned at each frame (time instant) per particle. Then the central
frame, the one from which the graph has been built, is taken and its phop values
are the labels to regress to. We proceed in this way since we want to predict the
mobility of the particles at the same time of the static structure observation.

In Fig. 2.6 the distribution (PDF) of values of phop computed on some samples
of 64.000 particles is shown. It’s clearly bi-modal around pc = 0.16 since there are
two populations of particles: steady and hopping ones. The most interesting events
to predict are the largest jumps corresponding to the right-tail of the distribution.

Figure 2.6: phop distribution: shown in different colors distributions computed
on different samples

Wavelets transforms Wavelet transforms have been applied as a powerful tool in
many fields, ranging from image and audio signal processing [21][22] to estimation
of quantum properties of electronic systems [23]. They can be used to detect
variations (for example edges) in signals at different scales. This is partic-
ularly useful for our task because not all the particles show a simple hopping/caging
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behaviour, some of them move gradually on much longer timescales without having
sudden jumps, as shown in Fig. 2.7. We perform a continuous wavelet transform

Figure 2.7: Non caging behavior: comparison between a trajectory that shows
the typical caging behavior with oscillations in the cage and sudden jumps (top)
and a trajectory with a slow transition (bottom). Trajectories are obtained from
MD simulations, plotting the position in the z direction of 2 different particles in
the same liquid.

(CWT) of the trajectory of each particle i in each spatial direction d:

Cd
i (a, t) =

∫ t2

t1
rdi (s)

1√
a
ψ
(
s− t
a

)
ds (2.16)

where [t1, t2] is the time window of the studied trajectory ~ri(s) = (r1
i (s), r2

i (s), r3
i (s)).

The CWT consist in convolving the time trajectory with a wavelet ψ stretched
on various scales a and centered in all the time instants of the trajectory t (in
this way each frame has a label). Here we chose as form of the wavelet ψ(t) =
−Cte−t2 where C is a positive normalization constant and scales: ~aframes =
[50,100,200,400,800,1600,3200] frames which, expressed in LJ-time units are ~aLJ =
[5,10,20,40,80,160,320] since each simulation frame is printed every 0.1 LJ-time
unit. Once the transform in each direction is computed, the label of particle i at
frame t is computed as:

~mi(t) =


√∑3

d=1 Cd
i (a0, t)2

...√∑3
d=1 Cd

i (ans , t)2

 (2.17)
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where ns is the number of scales used for the transform. The choice of the scales is
done empirically in order to detect hops on different timescales and avoid boundary
effects on 1τα trajectories. In Fig. 2.8 a typical trajectory with CWT coefficients is
shown.

Figure 2.8: CWT: particle position is in LJ-units, time in frame number (10 ∗
LJ-time unit)

In the actual implementation, the convolution is computed for every particle just in
the central frame of the 1τα trajectory and a multivariate label is assigned to each
particle. This approach allows to study the mobility of the particle at the
very time of the static structure observation and at previous and later
times since the convolution has ’memory’ of the rest of the trajectory. Finally this
measure of mobility respects the time reversal symmetry of the equilibrium
dynamics of supercooled liquids by construction, this is clear also qualitatively on
similar jumps with opposite direction.
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Figure 2.9: CWT distribution: PDF of wavelets coefficients computed on one
sample with 64.000 values. Scales are expressed in number of frames.

Fig. 2.9 shows the typical PDF of CWT coefficients for different scales. Most of
the information is in the tail of the distributions since large values are recorded
in correspondence of significant displacements. This makes the task of predicting
these values hard since we are dealing with rare events.

2.5 Training procedure
Simple regression This is the case of mono dimensional labels built from phop or
single scale of CWT. The training procedure is performed through the minimiza-
tion of the L2-norm of the error between predicted and true mobility of particles
A:

LL2 =
∑
i∈A

(ti −mi)2 (2.18)

Multivariate regression This is the case of multidimensional labels built from
multiple scales of CWT. The training procedure consists in minimizing the global
L2-loss which is obtained as the average of the loss in each dimension:

LglobL2 = 1
ns

ns∑
k=1

∑
i∈A

(ti,k −mi.k)2 (2.19)

where the first sum is over the CWT scales and the second one over nodes (particles).
ti,k is the true CWT at the k-th scale for particle i, mi,k is the corresponding
predicted one.
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Re-weighting the L2-loss Results obtained in the case of simple and multivariate
L2 regression show that the GNN is not able to predict rare events, as pointed out
in sections 3.1-3.2. Hence the need for the introduction of a re-weighting of the
loss in order to take into account the real distribution of the labels. Importance
weighting is performed over nodes: node i is associated with a weight wi deter-
mined by the probability of occurrence of its target mobility in the training set
(p(ti)). This quantity is computed empirically as an histogram, through binning of
the possible values. See for example Fig. 2.6. Weights are defined as:

wi = 1
p(ti)α

(2.20)

and depend on the parameter α ∈ [0,1] which determines the relevance of the
re-weighting and is fixed empirically. The training procedure consists in minimizing
the loss:

Lw =
∑
i∈A

wi(ti −mi)2 (2.21)

In this way the largest values of mobility, which are the less frequent, are given a
larger importance in the regression procedure.

In all the cases regression is performed on single particle quantities, no
coarsening is applied to the last layer of the GNN and each particle is associated
to a predicted mobility. Early stopping is implemented and the model with the
highest accuracy on the test dataset is selected. The minimization is done with
initial learning rate of 10−4, gradient-clipping and Adam optimizer. Training was
run on GPGPUs of lab-IA cluster at LISN of Paris-Saclay. For simple regression the
evaluation metric used is the Pearson correlation coefficient ρ between predicted
mobility mi and true mobility ti of type A particles:

ρ =
∑NA
i=0(mi − m̄)(ti − t̄)√∑NA

i=0(mi − m̄)2
√∑NA

i=0(ti − t̄)2
(2.22)

For multivariate regression, a different correlation coefficient is computed for
each component of the output (CWT scale):

ρk =
∑NA
i=0(mi,k − m̄k)(ti,k − t̄k)√∑NA

i=0(mi,k − m̄k)2
√∑NA

i=0(ti,k − t̄k)2
(2.23)

with k = 1, ..., ns.
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Results

The training of the GNN is performed with ground-truth built from the two
measures of mobility discussed above: phop and CWT. For the first one, a full
architecture search is performed, together with the exploration of different node
features and dimensions of the dataset. For the second one, the work is still
preliminary, but, keeping the architecture and the input features fixed, both simple
regression and multivariate regression is performed, yielding same performances. In
all the cases accuracy is rather low and GNN is able to predict only the most frequent
value of the target. For this reason re-weighting of the loss is introduced, but no
significant improvement is observed. We conclude that the level of randomness in
our labels, due to initial conditions, is too relevant and iso-configurational mean /
coarse-graining of degrees of freedom should be introduced.

3.1 Phop

3.1.1 Full g(r)
Architecture search We explore different sizes of the MLPs = {(8,8), (16,16),
(32,32), (64,64)} and different numbers of recurrences nrec = {0,1,2,3,4,5}. Figure
3.1 shows the results. Error-bars are obtained by testing the trained model on 4
subsets of the test-dataset and computing standard deviation of the test correlations.
The case nrec = 0 corresponds to a model in which only encoder and decoder are
present, so no information about the geometry is present. Increasing the number
of recurrences means increasing the maximum distance at which one node "feels"
the others.
Training dynamics Training is performed as described in section 2.3, results are
recorded every 100 training steps which correspond to ∼ 3.6 epochs on the dataset.
Early stopping is implemented checking at each recording step that the L2-loss on
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Figure 3.1: (left)Architecture search: The best correlation is reached for
nrec = 3 and MLP size (16,16) and is ρ = 0.35 ± 0.01. For MLP size (64,64)
it wasn’t possible to train more than 3 recurrences due to hardware limitations
(training was performed on NVIDIA Tesla V100 GPUs with 32 GiB of RAM).
(right) Training curve: Training of the GNN with nrec = 3 and MLP size (16,16).
In the plot you have L2 losses in log-scale (monotonously decreasing curves), and
Person correlation coefficients (monotonously increasing curves) versus training
epochs. In grey, the standard deviation of the test correlation, the red star signals
the minimum of the test L2-loss. The split between train and test correlation
signals the kick in of over-fitting, more complex models start over-fitting the dataset
sooner.

the test set is not higher than the previous ntol ones. The best tolerance interval is
found empirically for this task and is ntol = 100 recording steps. Figure 3.1 shows
a typical training curve.

Learning curve The best performing models (nrec = 3) are chosen to explore
the dataset dimension. The learning curve (Fig. 3.2) shows that increasing the
dataset size doesn’t lead to major increase in accuracy of predictions.

Predictions Here we present the predictions of the GNN with nrec = 3 and MLP
size (16,16). Both the scatter-plot of predicted labels vs. ground-truth and the PDF
of the predicted labels suggest that re-weighting of the loss function is needed. The
GNN predicts only values around the mean of the ground-truth, this is
clear by looking at Fig. 3.3 where PDF of predicted and true labels are compared,
plotted on a log scale.
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Figure 3.2: Learning curve: the training dataset is down-sampled at {4,8,16,28}
samples and training performed as described before.

0.0 0.2 0.4 0.6 0.8 1.0
mpred/phop
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100

101
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F

Predicted
Ground truth

Figure 3.3: (left)Scatter plot: predictions vs. ground-truth for one sample of
the test-set. (right) PDF of predicted/true labels: the GNN is not able to
predict the tails.

3.1.2 PCA and particle types

Dimensionally reduced g(r) We feed the GNN with graphs whose node features
have dimension 10, 30, 100. We try to keep as much information as possible still
reducing the complexity of the model. Less node features means less weights to
learn in the first layer of the Encoder. Indeed simpler models over-fit the dataset
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slower and between 30 and 161 features the performance seems to keep
almost constant (see Fig. 3.4).
Particle types The simplest case is the one with just one feature on each node,
following the work of [18]. In the observed range of recurrences, adding features
always increases correlation.

Figure 3.4: Node features: 1 component means only particle type, 161 full
g(r) + particle type. Between 30 components (> 70% of explained variance),
100 components (> 90% of explained variance) and full g(r) there’s no significant
increase in performance.

3.2 Wavelets
We perform simple regression of node features considering only one scale per
training and also multivariate regression i.e. we regress node features to labels
that have dimension d = ns. In the second case the architecture is modified since
the last layer of the decoder is composed of d neurons.

Scales Simple Reg Multi Reg
80 ρ = 0.12± 0.06 ρ = 0.12± 0.06
160 ρ = 0.13± 0.05 ρ = 0.13± 0.06
320 ρ = 0.15± 0.07 ρ = 0.14± 0.06

Table 3.1: some training results for nrec = 3 and MLP size (16,16). Scales are
expressed in LJ-time units.
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This is still preliminary work, but prediction analysis (Fig 3.5) shows that the
difficulty of the task might come, as in the case of phop, from the difficulty of
predicting rare events.

Figure 3.5: (left)Scatter plot: predictions vs. ground-truth for one sample of
the test-set. (right) PDF of predicted/true labels: the GNN is able to predict
only the average of the ground truth (with minor corrections) as in the case of phop.

3.3 Re-weighted loss
Importance weighting is performed on simple regression tasks i.e. predicting phop
or single scale wavelet transform. Here we present results obtained with phop.

Starting form the configuration which yields the best results in the simple L2-loss
minimization, weights are introduced according to section 2.5 and the parameter
α is tuned empirically to match the ground truth distribution. Figure 3.6 shows
results obtained for α = 0.5: accuracy is still low and, even though the ground
truth distribution is matched, the scatter plot of prediction vs. ground-truth makes
evident that the GNN is not learning. Similar behavior is observed when simple
regression is performed with importance weighting on single scale CWT.

We conclude that re-weighting alone is not sufficient to improve the learning
because, regardless of their distribution, labels have an intrinsic random component
which is relevant. This makes their prediction a difficult task.
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Figure 3.6: (left)Scatter plot: predictions vs. ground-truth for one sample of
the test-set. (right) PDF of predicted/true labels: the GNN is able to predict
also larger values of mobility but there’s no correlation with ground truth so it is
not learning.
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Discussion

Our results are partial, we’re far from pairing or beating the current state of the
art and there are still a lot of improvements to be done, but, as suggested by
Battaglia et al. in [11], we believe that the path of including prior knowledge into
complex and expressive architectures without disregarding expert features is the
way to reach big improvements in ML in general. Still it is clear that deeper
re-thinking of the GNN architecture is needed to leverage the additional
information introduced by these features.

The analysis we have performed showed us that our labels are hard to predict
because of the high level of randomness which is intrinsic in the glassy dynamics.
Most of the previous works belonging to this line of research, included the one from
Bapts et al.[18], focus on the prediction of the propensities which are averaged
quantities that keep into account only the structural contribution to particles
dynamics. They don’t investigate the connection between propensities and true
dynamics. We are trying to predict directly the true dynamics at single particle
scale starting from the static structure and without passing through the iso-
configurational averaged quantities. This is an hard task in fact, according to
Berthier et al. in [1], the dominant single-particle dynamical fluctuations
are intrinsically dynamical, and not linked with liquid structure. We observe
this also in our system following their approach: we compare raw labels (for example
CWT at a fixed scale) with the iso-configurational averaged ones. The result is the
same (Fig 4.1): raw labels have a low correlation with the averaged ones meaning
that studying the iso-configurational dynamics doesn’t give us enough information
on the true dynamics. Conversely, predicting the true dynamics starting only
from structural information is not feasible at a single particle level.
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Figure 4.1: Comparison between raw labels and averaged ones. The latter are
obtained as an average over 30 MD simulations starting from the same initial
spatial structure and randomized velocities. Labels chosen here are CWT on one
scale. (left)Scatter plot: raw labels versus iso-configurational ones evaluated at
t = τα/2 where t = 0 is the initial configuration (right) PDF of raw/iso labels:
raw labels distribution is more spread as expected.

Starting from the observations of [1] we conclude that we should look at the
dynamics on a coarser scale if we want to be able to improve our predictions
and clarify the link between structure and glassy dynamics. This could be done
through a pooling procedure applied on the last layer of the GNN.

Once good results are achieved with the current architecture, further improve-
ments would consist in adding attention mechanism [14] on top of it or rethink-
ing the architecture using completely different routines to update nodes and
edges features. Self-attention mechanisms would allow to perform updates of nodes
features based on weighted averages of the neighborhood, thus revealing which
neighbors are fundamental for the update of one node. Different update routines,
like the one based on generalized continuous convolutions [12], would exploit
more efficiently the spatial information fed to the GNN and it would learn some
continuous convolution kernel that can be analyzed to extract physical information
from it.

Finally, an interesting direction would be the one of building explainable
models. The machine-learned output of the (successful) GNN, by definition,
depends solely on the atomic structure of the sample. It is thus a machine-learned
structural order parameter. However, it is hard to interpret and does not
constitute, by itself, a progress in basic science. What would constitute such a
progress would be an explainable order parameter. Many possibilities open up in

31



Discussion

this sense: knowledge distillation i.e. analyze the trained neural network layers
to check their correlation with a predefined list of hand-crafted physical quantities,
building decision trees or symbolic meta-models which are explainable by design
and so on. In general the issue of explainability is of central interest nowadays in
machine learning and working on it would bring significant contribution for all the
community.
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