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Summary

Complex networks have been increasingly used to model brain connectivity derived
from experimentally obtained data [1]. Topological properties, such as node
centrality, efficiency and modularity have been shown to reveal complementary
information on the brain functioning in healthy and pathological conditions [2].
This thesis tries to go beyond a first descriptive approach in terms of single scale
topological properties: considering the presence of multiple scales, and addressing
the problem in the novel and promising framework of networks latent geometry.

Indeed, even if the brain is naturally embedded in Euclidean space, an effective
hyperbolic geometry can better account for its most characteristic topological
properties, such as community structure, heterogeneous degree distribution, efficient
navigability. Random geometric (with distance dependent connection probability)
graph models in hyperbolic space were developed [3] and merged with unsupervised
learning techniques to convey algorithms able to map existing networks to hyperbolic
space, assigning coordinates to nodes in order to maximally reproduce the observed
topology.

Embedding networks to a latent geometric space can serve as a form of un-
supervised learning. For instance one of these methods applied to the brain [4]
has resulted in a separation of left and right hemisphere nodes, as well as a clear
angular separation of groups of nodes corresponding to neuroanatomical regions.
But it can also be the basis for a geometric renormalisation of the network.

Brain networks indeed possess a rich architecture organized over multiple scales
linked to one another (from single nodes to groups or clusters). The characterization
of multiscale properties in complex systems is commonly addressed using the
renormalization technique of statistical physics. The first attempts to coarse-grain
networks were carried out in topological space (contraction of shortest paths, degree
thresholding). Nevertheless, the presence of correlations between different scales in
some complex networks (linked to small world property), limits the applicability of
renormalization procedures directly on the graph or the associated connectivity
matrix, in which the metric structure is given by shortest paths between nodes.
Following these observations a geometric renormalisation protocol in hyperbolic
space was presented in [5].
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My work was centered on applying those state of the art models and methods
to the characterization of brain structural connectivity of a cohort composed by
healthy subjects and Alzheimer diseased patients.

The datasets I used were in the form of weighted adjaciency matrices, rep-
resenting the strength of structural connections (number of axonal pathways),
the information of which was derived from magnetic resonance (Diffusion Tensor)
imaging by the neuroimaging core facility of CENIR.

In the first part I derived network representations in hyperbolic space, using
Mercator [6]: an algorithm which combines dimensional reduction (Laplacian
Eigenmaps) and likelihood maximization (based on a random graph model in
hyperbolic space [3]) approaches to assign coordinates to each node.

The accuracy of each embedding was validated comparing local and global
topological and properties of the original networks with that of an ensemble of
random graphs, generated from the assigned coordinates, given the model.

I then applied the transformation of coordinates in [5] to unfold the multi-
scale structure of the networks (starting from O(103) nodes down to O(101))
and computed various global and local (node specific) topological and geometric
measures for each connectivity matrix.

The results for the two groups (healthy and patients) were then statistically
compared. For some of the properties analysed, the two groups are found to
be indistinguishable at the original scale, while not indistinguishable on rescaled
networks, suggesting the possibility for a theoretical description of how this disease
is affecting brain functionality at multiple, interconnected scales.

A needed follow-up would be performing the same analysis across experimentally
obtained networks at different resolutions, with a comparable number of nodes
with respect to the model rescaled ones. The eventual correspondence of the
results obtained would be in favour of the ability of this multi-scale modelisation
to reproduce the observed network properties; the opposite case could lead to the
conclusion that the proposed method conveys different or more information with
respect to the observations, immediately linked to the necessity of understanding
from where this new information comes from.
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Chapter 1

Introduction

1.1 What is a Network?
Many real-world systems are characterised by a large set of interacting elements.
The well-founded mathematical branch of graph theory gave the idea and the basic
formalism to model these systems as a set of nodes connected by edges. This
approach was applied to biological, technological, social networks, and it soon
became clear that the topological properties of these systems were peculiar with
respect to that of well-known lattices or random graphs.

A research effort in the last two decades was targeted to widen the set of
available models and measures for graphs, in order to be able to reproduce and
characterise some peculiar features observed in graph representations of real-
world interconnected systems: for instance dynamicity in time, presence of highly
interconnected groups of nodes (communities), presence of correlations between
node specific properties, relatively short number of steps between any two nodes
(small-world property [7]). These irregular, dynamical graphs, usually with a very
large number of nodes, are studied, under the name of complex networks, integrating
graph theory formalism with fields such as statistical physics and machine learning.

The words network and graph are associated to the same mathematical object
defined by the pair (V, E), where V is a set of vertices/nodes of size |V | = N .
E ⊆ V × V is the set of edges/links, that can be directed, undirected (non-
relevant direction of the pair-wise connections), weighted or unweighted (if only
the presence/absence of the connection is relevant).

A graph can thus be represented as a list/set of pairs of connected nodes (edge
list/set), but a more effective representation is the adjaciency matrix. Call it A,
with element

(A)ij =

ωij (i, j) ∈ E

0 (i, j) /∈ E
(1.1)
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Introduction

ωij = 1 if the graph is unweighted.

1.2 Measures on networks
In this section I explain some properties I will use to characterise networks in this
work, from the basic ones to more complex organisational features.

basic measures The number of connections of a node is called degree and is
computed as:

ki =
Ø
j∈N

aij (1.2)

where N is the number of nodes, aij is an element of the adjacency matrix which
is 1 if an edge exists between nodes i and j, 0 otherwise. In the case of weighted
networks, the same measure is called strength and takes the weight wij instead of a
binary input.

The shortest path-length is the only metric defined on topological space, it’s the
count of the minimum number of edges connecting two nodes (the sum of their
corresponding weights in the case of weighted networks).

measures of segregation These quantify the extent to which information pro-
cessing is performed in densely interconnected, specialised groups.

The simplest measure of segregation is the clustering coefficient C, counting the
fraction of nodes’ neighbours which are also neighbours of each other (triangles):

C = 1
n

Ø
i∈N

2ti

ki(ki − 1) ti = 1
2
Ø

j,h∈N

aijaihajh (1.3)

where ti is the number of triangles around node i.
The more informative1 measure of segregation is the modular structure, a

known organisational feature of the brain. It is typically derived from optimisation
algorithms, extracting the partition which maximises modularity in the network,
the latter defined as:

Q =
Ø

u∈M

C
euu −

A Ø
v∈M

euv

B2D
(1.4)

where M is the set of non overlapping subsets of network nodes (partition), euv

is the proportion of edges linking nodes in module v with nodes in module u;
so that essentially quantifies the amount of intra-connections with respect to
inter-connections between modules.

1Giving also the composition of these specialised groups (optimal partition).
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Introduction

Measures of integration These quantify the ability to efficiently transport
information in the network and rapidly integrate the outputs coming from different
specialised areas.

The basic rule is that the shorter the distance between two points the faster the
communication so that a first measure of integration is the characteristic path-length
(obtained averaging over shortest paths between any pair of nodes in the network);
nevertheless, if the network has disconnected components some of these shortest
path-lengths dij are ∞ and that measure is not computable. Global efficiency has
the same meaning but involves inverse path-lengths which are 0 for disconnected
nodes, so that it is always computable:

E = 1
N

Ø
i∈N

q
j∈N,j /=i d−1

ij

n − 1 (1.5)

The overall efficiency of many real-world systems, and for instance the brain, is
guaranteed by the trade-off between integration and segregation: a faster and more
resilient communication system (more densely connected) comes with an increased
wiring cost.

The optimal wiring in the brain is organised in well distinct specialised areas
that at the same time are effectively connected, to converge in a complex though
highly efficient communication system [8].

This is usually referred to as small-world organisation of complex systems, which
is quantitatively reflected by efficiency comparable and clustering coefficient higher
than a random graph2. Equivalently this property is identified by an average
path-lengths increasing as ∼ log(N) with the number of nodes N.

1.3 Brain Networks
Graphs have been increasingly used to model brain connectivity, stimulated by
the increasing availability of experimental tools to record dynamic patterns of
interaction between neuronal elements [9, 1].

The more intuitive discrete, networked representation of the brain is derived
associating nodes to anatomical regions of interest in the brain and edges to the
physical/axonal connections between them. The weight of these connections is
usually quantified with the number of fiber tracts connecting the two regions, or
their length, or a combination of the two. The resulting object is called structural

2I mean a classical random graph, in which edges are just assigned with a fixed probability in
topological space.
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brain network, describing and modelling them we try to answer the question of
whether and how the structure of neuronal wiring is related to brain functioning.

Another notable representation is that of functional brain networks, in which
nodes represent regions of the brain in which we are measuring an activity (they
can be for instance the electrodes in a EEG measurement), and edges represent the
correlation between the recorded signals (usually while performing a certain task).

Figure 1.1: Illustration of the construction of structural and functional brain
networks. Taken from [10]

In this work only structural brain networks will be treated, and their construction
starting from Magnetic Resonance Imaging is described in ch.2.

1.4 Aim of the thesis
Topological properties (some illustrated in 1.2), such as the node centrality, effi-
ciency (eq.1.5) and modularity (eq.1.4), have been shown to reveal complementary
information on brain functioning in healthy and pathological conditions. However,
the principles behind brain networks’ organisation, and their relation to brain
functioning, are still poorly understood.

This thesis tries to go beyond a first descriptive approach in terms of single scale

4
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topological properties, considering the presence of multiple scales, and addressing
the problem in the novel and promising framework of networks latent geometry (3).

Some recently developed models and methods are applied to human structural
brain networks, coming from a group of healthy subjects and one of Alzheimer
diseased patients. First, networks are embedded in an hyperbolic space, using a
model based method mixing machine learning and likelihood maximisation, to
obtain nodes coordinates (explained in ch. 3). Second, each network is coarse-
grained and rescaled using a transformation of coordinates in the same hyperbolic
space (explained in ch. 4).

Various global and local topological properties are computed on each down-
scaled network and used to compare the two groups, with the goal of observing
the difference between them at a certain scale, while it was not observable at the
original one. The long term goals are to study brain organisation at multiple scales,
also testing the relation with brain networks constructed at different resolutions;
and determine whether and how these scales are interconnected to convey complex
behaviour.

Considering the investigation of neurological disorders as a network problem has
strong support from the fact that is well-known that many diseases manifest as the
destruction of axonal pathways. Structural brain networks (their construction is
explained in 2.1) represent these axonal connections, and enable a representation
of their alteration in terms of edge weakening or removal, quantifiable through a
wide range of global and local properties of the network.

5



Chapter 2

From the brain to its
structural brain network

2.1 Structural brain networks construction from
MRI

Magnetic Resonance Imaging (MRI) is a neuroimaging technique based on Nuclear
Magnetic resonance: nuclei spin precession induced by strong magnetic fields causes
the emission of an electromagnetic signal at radio frequencies which is recorded
and localised in voxels (units of volume of the order of 1mm2) to construct a map
of the system. These maps and the resulting images are different depending on the
particular MRI technique adopted, the most common are T1 & T2 based, fMRI,
DWI. The data I used in this project is coming from DWI (Diffusion Weighted
Imaging), measuring diffusion trajectories of water molecules in the brain. The
acquisition is performed for different gradient directions resulting in a tensor
(represented as an ellipsoid).

2.1.1 Tractography
The information about the shape of white matter fiber tracts in the brain comes from
tractography algorithms applied to DWI images, first estimating the distribution
of the direction of propagation at each voxel, then building 3D trajectories from
this local information.

2.1.2 Parcellation
Brain parcellation is the division of the brain into areas of interest that end up
being the nodes of the network. There exist many techniques, anatomical-based

6



From the brain to its structural brain network

ones use anatomical landmarks, cortex curvature and architecture of neural cells,
others are using clustering algorithms such as k-means, hierarchical clustering,
applied to connectivity information derived for instance from tractography.

Figure 2.1: Ellipsoids representing local fiber orientation and corresponding
tractograms (adapted from [11]). Right: structural brain network illustration from
[12]

The networks I used were constructed from the anatomical parcellations built in
[13], and composed of 23 brain networks coming from Alzheimer diseased patients,
as well as 27 from non-pathological subjects, all with 1015 nodes and around 70000
links, weights represent the number of fiber tracts connecting the areas of interest.

2.2 Filtering
A connected network is obtained as a set of nodes and weighted edges, representable
in the mathematical form of an adjacency matrix A = {wij} i, j = 1, . . . , N . This
representation of brain structure is usually thresholded, keeping only edges with
weight above a certain value, or even binarised (edges that are kept are associated
to an adjacency matrix element aij = 1). The reason for this operation is, other
than simplifying the analysis, that weak links are more likely to be emerging from
noise either in the acquisition or the image processing part and keeping them can
prevent us to see some significant system’s characteristics.

How to chose a significant threshold is a subtle issue, a range of values can be
explored to see if at some point properties of the system that were before hidden
emerge and remain observable.

7



From the brain to its structural brain network

I used two methods to filter the originally weighted networks and thus reduce
the average degree:

2.2.1 Threshold proportional
From Brain Connectivity Toolbox for python1, the function threshold proportional
thresholds the network preserving a proportion 0 < p < 1 of the strongest links,
which means that we reduce the density of the network to p. Density of connections
in a simple network2 is related to the average number of connections (average
degree) < k > by

p = < k >

N − 1 = 2|E|
N(N − 1) (2.1)

where E is the number of edges. Using this formula we can choose p in order to
return a filtered network with a specific average degree.

Progressively pruning the links leads to the emergence of disconnected compo-
nents and isolated nodes.

The embedding procedure (explained in ch.3), has problems when a disconnected
network is given (in particular is returning the embedding of the largest connected
component only).

After the thresholding, I kept only those networks that were still connected,
to compare networks with the same number of nodes. In this way starting from
the original networks with < k >Ä 150 and respectively 23 and 27 samples for
the two categories (pathological and non-pathological) I ended up at < k >= 18
having just 3 non-pathological subjects so that I stopped at < k >= 20 to be able
to perform meaningful statistical tests.

2.2.2 MST and link adding
In order to reach lower values of average degree while ensuring connectivity, I
extracted a backbone of the original network computing the Maximum Spanning
Tree, which is connected by definition. Then, having an initial average degree of
Ä 1.5, I added the missing edges in decreasing weight order. The number of edges
to add E − Emst = E − (N − 1) in order to reach a target average degree k, is
again given by the relation defining the graph density 2.1:

k

N − 1 = 2E

N(N − 1) → E = kN

2

1https://github.com/aestrivex/bctpy
2in which only one edge is defined between a pair of nodes

8
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From the brain to its structural brain network

This way of reducing network density enables to obtain connected versions of
the original network with an arbitrary reduced average degree. Nevertheless, the
selection of a maximum spanning tree do not correspond to selecting the same
number of edges with higher weight, and is thus not properly coherent with the
aim of removing noise-related connections. The significance of networks filtered in
this way has to be determined.

The embedding validation (explained in subsec.3.2.2) for the same network
thresholded using the two different methods, down to the same average degree k =
20, is reported in 7. We can observe that the two representations are qualitatively
indistinguishable, and both admit an accurate embedding.

9



Chapter 3

Network geometry

Some networks are spatially embedded in a geometric space, imagine traffic networks,
social networks, the brain. Considering distance as a costly factor in links formation,
seem a reasonable choice to model the behaviour of these interconnected spacial
systems.

However, the actual geometry (usually Euclidean) is usually not satisfying in
explaining the observed topological properties.

For instance, a random graph model in hyperbolic space [3] is currently the
only one that can reproduce together: small-worldness and high clustering (eq.1.3),
community structure, heterogeneous degree distribution, self-similarity [14], efficient
navigability. Almost all the most characteristic properties of structural brain
networks.

From these observation the study of latent geometry took the attention of the
community lately. The fundamental question is whether it exists a geometric space
from which the observed topology emerges naturally (for instance distributing
nodes uniformly) as a reflection of the metric structure.

Beyond being a promising theoretical framework, network latent geometry is
also paving the way for a bunch of practical applications to real-world problems
as efficiently routing information in the Internet [15], community detection1, link
prediction [16] and many others.

1Communities, as highly interconnected objects are expected to occupy delimited spacial
regions according to a model in distance is inversely proportional to link formation.
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3.1 Random graph models in Hyperbolic space
Random geometric graph models are characterised by a probability of connection
between any pair of nodes depending on their distance in a metric space, with the
general characteristic that the smaller the distance the higher the probability of
connection between two nodes.

The rationale for the choice of a metric space in which distances are hyperbolic
is that complex networks typically have a hidden hierarchical organization: indeed
nodes are heterogeneous instances that can be usually classified into communities
and sub-communities, and approximated by a tree-like structure, so that similarity
distances in trees can be efficiently mapped to similarity distances in hyperbolic
space, both exponentially expanding at a rate given respectively by the branching
factor and the curvature. Moreover in [3] , Krioukov et al. formally show that
generating points uniformly on the surface of a hyperboloid (negatively curved
surface, two-dimensional hyperbolic space), and choosing a simple step probability
of connection function

p(x) = Θ(µ − x) (3.1)
is enough for heterogeneous topology to emerge. In particular, the resulting degree
distribution is a power law. Intuitively, nodes that lay more near the center of the
hyperboloid would have a higher degree, as a consequence of the structure of the
metric space: hyperbolic distance x between points (r, θ), (rÍ, θÍ) is given by

cosh(ζx) = cosh(ζr) · cosh(ζrÍ) − sinh(ζr) · sinh(ζrÍ) · cos∆θ (3.2)
where ζ is the curvature of the hyperbolic space, and ∆θ = π − |π − |θ − θÍ||.

This for sufficiently large ζr, ζrÍ and ∆θ can be approximated as:

x = r + rÍ + 2
ζ

ln(sin
∆θ

2 ) (3.3)

from which we can understand that central nodes (with smaller r) are likely to
be at a small distance to many nodes, and thus have a higher degree.

The step connection probability function 3.1 is the simplest choice for a random
geometric model and from a statistical physics’ perspective can be seen as the zero
temperature limit of a Fermi-Dirac connection probability:

pij = 1
eβ(Ôij−µ) + 1 (3.4)

which casts the ensemble of graphs generated to an entropy-maximising expo-
nential family. Edges are modelled as non-interacting fermions with energy:

Ôij = f(xij)

11



Network geometry

Figure 3.1: Nodes on a latent hyperbolic space (surface of an hyperbola) and
projected on the x-y plan, with their connections. Pink and teal shapes are circles
in hyperbolic space. Image from [3]

The ensemble is grand-canonical with chemical potential µ and inverse temperature
β. Parameter µ fixes the average number of edges |E| and thus controls the average
degree in the network; parameter β controls clustering in the network, which is
maximised at the ground state T = 0 ↔ β → ∞ while tends to zero as β → 1. As
clustering decreases, the connectivity depends less and less on hyperbolic distance,
as a consequence the metric structure is lost and so the congruency topology-
geometry. Finally, at T = 1 the connection probability is not normalisable anymore
and a phase transition point is encountered.

To reproduce small-worldness and high clustering the minimal requirement
is f(x) ∝ ln(x). To add heterogeneous degree distribution we have to include
degree information in the probability, and in general any degree distribution can
be reproduced adequately choosing the probability of connection.

In the following, I specify two well-known hyperbolic models in two dimensions
which I will use in my analysis:

12
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3.1.1 S1 model
It was introduced in [17], nodes are distributed along a circle of radius R = N/2π
(to set to 1 density along the circle) where N is the number of nodes. Each point is
assigned a hidden degree κ ∈ [κ0, ∞), that is not equal to the actual degree but at
least proportional (fig.4.3).

The energy is

Ôij = ln
xij

κiκj

xij = R∆θij = R(π − |π − |θi − θj||)

so that the corresponding probability of connection (eq.3.4) is decreasing with the
arc-length (encoding similarity2) and increasing with the hidden degrees product
(encoding popularity, the higher the degree the more "popular" is the corresponding
node)3.

It can then be defined any distribution ρ(κ, θ) to obtain a desired degree
distribution (for instance a Pareto distribution for the hidden degree κ leads to a
power-law degree distribution).

3.1.2 H2 model
Defining radial coordinates from hidden degrees maps the hidden variable model
S1 to a fully geometric one which is usually (as well as in my analysis) applied
for visualisation purposes, but also makes the model invariant with respect to all
isometries of Lorentz group. The two models are equivalent (statistically generate
the same ensamble) choosing the change of variable:

ri = RH2 − 2ln
κi

κ0
RH2 = 2ln

N

µπκ2
0

(3.5)

The probability of connection then becomes:

pij = 1
1 + eβ/2(xij−RH2 )

= 1
1 + χβ

ij

= p̃(χij) (3.6)

where χ is defined as a rescaled distance, xij is the approximate hyperbolic
distance defined in 3.3.

Other dimensions D can be explored and a further parameter controlling curva-
ture can be inserted. The higher the dimension the lower the clustering for the

2node similarity/dissimilarity can be defined in various ways, the simplest way is from
presence/absence of edges between them, another one is the number of common neighbours.

3This popularity-similarity trade-off is a plausible principle for explaining connectivity of both
static and growing networks.
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same value of β so that in order to reproduce high clustering an upper bound on
dimension is to be imposed, and D=2 is thus a reasonable choice.

Figure 3.2: Example network represented using model S1 (left) and H (right).
Taken from [18]

3.1.3 Hyperbolic geometry and greedy navigation within
the model.

Krioukov et al. in [3] studied information transport within the model, a phe-
nomenon of interest for many systems to which the model can fit (brain, Internet,
regulatory/metabolic networks). In a geometric space, nodes have an "address",
and assuming they know the address of their neighbours and that the address of
the target node is incorporated in the information packet to be sent, they can
compute distances and perform a greedy navigation protocol, sending the message
to the neighbour that is nearest to the target.

This process was simulated on random graphs generated from this hyperbolic
model and efficiency of the process was tested computing: the percentage of
successful paths (reaching their destination), the hop stretch (ratio between the
number of edges in the greedy path and that in the shortest path, that ratio being
equal to 1 for maximally efficient greedy navigation), the hyperbolic stretch (ratio
between the distance travelled along the greedy path and the hyperbolic geodesic,
again 1 for maximum efficiency). The result is that the process is maximally efficient,
and thus network topology is maximally congruent with the hidden geometry, for
strongest heterogeneity and clustering.

This because as I outlined before hyperbolic geodesics are maximally congruent
with hierarchical paths, going from lower degree nodes to higher degree nodes
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and back, for instance the percentage of shortest paths that are also hierarchical
approaches 100% for networks with power law degree distributions of exponent
γ → 2. Another intuition is that high degree nodes cover a larger angular sector with
their connections, making hierarchical paths the best way to forward information.

As for clustering it is pretty clear that the presence of triangles multiply the
number of paths following approximately the same route and makes the network
exceptionally robust to link removal/damages. Moreover, in the low clustering
case (high temperature), the connectivity (manifested by connection probability
behavior) depends less and less on hyperbolic distance, as a consequence the metric
structure is lost (extreme case of classical random graphs) and so the congruency
topology-geometry.

3.2 Embedding networks in Hyperbolic space
In a complementary way, we can think of mapping nodes to a geometric space,
assigning coordinates to nodes in order to maximally reproduce the observed topol-
ogy. This can work as a form of unsupervised learning of systems’ organisational
principles.

For instance one of these methods [19] applied to the brain [4] has resulted in a
separation of left and right hemisphere nodes, as well as a clear angular separation
of groups of nodes corresponding to neuroanatomical regions.

In general working in a geometric framework is a source of new measures and
analyses that prospect to convey new information hard to detect at the adjacency
matrix level.

digression on Euclidean space This problem was initially tackled as an un-
supervised learning problem in Euclidean space, applying state of the art linear
and nonlinear dimensional reduction techniques. It has soon been clear that linear
mapping methods were not best suited to unveil the complex dependencies in the
brain.

One example of this approach is [20], in which nonlinear dimensional reduction
gave an intuitive interpretation of some network properties, for instance regions
that were labelled as rich-clubs4 where found in central positions in the mapped
representation, moreover rich-club nodes removal was leading to a ring-like shape
as a reflection of a destruction of its centred architecture. Nevertheless, in original
embedding realisations, many regions that were not labelled as rich-clubs were
found to be central as well, revealing the need of a more coherent representation.

4Rich-club nodes are high degree nodes that are also connected with each other.
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The following idea was that of considering non-Euclidean latent spaces, given
for instance the success of hyperbolic random graph models in reproducing many
complex networks properties.

For instance, even if the brain is naturally embedded in a three-dimensional
Euclidean space, the study in [21] shows that a greedy targeted navigation process
(the same explained in subsec.3.1.3), which is a plausible mechanism for information
transfer in the brain, is much more efficient in brain networks embedded in hyperbolic
space (sec.3.2), than considering the actual Euclidean distances.

The embedding algorithms that have been developed since now are either
generative model based, or machine learning (non-linear dimensional reduction)
based.

Model-based methods aim to extract model parameters that maximise the likeli-
hood that the observed network topology emerges from the assigned coordinates.
The result is more easily interpretable, but to be accurate requires the model used
to be a good generative model for the system under study. Moreover, they are typi-
cally slower than any dimensional reduction algorithm. For instance, methods used
in [22, 23] are of this kind, both based on the Popularity×Similarity Optimisation
model (PSO), which essentially identifies node degree and similarity between nodes
as the driving forces of connectivity. Their difference is the definition of similarity
which in the first is given by presence/absence of an edge, while in the second by
the number of common neighbours.

Machine learning based methods are instead fast, model independent and flex-
ible enough to provide a non-trivial geometric representation of every network.
They define a metric of pair-wise node similarity, and then seek the vectorised
representation that best preserves the overall similarity of the observed graph. The
main problem is that the majority of machine learning methods are not adapted to
non-Euclidean space, and thus are only able to infer angular positions on S1 circle.
This is why these approaches are usually model-corrected in order to perform a
two-dimensional hyperbolic embedding, ending up being model-dependent as well.
Among them I cite coalescent embedding (O(N2)) [19], employing manifold-based
unsupervised machine learning techniques (like Isomap, Laplacian Eigenmaps) and
minimum curvilinearity [24].

3.2.1 A model based method: Mercator [6]
Model based and data driven approaches can be efficiently combined to take
advantage of both fastness and interpretability. Mercator, the algorithm I’m using
in this work, does so by performing a first, fast embedding using model-corrected
Laplacian Eigenmaps (LE). The latter can be further refined using itself as initial
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condition for likelihood maximisation. The model used is the static PSO model S1

explained in sec.3.1.

Laplacian Eigenmaps LE was designed as a dimensional reduction technique,
in that case a set of points in feature space {x̄i}, x̄i ∈ Rn is given and a random
geometric graph is constructed according to some criteria (for instance connecting
points at distance less than a certain threshold). The distances dij between points
are then transformed into similarity scores to be used as weights for the network.
The graph Laplacian is then constructed as:

L = D − W wij = (W)ij = aij · e−d2
ij/t

where D is a diagonal matrix containing node degrees, W is the weighted adjacency
matrix, aij = (A)ij the binary adjacency matrix entry, t a parameter and dij

the distance. Then, spectral matrix decomposition is applied, obtaining the
dimensionally reduced set of coordinates {ȳi}, ȳi ∈ Rm, m < n as ȳi = (vi

1, . . . , vi
m)

with vi
j the ith component of the jth Laplacian eigenvector (ordered by eigenvalue

magnitude).

Using this method in the context of network embedding results in a modified
implementation: we essentially assume that the network to be embedded is the
random geometric graph generated in the higher dimensional space. In this case
we don’t have access to the original coordinates, but we still need the distances
to assign similarity weights and compute the graph Laplacian. The model is used
for this purpose: distances are then estimated from the model as the expected
chord length dij = 2sin(é∆θijê/2), ∆θij expected angular separation in model S1,
given that the nodes are connected. At the end of this phase we learned angular
positions of nodes {θi}, i = 1, . . . , N .

ML estimation The likelihood of an embedding realisation is

L({κi, θi}|{aij}, S1) = P({κi, θi})L({aij}|{κi, θi}, S1)
L({aij}|S1) (3.7)

But since we don’t know the prior distribution P({κi, θi}), we use an improper one,
which makes it flexible enough to be applied to networks with arbitrary degree
distributions. Assume P({κi, θi}) = cost and maximise the log-likelihood:

lnL({aij}|{κi, θi}, S1) =
Ø
i<j

[aijlnpij + (1 − aij)ln(1 − pij)] (3.8)
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The maximisation with respect to the hidden degrees, considering the form of
connection probability pij in S1 leads to:

∂

∂κl

lnL({aij}|{κi, θi}, S1) = β

κl

Ø
i /=j

(ail − pil) = 0 → kl =< kl > (3.9)

so that the hidden degrees are estimated optimising for each node the matching
between the expected degree in S1 model and the observed degree ki, starting from
{θi} homogeneously distributed and κi = ki.

Starting from this result, angular coordinates are refined visiting each node once,
proposing new coordinates around it from a normal distribution, and choosing the
one that maximally increases the likelihood. The result from model-corrected LE
is thus used as initial condition for the optimisation procedure, strongly reducing
the region of configuration space to explore.

The refinement of hidden degrees can then be repeated starting from the new
angular positions inferred.

The parameter β is adjusted iteratively to match the average clustering predicted
by the model with the observed one, the parameter µ (controlling average degree)
is evaluated from β and expected degree.

3.2.2 Validation of embedding accuracy
Synthetic random networks can be generated from embedded coordinates given
model connection probability. The accuracy of an embedding is evaluated from the
comparison of various properties of the original network with that of an ensemble
of synthetic networks grenerated from the inferred coordinates. In the following, I
report a list of these properties computed and plotted for the scope:

1. Model connection probability as a function of rescaled distance dij

µκiκj
, using

parameter values estimated in the embedding procedure. To be compared with
the empirical connection probability: computed as the fraction of connected
nodes at a certain rescaled distance, divided by the total number of nodes at
that distance.

2. The distribution of inferred angles.

3. The comparison of node by node degree, sum of degree of neighbours, average
degree of neighbours, number of triangles, clustering, between the original
network and the ensemble average on synthetic networks.
For each of these measures, the correspondence is quantified computing ζ
(fraction of nodes whose original value is more than two standard deviations
away from the ensemble average), Pearson correlation coefficient ρ and χ2.
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4. The empirical on the original network degree distribution and that emerging
from the ensemble.

5. The sum and average of degree of neighbours, number of triangles and cluster-
ing as a function of degree.

Some of these validation plots are reported in 7.
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Chapter 4

Geometric Renormalization

Brain networks possess a rich architecture organised over multiple scales linked
to one another (from single nodes to groups or clusters). The characterisation
of this multi-scale property in complex systems is commonly addressed using the
renormalization technique of statistical physics.

The presence of correlations between coexisting scales in complex networks
limits, however, the application of renormalization procedures directly on the graph
or the associated connectivity matrix (shortest-path-distance renormalization,
degree-thresholding renormalization). Passing from the metric of shortest paths in
topological space, to that of distances in latent space, opens the door to a proper
geometric framework for studying the symmetries of the system and investigating
its multi-scale organisation, with the possibility of borrowing concepts and methods
from renormalisation group in statistical physics.

If the network is efficiently embedded, the geometric renormalisation protocol
presented in [5], based on the hyperbolic static network model S∞ [3], offers the
possibility to unfold its multi-scale structure.

Once nodes are mapped to the hyperbolic disk, the transformation is implemented
as follows:

1. In layer l, group nodes in blocks of r consecutive elements along the angular
direction1, which are merged into a single node (supernode) at layer l+1.

2. Recompute links for layer l+1 : If at least one node of a block is connected to
at least one node of another block at layer l, the correspondent supernodes
are connected at layer l+1.

1The starting point is not statistically relevant
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Figure 4.1: Illustration of the geometric renormalization transformation (adapted
from [5].

3. Recompute coordinates for layer l+1 : the transformations

κ
(l+1)
i =

3 rØ
j=1

(κ(l)
j )β

41/β

θ
(l+1)
i =

qr
j=1(θ(l)

j κ
(l)
j )βqr

j=1(κ(l)
j )β

1/β

(4.1)

with the rescaling of parameters:

β(l+1) = β(l) µ(l+1) = µ(l)/r R(l+1) = R(l)/r (4.2)

are chosen since they keep the probability of connection maximally congruent
to S1 model and preserve semi-group structure (κÍÍ

i )r = (κÍ
i)r2 , (θÍÍ

i )r = (θÍ
i)r2 .

If the network admits an accurate embedding, and is thus compatible with S1

model, that transformation maintains the probability of connection in its original
form. This produces, at any scale (apart from finite size effects), networks belonging
to the same ensemble, but with a different average degree, that is to be rescaled to
obtain self-similar network replicas.

I developed an algorithm that gets coordinates and parameters coming out from
the embedding, rescales them following equations 4.1 and 4.2, and recomputes links.
The coordinates’ transformation is based on S1 model, while I used H2 model for
visualisation purpose. I only considered grouping nodes in blocks of 2 consecutive
elements (r=2 ) in my analysis.
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As I already said I included the computation of various global and local (node-
specific) topological properties that I will use to compare the pathological and
non-pathological groups at multiple scales.

I also included at each layer the evaluation of communities using Louvain
community detection algorithm [25], and computed the fraction of nodes belonging
to different communities that are merged into the same supernode at the following
layer (that I will call "fraction of nodes mixing communities"). This essentially to
see the resilience of communities after successive transformations, and thus in some
way the ability of the embedding procedure to separate communities into distinct
angular sectors.

Figure 4.2: Illustration of 4 layers obtained with the GR transformation, in
this analysis Louvain communities where computed at the original layer, at the
downscaled layers the same partition was kept and the nodes coming from two
different communities where counted (bottom right numbers are the fraction of
that nodes) and colored in gray.
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Limit in H2 representation degree magnitudes {κi} are increasing in the flow,
while maintaining their proportionality with observed degrees {ki} at each layer
(fig. 4.3), as the networks remain congruent with S1 model. Nevertheless this effect
leads the argument of the logarithm defining RH 3.5 to become < 1 at a certain
layer (since N (l+1) = N (l)/2 and µ(l+1) = µ(l)/2 and RH,(l) ∼ ln(1/κ2

0)), so that the
radius collapse to 0 and network is not representable in H model anymore.

Figure 4.3: Proportionality between nodes degrees, hidden degrees coming from
the transformations 4.1 and hidden degrees inferred from embedding at each layer
(each divided by their average value). Up-left figure is the original most resoluted
layer, bottom-right the less resoluted layer.
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Chapter 5

Results of the multi-scale
analysis

5.1 Testing the embedding algorithm
The first analysis that I conducted was testing the accuracy of the embedding applied
to synthetic networks possessing different peculiar properties, which I could control.
What I wanted to investigate was the eventual increased or decreased accuracy of
the embedding in correspondence with certain identifiable characteristics.

The embedding of network data, apart from being an alternative data represen-
tation from which we can learn about network organisational features, can be seen
as the mapping of topological instances back to the geometric latent space from
which they arise. If this latent space assumption is true and geometry actually
plays a role in defining topology, clustering can be explained in the network as a
manifestation of the triangle inequality in the metric space. At the same time, if
the geometric hyperbolic model involved in the embedding is suitable to describe
the observed structure of the network, we expect the embedded nodes to generate
synthetic networks accurately reproducing original network properties.

Resuming, clustering suggests the existence of hidden geometrical relations, and
an accurate embedding proves that the particular geometrical relations included in
the model are a plausible explanation for the observed topology.

I generated some synthetic networks (using NetxorkX python library) from known
models such as Watts-Strogatz, Barabasi-Albert and one controlling community
structure1. All of them are generated with the same number of nodes.

1Dividing nodes into a desired number of groups and assigning a higher probability of connection
intra-groups than inter-groups.
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For each network, I looked at the original clustering coefficient and the one
averaged over the ensemble of synthetic networks.

I also computed the average S1 distance between connected nodes R∆θij/|E|,
with the hypothesis that it could be an indicator of the goodness of the embedding,
given that nodes that are connected in the original network should be embedded in
similar angular regions.

β clustering original clustering ensemble avg. S1 distance
random communities 4.26 0.626 0.629 0.39
Barabasi 1.01 0.142 0.233 1.29
Watts-Strogatz p = 0.1 2.65 0.471 0.477 0.54
Watts-Strogatz p = 0.9 1.01 0.094 0.178 2.15

Table 5.1: Comparison between different networks of original clustering and the
one of the synthetic ensemble, average distance. Shows that clustering is not well
reproduced in networks with β close to 1.

What I noticed is that the method can more efficiently reproduce networks
with higher clustering (corresponding to a higher beta value), while networks with
lower clustering (limiting case: β ∼ 1) are embedded to networks that reproduce
clustering worse (in particular it is increased).

When original clustering is higher, the average distance between connected
nodes is found to be smaller, indicating that the method is recognising and effi-
ciently mapping topological triangles into geometrical structures verifying triangular
inequality.

β in brain networks included in my dataset is around 2, clustering coefficient
around 0.5 and is accurately reproduced in the synthetic ensemble generated for the
validation. The overall embedding results as accurate for all the subjects involved
in the study, proving the fitness of the model and the applicability of the multi-scale
analysis. In section 7 I report the result of validation for some networks.

5.2 Emergence of peculiar network properties
I investigated the behaviour of some global measures on pathological and non-
pathological brain networks across scales and compared it to a random net-
work with approximately the same number of nodes and edges (generated using
gnm_random_graph(n,m) function from NetworkX), to observe the peculiarities of
these systems and compare them to the literature.

I selected just one subject from each group with respectively 72664 and 72164
edges and I generated a random graph with 72164 edges and the same number of
nodes.
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Results of the multi-scale analysis

A higher modularity (eq.1.4) in both brain networks with respect to the random
and I found it higher in the brain affected by Alzheimer with respect to the healthy
one.

The higher modularity in pathological conditions reflects a lack of interconnec-
tions between modules, and consequently, a deficit in the integration of information,
further confirmed by a lower efficiency (eq. 1.5). This consideration is valid at all
scales and notably, while efficiency difference is of order 10−4 at layer 0, it becomes
of order 10−1 between networks rescaled 3 times (∼ 150 nodes). The result for
modularity and efficiency is shown in fig.5.1.

Figure 5.1: Global efficiency and modularity comparing an Alzheimer diseased
patient with healthy control and a random graph across scales. Layer 0 is the
network (not filtered) at the original scale, layers > 0 are rescaled using 4

The renormalisation procedure causes a general increase in network efficiency
and a decrease in modularity. Which means that while many nodes belonging to
the same community (placed in similar angular positions) are grouped, decreasing
the dimension of communities, the connections between different communities
are not cutted overall, effectively preserving the balance between integration and
segregation.

This is expected considering how nodes are grouped (explained in 4) and the
fact that nodes involved in linking communities (connector hubs (fig.??)) are likely
connected to many nodes of both communities, maintaining the interconnection
for many layers.
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Figure 5.2: connector hub node illustration

I report (fig.5.3) two more results for the clustering coefficient (eq.1.3) and the
fraction of supernodes mixing communities (communities computed with Louvain
algorithm at layer 0), the interpretation of which is more subtle. Clustering is higher
in the pathological subject in line with the increased segregation also reflected by
the higher modularity, but the tendency is inverted at layer 2. Also clustering is
steeply increasing for the random graph overcoming the two complex networks, as
its lack of structure makes it rapidly tend to a completely connected graph.

The flow of the fraction of supernodes mixing communities shows that patholog-
ical networks communities are more resilient through scales, again expected from
the higher segregation.

This measure show a difference, even if just visually, between the pathological and
non-pathological and is related to the application of the geometric renormalisation
procedure, thus not obtainable from alternative multi-scale analyses involving
experimental data at different resolutions. The idea is that quantities like this can
be employed in new diagnosis tests if proven to be actually conveying additional
information with respect to imaging or graph theoretical analysis.

At the original scale, global efficiency in brain networks is comparable with
the random, while clustering is higher, thus reflecting the expected small-world
organisation of brain networks; but this feature is weakened at less resolute scales.

5.3 Multi-scale analysis of global properties

I analysed the flow of some global properties of networks across layers, to see if I
could find a statistically significant difference between the two groups of data (27
healthy and 23 diseased structural brain networks), at a certain reduced scale that
was not observable at the original one.

At each scale I computed global efficiency, clustering, average degree,
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Figure 5.3: Clustering coefficient and fraction of supernodes mixing communities
comparing an Alzheimer diseased patient with healthy control and a random graph
across scales.

minimum degree, modularity, number of communities, fraction of su-
pernodes mixing communities, assortativity2 for each subject in the two
groups, then I performed a statistical Wilcoxon rank-sums test3 between the sam-
ples obtained. This was repeated varying the strength of filtering (done as explained
in subsection 2.2).

No difference is observed on non-filtered networks at any layer (k Ä 150), as well
as for networks filtered with threshold proportional (subsec.2.2.1) down to average
degree k = 60 and k = 30. At k = 20 instead, I start to observe a distinction
between the two groups, on the average degree flow and global efficiency (fig. 5.4).

Notably, the same results are not found on the network filtered to k = 20
using the MST backbone method (subsec.2.2.2). Instead, significant difference
in modularity is found in the network using both methods, but the difference is
arising already at layer 0, which is a less relevant result for the scope of testing the

2Assortativity is a measure of correlation between degrees of neighbours: the more high degree
nodes are connected to other high degree nodes the more is positive.

3Non-parametric test against the alternative hypothesis of one group values being larger than
the others. https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ranksums.html
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Figure 5.4: Global efficiency and average degree, statistical comparison of the 2
groups. Stars indicate a p-value< 0.05 is found at that scale. Network filtered to
k = 20.

power of the method in unveiling differences undetectable at the original scale. A
difference at layers > 0 is found for k = 10 and k = 5 (fig. 5.5), while strangely
enough no difference in modularity is observed for k = 3 at any layer.

Apart from modularity many properties become informative for the networks
filtered down to k = 3 (fig. 5.6).
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Figure 5.5: Modularity flow on networks filtered with MST method to k = 10
(right) and k = 5 (left).
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Figure 5.6: Gobal efficiency, clustering coefficient, average degree and assortativity
flows on networks with k = 3 filtered with MST method.
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5.4 Multi-scale analysis of coordinates’ distribu-
tions

From transformed coordinates saved for each layer, I extracted angular distance
between nodes merged into supernodes and hidden degrees κi.

At the original scale level, it is possible to uniquely associate nodes in one
subject’s network to others, cause they still represent the same areas of interest in
the brain. But as they are grouped into supernodes following the angular ordering,
this information is lost, so I decided to compare the empirical distributions of
these local quantities, which is independent on nodes’ labels. The analysis is again
performed for various filtering strengths.

I performed a two sample Kolmogorov-Smirnov test 4 and computed the Wasser-
stein distance5. The first tests the hypothesis that the two samples represent the
same distribution, the second is a measure of the amount of ẅorkn̈eeded to move a
distribution to the other.

The networks filtered with threshold proportional are not showing a difference
in distributions. While the networks filtered starting from their MST exhibit a
progressive distancing of distributions across layers.

The distributions of angular distance are found not equal with a p-value< 0.001
from layer 3 (∼ 150 nodes) on. As for the distributions of hidden degrees the same
result is found from layer 4 (∼ 70 nodes). The Wasserstein distance for the angular
distance distributions increases slightly, from 0.00 to 0.18 at layer 7, while the same
measure for the distribution of hidden degrees increases from 0.29 to 99.74.

The same behaviour is found for stronger filtering (smaller average k), meaning
k = 20 is already an informative density in this case.

I had computed also distributions of local clustering and local efficiency
using functions from bctpy, finding no significant results. This is not in disagree-
ment with the fact that some significance was found for the correspondent global
quantities, which are just the average of the local ones; the non-parametric t-test
used in that case was in fact comparing medians of the two groups and not means.

4https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ks_2samp.html
5https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wasserstein_distance.html
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Figure 5.7: First row: angular separation of nodes composing supernodes at layer
0, and at layer 4. Second row: hidden degrees distributions comparison at layer
0 and at layer 6. Again red colour indicates the pathological group while blue
the non-pathological. Networks filtered down to k = 20. The distributions are
visualised using kernel density estimate (KDE) from Seaborn python library.
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Chapter 6

Conclusions

Brain networks can represent the system at multiple scales, resolution can go from
the neuronal level to that of neural ensembles or cortex parcels. However, different
scales are usually analysed in a distinct way and a theoretical framework able to
reproduce the multi-scale organisation, as well as explain how the different scales
are inter-related, is still missing.

The relevance of this geometric approach is the possibility to model network
scaling properties in a unified manner, supported by the evidence in the literature
that it is indeed able to reproduce some important features and symmetries of the
system.

I applied the method to the classification of Alzheimer diseased patients and
found that, in some cases, a statistically significant difference can be found at
underlying scales while not at the original scale, suggesting the possibility for
a theoretical description of how this disease is affecting brain functionality at
multiple, interconnected scales. Modularity and efficiency have been proven to be
good measures to distinguish the two groups (as expected from literature), but
also the predictive power of information encoded in hyperbolic representations has
emerged from measures involving angular coordinates and hidden degrees.

Some results were obtained after network filtering but without a clear under-
standing of the role of filtering in the emergence of significant properties, which
should be investigated further.

The filtering with the MST method has revealed a similar embedding but
conveyed different results, in general, with respect to the other one, and notably
was the only one able to unveil differences in coordinates’ distributions; leaving
the need to better understand the difference between thresholding and backbone
method for filtering.

A needed follow-up would be performing the same analysis across experimentally
obtained networks at different resolutions, with a comparable number of nodes
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with respect to the model rescaled ones. The eventual correspondence of the
results obtained would be in favour of the ability of this multi-scale modelisation
to reproduce observed network properties; the opposite case could lead to the
conclusion that the proposed method conveys different or more information with
respect to the observations, immediately linked to the necessity of understanding
from where this new information comes from.

Some perspectives would be to apply this method to functional brain networks1,
or include dynamical features.

Indeed brains are intrinsically dynamical systems: functional brain networks are
rapidly changing in response to environmental stimuli; but also structural brain
networks, even though stable at short time scales (seconds/minutes), are indeed
altered over longer time scales by plasticity effects (synapses strength change,
remapping of cognitive functions), ageing, injury and pathology.

1Network in which edges represent correlations between signals measured in the areas of
interest (becoming nodes), in resting state or performing a certain task.
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Chapter 7

Some validations of
embedding plots
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Some validations of embedding plots

Figure 7.1: Validation of embedding for non-pathological subject number 33.
Filtered with MST backbone method. 2.2 up to average degree 20
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Some validations of embedding plots

Figure 7.2: Validation of embedding for non-pathological subject number 33.
Filtered with threshold method. 2.2 up to average degree 20
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Some validations of embedding plots

Figure 7.3: Validation of embedding for pathological subject number 27. Filtered
with threshold method. 2.2 up to average degree 20
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Figure 7.4: Validation of embedding for non-pathological subject number 33.
Filtered with MST backbone method. 2.2 up to average degree 3
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Some validations of embedding plots

Figure 7.5: Validation of embedding for pathological subject number 27. Filtered
with MST backbone method. 2.2 up to average degree 3
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