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ABSTRACT

This thesis will focus on the topic of pedestrian dynamics. It will start present-
ing the experiment that inspired this research, performed in France and Argentina,
that consisted in the analysis of the crowd’s response to the passage of a cylindri-
cal intruder in a controlled environment. The way this experiment contradicted
expectations motivated the research of a theoretical explanation of what was ob-
served. The research group I belong to tried to use Mean-Field Games (MFG)
to explain the experiment. The second part of this thesis will therefore present
the basis of MFG and its main features, with the description of the mathematical
foundations and the physical interpretation of the results. Finally, the third part of
this thesis reports the results we obtained in our attempt to model the experiment
with Mean-Field Games. We will first explain the approach we chose to follow and
then we will report the analytical solution and comment of the results. Given the
simplicity of the model we used we are pretty happy with the results we obtained.
There is still plenty to improve, but this is another story that will hopefully be
told in the future.



ii



iii

RINGRAZIAMENTI

Ringrazio tutti coloro che ho conosciuto in questi anni e che mi hanno insegnato
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Chapter 1

Introduction

We all have experience with crowded environments. Although we did not always
realize it, many of these spaces are designed on purpose to make us follow certain
trajectories. Public spaces designers, in fact, have been using simulations to predict
the flow of pedestrians for a long time. These predictions are then used to place
wisely obstacles and doors, decide the length of corridors etc. in order to enhance
safety. The underlying algorithms, however, are built to simulate human behav-
ior using techniques of granular matter [16], [32], or fluid dynamics [30]. These
approaches ultimately give reasonable results, but only for macroscopic quantities
such as escape time, or to have a visual impression of the phenomenon. However,
there are cases in which such models fail. In this thesis I will present a new and
promising approach to the problem of pedestrian dynamics. So far, little attention
was paid to the psychology of individuals, in the sense that the property of humans
is to have a higher abstract intelligence than any other living species. This is what
makes us able to use the little information we have about the present to build one
or multiple future scenarios in order to better allocate resources. More concisely,
humans can develop strategies, anticipating what is going to happen and decid-
ing how they will behave in advance. This feature of humans’ intelligence was
captured for the first time by the works of John Nash, when he introduced in a
mathematically rigorous way the concepts of game theory. At the hearth of this
approach lies indeed the notion of Nash equilibrium, a more informed and evolved
way to intend the best strategy. What is fundamental is in fact to make clear what
is best, and in which sense. Game theory allows to quantify a best which is not
absolute, but relative to others. This turns out to be a more stable solution to the
problem of optimization, and example of this are found everywhere in Nature. We
thought to extend the field of its applications and include in the list the problem
of predicting and simulating pedestrian dynamics.

1
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Figure 1.1: Snapshot of one of the performed experiments. The left figure shows
the detection of participants using colored hats in Orsay, France. The right figure
shows the numerical representation of the data. Images from [1]

1.1 The Experiment

In 2019 the work of Nicolas et al. [1] reported a simple but very pedagogical
example in which the usual pedestrian dynamics softwares would fail to predict
the correct behavior of the crowd. Two experiments, performed in 2017 in Orsay
(France) and Bariloche (Argentina) and involving between 35 and 40 participants
of various ages, consisted in the analysis of the crowd’s response to the presence
of a single moving cylindrical obstacle. The crowd stood in a delimited square
area with side of approximately 4 meters and, with different pedestrian densities,
the obstacle was made pass through. Figure 1.1 shows how the experiments were
actually performed. One participant wore a cylinder, of diameter 74cm in France
and 68 cm in Argentina, and walked his way through the crowd. Moreover, the
people in the crowd were asked to arrange in two configurations: in one case they
were asked to face the intruder, in the other to stay in randomly oriented positions.
In the work of Hoogendoorn and Bovy [33] the decision process of pedestrians
moving in full-scale public environments is divided into three different levels. The
first is the strategic level, which corresponds to the choice of where inside the
area pedestrians will head to; the choice of the route to follow to reach the decided
place attains to tactical level; finally, how to move along the chosen route, to avoid
obstacles for example, is what is called the operational level. The experiment that
I am presenting here clearly does not aim at reproducing a full-scale public space,
whereas it focuses on what could be one of its elements; it therefore studies the
operational decision level of pedestrians. As we can see in figure 1.2, the intruder
caused a depletion in density both in front and behind it, and an increase at its
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Figure 1.2: The density of pedestrians is displayed for three different average
densities and in the two experimental set-ups: when people face the intruder they
react more quickly than when they are oriented randomly, making space for the
intruder and then closing behind him. Images from [1].



4 CHAPTER 1. INTRODUCTION

Figure 1.3: The figure shows the velocity field of pedestrians facing the intruder
in case of sparse (left column, ρ̄ ∼ 1.5 ped/m2) and dense (right column, ρ̄ ∼
6 ped/m2) environments. Images from [1].

sides. This means that people actively avoided hitting the cylinder by leaving it
room to pass, but tried not to go too far from their original position to stay away
from the crowed surrounding as well. This is very well confirmed by what is shown
in figure 1.3, where it is clearly displayed that people moved laterally to avoid
impact. Moreover, people started to move quite far away from it, as the picture on
the left of figure 1.3 shows. This is fundamental in our analysis, in that it shows
that pedestrians (humans or highly efficient information processors) decided to
accept to be uncomfortable for a limited period, since moving perpendicularly
to the obstacle meant pushing against the surrounding crowd, in order to avoid
impact with the intruder as completely as possible. Moreover, this shows also the
long term anticipation ability of pedestrians. In fact, by predicting the complete
path of the obstacle, they knew that any motion with a component parallel to the
direction of the intruder would have been useless in avoiding it. These elements of
what we could call the psychology of humans are very distinctive of our ability to
see in the future. In the end, for those standing in the direction of the cylinder, the
fact that they knew, or predicted, even when it was still far away, that the obstacle
would have eventually approached them, is what ultimately convinced them that
moving laterally towards the crowd was the optimal choice.

1.2 Model Comparison

The main goal of this research project is to propose a new and efficient method to
reproduce the experimental discoveries that I just introduced. However, one may
argue that there already exists efficient ways to simulate pedestrian dynamics, so
why should one care. Fortunately, thanks to Antoine Seguin and Iñaki Echeverŕıa
Huarte who produced the simulations I will now discuss, it is clear that conven-
tional pedestrian dynamics software would fail at such a task. In fact, pedestrians
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have often been studied as particles in a constrained environment and therefore in
first approximation simulated as such. Although this could give good insights into
macroscopic behavior, such as escape time, in large and not complex environments,
simple granular matter simulations would fail to reproduce what the experiments
showed. In fact, as the right column of figure 1.4 shows, the passage of the intruder
through granular matter would just push particles along its direction of motion,
leaving a empty space behind and two trails of escaped particles at its sides. The
velocity plot shows that all particles would move in the direction of the intruder,
pushed by their neighbors and thus by the current that is generated by the passage
of the intruder. What the granular approach shows is clearly not catching what
the experiment portrays, both in the distribution of the density and the velocity
of agents. The software usually employed by companies in the pedestrian simula-
tion businesses, however, are not simple granular matter simulations. During the
last decades many have engineered ways to get better qualitative and quantitative
agreement. For example Helbing and Molnar [17] proposed a social-force model in
which actual contact forces are combined with pseudo-forces (social-forces). These
social-forces were originally function only of the current position of pedestrian, but
this approach was then extended to make them depend also on the near future
positions [18] of others. This makes agents avoid most imminent collisions through
an optimization process in the velocity space. All these models are agent-based
collision-avoidance algorithms that only take into account the immediate future,
and, as the left column of figure 1.4 shows, this is not enough to reproduce the
experiment. The density plot obtained with the short-time anticipation algorithm
simulation shows the appearance of two darker areas a the sides of the obstacle,
but still there is no clear depletion in front of it. Moreover, the velocity plot of the
short-time anticipation simulation makes it clear that something is missing. As
shown in the left-bottom picture of figure 1.4, the arrows, especially in front of the
cylinder, point in its direction of motion instead of laterally, a key feature that this
category of models fail to reproduce. These are the premises that convinced us of
the fact that there is still plenty of room for improvement, and the next chapter
will introduce how we tried to achieve it.
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Figure 1.4: The picture shows the density and the velocity plot obtained with
granular matter algorithm. On the left we have a short-time anticipation based
algorithm, which gives particles some predictive ability. On the right we have
instead the results of pure granular matter with no anticipation ability.



Chapter 2

Mean-Field Games

Mean-Field Games (MFG) constitutes a relatively new field of research. Its foun-
dations are in the works of J.-M. Lasry and P.-L. Lions [27], [28], [29] and of M.
Huang, R. P. Malhamé and P. E. Caines [22]. During the years, many works
have been focused on for existence and uniqueness of solutions [10], [20] and the
comparison between discrete games in the limit of large number of players and
their mean-field analogous [8], [13], [14]. At the same time, however, improve-
ments were made towards the elaboration of numerical schemes [3], [6], [21], to
solve MFG problems. Applications of MFG are found in various areas, such as
finance [11], [15], economics [2], [4], social problems like pedestrian dynamics and
segregation [5], [26], and also engineering [23], [24]. This list of results suggest how
this topic has attracted the attention of many researches, as it did with mine when
I chose what to focus my thesis on. My work on the topic is based on the approach
that D. Ullmo et al. explained clearly in [34] a couple of years ago. In this paper
Ullmo and colleagues carefully explain how MFG can be linked to Quantum Me-
chanics (QM), in particular to the study of the Non-Linear Schrödinger Equation
(NLSE), a very well established topic in Physics. The connection between the two
fields, MFG and QM, is already quite interesting in itself, but what really struck
me was that this approach does indeed work quite well, also considering that the
nature of the phenomena explained is quite different!

2.1 The main equations

Mean-Field Games are optimally driven diffusive processes of a large number of
agents. More explicitly, we consider a differential game that is played by a large
number of agents N and that evolves in time. At each time t, we can associate
to each agent its state variable X⃗i(t) ∈ Rd. Then, throughout the game, that
starts at t = 0 and ends at t = T , every player has the possibility to change the

7
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control parameter a⃗i(t) ∈ Rd, that corresponds to the choice of a strategy. We
then suppose that the evolution of a player’s state variable is subjected to some
noise and can therefore be described using using the Langevin equation

˙⃗
Xi = a⃗i(t) + σiξ⃗i(t), (2.1)

where ξ⃗i(t) is a d-dimensional vector of uncorrelated Gaussian white noises. In
order to take the best decision about the strategy, agents select the drift term a⃗i
by minimizing (maximizing) a certain cost (gain) functional, defined, for example
in this case, as

ci [⃗a](X⃗, t) = E
{∫ T

t

[µ
2
(⃗ai(τ))

2 − Vi(X⃗(τ), τ)
]
dτ + cT i(X⃗(T ))

}
, (2.2)

where X⃗(t) = (X⃗1(t), . . . , X⃗N(t)) and a⃗ = (⃗a1, . . . , a⃗N). There are various terms
in equation (2.2) that need to be explained. First of all, cT represents a terminal

cost that each player knows from the beginning. Then, V (X⃗, τ) is a potential that
acts on each player collectively and that describes how agents interact with each
other and with the environment. Finally, the presence of the square of the control
parameter a⃗ means that we are dealing with quadratic games, which have been
widely described in [34]. This is not the only possible choice.

At this point some simplifications are in order. First of all, we assume that
each player is identical, meaning that ∀i, Vi = V, cT i = cT and σi = σ. Finally,
the fundamental assumption that we make is that both the potential and the final
cost depend on the players’ positions only through the empirical density

m̃(x⃗, t) =
1

N

N∑
i=1

δ(x⃗− X⃗i(t)).

Then, we take the limit for a large number of players N → +∞. In this case, if we
define m(x⃗, t) = E[m̃(x⃗, t)], we can then substitute m(x⃗, t) to m̃(x⃗, t). This means
that we are not interested anymore in the description of every single trajectory, but
in overall distribution of players in the space. The cost term can be now written
as

c[⃗a](x⃗, t) = E
{∫ T

t

[µ
2
(⃗a(τ))2 − V [m](x⃗, τ)

]
dτ + cT [m](x⃗, T )

}
. (2.3)

Finally, the only type of potential we will consider is of the form

V [m](x⃗, t) = gm(x⃗, t) + U0(x⃗, t), (2.4)

where g is a coupling term. A negative value of g makes the density term in the
integral of equation (2.3) positive, and, if it must be minimized, this means that
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naturally the systems will adjust to a low density, resulting in repulsive interac-
tions. Conversely, g > 0 means attractive interactions. Finally, we introduce the
value function, obtained by minimizing the cost functional

u(x⃗, t) = inf
a⃗
c[⃗a](x⃗, t). (2.5)

At this point we are able to introduce the first of the two fundamental equations
that describe the dynamics of a game. In order to do so however, we must think
about the optimization of, for example, the path to reach point C from point A
passing through point B. Because agents can optimize their strategy at any time, it
is possible to show that optimizing the whole path gives the same result as joining
together the paths obtained by optimizing separately the way from A to B and
from B to C. This idea lies behind the dynamic programming principle [7], that
allows us to write

u(x⃗, t) = inf
a⃗
E
{∫ t+dt

t

[µ
2
(⃗a(τ))2 − V [m](x⃗, τ)

]
dτ

}
+ u(x⃗+ dx⃗, t+ dt), (2.6)

that is called Bellman equation. Now we observe that

u(x⃗+ dx⃗, t+ dt) ≃ u(x⃗, t) +
d

dt
u(x⃗, t)dt,

and the time derivative of the value function can be computed with Ito chain
rule [19], obtaining

u(x⃗+ dx⃗, t+ dt) ≃ u(x⃗, t) +

[
∇⃗u · a⃗+ ∂tu+

σ2

2
∆u

]
dt. (2.7)

Then, we can take the inf over a⃗ for both sides of the equation and obtain

u(x⃗+ dx⃗, t+ dt) ≃ u(x⃗, t) + ∂tudt+
σ2

2
∆udt+

(
inf
a⃗
∇⃗u · a⃗

)
dt, (2.8)

that we can substitute inside equation (2.6), giving

0 = inf
a⃗

[µ
2
(⃗a(t))2 + ∇⃗u · a⃗(t)

]
+ ∂tu+

σ2

2
∆u− V [m](x⃗, t). (2.9)

The optimal control can be easily evaluated by taking the d-dimensional derivative
with respect to a⃗ of the expression in squared brackets and, putting it equal to
zero, the solution is obtained and is equal to

a⃗∗ = −∇⃗u
µ
, (2.10)
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which can be plugged back into equation (2.9) to obtain the Hamilton-Jacobi-
Bellman equation (HJB).{

∂tu+
σ2

2
∆u− (∇⃗u)2

2µ
= V [m]

u(x⃗, t = T ) = cT (x⃗)
(2.11)

This is a backward differential equation, that is built starting from its solution at
time t = T

Now, given that each agent’s position is supposed to evolve following a Langevin
equation, the density of players satisfies

∂tm =
σ2

2
∆m− ∇⃗ · (ma⃗∗),

that is the Fokker-Planck equation. By substituting the value of the optimal
control obtained in (2.10) we obtain{

∂tm− σ2

2
∆m+ 1

µ
∇⃗ · (m∇⃗u) = 0

m(x⃗, t = 0) = m0(x⃗)
(2.12)

Equations (2.11) and (2.12) constitute a backward-forward system. Starting from
an initial density value, HJB equation informs FPE on incoming events. In fact,
after HJB chooses the best possible value function, the FPE finds the next best
density. It is in this process of interaction between the two equation that lies the
predictive ability of MFG. We will see this in more details in the following.

2.2 Changes of variables

Now that we have built all the tools of MFG, we are left with a set of coupled equa-
tions which is not trivial to solve. A very wise approach has been devised in [34],
where a Cole-Hopf transformation is performed and the problem is cast in a more
familiar setting for many physicists. In fact, let us considers the transformation

u(x⃗, t) = −µσ2 log Φ(x⃗, t), (2.13)

and substitute into equation (2.11). We then get to the equation

µσ2∂tΦ = −µσ
4

2
∆Φ− V [m]Φ, (2.14)

a standard heat equation, with terminal condition

Φ(x⃗, t = T ) = e
− cT (x⃗)

µσ2 . (2.15)
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Now we can also define

Γ(x⃗, t) =
m(x⃗, t)

Φ(x⃗, t)
, (2.16)

that, when substituting into equation (2.12), gives

µσ2∂tΓ =
µσ4

2
∆Γ + V [m]Γ. (2.17)

Equations (2.14) and (2.17) only differ by a change in sign while containing all the
information of the original MFG equations. The one we just performed is not the
only change of variable that can be done to transform mean-field game equations
into something already seen in other fields of Physics. As explained in [31], we
can also perform a Madelung like change of variables defining K(x⃗, t) such that
Φ(x⃗, t) =

√
m(x⃗, t)eK(x⃗,t) and Γ(x⃗, t) =

√
m(x⃗, t)e−K(x⃗,t), that substituting in

equations (2.14) and (2.17) gives{
∂tm+ ∇⃗ · (mv⃗) = 0,

∂tv⃗ + ∇⃗
[

σ4

2
√
m
∆
√
m+ v2

2
+ V [m]

µ

]
= 0,

(2.18)

where v⃗ is the velocity of agents and is defined as

v⃗ =
σ2

2m

(
Γ∇⃗Φ− Φ∇⃗Γ

)
= −∇⃗u

µ
− σ2 ∇⃗m

2m
. (2.19)

This is called hydrodynamic representation. In particular, the first equation of
system (2.18) is a continuity equation. We conclude this general introduction
about MFG by mentioning the important results reported by P. Cardialaguet et
al. in [12]. In this work, in fact, the limit of large ending time T → +∞ is
considered. Under the hypothesis that there is no explicit time dependence in the
cost function (2.2), it was proved that an ergodic solution exists and it is valid for
0 << t << T . This solution is of the form (me(x⃗), ue(x⃗) + λet) where m

e(x⃗) and
ue(x⃗) satisfy the equations{

−λe + σ2

2
∆ue − (∇⃗ue)2

2µ
= V [me]

σ2

2
∆me + 1

µ
∇⃗ · (me∇⃗ue) = 0

(2.20)

In the Schrödinger representation the ergodic solutions are

Φe = e
− ue

µσ4 , Γe =
me

Φe
, (2.21)

and it easy to prove that they both follow the equation

λeψ
e = −µσ

4

2
∆ψe − V [m]ψe. (2.22)
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Most importantly, the knowledge of the ergodic solution gives access to the solution
also of the time dependent problem, because it is possible to show that

Φ(x⃗, t) = exp

{
λe
µσ2

t

}
ψe(x⃗), Γ(x⃗, t) = exp

{
− λe
µσ2

t

}
ψe(x⃗) (2.23)

solve equations (2.14) and (2.17) respectively.

2.3 Operator formalism

Equations (2.14) and (2.17) define what is called the Schrödinger representation
of Mean-Field Games. In this setting, in analogy with what is done in Quan-
tum Mechanics, it is possible to introduce operators that correspond to physical
quantities once evaluated on a system state. Let us first introduce X̂ = (X̂1, X̂2),
the position operator, that acts as multiplication; then, we define the momentum
operator P̂ = −µσ2∇. Moreover, if we consider an arbitrary operator Ô function
of X̂ and P̂ , we define its average as

⟨Ô⟩ (t) := ⟨Φ(t)|Ô|Γ(t)⟩ =
∫

dxΦ(x, t) Ô Γ(x, t). (2.24)

where Φ and Γ are solutions of equations (2.14) and (2.17). It is important to
observe that, whenever Ô depends only on X̂ then its averages is actually the
expected value with respect to the density. In fact we can write

⟨Ô⟩ (t) =
∫

dxmt(x)O(x) (2.25)

We would now like to recover a very famous result in quantum mechanics. In order
to do so, we differentiate with respect to time equation (2.24) and obtain

d

dt
⟨Ô⟩ =

∫
dΦ

dt
ÔΓ +

∫
Φ
dÔ

dt
Γ +

∫
ΦÔ

dΓ

dt

= ⟨dÔ
dt

⟩ − 1

µσ2

∫
Φ(ÔĤ − ĤÔ)Γ

= ⟨dÔ
dt

⟩ − 1

µσ2
⟨[Ô, Ĥ]⟩

The second line is obtained from equations (2.14) and (2.17) and defining the
Hamiltonian operator

Ĥ = − P̂

2µ
− V [mt](X̂). (2.26)
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What we recovered is the analogous in this framework of the Ehrenfest theorem.
This analogy is surprising but up to a point, considering that the equations we
are dealing with are mathematically very similar to the usual Quantum Mechanics
ones. Now that we have obtained this result we can even go a bit further and re-
cover other familiar relations that will highlight even more the connection between
the two fields of study. In fact, we can recover the time evolution equation of the
two operators momentum and position. By using the Ehrenfest theorem one gets
that

d

dt
⟨X̂⟩ = ⟨P̂ ⟩

µ
d

dt
⟨P̂ ⟩ = ⟨F̂ [mt]⟩ ,

where we have introduced the force operator F̂ [mt] = −∇V [mt](X̂). In the case
of local interaction the potential can be written as

V [mt](X̂) = U0(X̂) + f [m(X̂)]. (2.27)

In this case it is possible to broaden the connection with the mathematical struc-
ture of quantum mechanics by defining an action functional

S[Φ,Γ] =

∫ T

0

dt

∫
R2

dx

[
−µσ

2

2
(Φ∂tΓ− ∂tΦΓ)−

µσ4

4
∇Φ · ∇Γ + ΦU0(x)Γ + F [ΦΓ]

]
where F (m) =

∫ m
f(m′)dm′. By optimizing S, by taking the variational derivative

δS\δΦ and δS\δΓ one recover equations (2.14) and (2.17). At this point we can also
introduce the notion of energy by defining the total energy and related quantities
Etot := Ekin + Epot + Eint where the three terms are defined respectively

Ekin =
1

2µ
⟨P̂ ⟩ ,

Epot = ⟨U0(x)⟩ ,

Eint =

∫
dxF [m(x, t)].

Finally, we observe that since the integrand of the functional S does not depend
explicitly on time, by Noether theorem we know that there exist a conserved
quantity along the trajectory of the solution of the optimization. This so called
Noether charge is the quantity Etot that we just defined.
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2.4 Exact results

As we developed the foundations of Mean-Field Games, it is now time to stretch it
a bit and see a couple of simple example that can be solved exactly. This, as will be
also for us, is rarely the case. Most of the time when trying to apply the equations
to some real life problem, exact solutions are nothing but a mirage. In this section
we will only consider the non interacting case, the case of local attractive potential
in absence of an external potential and the quadratic potential.

2.4.1 Non interacting case

The first exactly solvable case we will consider is for g = 0. This assumption means
that players choose their strategy regardless of what others are doing, therefore
losing the strategic side of the game. Anyway, this is just a pedagogical example
that allows us to dig a bit deeper into Mean-Field Games and what they can do
and in what situation they can be employed. Under these hypothesis equations
(2.14) and (2.17) become

µσ2∂tΦ = Ĥ0Φ,

µσ2∂tΓ = −Ĥ0Γ,

with boundary conditions respectively

Φ(x, T ) = ΦT (x),

Γ(x, 0) =
m0(x)

Φ(x, 0)
,

and with the Hamiltonian that has now become

Ĥ0 = −P̂ 2

2µ
− U0(x). (2.28)

Under the hypothesis that the Hamiltonian operator is Hermitian, let us consider
a basis of the function space given by the eigenvectors {ψn}n∈N of the Hamiltonian
Ĥ0. Then, being this a basis, we can write both Φ and Γ as linear combination of
these basis functions. Moreover, an analogous of the time evolution operator can
be built, and using this the final time dependent solution becomes

Φ(x, t) =
∑
n∈N

φne
−λn(T−t)

µσ2 ψn(x)

Γ(x, t) =
∑
n∈N

γne
− λnt

µσ2ψn(x)
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In this expression λn are the eigenvalues of Ĥ and are ordered such that λ0 ≤
λ1 ≤ λ2... and so on. The coefficients φn are fixed using the boundary conditions
at t = T . In fact we have that

φn =

∫
dxψn(x)ΦT (x), (2.29)

and an analogous reasoning can be done for γn coefficients. While losing the
main properties of games, this example is still important and pedagogical, because
it shows that far from time boundaries, c’est à dire after enough time from the
beginning of the game and enough time before its end, we recover indeed the
ergodic solution. In fact, let us define the characteristic time

τerg =
µσ2

λ1 − λ0
. (2.30)

Now it easy to observe thatΦ(x, t) ≃ φ0e
−λ0(T−t)

µσ2 ψ0(x), t << T − τerg

Γ(x, t) ≃ γ0e
− λ0t

µσ2ψ0(x), t >> τerg

When both conditions are fulfilled we then obtain a time independent density
profile

m(x, t) = merg(x) ∼ φ0γ0e
−λ0T

µσ2 ψ2
0(x), (2.31)

to which the solution converges exponentially fast.

2.4.2 Local attractive interaction

We now focus on another quite extreme case, that of an external potential negli-
gible with respect to the interaction between agents. We will here consider only
the one dimensional case. We are thus considering a potential of the form

V [m](x, t) = gm(x, t)α, (2.32)

where we take α > 0 and g > 0. Focusing on just the ergodic problem we
interestingly observe that we recover the famous Gross-Pitaevskii equation

− µσ2

2
∂2xxψ

e − g(ψe)2α−1 = λeψ
e. (2.33)

Then, using a result introduced in [25], it is possible to recover the lowest state
energy

ψe = ψM

[
cosh

(
x− x0
ηα

)]− 1
α

,
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where ψM is the maximum of the function that reads

ψM =

(
λe(α + 1)

g

) 1
2α

.

The energy of this state can also be computed and it is equal to

λe = −1

4

(
Γ( 2

α
)

Γ( 1
α
)2

) 2α
2−α

(
g

α + 1

) 2
2−α

(
2α

µσ4

) α
2−α

(2.34)

It is important to observe that the ergodic solution for this specific setting is a
stationary density localized around some point x0 and with spatial extension ηα

ηα =
2√
α

(
Γ( 2

α
)2

Γ( 1
α
)

) 2α
2−α

(
α + 1

2α

µσ4

g

) 1
2−α

. (2.35)

In the NLSE language this is called a soliton. We also observe that the spatial ex-
tension is given by the competition between the noise, which tends to broaden the
density distribution, and the attractive interaction, that tries to bring everything
together. Moreover, it is clear that for α = 2 this solution is ill-defined. This is
related to the fact that for α > 2 the soliton is unstable.

2.4.3 Quadratic external potential

We end this section about exactly solvable model with one very common and
pedagogical example in the quantum mechanics field. We will use the formal
connection between the Mean-Field Games formulation we are currently using
and the NLS theory to derive the solution of a system with a quadratic external
potential in dimension one. To do this we consider the total potential

Ṽ [m](x) = −k
2
x2 + f(m(x)) (2.36)

As explained in [25], we can solve this problem starting from the ansatz

Φ(x, t) = e
− γ(t)−xP (t)

µσ2 ψe(x−X(t))

Γ(x, t) = e
+

γ(t)−xP (t)

µσ2 ψe(x−X(t))

where ψe(x) is the solution of the ergodic equation. Observe also that with this
ansatz the resulting density ism(x, t) = Φ(x, t)Γ(x, t) = ψ2

e(x−X(t)), independent
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of P (t) and γ(t). Inserting the ansatz into equations (2.14) and (2.17) allows to
obtain

Ṗ (t) = kX(t)

Ẋ(t) =
P (t)

µ

˙γ(t) =
k

2
X(t)2 +

P (t)2

2µ
− λe

Where the first two equations describe the motion of the center of mass X(t) of
the density distribution. The third equation describes the evolution of the width
of the density, and, integrated, gives

γ(t) =
X(t)P (t)

2
− λet+ γ0. (2.37)

It is also possible to obtain the expression for the evolution of the center of mass
of the density, provided that the initial condition is chosen with care as explained
in [34]. This is in fact

X(t) = x0
sinhω(T − t)

sinhωT
+ xT

sinhωt

sinhωT
,

where ω :=
√
k/µ.
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Chapter 3

MFG model of the experiment

So far we have described in details the foundation of MFG and their mathemat-
ical structure. The way we want to apply them to the experiment of Nicolas et
colleagues is by considering the parameter a⃗(t) as the velocity of pedestrians. We
think this approach is reasonable because the only thing a person has to decide
at each instant when walking through a crowd is their velocity. Module and di-
rection of the velocity will indeed determine the motion. Pedestrians optimize
their velocity according to the density around them and the obstacles they en-
counter. Moreover, since crowded environments change quickly and a pedestrian
has to adapt to many small perturbations, it also seems appropriate to describe
the motion of a single person in the crowd with the Langevin equation (2.1). This
is why we thought MFG could apply well to this situation.

3.1 Passing to the moving frame

The problem we are trying to model is the evolution of the density of pedestrians
in a confined environment, namely a square of side L, through which a cylinder is
made pass from bottom to top with constant velocity s⃗ = (0, s). We argue then
that the right set of equations to describe this problem is given by MFG equations
in the NLS representation that we recall

µσ2∂tΦ = −µσ
4

2
∆Φ− V [m]Φ,

µσ2∂tΓ =
µσ4

2
∆Γ + V [m]Γ,

where in this case V [m] = gm(x⃗, t) +U(x⃗, t) with U(x⃗, t) representing the moving
cylinder as an external potential equal to +∞ inside a 2 dimensional disk of radius
R and equal to 0 outside. This external potential introduces an explicit time

19
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dependence in the cost function (2.2), preventing the existence of an ergodic state.
To correct this problem we pass from the point of view of the laboratory to the
point of view of the cylinder. In order to do so we define of the following quantities

ũ(x⃗− s⃗t, t) = u(x⃗, t), m̃(x⃗− s⃗t, t) = m(x⃗, t),

Φ̃(x⃗− s⃗t, t) = Φ(x⃗, t), Γ̃(x⃗− s⃗t, t) = Γ(x⃗, t).

In this framework the potential does not depend on time anymore and it becomes
Ṽ [m̃] = gm̃+ Ũ(x⃗), with

Ũ(x⃗) =

{
+∞ x < R

0 otherwise
. (3.1)

For all other quantities the time dependence now appears also in the position
variable. In this case we observe that

∂tf(x⃗, t) =
d

dt
f(x⃗, t) =

d

dt
f̃(x⃗− s⃗t, t) = ∂tf̃ − s⃗ · ∇⃗f̃ . (3.2)

We can then substitute expression (3.2) into equations (2.14) and (2.17) and obtain
the moving frame equations

µσ2∂tΦ̃− µσ2s⃗ · ∇⃗Φ̃ = −µσ
4

2
∆Φ̃− V [m]Φ̃, (3.3)

µσ2∂tΓ̃− µσ2s⃗ · ∇⃗Γ̃ =
µσ4

2
∆Γ̃ + V [m]Γ̃. (3.4)

We want to find the ergodic state of the moving frame equations. Recalling now
the relationship between the ergodic state solution and the time dependent one
expressed in (2.23), we observe that

∂tΦ̃ =
λe
µσ2

Φ̃ =
λe
µσ2

e
λe
µσ2 tΦ̃e, ∂tΓ̃ = − λe

µσ2
Γ̃ = − λe

µσ2
e
− λe

µσ2 tΓ̃e.

These expressions can finally be substituted inside equations (3.3) and (3.4) to get
rid of any explicit time dependence. Simplifying all the exponentials we finally
obtain

µσ4

2
∆Φ̃e − µσ2s⃗ · ∇⃗Φ̃e + Ṽ [m̃e]Φ̃e = −λeΦ̃e, (3.5)

µσ4

2
∆Γ̃e + µσ2s⃗ · ∇⃗Γ̃e + Ṽ [m̃e]Γ̃e = −λeΓ̃e. (3.6)

These equations contain no time dependent quantities anymore. The last problem
to solve before starting devising a numerical scheme to solve the equations is to
find the right boundary conditions in order to fix the solutions.
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3.2 Choosing boundary condition

In order to solve equations (3.5) and (3.6), it is important to understand what
boundary conditions to impose in order to fix a solution. In the experiment of the
moving cylinder, far from it people were not moving, meaning that, far from the
obstacle, the velocity of the pedestrians was null in the laboratory frame. This
means that, when passing to the moving frame, agents at the boundary should
move with velocity −s⃗. From the hydrodynamic representation (2.18) of MFG,
one knows that the definition of velocity in terms of Φ and Γ is

v⃗ =
σ2

2m

(
Γ∇⃗Φ− Φ∇⃗Γ

)
= −∇⃗u

µ
− σ2 ∇⃗m

2m
. (3.7)

This definition is valid also if we consider the ergodic state of the moving frame

v⃗ =
σ2

2m̃e

(
Γ̃e∇⃗Φ̃e − Φ̃e∇⃗Γ̃e

)
= −∇⃗ũe

µ
− σ2 ∇⃗m̃e

2m̃e
. (3.8)

Now, we know that at the boundary the density should be constant therefore we
can drop the gradient of m̃e in the last expression; this means that we can just
force the equality

∇⃗ũe

µ
= s⃗, (3.9)

in order to have the right velocity far from the obstacle. Now, recalling that
ũe = −µσ2 log Φ̃e, we can substitute in equation (3.9) and obtain

σ2 ∇⃗Φ̃e

Φ̃e
= −s⃗,

from which we obtain the equations

∂Φ̃e

∂x
= 0,

∂Φ̃e

∂y
= − s

σ2
Φ̃e,

that can be solved yielding the ergodic asymptotic solution

Φ̃e(x, y) = Ce−
s
σ2 y. (3.10)

In order to fix C, we observe that far from the cylinder the density should be the
average one, that we call m0. Therefore, recalling that Φ̃eΓ̃e = m̃e, we can take
C =

√
m0 and thus have that Γ̃e(x, y) =

√
m0e

s
σ2 y. An interesting thing we notice

is that a new parameter has emerged, one that relates the diffusion coefficient and



22 CHAPTER 3. MFG MODEL OF THE EXPERIMENT

the velocity of the cylinder. We will call this parameter f = s
σ2 . This boundary

solutions contain all the information necessary to find the solution to the entire
equations, since the only conditions Φ and Γ have to satisfy at the boundary are
those related to the velocity and the value of the average density.

Having found the expression of the asymptotic solution not only gives us the
boundary conditions to solve the equations; in fact, it also allows us to fix λe, giving
us the correct ergodic state. Since λe is a constant quantity it can be computed
using the asymptotic solution and we are sure it will also be valid for the general
solution. To fix the parameter λe, we can indeed substitute the asymptotic form
(3.10) into (3.5), which has to be valid far from the cylinder. This leads to

µσ4

2

s2

σ4
Φ̃e + µσ2 s

2

σ2
Φ̃e + gm0Φ̃

e = −λeΦ̃e, (3.11)

giving

λe = −gm0 −
3

2
µs2 . (3.12)

3.3 Numerical solution

Now that we have solved the problem of boundary conditions, our goal is to find
a numerical scheme to solve the equations. Let us consider equation (3.5).

µσ4

2
∆Φ̃e − µσ2s⃗ · ∇⃗Φ̃e + Ṽ [m̃]Φ̃e = −λeΦ̃e.

We will use the cylindrical potential (3.1), implemented numerically as Ṽ0V (x⃗)

V (x⃗) =

{
1 x < R

0 otherwise
. (3.13)

Then, we first consider g = 0, therefore the equation we have to solve numerically
are

µσ4

2
∆Φ− µσ2s∂yΦ + V0V (x⃗)Φ = −λΦ, (3.14)

where we dropped the tilde and the denotation of ergodic state, and already used
the fact that the velocity of the cylinder is vertical. Now we are ready to implement
the numerical scheme. We want to solve the equation on a box of side L, therefore,
first of all, we define a meshgrid in Python of N ×N points corresponding to the
(x, y) coordinates in Euclidean space. Then we define the matrixces Φ ∈ RN,N

and Γ ∈ RN,N that we have to evaluate. We will then use the meshgrid matrix of
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coordinates to plot the values of the two matrices Φ and Γ. In order to do this,
we first write the discrete form of equation (3.14)

µσ4

2dx2
(Φi−1,j+Φi+1,j+Φi,j−1+Φi,j+1−4Φi,j)−µσ2s

Φi,j+1 − Φi,j−1

2dy
+V0Vi,jΦi,j = −λΦi,j,

where we choose dx = dy. Then make the term Φi,j explicit and obtain

Φk+1
i,j =

µσ4

2
(Φk

i−1,j + Φk
i+1,j + Φk

i,j−1 + Φk
i,j+1)−

µσ2

2
sdx(Φk

i,j+1 − Φk
i,j−1)

2µσ4 − λdx2 − V0Vi,jdx2
.

This is the recursive rule that updates Φi,j until convergence. Starting from an
initial guess of the solution, but with boundary conditions given by solution (3.10),
the algorithm updates all the points of the Φ matrix simultaneously, just shifting
rows or columns to sum neighboring points. At each step, the relative distance
with the matrix at the previous iteration is computed and the algorithm halts
as soon as a threshold is reached. This method is called Jacobi method and in
practice it takes the initial guess for the solution and it connects it smoothly to
the boundary conditions while solving the equation. The same can be done for
Γ, just changing sign of s. Now that we have found both Φ and Γ, we can also
solve the case for g ̸= 0. We do this by starting with an initial density matrix
with all entries equal to m0. Then, we use the Jacobi method to compute Φ and
Γ but this time also including the density term. Finally, we just use that m = ΦΓ,
update the density and compute again Φ and Γ. We repeat this operation until
convergence of m.

3.4 Results

Let us start by defining some key quantities. First of all, in the two dimensional
setting we framed our problem in, it is possible to define the kinetic energy and
the interaction energy as, respectively,

Ekin =
µσ4

2ν2
, Eint = gρ̄.

In the definition of the kinetic energy we introduced ν, that is the healing length.
This, as explained in [9], corresponds to the distance after which a perturbed den-
sity of pedestrian recovers its bulk value. This emerges from the balance between
interaction and diffusion. Therefore, equating the two energies just defined we
obtain

ν =

√
µσ4

2|g|m0

. (3.15)
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Then, it is also possible to define the healing time τ = |µσ2/gρ̄|, which is the time
required for the solution to recover from a perturbation. These two quantities can
then be used to obtain another important length of the problem: the healing speed,
defined as

ξ =
ν

τ
=

√
|g|m0

2µ
, (3.16)

that quantify the speed of recovery of the density of pedestrians to its bulk value.
We can use the healing speed and the healing length to describe all possible scenar-
ios we can deal with in this setting, given that ξ and ν are both defined in terms of
g and that once we fix both the size of the room and the size of the obstacle we can
tune the other parameters µ and σ independently. Figure 3.1 shows the 4 main
regimes we can find our solution in. Figure 3.1a shows the case ξ > s, ν > R, in
which the crowd adjusts easily to the passage of the obstacle, thanks to a healing
speed larger than the speed of the intruder. In figure 3.1b, on the other hand, a
healing length smaller than the size of the cylinder means that only those in its
proximity are impacted. In this case we can see the darker shadows at the sides
of the obstacle, corresponding to an increase in density: pedestrians make space
for the intruder as soon as they encounter it, with little anticipation. Figures 3.1c
and 3.1d show the case in which the ξ < s. We see in this case that people make
space for the incoming intruder much earlier than in the ξ > s case, effectively
showing some degree of anticipation. How far in space the perceived presence of
the obstacle causes the crowd to start moving is determined by the value of the
healing length. These observations are confirmed and amplified when the velocity
field of pedestrian is analyzed as figure 3.2 shows. In figure 3.2a we see how only
people in the vicinity of the obstacle are affected by it, and they move relatively
slowly to adjust to its presence. Moreover, we see people moving in an almost
circular region around the cylinder. This feature is displayed even better in figure
3.2b, where the pattern of motion is again of a radial displacement, but the con-
cerned area is clearly larger. We link this behavior to the fact that in both cases
ξ > s, giving pedestrians the possibility to start reacting just when they start
feeling the pressure from the incoming cylinder, without hurrying much. In fact,
in figures 3.2c and 3.2d we see how ξ < s implies the emergence of anticipation
patterns. The two pictures show that people start reacting already far away from
the obstacle, moving laterally to make room for its passage. Then, they escape
the crowd’s pressure filling the empty space behind the cylinder. Moving laterally
then seems to be the least expensive move to perform in this context, and intu-
itively this makes sense, because, while being the shortest possible displacement
to avoid the cylinder, it also puts the agent under the smallest possible pressure
from surrounding people.



3.4. RESULTS 25

(a) ξ > s, ν > R (b) ξ > s, ν < R

(c) ξ < s, ν > R (d) ξ < s, ν < R

Figure 3.1: The relations between healing length, healing speed and the velocity
and size of the obstacle identify four different regimes.
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(a) ξ > s, ν > R (b) ξ > s, ν < R

(c) ξ < s, ν > R (d) ξ < s, ν < R

Figure 3.2: The relations between healing length, healing speed and the velocity
and size of the obstacle identify four different regimes, velocity plots.



Chapter 4

Conclusions

From what we have seen so far, we are pretty happy with our results. In fact, the
passage to the moving frame not only allowed us to obtain equations easier to solve,
namely equations (3.5) and (3.6), but the results it produced are qualitatively very
promising. Despite the simplicity of the model, the overall behavior represented
by our solution shows both of the experiment’s main features, namely the ability
of pedestrians to anticipate the obstacle and their reaction to the pressure from
others.

4.1 Reproducing the experiment

Since we believed that our approach could be pushed even further, we also tried
to get as close as possible to the quantitative behavior. We tuned the parameter
σ, µ and g in order to obtain something similar to what was obtained in the ex-
periment. In particular, we tried to match the density shown in figure 4.1a and
the corresponding velocity displayed in 4.1c. We assumed that the cylinder moved
at 0.75m/s, half the average human walking speed. The result is quite good.
As we can see in figure 4.1b, additionally to the already commented qualitative
agreement, we recover a value of the density of ∼ 3, 5 ped/m2 at the sides of the
obstacle, close to what is found in the experiment. Then, figure 4.1d shows the
velocity field we obtained using our simulation. Plotting the velocity was not an
easy task. In fact, due to the finite nature of the algorithm, some agents are con-
sidered as almost under the cylinder. Since these points will try to escape from
it at very high velocity, plotting the simulated velocity of pedestrian in the vicin-
ity of the intruder would result in a bunch of long arrows without any physical
meaning. In order to avoid this, therefore, transparency proportional to density
is introduced. In any case, the simulated velocity exhibits a behavior very similar
to the experimental one. People start moving horizontally far from the obstacle in

27
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(a) Experimental density of pedes-
trians (ρ̄ = m0).

(b) Simulated density of pedestri-
ans.

(c) Experimental velocity field. (d) Simulated velocity field.

Figure 4.1: Here are displayed both the density and the velocity field of the pedes-
trians. Our goal was to obtain a visually similar result to figure 1.2-b
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order to avoid impacting into it. Moreover, no circular motion around the obsta-
cle is detected, another element of similarity with respect to what is found in the
experiment.

4.2 Simulating other scenarios

Now that we verified that our model gives good results in simulating the experi-
mental data we have, we realize that something more can be done. In fact, more
than just for the sake of pure knowledge, the reason behind our work is also to
improve the way pedestrian dynamics is simulated, in order to be able to create
safer environments and more carefully planned endeavors. Therefore we would
like to see how our machinery works in simulating other environments, with, for
example, more obstacles or series of them. In fact, nowadays many softwares for
pedestrian dynamics are equipped with very good graphics, also to display a real-
istic motion of people moving in the modeled environment. However, the way they
direct the motion itself relies on the velocity field obtain by the algorithm used
to make predictions. Therefore, since we are able to obtain a velocity field with
our algorithm, nothing prevents us, in the future, from integrating an appealing
graphical simulation that has, under the hood, the simulation we provide. In this
section I will present the simulation of a crowd passing through three corridors,
or gates, of width 1m and length 2m. Pedestrians are assumed to move uniformly
towards the negative y axis with average velocity s. These are restrictive assump-
tions, allowing for little randomness or noise, but still important information can
be extracted. The results are again very interesting. As figure 4.2a shows, what
the algorithm gives is an increase in density in every corridor, with a depletion
before and after every rectangle. Therefore, the model predicts the intuitive idea
that people will start choosing a corridor before getting too close. They will avoid
as long as possible to push into a crowded area, and then they will start mov-
ing when, because of their velocity, they will realize that not moving will lead to
impact. Again, as already done in the cylinder case, we can look at the velocity
field to have confirmation of our analysis. In fact, figure 4.2b shows something
very close to what the density already suggested. Remark: in the figure opacity
proportional to the density is introduced, so that arrows located in a very low
density area are almost invisible. In this way, the black thick arrows we see in the
corridors show the increase of density as well as the increase in speed. Moreover, it
is interesting to observe that arrows above the rectangles start to change direction
in order to avoid contact. Then, after the obstacle is passed, crowd pressure is
released and the arrows pointing inward mean that pedestrians will regain space
as soon as they can.
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(a) Simulated density of crowd passing through three corridors

(b) Simulated velocity of crowd passing through three gates
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4.3 Final remarks and future improvements

I am personally rather satisfied with these results, especially since what we used
is the simplest MFG model. This, however, is just the beginning of it. We are
already working on substantial improvements. First of all, we asked ourselves how
a discount factor can be introduced, in order to force agents to optimize their
strategy not for the entire game but just considering what will happen in a finite
future time span. Then, it is obvious that what we obtained here is a determin-
istic solution, coming from deterministic equations. However, the complexity of
human behavior can hardly be described as deterministic. For this reason, our
next goal will be to add some randomness to the equations. For example, we want
to consider the case in which the velocity of the cylinder is not a constant but is
a random variable. Finally, we would like to introduce congestion effects, that, as
reported in [26], already helped describing interesting phenomena like the spon-
taneous appearance of preferential patterns of motion. The concept of congestion
simply amounts to the fact that pedestrians collectively slow down in high density
areas. We think that all these improvements of the model will help us reaching a
deeper understanding of Mean-Field Games in general, and we hope will give us
simulations closer to reality and with interesting emerging behaviors. We will see,
however, what the future holds.
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formulation of mean field game based large scale coordination of loads in smart
grids. Automatica, 100:312–322, 2019.



BIBLIOGRAPHY 35

[25] Pitaevskii L. and Stringari S. Bose-Einstein Condensation. Clarendon Press,
Oxford, 2003.

[26] A. Lachapelle and M.-T. Wolfram. On a mean field game approach modeling
congestion and aversion in pedestrian crowds. Transportation Research Part
B, 45(10):1572–1589, 2011.
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