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Abstract

Image super-resolution is a widely studied ill-posed problem in computer vision,
where the objective is to convert a low-resolution image to a high-resolution one.
Conventional methods for achieving super-resolution, such as interpolation-based
methods, require a lot of pre/post-processing and optimization.

Thanks to the rise in popularity of Deep Learning methods over recent years,
several studies have shown how learning methods such as convolutional neural net-
works and generative adversarial networks can be used to perform super-resolution
tasks with competitive results when compared to prior state of the art methods.

This thesis proposes a focus on the application of super-resolution methods to
open-source low-resolution satellite imagery gathered from the Sentinel-2 ESA’s
satellite in the RGB domain. The open data policy plays an important role in the
choice of this dataset, alongside other key characteristics of the Sentinel-2 mission,
most notably the high revisitation frequency of the global covered area from 56°S
to 84°N, which happens every 10 days under the same viewing angles.

The design of a selection of renowned neural network based models for super-
resolution will be subject to analysis, along with a study of the models’ applications
to the dataset of choice and of the respective performances when using different
upscaling factors (2x, 4x, 8x). Furthermore, this dissertation proposes a generative
adversarial network architecture with multiple discriminators. The goal of this
multi-discriminator model is to optimize the training process of the generative
network over different scaling factors in a single training procedure.

Super-resolution applications to the satellite imagery domain are of notable
relevance given the impact that well-performing methods can have on existing
algorithms relying on this kind of data, such as image classification, object detection,
and environmental monitoring among others.
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Chapter 1

Introduction

In this thesis project we explore the use of Deep Learning models such as Deep
Neural Networks, specifically Convolutional Neural Networks and Generative Ad-
versarial Networks, for single image super resolution tasks on images from the
satellite imagery domain. This project was carried out with the aid of LINKS
Foundation, which proposed the thesis topic and provided the computing facilities
necessary to perform the studies contained in this document.

1.1 Motivation
The particular choice of task and data used for this thesis project was driven by the
potential implications of successful super resolution techniques applied to satellite
images. Applications that make use of satellite images have extremely crucial real-
world implications, as many satellite imagery-based algorithms are nowadays used
for environmental monitoring, global climate change, natural disaster prediction
and land development, urban planning and engineering, agricultural and forestry
monitoring to name a few. Most of these algorithms could benefit from using high
resolution satellite imagery, data which is usually not open-source nor publicly
available due to the high costs involved with both launching and maintaining in
orbit satellites that are able to capture such images.
While many private companies can currently provide extremely high resolution
images which go up to tens of cm per pixel, some public projects sponsored by
space agencies around the globe are fundamental as they aim to provide more
openly available data.
In particular, the open-source dataset chosen for this thesis project is the one
collected by the European Space Agency’s Sentinel mission, specifically by the
Sentinel-2 satellites. The Sentinel-2 mission has a few key characteristics, most
important of which are frequently up to date collected data and a free and open

1



Introduction

data policy, which have been critical in the decision of this dataset for this thesis
project.

1.2 The Super-Resolution problem
In most digital imaging applications, high-resolution images are preferred and often
required to successfully carry out tasks. Image super-resolution is a widely-studied
ill-posed problem in computer vision, where the objective is to generate high-
resolution images starting from low-resolution ones. Super resolution algorithms
aim to produce details finer than the sampling grid of a given imaging device by
increasing the number of pixels per unit area in an image. The problem, where
from a low-resolution image, often corrupted by blur, aliasing artifacts, noise and
visual distortions, a high-resolution image is generated, is inverse and ill-posed as
there does not exist a unique solution. Super resolution techniques can be applied
in many scenarios where multiple frames of a single scene can be obtained, or
various images of a scene are available from numerous sources.
These techniques can be applied in various fields such as medical imaging where
more detailed image details are required on demand, and high-resolution medical
images can be used by doctors improve the chance of a correct diagnosis, in
homeland security and surveillance where there may be a need to increase the
resolution a specific section of interest in a scene (such as zooming on the face
of a criminal, or on license plate), in computer vision where they can be used to
improve the performance of pattern recognition and other applications such as
facial image analysis, text image analysis, biometric identification and fingerprint
image enhancement, among others.
Super resolution is particularly of great interest in satellite imaging applications,
such as remote sensing, object detection and environmental monitoring, where high
resolution images are not always openly available and frequently updated.
In general, image super resolution problems can be classified as belonging to two
main categories, according to how the super resolved images are generated.

1.2.1 Single Image Super-Resolution
Single image super resolution (SISR) aims to recover a high-resolution image
starting from a single given low-resolution one. Since in most cases there is no
underlying ground truth to be used for evaluating the quality of a super resolved
image, the significant issue is to generate an image that is visually acceptable,
without introducing excessive noise and degradation. Most of the currently best
performing SISR algorithms are learning based and aim to complete the missing
details of the output super resolved image exploiting relationships between low-
resolution and high-resolution images from a training dataset. Single image super

2



1.3 – Purpose and Goal

resolution will be the main topic of this thesis project.

1.2.2 Multi-Image Super-Resolution

Multi-image super resolution (MISR) involves the extraction of information from
many low-resolution observations of the same scene to reconstruct high resolution
images. With the availability of more data from the multiple observations of
the scene, it is possible to obtain a more accurate reconstruction than through
single-image methods. In recent years, these techniques have been exploited to
address super resolution problems in the context of enhancing video sequences, as
frames which are temporally close to each other are able to provide the needed
multiple observations to carry out the task. However, multi-image super resolution
techniques are rarely exploited in the context of satellite imagery. In 2018, the
European Space Agency has published a challenge to super-resolve multi-temporal
PROBA-V satellite imagery [1]. For the challenge, Salvetti et. al [2] proposed a
new architecture that uses an end-to-end learning approach which exploits both
temporal and spatial correlations between multiple images.

1.3 Purpose and Goal

This thesis will examine several Deep Learning techniques, focusing on Convolu-
tional Neural Networks and Generative Adversarial Networks, in order to determine
which techniques produce the most promising results in super resolution tasks
applied to satellite images, comparing them in conjunction with traditional image
upscaling techniques. The objectives of this project are to:

• Implement and analyze Deep Learning base methods for single image super
resolution based on current State of the Art models using a satellite imagery
dataset.

• Propose and implement a Deep Learning based architecture for single image
super resolution that directly learns an end-to-end mapping between the low
resolution images and high resolution ones, focusing on the possibility of
creating a generalized model that is able to single-handedly produce differently
scaled super resolved images starting from a single low resolution image.

• Study and determine appropriate metrics to evaluate the super resolved images
produced by the proposed architecture and compare them with those generated
with State of the Art models.

3



Introduction

1.4 Approach and Methodology
Image super resolution is a topic which, thanks to the rise in popularity of machine
learning and deep learning, has gathered the interest of many different research
studies over recent years. While few research is done focusing on a specific type
of images, that of satellite imagery is a domain which has gathered the interest
of many researchers and has been subject to analysis in different papers. This
interest has been driven by the motivations previously discussed. For this thesis
work, the main objective was to propose an easily replicable pipeline, from the
creation of a dataset creation to the choice of the appropriate architecture, while
proposing relevant improvements to already reliable State of the Art models. The
first step of the project regarded the creation of the dataset. There exist many
different variations of satellite images, determined by the spectral bands over which
data is acquired from satellite, or the type of data in and of itself (e.g., remote
sensing data, depth maps, RGB images). The choice of the dataset determined
the exact scope of the thesis project: choosing RGB satellite imagery pushed
the decision towards a single image super resolution task. After creating the
dataset followed a study of the most relevant State of the Art Deep Learning-based
models, in order to determine a baseline performance of what current technologies
are able to provide in terms of generated super resolved images. While several
models have been tested, only the ones relevant to this thesis contributions will
be described in detail. Applying the selected models to this specific problem and
dataset played a fundamental role in choosing a reference architecture to use as
a starting point for proposing improvements and modifications, in conjunction
with the hardware and time resources available to run the experiments. In this
project, the aspect of optimizing the models and training hyperparameters and
procedures have been deemed of secondary importance, mostly because of time and
resource constraints which have been the major obstacles in dealing with extremely
complex and computationally demanding architectures. Refining the proposed
improvements, main topic of this thesis work, is what required the majority of the
time in terms of experiments, in order to reach acceptable performances worth
mentioning in this report.

1.5 Contributions
The main contributions of this thesis project are the following:

• Propose a satellite imagery dataset for single image super resolution tasks with
the objective of training a model that can be used to super resolve open source
RGB satellite images collected from the European Space Agency’s Sentinel
mission.

4
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• Propose a Generative Adversarial Network architecture, based on existing
State of the Art models, to perform single image super resolution on three
different scales to aim for a generalized model capable of handling multiple
super resolution tasks. The aim is to produce a model capable of producing
results comparable to those of current State of the Art models.

• Propose a proof of concept application of the impact of super resolution
techniques to images used for solar panel detection algorithms by super
resolving Sentinel-2 test data.

1.6 Outline
The rest of the report is organized as follows:

• Chapter 2 proposes an overview of the most relevant theory and concepts
that are fundamental to the understanding of the work done with this thesis
project.

• Chapter 3 proposes an analysis of some of the most relevant State of the Art
models for single image super resolution applications.

• Chapter 4 contains the details of how the data used for the project has been
gathered, explains how the previously analyzed State of the Art models have
been applied to this specific case study, along with the motivations behind
the proposed architecture and a comparison of the obtained results.

• Chapter 5 concludes this thesis project with some considerations on the
experiments performed and a comment on possible ideas for future work
related to what has been proposed.

The results reported in this document appear as they have been obtained without
any manipulation and appropriate sources are given credit wherever possible to
avoid plagiarism.
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Chapter 2

Relevant Theory

In this section we will explore the underlying theory of the main topics touched in
this thesis work. We will start by more formally defining the problem of Image
Super-Resolution, exploring how it has been tackled via traditional, mathematical
approaches and how deep learning techniques have been adapted to this sort of
problems.
We will then move onto defining what Deep Learning is, how it relates to Machine
Learning and why the Artificial Intelligence field is nowadays playing an increasingly
important role in tackling difficult to solve real world problems.
The contents of this chapter are mostly sourced from [3] and [4], with additions
from other online sources referenced accordingly.

2.1 Image Super-Resolution

With Super-Resolution we define the problem of creating or recovering a high reso-
lution image starting from a low resolution one. This problem presents significant
challenges: it’s inherently ill-posed since a multiplicity of solutions exist for any
given low-resolution image. By artificially enlarging the resolution of an image
we are effectively generating new information regarding such image, which was
previously not present, and we must do so in a coherent way, such as not to alter
the visual perception of the image while avoiding the introduction of significant
noise which would degrade the picture.
This problem has many real world applications, such as medical imaging, surveil-
lance and security, astronomical imaging and satellite imaging. The latter will be
the application on which this thesis will focus on.
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2.1.1 Interpolation-based Super-Resolution Techniques
These techniques are simple algorithms which have been commonly used until
recently for performing image upscaling. Nearest neighbor interpolation is one
of the simpler ways of increasing image size, and works by replacing every pixel
with the nearest pixel in the output. When upscaling this results in multiple
pixels of the same color to be present. This can preserve sharp details in pixel
art, but also introduce jaggedness in previously smooth images. ’Nearest’ doesn’t
imply mathematical nearest, one common implementation is to always round down.
Rounding this way produces fewer artifacts and is faster to calculate.

Figure 2.1: Nearest neighbor upscaling [5]

Bilinear interpolation works by interpolating pixel color values, introducing a
continuous transition into the output even where the original material has discrete
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2.1 – Image Super-Resolution

transitions. It is performed on a 2-dimensional grid using linear interpolation first
in a direction and then in the other. Although this is desirable for continuous-tone
images, this algorithm reduces contrast (sharp edges) in a way that may be unde-
sirable depending on the image to be scaled.

Figure 2.2: Bilinear interpolation [5]

Bicubic interpolation yields substantially better results, with an increase in
computational cost.
It is an extension of cubic interpolation on a 2-dimensional grid, and offers smoother
results compared to the previous two methods.

There also exist more complex resampling algorithms, such as Sinc and Lanczos.
Sinc resampling provides, in theory, the best possible reconstruction for a perfectly
band-limited signal. In practice, the assumptions behind the method are difficultly
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Figure 2.3: Bicubic interpolation [5]

met by real-world images.
Lanczos is an approximation of the Sinc method and usually yields better results.
Bicubic interpolation can be regarded as a computationally efficient approximation
to Lanczos resampling.

As all of these methods are not learning-based, they lack in generalization and
usually introduce visible aliasing artifacts.

2.1.2 Deep Learning-based Super-Resolution Techniques
Thanks to the rise in popularity of Machine Learning and Deep Learning, recent
research has been extensively performed on neural network-based models applied
to image scaling. Neural networks allow to create extremely complex models that,
through a learning procedure, are able to produce far better results when compared
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Figure 2.4: Original
image [6]

Figure 2.5: LR image
[6]

Figure 2.6: 4x nearest
neighbor upscaling[6]

Figure 2.7: 4x bilinear interpolation[6] Figure 2.8: 4x bicubic interpolation[6]

to the techniques showcased previously.
In the following sections we will delve into the details of what machine learning
and deep learning are, with a focus on the inner workings of neural networks to
provide necessary context before analysing these methods. Since this thesis project
focuses on this class of methods, the state of the art of deep learning-based super
resolution models will be analyzed in detail in the next chapter.

2.1.3 Evaluation metrics for image quality assessment
To evaluate the quality of a super-resolved image, several metrics can be used
according to what needs to be measured. A first example is the Peak Signal to
Noise Ratio (PSNR), which is the ratio between the maximum possible value, or
power, of a signal and the power of distorting noise that affects the quality of its
representation. Since many signals have a very wide dynamic range, which is the
ratio between the largest and smallest possible values of a quantity, the PSNR is
usually expressed in terms of the logarithmic decibel scale. Consider a 2D m× n
image I and its noisy approximation J , the PSNR can be mathematically described
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in dB as follows:

PSNR = 20log10

A
MAXI√
MSE

B
(2.1)

where MAXI represents the maximum pixel value of the image I, and MSE
indicates the Mean Square Error and is defined as:

MSE = 1
mn

m−1Ø
i=0

n−1Ø
j=0

|I(i, j) − J(i, j)|2 (2.2)

PSNR is one of the most commonly used measures for assessing the quality of
reconstruction of lossy images. The signal in this case is the original image, and
the noise is the error introduced by scaling. Typical values for the PSNR in image
super-resolution tasks is between 25 and 35 for State of the Art deep-learning
techniques, where higher is better. In case no noise is present, the value of the
MSE is zero, and the PSNR is considered infinite. Although a higher PSNR
generally indicates that the reconstruction is of higher quality, in some cases it
does not translate in a visibly better image. Generally, PSNR has been shown to
perform poorly compared to other quality metrics when it comes to estimating
the quality of images and particularly images videos as perceived by humans. For
this reason there exist many other metrics, called perceptual metrics, that can be
considered, either instead of or in conjunction with PSNR, to better evaluate the
perceived quality of a super-resolved image.

One of these metrics is the Structural Similarity Index Measure (SSIM). SSIM
is a method for predicting the perceived quality of digital images and videos and
measures the similarity between two images. It’s a perception-based model that
considers image degradation as perceived change in structural information, while
also incorporating important perceptual phenomena, including both luminance
masking and contrast masking terms. The difference with other techniques such as
PSNR is that they estimate absolute errors. Structural information relies on the
idea that the pixels have strong inter-dependencies when spatially close to each
other. These dependencies carry important information about the structure of the
objects in the visual scene. Luminance masking is a phenomenon whereby image
distortions (in this context) tend to be less visible in bright regions, while contrast
masking is a phenomenon whereby distortions become less visible where there is
significant activity or "texture" in the image.

Other perceptual scores include the Naturalness Image Quality Evaluator
(NIQE)[7], which is a completely blind image quality analyzer that only makes use
of measurable deviations from statistical regularities observed in natural images,
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without training on human-rated distorted images, and without any exposure to
distorted images. It is based on the construction of a quality aware collection of
statistical features based on a simple and successful space domain natural scene
statistic model. These features are derived from a dataset of natural, undistorted
images. A lower NIQE score is an indicator of better perceptual quality.

2.2 Artificial Intelligence
The idea of Artificial Intelligence (AI) has antique precursors ranging from myths,
stories and legends from ancient civilizations narrating of artificial entities capable
of carrying out tasks associated with human intelligence, to classical philosophers
pursuing a description of the processes that constitute human thinking.
Thanks to the invention of the programmable digital computer in the 1940s and
breakthrough research in fields such as neurology, showing that the brain could
be compared to an electrical network of neurons, the field of AI research was
founded as an academic discipline in 1956 at the Dartmouth Workshop [8],
organized by M. Minsky, J. McCarthy and scientists C. Shannon, known as the
father of information theory, and N. Rochester. This conference is widely considered
the birth of modern AI, including fields such as engineering and mathematics,
psychology, economics and political sciences.
Because of excessive expectations and limited technological capabilities, AI expe-
rienced intermittent highs, fueled by optimism from researchers and matched by
conspicuous funding in academia, and lows, known as "AI winters", caused by the
limited computing resources, scepticism and criticism, which caused the field to
undergo a very slow progression, especially when compared to confident goals of
the early days.
In recent years, access to large quantities of data in conjunction with cheaper and
faster computing hardware and successful applications of Machine Learning (ML)
techniques in real case scenarios, allowed AI to gain immense interest from many
different fields, boosting it to the position it currently yields today.

2.2.1 Machine Learning
Machine Learning (ML) research emerged out of AI, specifically from the interest
of researchers to find a way of having machines learn from data. ML algorithms are
currently used in a wide variety of scenarios, such as speech recognition, natural
language processing and computer vision.
These algorithms are able to improve autonomously via experience and the use of
data, or as more formally defined by Tom M. Mitchell: "A computer program is said
to learn from experience E with respect to some class of tasks T and performance
measure P if its performance at tasks in T, as measured by P, improves with
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experience E." [9].
Nowadays, while many consider ML to be a subset of AI, others argue that only a
portion of ML intersects with the field of AI, considering the two to be separate
but overlapping sets.

Figure 2.9: ML as a sub-field of AI
[10]

Figure 2.10: Part of ML as a sub-field
of AI [10]

Some outline the difference between the two fields in the fact that ML uses passive
observations to learn, whereas AI requires an interaction with the environment in
order to learn.
ML techniques can be divided into groups, depending on the type of feedback
available to the system, but all share some common traits which can be described
by the idea of a ML Pipeline. A ML Pipeline describes the common steps of the
ML process.

Figure 2.11: ML Pipeline steps [11]

The first steps revolve around the collection, extraction and preparation of the
data, which varies according to each specific application scenario. This collected
data needs, in general, to be divided into 3 sub-sets: training set, validation
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set and test set. This partition is extremely important as it allows to perform the
succeeding steps while carrying as little bias as possible, especially in the validation
and test phases.
These phases are followed by the creation, training, evaluation and validation of
different models, in order to try and find the one that best adapts to the specific
requirements, may them be performance, memory footprint, power consumption,
etc.
During the training phase the model is trained on the training portion of the
dataset. It is then evaluated on the validation set to avoid overfitting on the
training dataset: if models were to be tested on the same data used for training, the
performance would be artificially perceived as good because the model has already
seen that data, usually causing poor performance on newly-seen real-world data.
This phase is usually performed in conjunction with cross-validation techniques
like K-Fold or Leave One Out: the former consists in dividing the entire dataset in
K "folds" (partitions) of equal size and training the model on K-1 folds, using the
remaining for validation and cycling through the folds, while the latter works by
leaving 1 sample for validation while the rest is used for training.
After having selected the model based on the validation performance during cross-
validation, the model can be retrained using both training and validation for a final
evaluation using the test set.
Apart from parameters to be learned during training, many models also have
tunable hyperparameters. There exist many different performance metrics that can
be used to evaluate the goodness of a given model, and the choice of the metric
depends mostly on the type of data, the type of the model and the type of ML
technique employed: for supervised learning tasks such as classification, some of
the most commonly used metrics include accuracy, F1-score and the ROC (receiver
operating characteristic) curve, while for unsupervised tasks such as clustering
metrics like Rand Index, Mutual Information-based scores and Silhouette are among
the most frequently used.
In the following sections we will go into the details and characteristics of the 3
main groups of ML techniques.

Supervised Learning

Supervised Learning algorithms build a model starting from a set of labelled
training data, so that through the iterative optimization of an objective function
the algorithm can learn to correctly predict the label associated to new inputs.
The goal of a supervised learning algorithm is to be able to correctly determine
the labels of unseen data, which could be achieved by reasonably generalizing the
model during the training phase.
Many different supervised learning algorithms exist, and there does not exist a
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single learning method that performs better on all supervised learning problems (No
free lunch theorem), which means the choice of the algorithm must be performed
on a single case basis, by considering issues such as the bias-variance tradeoff
(flexibility = low bias, high variance -> underfitting).

Unsupervised Learning

Unsupervised Learning is a type of task used to find structures in unlabelled data,
such as clustering, anomaly detection, dimensionality reduction. Unsupervised
learning algorithms try to identify patterns in the data and do not rely on a
comparison with a ground truth, like in the case of supervised learning. This is
particularly helpful in many real case scenarios in which data labelling is often
an extremely time-intensive or simply non-feasible task, while also giving greater
freedom by trying to identify previously undetected patterns.
These techniques often require a much greater amount of training data and converge
slowly to acceptable performance. Unsupervised learning algorithms are also poten-
tially more susceptible to anomalies in the data that might be considered irrelevant
or categorized as erroneous by a human, but are assigned undue importance by the
algorithms themselves.

Semi-supervised Learning

This category of algorithms falls in between the previous two. The data used with
these algorithms is only partially labelled: the small portion of data provided with
a label, when used in conjunction with unlabelled data, allows to greatly improve
the learning accuracy of the models.

Reinforcement Learning

Reinforcement learning is an area of ML concerned with how agents should take
actions in an environment so as to maximize some cumulative reward. This field is
particularly studied in many other disciplines, such as game theory, control theory,
operations research, information theory, simulation-based optimization, multi-agent
systems, swarm intelligence, statistics and genetic algorithms. In ML, the environ-
ment is typically represented as a Markov decision process. Many reinforcement
learning algorithms use dynamic programming techniques. Reinforcement learning
algorithms are often used in scenarios such as autonomous driving or training an
AI to play a game against a human opponent.
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2.3 The Perceptron
In order to properly introduce Neural Networks (NNs), which are the model this
thesis will focus on, it is necessary to explain the role of the perceptron.

The perceptron is a supervised learning algorithm used for binary classification:
it is a linear classifier that performs predictions based on a linear predictor function
by combining a set of weights with a feature vector. This algorithm was invented
by Frank Rosenblatt in 1958[12] and it was first intended to be a physical machine
rather than a program, to be used for image recognition with 400 photocells
randomly connected to the neurons with their weights encoded in potentiometers.

Figure 2.12: MARK I perceptron schema [13]

The perceptron is built around the simplified model of a biological neuron and,
in the context of neural networks, plays the role of artificial neuron. It is also known
as single-layer perceptron (SLP) to differentiate it from the multi-layer perceptron
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(MLP) which, contrary to what it may seem, is a general term indicating a more
complex neural network comprising 3 or more layers of neurons. The single-layer
perceptron can be considered as the simplest example of feedforward neural network.

Figure 2.13: Comparison between a biological neuron and the perceptron [14]

Although the perceptron provided initial promising results, it was promptly
clear that it could not be trained to recognise many classes of patterns. This caused
the research in the field to stagnate for many years, before it was recognised that a
MLP had greater capabilities.
During their training phase, perceptrons will gradually learn a linear separation in
the data: if the data is not linearly separable, the training task will fail and the
perceptron will not converge to a solution where all data is correctly classified. For
a classification task with some step activation function, a single node will have a
single line dividing the data points forming the patterns. More nodes can create
more dividing lines, but those lines must somehow be combined to form more
complex classifications. A second layer of perceptrons, or even linear nodes, are
sufficient to solve a lot of otherwise non-separable problems.

2.3.1 Learning and convergence

The objective of the perceptron algorithm is to learn what is called a threshold
function, which maps the input data x to an output value f(x) = ϕ(éw,xê + b)
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such that:

f(x) =

1 if éw,xê + b > 0,
0 otherwise

(2.3)

where éw,xê indicates the inner product between the weights of the perceptron
w and input data x, b is the bias, which shifts the decision boundary from the
origin, without altering its orientation, and ϕ is the activation function, i.e. the
Heaviside step function H(x). The bias b effectively represents the threshold which
determines the activation of the artificial neuron.
The value of f(x), either 0 or 1, is used to classify the data in a binary classification
problem.
In the case of single-layer perceptron, the learning algorithm operates according to
the following steps:

1. Initialize weights and bias, i.e. w(0) = 0, b(0) = 0

2. For each example i in the training dataset:

if yi[éx,wê + b] ≤ 0 then

w(t+ 1) = w(t) + ηxi, where η is the learning rate with η ∈ (0,1]
b(t+ 1) = b(t) + yi

define Y
Since the perceptron is a linear classifier, it will never converge to a state in

which all the input vectors are classified correctly if the training set is not linearly
separable, which means that the two classes of the data must be separable by means
of an (n-1)-dimensional hyperplane. Instead if the data is linearly separable, the
algorithm is guaranteed to converge in a number of steps that is O(R2/b2). define
R For this reason, if linear separability is not known a priori, a variant should
be used, where a small number of misclassified data is permitted to guarantee
convergence.

What follows is an example of the updates that progressively determine the
position and rotation of the decision boundary.

It is important to be aware that given two separable classes, there exist infinitely
many boundaries dividing them, and the perceptron algorithm is not aware of
which decision boundary represents the best one. This problem was later solved
by the linear Support Vector Machine (linear SVM) model in which the algorithm
chooses the decision boundary that maximizes the margin (i.e., distance) between
the two classes and the boundary itself.
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Figure 2.14: Progression of the definition of a decision boundary [15]

2.4 Neural Networks
Neural networks (NNs), also known as artificial neural networks (ANNs), are
complex computing models which are based on the original idea of the perceptron
and consist of a collection of connected units, called nodes or artificial neurons,
which loosely simulate the role of neurons in a biological brain. There exist two
main categories of ANNs, based on the differences in the connections between nodes
of different layers: feedforward neural networks (FFNNs), in which connections
and neurons effectively form a directed acyclic graph and nodes of a layers are
only connected to nodes of the next layer; and recurrent neural networks (RNNs),
in which connections between nodes of the same or previous layers are allowed,
creating loops that can feed information back into the network. In the context of
Neural Networks, data is treated as tensors, which are practically equivalent to
n-dimensional arrays.

2.4.1 Learning
During the learning process the network adapts to better handle a given tasks by
learning from samples. Learning involves adjusting the weights and biases of the
network to improve the accuracy of the produced results: this is done by minimizing
errors, until the network is not able to usefully improve in reducing the error rate.
This parameters updating procedure happens by first defining a cost function that
is evaluated periodically during learning: as long as its output continues to decline,
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Figure 2.15: Schema of a FFNN [16] Figure 2.16: Schema of a RNN [16]

the learning process continues. The cost is frequently defined as a statistic, and
some examples include the Mean Squared Error (MSE), Binary Cross Entropy
(BCE), etc. The choice of the loss function needs to happen on a per case basis,
according to the task that has to be learned.
The MSE is a measure of the difference between two quantities, which in a learning
scenario are the predicted values and the ground truth.

MSEi = 1
n

nØ
i=1

(yi − f(xi;W ))2 (2.4)

where f(xi;W ) represents the values predicted by the network with weights W
taking as input data xi, and yi indicates the ground truth, or label.

The Cross Entropy loss function, also called Binary Cross Entropy in binary
classification tasks, is a measure of the difference between two distributions.

BCEi = − 1
n

nØ
i=1

yi log (f(xi;W ) + (1 − yi) log (1 − f(xi;W ))) (2.5)

Once a loss function L is defined, the goal of the learning task is to find the set
of parameters, weights W ∗ and biases b∗, that minimize the function:

W ∗ = arg min
W

L(W ) (2.6)

A common method for minimizing the loss function is called gradient descent.
To better understand the gradient descent algorithm, consider the following hypo-
thetical representation of a simple loss function L(w0, w1), where each pair (w0, w1)
is associated to a value of the loss function.

The idea behind the algorithm is that, starting from any point in the loss
function space, one could follow the direction that allows to locally minimizes
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Figure 2.17: Example of gradient descent [17]

the function L(w0, w1) by following the direction of the most rapidly decreasing
gradient −∇L. While gradient descent is a fairly basic optimization algorithm, in
principle it operates similarly to other more complex ones. The gradient descent
algorithm is not particularly efficient in avoiding local minima, which would cause
the learning process to stagnate and stop improving the model: for this reason
there exist other methods that take into account the possibility of getting stuck in
these local minima, such as Stochastic Gradiend Descent, Adam, AdaGrad.
Once an optimization algorithm is defined, the gradient is computed by means of
what’s commonly called backpropagation (BP). The BP algorithm computes the
gradient as a function of the network’s weights via the chain rule. The chain rule
is a formula that expresses the derivative of the composition of two differentiable
functions in terms of the derivatives of those two functions. Consider a simple
Multi Layer Perceptron with a single hidden layer h, having as input x and output
ŷ, with weights w0 between the input layer x and hidden layer h, and weights w1
between the hidden layer h and the output layer ŷ. Since improving the network is
effectively achieved by updating the weights, it’s necessary to compute the gradient
with respect to each set of weights. While the gradient with respect to w1 can be
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directly calculated as:

∂L
∂w1

= ∂L
∂ŷ

∂ŷ

∂w1
(2.7)

the inner weights can not. This is where the chain rule comes into play, as it
allows us to express the gradient in terms of w0 as:

∂L
∂w0

= ∂L
∂ŷ

∂ŷ

∂w0
= ∂L
∂ŷ

∂ŷ

∂h

∂h

w0
(2.8)

In this way, it’s possible to calculate all gradients, from output to input layers.
An important hyperparameter used in the learning phase is the learning rate. The
learning rate defines the size of the steps that the model takes to adjust for errors.
Taking as an example the previously explained gradient descent, one could think
of the learning rate as the distance between two updates of the loss function.
A high learning rate shortens the training time, but with lower ultimate accuracy,
while a lower learning rate increases the time required for training the network,
but with the potential for greater accuracy. It is common to use schedulers which
adaptively change the value of the learning rate to start the learning process by
correcting with large steps, and systematically decreasing it to improve accuracy
once the model has reached a stagnating accuracy. Some learning rate schedulers
also employ the concept of momentum: it’s an hyperparameter that allows to
balance the weight update by considering both the current and previous gradient,
in order to maintain a dependence from previous updates. A momentum close to
0 neglects the previous gradient, while a value close to 1 emphasizes the last change.

2.4.2 Deep Learning and Deep Neural Networks
Deep Learning (DL) is a class of ML methods based on neural network models.
These learning methods can be supervised, semi-supervised or unsupervised. The
term Deep Learning generally refers to the use of multiple layers in the neural
network: research quickly showed that linear perceptrons were not suitable to be
used in universal classification task, but a network with non-polynomial activation
functions with multiple hidden layers between the input and output ones was. This
led to an increase in the depth (i.e., number of hidden layers) of the networks, also
thanks to the extreme increase in computational power achieved in recent years.
Deep Learning models are nowadays extensively used in fields including computer
vision, speech recognition, natural language processing, bioinformatics, medical
image analysis, board game AI, where they have produced results comparable to
and in some cases surpassing human expert performance, as in the case of AlphaGo,
Google’s AI trained to play the game of Go.
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2.5 Convolutional Neural Networks
Convolutional neural networks (CNNs) are a specialized type of feedforward NN
usually employed in computer vision tasks (i.e., image classification, image seg-
mentation), recommender systems and natural language processing to name a few.
CNNs took their inspiration from biological processes as the connectivity pattern
between neurons resembles the organization of neurons of the animal visual cortex.
CNNs use relatively little pre-processing compared to other image classification
algorithms. This means that the network learns to optimize the filters for feature
extraction through automated learning: this independence from prior knowledge
and redundancy of human intervention are among the most important advantages
of these models.
In the following sections we will focus on the principal components of CNN archi-
tectures.

2.5.1 Convolutional Layer
Convolutional layers are the fundamental building block of Convolutional Neural
Networks. These layers usually take as input a 4-dimensional tensor (number of
inputs, height, width, channels), apply a convolution operation by means of a filter
and pass their result to the next layer. The filter, whose size is parametrically
specified, slides over the entirety of the input tensor with a given stride (i.e., step
size when moving the filter), performing a convolution operation on the portion of
the input tensor covered by the filter.
The convolution operation between two matrices A,B of the same size can be
defined as qm,n

i=1,j=1 Ai,jBi,j. This operation generates a feature map, also called
activation map, whose size can be derived from the convolutional layer parameters
and the input tensor size: the number of output tensors will be the same as the
number of input tensors, the output width will be determined by the filter width,
the horizontal stride HS and eventual padding P as Wout = (Win+2P−Kwidth

HS
) + 1,

the output height will be determined similarly to the width with them being equal
in case of square input tensors, and the number of filters determines the depth, or
number of channels, of the activation map.

Although fully connected feedforward neural networks can be used to learn
features and classify data, they are generally impractical for larger inputs such as
high resolution images because they would require a very high number of neurons,
even in a shallow architecture, due to the large input size of images, where each
pixel is a relevant input feature. For example, a fully connected layer for a relatively
small-sized image of size 100 x 100 has 10,000 weights for each neuron in the second
layer. The convolution reduces the number of free parameters, allowing the network
to be deeper.
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Figure 2.18: Convolutional layer [18]

For example, regardless of image size, using a 5 x 5 filter, each with the same shared
weights, requires only 25 parameters to be learned. Using regularized weights over
fewer parameters avoids the vanishing gradients and exploding gradients problems
seen during backpropagation in traditional neural networks: when dealing with
deep architectures, the gradient can easily converge to 0 or explode to infinity.
Convolutional neural networks are also ideal for grid-like data such as images,
because spatial relations between separate features are taken into account during
convolution and/or pooling.

2.5.2 Activation Function
After a convolutional layer, usually a non-linear activation function is applied. A
common non-linear activation function is the Rectified Linear Unit (ReLU). This
activation function is a piece-wise activation function f(x) that brings to 0 negative
values, without varying positive ones.

f(x) =

0 if x < 0,
x if x ≥ 0

(2.9)

One of the biggest downsides of the ReLU activation function is the risk of
neurons "dying": in case of exclusively negative values, they all are set to 0 rendering
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the neuron incapable of propagating information. To solve this issue it’s possible
to use a variant, the leaky ReLU which assigns a small, negative value to negative
values instead of setting them to 0. For example:

f(x) =

0.01x if x < 0,
x if x ≥ 0

(2.10)

Figure 2.19: ReLU Figure 2.20: Leaky ReLU

Other common activation functions are the Sigmoid σ(x) = (1 + e−x)−1 and the
hyperbolic tangent tanh(x).

Figure 2.21: Sigmoid Figure 2.22: Hyperbolic tangent
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2.5.3 Pooling Layer

Pooling layers are used to reduce the dimensionality of the data by combining a
number of output neurons of a layer into a single neuron to be passed to the next
layer. Pooling could be either local, working on a sub-area of the tensor, or global
when working on its entirety. Similarly to how the filter slides over the input tensor,
during pooling a square matrix slides over a tensor to reduce its covered area to a
single value. The two most common pooling methods are Max Pooling and Average
Pooling.
In Max Pooling, only the maximum value inside the pooling window is conserved.
This is done to preserve the most relevant information, discarding what should be
less important.
In Average Pooling, the average of the values inside the pooling window is preserved,
to keep bits of information of the whole input tensor.

Figure 2.23: Examples of Max and Average Pooling [19]

2.5.4 Batch Normalization Layer

Most neural networks perform best when data is normalized. The problem with
CNNs is that after being passed through a convolutional or fully connected layer,
tensors are no longer normalized, causing the learning process to slow down and
negatively influence the accuracy of the model.
To mitigate this issue, Batch Normalization layers are often used in most NN
architectures, re-centering and re-scaling tensors.
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2.5.5 Fully Connected Layer
Similarly to traditional multi-layer perceptrons, fully connected layers connect
every neuron of a layer to every neuron of another layer. These layers are usually
placed just before the output nodes of models used for image classification, as
they are effectively used to learn a (usually) non-linear function in the feature
space described by the previously placed convolutional layers as to divide the data
according to the extracted features.

Figure 2.24: Example of a Convolutional Neural Network architecture for image
classification [20]

2.6 Residual Neural Networks
Residual Neural Networks (ResNets) are another important class of feed forward
neural networks. ResNets are inspired by constructs known from pyramidal cells in
the cerebral cortex: they utilizing skip connections, or shortcuts, to jump over some
layers in the architecture. Typical ResNet models are implemented with double or
triple layer skips, usually over non-linear activation layers and batch normalization.
The two main reasons to add skip connections are to avoid the problem of vanishing
gradients, or to mitigate the Degradation problem. The latter indicates an issue
that manifests when adding more layers to a suitably deep model, leading to higher
training error. During training, the weights adapt to mute the upstream layer and
amplify the previously-skipped layer. In the simplest case, only the weights for the
adjacent layer’s connection are adapted, with no explicit weights for the upstream
layer. This works best when a single nonlinear layer is stepped over, or when the
intermediate layers are all linear.

Skipping speeds learning by reducing the impact of vanishing gradients, as there
are fewer layers to propagate through. The network then gradually restores the
skipped layers as it learns the feature space.
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Figure 2.25: Examples of skip connections in a ResNet architecture [21]

2.7 Generative Adversarial Networks

Generative Adversarial Networks (GANs) is an architecture first proposed by Good-
fellow et al.[22] in 2014. They are a framework in which two neural networks,
a generator G and a discriminator D, are in competition with each other in a
zero-sum game.
The generative network G creates candidates which are to be evaluated from the
discriminator D, and the training process continues until the game between the
two networks reaches an equilibrium in which the discriminative network D is no
longer able to accurately distinguish between samples from the original dataset
and samples created by the generator.
Usually, G learns to map from what is known as a latent space to a data distribution
of interest, which should be similar to that of the training set; while D distinguishes
candidates produced by the generator from the true data distribution.
The generative network’s training objective is fool the network D by producing
candidates that the network D thinks belong to the original dataset, as to increase
the error rate of the discriminator.

The discriminator needs to be first trained to be presented with samples from
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Figure 2.26: Schema of the learning process of a GAN architecture [23]

the training dataset, until it reaches an acceptable accuracy. The generator trains
based on whether it succeeds in fooling the discriminator. Typically the generator
is provided with randomized input that is sampled from a predefined latent space
(e.g. a multivariate normal distribution). Subsequently, candidates synthesized by
G are evaluated by the network D. The two networks are independently trained
via backpropagation so that the generator is able to produce better samples, while
the discriminator becomes more skilled at recognizing synthetic samples.
When used for image generation tasks, the generator is usually a deconvolutional
neural network, while the discriminator is a convolutional neural network. GAN
architectures have increasingly been the focus of various research in the computer
vision field, as they have demonstrated to be particularly suitable in tasks that
require the generation of realistic looking images.

2.7.1 The generator
At the beginning of the training process, the generative network G takes as input
fixed-length random vectors casually sampled from a Gaussian distribution that
the network uses to generate a sample in the domain of the dataset to imitate,
also called destination domain. After a successful training procedure, the points of
the multi-dimensional vector space should match points in the destination domain,
effectively representing a compressed representation of the dataset’s probability
distribution. As previously stated, this space is called latent space, which is a space
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composed by latent variables.
Latent variables represent important non-directly observable variables in a domain.
Generators in a GAN architecture can take advantage of a latent space by sampling
from it to generate sample which resemble data coming from a distribution of
choice. After having trained the network in an adversarial fashion, it can be used to
generate new samples that, even if close to the data distribution used for training,
are not copies but original products of the network.

2.7.2 The discriminator
The discriminative network D simply takes as input both samples from the original
dataset and newly generated data coming from the generator G. Its role is to
determine whether a data point comes from a distribution or the other, usually
labelled 0 and 1, in a binary classification setting. Once the training process is
completed, the discriminator network does not serve additional purposes in the
generation process of the network G, but it still can be used in other tasks that
require extracting features of the dataset used for training, or of the new generated
data.

2.7.3 Training a GAN architecture
The two networks are trained simultaneously in a supervised setting: the generator
creates samples and improves its generative process by comparing the products
to data coming from the dataset of choice, while the discriminator classifies the
data coming from the two sources and trains to improve its classification of the
real samples. Generator and discriminator are effectively in competition with each
other: while the first aims at deceiving the discriminator, the latter continually
trains to recognize when it’s being deceived by the generator. The competition
between the two can be described as a zero sum-game.
In game theory, a zero-sum game is a mathematical representation of a situation
in which the advantage that a player gains is lost by the other. In a GAN
architecture, the two networks are the players, and the zero-sum means that when
the discriminator successfully identifies the class to which a sample belongs, it is
rewarded by maintaining its parameters, while the generator is penalized with an
update of its weights, and vice versa. The objective of the whole architecture is to
reach an equilibrium state in which the generator consistently creates convincing
samples, and the discriminator is not able to accurately distinguish the two classes.
In particular, given a latent space z with an a priori distribution pz(z):

• G can be described as a differentiable function G(z; Θg) that produces data
according to a distribution pg, where ΘG represents the model’s parameters.

31



Relevant Theory

• D can be described as a differentiable function D(z; ΘD) that produces as
output the probability pdata that input data x belongs to the training dataset,
where ΘD are the model’s parameters.

The goal of G is to imitate as close as possible pdata, so that D struggles with
distinguishing pG from pdata. The learning procedure of a classic, or vanilla, GAN
consists of optimizing the following min-max problem:

min
G

max
D

Ex∼pdata(x) [logD(x)] + Ex∼pz(z) [log (1 −D(G(z)))] (2.11)

Training is effectively achieved by updating the two networks’ weights via
backpropagation, in a similar fashion to what has been described previously.
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Chapter 3

State of the Art analysis

In this chapter we will investigate the current State of the Art (SotA) solutions to
the Super-Resolution problem, focusing on neural network-based methods which
currently offer the best performance thanks to their computational power and
complexity. As previously mentioned, Deep Learning-based solutions are the
main topics of research in the super resolution field. Deep Learning architectures
allow to create extremely complex models that, through a learning procedure, are
able to produce far better results compared to the traditional interpolation-based
techniques showcased in the previous chapter.
The State of the Art models showcased in this chapter are all Deep Learning-based
models,

3.1 Deep Convolutional Neural Network-based
Super-Resolution methods

3.1.1 Super Resolution Convolutional Neural Network
The Super Resolution Convolutional Neural Network (SRCNN) is a fully convolu-
tional model and it’s one of the first important milestones in Deep Learning applied
to Super Resolution problems introduced by Dong et al. [24].

The idea behind this model is based on the intuition that prior SotA, consisting
mostly of methods adopting sparse-coding-based strategies, have a pipeline that
loosely resembles a deep CNN architecture.

Since only a selected number of steps of previous methods were studied for
optimization and these methods were rarely optimized as a unified pipeline, with
the SRCNN model the aim was to consolidate the learning process by developing
a CNN able to generate an end-to-end mapping between low-resolution and high-
resolution images while proposing a simple yet accurate model able to compete
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with already existing methods with little to no pre/post processing needed. The
SRCNN network consists of 3 layers, whose main roles are patch extraction and
representation, non-linear mapping and reconstruction.

Given a low-resolution image, it is first upscaled using bicubic interpolation.
The first layer is responsible for extracting overlapping patches from the image and
representing each patch as a high-dimensional vector that comprises a set of feature
maps. Each of these high dimensional vectors is further mapped into another high
dimensional vector by the second layer. The new vectors comprise another set
of feature maps, which conceptually represents the patches of a high-resolution
image. The final layer, responsible for the reconstruction, aggregates the previously
generated high-resolution patch representations to create a final high resolution
image which is expected to be the ground truth image.

The authors show that thanks to its lightweight structure the SRCNN model
demonstrates state-of-the-art restoration quality, is able to achieve fast speed for
practical online usage, functions on three channels simultaneously and performs
better than the SotA methods chose for comparison.

Figure 3.1: Simplified overview of the SRCNN architecture [24]

3.1.2 Enhanced Deep Super Resolution network
The Enhanced Deep Super Resolution (EDSR) network is a model proposed by
Lim et al.[25] to improve on the SRResNet architecture developed by Ledig et
al.[26]. While the SRResNet model was proposed as a part of the SRGAN model,
again proposed in the same paper by Ledig et al.[26], where it performs the role of
generative network.

The idea of using deeper networks, employing skip connections and residual
blocks stems from prior studies showing that deeper network architectures can
lead to a substantial increase in accuracy as the depth allows the model to create
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Figure 3.2: Overview of the SRResNet architecture [26]

mappings of high complexity, albeit at the cost of substantial increase in the
training difficulty. To alleviate the difficulty in training of such deep networks,
batch- normalization is often used to counteract the internal co-variate shift. Deeper
network architectures had also been shown to increase performance for Single
Image Super Resolution tasks. Skip connections relieve the network architecture
of modeling the identity mapping that is trivial in nature, however, potentially
non-trivial to represent with convolutional kernels. In the context of SISR it was
also shown that learning upscaling filters is beneficial in terms of accuracy and
speed. This is an improvement over the SRCNN model where bicubic interpolation
is employed to upscale the LR observation before feeding the image to the CNN.

The EDSR architecture aims to improve the already well-performing SRResNet
by simplifying the architecture removing unnecessary layers and investigates on
the idea of scale-independent training, by analyzing the impact of transfer learning
between models used for different SR scales and also proposing a multi-scale variant
of the architecture.

Figure 3.3: Simplified overview of the EDSR architecture [25]

Batch normalization layers normalize the features, getting rid of range flexibility
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Figure 3.4: Difference between SRResNet and EDSR residual blocks [25]

from networks. By removing them, Lim et al.[25] experimentally show that they
are able increases the performance substantially, saving ≈ 40% of memory usage
during training, compared to SRResNet.

3.2 Generative Adversarial Network-based Super-
Resolution methods

3.2.1 Super Resolution Generative Adversarial Network
In the SRResNet paper, Ledig et al. [26] propose a GAN-based approach with
the Super Resolution Generative Adversarial Network (SRGAN). They define a
classical GAN architecture using the SRResNet model as the generator GθG

and
define a discriminator DθD

to solve the min-max adversarial problem:

min
θG

max
θD

EIHR∼ptrain(IHR)

è
logDθD

(IHR)
é

+EILR∼pG(ILR)

è
log

1
1 −DθD

(GθG
(ILR))

2é
(3.1)

The general idea is to train a generative model G with the goal of fooling a
differentiable discriminator D that is trained to distinguish super resolved images
from real images. With this approach, the generator can learn to create images
that are highly similar to real ones, thus difficult to classify by D. This encourages
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perceptually superior solutions residing in the subspace of natural images, in
contrast to solutions obtained by minimizing pixel-wise error measurements, such
as the MSE. The generator architecture can be seen in fig. 3.2 To discriminate real
HR images from generated SR samples we train a discriminator network, which
can be seen in fig. 3.5

Figure 3.5: SRGAN discriminator

The SRGAN architecture introduces a perceptual loss function, critical to the
performance of the generator, formulated as the weighted sum of two losses:

• The content loss which, instead of the classical pixel-wise mean square error
(MSE) loss, is a VGG loss based on the activation layers of a pretrained
VGG-19 network.

• The adversarial loss, to drive the network towards a more realistic generation
of images.

3.2.2 Enhanced Super Resolution Generative Adversarial
Network

The Enhanced Super Resolution Generative Adversarial Network (ESRGAN) by
Wang et al. [27] proposes a set of improvements to the already aforementioned
SRGAN model, by proposing some minor changes to the basic blocks of the SRGAN
generator, discarding the classical discriminator in favor of a relativistic one, and
by introducing a new metric, the perceptual index, which evaluates the perceived
quality of the image rather than relying solely on distortion measures such as PSNR
and SSIM.

The modifications to the generator network G include:

• the removal of all batch normalization layers, which has proven to increase
performance and reduce computational complexity in different PSNR-oriented
tasks, such as super resolution

the replacement of the SRResNet basic block with the Residual-in-residual Dense
Block (RRDB), which combines multi-level residual and dense connections. More
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Figure 3.6: Simplified overview of ESRGAN’s generator architecture [27]

layers and connections were added to create a deeper network, capable of boosting
performance.

Figure 3.7: Details of the RRDBs of the ESRGAN model [27]

In addition to a modified generator, Wang et al. [27] propose a discriminator
based on the Relativistic GAN architecture [28]. While the standard SRGAN
discriminator D estimates the probability that an image is real, the proposed
Relativistic discriminator DRa tries to predict the probability that an image xr is
relatively more realistic than a fake image xf . The relativistic discriminator loss is
defined as:

LRaD = −Exr [logDRa(xr, xf )] − Exf
[log (1 −DRa(xf , xr))] (3.2)

while the generator’s adversarial loss is symmetrically defined as:

LRaG = −Exr [log (1 −DRa(xr, xf ))] − Exf
[logDRa(xf , xr)] (3.3)

where xf = G(xlr), DRa(x) = σ(C(xr) −Exf
[C(xf )])), with σ being the sigmoid

function, C(x) the non-transformed discriminator output and Exf [·] representing
the average of all fake data in the mini batch. In this way the generator benefits
from both gradients: one from generated data and the other from real data. Wang
et al. [27] also propose a more effective perceptual loss by constraining on features
before activation rather than after as in the SRGAN model. Thus, the total
generator loss appears in the form of:

LG = Lpercep + λLRaG + ηL1 (3.4)
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where L1 is the content loss evaluated on the 1-norm distance between a super
resolved image and its ground truth, and λ, η are coefficients used to balance the
different terms.

Here follows a comparison between the four mentioned architectures and the
traditional bicubic interpolation method.

Figure 3.8: Comparison of SR images produced via different techniques [27]
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Chapter 4

Super-Resolution techniques
applied to satellite images

The contents of this chapter will go over the details of this particular thesis project,
from the motivations behind the dataset choice and its creation, to the models
analyzed for this specific task and a new proposed architecture, based on the
generative adversarial approach presented by Wang et al.[27] with their ESRGAN
model.

4.1 The dataset
The choice of the satellite imagery dataset for this specific thesis work was performed
considering the possible implications of successfully applying super-resolution
techniques to this domain of images. Many algorithms for solving important real-
world issues, such as environmental monitoring, natural disaster prediction and
land development to name a few, are based on the analysis of satellite images.
Most of these algorithms could benefit from using high resolution satellite imagery,
which is usually not open-source nor publicly available due to the high costs involved
with both launching and maintaining in orbit satellites that are able to capture
such images.
While many private companies, such as Maxar and Planet, can currently provide
extremely high resolution data which go up to 46cm per pixel and 50cm per pixel
respectively, the Sentinel project is developed and operated by a public organization,
the European Space Agency.
The Sentinel-2 mission in particular systematically captures optical imagery over
land and coastal waters, thanks to its constellation of two satellites: Sentinel-2A and
Sentinel-2B, while a third one, Sentinel-2C is currently being tested in preparation
for its launch in 2024. The key characteristics of the Sentinel-2 mission are the
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following:

• Systematic global coverage of land surfaces from 56°S to 84°N

• 10-day revisit period under the same viewing angles. At high latitudes, some
regions will be observed twice or more every 10 days, but with different viewing
angles.

• Spatial resolution of 10m per pixel, 20m per pixel and 60m per pixel. While
these resolutions are significantly lower than private competitors, they are still
extremely valid in many use cases.

• Free and open data policy

Even at their highest resolution of 10m per pixel, it is quite clear that upscaling
images gathered from the Sentinel-2 mission to ground resolutions comparable to
the ones offered by the aforementioned private companies poses a non-negligible
challenge: most super resolution state of the art models can comfortably operate on
a 4x upscaling factor, seldomly analyzing 8x upscaling tasks and rarely exploring
the challenges implied with upscaling by a factor of 16, rendering a 20x scaling
from the 10m per pixel ground resolution of the Sentinel data to levels comparable
to the 46cm per pixel a very open problem. The aim of this thesis project is to
propose an architecture capable of producing super resolved images, upscaled by
a factor of up to 8x, which are competitive with existing state of the art models.
Training super resolution models in a supervised fashion still implies the necessity
of a dataset which includes a high resolution ground truth, up to 1.25m per pixel
given the 8x upscaling goal.

4.1.1 Analysis of available services
Since the Sentinel-2 data reaches a maximum ground resolution of 10m per pixel,
it is quite clear that we need to look elsewhere in order to obtain a dataset which
can be used for the supervised training of the model. Several options have been
considered for gathering high resolution satellite imagery, specifically Maxar, Planet,
Google Maps and Bing Maps from Microsoft.
While all of these providers offer a fairly diversified dataset, both in terms of
quality and projections, Maxar and Planet are especially restrictive in terms of
freely accessible material they provide, as they only offers a very limited number of
extremely high resolution samples of business grade solutions they offer. Because
of this both services have been deemed unnecessarily expensive and excessively
restrictive in their free tier form for the scope of this work.
Google Maps and Bing Maps offer fairly similar services, both in terms of quality
and accessibility. Both providers expose APIs that allow users to collect both
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maps and satellite imagery via HTTPS requests, by specifying different parameters
for tailoring the request to one’s particular needs. Google’s service provides on-
demand API access, which is free for mobile applications, and is priced at 2$ per
1000 requests otherwise. Bing Maps on the other hand offers, as specified in the
Bing Maps API Terms of Use [29], a free API tier for educational and non-profit
applications which use up to 50,000 billable transactions within a 24-hour period.
Given the similarities between Google’s and Microsoft’s services and the fairly
simple needs of this project, Bing Maps ended up being the provider of choice
mostly because of the free tier offer, as the dataset of this project is not intended
for commercial use.

4.1.2 Dataset creation
Since oceans cover approximately 70% of Earth’s surface, randomly choosing the
coordinates to gather satellite imagery may result in a significant portion of the
collected images to include water only. These images would lack important features
and would hinder the training process. For this reason, the coordinates used to
generate this dataset have been randomly picked from the World Cities Database,
offered by SimpleMaps.com. In its basic format it allows commercial use under a
Creative Commons Attribution 4.0, providing a list of about 41 thousand locations,
mostly prominent cities such as capitals and large cities, in CSV format.
The dataset contains a considerable number of features, most important of which:

• city: contains the name of the city as a Unicode string. Also available as an
ASCII string under the city_ascii field.

• lat: indicates the latitude of the location.

• lng: indicates the longitude of the location.

Other fields include information about population and density, timezone, whether
the city is a capital or not, etc. For the scope of this project, the only relevant
information is the one contained in the former list. The whole dataset is composed
of 1000 images, 800 of which will belong to the training set, 100 will be used for
validation and the remaining 100 for testing. 1000 cities and relative coordinates
are chosen at random from the World Cities Dataset, and satellite images of the
selected locations are collected via API calls.
This is the format of the HTTPS request sent to the Bing Maps API service:

http :// dev. virtualearth .net/REST/v1/ Imagery /Map/Aerial/
{lat},{lon}/{zoom}? mapSize ={width},{height}& fmt=png&key ={
api_key}
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where lat, lon indicate the latitude and longitude respectively and are used to
determine the center of the captured image, zoom is an integer that indicates the
zoom level, which determines the ground resolution, width and height indicate
the width and height of the requested image in pixels, png indicates the requested
image format, and api_key is the API key provided by Bing Maps to successfully
perform API calls. These API calls have been performed using the requests
Python package. The ground resolution is determined as:

resolution = 156543.04 · cos(lat)
2zoom (4.1)

Since we know that Sentinel-2 images are captured at a ground resolution of
10m/pixel, we can derive the zoom level needed to acquire images from Bing Maps
at the desired resolution, as to create different ground-resolution versions of the
same dataset
It is quite clear from eq. 4.1 that increasing the zoom level by 1 halves the
ground resolution, thus increasing the level of detail, while decreasing it by 1
doubles it, since lower ground resolutions result in higher-definition images. Several
versions of the dataset have been created, as to accommodate for different upscaling
tasks: the ground truth dataset is composed by the highest resolution images,
at ≈ 1.25m/pixel, while the low resolution counterpart depends on the desired
upscaling factor. In total, 5 different versions of the dataset were created:

• a ≈ 1.25m/pixel dataset, which will be used as ground truth for all training
tasks.

• a ≈ 2.5m/pixel dataset, used as low resolution images for training the models
on 2x upscaling.

• a ≈ 5m/pixel dataset, used as low resolution images for training the models
on 4x upscaling.

• a ≈ 10m/pixel dataset, used as low resolution images for training the models
on 8x upscaling.

Low resolution images formally constitute the training datasets, while the
highest-resolution ground truth dataset is used to train the models in a supervised
fashion, where super-resolved images are the predictions of the model and the
ground truth is used for comparison to train the neural-network based models.
The low resolution datasets could also have been generated by downscaling the
original image. This methodology has been considered and tested, but since lower
resolution images were natively available from Bing Maps and the quality of the
downscaled images largely depends on the algorithm used for downscaling and the
types of images of choice, it was rejected for this use case.
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Figure 4.1: ≈ 1.25m/pixel sample Figure 4.2: ≈ 2.5m/pixel sample

Figure 4.3: ≈ 5m/pixel sample Figure 4.4: ≈ 10m/pixel sample

As it can be seen from the samples from fig.4.1 to fig.4.4, all versions span over
the same spatial area, differing only in resolution. While all images apart from the
smallest in size contain a watermark from Bing Maps for copyright reasons, this
should not interfere in the processing phases as only patches of different sizes will
be used as training data. The patches will be taken at random each time an image
is passed to the neural network, and random rotations and flips are also applied
with a 50% chance in order to perform some data augmentation. This is done when
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training every model so that the training dataset is enlarged by a factor of 100, so
that it will effectively contain 80,000 fairly different images.

Georeferencing

When performing API calls to obtain images from Bing Maps, an additional
mmd argument can be set to 1 in order to retrieve the metadata of the API call,
which include, among others, information about the requested image in terms of
pixel size and, most importantly, bounding box. The bounding box is a list of
4 coordinates, which indicate the left-bottom-right-top coordinates of the image.
While in a simple super resolution task georeferencing the images is not relevant, it
may still be needed for other previously mentioned algorithms that work satellite
imagery. Georeferencing allows to correctly position and overlay satellite images
in a GIS (Geographic Information System). To correctly do so, extra data is
needed to determine the coordinate system used to map the pixels to geographic
coordinates. The most common format for georeferenced images is GeoTIFF, which
is a public domain metadata standard which allows georeferencing information
to be embedded within a TIFF file. The additional information can include
map projection, coordinate reference systems (CRS), and everything necessary to
establish the exact spatial reference for the image. A widely used CRS is the WGS
(World Geodetic System), and its latest revision (WGS84, proposed by the United
States National Geospatial-Intelligence Agency in 1984 and last revised in 2014) is
use by the Global Positioning System (GPS).

Test data from Sentinel-2

Since the objective of this project is to analyze and propose methods for successfully
upscaling Sentinel-2 images, data from this satellite has been used for building the
test portion of our dataset. Test data should not be similar to training or validation
data, as to accurately and realistically measure the goodness of the models in a
scenario which has to be as close as possible to a real use case.

As it can be seen from fig.4.5, images collected from the Sentinel-2 satellite are
very different from the ones collected via the Bing Maps service. The main difference
comes from the physical sensors used for capturing the images, which results in
visually different images while maintaining the characteristic features of satellite
imagery. While ESA does provide free access to Sentinel data, Sentinel-2 images
have been collected via the SentinelHub platform by Sinergise, which exposes a
set of APIs that allow for requesting satellite data according to ones specific needs
and exact criteria. Sentinel Hub is an engine for processing of petabytes of satellite
data. It makes Sentinel, Landsat, and other Earth observation imagery easily
accessible for browsing, visualization and analysis. Apart from offering commercial
grade features for data analytics, SentinelHub provides free plans and free trials

46



4.1 – The dataset

Figure 4.5: Sentinel ≈ 10m/pixel sample

which can be used to use the APIs for non-commercial uses. SentinelHub can
be used via the homonym Python package which allows to directly configure the
APIs and to easily request satellite data. After having configured the package with
SentinelHub’s client ID and client secret, the SentinelHubRequest[30] class can
be used for requesting data, by specifying the data collection (Sentinel-2 in this
case), the time interval to consider when requesting the image, the mosaicking
order which can be mostRecent, leastRecent or leastCC (least cloud coverage: this
is the option used to avoid excessive cloud coverage which would render the image
unusable), output format (usually TIFF or PNG: the latter has been used for this
application), the desired bounding box and image size. Even when requesting
images with the least amount of cloud coverage, results are extremely inconsistent
depending on the location. To further avoid excessive cloud coverage, only images
having less than 5% of white pixel percentage have been kept. This has been done
by counting the number of pixels whose value in the R, G and B channels are all
above 250. A value of 255 on all 3 channels represents pure white, but since we are
dealing with real world data, pixels may not necessarily be exactly white, hence
the limit has been lowered to 250 to calculate the white pixels ratio.
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4.2 The models
In order to propose a contribution, two of the previously mentioned state of the art
models have been chosen for analysis in this specific use case: EDSR and ESRGAN.
These models have been chosen as they have been deemed as a fairly advanced basis
to study and propose improvements on. While research in the field is constantly
producing new results, such as ultra dense GANs[31] and siamese networks[32], the
former methods still represent a reliable and efficient solution in most use cases,
while allowing room for improvements and new proposals. These two models have
been tested starting from the code provided by Wang’s BasicSR library[33], which
provides a variety of tools for image and video restoration using PyTorch, such
as super-resolution, denoising, deblurring, JPEG artifacts removal. The proposed
architecture is built using the PyTorch framework, and the code is available on
GitHub1. All models have been trained in a distributed fashion on a shared server
hosted by LINKS Foundation, using as much hardware resources as possible at a
given time. Usually, this meant the model were trained using 2 NVIDIA GTX 1080
Ti GPUs. All experiments have been monitored via Weights and Biases(W&B)2,
which is a machine learning platform that provides tools for monitoring and running
machine learning related code. W&B offers lightweight tools to track experiments,
versions, evaluate model performance, and visualize results via a cloud hosted
dashboard, similar in concept to TensorFlow’s TensorBoard. W&B can be used via
its easy to configure python package, which allows to log the desired info during
an experiment by simply allowing a user to log into their profile, and linking an
experiment to a project.

4.2.1 Training the EDSR model
The EDSR model has been trained only for a 4x upscaling super resolution task to
preliminarily evaluate its performance. As it was not used for proposing improve-
ments on the architecture, the analysis of this model has been limited because of
time constraints. As high resolution ground truth, the Bing Maps dataset with
≈ 1.25m/pixel ground resolution was used, whereas the low resolution dataset was
composed again of Bing Maps images, but of ≈ 5m/pixel ground resolution. Train-
ing low resolution data is presented to the network as RGB patches of 32x32 pixel
in size, augmented with random horizontal and vertical flips, 90 degree rotations
and Gaussian blur to further degrade the images. All images are pre-processed
by subtracting the mean RGB value of the training dataset dataset. The model

1https://github.com/FilBr/Multi-scale-ESRGAN
2https://wandb.ai/
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is trained with ADAM optimizer, by setting β1 = 0.9, β2 = 0.999, and ε = 10−8.
The batch size is set at 10 per GPU. The learning rate is initialized as 10−4 and
halved at every 2 × 105 batch updates. The model is initialized with weights of
an EDSR model pretrained on the DIV2K dataset. Training is performed over
100,000 iterations, which along with the number of GPUs determines the number
of training epochs as:

iterations per epoch =
G
# training data × enlarge factor
batch size per GPU × # of GPUs

H
(4.2)

# of epochs =
G

total iterations
iterations per epoch

H
(4.3)

The model is trained using an L1 loss with mean reduction to evaluate the
quality of the image in the pixel space. The L1 loss is simply defined as:

ln = |xn − yn| (4.4)

and is equivalent to the mean absolute error. The training progress was tracked
every 100 iterations, while validation has been performed every 5000 iterations.
During validation, the 3 different evaluation metrics, PSNR, SSIM and NIQE are
calculated on the 100 validation images. The model is fairly light when it comes to
computational resources, requiring only ≈ 8 hours to train.

4.2.2 Training the ESRGAN model
Several experiments have been performed with the ESRGAN model, testing its
capabilities on the 2x, 4x, and 8x super resolution tasks. The generator model
has been maintained consistent through the experiments, varying only the second
upsampling layer’s scale factor to accommodate for the different tasks. The
discriminative network employed was the same as the one from the original ESRGAN
paper, a VGG-19 network for the binary classification of 128x128 pixel images.
Similarly to the procedure followed for training the EDSR model, the ≈ 1.25m/pixel
Bing Maps data has been used as ground truth for all super resolution tasks, whereas
the low resolution images were chosen according to the scaling:

• the ≈ 2.5m/pixel data has been used as low resolution data for 2x upscaling

• the ≈ 5m/pixel data has been used as low resolution data for 4x upscaling

• the ≈ 10m/pixel data has been used as low resolution data for 8x upscaling

Again, low resolution data has been fed to the generator in the form of square
patches (64x64 pixels for 2x scaling, 32x32 pixels for 4x scaling, 16x16 pixels for 8x
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scaling), randomly cut out from the whole images and randomly rotated, flipped
and blurred so that the training dataset could reach an enlargement of a factor
of 100. Differently from the original paper, the architecture has been trained
on 100,000 iterations instead of 1,000,000 because of time and computational
constraints. Both the generator and the discriminator have been optimized using
separate Adam optimizers, both with β1 = 0.9, β2 = 0.99 and an initial learning rate
of 10−4. The learning rates have been halved every 5000 iterations, until reaching
30,000 iterations. These values have been reduced by an order of magnitude to
accommodate for the reduction in total number of iterations. The batch size
per GPU has again been set to 10, and the total number of training epochs
can be derived from eq. 4.2 and eq. 4.3. For all tasks, the generator has been
initialized with the weights pretrained on a 4x upscaling task on the dataset DIV2K.
While this may seem counterproductive when dealing with different scaling factors,
a pretrained network greatly reduces the needed training time as it allows to
take advantage of the already trained feature extraction portions of the network,
resulting in a need to only finetune during training. Using a network pretrained on
satellite data may help towards reducing the training time while also improving the
performance of the architecture. The architecture uses 3 different loss functions:

• a pixel-related loss function, in the form of an L1 loss.

• a perceptual loss function which aims at optimizing super resolution in a
feature space, based on a finetuned VGG network. This loss is in the form of
an L1 loss, but operates on the feature space. This loss also has the option to
be used in style GAN scenarios.

• a relativistic discriminator loss, in the form of a Binary Cross Entropy with
Logits, which is used to try to predict the probability that a real image xr is
relatively more realistic than a fake one xf

Similarly to the training procedure used for the EDSR model, the values of the
three losses have been tracked every 100 iteration on the W&B platform. Validation
is also performed in a similar manner, every 5000 iterations on the entire validation
dataset of 100 images. This model is fairly more complex than EDSR, and this
translates in a considerable inflation in the training times, requiring ≈ 12 hours to
completely train the architecture using 2 GPUs for 2x super resolution, ≈ 16 hours
for the same training on a 4x super resolution task, and ≈ 16 hours for 8x super
resolution. These high training times are what motivated the choice for reducing
the total training iterations by an order of magnitude.
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4.2.3 Proposal: a multi-scale approach

Starting from the ESRGAN architecture, this thesis proposes a multi-scale approach
to optimize the training of a single model over different scaling factors. While using
the same main body as the ESRGAN architecture, with 23 residual in residual
dense blocks (RRDBs), with thesis project we propose an architecture using a
generator which splits 3-way when generating the super resolved images: one 2x,
one 4x and one 8x scaled super resolved images. All 3 splits are independent from
each other, as to train each section so that it specializes on upscaling on a single
scaling factor.

Figure 4.6: Multi-scale generator architecture

where, similarly to the original ESRGAN model, the Basic blocks, also known
as Residual-in-Residual Dense Blocks, are composed of the following layers:

Figure 4.7: Residual-in-Residual Dense Blocks
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The idea behind this proposal is to aim for a more generalized architecture
able to produce high-quality super resolved images on different scales. By using 3
independent branches in the generator, and by using 3 independent discriminators
to judge the results of each product of the first network, the goal is to create a
network which is capable of extracting the features from an image independently
of the upscaling factor, while the last separated layers dedicated to increasing the
resolution are independent from each other in order to avoid possible interference
between training the layers for a scale or others.

Training

For training this architecture, 3 different ground truth sets have been used. While
the Bing Maps images of ≈ 10m/pixel resolution are still used as low resolution
training data, each split necessitates its own ground truth to perform different
scaling tasks:

• the ≈ 1.25m/pixel dataset is used as ground truth for the 8x scaling

• the ≈ 2.5m/pixel dataset is used as ground truth for the 4x scaling

• the ≈ 5m/pixel dataset is used as ground truth for the 2x scaling

To each output of the generator network is linked an independent discriminator.
Just like in the original ESRGAN architecture, the discriminators are all based on
a VGG-19 architecture for feature extraction, and are inspired by the Relativistic
average GAN (RaGAN)[28], which learns to judge whether one image is more
realistic than the other, rather than whether one image is real or fake. By using 3
discriminators for training, they all contribute to updating weights in the common
portion of the generator architecture, which is responsible for feature extraction,
while independently contributing each one to a specific super resolution branch.
For each batch of the dataset, the generator is trained by computing the pixel-space
loss, the feature-space loss and via the feedback provided by all 3 discriminators on
the 3 produced images, and performing a backpropagation on a linear combination
of these losses. Then, only the discriminators are trained individually as to improve
their recognition of the super resolved images on their respective scale of interest.
Training is performed in a similar fashion to that of the ESRGAN model. Low
resolution data has been fed to the generator in the form of 16x16 pixels square
patches, randomly cut out from the whole low-resolution images and randomly
rotated, flipped and blurred so that the training dataset could reach a size 100 times
that of the original dataset. Again, the architecture has been trained on 100,000
iterations because of time and computational constraints. Both the generator and
the discriminators have been optimized using separate Adam optimizers, both with
β1 = 0.9, β2 = 0.99 and an initial learning rate of 10−4. The learning rates have
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been halved every 5000 iterations, until reaching 30,000 iterations. As when training
the ESRGAN model, these values have been reduced by an order of magnitude
to accommodate for the reduction in total number of iterations from the original
paper. The batch size per GPU has again been set to 10, and the total number
of training epochs can be derived from eq. 4.2 and eq. 4.3. For all tasks, the
generator has been initialized with the weights pretrained on a 4x upscaling task on
the dataset DIV2K. Only the 4x super resolution branch has been initialized with
pretrained weights, while the 2x and the 8x ones have been initialized to standard
values. This architecture is considerably harder to train from the computational
resources standpoint, as it effectively involves two extra neural networks used for
discriminating super resolved images, and the generator presents extra layers as
well, requiring 3 backpropagations to train. The training procedure takes about
double the time needed to train the original ESRGAN, lasting ≈ 42 hours to train
on 2 GPUs.

4.3 Results

4.3.1 EDSR
While this model produced the highest values of average PSNR scores, the the super
resolved images lack detail, are excessively smooth and do not appropriately repre-
sent some of the characteristic features of satellite images. While this architecture
may work well on other image domains, satellite images are rich in high contrast
feature that describe the different elements of the image: streets in crowded city
areas are poorly recovered, and buildings in groups are indistinguishable from each
other most of the time. The poor perceptual results of this network drove this
thesis project towards GAN architectures, which have been at the center of research
in the field for the past few years and, at least in other contexts, seemed to produce
far more convincing results.

Figures 4.10, 4.8, 4.9 represent a sample taken from the validation dataset,
which has a high resolution ground truth for comparing the super resolved image
and calculating the PSNR and SSIM metrics.

Figures 4.11, 4.12 refers to a Sentinel-2 test sample and its relative super resolved
image produced by the network.

4.3.2 ESRGAN
While this model produced lower metric scores compared to the ones obtained
on the DIV2K dataset analyzed in the original paper[27], it produced far more
convincing results compared to the EDSR model. The model is able to convincingly
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Figure 4.8: LR sample
(val)

Figure 4.9: EDSR 4x
SR image (val)

Figure 4.10: GT sam-
ple (val)

Figure 4.11: Low resolution sample
(test)

Figure 4.12: EDSR 4x upsampled SR
image (test)

recreate most of the features of the image, producing promising results on every
tested upsampling scale (i.e., 2x, 4x, 8x).

Figures 4.19, 4.20, 4.21 refer to the ground truths for the 2x, 4x and 8x super
resolution tasks respectively, figures 4.13, 4.13, 4.13 represent the low resolution
images used for the 2x, 4x and 8x super resolution tasks respectively, while figures
4.16, 4.17, 4.18 represent the super resolved images generated starting from their
lower resolution counterparts. These figures belong to the validation dataset,
gathered from Bing Maps, and have a ground truth which allows to compute all
metrics: PSNR, SSIM and NIQE.

Figures 4.22, 4.23, 4.24, 4.25 refer to a Sentinel-2 test sample and its relative
super resolved image produced by the architecture by a 2x, 4x and 8x super
resolution tasks respectively.
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Figure 4.13: LR sam-
ple for 2x SR(val)

Figure 4.14: LR sam-
ple for 4x SR (val)

Figure 4.15: LR sam-
ple for 8x SR (val)

Figure 4.16: ESRGAN
2x upsampled SR image
(val)

Figure 4.17: ESRGAN
4x upsampled SR image
(val)

Figure 4.18: ESRGAN
8x upsampled SR image
(val)

Figure 4.19: GT sam-
ple for 2x SR (val)

Figure 4.20: GT sam-
ple for 4x SR (val)

Figure 4.21: GT sam-
ple for 8x SR (val)

The images belonging to the test dataset do not have a ground truth to compare
the results to. Only the NIQE metric can be applied to this images for evaluation,
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Figure 4.22: Low resolution sample
(test)

Figure 4.23: ESRGAN 2x upsampled
SR image (test)

Figure 4.24: ESRGAN 4x upsampled
SR image (test)

Figure 4.25: ESRGAN 8x upsampled
SR image (test)

since it’s the only blind metric that does not require a ground truth.

4.3.3 Multi-scale ESRGAN
The proposed architecture produces fairly promising results, matching the visual
quality of samples produces by the standard ESRGAN architecture on the dataset
chosen for this project. Starting from a single low resolution sample, the architecture
produces 3 different

Figure 4.26 represents the low resolution image used to generate super resolved
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samples, figures 4.27, 4.28, 4.29 indicate the ground truths for the 2x, 4x and
8x super resolution tasks respectively, while figures 4.30, 4.31, 4.32 represent the
produced super resolved images. The samples were taken from the validation
dataset, which has high resolution ground truths for comparing the super resolved
images and calculating the PSNR and SSIM metrics, which give a score based on
the comparison of two images.

Figure 4.26: LR sample (val)

Figure 4.27: GT sam-
ple for 2x SR (val)

Figure 4.28: GT sam-
ple for 4x SR (val)

Figure 4.29: GT sam-
ple for 8x SR (val)

Figure 4.33 shows a low resolution sample taken from the Sentinel-2 test dataset,
while figures 4.23, 4.24, 4.25 refer to the super resolved images produced by the
proposed multi-scale architecture.

When comparing the evaluation metrics for the 3 models we see that ESRGAN
and the multi-scale proposed architecture perform fairly similarly, with the proposed
architecture producing slightly lower in terms of SSIM metric scores. The difference
in performance does not produce noticeable differences in the produced images.
Metrics for the multi-scale architecture have been estimated as the average of the
metrics on the 3 different scales.
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Figure 4.30: Multi-
scale ESRGAN 2x SR im-
age (val)

Figure 4.31: Multi-
scale ESRGAN 4x SR im-
age (val)

Figure 4.32: Multi-
scale ESRGAN 8x SR im-
age (val)

Figure 4.33: Low resolution sample
(test)

Figure 4.34: Multi-scale ESRGAN 2x
SR image (test)

Figure 4.35: Multi-scale ESRGAN 4x
SR image (test)

Figure 4.36: Multi-scale ESRGAN 8x
SR image (test)
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Figure 4.37: Comparison of PSNR scores between the 3 models

Figure 4.38: Comparison of SSIM scores between the 3 models

Both GAN-based architectures produce PSNR scores which are much smaller
than those produced by the EDSR model, which applies an excessive smoothing
action causing the super resolved images to lack important details. The GAN-based
architectures produce much more realistic images, with the proposed multi-scale
architecture generating super resolved images which are very similar to the ESRGAN
network trained on a single scale. It is quite clear from analyzing these metrics’
behaviors that, even though they are useful in providing insight between different
methods, they are not the right choice for evaluating the quality of satellite images.
Noise does not seem to affect to heavily the quality of the produced images, and the
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Figure 4.39: Comparison of NIQE scores between the 3 models

NIQE blind metric seems to be the only metric score producing results which are
in line with the perceived quality of the produced images on such images, without
being negatively impacted by the noise scores.
Here follows a side-by-side comparison of the images produced by the three models
(EDSR, ESRGAN, multi-scale ESRGAN) on a 4x super resolution task, along with
an example of bicubic interpolation used for a similar 4x upscaling task.

Figure 4.40: LR sample

Since low resolution images without high resolution ground truth were used as
test dataset, the only metric that can be evaluated is the Naturalness Image Quality
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Figure 4.41: Bicubic 4x upsampled
SR image

Figure 4.42: EDSR 4x upsampled SR
image

Figure 4.43: ESRGAN 4x upsampled
SR image

Figure 4.44: Multi-scale 4x upsampled
SR image

Evaluator (NIQE), which allows to measure deviations from statistical regularities
observed in natural images, where a smaller NIQE score indicates better perceptual
quality.

From the results reported in table 4.1 it’s possible to observe that bicubic
interpolation and the EDSR model actually produce perceptually worse looking
super resolved images when compared to the baseline value calculated on the low
resolution datasets. The GAN-based architectures are the best performing ones,
providing results which are in line with analysis often performed in research. The
proposed multi-scale architecture is able to produce results which are comparable
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Model NIQE
Low resolution test images 5.43

Bicubic 4x 8.92
EDSR 4x 8.32

ESRGAN 2x 4.07
ESRGAN 4x 3.03
ESRGAN 8x 3.34

Multi-scale ESRGAN average 3.67
Multi-scale ESRGAN 2x 4.87
Multi-scale ESRGAN 4x 3.05
Multi-scale ESRGAN 8x 3.11

Table 4.1: NIQE metrics evaluated on the Sentinel-2 single image test dataset

in perceptual quality to those of the classic ESRGAN model when trained on a
single scale, confirming the successful creation of an architecture able to operate
on multiple scales simultaneously while maintaining State of the Art quality in the
produced super resolved images.

4.4 A proof of concept: solar panel detection
After having determined the acceptable performance of the proposed architecture
by comparing the evaluation metrics scores to those obtained with the original
ESRGAN model, we study the application of the model on images used by LINKS
Foundation, the company who provided the computing facilities and offered support
for developing this thesis project.
LINKS uses a high definition dataset of satellite images of large areas surrounding
the Alessandria and Asti provinces to perform solar panel detection. While the high
resolution dataset has not been disclosed, the bounding boxes of the covered areas
and annotations of the detected solar panels have been shared for demonstrating
the practical applications of the architecture proposed in this thesis work.
With the intention of performing the same solar panel detection task starting
with the low resolution Sentinel-2 satellite images, with thesis project we propose
an approach to performing such a task, briefly discussing the visual results of
the produced images of interest. Starting with the definition of the geographical
bounding box, a Python scripts gathers both the high resolution imagery from
Bing Maps (to provide a visual reference to what a high resolution version of
the produced images would look like) and low resolution samples from Sentinel-2,
similarly to how its been described in the previous Dataset creation section. In this
task, the georeferencing aspect plays an important role, as images are visualized as
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a mosaic of smaller images using GIS software, in particular QGIS.

Starting from the north-west corner of the bounding box, the Python script
gathers the georeferenced data in GeoTIFF format, scanning the entirety of the
bounding box until the whole geographical area is covered. The gathered satellite
images represent small geographical areas described using the WGS84 standard set
of coordinates. The low resolution georeferenced images are then transformed in a
raster format, PNG, since georeferencing data is not needed for producing the super
resolved images. Low resolution images are fed to the proposed trained multi-scale
generator network described in previous sections, and the three super resolved
images are produced. These images are then transformed back into GeoTIFF for
georeferenced visualization in QGIS, which allows to import the generated images
and automatically tiles them in the correct locations, thanks to the geographical
metadata contained in the GeoTIFF images. Unfortunately, the starting low
resolution sentinel images lack important details, which do not allow for an optimal
reconstruction of the missing features characteristic of solar power plants, such as
the distinctive rows or grids in which solar panels are positioned.
Here follow some examples of the low resolution Sentinel-2 data used for generating
the super resolved images, as well as some high resolution examples taken from
Bing Maps to show what an ideal ground truth would look like.

Figure 4.45: LR sample (Alessandria)

While images from Bing Maps and Sentinel-2 are in very different domains
because they have been captured in different time instances, it is quite clear that
the super resolved images are lacking detail. Fig. 4.45 represents a solar power
plant, as it can be better seen from the high resolution images collected from Bing
Maps, while fig. 4.52 is an image of industrial buildings with solar panels on their
roof. Even if they represent an improvement from the initial low resolution Sentinel-
2 images as it can be seen in table 4.2, in the super resolved products solar panels
are still hard to discern from the surrounding environment, especially in the case
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Figure 4.46: SR sam-
ple 2x upscaled (Alessan-
dria)

Figure 4.47: SR sam-
ple 4x upscaled (Alessan-
dria)

Figure 4.48: SR sam-
ple 8x upscaled (Alessan-
dria)

Figure 4.49: GT sam-
ple for 2x SR (Alessan-
dria)

Figure 4.50: HR sam-
ple for 4x SR (Alessan-
dria)

Figure 4.51: HR sam-
ple for 8x SR (Alessan-
dria)

Figure 4.52: LR sample (Asti)
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Figure 4.53: SR sam-
ple 2x upscaled (Asti)

Figure 4.54: SR sam-
ple 4x upscaled (Asti)

Figure 4.55: SR sam-
ple 8x upscaled (Asti)

Figure 4.56: GT sam-
ple for 2x SR (Asti)

Figure 4.57: HR sam-
ple for 4x SR (Asti)

Figure 4.58: HR sam-
ple for 8x SR (Asti)

of solar panels on industrial buildings were they are completely indistinguishable
from a generic roof. An idea to produced higher perceived quality images for this
specific task could be to train the architecture using a dataset which focuses on the
presence of solar panels in the proposed imagery, as to aim for a model specialized
in the reconstruction of the key features of solar panels, or to use a starting low
resolution dataset having a better ground resolution than that of Sentinel-2.

Scale NIQE
Low resolution images 4.62

Multi-scale ESRGAN average 4.19
Multi-scale ESRGAN 2x 4.00
Multi-scale ESRGAN 4x 3.96
Multi-scale ESRGAN 8x 4.60

Table 4.2: NIQE metrics evaluated on the Sentinel-2 solar panels dataset
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Chapter 5

Conclusions

In this document, we presented a more generalized multi-scale Generative Adver-
sarial Network for performing super-resolution tasks on different scale, trained
exclusively on satellite images. Along with the neural network architecture, we
propose a satellite imagery dataset for single image super resolution tasks with
the objective of training a model that can be used to super resolve open source
satellite images collected from ESA’s Sentinel-2, and we implement a streamlined
pipeline that, starting from the raw collected data, performs data augmentation
by means of image transformations and prepares the training samples to be used
for training the analyzed models. The open data policy of the test dataset plays
an important role in the implications of successful applications. We highlight
the poor efficiency of simple Convolutional neural network-based solutions, that
tend to produce less defined super resolved images which are less amiable to the
human visual perception, even though they seem to perform better in terms of the
evaluation metrics employed in this project. The work proposed with this thesis
project is also motivated by the fact that single-scale super resolution architectures
still generate a significant amount of coverage in research, but usually lack the
flexibility of producing convincing results on different scale simultaneously. It’s
also quite clear that, even though interpolation-based techniques are extremely
less impacting on hardware resources when compared to training deep learning
models, after having overcome the obstacle imposed by training, the deep learning
models consistently produce much better looking and visually coherent results.
The difficulties of training such complex models are still of great relevance, as they
still present an important hindrance. To demonstrate the usefulness of performing
super-resolution on satellite imagery, a proof of concept study focusing on images
used by LINKS Foundation for solar panel detection is performed. We conclude
that Generative Adversarial Networks can lead to aesthetically pleasing SR images,
even when considering all the issues related to the training procedures, if carefully
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designed with appropriate loss functions. The use of suitable metrics and archi-
tectures geared towards the application domain hold an important role towards
generating more realistic images. The proposed multi-scale approach performs
similarly to established State of the Art models of similar nature, hinting at the
possibility of employing this model successfully for real-world tasks.

5.1 Future work
Different evaluation metrics - As it can be observed by the results of the
experiments, the PSNR and SSIM metrics are not the best indicators for judging
the quality of the produced images. As discussed in the introduction of these
metrics, optimizing for PSNR in particular tends to over-smoothen the images
produced by the model, resulting in a lack of important detail. These metrics also
seem poor indicators for judging the quality of satellite images, as noise, when not
to excessive, or differences in the qualities judged by the SSIM are not necessarily
indicators of poorly super resolved satellite images. In satellite images, it’s of prime
importance the ability to distinguish building from roads, or different types of land
(e.g., green areas, waters, urban areas, deserts, forests, mountains, etc.). A study
of more relevant evaluation metrics could be of relevance for improving the work
proposed in this thesis project.
While the NIQE scores are more in line with the perceptual quality of the results,
PSNR and SSIM provide negligible insights on the actual quality of the produced
images.

Different loss functions - While the original ESRGAN model had been
studied and validated on more generic datasets (e.g., DIV2K), it may be worth
investigating alternative hyperparameters and loss functions used to train the model
on a dataset of only satellite imagery. Satellite images have very distinctive features
which are rarely found in a generic dataset, which may have caused the degradation
in performance metrics compared to the results obtained in the model’s paper [27].

Deeper generator architecture - Because of temporal and computational
limits, the State of the Art architectures and the proposed ones have either been
trained for less time than may have actually been needed to improve results, or have
been considered in a limited-depth scenario, in order to have reasonable training
times and successfully fit the models in memory. With a better hardware infras-
tructure, it would be worth investigating the effect of longer training procedures or
the use of deeper models. Especially for the proposed architecture, working on 3
different scaling tasks, the limited size of the branches specialized for branching
may have caused the delta in metrics observed from the produced results.
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Different test cases - While solar panel detection is an important use case, it
may not be the ideal example to validate the proposed architecture’s performance.
Even though solar power farms are vast in surface area, the single rows or sections
of solar panels are very limited in size, and because of Sentinel-2’s ground resolution
images of such sites are originally captured so that they lack important features
that could help produce better super resolved images. This issue could be solved
by either training the architecture specifically on images containing solar panels,
or by using a source with ground resolution higher than the 10 meters per pixel
offered by Sentinel-2. Other applications may be better suited to take advantage
of super resolved images produced by the proposed architecture.

Domain adaptation - The quality and yield of satellite imagery is extremely
dependent on the physical sensor used to capture said images. These differences are
mostly noticeable in the differences in colors between different sources, which can
be observed between the Bing Maps dataset and the Sentinel one. This results in a
slight change in colors when performing super resolution on Sentinel-2 data, as Bing
Maps colors are more vibrant. For this reason, it could be worth investigating the
effect of a GAN-based architecture for applying domain adaptation to produce more
accurate results color-wise. Domain adaptation has also been considered for this
thesis project as a tool to train a super resolution model using synthetic datasets
that could be gathered from video-games such as Microsoft Flight Simulator, which
offers realistic satellite imagery.
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