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Abstract

Solving combinatorial problems represents an everyday challenge for vital tasks
such as logistics, resource allocation and optimization. In those contexts, machine
learning, with its Reinforcement Learning and Graph Neural Networks branches,
promises automation: give the machine input data and an evaluator to guide its
learning process and, at the end of training, it will return feasible and high-quality
outputs. Unfortunately, exploiting this potential is still not an easy matter: in
practice, the research so far has only focused on tailored solutions, small environ-
ments or, with changing fortunes, on specific sub-classes of combinatorial problems
such as the TSP and its variants.

The aim of this research is therefore assessing how and whether the latest deep
learning findings in those fields also transfer to other practical problems. To this
end, we set out to systematically transfer these architectures from the TSP problem
to that of radio resource allocation in wireless networks.

Our results suggest that existing architectures are still incapable of capturing
the structural aspects of combinatorial problems. Ultimately, this represents a
sever setback for generalization purposes. We also demonstrate that reinforcing
the structural representation of problems with a novel technique named Distance
Encoding is a promising direction for obtaining multi-purpose autonomous solvers.
In fact, the introduction of encoded distances as novel features improves the
solutions when no other structural information is provided.
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Chapter 1

Introduction

1.1 Combinatorial problems in the real world
The importance of combinatorial problems in the real world is witnessed by the
diversified fields of knowledge in which those are faced. Well known examples include
finding the shortest path on a graph [1], crucial objective on logistic applications
such as routing objects on a given topology (i.e. a commercial fleet between cities
historically); scheduling and allocating resources, which are fundamental tasks
on many industrial contexts [2]; even more practically, determining the structure
and characteristics of molecules in chemistry and biology [3] [4]. The networking
field is also rich of meaningful examples: routing packets in the network according
to different objectives (i.e. minimum delay, shortest path) [5]; allocating the
bandwidth on a contention-based protocol [6]; managing the radio-resources in a
wireless network [7] are only some of the numerous examples which abound in the
literature [8] [9] [10].

1.2 Current solving approaches
Typically, a combinatorial problem involves finding groupings, orderings or assign-
ments of a discrete, finite set of objects, satisfying certain conditions or constraints.
Due to the huge number of possible combinations from the solution space, solving
the problem through complete enumeration is rarely an available option [11]: this
is why two typologies of approaches, namely exact methods and heuristics, have
been developed in the literature. The former, at the cost of possibly very high
computational times, makes use of techniques like linear programming to obtain
the optimal solution for the problem; contrarily, the latter favours resolution time,
yielding though a feasible solution that cannot be guaranteed to be optimal [12].
However, many combinatorial problems are NP-Hard. This means that, for exact
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Introduction

methods, time scales exponentially with the numerosity; therefore, adopting this
approach becomes practically unfeasible for larger instances. This is why so far
heuristics represented a very popular alternative for the scientific research [13].

A parallel trend exploiting ML (machine learning) has also grown during the last
decade [14]: this successfully overcame the pre-existing state-of-the-art solutions in
fields like speech recognition, visual object recognition, object detection and many
other domains such as drug discovery and genomics [15]. Combinatorial problems
also became object of ML’s studies; particularly, several attempts in the literature
have tried exploiting the graph structure of problems like the TSP (travel salesman
problem) or the VRP (vehicle routing problem) [16] [17] [18] to automatically learn
the policy getting the optimal solution. This approach, which is the one adopted
by this research, presents several advantages on respect to handcrafted heuristics:
among all, it is capable of replacing domain experts and can possibly generalize
beyond training instances. [19].

1.3 The promise of “plug and play” ML solutions
As underlined by recent researches [20, 21, 22], machine learning and its Reinforce-
ment Learning branch offer novel opportunities on respect to traditional solving
methods. In order to replace handcrafted heuristics, they provide ML models
capable of learning how to find the best strategy, either by supervision or through
trial and error in a simulated environment. One challenge there is generalization, or
how to transfer the knowledge acquired on an environment to similar but different
ones. If successful, this resemblance to human intelligence, which is also able
to generalize beyond one’s experiences [23], should allow to build ’plug and play’
solutions: with the only requirement of an evaluator and some generated input
instances, the model should become able to get a meaningful representation of the
problem and to pick meaningful decisions. In other terms, give the same machine
examples of any problem and guide the learning evaluating the effectiveness of its
actions; with training, it will hopefully learn to recognize the problems’s important
aspects and to output optimal solutions.

Machine learning promises automation: instead of constructing tailored and
expect-demanding heuristics the goal is learning a "golden rule", namely a policy
able to generalize to different contexts.

1.4 Limits of current ML architectures
Unfortunately, the revolutionary advantages of such an approach goes hand-in-hand
with the complexity of implementing it. Obtaining a machine able not only to solve
a particular problem, but also to learn the causal structures between constraints
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in order to transfer to different environments is still a very hard [20] and partly
unsolved task [24]. Like aforementioned, ML is currently able to achieve promising
results which however are yet bounded to feature engineering [25] (an attempt
to handcraft meaningful features exploiting technical knowledge of the problem),
customized solutions [26], fixed-size networks [27] or related to small instances
where the cost of training is affordable [17] [28].

Part of the prior literature, like [24] and [29], also studied generalization across
problem size with varying success. However, even those pioneering works were
bounded to sub-classes of combinatorial problems like the TSP and its variations.
It is therefore not clear whether those novelties and findings also generalize for
different combinatorial problems.

1.5 Proposal and contributions
The aim of this research is therefore to systematically evaluate whether the best
architectural design choices for the TSP also transfer to different problems: in
the framework of power and channel allocations, which are networking tasks of
practical interest in terms of resource allocation, we test which are the key elements
for the model to learn and which possible extensions might be helpful for a better
generalization. The findings are then assessed for different sized networks in order
to prove their robustness.

According to the obtained results, we state that current architectures are still
affected by serious representation problems. Particularly, the state-of-the-art
models are so far incapable of fully exploiting the existing structural notions of
combinatorial problems, unless those are explicitly provided. This is indeed a
limiting assumption and represent a severe impediment for generalization. In
fact, we prove that current techniques, which follow the aforementioned two-step
represent & choose approach, fails or under-perform when the representations is
weak.

Finally, we propose the adoption of DE (distance encoder), a very recent proposal
in the ML field. We first theoretically discuss how this tool aims at reinforcing
the structural representation of the problem; then, we demonstrate that its role
is beneficial when no other information are explicitly provided. This eventually
constitutes the biggest achievement of the current work, since it enlightens new
possibilities for future researches which seek for generalization patterns.

3



Chapter 2

Preliminary know-how

The main objective of this section is providing the reader the basic notions of the
theoretical concepts handled in this research. We discuss more formally about graph
problems, a way in which many combinatorial problems are usually represented;
we describe the power and channel allocation problem, a fundamental task, for
example, to optimally configure a network of IEEE 802.11 AP (access point)s;
we then move into the ML world, defining concepts such as RL (reinforcement
learning), GNN (graph neural network) and DE (distance encoder).

2.1 Graph, a Combinatorial Problems’ represen-
tation

Graphs are fundamental representative aids in many real-world applications: atoms
and bounds composing a molecule; social structures; cities and routes connecting
them are simple and intuitive examples in which the information can be well repre-
sented using a graph-like structure [30] [31]. This is also the case for combinatorial
problems, which is the reason why it is helpful to introduce some basic notions and
nomenclatures.

In mathematics, the term graph refers to a set of vertices V and edges E such
that G = (V, E); in the most general case, a weight wij is also associated to the
edge eij connecting node i and node j. We generally use the notions |V | and |E|
referring to the cardinality of the nodes and edges sets, while N(vi) contains the
neighborhood of vertex i, which is the set of vertices connected 1-hop away from vi.
The problems we analyse make use of directed graphs; this means that the edge ei,j
connects node i (which therefore will be often called the sending node) to node
j (which on the other hand will be the receiver) and that the reverse path ej,i
could be different or not existing at all. Furthermore, both nodes and edges come
attributed, meaning that one or more features are associated to them in the form of
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vectors. Fig 2.1 provides a visual example.

Figure 2.1: Graph example with notation

As we previously anticipated, the aim of this work is studying techniques valid
for the TSP and the VRP on the power and channel assignments framework: it
is therefore useful to briefly introduce those three examples as instances of graph
problems.

2.1.1 The Travelling Salesman Problem
The TSP problem aims at finding a permutation τ of edges in a graph such that
each node is visited once and only once and the total length of the path is minimum.
In more formal terms, it will be:

L(opt) = min(
|V |Ø
i

||vτi
− vτi+1||2) (2.1)

where L(opt) is the optimal (shortest) length of the path, |V | the set of vertices,
vτi

the ith-vertex of the permutation τ and vτi+1 the (i+1)th. Notice that, in the
context of the 2D Euclidean TSP, the edges weights usually represent the euclidean
distances between nodes while the nodes themselves are often attributed by a tuple
of (x, y) coordinates representing their position into the space. This is a NP-hard
problem, meaning that finding the exact solution requires time which scales non
polynomially with the size of the instances. It can be exactly solved through a
TSP solver such as Concorde [32], while well known heuristics includes LKH [33],
Christofides [34] and 2-opt [35].

2.1.2 The Vehicle Routing Problem
The VRP (vehicle routing problem) is a generalization of the TSP for which
multiple routes must depart from a depot node, visit the other graph nodes and
then return to the depot. The “vehicle“ has a finite capacity D, while the visited
nodes i = 1...n have a demand 0 ≤ di ≤ D to satisfy. When a node is visited,
its demand is subtracted by the vehicle’s capacity and set to zero; after that, the
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node can be no longer visited. Multiple routes can depart from the depot node;
each of them must not exceed the capacity of the vehicle (qi∈Rj

δi ≤ D), where
Rj are the nodes belonging to the route j. The goal is, like in the TSP, visiting
all nodes with minimum cost. Without loss of generalization, the literature [17]
[18] usually assumes a normalized capacity D = 1 and therefore also normalized
demands 0 ≤ di ≤ 1.

A generalization of the VRP itself exists, and is the so called SDVRP (split
delivery vehicle routing problem): here, the nodes can be visited multiple times
satisfying only a percentage of the original demand. This therefore introduces a
novel feature, which is the residual demand 0 ≤ d̂i ≤ di.

2.1.3 The Power and channel allocation problem

In the IEEE 802.11 WLAN (wireless local area network) context, choosing adequate
levels of power and channels for a fleet of APs is a vital task to manage a scarce
resource like radio-frequency. Those tasks are nowadays often performed through a
Centralized Controller, which is in charge of both monitoring the APs and control
their configuration [25]. At high level, three objectives are sought after when
deploying a WLAN network. Those are guaranteeing optimal coverage to the users
(which we will later call STA (station)) moving within the served area; maintaining
low level of interference both within APs and with STAs; not “over-loading” a
particular AP, but fairly distributing the amount of traffic across the entire fleet.
Fig 2.2 provides a visual representation of what we should consider computing a
hypothetical utility for a generic (x, y) point.

Figure 2.2: Example of power and channel assignment: colors represent the
channels; diameters the powers. On the right, formulations to schematize the
overall utility of the problem.

To what regards the relationships between power and channel assignment and
the aforementioned objectives, the following might be helpful for the reader:

1. With a one-channel hypothesis, the higher the transmission power the better
utility coming from coverage
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2. With a one-channel hypothesis, the lower the transmission power the better
utility coming from interference

3. More assigned channels implies less chances to interfere, guaranteeing more
transmission power choices

4. The available channels represent a finite and possibly scarce resource; this
basically means that we cannot afford to assign a distinct channel to each AP.

Most of the past literature treats the channel assignment problem as an instance
of the GCP (graph coloring problem) [8] [36]. This is a well known graph problem,
which on its simplest form consists on assigning colors to vertices such that neighbors
do not share the same. The power assignment on the other hand is more generally
a RAP (resource allocation problem), meaning that a resource has to be assigned
in order to satisfy the constraints and minimize the overall cost of allocation.

According to the thesis’ objective of studying to what extent machine learning
architectures designed for the TSP and VRP problems transfer to this concrete
power and channel allocation problem, we next provide background on existing
machine learning techniques and architectures.

2.2 Machine Learning framework
As aforementioned, ML applications have dramatically increased during the last
decade; increased computational resources have allowed those models to overtake
the existing state of the art solutions in fields like speech recognition, machine
translation, image captioning and other problems directly learning from raw data.
Considering the vastity of the topic and the number of existing articles and books
already providing a global view [15] [37], this background section only focus on the
latest tools adopted by the literature to face graphs and combinatorial problems.
Providing these basic knowledge here allow us to adopt a more pointed approach
for the remaining of the paper.

2.2.1 Deep reinforcement learning
Reinforcement learning is learning what to do—how to map situations
to actions—so as to maximize a numerical reward signal. The learner is
not told which actions to take, but instead must discover which actions
yield the most reward by trying them.

RL consists on letting a learning agent interact with the external environment
in order to fulfill a task: the agent is in charge of taking actions which will modify
the state of the environment itself. Once committed an action, the agent will
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observe the resulting regret/reward and modify its behaviour for the following
choices according to how bad/good it did. Fig 2.3 graphically schematizes the
involved entities.

Figure 2.3: Learning cycle of RL

It is a branch of ML which differs from SL (supervised learning). In fact, for
the latter, labels, namely “right answers”, are generally provided by an external
supervisor so that the model can learn to minimize the difference between its
estimation and the correct choice; additionally, the model should become able
to transfer the learned notions even on external environments never seen during
training where no labels are available. However, for some cases it is practically
expensive or infeasible to have both correct and general labels, and is therefore
preferable for the agent to learn from its own experience [37]. At the same time, it
differs from UL (unsupervised learning) since the primary objective of the latter
is finding hidden structures and similarities on the data, while RL also aims at
maximizing a reward function (or, symmetrically, minimizing a regret function)
through its behaviour. Fig 2.4 represents a toy-example.

It is also useful to formally define the elements composing RL [38]. Those are:

1. Agent: entity which interacts with the environment.

2. Environment: what is external to the agent; the context it “lives in”.

3. Action at: how the agent interacts with the environment.

4. Action space A: space which contains all the possible choices that the agent
can take. Can be discrete or continuous.

5. State st: observable response of the environment to the agent’s action.
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Figure 2.4: Different learning paradigms of ML

6. Reward/regret rt: price/penalty which the agent receives according to the
action it took. In the following we will consider the reward notation, but the
cases are symmetric.

Like aforementioned, the aim of the agent is maximizing the total reward, which
is:

Rt =
∞Ø
i=t

ri = rt + rt+1 + ... + rt+N + ... (2.2)

Since this is clearly a diverging sum, it is often the case of introducing a
discounting factor 0 < γ < 1:

Rt =
∞Ø
i=t

γiri (2.3)

On such a way, the sum becomes convergent and the model learns to estimate
finished-time returns. Rt therefore evaluates the sum of discounted rewards starting
from time t.

To express the the total future reward one could expect having taken an action
at being on state st, it is also of help introducing the the so called Q-function:

Q(st, at) = E[Rt|st, at] (2.4)

This basically represents the value which one could hopefully obtain being on a
particular situation. A similar concept for example is familiar to chess players,
which know that a given position might be winning or losing according to the
current disposition of pieces and to the last opponent’s move (the literature of
games is dense of RL’s applications [39] [40]). Clearly, if Q(st, at) is given as an
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“oracle” and there is no uncertainty (taking an action deterministically lead to a
new state st+1), the best policy to adopt is:

π∗(s) = argmax
a

(Q(st, at)) (2.5)

Which is picking the action that returns the maximum reward.
Since however it is generally not the case of knowing the complete mapping of

state and possible actions, two approaches have gained importance in the literature:

1. Q-learning: first estimating the Q-function (i.e.doing it with a Neural Net-
work is known as Deep Q-Learning) and then obtaining the best policy similarly
to 2.5.

2. Policy learning: directly inferring the policy with no need of a Q-function.

Of course, pros and cons exist for both methods: anyway, for the purpose of the
research, it will be enough knowing that Policy Learning is generally chosen when
the actions are picked from a numerous/continuous set or when the process involves
randomness (i.e. the effect of an action might vary according to a random process)
[41].

2.2.2 Guiding the learning
Policy Learning is about finding the best P (at|st), that is the probability of adopting
a behaviour at given a state st. The algorithm’s learning is guided by reward,
and consists on decreasing the probabilities of poor choices while increasing the
chances of good ones. On its DL version, this is achieved through back-propagation,
that is the common way through which a ML algorithm updates its inner weights
once a complete episode (from first action taken to terminating condition) ends.
Particularly, the back-propagated quantity is generally identified as:

Loss = − log P (at|st)Rt (2.6)

Where log P (at|st) is the so called log-likelihood of an action. This, at a high
level, identifies “how much the model believes on its choices”. Like we discuss on
Section 3.1.4 and Section 3.1.5, at every decision step the neural network outputs
a matrix of probabilities from which the next action is sampled. It can therefore
happen that the model is very “convinced” about a particular set of choices
(Fig 2.5(b)) or that, especially at the early learning phases, the probabilities
are very similar (Fig 2.5(a)): intuitively, if the reward corresponding to a non-
probable action is high, that behaviour must be reinforced increasing its probability
of happening.

10



Preliminary know-how

(a) Probabilities at early phases. Model is
still uncertain and the probabilities are sim-
ilar

(b) Probabilities at a more advanced stage.
Model has gained confidence on its choices
and seems to prefer low-powers allocations.

Figure 2.5: Examples of probability-matrices returned by the neural network

According to that, the weights update, which usually occurs according to the
gradient rule, becomes:

Wnew = Wold − LR∇Loss (2.7)
Wnew = Wold + LR∇ log P (at|st)Rt (2.8)

Where LR is the adopted learning rate. The idea is that a negative reward,
corresponding to a poor decision, subtracts importance to the weights which
generated it; conversely, a positive reward increases their importance favouring
that policy.

This method however is characterized by a couple of issues [42]:

• The reward’s magnitude is problem-dependant and it could negatively influence
the gradient steps (i.e. too big) “poisoning” the learning.

• In case of only positive rewards (i.e. length of a path on a graph) no actions
would be penalized.

Those are the reasons why a term defined baseline is generally added to 2.9:

Loss = − log P (at|st)(Rt − b) (2.9)

A baseline basically is a second term of comparison and, intuitively, represents the
"average behaviour" of the current model. A positive difference of (Rt − b) means
that the latest solution provided by the model is doing better than the average,

11



Preliminary know-how

Figure 2.6: Policy role: the reward represents the altitude reached by the mountain
tracks, baseline in red. The first solution (1) is rewarded, since it over-performs the
baseline; the second solution (2) on the other hand is penalized. Notice that without
a second term of comparison, the reward (altitude) would be always positive.

which is a behaviour that must be favoured; on the contrary, with a negative
difference, the model is unable to achieve its average performance and its choices
must therefore be discouraged. Fig 2.6 provides a toy example.

While the previous Section 2.2.1 and Section 2.2.2 examined a learning approach
and how to apply it, the followings introduce recent and wide-application tools for
constructing a learning model. Having been greatly applied also in the context of
combinatorial optimization, it is therefore important to present them.

2.2.3 Attention-based architectures
Original attention

In the ML field, the term attention first gain popularity with the almost in parallel
researches of D. Bahdanau and M.T. Luong [43] [44]. Both of them were conducted
in the NMT (neural machine translation) field, which aims at training a NN (neural
network) to translate input sentences to different languages [45]. However, they
soon became an integral part of compelling sequence modeling in various tasks
(includinig combinatorial problems) and backbone of architectures like BERT [46]
and GPT [47].

Attention’s original intent was to enhance the representation capacity of NMT
models, solving a potential scalability issue of pre-existing architectures. A NMT
problem at the time was usually faced through a so-called sequence-to-sequence
(sequence to sequence) scheme [48] [49]. In few words, a sequence-to-sequence
model aims at outputting a set of items, given as input another set of objects (i.e.
sentences on two different languages). Generally, this architecture can be further
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divided in two blocks, namely an Encoder pile and a Decoder one. The goal of
the first is to find a meaning-full and fixed sized representation of the input, a so
called context; this is then passed to the second and processed to obtain the output.
Fig 2.7 shows the overall picture.

Figure 2.7: sequence-to-sequence model: the encoding pile (Encoder) gets as
input a set of item and produces a context. This is then re-elaborated by the
decoding pile (Decoder) which generates the output.

Like the researchers of [44] point out, the fixed-length context represents a
bottleneck for longer input (i.e. longer sentences); the model might fail on identifying
the dependencies between terms, resulting on worse overall performances. This is
where attention is of help: the idea is that, instead of storing only the last-layer
context, all the embeddings hi, namely fixed-size manipulations of the input, are
saved becoming active part in the decoding phase as well. Intuitively, instead of
creating an artificial summary of the input, the context used before, it will be the
model itself to understand where to “focus its attention”. While Fig 2.8 provides
a visual example, the pipeline through which this is performed can be summarized
like:

• Find fixed-size representations (embeddings) hi of each input item i with the
encoding pile.

• For each decoding block, compute a “score per input”, which takes into account
the current hidden state of the decoder st and all the embeddings from the
encoder. Notice that st represents a sort of “memory”, and is a typical element
of RNN (recursive neural network) structures.

• Obtain the softmax of the scores.

• Multiply the scores by the softmax, in order to amplify the importance of
elements with high score and shadow the others.

• Sum up the weighted vectors aggregating the resulting information to obtain
an updated context ct.
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Figure 2.8: Attention mechanism using a weighted Luong attention from [50] (but
there are other alternatives in the literature, like [43] and [44]): the context takes
into account the importance of each input element in order to understand “where
to focus attention”.

Transformer

A Transformer is an encoder-decoder architecture first presented by the researchers
of [50]. Its aim is overtaking the pre-existing recurrent cells (like the sequence-to-
sequence presented in 2.2.3) with the motto Attention is all you need. In order
to overcome the sequential behavior of previous models, the key is to substitute
the hidden states of RNN units with attention-based mechanisms. In fact, the
former, as Fig 2.7 suggests, had to go over the input set one item at a time to
improve the overall representation. The goal is therefore allowing parallelization,
speeding up the learning process. Both the encoder and the decoder are built
with identical blocks, stacked one on top of the other to create multiple-layer piles.
Notice that each block do not share its weights with the others. The encoder’s
components are further divided into two layers, a so-called Self-attention layer and
a Feed Forward layer ; the decoder maintains the same modules, only adding a
conventional Attention layer in the middle (like the ones used in the sequence-to-
sequence) for determining what parts of the encoder’s outputs to pay attention to.
Fig 2.9 provides a visual representation.

Particularly, instead of running a single item (hidden state st of the decoder
block in Fig 2.8) against a set of inputs (embedded inputs in Fig 2.8) to determine
where it should focus its attention, the Self-attention layer compares each element of
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Figure 2.9: Transformer model: only feed-forward layers and attention-based
ones are applied both in the encoder and in the decoder. Notice that each block
has the same layers but does not share its weights with the others. This means
that each of them is trained separately.

a set against all the others (including the element itself). On such a way, their initial
representation, which at the beginning is uniquely self-describing, gets updated
including notions of the relationships with the others. Practically, this is obtained
running the attention mechanism multiple times changing the “subject under study”
at every iteration. Introducing the notation used by [50], which will be useful for
the remaining of the paper, the following pipeline is applied (Fig 2.10(a) and
Fig 2.10(b) provides a visualization):

• For each element xi of the input set, obtain a query (Q), a key (K) and a
value (V ) through learnable projections:

Q = Wq ∗ xi (2.10)
K = Wk ∗ xi (2.11)
V = Wv ∗ xi (2.12)

• Run the query of each element against the keys of the others (including the
element itself) to obtain a compatibility of the element with the others. This is
equivalent to the attention’s score and is performed using the weighted Luong
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attention previously mentioned:

c = Q ∗K√
d

(2.13)

Being d = 64 the dimension of the key vectors used in [50].

• Compute the softmax of each compatibility to obtain a smoothing factor.

• Multiply the results for the values V (including the value of the element itself),
so that each of them is weighted according to its importance on respect to the
element under study.

• Aggregate the results through summation and obtain new representation for
the queried vector.

(a) Self-attention overall mechanism. In the
example, the word “Self” gets the highest
contribution on updating its own represen-
tation z1.

(b) How query, values and keys are obtained.
Notice that Wq, Wv and Wk are learnable
parameters

Figure 2.10: Toy example of the self-attention procedure. Images from [51].

Furthermore, since it is often the case that the highest contribution comes from
the queried element itself (see example on Fig 2.10(a), where “Self” is getting the
maximum compatibility), a Multi-head scheme is adopted. This basically consists
on using “different heads”, namely different learnable matrices (i.e. with different
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initialization) in order to obtain more versions of Q, V and K. Multiple heads
guarantee “many points of view”, which are eventually aggregated with a new
learnable matrix Wz to obtain zi. Fig 2.11(a) gives more details graphically, while
Fig 2.11(b) is a toy examples which demonstrate the benefits of using many heads.

(a) Computations to achieve multi-head at-
tention.

(b) Example in NMT: the model relates the pronoun it in the sentence to
different objects according to the scores obtained from the different heads.
For this specific case, it is up to Wz understanding that the second head is
providing the right answer.

Figure 2.11: Multi head attention. Images from [51].

2.2.4 Graph Neural Networks
GNN have been firstly introduced with [52] and [53] to solve graph and nodes
classification tasks. Their goal was fixing the general ML approach at the time
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when facing a graph problem, which consisted on "squashing" the graph into flat
vectors. Of course, that implied loosing meaningful information, like the one of
the topology. GNNs are based on an information diffusion mechanism: each node,
which as anticipated in Section 2.1 is a featured entity, periodically sends its current
state to its surroundings on a message-passing fashion. The receiver stores its
message together with the ones coming from the other neighbors; once the message
passing is over, it eventually updates its state according to the new “notions” it
received. This procedure is computed until equilibrium, stacking multiple blocks
one on top of the other. At high level, the stopping condition generally indicates
that, according to some criterion (i.e. few changes in the representation), keep
propagating messages is not helpful anymore.

On more formal terms, one can write that:

hi = f(xi, hj : j → i) (2.14)

Where hi is the updated state of the receiving node, xi is the initial self-describing
feature of the receiver, hj : j → i represent the set of i neighbors and f is a
general function which aggregates those two information. Notice that, in general,
the messages coming from the neighborhood can be weighted: this highlights
that surrounding nodes might give different contributions to the receiving one (i.e.
closer nodes might influence more than further ones). When the message passing
is weighted, the mechanism is called anisotropic. This approach has been shown to
outperform solutions in which no smoothing mechanism was applied [54] [55], and
it is therefore appreciated by the researchers..

Nowadays GNN represent an important milestone for several tasks, including
graph classification [55], unsupervised graph clustering [56] and graph representation
learning [57] [58], which learns to represent graph nodes, edges or sub-graphs by
low-dimensional vectors. The latter objective, which is commonly defined as
representation learning, is then the one we mostly cover on the paper. For further
information about other applications and details about the adopted methodologies,
we refer to the research of [59], which provides a complete summary-article on those
topics.

The original proposal of [53] enlarged the concept of RNN to the graph domain.
For the state update, they proposed a multi-layer perceptron:

hi = Aσ(Bσ(Uxi + V hj)) (2.15)

Where A, B, U and V are learnable projection, xi the input features of the receiving
node and hi and hj the hidden states of the receiving and sending node respectively.
With time, more options, transferred from the fields of image processing and natural
language processing, became available to represent the mapping function f : those
included recurrent units ([60]), which are meant to act as "gates" for the message

18



Preliminary know-how

passing; convolutional structures ([61] with MoNet and [54] with GraphSAGE);
even attention-based mechanism to create the so called GAT (graph attention
network) [62] [17].

For the scope of this research, we refer to a couple of anisotropic variants from
the literature. Those are the aforementioned GAT architecture from [17] and a so
called GGCN (gated graph convolutional network) model [28] [63], which refers to
the works joining convolutional tools and graphs.

Graph Attention Network model

As previously mentioned, GAT architectures take inspiration from the attention
mechanisms discussed on Section 2.2.3 to build an anisotropic message passing.
Particularly, among the general framework presented in [62], one of the available
options, which is the one used by researchers in [17], recalls the MHA (multi head
attention) solution from the Transformer model of Section 2.2.3. In fact, the first
layer of each GAT block is expressed as:

ĥi = BN l(hl−1
i + MHA(hl−1

1 , ..., hl−1
n )) (2.16)

Where BN represent a Batch Normalization layer and MHA a multi-head-attention
transformer layer. The number of heads for the MHA is set to M = 8. Like in the
Transformer original example, a second layer, namely a feed-forward layer FF , is
then following to create the updated state h

(l)
i of each node:

h
(l)
i = BN l(ĥi + FF l(ĥi)) (2.17)

Fig 2.12(a) provides an illustration of the weighted message passing, also
recalling notations from the Transformer; for the technical details, we refer to the
appendix A of research [17]. Fig 2.12(b) on the other hand exemplifies how the
different heads must be interpreted.

As the reader can start noticing, no structural notions, which basically are
information on how the topology is structured, are provided. Therefore, it is
entirely up to the GAT to “discover”, for example, how far is a node on respect
to another. A variant slightly more informative in that sense also exists, and
consists on preventing some nodes to participate the attention mechanism of some
others according to a neighborhood masking (i.e. if neighbor, participate; mask
otherwise).

Gated Graph Convolutional Network model

While GAT takes inspiration from attention, a GCN (graph convolutional network)
mimes the behaviour of a CNN (convolutional neural network). Considering an
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(a) Illustration of weighted message passing
using a dot-attention mechanism. Only com-
putation of messages received by node 1 are
shown for clarity. The formulas and nota-
tions are very similar to the Transformer
ones.

(b) An illustration of MHA (with K = 3
heads) by node 1 on its neighborhood. Dif-
ferent arrow styles and colors denote inde-
pendent attention computations.

Figure 2.12: GAT methods

example coming from computer vision, is the equivalent of trying to synthesize
the feature of one pixel (i, j) studying its surroundings (iÍ, jÍ). Like explained on
Section 2.1, since on a graph context it is the topology which defines the meaning
of neighborhood, we thus obtain:

hl+1 = fG−CNN(hli, hlj : j → i) (2.18)

With hi being the receiving node, hj the sending one and hj ∈ N(i). A possible
example of fG−CNN is proposed by the researchers of [64]. In fact, they obtained
an anisotropic message passing exploiting an edge-gating mechanism:

hl+1
i = ReLU(

Ø
j→i

ηij ◦ V lhlj) (2.19)

With ReLU being the rectified linear unit and defining the edge gating system like:

ηij = σ(Alhli + Blhlj) (2.20)

Where V , A and B are linear projections. This formulation was then improved
by other researchers in [65], which explicitly added the receiving node hi to 2.19
obtaining:

hl+1
i = ReLU(U lhli +

Ø
j→i

ηij ◦ V lhlj) (2.21)

20



Preliminary know-how

This, similarly to a central pixel updating on a classical convolutional network,
underlines the importance of the receiving node. For what regards the initialization,
it generally is h0

i = ẋi, being ẋi a fixed size embedding of the nodes features.
Eventually, another improvement is provided by the studies of [16] which, among

all, explicitly added edge features and processed the gates with a softmax function
such that:

hl+1
i = hli + ReLU(BN(U lhli +

Ø
j→i

ηij ◦ V lhlj)) (2.22)

With the gates computed like:

ηlij =
σ(elij)q

j→i
σ(elij) + Ô

(2.23)

and with the edge embedding being:

el+1
i,j = eli,j + ReLU(BN(Alhli + Blhlj + C lelij)) (2.24)

With U , V , A, B and C linear projections, BN a batch normalization layer, Ô a
small number to avoid divisions by 0 and ReLU the rectified linear unit. Notice
that, similarly to h0

i , e0
ij is an initial embedding of the edges feature. A useful

schema is provided by the work of [28] and is reported on Fig 2.13. Furthermore,
on its appendix this paper also provides a useful summary of existing GNN models
to which we referred for this section.

Figure 2.13: Gated Graph Convolution Network

To conclude, it is interesting to notice that, on respect to the GAT counterpart,
a GGCN provides much more structural information. In fact, it explicitly includes
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the concepts of neighborhood and edges using a distance matrix to weight the
messages. Theoretically, this model should be therefore more capable of taking
into account not only the nodes attributes, but also the topology.

2.2.5 Distance Encoding
We conclude the background chapter introducing a very recent tool called DE
(distance encoder). This was first introduced by the papers of [66] [67], which
underlined potential issues of current GNN models. Those are said to be unable of
establishing correlation between nodes representation [67]; with a practical example
provided by [66], if node attributes are all the same, then for any node in a r-
regular graph GNN will output identical representation. In practise, they state
that current GNN models mostly rely only on nodes: there is therefore a serious
risk, with possibly severe impacts over the results, that their relationships cannot
be as exploited as they should be. The work of [67] reinforces the concept with
a graphical example which we report on Fig 2.14: since the two components of
the graph, that represents the so called foodweb, are isomorphic (contain the same
number of graph vertices connected in the same way), the model is unable to answer
the query «Which one is more likely the predator of Pelagic Fish, Lynx or Orca?».

Figure 2.14: Foodweb example: since the two components are isomorphic, the
final embedding of nodes is the same and the model is unable to correctly fulfil
its quest. A representation which also reports that the actual distance between
Lynx and Pelagic Fish is infinite, like the dotted box reports, is still missing from
current GNN architectures.

The aforementioned cases lead the researchers of [66] to formulate the so called
DE. Since current models are incapable of capturing the relationships between
nodes, which are generally pieces of information embedded in the graph’s edges,
DE attempts to transfer the edge information to the nodes themselves. On such a
way, a novel artificial feature is added to the nodes information which, differently
from the edges ones, GNN can treat.
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This is practically achieved as following. First, for each node u belonging to the
graph, we must compute its DE:

D = ζ(u|v, A)|v ∈ S (2.25)
Where A is the adjacency matrix, S is the set of nodes we consider neighbors of
u (can be N(u) or a smaller fraction) and ζ characterize some "distance" between
node u and node v. To evaluate the latter, the article proposes different options:

• Shortest path distance between v and u.

• Personalized PageRank scores (concept used by Google Search and originally
presented in [68]: basically, each node has a weight signifying its importance
in the graph and you move from a node to another favouring “heavier” nodes).

• Hitting time of the random walk from u to v.
The DEs of each node basically is a NxN distance-matrix, being N the number
of nodes; once obtained it, we aggregate by columns (dim = 1) so that each node
holds only one measurement “summarizing” its relationship with the others. We
therefore move from an N ×N space to a N × 1 one, obtaining:

ζ(u|S, A) = AGGRdim=1(D) (2.26)
ζ(u|S, A) = XS represents a new per-node structural information which can be
aggregated with the input "raw features" (i.e. current power and channel information
for the power and channel assignment) or used by itself. An aggregation’s example
is the concatenation, which leads to:

X = (Xraw||XS) ∈ IRN×(d+k) (2.27)
Being d the column-dimension of the raw features and k the column-dimension of
the encoded-distance (k = 1 on 2.26, but there might be more general cases).

In practise, we also proposed a second way to aggregate the novel structural
information with the “old“ raw features. Once obtained the NxN distance-matrix,
we do not directly move to a N × 1 summarized vector, but we first expand the
raw features to an NxN matrix as well. At this point, we immediately aggregate
raw and structural info like in 2.26 to obtain a NxNxF structure, where F is
the number of raw and structural features (F = (1 + 1) = 2 in the example).
Finally, we summarize the NxN matrix info into the usual Nx1 vector; notice
that, after some reshaping, we obtain again vector X of 2.27. We thought this
second algorithm could be useful since, both in 2.26 for the first method and on the
NxNxF structure for the second, a linear transformation L = WXs + b is usually
applied so that the model can learn how to handle the inputs. For the second
attempt, the model is immediately provided both structural and raw information
for the transformation, while this is not the case for the first one. Eventually
Fig 2.15 provides a scheme of the two methods.
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Figure 2.15: Two methods for applying DE; notice that both aims at producing
a final vector X comprehending both the novel structural info and the “old” raw
ones. However, the second applies the linear transformation having both raw and
structural features at disposal.
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Chapter 3

Related Work

The purpose of this chapter is to analyze the evolution of instruments and tech-
niques that led to the most recent deep learning breakthroughs and generalizations
regarding combinatorial problems. As mentioned in Section 1.5, our aim is assessing
which of them is capable of transferring from a sub-class of problems such as the
TSP and the VRP to a resource allocation one: Section 3.2 therefore reports a
summary of the main building blocks which are currently representing the state-
of-the-art for those instances, while the following Chapter 4 discusses them in the
power allocation context and eventually adds some novelties.

3.1 Toward the tested architecture

3.1.1 Pointer Network

The first attempt to tackle combinatorial problems using SL tools was the Pointer
Network proposed by the work of [69]: this, as already mentioned on Section 2.2.3,
successfully enhanced the pre-existing sequence-to-sequence approaches enabling
analysis on variable-sized instances. A pointer network is an encoder-decoder
RNN-based architecture: the inputs are converted into codes by an encoder, and
fed to the following generative model. This, as shown on Fig 3.1, apply a content-
based attention using the hidden-state of each decoding block to point back at the
encoded input. When tested on a combinatorial problem like the TSP, the attention
mechanism basically helped the neural network discovering the order in which the
nodes should be visited (i.e. from the current decoding step, corresponding to the
last visited node, which is the one receiving "more attention" for the next visit?).
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Figure 3.1: Pointer Network of [69]; each encoding block generates an embedding
of the corresponding input element also considering the previous ones. During
decoding, an attention mechanism point back to the input embeddings.

3.1.2 RL in combinatorial problems
While the neural network of [69] learned on a supervised manner, [70] adopted
RL to leverage a similar model. In their research, the authors proposed a couple
of learning techniques based on the RL-policy learning approach; those are the
Pre-training and Active Search methods. While the first one makes uses of a
training set to "fix" a policy, and then adopt it during the test-phase, the second
involves no pretraining and directly learn on a single test instance starting from
a random policy. In practise, they found that the best-performing is a mixture
of the two; in Bayesian terms, pretraining is the equivalent of prior information
which the model then use to face the test. Most importantly, they also defined a
couple of behaviours the model can adopt while picking a solution: those are the
greedy behaviour, which deterministically choose the most probable action, and the
sampling behavior, which on the other hand sample the next action according to
their probability density distribution.

3.1.3 Handling dynamic features
The study of [18] represented an important milestone for ML application to com-
binatorial problems: firstly, according to the research of [71], they clearly stated
that the those problems do not necessarily imply sequential order. This means
that a RNN encoder model, which as mentioned before represents an important
element of the Pointer Network and strictly works on a sequential manner, is
actually unnecessary in some framework and can be easily substituted by less
computationally-demanding structures (even simple linear projections). Secondly,
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facing the VRP, a problem similar but slightly more complex than the TSP, they
introduced the concepts of dynamic and static features. Like we stated in 2.1.2, the
VRP adds a demand per node dti to the simple TSP coordinates si, obtaining a new
tuple features xit = (si, dit): as stated above, a visit to a node fulfills its demand and
sets it to zero. This means that the nodes are characterized by varying features
which, as Fig 3.2(a) testifies, represent a severe limit for the pre-existing Pointer
Network.

(a) VRP re-embedding issue: when a node is visited, its
demand is set to zero and the whole Pointer Network must
be recomputed to take further decisions.

(b) Solution proposed by [18]; no RNN architecture is
used during encoding (and therefore no chain-rule exists
if a node is modified) and the decoder only receives static
features.

Figure 3.2: Dynamic elements in VRP architecture

Therefore, in order to update its hidden state hi, [18] proposes an architecture
(summarized in Fig 3.2(b)) in which the decoder only receives static elements si;
in contrast, dynamic ones are part of the attention mechanism through which a
new context is computed and the new decisions are made. This, referring to x̂it as
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the embedded features, can be expressed in the form:

ait = at(x̂it, ht) = softmax(uit) (3.1)
where uit = vtatanh(Wa[x̂it||ht]) (3.2)

And the context is obtained as:

ct =
MØ
i

aitx̂
i
t (3.3)

The probabilities are eventually obtained with a final attention layer between the
input embedded features (static and dynamic) and the updated context ct:

P (yt + 1|Yt, Xt) = softmax(ũit) (3.4)
where ũit = vtctanh(Wc[x̂it||ct]) (3.5)

3.1.4 The GAT and an autoregressive decoder
Even if researchers in [18] abandoned the sequential encoding of the Pointer
Network, the obtained architectures were still unable of fully capturing the structural
information provided by the graph representations. Particularly, each encoding
only represented the referring node, and no neighborhood information could be
inferred by the network. That is why, exploiting the researches of [50] and [62],
the work of [17] was able to face problems like the TSP and the VRP using an
attention-based graph neural network model, namely the GAT (graph attention
network) already mentioned on Section 2.2.4.

The proposal is once more an encoder-decoder architecture trained with a RL
paradigm. The input features depend on the faced problem (i.e. VRP nodes are
characterized by a demand) but always include the points coordinates in terms of
(x, y) position: as it is worth remembering from Section 2.2.4, a GAT architecture
runs a multiple-layers self-attention mechanisms which aims at discovering the
importance of each node for all the others. Hence, nothing but the input coordinates
(and an optional masking procedure to disguise non-neighboring nodes) tells the
network anything about the nodes’ positions; no edge attributes, which embed the
topology distance-matrix, are actually used, and coordinates become vital to get
an adequate representation.

The layer-0 embeddings of fixed size hdim = 128 entering the GAT are obtained
as following:

hil=0 = W xxi + bx (3.6)
where xi = [si||di||...] and is a concatenation of the input features (3.7)
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The GAT structure is the one presented on Section 2.2.4 and makes use of 3
layers; the output consists on embeddings hil=L which do not represent only the
node information anymore, but, thanks to the message-passing procedure, also its
surroundings.

The decoding process is performed on a so called autoregressive manner ; this
indicates that each macro-episode, which is a run lasting until some stopping
condition is met (i.e. all nodes visited), is faced through micro-actions regarding
one node at the time. Basically, the decoder phase is a loop which starts with
the decision for the first node and ends when all nodes have been visited/satisfied.
At the end of the encoding-decoding process of each micro-event, a probability
matrix containing the probabilities of visiting the next node is emitted; a decision
is then picked according to the current policy (most probable if greedy, sampling
otherwise) and the loop continues.

Furthermore, each micro-step recalls the idea of creating a context already
cited for the work of [18]. Intuitively, taking track of the current circumstances is
coherent with the sequential decisions described for the auto-regressive behaviour:
those are iteratively modifying the contour conditions (i.e. the node which we
are currently visiting) and must be taken into account for the future ones. To
generate this context, [17] proposes to first evaluate a graph summary using the
node embeddings from the GAT:

ĥG = 1
n

nØ
i

hil=L (3.8)

Then, in order to take into account the decisions committed so far, to evaluate
the context like:

hN(c) =
I

Wc(ĥG||hπt−1
l=L ||h

π1
l=L) t > 1;

Wc(ĥG||vl||vf ) t = 1;
(3.9)

Where || is the concatenation operator, Wc a learnable projection, N is the N-th
step of the decoding loop, h

πt−1
l=L and hπ1

l=L the last and first visited node so far. The
context of 3.1.4 is therefore always taking into account the "summarized graph",
adding at the same time the information about the first visited node and the last
one inserted when available. If they are not, learnable placeholders vf and vl are
used.

The context hN(c) acts like a fictitious node against which, similarly to [18], a
self-attention mechanism from the other nodes is run. While Fig 3.3 tries to give a
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Figure 3.3: Decoder loop at timestamp 3: first we create a new context ˆhN(c), then
we run a self-attention mechanism between the remaining nodes and the context
to update the latter.

visual representation, this, with a Transformer-like notation, is achieved evaluating:

q = W qh(c) (3.10)
ki = W khi (3.11)
vi = W vhi (3.12)

(3.13)

And:

u(c),j =


qt
(c)kj
√
dk

if j /= πtÍ ∀tÍ < t

−∞ otherwise;
u(c),j are the compatibilities of each node with the context, and are used to obtain:

a(c),j = eu(c),jq
j(u(c),j)

(3.14)

Which are the weights to compute the updated context:

hN+1
(c) =

Ø
j

a(c),jvj (3.15)

Once the context is updated, similarly to 3.1.4, it is finally possible to achieve
the output logits:

u(c),j =
 Ctanh( q

t
(c)kj
√
dk

) if j /= πtÍ ∀tÍ < t

−∞ otherwise;
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Where C = 10 is a factor to clip the results between 10 and −10. The probabilities
of visiting the next node are therefore:

pi = pθ(πt = i|s, π1:t−s) = eu(c),jq
j(u(c),j)

(3.16)

3.1.4 well-describes the importance of keeping track of a context: the next
decision is taken giving the current state s (i.e. topology) and the trajectory π1:t−s
(which in the TSP is summarized with first and last node only).

According to the TSP constraints, each node can be visited once and only once:
this mean that, once a node is chosen, it can no longer be in the following iterations.
This is practically obtained preventing the visited nodes to take part in the context
update (set u(c),j = −∞ for all nodes j already in the tour) and masking their
chances to be picked for the following step (set pi = 0 for all nodes j already in the
tour).

Finally, it is important to mention that the whole model is trained using RL.
Particularly, a gradient-descent policy-based solution is adopted (according to a
REINFORCE [72] gradient estimator):

∇L(θ|s) = E(π|s)[(L(π)− b(s))∇logpθ(π|s)] (3.17)

Where L(π) is the loss associated to the path found, b(s) is the baseline, θ is
the current parameter ruling the policy. For what regards the baseline, a Rollout
algorithm, which deterministically picks the most probable value, is implemented:
this, as aforementioned, is meant to give the model’s sampling procedure a second
term of comparison to enhance the learning.

3.1.5 The Gated GCN and a one-shot decoder
Like mentioned on Section 2.2.4, another way of approaching the GNN infrastructure
is through convolutional tools to create the so called GCN (graph convolutional
network). That was the choice for researchers in [16], which faced the TSP problem
as well adopting the GGCN described on Section 2.2.4. Similarly to the GAT model
chosen by [17], nodes become aware of their surroundings through a “message
passing” procedure, in which the information about them is spread throughout the
network using multiple-layer architectures. Anyway, while for the GAT we did not
have any structural information about the topology except the for coordinates and
possibly a neighbors mask, the GCN gates make explicit use of the edge features.
Particularly, given as input edge feature a weighted adjacency matrix (so called
distance matrix) containing values dij, they obtain:

βij = Aedgedij + bedge||Aknndknnij (3.18)
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Where Aedge and bedge are used to obtain a h
2 -size projection of the edge distances

and the concatenated Aknn to obtain the other h
2 . Notice that using the K-Nearest-

Neighbors aggregator is a common technique for the TSP, where nodes are usually
connected with others in the close proximity. The embedding βij is fed to the GCN
together with the node embeddings (which are obtained similarly to [17]). While
the mathematical steps are described on Section 2.2.4, it is important to stress
once more that the gating mechanism obtained as:Ø

j→i

(ηij ◦ V lhlj) (3.19)

is the crucial difference on respect to [17]. While there the messages are weighted
according to the attention between the nodes (the coefficient cij of 2.13 in the
original Transformer model) and it is entirely up to the model to discover what are
those weights referring to, here [16], using the edge notions, are explicitly applying
the concept of distance as weights. In other words, with the model of [17] the
nodes must contain some structural information to discover and learn the message
passing weights; with the one of [16], this is not the case since those are obtained
exploiting the topology itself.

The other difference between [17] and [16] is that the second uses a non-
autoregressive decoder: this means that the model is basically one-shooting the
complete solution without taking intermediate steps. Therefore, after applying the
GNN encoder, the node embeddings are passed through a Multi-Layer Perceptron
model such that:

ˆpij = W2(ReLU(W1(hG||hLi ||hLj ))) (3.20)

Where W1 and W2 are learnable projections, hG is the graph embedding obtained
similarly to 3.1.4, hLi and hLj are respectively the last layer embeddings of node i
and node j. The result is an heat-map over the edges over which one can:

• Greedily pick the most probable link starting from a random node: the
algorithm ends when all the nodes are visited.

• Apply a beam-search, which means maintaining in memory the best B links
and choose a path only when all nodes are covered. The concept of "best" can
be declined as most probable path or the shortest.

An example coming from [16]’s paper is presented on Fig 3.4.
Also for this section we finally discuss the learning procedure: for this article, a

SL approach seemed the more appropriate since more sample efficient. This means
it requires less training examples to get the same results as the RL counterpart
as SL gets complete information about the problem, while the latter only a sparse
reward. However, this does not come for free: as SL needs high-quality solutions to
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Figure 3.4: Non auto-regressive model for the TSP.

be trained, scaling to instances bigger then 100 nodes become practically infeasible
since the exact solutions for such a high numerosity are often intractable to obtain.

3.1.6 A common benchmark
Very recently, [24] proposed an attempt to create a unified benchmark to test
several design choices’ generalization capacity. Understanding the importance of
transferring the knowledge gained on smaller instances to larger ones, the researches
collected most of the choices already cited in Section 3.1.4 and Section 3.1.5 to
systematically check whether and how much each of them was able to provide
the already mentioned inductive biases (Section 1.4). Beyond some interesting
statements, like the greater generalization capacity of the GGCN or the predomi-
nance of autoregressive models over non autoregressive ones when scaling to larger
instances, the key message of [24] is that Learning the TSP requires rethinking
generalization. As it appears from this study, much work still have to be done and,
most importantly, a new approach seeking for more general pattern rather than
case-suited solutions must be preferred.

It is therefore with this attitude that we want to expand [16]’s work: while they
attempted to scale "vertically", increasing the number of instances, we want to
assess whether the latest state of the art tools, which we attempted to describe
so far, are capable to move horizontally, namely from a combinatorial problem to
another. Given a topology and some nodes feature, how difficult it is to transfer to
other examples? And which is the cost in terms of gap with a case-specific solution
like a tailored heuristic? Answering those questions and possibly introducing some
novelties to enhance the transfer capacity is therefore the scope of this research.

3.2 Building blocks
As previously mentioned, this section describes the overall architecture which
will be tested and implemented in the remaining of the paper. According to the
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researches cited on Section 3.1, this will be an encoder-decoder model; the available
options for the first will be faced on Section 3.2.1. Section 3.2.2 will on the other
hand overlook the second.

3.2.1 Encoder pile
Layer 0 embeddings

Both [17] and [16] used a simple dense layer to move from a variable size input to a
fixed size embedding. However, while [16] only faced the TSP, [17] also included the
VRP and SDVRP, which as mentioned in Section 2.1.2 have slightly more complex
initial features and actors involved. This second approach, which also generalize to
the one-typology and one-feature only cases, is therefore more complete and is the
one we present in the following.

First, the typologies must be handled separately aggregating their corresponding
features:

xaggr1 = AGGRdim=1(sj1, dj1) (3.21)
xaggr2 = sj2 (3.22)

Where j is a generic node, 1− 2 represent the first or second typology, AGGRdim=1
is an aggregation operation (i.e. concatenation in the papers) performed on the first
dimension, sj the (x,y) coordinates and dj the demand. Notice that, as Fig 3.5(a)
testifies, the second dimension of both matrix is still of variable size (depends on
the number of initial features).

The second step consists on obtaining a generic embedding hj: first, each
concatenated representation must be projected:

ˆxaggr1 = W1(xaggr1) + b1 (3.23)
ˆxaggr2 = W2(xaggr2) + b2 (3.24)

Where the two projections are different (W1 /= W2 and b1 /= b2) but projecting to
the same hidden space Hdim = 128, which is the fixed-size mapping dimension.
Eventually, another aggregation on dimension zero is computed to obtain:

hj = AGGRdim=0( ˆxaggr1, ˆxaggr2) (3.25)

Fig 3.5(b) completes the picture.

GNN encoder

At this point, the fixed-size projections of the input features obtained in 3.2.1 are
fed to the GNN. It therefore is:

hl=0
j = hj (3.26)
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(a) Aggregating features for
different typologies of nodes

(b) Obtain a generic embedding hj from the two ty-
pologies

Figure 3.5: Encoder - Obtaining layer 0 embeddings

Where l = 0 represents the layer zero of the GNN multi-layer architecture and hj
the output of 3.2.1. The vectors are intuitively self-descriptive, which means that
they each refer to only one node, and no notion of the surroundings has been added
yet.

The following layers differs according to the chosen model: [16] uses a GGCN
encoder, where the update functions are the ones described in Equation 2.22 and
Equation 2.24. Research [17] on the other hand adopts a GAT encoder, which as
aforementioned resembles the Transformer schema of Section 2.2.4 and uses the
update function of Equation 2.16.

Without specifically reporting the formulas (the previous Section 2.2.4 and
Section 2.2.4 already formally cover the topic), we think it might be useful for the
reader to spend some more words on the comparison between a GNN architecture
and a message-passing schema [73]. Basically, one could see the hidden state
hj of each node as a message and each layer as a round of message passing: at
the beginning of each of round, every node sends its message to the connected
neighbors (meaning that a link must exist between the sender and the receiver).
In the most general case, the passage through the link involves some kind of
smoothing/amplification of the message: the weighting coefficient can refer to a
real physical quantity (i.e. smoothed according to the real distance separating the
nodes or, on a Boolean manner, to the fact that the link itself exists or not) or to
some learned relation between nodes (i.e. the attention mechanism). Eventually,
the receiving node gets all the weighted-messages coming from the neighbors and
somehow produces a synthesis which updates its previous state.

Each round r updates the r − hop neighbors with new information: there is
therefore no real stopping condition (no real limit for messages keeping flowing
in the network), and the number of rounds (the number of layers) represents an
hyper-parameter which must be carefully tuned.
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(a) Message passing schema: each node
j sends its hidden state (its own mes-
sage) hj to a receiving node. Those
states are weighted by a link coefficient
cij and eventually aggregated by the
receiver hi.

(b) The overall encoder schema with a TSP example: it is once more important
to underline that while some models like the GGCN explicitly use a concept
of "edge", others like the GAT have to learn the weighting coefficients looking
a the nodes themselves.

Figure 3.6: Encoder pile and details on message passing

Fig 3.6(a) provides an example of message passing on respect to a single
receiver; Fig 3.6(b) on the other hand summarize the entire encoder architecture
according to the available choices.

3.2.2 Decoder pile
Both versions presented by [16] and [17], namely the non-sequential and sequential
decoder, receive as input the final-layer embeddings hl=Lj from the encoder and
construct the so called graph summary ĥG. Intuitively, this should give the model
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a global view of the topology synthesizing its key elements; obtaining a good
representation at this point, especially for the non-sequential approach where
practically nothing else is given (Formula 3.1.5), is vital. On respect to 3.1.4, which
only provided the average as aggregator, [24] tests more versions including sum,
max and avg itself to assess the one providing more inductive biases.

The sequential approach starts the decoding loop at this point, whereas the
non-sequential approach needs nothing else since the probability matrix is already
generated. This, as already discussed on Section 3.1.4, consists on creating a
context like in 3.1.4 and then on running a self-attention mechanism between it
and the other nodes. The context should summarize the information about the
previous steps (i.e.“where did we get so far”), while the self-attention mechanism
should conjugate the past trajectory with the remaining nodes (i.e. “since we are
here, which is the next to visit?”). Also on this case, a probability matrix is then
emitted to choose the following step. Fig 3.7 provides a toy-example.

Figure 3.7: Sequential decoder’s choices: once the context node is updated with
the self-attention mechanism, it should be aware of 1) which is the trajectory so
far (till node 3 in the example) 2) which node should be visited next according to
the topology (node 5 is the most probable in the example)

About the decoding loop is also important to notice that, both for the TSP
and the VRP, the graph and nodes embeddings represents "fixed elements" that
can be computed only once before entering the loop. For example, in the TSP the
nodes do not change when the agent choose an action: its coordinates remains the
same, regardless on it having been visited or not. In practise, this means that no
re-reembedding, namely recomputing the embeddings, is needed once an action is
taken. Since this might not be the most general case facing a combinatorial problem,
[17], which also faces the SDVRP version of the VRP, partly faced the issue: as
underlined in Section 2.1.2, the SDVRP accepts residual demands, meaning that a
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node can be visited multiple times without having to satisfy its demand in one-shot.
This clearly creates a more dynamic context to handle, which they faced adjusting
the decoder self-attention mechanism of 3.1.4 into:

q = W qh(c) (3.27)
ki = W khi + W k

d δ̂i,t (3.28)
vi = W vhi + W V

d δ̂i,t (3.29)
(3.30)

Where the information about the residual demand δ̂i,t is added to the keys
and values together with the node embeddings; on such a way, the dynamic
information is not added to the initial set of features (which would lead to the need
of re-embedding) but only during the decoding phase to "complete" the context.
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Transferring the problem

This section’s goal is describing, from a theoretical point of view, which are the
main differences between the problems faced so far (i.e. the TSP) and other
combinatorial problems; how those differences impact the existing architecture.

Particularly, we will discuss more in details about the relationship between nodes
and edge features, properly defining the aforementioned structural information a
combinatorial problem yields. The latter indeed represent vital aspects which, as
we will lately assert, current GNN models are yet incapable of fully capturing with
severe limitation for the knowledge transferring.

Subsequently, we will also distinguish static features from dynamic ones and
show that, while previous models always faced cases in which some static element
(i.e. coordinates) was present to uniquely identify nodes, this is not the most
general case. We will also demonstrate how the absence of static identifiers deeply
impact the decoder’s effectiveness eventually worsening the overall results.

Thereby, we will finally contextualize the recent DE technique as a solution for
both problems: embedding the distances as novel nodes features can indeed solve
the lack of structural information, providing in the meantime static information
for the nodes themselves.

4.1 Structural information

4.1.1 In theory
According to the description provided on Section 2.1, a graph is characterized by
two main components: those are the nodes vi and the connecting edges eij. While
the first represent single entities and their characteristics (i.e. demand of a store;
polarity of a molecule; number of contacts of a social user), the second embed their
relationships in terms of distances (i.e. distance between shops), typology of link
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(i.e. type of boundary connecting the atoms) or even, in Boolean terms, whether
they are connected at all (friends or not in the social).

Intuitively, for some real-life examples, one can infer notions about the relations
only looking at the nodes themselves: for instance, if in the case of geographical
distances between objects the coordinates are provided, estimating how distant
two nodes are is relatively an easy task. For some other case, that estimation
is still possible but slightly more complex: for example, given the properties of
two molecules, it might not be that easy to guess how and whether they are
connected. Finally, for some problem this is not possible at all: in the power and
channel assignment problem, it is generally unfeasible to recover on real time the
exact STA’s position, and the only available information is how distant that is
in terms of signal received by the APs. Therefore, like pictured by Fig 4.1, for
those cases relying on nodes features only is not an option, and edges information
gather vital importance. More generally, we can assert that, for those cases, edges
represent the only element providing information about the structure of the problem:
without them, one cannot obtain a full picture since the topology itself is not well
represented.

Figure 4.1: What would happen removing edges information from the TSP and
from the power allocation problem

As we will prove on Section 5.2.1, the existing architectures, which have been
tested on problems with strong structural information already as node features
(both the TSP and the VRP make use of coordinates), fail or under-perform when
those are available only as edge ones and cannot be inferred using nodes. This of
course represents a severe limitation facing graphs contexts, where the topology is
a crucial element, and a major setback for generalization purposes.
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4.1.2 In practise
To demonstrate the importance of structural information, it might be of help
looking back at the encoder proposals of Section 3.2.1 and face a toy-example in
which no nodes features are provided and the information only relies on the edges.
As we will later explain, despite seeming an extreme example, it is actually not so
far from the power allocation case we want to face.

The first issue arises from the fact that both the GGCN and the GAT architec-
tures requires initial nodes embeddings h0

i as inputs, while our toy-example, with no
nodes features to apply the formula of 3.2.1, does not have any. The simplest way
to overcome the problem and start the encoding pile is therefore using a common
padded vector (i.e. a vector of ones) x̃i as a placeholder in place of the missing
features xi:

h0
i = W (x̃i) + b (4.1)

At this point, the GAT option is already hopeless: as the theory of Section 2.2.4
suggests, not including the edge features and with the attention mechanism focusing
only on meaningless representations (placeholder’s projections), there are no chances
it can learn anything and emit good embeddings hLi . Therefore, more in general, it
is very unlikely that the model can obtain good performances.

Something more, thanks to the explicit use of edges on the weighted message
passing, can be on the other hand obtained with the GGCN counterpart. With
a very practical intuition, it is like having people repeating the same sentence
in a room: each of them, even not knowing the positions of the others, can
roughly estimate it according to how much the voice is smoothed by the distance.
According to the process described in Section 2.2.4, with the toy-example case, the
placeholders’ projection departing from each node are smoothed using the learnable
edge embeddings as gates:

incoming message ∝
Ø
j→i

ηij ◦ V lhlj (4.2)

Where V lhlj are the messages departing from neighbors and ηij the edge-
dependant gating-weigh factor. Like Fig 4.2 visually exemplifies, even if starting
with the initial same projections h0

i , each of them is modified by greater or smaller
quantities according to the closeness on respect to the other nodes; on such a
way, the final representation hLi might hopefully be different for each node and
representative of its surroundings.

However, while obtaining representative embeddings on this way is theoretically
possible, in practise, as the results of Section 5.2.5 will demonstrate, the structural
information are too weak and the model under-perform on respect to examples in
which coordinates are provided.

41



Transferring the problem

Figure 4.2: An oversimplified toy-example (with fictitious numbers) of GGCN
encoder when only edge features are available. Already at round 3 the algorithm
has produced three different embeddings h3

i : notice that h3
1 is the smallest (node 1

is further from the others) while h3
2 and h3

3 are similar (and so are node 2 and node
3 structurally).

4.2 Static and dynamic features

4.2.1 In theory
On Section 2.2.1 we have described how, in RL, an agent interacts with the
environment committing actions which modify its states. If we contextualize this
learning paradigm for a combinatorial problem, the best-fitting entity to represent
the environment is clearly the graph itself: however, not all the edges and nodes
features might be part of the state the agent can modify. For example, in the TSP
the nodes are definitively not shifted because their coordinates are not modified:
it is the agent travelling across the graph, and therefore for such a problem it
is the agent’s position the state’s best candidate. In other words, we could say
that coordinates in the TSP are static features, which are not modified even if
the agent picks a new action. On respect to Section 4.1 previously discussed, it is
interesting to notice that, since for combinatorial problems the topology is generally
unchanged, most of the structural information represent static elements.

As presented on Section 3.1.3, something slightly more complex occurs for the
VRP: there, since the agent’s aim is satisfying the nodes requests, their demand
represents a dynamic element which can be zeroed after a model’s action (i.e.
visit that node). Same happens in Section 3.1.4 facing the SDVRP, where the
demand feature is split in original demand (static) and current demand (dynamic).
However, static information in terms of coordinates exist on both cases and is
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therefore possible to:

1. Obtain fixed representations hLi of the problem, which are immutable and
actions-independent.

2. In the decoding phase, add, mostly on a sequential manner, a new "context"
representing the current state of the environment (i.e. providing information
about the current demands).

Unfortunately, it is not a general assumption to always have at disposal some
static node features. A practical example comes from the power and channel
allocation problem: as we will discuss on Section 4.4, on its simplest (and most
general) formulation, the nodes are described only by the power and channel
information. Those, as the name of the problem itself suggests, also represent the
elements which the agent’s actions will modify to ensure its objectives (the ones
listed on Section 2.1.3). Powers and channels are hence dynamic features, and
no fixed embeddings can be obtained with them. Existing architectures, which
generally use the encoding pile only once, fails at tackling those cases; dynamic
features therefore represent another issue that the current models have partly or
not faced yet.

It is finally important to underline that the previous considerations are valid
only for sequential approaches. Those, like the ones of Section 3.1.4, are models in
which the agent takes one decision at the time until all the nodes are visited. For
non-sequential approaches on the other hand, like the ones of Section 3.1.5, all the
decisions are taken together and defining static and dynamic features is useless.
However, since the first, according to [24], provide more inductive biases and are the
more adapt for generalization, it is important to underline which possible findings
are limiting their performances.

4.2.2 In practise
Similarly to Section 4.1.2, it could be of help facing a toy-example using the state-
of-the-art encoder-decoder infrastructures proposed by the literature. This time,
nodes will be represented by dynamic features only: this means that the agent,
picking an action and modifying the state, will also modify the initial input.

In the first instance, it is clear that computing the embedding only once, like
previous infrastructures did, is no longer possible: as Fig 4.3(a) testifies, once
that the first change is applied to the original state, the agent is practically facing
a different problem. In fact, the original input vector x, which generated the
embeddings hLi used to pick the first decision a1, has changed to xÍ: this means that
the encoder’s representation hLi are no longer valid and new ones, as Fig 4.3(b),
must be generated re-embedding the problem.
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(a) Handling dynamic features as pre-
vious models: since a node, after the
first round of decoding loop, is modi-
fied, the input embeddings hL

i are no
more consistent.

(b) How to handle dynamic features:
once an action modifies a node, re-
embedding is applied to obtain consis-
tent embeddings for the next decoding
iteration.

Figure 4.3: Handling dynamic features: only the first round of decoding loop
(decision about one node only) is shown for clarity. Notice that, in case of static
input features, the agent would modify the context and not the initial features (no
re-embedding would be needed).

Furthermore, even re-embedding during the decoding loop might not be enough
for not “poisoning” the decoder. Suppose that, similarly to [17] and [24] for the
TSP, the embeddings of the last two visited nodes are used as a decoding context.
Imagine, for the sake of clarity, that we have already picked decisions about three
nodes and that our current context is therefore [hL4 , hL6 ], being hL4 and hL6 the last
visited and L = 2 the number of encoding layers. We now choose that our next
decision regards node 1: since we are facing a problem with dynamic features only
and according to what was explained before, our action changes node 1 initial
features from x1 to xÍ

1 and re-embedding must be therefore applied to maintain
consistent embeddings. However, since using a GNN encoder, the modification
occurred to node 1 propagates through the network also affecting the surroundings
(Fig 4.4 provides an example from the power assignment problem). Intuitively, it
is like throwing a rock in the pond: the immediate perturbations only regards a
point, but the waves soon propagates.

This means that the new context after the decision on x1 is [hÍL
6 , hL1 ] with

hÍL
6 /= hL6 since also affected by the re-embedding. Fig 4.5 might help visualizing

the concept: if the nodes embeddings are not fixed, the decoder’s context, which
should help the model keeping track the sequence of decisions, is no longer of help.
This will also be proved on Section 5.2.1, where we will demonstrate that, facing
the power allocation problem, the decoder worsen the results instead of improving
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(a) Average difference of the embeddings
before entering the GNN: only the changing
node is involved.

(b) Average difference of the embeddings
after one layer of GNN: besides node 1 itself
(higher bar), change has propagated and
mainly affected the closest neighbors

(c) Average difference of the embeddings af-
ter two layers of GNN: change has propa-
gated further, including nodes not involved
in the first round.

Figure 4.4: Example coming from the power allocation problem: AP 1 is reas-
signed to a new power and, using a 2-layer GNN encoder, the ’novelty’ is spread
across the network. It is important to notice that the node ids in the x-axis are
sorted with increasing order according to the path-loss distance from node 1 (node 1
is the last one since its distance to itself is set to infinity), while the y-axis represent
the average difference, computed across the 128-dimensional embedding vectors,
before and after the change.

them.
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Figure 4.5: Decoder issue with re-embedding: since every embedding is involved,
the contexts as history is no longer of help since not coherent throughout the
decoding loop.

4.3 Distance Encoder: a multi-purposes solution
Summarizing the issues faced so far, we stated that:

• Current encoding architectures are unable to represent problems unless strong
structural information are provided in the form of nodes features.

• Current encoder-decoder schemes only holds if static information are provided.

Clearly, both of them represent limiting hypothesis which prevent transferring to
more general combinatorial problems or severely limit the model’s effectiveness.
This is why, on Section 2.2.5, we presented the recent DE (distance encoder)
technique proposed by the researches of [66] and [67]. As already mentioned, this
tool basically tries performing an edge-node transformation: in fact, like Fig 4.6
testifies, given a node, it first aggregates all the information about its connected
edges; then, it creates a novel node feature, also descriptive of its contour. On
mathematical terms, being N the number of nodes, it reduces a NxN distance
matrix into a Nx1 vector of features.

Figure 4.6: Distance Encoding edge-node transformation

If we consider the example of Fig 4.7, a possible implementation could be
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averaging all the edges contributions: in the example’s case, an high value would
represent an isolated node; a low value, a central one.

Figure 4.7: Distance Encoding over-simplified example: new nodes information
have been obtained exploiting the knowledge on the edges

Since such an easy application is generally not enough for improving the learning,
usually the edges features are at least linearly transformed like 4.3 before applying
the aggregator:

xDE = AGGR(W ∗ x) (4.3)

Being W a learnable projection.
If we consider again the generalization impediment of Section 4.1, we can now

observe that with DE all the graph notions are eventually exploited: in fact, while
with previous architectures edges were not taken into account at all by the GAT
and were only used as gates by the GGCN, now they can be used to construct
new nodes representation reinforcing the structural information on the problem.
When facing cases with no nodes information, the GAT becomes again an option
since nodes, with the new feature provided by DE, can finally “help” learning
about the topology. Furthermore, also the GGCN gets strengthened since the
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nodes themselves gain importance: the use of weighted message passing, which
with placeholder represented the only opportunity for the model to learn starting
from a dummy initialization, now becomes again only an optional enhancement.

On the other hand, referring to the concern of Section 4.2, DE can produce
a static per-node identifier. As we previously mention, it is often the case that
structural information are also static ones: this is also true for DE, which is
basically able to create novel action-independent features. Like in the work of
[17], it is therefore possible to first use the new static information to build the
encoded representation of the problem; then, with fixed and action-independent
embeddings, add the dynamic information as a context for the decisions. On such
a way, the proposal of Fig 4.3(b) evolves into Fig 4.8, solving the decoder’s
inconsistencies of Fig 4.5 while improving the overall speed of the algorithm (no
need for re-embedding).

Figure 4.8: Encoder-Decoder scheme when using DE to obtain static nodes
features. The encoder is action-independent and therefore no re-embedding is
required at the end of each decoding iteration.

It is important to conclude mentioning that while the role of DE on improving the
structural representation of the problem will be object of Section 5.2.3 analysis, its
capability of solving the encoder-decoder malfunctions when no static information
are available currently represents a qualitative evaluation only. Proving this second
statements might represent an important step for future analysis.

4.4 A practical use-case: the power allocation
problem

This section is meant to introduce the use-case problem we want to try transferring
the state-of-the-art techniques on. This is the power and channel allocation problem,
already mentioned on Section 2.1.3: particularly, without loss of generality for the
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purpose of the research, we face a sub-case which only takes into account the power
levels’ configuration. As we demonstrate, this problem is particularly adapt to
prove the limits of current architecture: no structural information are provided in
terms of nodes features; it comprehends dynamic elements only.

The following Section 4.4.1 and Section 4.4.2 describe its inputs and outputs,
while the in-between architecture is the one described on Section 3.2 and is sum-
marized on Fig 4.9. Notice that, being the most promising, only the sequential
approach of [17] is being tested.

Figure 4.9: Overall architecture for the power allocation problem: notice that,
as already present on Section 4.4.1, since the nodes features are dynamic-only,
re-embedding during the decoding phase is necessary.

On respect to the research of [17] we also maintained the same learning approach
(RL) and the same baseline (Rollout technique).

Section 4.4.3 finally provides a more technical overview of the model’s tree. This
is meant to show the reader an high-level picture of the "flow" of passages performed
by the encoder-decoder architecture when facing the power allocation problem.

4.4.1 Input problem
Like introduced on Section 2.1.3, the power management problem consists on
allocating radio resources in wireless networks. Its aim is finding the best APs’ con-
figuration to optimally serve a set of STAs while reducing the possible interference.

The two typologies of nodes, the serving and served ones respectively, are
therefore AP (access point) and STA (station). Those, on the problem’s simplest
version, are stationary: this means that, throughout an episode, neither the APs
nor the STAs will change their location.
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About positioning, like previously mentioned, for this problem not having at
disposal the nodes coordinates is generally a realistic assumption: on a real-world
scenario, while the APs placements are generally given, the real-time users (STAs)
positions in the space are unknown. Anyway, another measure of distance exists in
the field of wireless networks: the path-loss (or path-attenuation). This calculates
the power density reduction of the electromagnetic wave propagating through the
space. In practise, according to the definition given on Section 4.1, path-losses
are the equivalent of Euclidean distances for the TSP and represent the nodes’
relationships: it is therefore coherent to use them as edge features. Still, like
Fig 4.10 schematizes, it is only feasible to evaluate the AP-AP and the AP-
STA path-losses, while the STA-STA are generally not available: this is not a
problem since, having to configure the APs power decisions according to the STAs
placements, it is not that important for a user to know where the others are (i.e.
STA-STA measurements). The unknown quantities are therefore padded with very
high values of path-losses (300 dB) as if they were not connected at all: the same
is done for each AP on respect to itself (no self-links are allowed).

Figure 4.10: Path-losses: notice that those also represent the graph weighted
topology.

For what regards the nodes features on the other hand, we know that each
AP is characterized by its current power level. Those powers, like explained on
Section 4.2, also represent the environment’s state the agent interacts with: this
means that, having no other static feature, APs are represented by a dynamic
feature only. STAs are on the other hand more complicated. They indeed constitute
crucial elements of the problem since power levels are adjusted according to their
placements; however, we do not know their physical positions and there are no
other meaningful characteristic to represent them. Like in the toy-example of
Section 4.1.2, all the (structural) information only lays on the edges (path-losses),
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while there is nothing describing each STA on its own: therefore, exactly like in
that example, placeholders will be used to adopt current architectures. Intuitively,
this is the equivalent of recognizing there is a non-omissible entity (STA) which
however, with the current techniques, we cannot represent. Fig 4.11 eventually
summarizes the problem’s input.

Figure 4.11: Input features for the power allocation problem: notice that N =
number of nodes, while Naps and Nsta are the number of APs and STAs respectively

4.4.2 Output problem
Another important difference of the power allocation problem on respect to the
TSP regards the desired output. While, according to the formulation presented
in 3.1.4, the TSP objective is picking decisions on which node to visit next, the
power allocation problem requires something slightly more complex. In fact, at
each round of the decoding loop, the agent has to pick both a new AP to configure
and one of the available power levels. Therefore, instead of the N-dimensional
vector of probabilities pi of the TSP, where N represents the number of nodes, we
actually need a Nap×P matrix of probabilities pi,j , where P represents the number
of available power levels and Nap the APs numerosity (only nodes involved in the
decision process). Fig 4.12 provides a visual representation.

It is important to notice that, as it was happening for the TSP (Section 3.1.4),
once a node is “visited” it can no longer be modified in the following iterations.
This means that, if an AP has already been configured, it cannot be modified
anymore in the remaining of the decoding loop. In practise, for the following loops:

• It will not take part in the decoding self-attention mechanism since its com-
patibility with the context is set to −∞

• Its chances of being chosen by the decoder are zeroed.
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Figure 4.12: Heatmap of the matrix of probabilities pi,j. Notice that the sum
over the elements of the entire matrix must return 1 according to the law of total
probabilities.

4.4.3 An overview of the model’s tree

Like aforementioned, this section, with the aid of a series of images, aims at providing
the reader a more in-depth overview of the encoder-decoder model applied to the
power allocation problem. Particularly, exploiting the back-propagation flow of the
gradient, it is an attempt of showing the practical sequence of passages performed
by the machine from the input data to the final output. Notice that all the following
images are only meant to provide an high-level overview of the overall architecture:
it is therefore non-necessary for the reader to focus on the single boxes reporting
the passages described in the sections before (i.e. sum of vectors; divisions...).

Fig 4.13 shows the main methods to obtain the h0 embeddings from the input
data. Like explained on Section 3.2.1, two linear projections W (x) + b are applied;
W represents the weights while b the biases. Their outputs are the APs and STAs
projections respectively; those are finally concatenated to obtain a unique vector
h0.

Fig 4.14 on the other hand shows the first GGCN layer. The left side of the tree
concerns the nodes manipulation: the receiving and the sending nodes are obtained
trough linear projections U and V . The right side on the other hand elaborates the
edge-embeddings for the edge-gating mechanism: particularly, according to what
explained on Section 2.2.4, the edge-embeddings are updated using notions of the
receiving and sending nodes (projections A and B respectively) and the ones of
the edges themselves (C projection). Those gates are then used for the weighted
message passing: a max aggregator is used to obtain a synthesis of the received
messages. Both nodes and edges are finally normalized before moving to the next
layer.

Fig 4.15 completes the picture about the encoder, providing a visualization of
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Figure 4.13: How to obtain the h0 embeddings.

Figure 4.14: Encoder detail: How to obtain the h1 embeddings.

the three GGCN layers. Notice that those are equal but do not share weights (each
of them is trained separately).

Finally, Fig 4.16 shows the decoder tree; without going again into the details
already explained on Section 2.2.4, it is interesting to notice how, facing a case
with four APs, four decoding branches are clearly visible. Those are justified by
the use of a sequential decoder, which requires to create a new context every time
a new decision is picked. Notice that the tree becomes larger when more APs have
to be configured (we do not report a larger example for graphical reasons).
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Figure 4.15: Encoder full picture: three identical layers having the structure of
Fig 4.14. Again, it is not important for the reader to focus on the single boxes,
while it is the overall picture which matters.
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Figure 4.16: Decoder full picture: four branches are visible and correspond to
the four APs to configure.
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Chapter 5

Results and findings

This chapter reports the experimental results of the thesis.
Section 5.1 introduces some preliminary concepts: it presents the evaluator, a

crucial element for RL; explains how the dataset are generated; spends some words
on the optimal results and on the heuristic used when the datasets were too large;
describes the so called Multisampling, a technique used during the testing phase;
establishes which metric are adopted for evaluation.

The following Section 5.2.1 on the other hand shows the results when applying
the best choices for the TSP to other problems such as the power allocation
problem; those empirically testifies the issue presented on Section 4.2 concerning
the decoder’s utility when handling dynamic features only.

Section 5.2.2 reinforces the concept: with an architecture relying on the encoder
only, the decoder’s issues are solved and the results get better.

Section 5.2.3 refers to the second issue stated on Section 4.1 about structural
information. Particularly, with two examples of Section 5.2.3 and Section 5.2.3, it
proves that those are generally useful for enhancing the model’s comprehension of
the problem. Furthermore, Section 5.2.5 demonstrates that this also extends back
to the TSP case: if we remove the coordinates, the model which makes use of DE
performs better than the one with traditional gating system only.

5.1 Before starting

Like aforementioned, the following subsections list and briefly describe some intro-
ductory key concepts before moving to the obtained results. The first one, 5.1.1,
introduces the evaluator and explains how it is used.
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5.1.1 On the evaluator
On Section 2.2.1 we stated that RL’s learning is guided by rewards or regrets.
This means that it must exists an entity “judging” the model’s behaviour and
discouraging “bad actions”: that is the so called evaluator. Referring to the overall
objectives, on the power allocation problem we generally do not want to increase
the chances to interfere; we want to cover all the demanding STAs; we do not want
to overload an AP. The reward U the model gets from its actions is therefore:

U ∝ 1
|STA ∈ AP |

(AP load) (5.1)

U ∝ signalstrenght(AP ) (Received power) (5.2)

U ∝ 1q
i∈Interfere |STA ∈ i|

(Interference) (5.3)

Fig 5.1(a) and Fig 5.1(b) also provides a use-case which might clarify the
judging criteria.

(a) A practical example: the model has
adapted a conservative behaviour to limit
the interference and all the APs have been
set to a medium-low power level (range from
9 to 15). Anyhow, one STA (red circle) was
left uncovered.

(b) Same use-case of 5.1(a). Guided by the
rewards, the model has now picked also some
higher choices. Despite an increase of the
overall interference (blue circles), all the
STAs are now covered and the reward has
greatly improved.

At the end of each decoding loop, when all the APs have been reconfigured,
the evaluator is queried and emits a score rating the current environment’s state.
If this, according to what explained on Section 2.2.2, is positive, it encourages
that model’s behaviour increasing the probabilities of the picked actions; otherwise,
those are penalized not to be picked again in the future.
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Notice that, for a matter of consistency with the TSP original code, which uses
the path-lengths as regrets and aims at minimizing them, in practise we also use
regret = −reward to penalize bad behaviours.

5.1.2 On the datasets
For what regards the adopted dataset, it is important to specify that this first
approach to the problem only makes use of simulated data. This implies that, for
creating the datasets, we also need a simulator accepting parameters to vary the
environment’s configuration in terms of number of APs, number of STAs per AP
and number of neighbors.

These settings require wise and balanced choices. In fact, creating a very dense
environment would over-stress the importance of interference; consequentially, the
model would be induced to mostly assign low power preferences reducing the overall
noise. On the other hand, sparser environments are expected to present many
high power assignments to cover isolated nodes. Of course, both cases are feasible
and could exist on a real-world scenario: however, they clearly represent extreme
cases and, more importantly, they both accept “easy solutions”. The latter are
particularly unwanted since they might complicate our capabilities of evaluating
the model’s performances: unfortunately, even an architecture completely unable
to represent the problem (i.e. unaware of the distance between nodes) can learn to
set everything to the minimum power level available.

As shown on Fig 5.1, another characteristic which the simulator accepts as a
parameter is how to geometrically dispose the nodes: the available options involve
Poisson Point Process (PPP), Square and Hexagonal. It is generally a good choice
to dispose the STAs according to a PPP so that the uncertainty regarding the
users position is represented by the random process; on the other hand, placing
the APs allows more freedom of choosing and there are no particular reasoms for
preferring one option over the others.

Figure 5.1: Example showing the possible nodes disposals; here, the STAs are
displayed according to a PPP; on a square grid; hexagonally on respect to the APs.
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Finally, as it is of common use in the field of ML, the simulator can handle
batches: those allow the model to face multiple problem instances in parallel
eventually speeding up the learning. Batches of size 32 were chosen for this task.

Table 5.1 reports the configurations which will be discussed in the following
results sections.

Config name AP number STA per AP Number neighbors Placement Available power levels
9sq_7pl 9 6 3 Square [9,10,11,12,13,14,15]

14ppp_4pl 14 2 3 PPP [9,11,13,15]
16hex_4pl 16 2 3 Hexagonal [9,11,13,15]
25ppp_7pl 25 3 4 PPP [9,10,11,12,13,14,15]
28ppp_4pl 28 2 3 PPP [9,11,13,15]
32ppp_7pl 32 12 6 PPP [9,10,11,12,13,14,15]

Table 5.1: Configs’ parameters

5.1.3 On the optimum and on the heuristic
This subsection describes how the exact or approximated solutions for the configs
of Table 5.1 were obtained. Notice that those are practically useful for validating
purposes; in fact, metrics such as the average optimality gap can be computed only
with the optimal solution (or at least an approximation) at disposal. On the other
hand, as mentioned on Section 2.2.1, they are not necessary during training since
adopting a RL approach.

The exact results were obtained through complete enumeration: basically, a
script brute-forces all the possible combinations of power assignment and eventually
keep the best of them. Of course, this is extremely costly in terms of time resources
(scales exponentially with the numerosity) and, on our case, was affordable only
for the configs with 9, 14 an 16 APs. This is why a local search heuristic was also
used to approximate the results for the others. Particularly, PowerLS is a heuristic
that outputs a locally optimal power configuration with respect to the reward
function. Given an initial configuration, PowerHeur varies the power level for each
AP separately within a specified range, while keeping the remaining configuration
constant. The best individual power level for each AP, together with its overall
reward gain, are recorded. After an iteration over all APs, the best improvement is
compared with a simultaneous change of all APs into their individual directions, and
the process is repeated for the best configuration found. If no further improvement
can be achieved, the algorithm terminates.

5.1.4 On Multisampling
Like explained on Section 4.4.2, every decoding loop emits a matrix containing the
probabilities pij of choosing an AP i and a power level j; the decision is then taken
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sampling from the available options.
Since the process involves a random process, during evaluation it might be

helpful to allow multiple samplings: the idea is to repeat the decoding loop several
times and eventually only keep the best combination. On such a way we guarantee
the model more chances to explore the solution space and coming up with better
solutions.

Fig 5.2 shows, in the power allocation problem framework, what happens in
practise picking decisions greedily (most probable); allowing 10 samples; allowing
100 samples. Interestingly, as Fig 5.2(a) testifies, the model is confident on
choices that minimize the overall interference; the most probable guesses in fact
consist on setting all the APs to the minimum power level available. If we start
sampling and allow 10 attempts, Fig 5.2(b) demonstrates that the model gets
more “intrepid” and also picks more various combinations. Finally, letting the
model pick 100 solutions like on Fig 5.2(c), the solutions get very diversified since
also less probable actions are chosen.

(a) Greedy behaviour: model is very conservative
on limiting the overall interference.

(b) 10 attempts allowed: the solutions are
more diverse since the model is also picking
less probable actions.

(c) 100 attempts allowed: the solutions’
space is much more explored and more power
levels are eventually picked.

Figure 5.2: Greedy vs Multisampling
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Fig 5.3 on the other hand practically anticipates how results are affected
adopting one policy on respect to another. This highly depends on which model is
actually used: the encoder-decoder version of the GGCN for instance, which is the
state-of-the-art model presented by researches in Section 3.1.6, tends to produce
probability-matrix very peaked around a particular choice. This basically means
that, no matter of how many samples are allowed, the solution is always the same
because the same actions are always taken. On the other hand, an encoder-only
GGCN version using DE, which we will present on Section 5.2.3, highly benefits
from having more attempts at disposal.

Figure 5.3: Optimality gap on configs adopting a greedy policy; a 10-samples
policy; a 100 samples policy. Results highly depends on typology of model adopted.

5.1.5 On the metrics

It is finally important to introduce the metric used to validate the results. Notice
that each attempt (model with a particular setting) was run with different seeds
both during training and during test in order to assess its robustness: more in
details, there were 5 training seeds and 10 validation seeds. This leads to:

|Result per attempt| = |Seed training| * |Seed validation| * Batch size (5.4)
1600 = 10 ∗ 5 ∗ 32 (5.5)
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Which also means:

|Result per attempt per batch| = |Seed training| * |Seed validation| (5.6)
50 = 10 ∗ 5 (5.7)

The two metrics we therefore adopt are:

1. Optimality Gap / Estimated Optimality Gap: basically, each batch
result is compared to its exact/approximated solution in order to obtain a
gap:

gapi = x̂i − xi∗
xi∗

(5.8)

where x̂i is the model’s solution for batch i and xi∗ the exact/approximated one.
A box-plot containing the gaps for all the batches and seeds is then plotted:
an higher box implies an higher gap (and therefore a worse performance). On
some occasions, a random decision maker is also used to test how the proposed
alternatives behave on respect to random solutions; for fairness on respect
to the multisampling, each batch gets |Seed training| * |Seed validation|= 50
random guesses and only the best is kept.

2. Inter-attempt difference: used for a more detailed comparison between
two attempts. It measures whether one configuration is better than the other,
and is obtained subtracting the model’s result for the first attempt (x̂i,1) to
the one of the second (x̂i,2):

diff = x̂i,1 − x̂i,2 (5.9)

A box-plot containing the differences for all the batches and seeds is then
plotted: if the box is around zero, the difference is marginal. An interval of
confidence around the mean is also computed to assure that the difference is
significant (i.e. one model is in fact better than the other).

5.2 The results
It is now time to discuss the thesis results. The first sections can be interpreted as
the pars destruens: in fact, as shown on Section 5.2.1, transferring with minimum
changes results in a failure since previous architectures do not solve the issues stated
on Section 4.1 and Section 4.2 regarding structural information and dynamic feature.
On Section 5.2.2 we therefore start a simplification process to systematically analyse
which elements are really beneficial for the problem’s representation; the conclusion
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is that the decoder’s context is of no help, confirming the theoretical statements of
Section 4.2.

The remaining sections on the other hand constitute the so called pars costruens
and aim at fixing the structural information problem of Section 4.1. This is
meant to create more robust basis for future works, finally enhancing the graph
representation.

5.2.1 Transferring with minimum changes: Encoder-Decoder
architecture

As anticipated, the first attempt consists on trying transferring the auto-regressive
architecture proposed on Section 3.1.6 with the minimum changes required by the
different problem. Those have already been cited on Section 4.4 and mainly regards
the different inputs and outputs of the latter.

Figure 5.4: Optimality gaps of an encoder-decoder GAT architecture; of an
encoder-decoder GGCN one; of a random decision maker

Fig 5.4 shows the optimality gaps of the two encoder-decoder architectures
(one using a GAT encoder; the other a GGCN) and of a random decision maker
on the configuration files of Table 5.1. Notice that we added the labels dummy
and dist. (distance) to recall that while the GGCN uses the latter for the weighted
message passing procedure, this is not the case for the GAT which therefore has no
knowledge of the APs and STAs position.

Only in two of them, the 16hex_4pl and the 32ppp_7pl, the proposed models
behave better than random; for other two, the 9sq_7pl and the 28ppp_4pl, both
models even do worse. This is clearly a symptom of malfunctioning and testifies
that neither architectures have been able to get a meaningful representation of the
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problems.
If we just compare the GAT and GGCN results as Fig 5.5 then, we can also

notice that the GAT counterpart is obtaining better results for approximately all
configs. This is again counter-intuitive if we refer to our statements of Section 2.2.4:
the attention-based mechanism of the GAT encoder in fact, contrarily to the GGCN
one, does not make use of edge features which, in the power allocation problem,
embed the only information about the nodes’ distances. Therefore, this suggests
that either neither models are able to handle distances or that actually some
architectural element is confusing and “poisoning” the remaining of the work; the
following Section 5.2.2 further analyses whether it is this second case.

Figure 5.5: On the left, optimallity gaps of an encoder-decoder GAT architecture
and of an encoder-decoder GGCN one; on the right, their inter-attempt difference.

5.2.2 Is it a decoding issue?
Considering the negative results of Section 5.2.1, it clearly appears that the current
state-of-the-art architectures are unable to capture the essential aspects of the
problem. It is therefore useful to systematically analyse which components are in
fact helping the representation. Since, from the statements of Section 4.2, we know
that the decoder might have issues with a problem yielding dynamic features only,
start working with an Encoder only model seems to be a good idea. This implies
that, instead of applying the self-attention mechanism described on Section 3.1.4,
for these attempts we obtain the probabilities of choices directly from the nodes
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embeddings.

Notice that, in addition to the considerations of Section 4.2, it is also reasonable
to point out that, for the power allocation problem, the context is indeed already
included in the nodes embedding. In fact, since re-embedding is needed every time
an AP is modified, each decision is already taken on an updated environment:
hence, a specific passage to revise the nodes embeddings, as it was required for the
TSP, appears to be redundant. What might be still missing with an Encoder-only
version is an “history“ summarizing the previous choices: however, to solve the
issue of Section 4.2, this seemed like a necessary simplification.

Fig 5.6 shows the results comparing the best encoder-decoder architecture of
Section 5.2.1 with the GAT and GGCN Encoder-only versions. It clearly appears
that, in general, removing the decoder is beneficial for all models: all configs, except
for the 32ppp_7pl, exhibit improvements.

Figure 5.6: Results showing the best encoder-decoder architecture so far against
two encoder-only versions. Those are eventually able to outperform the first on all
cases except one.

It is still unclear why the GAT version sometimes achieves results comparable
to those of the GGCN. Intuitively, although the GGCN explicitly uses distances in
the edge-gating mechanism, this could still not be sufficient on a scenario where
nodes features are still predominant, but not meaningful enough. The following
Section 5.2.3 will therefore analyse whether anything better can be achieved
enhancing their structural information.
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5.2.3 Reinforcing the structural information
This section represents the beginning of the “pars costruens“, namely an attempt
to reinforce the representation power of the model providing a path for future
researches. With the simplified architecture of Section 5.2.2, we want the machine to
autonomously capture the essential aspects of the problem: this, on the first instance,
means a model both able to handle nodes and edges information, which therefore
does not require the boost of strong but not general features like coordinates.

Section 5.2.3 starts with a cheating attempt: would the performances improve if
coordinates were at disposal? This basically aims at assessing whether a structural
knowledge comparable to the TSP one would be beneficial for the learning.

Section 5.2.3 replaces the coordinates with encoded distances exploiting the
DE mechanism of Section 2.2.5: this provides an instrument possibly suiting all
problems with a graph representation, making the first step toward a solution for
the current architectures lacks.

A cheating attempt

As aforementioned, we firstly want to assess the importance of structural information
testing the model in the same conditions of the TSP. Since we are not using real
data, the simulator can deceitfully provide the APs and STAs coordinates together
with the others information.

Fig 5.7 shows the results comparing a “dummy“ GAT encoder, a GAT version
using coordinates and a GGCN encoder with distances for the usual message-
weighting procedure.

Figure 5.7: Results showing the best encoder-decoder architecture so far against
two encoder-only versions. Those are eventually able to outperform the first on all
cases except one.
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Clearly, coordinates are beneficial for all configs but one, both reducing the
results median and standard deviation. This confirms the statements of Section 4.1
and demonstrate that for graph problems being able to locate nodes is fundamental
for improving the overall performances.

Applying Distance Encoding

Unfortunately, the real world is not a simulator we can query for more information:
the power allocation problem lacks the nodes coordinates and therefore requires
alternatives.

Particularly, DE might be a valid one: with every node getting a new feature
encoding the distances on respect to the others, it could be that the model is
eventually able to exploit the topology information so far unused. Fig 5.8 visually
provides the comparison between the GGCN encoder with distances, the GAT with
coordinates of Fig 5.7 and two GGCN encoder using the different versions of DE
presented in Section 2.2.5.

Figure 5.8: Two DE attempts against the GAT encoder with coordinates and a
GGCN encoder using distances. The revised DE version successfully outperforms
the other versions on bigger configs; on the other hand, it performs comparably to
the GGCN encoder for smaller ones.

While the State-Of-the-Art counterpart generally bad-behaves, the revised one
obtains results comparable to the classical GGCN with distances on smaller configs
and outperforms the other options for larger ones.

If we do not consider the GAT versions with coordinates, which cannot fairly
be implemented, Fig 5.9 demonstrated that the revised DE attempt represents
our best option. In fact, it successfully reduces the variance on smaller configs; it
both reduces the variance and the average behaviour on bigger ones.
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Figure 5.9: If we remove the GAT encoder with coordinates, the revised GGCN
with encoded distances represents our best guess.

Finally, if we now compare, as in Section 5.2.1, a random decision maker with the
best models we finally achieved, we can also assess that this is always over-performed
by the latter. This is in fact proved on Fig 5.10.

Figure 5.10: The random decision maker is always outperformed by the revised
DE architecture

5.2.4 Summing up the results
It is eventually useful to present a joint plot summarizing all the obtained results:
this is represented on Fig 5.11, where each bar represents the average gap value
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across all attempts (grouping batches and seeds) and each line its standard deviation.

Figure 5.11: Ordered attempts for each configuration file.

As it can be observed, despite some exceptions which might be worth deepening
in future researches, there is a common trend. Both versions with an encoder-
decoder architecture generally bad-behave and occupy the last step of the ranking;
next, the dummy GAT encoder-only version, which poorly behaves since incapable
of fully exploiting the graph notions; finally, the first three positions are usually
occupied by the encoder-only versions of the GAT with coordinates, of the GGCN
with distances and of the GGCN with DE.

5.2.5 Can it transfer back to the Travel Salesman Prob-
lem?

Section 5.2.3 confirmed that enhancing the structural information of problems
suffering the issue of Section 4.1 improves the model’s overall performances. Fur-
thermore, we stated that DE is a generic tool, valid for all types of graph problems.
This section therefore try “transferring back“ those concepts to the TSP problem:
if there we remove the nodes coordinates and only rely on DE to replace them,
how do the results are affected?

Fig 5.12 presents a comparison between the original GGCN with coordinates,
a GGCN and a GAT versions using DE, a GGCN with distances to weight the
messages and finally a “dummy“ GAT.
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Figure 5.12: “Transferring back“ to the TSP

According to the theoretical statements of previous sections, the “dummy“ GAT
version, which makes no use of the topology notions and cannot use coordinates,
does not stand a chance against the others. However, reinforcing the structural
information immediately boosts up the results: in fact the GAT version using DE
almost halves the TSP path-length.

Interestingly, all GGCN versions perform better than this last attempt. This is
quite intuitive, since they all consider edges info in the weighted message passing
between nodes; as also observed in the research of [24], this is beneficial in graphs
contexts where the attention mechanism of the GAT is of lesser effects. Furthermore,
it is proved that the DE version of the GGCN is capable of outperforming the
distance-only counterpart also for the TSP. This testifies once more the benefits
of enhancing the structural information of the nodes embeddings. Finally, the
comparison between the GGCN version with coordinates and the DE; this is indeed
important to remind the preliminary nature of this study, which represents the
first step towards a promising generalization breakthrough but still under-performs
against solid but less generic representations like coordinates.
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Conclusions

This research examined the current potential of RL applied to combinatorial
problems. Particularly, we tested its generalization capabilities when transferring
the latest architectures, valid for a specific subset of combinatorial instances like
the TSP, to other examples such as the power allocation problem.

The results proved that finding neural models capable of extracting good features
from any graph is still an unresolved task. In fact, all the existing architectures are
generally highly node-dependant and unable to fully exploit the edges’ attributes:
in the last instance, considering the edges’ importance on representing the nodes’
relationships, this severely limits the model’s representation power.

We also showed that the lack of static elements like coordinates prevents the
decoder from successfully creating a context: the experiments in fact testify that a
model which only uses the encoder’s representations performs better than all the
available encoder-decoder alternatives. This is in contrast with the usual trends in
ML, and must therefore be a results restraining-factor as well.

We then presented DE, a recently proposed technique to transform edge features
into novel nodes ones. This is meant to enhance the structural information provided
to the model, solving the aforementioned issues: in fact, DE could potentially
improve the model’s representation power while providing static information to
the decoder. The numerical results testify that both the power allocation problem
and the TSP benefit from its use; however, despite the improvements, it is still
incapable of being as representative as coordinates would be if available.

To conclude, this study can hopefully bring a twofold advantage to future
researches: firstly, it should point out that current architecture, even if promising
and successful on a subset of combinatorial tasks, still struggles at generalizing
beyond them; secondly, that further improvements in the field of graphs require
enhancing the models’ representation capabilities. For this second point, DE
represents a fascinating alternative which anyway still requires a deeper study for
completely solving the current lacks.
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