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Summary

Nowadays, telecommunication systems are extensively used every day in numerous
applications: file sharing through cloud, instant messaging apps, conference calls,
file transfer, videogames, telemedicine, etc... Each application needs a particular
set of performance metrics in order to achieve a good user experience. The main
ones are:

• bandwidth

• latency

• reliability

Network technologies are constantly evolving in order to meet the increasingly
strict performance requirements, which is why exploiting the same resources with
new approaches could be beneficial, for instance using multiple network connections
at the same time when available.

Regular services delivered over Internet applications make use of a transport
protocol, such as TCP (Transmission Control Protocol), which provides a reliable,
connection-oriented service to the invoking application [1], providing a host-to-host
connectivity at the transport layer [2]. Multipath TCP (MPTCP) [3] allows such
application to use multiple paths, creating several sub-flows to a regular TCP
session.

The aim of this thesis is to investigate the behaviour of MPTCP and to study
the gain introduced in terms of throughput and robustness, whenever different
access technologies are available.
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Chapter 1

Introduction

1.1 Motivation scenario
The motivation behind the choice of investigating the behaviour of Multipath TCP
and deploying it in a network is to improve the performance provided by regular
TCP in host-to-host reliable connections. The main idea of this protocol is to
use multiple paths from host to host by aggregating several TCP connections,
providing several improvements such as increased throughput, reliability, resilience
and redundancy, maximizing the available resources in the network. Multipath
TCP uses the different network interface cards available on the devices, providing
a multi-homing [4] capability and thus an improved throughput. Speaking of
reliability, thanks to Multipath TCP it is possible to achieve smooth hand-overs
between networks, minimizing the impact on the user experience when a fault is
detected in one of the connections.

Particularly, Wind Tre S.p.A. [5] expressed interest in this topic as they feel
it could be useful to increase the overall transfer speed experienced by the user,
without needing to add new resources into their network. The company has therefore
interest in investigating the MPTCP operation in a real-world setting, examining
first a small and domestic environment which this thesis will be considering. Once
a first batch of experiments is carried out in this setting and signs of improvement
are appreciable in the results, the Research Department will then make use of this
framework to replicate such experiments on a larger scale in Wind Tre’s network.

1.2 Problem Statement
The goal of these experiments is to study the functioning of Multipath TCP,
evaluating its performances in terms of load balancing, throughput and reliability.
Specifically, different scenarios will be considered and all of them are selected to
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1 – Introduction

be very close to a domestic and real-world setting: this way we will be able to
determine how much performance benefits MPTCP can actually offer to the users.

1.3 Document structure
This document is divided in several chapters:

First, we will present an introduction of Multipath TCP, providing the reader
with a background knowledge of the protocol and its main characteristic behaviours
in Chapter 2. A brief explanation of the considered scenario is presented in Chapter
3 as well as all the tools and configurations necessary for the testbed which are
explained in detail. Such tools are then used for the experiments carried out in
Chapter 4 where the specific testing scenarios and evaluation tools are presented,
followed by the results in Chapter 5. Finally, in Chapter 6 we draw our conclusions
on the obtained results and provide the reader with a meaningful interpretation.

2



Chapter 2

Background

In this chapter we go through the main characteristics of Multipath TCP, providing
the reader with all the notions necessary to master the analysis of this protocol.
First, an overview of MPTCP is presented, explaining the main idea behind this
extension of TCP, then we will go through its working procedure and main building
blocks, such as schedulers and congestion window.

2.1 MPTCP overview
Multipath TCP was first introduced in 2013 by the IETF as an experimental
standard in RFC 6824 [3]; it was designed as an extension to TCP which was
capable to support mobility, load balancing, resilience and multi-homing [4]. The
main addition of Multipath TCP is the ability to multiplex one-byte stream over
separate paths, through which a higher throughput can be achieved. For instance
it can be quite useful to aggregate the accesses of a mobile network and a Wi-Fi
access, since they provide two very differentiated paths.

Focusing on the operation of MPTCP, it is safe to say that it very much relies on
TCP, as it uses TCP options to advertise its control informations such as signalling
multipath capability and advertising the available IP addresses, which we will see
in further detail.

MPTCP connection begins similarly to a regular TCP connection with a three-
way handshake; then, if extra paths are available, some additional TCP sessions
called "sub flows" are created over such paths and combined with the existing
session. This new set of parallel sessions continues to appear as a single connection
to the applications at both Client and Server sides. The MPTCP-aware application
initiates the data transmission by regularly opening a TCP socket, while the
MPTCP signalling and operation are taken care of by the MPTCP implementation.
The availability of multiple paths is linked to the presence of multiple addresses at
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2 – Background

host, i.e. if the Client advertises two IP addresses, then the Client can be reached
through two different paths; such paths can be exploited by Multipath TCP which
will then multiplex the traffic toward the Client across two different subflows. The
so-called additional addresses are discovered and used to set up additional subflows
through a path management method: a host can either initiate new sub flows by
using its own additional addresses or it can signal its availability of an additional
address to the other host.

One of the main aspects of multipath TCP is the diversification of the multiple
subflows which are exploited to multiplex the traffic: a packet transmitted on a
path may experience a different network delay than a similar packet transmitted in
parallel on another path. In order to reassembly out-of-order packets at receiver
side (Server), Multipath TCP uses its own sequence numbering system (as well as
buffers where packets are temporarily stored before being reassembled, as we will see
later) for which each segment sent at transmitter side is labelled with two sequence
numbers: the regular sequence number that appears inside the TCP header and the
Multipath-level Data Sequence Number (DSN) that is declared inside Multipath
TCP options.[6] The DSN option is ignored by the MPTCP-unaware middle-boxes
while it is used by the MPTCP-aware receiver in order to reorder the stream before
passing it on to the running application.

2.1.1 Connection establishment
The connection establishment procedure is somewhat similar to a regular TCP one,
as shown in Figure 2.1 where an MPTCP connection is established between Host 1
and Host 2.

Let us now focus on how a new multipath TCP connection is started and how the
multiple subflows are established. The application establishing a new connection
will first open a regular TCP socket, which will set up the initial TCP sub-flow. It
is worth noticing that up until this point, the connection appears as a regular TCP
one to both the network and application layers, thanks to the transparent nature of
Multipath TCP; in fact, a Multipath TCP connection appears like a regular TCP
connection to any application. Instead, to the network layer, each MPTCP subflow
looks like a regular TCP flow whose segments carry a new TCP option type [3].

Once the initial connection is established, if both endpoints, Host A and Host
B, support MPTCP capability, the MPTCP session can be started by either one of
them.

We will now go through a simplified scenario in order to describe the basic
procedures of the establishment of a new MPTCP connection together with the new
sub-flows. In Figure 2.1 the two end points we consider are Host A with Address 1
and Address 2 and Host B with Address 1. In order to establish the so-called main
flow from Host A to Host B, Host A receives the information that it can reach Host
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2 – Background

Figure 2.1: MPTCP Connection establishment

B at Address 1. Subsequently, a three-way handshake procedure is carried out, just
like in the case of regular TCP in order to maintain the transparency to network
and application layers. However, one modification to the regular procedure is
added: the option field carries some MPTCP specific options which are understood
only by the end-system stack.

One of the fundamental options in getting an MPTCP connection started is
the MP CAPABLE one, which is used by both hosts to inform each other that
they support MPTCP capability. The first handshake done to initiate the MPTCP
session from the Host A, starts by sending a SYN segment with an MP CAPABLE
option in order to advertise its capability of handling MPTCP connections. Host
B then responds with a SYN+ACK and an MP CAPABLE option, announcing
token B to Host A, which is a local identification of the connection. Host A now
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2 – Background

responds with an ACK and an MP CAPABLE option, announcing its token A. In
the end a final ACK is sent from Host B to Host A to make sure that the final
MPTCP security informations are received.

Now that the MPTCP session is complete, we focus on the additions of new
sub-flows to the newly established session. Suppose that Host A wishes to create a
sub-flow between its Address 2 and the Address 1 of Host B, then another TCP
three-way handshake is carried out by the end points. This time, however the
MPTCP option advertised is different since the new sub-flows need to be linked
to the already existing MPTCP session; such new option is called MP JOIN and
it is used to create a sub-flow, joining the master one. To be more specific, the
hosts must exchange the identification tokens through the MP JOIN option: Host
A must send token B to the peer to identify which MPTCP connection it is joining.
Host B responds with a SYN+ACK with MP JOIN, then Host A sends an ACK
with MP JOIN option. Finally, Host B sends an ACK and the new sub-flow is
ready to be used.

Suppose a new address becomes available on one of the hosts during the session,
then such address must be advertised through another MPTCP option called ADD
ADDRESS. By doing so, the other host will be aware of the new path which can
be used to establish a new sub-flow.[7]

If a previously announced address becomes invalid during the lifetime of a
Multipath TCP connection, i.e., if the interface gets disconnected, then the affected
host is required to announce such change in order to allow the peer to remove the
sub-flows related to such address. The MPTCP option used in this case is called
REMOVE ADDRESS. [3]

2.1.2 Data exchange
Once we have gone through the establishment scheme of an MPTCP connection,
let us now explain the procedure used by Multipath TCP to exchange data across
the multiple sub-flows.

As previously mentioned, due to the heterogeneity of the paths used to establish
the sub-flows, MPTCP usually deals with out-of-order packet delivery caused by
the different network conditions that packets go through when reaching the peer. In
order to counteract such phenomenon, MPTCP provides two numbering schemes:
a 64-bit Data Sequence Number (DSN), which numbers all data sent over the
MPTCP connection, and a 32-bit sequence number space for each sub-flow, just
like in regular TCP.

MPTCP then maps the sub-flow sequence space to the data sequence space
through an option called Data Sequence Mapping which in carried by the Data
Sequence Signal (DSS) and reassembles the data stream. The Data Sequence
Mapping consists of the sub-flow sequence number, data sequence number, and
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2 – Background

length for which the mapping is valid. This option can also carry a connection-level
acknowledgement (the "Data ACK") for the received DSN [3]. In fact, the data
is scattered in segments over all the available sub-flows and it clearly needs to be
acknowledged when received. MPTCP operates with a two layer acknowledgement:
first, the data is acknowledged on each sub-flow, just like regular TCP flows, then
the data is acknowledged by the data sequence numbering by using a cumulative
Data Acknowledgement, which is sent on one of the sub-flows [7].

2.1.3 Connection release
Let us now review the closing procedure of an MPTCP connection. In the case
of regular TCP, the FIN segment is announced by the host when the running
application requires close() on a socket, meaning that it no longer has data to be
sent to the peer. In MPTCP, instead when a FIN is sent from a host, the only
connection to be closed is the one of the sub-flow over which the FIN is announced.

To successfully close an MPTCP connection, a mechanism equivalent to the
FIN of regular TCP must be triggered through the so-called DATA FIN segment.
The DATA FIN is sent by the host and it is acknowledged by the peer at the
connection level with a DATA ACK, which is sent only once all the data on the
MPTCP connection is successfully received. When the first DATA FIN is sent it
triggers the return of both the DATA ACK and DATA FIN segments from the
other host. The DATA FIN only needs to be sent on one sub-flow and from the
moment that it is acknowledged, all remaining sub-flows close their connections
with standard FIN exchanges. All of these FIN exchanges allows the middleboxes
to clean up their state.

The MPTCP connection is considered to be completely closed once all the
DATA FINs sent by both hosts are acknowledged by DATA ACKs. There is
also an MPTCP option used to abruptly close the whole connection, called MP
FASTCLOSE, however it is only used by specific implementations of Multipath
TCP [7].

2.1.4 Congestion Control in MPTCP
One of the main components of TCP is the congestion controller, whose goal is to
make sure that TCP can adapt its throughput dynamically in response to varying
network conditions, such as packet loss, delay and congestion. In order to do this,
each TCP sender maintains a congestion window, which manages the amount of
packets that the sender can send without waiting for an acknowledgement.

The congestion window is updated dynamically and it grows linearly when
there is no congestion, while it is halved when a packet loss occurs. If multiple
streams are utilizing the same congested link, the TCP congestion controller will
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ensure fairness and the congestion window of each stream will converge to the same
average value [8].

Let us define three different goals of the congestion controller to better understand
how Multipath TCP handles congestion:

1. Fairness to TCP: if several sub-flows of an MPTCP session are running
alongside a regular TCP connection over a bottleneck link, MPTCP should
not be able to get more throughput than the TCP connection.

2. Incentive to deploy Multipath TCP: The performance of the sub-flows of an
MPTCP session should be able to obtain at least the same throughput as a
regular TCP connection.

3. Load balancing: the paths used to send data by the active sub-flows should
be the ones which are experiencing less congestion than the others.

Multipath TCP is able to fulfil these goals by making simple adjustments to the
congestion controller used by regular TCP connections. To be more specific, each
sub-flow will have its own congestion controller which works exactly like a regular
TCP one.[9]

2.1.5 Receiver Window
In TCP the receive window is a parameter used to implement flow control, which
consists of throttling down fast senders when receivers can no longer keep up with
the pace: the receiver advertises a receive window in each packet, telling the sender
how much data the receiver can accept and store in its buffer. MPTCP uses a
unique receive window, shared among all the sub-flows: each one of them can
keep sending data as long as the receiver is willing to accept it. Using one receive
window for each sub-flow, instead may lead to stalling some of them, while others
would not use up their window

With MPTCP, all sub-flows share the same receive buffer and advertise the same
receive window. A key design value is the dimension of the receive buffer. The
lower bound to achieve full network utilization is the maximum bandwidth-delay
product of any one of the paths, however this may not be sufficient when a packet is
lost on a slower subflow and needs to be retransmitted. A tight upper bound could
be the maximum RTT of any path multiplied by the total bandwidth available
across all paths, allowing all subflows to continue transmitting at full speed while
a packet is fast-retransmitted on the maximum RTT path. However, even this
choice might be insufficient to achieve full performance in the case of a retransmit
timeout on the maximum RTT path [3].

8



2 – Background

2.1.6 Schedulers
One of the main characteristics of Multipath TCP is the presence of multiple sub-
flows for each connection, as stated previously, allowing the traffic to be multiplexed
across the available paths, thus achieving a higher throughput. A question arises
as to which path to use in order to divide the traffic; the element responsible for
such choice is the scheduler, which is required to indicate the sub-flow to use for
each segment transmission.

Usually the decision is done considering network properties of the sub-flows
paths, however other policies can be used. In the standard version of MPTCP
Linux Kernel the avaialble scheduling algorithms are Default, Round Robin and
Redundant, which are here described.

Default Minimum RTT Scheduler The current default scheduler of the
MPTCP Linux Kernel [10] is the Minimum RTT. It schedules the last packet
of the sending queue to the sub-flow with the lowest Round Trip Time (RTT) and
with a non-exhausted congestion window. Then, the next packet is sent on the
sub-flow with the next higher RTT, and so on and so forth.

The minimum RTT scheduler is particularly effective in heterogeneous networks
where scheduling data based on the lowest RTT is beneficial, improving the user
experience. Basically, the default scheduler selects the ’fastest’ sub-flow to send
next packet [11]. Just like for the Round Robin scheduler, as soon as the congestion
window is filled, the transmission over that sub-flow is blocked. When a packet is
correctly received, the receiver sends the acknowledgement to make room in the
congestion window and thus allow the scheduler to once again transmit data over
the given path. As a negative aspect, the Minimum RTT scheduler allows an unfair
distribution of the traffic load: the sub-flows with better performance metrics will
have transmit most of the traffic [12].

Round Robin Scheduler Round Robin scheduler [13] is a simple scheduling
mechanism. There is no priority among sub-flows: the scheduler selects them one
after the other and skips the ones with an exhausted congestion window. This way,
the capacity of each path is fully exploited and the distribution of the data packets
among all the sub-flows is uniform. Its performance however is not optimal and it
is only used for academic or testing purposes.[12]

Redundant Scheduler The redundant scheduler is designed to deal with het-
erogeneous networks that are subject to events such as failures and traffic load
variation. Redundant packet scheduling aims to provide the best transmission in
terms of throughput and latency for delay-sensitive applications, such as streaming
services. Simply put, this scheduler tries to transmit the traffic on all available
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2 – Background

sub-flows in a redundant way, which is useful when one wishes to achieve the lowest
possible latency by sacrificing the overall throughput, which is actually one of the
main advantages of MPTCP transmission[14].

For what concerns this thesis, the default scheduler will be used for all the
experiments, unless specified otherwise.

2.2 State of the art
One of the very first application scenarios of MPTCP is reported in [15] where
in 2010 it was used to improve data center networking by performing very short
time-scale distributed load balancing, making use of parallel paths. Since the
release of the experimental standard in 2013, a lot of research work has been done
about Multipath TCP implementation, performances and applications, focusing
on different key characteristics of the protocol. Here we report the state-of-the-art
studies in multipath TCP and its applications.

One of the main strengths as well as weaknesses of Multipath TCP is its rigidity:
it makes its operation very clear and easy to investigate, however it does not
provide much flexibility which may be needed in some working scenarios. A proxy-
based solution for multipath, called MPFlex [16] is designed and implemented
in order to employ a flexible software architecture of mobile multipath. The
key characteristic of MPFlex is the usage of multiplexing to consolidate multiple
(potentially short-lived) connections into two long-lived connections; this way,
an application connection only needs one handshake to create the corresponding
connection, instead of exchanging handshakes for every subflow in Multipath TCP,
allowing all subflows to be usable sooner and improving the overall bandwidth
utilization. Another peculiar aspect of the this design is that, unlike MPTCP,
MPFlex is an OS service and can transparently provide multipath support for
non-TCP protocols, such as reliable UDP, and SCTP [17], opening the door to new
transport-layer innovation.

One of the limiting factors in the usage of Multipath TCP is the existence
of numerous middle-boxes which do not support this protocol. Such topic is
investigated in "Designing a Deployable Multipath TCP" [10]: this paper is about the
design of the Multipath TCP protocol, taking into account different characteristics
such as making it robust to path failures also in the presence of middleboxes that
attempt to optimize single-path TCP flows, examining the practical limitations the
OS poses on MPTCP design and how MPTCP metadata should be encoded. The
research team encoded a patch to the Linux kernel which can deal with middleboxes
really efficiently, operating safely through all the ones that were identified in the
experiment. A new set of algorithms is proposed to solve the problem of sharing a
limited receive buffer between multiple flows, proposing an adaptive solution: as
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2 – Background

more receive buffer becomes available, MPTCP should use up more of the capacity
it has available. This way, if the OS is prepared to spend the memory it will
achieve higher throughput; if not, it will receive the same as TCP. Regarding the
MPTCP metadata, it is shown that some middleboxes pass TCP options that
they don’t understand. As a consequence, whenever a TCP extension changes the
semantics of parts of the packet header, it must then include mechanisms to cope
with middleboxes that do not understand the new semantics.

In this paper [18] they implement a multipath congestion control algorithm,
which is crucial for the efficiency of MPTCP. In this study, the main focus is on
adapting the sub flow windows of a multipath TCP in order to get the maximum
performance possible, making sure that the existing TCP traffic can co-exist
gracefully. In order to do that, two main constraints for the multipath congestion
control algorithm are highlighted:

• Incentive on using multipath: a sub flow should give a connection at least
as much throughput as it would get with single-path TCP on the best of its
paths

• Fairness: a sub flow should take no more capacity on any path or collection of
paths than if it was a single path TCP flow using the best of those paths

This algorithm is tested on various environments and is proven to be safe to use: it
seamlessly balances traffic over 3G and WiFi radio links, as signal strength fades
in and out, making sure that no harm is done to other traffic (fairness constraint)
and that there is always an incentive to aggregate the different paths (incentive
constraint).

One of the main issues of multipath TCP is to reorder the packets at receiver
side due to the out-of-order data paired with bounded receive buffers. In the article
"Tolerating path heterogeneity in multipath TCP with bounded receive buffers"
[19], a new multipath TCP protocol called SC-MPTCP is proposed. Such protocol
makes use of a linear systematic coding (SC), using coded packets as redundancy:
instead of encoding all sent-out packets, some redundancy is transmitted first,
followed by the original packets. The main contributions of such article are the
following:

• mitigating buffer delay and jitter through coding

• pre-blocking warning mechanism to allow the receiver to retrieve missing
packets without waiting for retransmissions

• aggregating all available subflows bandwidth, even if small
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The results show that in a heterogeneous network context where the out-of-order
data issue is more critical, SC-MPTCP requires much smaller receive buffers to
approach the maximum aggregate throughput compared to regular MPTCP, i.e.,
the path heterogeneity has limited impact on the minimum required receive buffers.
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Chapter 3

Implementation

This chapter describes the goal scenario as well as the steps needed to create the
MPTCP testbed implementation used for the testing part. The testbed is realized
to investigate the MPTCP performances and to compare them to the behaviour of
TCP in similar scenarios. Just like regular TCP, Multipath TCP is only run by the
end users, thus we only need to modify the endpoints of our network. In this case,
the MPTCP capability is provided by an open-source Linux Kernel implementation.

In this chapter we will then go through both the hardware and software compo-
nents required by the testbed for all tested scenarios, focusing in the end on the
tools used to evaluate the performance of the network.

3.1 Scenario description
In this section we provide the reader with an extended overview of considered the
scenario.

As previously stated in Chapter 1, the motivation for using Multipath TCP is
due to the possibility of improving the user experience of Wind Tre’s customers
without having to add new resources into their network. Specifically Wind Tre is
a telecom operator which offers both mobile and fixed Internet services, thus it
is very interesting to investigate whether exploiting these two types of networks
simultaneously could lead to an improved user experience.

As we know MPTCP is an extension of the layer 3 transmission protocol TCP,
which is why we will first focus on the aggregated layer 3 throughput obtained
using multiple paths to multiplex the data stream; then, we will move on to a
selected application which is a the file transfer one, namely using FTP where we
will investigate the transfer time of different files, verifying whether by aggregating
more than one path a faster file transmission can be obtained.

As anticipated above, the final goal is to test both the fixed and mobile networks

13



3 – Implementation

in cooperation, but of course we need to study the functioning of MPTCP in
detail before we can move on to a more complex scenario. Because of that we
have identified some scenarios with an increasing level of complexity, starting from
a Local Area Network setup and ending in a multiple Wide Area Networks one,
where eventually both fixed and mobile accesses will be used for transmission. The
detailed presentation of such scenarios is presented in Section 4.1, while here we
just anticipate the main concepts.

The final goal is to speed up the file transfer procedure for a Customer with
several offices located in different areas. In Figure 3.1 we report a typical scenario
with two Customers’ offices which continuously transfer files throughout the day to
exchange work related data over the Internet. This setting is the one we aim to
collect some data on, in order to prove the effectiveness of Multipath TCP in the
Customer’s experience.

Figure 3.1: Multi-homing goal scenario

3.2 Testbed setup
The testbed is composed of the following hardware elements.

Client:

• Ethernet NIC: Realtek RTL810xE Fast Ethernet

• WiFi NIC: Intel dual band wireless AC 3160

• LTE: Xiaomi Redmi Note 7 connected via USB

• CPU: Intel Core i3-4030u

• OS: Ubuntu 20.04
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Local Server:

• WiFi NIC:TP LINK Archer T4E connected via PCI Express

• CPU: Intel Core i5-8400

• OS: Ubuntu 20.04

Azure Server:

• vCPUs: 2

• RAM: 8GiB

• OS: Ubuntu 20.04

Router: Fastgate DGA4131FWB.

It is important to point out that, since we are using an Azure server, we do not
know how the physical hardware is shared with other users and also the background
traffic impact is unknown to us, and it may vary between tests.

3.2.1 Jupyter Notebook on Visual Code Studio
Some tests carried out in this thesis were at times repetitive and quite simple,
but also time consuming for the tester. In order to minimize the time invested
in such cumbersome tasks, a Jupyter Notebook was deployed: it lets the user
combine different executable Python source codes in independent code cells. This
way, we created a cell for basically each test scenario in order to switch on and
off the necessary interfaces, modify the traffic shaper and basically carry out the
experiments in a smarter way.

We will report in Appendix A portions of the Notebook to provide the reader
with an idea of the basic functioning of this very helpful tool.
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3.3 MPTCP configuration
The computers involved in the tests are using MPTCP enabled kernels using the
off-the-shelf Linux kernel implementation [14]. Let us now explain how to configure
the MPTCP options in such kernel. To modify the kernel parameters to configure
the system variables at runtime, the sysctl is used.

The available MPTCP options are:

• net.mptcp.enabled: This option enables the use of MPTCP when it is set with
the value 1, otherwise it can be disabled by setting the value to 0;

• net.mptcp.mptcp_syn_retries: This option configures the number of retrans-
mitted SYN with the MP CAPABLE option after which the MP CAPABLE
option will no longer be sent on the SYN. The default value is 3. This option
exists to handle middleboxes that drop SYNs with unknown TCP options.

• net.mptcp.mptcp_checksum: This option enables/disables the use of MPTCP
checksum when set with the value 1 or 0.

• net.mptcp.mptcp_path_manager: Path manager is a structure that allows
to choose between the two compiled path-managers.
This structure is necessary for the creation of new sub-flows and also to
advertise alternative IP addresses through the ADD ADDR option. This
option has three possible values:

– default: the path manager will accept passive creation of new subflows.
The host will not create new subflows nor it will announce the available
IP addresses.

– fullmesh: the path manager will create a full-mesh between the available
subflows and all addresses.

3.3.1 Scheduler configuration
The schedulers are introduced in section 2.1.6, while here we present the choices in
the MPTCP kernel implementation. At run-time you can select one of the compiled
schedulers through the sysctl net.mptcp.mptcp_scheduler, namely:

• default;

• roundrobin;

• redundant.
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3.4 Evaluation tools
In order to analyse and test the behaviour of Multipath TCP, several well-known
tools were used, such asWireshark, iPerf, Ping and Sockperf. Wireshark [20] is
a network protocol analyser which is widely used in the experiments. The captured
network data allows to measure the performance of the protocol by examining
the packets overhead and evaluating the throughput of the transferred data, the
load balancing among the sub-flows, the connection establishment time and the
handover among connections.

iPerf is a tool used for network performance measurement and tuning. It has
client and server functionality, and it can create data streams to measure the
throughput between the two end points [21].

PING is a Linux command used to check the network connectivity between
host and server by sending a data packet to the specified address with the message
“PING”; once the host receives a response from the server/host, the time elapsed is
recorded and is a measure of the latency [22]. Ping uses ICMP(Internet Control
Message Protocol) to send an ICMP echo message to the specified host, which is
why the latency had to be measured differently when involving the Azure server:
in fact, the Azure firewalls do not allow ICMP messages, which made the use of
the PING command not feasible.

SockPerf is a network testing tool used to measure network latency by creating
UDP/TCP data streams between two end points. This tool provides a client and
server functionality, and can measure the throughput and latency between the two
ends [23]. In our experiments it is used to measure the latency when the Azure
server is involved.

By using the performance tools described above we can obtain all the experimen-
tal data necessary to validate the tested solution. Once the results of Multipath
TCP are collected, we can compare them to the regular TCP solution in order to
prove that MPTCP performs either as good or better than TCP in some scenarios.
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Methodology and evaluation

The main goal of using our testbed is to compare the performances of TCP and
Multipath TCP protocols. In order to provide a meaningful comparison, several
tests are carried out in various network scenarios where different types of access
technologies are used. This chapter therefore describes the methodology and the
evaluation of the implemented testbed in order to investigate the behaviour of
Multipath TCP.

In Section 4.1 we go through the considered scenarios and the way the experi-
ments were conducted, using the components presented in detail in Chapter 3. In
Section 4.4 the metrics used to evaluate the performance of MPTCP are presented.

4.1 Tests description
As anticipated in Chapter 3.1 we identified some test scenarios with an increasing
level of complexity on which all tests are performed. They are of course all real
environment ones and are here described in detail, ranging from Scenario A, which
considers TCP in a LAN, to Scenario E, in which we will investigate MPTCP
performances with two WANs.

4.1.1 Scenario A - TCP in LAN with WiFi and Ethernet
connections

First of all, we start by consolidating our setup in a more controlled environment:
a Local Area Network where simple TCP is initially used, where every behaviour
can be somewhat explained and understood fully. In this current scenario we
will investigate the TCP throughput behaviour which will later on be used when
studying the behaviour of MPTCP sub-flows.
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Scenario A.1 - WiFi only TCP

In Figure 4.1 we report the configuration of scenario A.1 in which the Client is
connected to the Server in a LAN entirely over WiFi.

Figure 4.1: Scenario A.1: WiFi only

Scenario A.2 - Ethernet only TCP

In Figure 4.2 we report the configuration of scenario A.2 in which the Client is
connected to the Access Point over Ethernet, while the Server over WiFi.

Figure 4.2: Scenario A.2: Ethernet only

4.1.2 Scenario B - MPTCP in LAN with WiFi and Ether-
net connections

In Figure 4.3 we report the first configuration where MPTCP is deployed, which
we will refer to as Scenario B. In this setting, the Client is connected to the Server
in LAN over both WiFi and Ethernet simultaneously.

In this scheme we will study the basic functioning of Multipath TCP, investigating
the connection establishment procedure for the sub-flows and the throughput
aggregation advantage.
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Figure 4.3: Scenario B: WiFi and Ethernet in LAN

4.1.3 Scenario C - MPTCP in WAN with WiFi and Eth-
ernet connections

Scenario C is the first one considering a Wide Area Network where the Client
needs to reach the Server over the Internet. This detail certainly adds a level of
complexity and reality to the experiment, making it closer to the goal scenario
described in Chapter 3.1. In this setting, the Client is connected through WiFi
and Ethernet to the Server.

Figure 4.4: Scenario C: WiFi and Ethernet in WAN

4.1.4 Scenario D - Multihoming MPTCP in WAN with
Ethernet and LTE connections

Scenario D is very similar to the previous one as it considers a Wide Area Network,
as well, but it actually considers two of them: the fixed access network and the
mobile one. Specifically, the first network is reached through Ethernet, while the
second over LTE.
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Figure 4.5: Scenario D: WiFi and LTE in WAN

4.1.5 Scenario E - Multihoming MPTCP in WAN with
WiFi and LTE connections

Similarly to Scenario D, this scenario involves two WANs: the fixed access network
is reached through a WiFi access, while the mobile one is reached through LTE.

Figure 4.6: Scenario E: LTE and Ethernet in WAN

21



4 – Methodology and evaluation

4.2 TCP throughput analysis
Before investigating the behaviour of Multipath TCP, it is better to test the
performance of regular TCP in Scenario A. Specifically, we will investigate the
behaviour of the throughput of wireless and wired connections in LAN in order to
draw some conclusions from them in more complex scenarios.

Focusing first on the downlink connection, we can compare the behaviour of the
two access technologies in Figures 4.7 and 4.8, where the results for the WiFi and
Ethernet connections, respectively are reported.

Figure 4.7: Download speed of wireless connection over TCP

Figure 4.8: Download speed of wired connection over TCP
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Due to the nature of the shared channel of WiFi, it is expected to obtain some
time-varying behaviour of the throughput, which is indeed evident in Figure 4.7,
while Ethernet appears to be more stable and less prone to channel interference, as
reported in Figure 4.8.

The exact same observations can be done on the uplink connection, where a more
stable throughput value is achieved by the wired connection in Figure 4.10 while in
Figure 4.9 a more unsteady behaviour is experienced by the wireless connection.

Figure 4.9: Upload speed of wireless connection over TCP

Figure 4.10: Upload speed of wired connection over TCP

This first and very basic observation will be very helpful when explaining the
results obtained with Multipath TCP, as it highlights the low predictability of the
available wireless throughput when aggregating the sub-flows, while the contribution
of the Ethernet connection will be more stable and clear in the results.
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4.3 MPTCP connection establishment
In this section we will go through the experimental data collected through Wireshark
to validate the theoretical behaviour of MPTCP described in Section 2.1.1. The
results here presented are obtained in the so-called Scenario B.

Figure 4.11: MP capable

In Figure 4.11 the Client informs the Server of its capability to support multipath
through the Multipath Capable option. The first flow to be established is the one
from the Ethernet interface of the Client towards the Server: this is defined as the
master flow while the second subflow to be joining the master one is announced
later on in the connection.
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Figure 4.12: Add address flag

Once the master sub-flow is established on the Ethernet interface, the Client
advertises the available address of its WiFi interface through the Add Address
MultiPath TCP option, as shown in Figure 4.12.

The information on the available IP address and address ID are eventually used
when joining the subflow to the master one. In this case, referring to scenario B,
the Client is advertising the address available on the wireless interface.
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Figure 4.13: MP Join flag

Once the additional address and the address ID are advertised by the Client,
a new sub-flow with the Server is created through the «Join Connection» option.
The Client announces the will to join the MPTCP session, as reported in Figure
4.13.

Finally, once the data exchange happened, in the capture of Figure 4.14 we
report the Client sending a «DATA,FIN» packet to close all the sub-flows exploited
in the MPTCP session.
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Figure 4.14: Data Fin flag
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4.4 MPTCP analysis
What we look at to study these experiments is

• subflow analysis

• experimental data for throughput aggregation

• experimental data for path utilization

• behaviour of MPTCP for a file transfer application

We will eventually figure out that some sub-optimal performances are caused
by the scheduling algorithm, the flow duration and the unpredictability of the
available resources.
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Chapter 5

Results

In this section we will present all the obtained results. In each subsection we will
investigate a given metric for each considered scenario in order to test the main
characteristics of Multipath TCP.

First, we will consider the aggregated throughput measure, analysing the through-
put advantage of this protocol in both LAN (Section 5.1) and WAN (Section 5.2);
we will then go through the path utilization, testing the load balancing property
again in both LAN (Section 5.3) and WAN (Section 5.4).

All the above described tests are carried out selecting the default scheduler,
which is why Section 5.5 is reported, where we investigate the impact of the Round
Robin scheduler in the path utilization of some of the available scenarios.

In the end we will test MPTCP with a file transfer application in Section 5.6.

5.1 MPTCP Throughput in LAN
Let us consider the so-called Scenario B, where the Client is connected to the Server
through a wired and a wireless connection in a LAN environment. The throughput
here presented is evaluated with several iPerf tests initiated by the Client, both in
default and reverse mode. The MPTCP scheduler is the default one.

5.1.1 Sub-flow analysis
In Figures 5.1 and 5.2 we report the throughput in DL of the isolated sub-flows for
the wireless and the wired paths, respectively.
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Figure 5.1: Download speed of wireless connection over MPTCP

As expected, the Ethernet path is more robust to interference, thus the average
throughput has a constant behaviour over the connection time, unlike the WiFi
path for which the bit rate oscillates quite a bit.

Figure 5.2: Download speed of wired connection over MPTCP
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Similarly, in Figures 5.3 and 5.4 we report the throughput in UL of the isolated
sub-flows for the wireless and the wired paths, respectively.

Once again, the Ethernet path appears to be more robust than the WiFi one.

Figure 5.3: Upload speed of wireless connection over MPTCP

Figure 5.4: Upload speed of wired connection over MPTCP
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Let us point out how the throughput of the isolated wired sub-flow at Client side
in Figure 5.4 appears to be less stable than the one of the wired TCP connection.
This instability is most likely to be caused by the Server side, which is connected
to the access point over the wireless interface: when interference impairs the
connection from the AP to the Server, the throughput experienced by the wired
Client will degrade, as well.

5.1.2 Throughput aggregation scenario B
In Figures 5.5 and 5.6 we can appreciate the gain introduced by MPTCP in terms
of throughput aggregation.

Figure 5.5: Aggregated upload throughput in Scenario B

From these first results we can notice the impact of Multipath TCP: in the uplink
measurement the aggregated throughput is roughly the sum of the Ethernet and
WiFi throughputs alone, which is the ideal case limit; in the downlink measurement
the aggregation is also very impactful, achieving 115Mbit/s versus the 93Mbit/s
of Ethernet only.
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Figure 5.6: Aggregated download throughput in Scenario B

We can conclude that in a controlled environment like a Local Area Network,
Multipath TCP’s aggregating property is really meaningful in both directions.
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5.2 MPTCP Throughput in WAN
Let us consider the remaining scenarios where the throughput is once again evaluated
with several iPerf tests initiated by the Client, both in default and reverse mode
and the MPTCP scheduler is the default one.

5.2.1 Throughput aggregation scenario C
Here we report the resulting aggregated throughput of Scenario C (Figure 5.7 and
5.8) in both uplink and downlink direction, when the MPTCP scheduler is set to
default.

Figure 5.7: Aggregated upload throughput in Scenario C

Similarly to the results obtained in the Local Area Network, we can appreciate
the impact of Multipath TCP in both directions: in the uplink measurement
the WiFi throughput is pretty much comparable to the Ethernet one, thus the
aggregated one reaches up to 137Mbit/s; in the downlink measurement the WiFi
contribution is smaller but still comparable to the Ethernet one, thus the aggregated
throughput increases up to 87Mbit/s.
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Figure 5.8: Aggregated download throughput in Scenario C

We can conclude that even in an environment where we do not have control
over all the involved parties, Multipath TCP’s aggregating property is impactful in
both directions.

5.2.2 Throughput aggregation scenario D
Here we report the resulting aggregated throughput of Scenario D (Figure 5.9 and
5.10) in both uplink and downlink direction, when the MPTCP scheduler is set to
default. In this case two completely different networks are used and aggregated:
the mobile one and the fixed one, adding another degree of complexity to the
experiment.

In Figure 5.9 we can notice the low available throughput of the LTE connection
in uplink which is lower than the one in downlink reported in Figure 5.10: this
difference is due to the number of available resource blocks of LTE in the two
directions which is larger in DL and smaller in UL. As a consequence, when the
default scheduler selects the LTE sub-flow, the performance of the overall connection
will degrade in UL. Instead, since in DL the LTE throughput is more comparable
to the Ethernet one, it is possible to successfully aggregate them achieving a larger
capability.
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Figure 5.9: Aggregated upload throughput in Scenario D

Figure 5.10: Aggregated download throughput in Scenario D

A legitimate question is, given the default MPTCP scheduler selection of the
min-RTT path first, why does MPTCP not perform as well as regular TCP? Such
path selection only takes place when both paths have room in their congestion
windows (cwnd). Suppose the Ethernet cwnd is full and LTE has some space left,
then the data will still be transferred over LTE even though its latency is higher.
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5.2.3 Throughput aggregation scenario E
Here we report the resulting aggregated throughput of Scenario E (Figure 5.11 and
5.12) in both uplink and downlink direction, when the MPTCP scheduler is set to
default.

In this setting we are once again considering both the fixed and mobile networks,
but in this case the fixed one is reached through a WiFi access which we expect to
be more unstable compared to the Ethernet one in terms of available throughput.

Figure 5.11: Aggregated upload throughput in Scenario E

As expected, the uplink connection is completely compromised by the low avail-
able throughput of the LTE access, as reported in Figure 5.11.

Instead, in this case also the downlink connection is degraded by LTE unlike
in scenario D, although in a less impactful way: this is due to the low stability of
the wireless access which, unlike Ethernet, cannot provide a constant and stable
contribution to the overall throughput.
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As a consequence, the downlink aggregated throughput is slightly smaller than
the WiFi one, as reported in Figure 5.12.

Figure 5.12: Aggregated download throughput in Scenario E

5.3 Path utilization in LAN
Once we have successfully shown the improvement introduced by Multipath TCP in
terms of aggregated throughput, we will now focus on the load balancing property
of this protocol; in fact, what we expect is for MPTCP to be able to distribute
the traffic over the different available paths. The metric that we will keep an eye
on is the percentage of data sent out on each interface, also referred to as path
utilization. Here we investigate the path utilization in a Local Area Network and
precisely in Scenario B.

The percentage of data sent out on an interface depends mainly on the scheduler
choice: for instance, the default one first selects the min-RTT path and then, once
such path is full, it moves on to the next one. In a LAN environment, the behaviour
of the latencies measured by the Ethernet and the WiFi interfaces is quite intuitive:
the first one has a smaller RTT compared to the latter. This is mainly due to the
nature of WiFi, which has a shared channel over air, while Ethernet makes use of
a dedicated cable and is much faster in that sense. We thus expect the default
scheduler to be preferring the Ethernet connection over the WiFi one, although
trying to maintain a fair sharing between the two.
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Instead, the Roundrobin scheduler in RTT-agnostic, i.e., it selects a first sub-flow
and then it alternates it with the second one, trying to achieve a more fair share
between the two sub-flows. We will examine the effect of the RR scheduler in
Section 5.5.

In order to examine the distribution of the sent data, we force the interfaces to
throttle their available bandwidth: by forcing its value for each interface, we can
get a good idea of how the traffic is distributed over the interfaces by the scheduler.

We carried out these experiments through theWonderShaper utility first, however
we noticed that it has an issue: in DL it forces the interfaces to half the desired
bandwidth. As a consequence, we decided to shape the traffic through the Traffic
Control Linux command tc.

5.3.1 Scenario B
We first report the average latency of the WiFi and Ethernet interfaces in Figure
5.13 where, as expected, the latency of the wireless link is larger than that of the
wired one.

Figure 5.13: Latency in Scenario B
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As a consequence, the default scheduler gives priority to the Ethernet interface,
as shown in Figure 5.14 for the uplink and Figure 5.15 for the downlink.

Figure 5.14: Path utilization UL using throttling in Scenario B

As expected, since the latency of the interfaces differs by very little amount,
the min-RTT scheduler gives a small priority to the Ethernet sub-flow, achieving
however a very balanced usage of the the resources.

The downlink results introduce one of the main sources of uncertainty of mul-
tipath TCP, i.e., flows whose duration is small. In those cases, the protocol has
barely enough time to initiate the flow aggregation procedure, thus the benefits of
having multiple available paths fades, as performance outcome is dictated by the
choice of the scheduler which is quite random; in fact, when the throttling is set to
be equal to 1Mbit/s, the path utilization is not really fair in downlink, as reported
in Figure 5.15. In other words, the large flows’ longer duration lets both paths be
established and be able to transfer an amount of data which is non-trivial.
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Figure 5.15: Path utilization DL using throttling in Scenario B

5.4 Path utilization in WAN
Moving now into the Wide Area Network tests, we will be able to appreciate more
in detail the different scheduler implementations of multipath TCP, thanks to the
heterogeneity of the tested scenario.

5.4.1 Scenario C
We first report the average latency of the WiFi and Ethernet interfaces in Figure
5.16 where, as expected, the latency of the two interfaces is comparable. The
measured latency is mainly introduced by the network placed beyond the Access
Point, which is shared by both paths: as a consequence the latency of the WiFi
interface is only slightly larger than that of the Ethernet interface.
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Figure 5.16: Latency in Scenario C

As expected, the default scheduler usually gives priority to the Ethernet interface,
as shown in Figure 5.14 for the uplink and Figure 5.15 for the downlink.

Figure 5.17: Path utilization UL using throttling in Scenario C

The path utilization looks quite balanced for both the uplink and downlink
connections, albeit more fair for the latter where the utilization is almost split in a
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Figure 5.18: Path utilization DL using throttling in Scenario C

50/50 fashion.
Once again in Figure 5.18 we can notice the sub-optimal behaviour of MPTCP

for short flow duration, where one path is selected and all the traffic is sent out
across such interface.

5.4.2 Scenario D
Let us now consider Scenario D, where both mobile and fixed networks are involved.

We first report the average latency of the Ethernet and LTE interfaces in Figure
5.19 where we can now notice how different the two measures are.
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Figure 5.19: Latency in Scenario D

Due to such big difference compared to the previous scenarios, we expect the
default MPTCP scheduler to prioritize the Ethernet access more significantly as
the traffic shaper effect fades.

Figure 5.20: Path utilization UL using throttling in Scenario D
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This behaviour can be appreciated in Figure 5.20 and Figure 5.21 where we
report the uplink and downlink path utilizations, respectively.

Figure 5.21: Path utilization DL using throttling in Scenario D

Clearly, most traffic is sent out on the Ethernet interface with increasing per-
centage as the throttle effect decreases.

The default scheduler only seems to prefer the LTE path in DL for Throttle =
1Mbit/s: as we have previously explained, for short flows MPTCP behaves ineffi-
ciently; in this specific case, the LTE connection had a smaller latency at connection
establishment instant, thus it was selected by the scheduler and all the traffic is
sent out across such interface before its congestion window is full and the Ethernet
connection can be exploited.
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5.4.3 Scenario E
Let us now consider Scenario E where both mobile and fixed networks are involved
through a WiFi and an LTE accesses.

We first report the average latency of the Ethernet and LTE interfaces in Figure
5.22 where we can now once again appreciate how different the two measured values
are.

Figure 5.22: Latency in Scenario E

Similarly to the scenario D case, we expect the default MPTCP scheduler to
prioritize the WiFi access over the LTE one as the traffic shaper effect fades. This
behaviour can be appreciated in Figure 5.23 and Figure 5.24 where we report the
uplink and downlink path utilizations, respectively.
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Figure 5.23: Path utilization UL using throttling in Scenario E

Figure 5.24: Path utilization DL using throttling in Scenario E

We can finally notice that most traffic is sent out on the WiFi interface with
increasing percentage as the throttle effect decreases.
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5.5 Path utilization Round Robin MPTCP sched-
uler

In this section we will go through the effect of Round Robin scheduling in some
of the considered scenarios. In particular, we will focus on a LAN environment
(Scenario B) a WAN environment where only the fixed network is considered
(Scenario C) and another one where both fixed and mobile networks are used
(Scenario D).

As we have seen in sections 5.3 and 5.4 where we investigated the path utilization
in LAN and WAN respectively, the default MPTCP scheduler does not balance the
traffic across the available interfaces, as it gives priority to the path with minimum
RTT, first and then moves to the second path only when the congestion window of
the first path is full. This way the default scheduler gives priority to the "good"
flow, where the goodness is measured in RTT, trying to provide a better data
transmission quality instead of ensuring fairness between the available paths.

On the other hand, the Round Robin scheduler does not consider the RTT when
selecting the path to be used for the transmission; in fact, it simply selects a first
sub-flow and then it alternates it continuously with the second one, achieving a
more balanced traffic distribution between the two sub-flows.
We thus expect a very fair usage of the interfaces when RR is selected with the
negative effect of degraded performances when one of the two sub-flows has large
RTT and little available throughput.

In Figure 5.25 and Figure 5.26 we report the comparison of the aggregated
throughput of Scenarios B, C and D in uplink and downlink, respectively when
Round Robin and default scheduler are selected.
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Figure 5.25: Upload throughput for selected scenarios with RR scheduler

What we can notice is that the effect of the MPTCP scheduler choice is not
very impactful when the two sub-flows share similar bandwidth availability, i.e., in
scenario B and C; in fact, even if the Round Robin scheduler does not prioritize
the better path like the default scheduler does, going back and forth between the
available interfaces does not really degrade performances. Actually, in some cases it
may slightly improve them, like in scenario C in uplink or scenario B in downlink.

In other cases, like in scenario B uplink the overall aggregated throughput is
somewhat smaller than the one achieved by the default scheduler, but still very
close to such value.
Finally in scenario C downlink the RR scheduler behaves exactly like the default
one. This effect is once again due to how similar both the RTT and available
bandwidth of both interfaces are.

On the contrary, in scenario D the performances are impacted negatively by
the RR scheduler, especially in the uplink connection where the LTE bandwidth
is much smaller than the Ethernet one. In DL the aggregated throughput is also
quite smaller compared to the one obtained with the previous scheduler choice, but
it is less critical than the UL case; in fact the LTE bandwidth in DL is closer to
the Ethernet one.
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Figure 5.26: Download throughput for selected scenarios with RR scheduler

What happens with Round Robin is that it simply selects the LTE path as often
as it selects the Ethernet one and since the LTE bandwidth is both unpredictable
and small, for long periods of time the scheduler will transmit over LTE instead of
Ethernet, degrading the overall performances.
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5.6 FTP application
Once we have examined the aggregation and load balancing properties of MPTCP,
in this last section we focus on an application in order to test the gain introduced
by this protocol.

Specifically, we will deal with a file transfer experiment obtained through the
File Transfer Protocol (FTP), where the gain introduced by Multipath TCP is
measured in transfer time decrease. For each of the previously considered scenarios,
we compare the transfer time of the aggregated sub-flows to that of the individual
flows for different file sizes, ranging from 16kB to 50MB.

5.6.1 Scenario B
We start by considering the simplest scenario, i.e. the LAN one.

In Figure 5.27 and Figure 5.28 we report the upload times for smaller and larger
files, respectively, while in Figure 5.29 we report download time.

In the uplink connection the WiFi transfer duration for larger files is much larger
than that of the smaller files, making it hard to represent them together; this is
why we provide the reader with two separate graphs for small and large file sizes.

Figure 5.27: FTP upload time Scenario B small files
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Figure 5.28: FTP upload time Scenario B large files

We can notice one of the main trends of the FTP results: for small transfers
(Figure 5.27), Multipath TCP does not provide much improvement; in fact, for
such small values, the files download time is largely determined by latency, while
the aggregation cannot bring much advantage. Instead, for larger file downloads
(Figure 5.28), generally both paths are saturated, thus the aggregated bandwidth
is more important than the latency.

We can conclude that in both UL and DL directions Multipath TCP introduces
a gain, reducing the overall transfer time, consistently with the results obtained
for the throughput measurements. Specifically, for the download of a 50MB file,
Multipath TCP allows the client to reduce the transfer time by 27% and 31% with
respect to Ethernet and WiFi only connections.
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Figure 5.29: FTP download time Scenario B

5.6.2 Scenario C
We now consider the first of the WAN scenarios where only the fixed network in
involved through WiFi and Ethernet connections.

In Figure 5.30 and Figure 5.31 we report the upload and download times for
different file sizes, respectively.

Similarly to the scenario B case, the file transfer time using MPTCP brings an
advantage in both directions, especially for large file sizes where the aggregated
bandwidth is more relevant, while for small file sizes no particular gain can be
appreciated.
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Figure 5.30: FTP upload time Scenario C

Figure 5.31: FTP download time Scenario C

We can conclude that in a WAN environment where both accesses share similar
RTTs and available bandwidth, FTP performs better when aggregating the accesses
through Multipath TCP.
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5.6.3 Scenario D
We now consider the first of the WAN scenarios where both fixed and mobile
networks are involved through Ethernet and LTE connections.

Once again, the transfer time over LTE is much larger than that of Ethernet,
thus a graphical representation may not allow the reader to fully appreciate the
small files transfer behaviour, which is why we report the upload times for smaller
and larger files, respectively in Figure 5.32 and Figure 5.33, and the download
times for smaller and larger files, respectively in Figure 5.34 and Figure 5.35.

Figure 5.32: FTP upload time Scenario D small files

Going through the previous throughput results of Figure 5.9, we may expect
some degrading performances due to the low available bandwidth of LTE especially
in UL. This finding is confirmed in this set of results, where we cannot appreciate
any gain introduced by MPTCP; instead, in some cases the transfer time of the
files is even larger when aggregating.
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Figure 5.33: FTP upload time Scenario D large files

When looking at the DL throughput results of this scenario reported in Figure
5.10, we can expect some slight improvements, which can be appreciated for instance
for the download of a 20MB file, where the aggregated transfer takes 5.065s while
the Ethernet one takes 5.192s (Figure 5.35).

Figure 5.34: FTP download time Scenario D small files
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This benefit is present, albeit rather small due to the unpredictability of the
LTE throughput and how much it can vary over time.

Figure 5.35: FTP download time Scenario D large files

We can conclude that, consistently with the throughput behaviour of scenario D,
the lack of a guaranteed bandwidth of the LTE connection influences massively the
outcome of the experiment: in UL the LTE path has very little available resource
blocks, thus the available bandwidth is much smaller than that of the Ethernet
connection, degrading the performances resulting in a slower file transfer; in DL
the LTE sub-flow performs better and is able to provide a slight improvement of
the transfer time, although rather small.
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5.6.4 Scenario E
Finally, we report the results obtained in the last scenario where fixed and mobile
networks are reached through WiFi and LTE connections.

Also in this scenario, the transfer time over LTE is much larger than that of
WiFi, thus we report the upload times for smaller and larger files, respectively in
Figure 5.36 and Figure 5.37, and the download times for smaller and larger files,
respectively in Figure 5.38 and Figure 5.39.

Figure 5.36: FTP upload time Scenario E small files

Basically, this setting is very similar to scenario D, with the added element of
the wireless connection, brining a new level of uncertainty to the measure. If we go
back to the throughput measurements of Figure 5.11 for UL and Figure 5.12 for DL,
we can notice how by aggregating WiFi and LTE accesses, the performances tend
to degrade due to the poor performances of LTE and also the channel interference
intrinsic in the WiFi connection.
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Figure 5.37: FTP upload time Scenario E large files

Figure 5.38: FTP download time Scenario E small files
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Figure 5.39: FTP download time Scenario E large files

We can conclude that, consistently with the throughput behaviour, the aggre-
gation of LTE and WiFi connections in this setting does not bring benefits in
either connection direction. In some cases Multipath TCP behaves very similarly
to regular TCP, while in some other cases it degrades the performances due to both
the lack of guaranteed bandwidth of LTE and the instability of the wireless one.
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Chapter 6

Conclusions

In this final chapter we report the main findings of this thesis, showing the
advantages as well as the limitations of the object of our study, Multipath TCP, in
the considered setting.

6.1 Synthesis
In this thesis we have created a Multipath TCP testbed to analyse the potential as
well as the limitations of this protocol in a real-world environment.

In the first part, we addressed the multipath implementation and its basic
functioning, such as the sub-flow connection establishment, explaining its structure
and how it works, from the start to the closing of a session, providing an in-depth
understanding of how the protocol exploits the available set of paths.

We then decided to examine some key properties of MPTCP, namely the
bandwidth aggregation and the load balancing, by developing and testing several
scenarios with an increasing level of complexity. First, we focused on a simple Local
Area Network where we tested the basic building blocks of our testbed, before
moving to a more diverse setting with a WAN accessed using both LTE and home
broadband.

Furthermore, we made an extensive evaluation of MPTCP and we verified that
it can in fact balance traffic load across the available interfaces and it can offer
higher throughput values whenever the two paths have similar RTT and available
bandwidth. For instance, MPTCP introduced a big gain when pairing Ethernet
and WiFi connections with an aggregated throughput roughly 53% larger than the
Ethernet one.

We realized that whenever the LTE mobile network is involved, the aggregation
introduces little to no advantage, degrading the performance at times. This is due
to the choices made by the default MPTCP scheduling algorithm: once the other

61



6 – Conclusions

connection’s congestion window is full, it selects the LTE path even though its
latency is higher and it continues to send traffic across the mobile interface until
that congestion window is full. Then, since the measured available bandwidth of
LTE is quite smaller than the Ethernet/WiFi one and not at all guaranteed over
time, the scheduler spends a lot of time in this slow connection, ending up in a
reduced measured throughput. This limit of the MPTCP protocol is especially
present for the uplink connection, where the available bandwidth of LTE is rather
small, while in the downlink connection it can introduce some advantage in terms
of aggregated throughput.

Afterwards, the load balancing property of MPTCP was considered, by exam-
ining the distribution of the data sent out on each interface. In order to allow a
fair usage of the available interfaces, we carried out some tests shaping the traffic
and setting the maximum available link capacity, comparing them to the results
obtained with no shaping. Multipath TCP successfully managed to use all the
available resources, more so when the maximum available bandwidth was equal
for both interfaces; when no traffic shaping was applied, MPTCP still used both
interfaces quite fairly, giving some priority to the one with the larger available link
capacity.

We investigated the behaviour of another scheduler, the Round Robin one,
which performed as well as the default one whenever the two connections shared
similar RTT and bandwidth, while it performed worse when the mobile network was
involved. This is due to the nature of the RR algorithm which balances equally the
traffic across the two interfaces, using the LTE one as much as the Ethernet/WiFi
one, degrading the overall performances.

In the end we consolidated our analysis by studying a file transfer application
through our testbed, which proved that the transfer time can be reduced when
using MPTCP, especially for well balanced accesses, coherently with the results
obtained for the aggregated throughput.

Summarily, we believe that this testbed shows that an implementation of
Multipath TCP over Wind Tre’s network could surely improve the load balancing,
exploiting all the available resources while providing also a network redundancy,
and it could also improve the overall performances of the goal scenario, i.e. two
remote offices exchanging data over FTP, given a set of similar available paths
between the two. Specifically, we believe that with two accesses with guaranteed
bandwidth, the performances could significantly improve in such scenario, providing
a faster file transfer experience for the customer.
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6.2 Future works
Most of the analysis done so far regarding Multipath TCP allowed the research
community to investigate different implementations and topologies where MPTCP
can be exploited.

We have seen that one source of sub-optimality in the mobile LTE connection is
the large RTT as well as the unstable available bandwidth, thus future work could
focus on testing the same scenarios using a 5G connection, instead: this way the
latency will be limited and predictable, making it easier for the default scheduler
to provide a good traffic distribution.

Another point of interest is the MPTCP scheduler which we have just mentioned:
it could be interesting to develop an algorithm that would allow Multipath protocol
to schedule the traffic differently when a mobile network is involved, reducing the
involvement of the slower connection, for instance moving back to the wired/wireless
connection whenever its congestion window has some space left, rather than
switching to it only when the LTE cwnd is full, as well.
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Appendix A

Extract of Jupyter notebook

In this appendix we report a portion of the VS Code framework used in this thesis
to automate the tests, as mentioned in Chapter 3.
Specifically, we show the code cell used to test both Ethernet and WiFi connections
of Scenario C:

1 # Run t h i s c e l l to perform an MPTCP t e s t us ing both wired and
w i r e l e s s connect ion

2 act ivate_wired = subproces s . Popen ( [ ’ nmcli ’ , ’ c ’ , ’ up ’ ,
3 wired_name ] )
4 stdout , s t d e r r = act ivate_wired . communicate ( )
5 pr in t ( s t r ( stdout ) )
6 a c t i v a t e _ w i r e l e s s = subproces s . Popen ( [ ’ nmcli ’ , ’ c ’ , ’ up ’ ,
7 wireless_name ] )
8 stdout , s t d e r r = a c t i v a t e _ w i r e l e s s . communicate ( )
9 pr in t ( s t r ( stdout ) )

10 proce s s = subproces s . Popen ( [ ’ i p e r f 3 ’ , ’−p ’ , ipe r f_por t , ’−J ’ , ’−c ’
, ip_lan ] , s tdout=subproces s . PIPE , s t d e r r=subproces s . PIPE)

11 stdout , s t d e r r = proce s s . communicate ( )
12 r e su l t_wi r ed_wi r e l e s s = j son . l oads ( stdout )
13 throughput_lan [ \ " Ethernet and Wire l e s s \ " ] = re su l t_wi r ed_wi r e l e s s

[ ’ end ’ ] [ ’ streams ’ ] [ 0 ] [ ’ r e c e i v e r ’ ] [ ’ bits_per_second ’ ] / 1 e6 # Mbit/ s ]
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