
POLITECNICO DI TORINO
Master’s Degree in

Mechatronic Engineering - Technologies for eMobility

Master’s Degree Thesis

Design and development
of vineyard row following algorithms

for agricultural robotic vehicles

Supervisors

Prof. Alessandro RIZZO

Ing. Antonio PETITTI

Candidate

Luca TERZO

26 Ottobre 2021

Summary

The whole thesis project was realised in collaboration with STIIMA-CNR (Sistemi
e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato - Consiglio
Nazionale delle Ricerche), Bari, Italy.

The need to improve the relationship between phenotyping and automation is
increasing due to the world’s current sub-optimal and worsening situation regarding
food production. It is therefore important to research and implement new methods
in order to increase sustainability and food security worldwide. The first step
we used to automate phenotyping is to enable the robot to move autonomously
within the rows of vines. This is made possible by data acquisition through several
Intel Real Sense D345 from which PointClouds are exploited. The points are used
to construct a suitable plan that best fits the row. By extrapolating the data
from the plane normal, the robot can recognise and adjust its angle to the row
and also the distance so that it is always parallel. In addition, with the ultimate
aim of improving the torque distribution in the four drive wheels, a system was
developed to calculate the odometry of the robot, obtaining the x and y distances
from the starting position and the rotation angle. The entire system was tested
and verified through several indoor and outdoor tests, which yielded good results,
thus validating the methods used. The collected data was further analysed and,
through an offline study, a Kalman Filter was designed and tested to smooth the
online data collected and thus avoid decision inaccuracies of the robot.

ii

Acknowledgements

“All the world’s a stage”
As You Like It, William Shakespeare

iii

https://www.shakespeare.org.uk/explore-shakespeare/shakespedia/shakespeares-plays/as-you-like-it/

Table of Contents

List of Figures vii

Glossary x

1 Introduction 1
1.1 Precision Agriculture . 1
1.2 Intelligent self-driving tractors . 3
1.3 Purpose and approach . 4
1.4 Outline . 4

2 Automation systems for phenotyping in the agricultural domain 6
2.1 Vision systems for automation . 6
2.2 Wheel-soil interaction models . 7

2.2.1 Finite Element Method (FEM) 9
2.2.2 Reference model . 10
2.2.3 Parameter estimation . 14

3 Vineyard row path following 19
3.1 Row following problem statement 19
3.2 Proposed solution . 20
3.3 Development of the proposed solution 20

3.3.1 Solution design by means of ROS/Gazebo simulation framework 20
3.3.2 Implementation of the proposed solution 22

4 Tests and experiments 28
4.1 Indoor tests . 29
4.2 Outdoor tests . 29
4.3 Data analysis . 32

5 Conclusions 35
5.1 Achievements . 35

v

5.2 Future work . 35

A Gazebo model 37
A.1 Main part . 37
A.2 Macros . 39
A.3 Materials . 40

B Algorithms 42
B.1 Wall following . 42
B.2 MATLAB plane detection . 45
B.3 Plane detection . 47
B.4 Motion control . 50
B.5 Control joy . 54
B.6 Odometry . 70
B.7 Kalman Filter . 74

Bibliography 77

vi

List of Figures

1.1 Total number of scientific publications on precision agriculture from
the Scopus bibliographic database, using the search terms “precision
agriculture” and “precision farming” in the period 1990-2015. 1

1.2 Scientific publications on precision agriculture made in Italy in the
period 1990-2015 sorted by crop type. 2

1.3 Example of self-driving tractors. 3

2.1 The figure shows how the point cloud calculation algorithm works.
By superimposing the acquired RGB images, a binary image is
obtained (step A). The characteristics of the vineyard are then
extrapolated: orientation, height, width (step B). 7

2.2 The figure shows that depending on the colour of the leaf, a different
colour can be obtained. This can be achieved by higher or lower
reflectance properties. In (a), the intensity values are higher and
are reflected more as the leaf tissue absorbs less infrared light and
the dots appear green. In contrast, in (b) the light is absorbed more
and is shown in blue. The ground is displayed in red. 8

2.3 Free body diagram of a rigid drive wheel on a soft soil. 10
2.4 Bulldozing resistance on wheel side. 13
2.5 Structure of the real-time dominant parameters estimation method. 15
2.6 Data acquisition method. 16
2.7 1D filter sliding. 16
2.8 Structure including Youla controller design. 18
2.9 Vehicle model. 18

3.1 Two-wheel-drive robot model with laser scan. 20
3.2 The figure in a shows the robot inside the Gazebo simulator, while

b shows the view obtained on Rviz of the laser scan point cloud. . . 21
3.3 Laser detection cases. 22

vii

3.4 The figure shows the initial setup consisting of a mobile cart with
sensors: 1) Intel® RealSense™ D435 depth camera, 2) Intel® Re-
alSense™ T265 tracking camera, 3) GPS, 4) IMU. 23

3.5 Point cloud reconstruction. 24
3.6 Wall distance and robot odometry over the acquisition time. 24
3.7 Robot remote control. 25
3.8 This image shows the two main modes used in the proposed solution. 26

4.1 Robot raised on stands. 28
4.2 The picture depicts the robot, raised, with the Intel® RealSense™

D435 camera mounted on top to identify the orientation of the
moving panel. 29

4.3 Robot following the path. 30
4.4 Final robot setup for outdoor acquisitions. 30
4.5 Final robot setup for outdoor acquisitions. 31
4.6 Pointcloud visualisation of the vineyard row on Rviz. In white the

filtered points, taken into account, while the green bow tie shows
the estimated plan, the purple ball is the centre of it. 32

4.7 Comparison of measured and Kalman Filtered angle and distance. . 34

viii

Glossary

Acronyms

AWD all-wheel-drive

DEM discrete element method

ETS error-tolerant switch

FEM finite element method

HTP high-throughput phenotyping

LiDAR light detection and ranging

REKF robust extended Kalman filter

SfM structure from motion

UAV unmanned aerial vehicle

Symbols

b wheel width

c soil cohesion

c1 contact angle coefficient

c2 contact angle coefficient

Cσ pressure sinkage modulus

x

FB bulldozing resistance

FDP drawbar pull force

FN normal force

FS lateral force

h sinkage

I coordinate rotational matrix

IB bulldozing distribution

j shearing deformation

kc cohesive modulus

kφ frictional modulus

MD driving torque

MS steering torque

n sinkage exponent

r wheel radius

s slip ratio

X stress vector

z1 maximum sinkage

z2 residual sinkage

Greek symbols

β slip angle

η viscous damping coefficient

θ wheel-soil contact angle

θ1 entrance angle

θ2 exit angle

θm maximal normal stress angle

xi

µ tangential friction coefficient

ρd soil density

σ normal stress

ΣT terrain reference frame

ΣW wheel reference frame

τ shear stress

τx longitudinal shear stress

τy lateral shear stress

φ internal friction angle

ψc destructive angle

ωD heading rate

ωS angular rate

xii

Chapter 1

Introduction

1.1 Precision Agriculture

Several definitions of precision agriculture exist, but one of the most quoted is
an approach to managing the agricultural production process in order to “do the
right thing, at the right time, at the right place” [1]. This definition aptly sums
up the principles and objectives of precision agriculture, namely to improve the
efficiency of the inputs of dynamic process management, but taking into account
the variability in time and space of the factors affecting the agricultural production
process and compensating for this variability.

Figure 1.1: Total number of scientific publications on precision agriculture from
the Scopus bibliographic database, using the search terms “precision agriculture”
and “precision farming” in the period 1990-2015.

1

Introduction

At present, precision agriculture is becoming increasingly popular mainly in
countries where the technology related to agriculture is more advanced [2]. Research
on precision agriculture in Italy has had a good scientific productivity despite the
fact that it has not been able to count on funding comparable to that of other
countries, and in fact it ranks ninth in the world in terms of the number of scientific
publications , as depicted in Fig. 1.1).

In Italy, specifically, as shown in Fig. 1.2, the sectors in which most research
is concentrated concern wine and cereals [2]: in viticulture, for example, income
maximisation is achieved mainly by increasing the value of the product (i.e. its
quality) thanks to process optimisation through precision farming.

Figure 1.2: Scientific publications on precision agriculture made in Italy in the
period 1990-2015 sorted by crop type.

A further cross-cutting objective for the production chains and technologies
involved, which supports the introduction of precision agriculture techniques, is the
need to quantify the hours of work, fertilisers, seeds, weed-killers, fuels, machinery
and lubricants that are now used in unnecessary quantities and at unnecessary
times. In fact, the adoption of the different techniques of precision agriculture,
allows to optimise the management activity and to reduce, up to almost zero, the

2

Introduction

waste, so as to find a large economic saving, energy and a net reduction of the
environmental impact.

1.2 Intelligent self-driving tractors
The current world situation with regard to food production is not optimal and
is getting worse [3]. As the world’s population is currently growing, the world’s
farmers are faced with the very difficult challenge of maximising crop yields on
ever smaller plots of land. In addition, there are major problems such as drought
and flooding, plant disease and significant economic costs [4]. For these reasons, it
is therefore important to research and implement new methods in order to increase
sustainability and food security worldwide. One avant-garde innovation useful
for increasing crop yields, limiting waste of resources and the use of pesticides
and plant protection products targeted to actual needs, is the High-Throughput
Phenotyping process (HTP) [5]. It involves observing and analysing plants and
their fruits in a specific way, so that decisions and predictions can be made based
on the actual characteristics that can be identified plant by plant. Currently, the

Figure 1.3: Example of self-driving tractors.

phenotyping of plants is a largely manual process involving many workers carrying

3

Introduction

out checks and analyses. This process is particularly laborious and time-consuming,
requires defined skills and can be subject to subjective operator estimates. For this
reason, it is necessary to optimise the process by introducing the use of autonomous,
airborne or ground, vehicles. One of the technology sectors with the highest impact
on agriculture is certainly the robotics field, in particular autonomous robotics for
specific work on plants, as well as robot-guided sensor platforms. Robots are in
fact used to reduce the human labour component in the various stages of tillage,
from soil preparation and sowing to harvesting, by means of driverless tractors
(Fig. 1.3) [6].

Significant resources have been dedicated to research and development of intelli-
gent tractors to meet the needs of the agricultural sector, save energy, protect the
environment and improve productivity [7].

In any case, unfortunately, although the external environment is well structured,
the actual structure and layout changes from field to field and it is therefore of
fundamental importance to achieve a high level of application dynamism in the
robot that makes it capable of adapting to any eventuality. It follows then that
the primary skill that needs a strong level improvement is visual perception.

1.3 Purpose and approach
The main topic of this thesis is to automate the inspection process of intelligent
tractors between the vineyard rows and to increase their efficiency. Therefore, the
main objective is the development of specific controls and commands in order to
follow the row. For this purpose, the robot must be able to maintain the right
distance and the right angle to the vineyard row.

a plane identification algorithm which requires as input the acquired point cloud.
The aim is to work on-line by analyzing the point cloud during the execution of
the row following task. Then, the plane normal is used as a reference in order
to perform the calculations for the robot manoeuvres by adjusting the angle and
distance. The data obtained is processed through a Kalman Filter to exclude noise
and thus improve its quality. A model used to calculate the robot odometry is also
proposed, so that the x and y distance of the robot from the initial position can be
determined. This will be useful for the next steps in calculating the slip in order to
improve the torque distributed in the drive wheels.

1.4 Outline
This thesis consists of five chapters. This chapter introduces purpose and approach
of this research.

4

Introduction

In Chapter 2, an in-depth analysis of the literature study is carried out. Starting
with the less recent cornerstones and ending with the latest innovations and
applications. It then shows the most interesting methods of implementation.

In Chapter 3, the problems to be addressed are identified as the final objec-
tives. Proposed solutions for the purpose are then explained in detail and their
development and implementation is shown.

In Chapter 4, the tests carried out are shown and the results analysed. In
Chapter 5, conclusions are drawn with a focus on future work.

5

Chapter 2

Automation systems for
phenotyping in the
agricultural domain

2.1 Vision systems for automation

Precision agriculture is an agricultural management strategy that uses modern
tools. It focuses on the implementation of agronomic measures and takes into
account the real needs of the crops and the biochemical and physical properties of
the soil. Thanks to today’s technology, it is finally possible to monitor the different
stages of agricultural production. Time-of-flight, stereo and RGB cameras can
certainly be used to obtain maps of the state of vegetation. These maps then help
farmers to maximise agricultural yields. Thus, it is possible to take a series of
photographs in a few minutes without any effort. These will then be very useful in
understanding the health of the crops.

Remote sensing is a possible solution to the problem of obtaining spatial in-
formation on the vegetative state of crops without being invasive. This is made
possible by unmanned aerial vehicle (UAVs) equipped with RGB cameras. By
acquiring numerous images of the surface, a dense point cloud can be obtained
using Structure from Motion (SfM, [8, 9]) algorithms. In this way, after being
filtered and meshed, the digital model of the surface is obtained. This methodology
has been applied both for the recognition of vineyards [10] and for other types of
crops [11]. In [12] it is shown how the SfM can be of great help in the reconstruction
of the point clouds. In fact, through the SfM algorithm it is possible to obtain
information such as orientation, height, width and spacing of the rows and also it
allows to optimally separate the background from the vineyard (2.1).

6

Automation systems for phenotyping in the agricultural domain

Figure 2.1: The figure shows how the point cloud calculation algorithm works.
By superimposing the acquired RGB images, a binary image is obtained (step
A). The characteristics of the vineyard are then extrapolated: orientation, height,
width (step B).

Light detection and ranging (LiDAR) may also be particularly useful for pheno-
typing in vineyards [13]. It works by sending pulses of laser light over a surface very
quickly and, by measuring the time it takes for the reflected light to return and its
intensity using sensors, three-dimensional coordinates are obtained. It has been
used, with positive results, to monitor the growth status of plants of different crops
[13, 14, 15, 16, 17]. In [18] for example, it is shown how LiDAR technology can be
used to scan vineyards and capture vine growth characteristics. In particular, it is
shown that depending on the intensity values of the acquired subject, the colour
changes (Fig. 2.2).

2.2 Wheel-soil interaction models
Working on agricultural land, in many cases, requires high traction forces developed
by the tractor’s wheels. A tyre interacts with the soil through a system of stresses
along the contact surface between the tyre and the soil, and this interaction
generates deformations in both the soil and the tyre. The soil is subject to normal
and tangential stresses on the tyre’s contact surface, and tangential stresses increase
rapidly as tractive force increases, and can lead to the breakdown of compressed soil

7

Automation systems for phenotyping in the agricultural domain

(a) Old and yellow foliage. (b) Novel and green foliage.

Figure 2.2: The figure shows that depending on the colour of the leaf, a different
colour can be obtained. This can be achieved by higher or lower reflectance
properties. In (a), the intensity values are higher and are reflected more as the leaf
tissue absorbs less infrared light and the dots appear green. In contrast, in (b) the
light is absorbed more and is shown in blue. The ground is displayed in red.

between the tread grooves (soil shear effect). This leads to the formation of a surface
layer of soil lacking mechanical resistance and, therefore, highly exposed to erosion
phenomena, and an underlying layer in which the effect of shear deformations
contributes to altering the functionality of the soil structure.

In the literature, soil is usually modelled as an elastic or plastic material.
Elasticity theory allows the soil to be modelled as an elastic medium. This method
has found applications in the study of soil compaction and soil damage due to
vehicular traffic. On the other hand, modelling the soil as a rigid and perfectly plastic
material has found applications in predicting the maximum traction developed
by off-road vehicles. Both of these physical models have limitations, for example,
the elasticity theory is only valid for a limited vehicle load, so the ground can be
considered elastic. Whereas, the plastic equilibrium theory can only be used to
estimate the maximum vehicle load that the ground can bear, but cannot be used
in the calculation of wheel sinkage.

Following the theoretical assumptions mentioned before, several approaches have
been developed in modelling wheel-ground interaction. The four main ones are:

• Finite Element Method (FEM);

• Discrete Element Method (DEM);

• Empirical model;

• Semi-empirical model.

8

Automation systems for phenotyping in the agricultural domain

2.2.1 Finite Element Method (FEM)
Advances in computational techniques in recent years make it possible to model
terrain using the finite element method (FEM) or the discrete element method
(DEM). These methods have the potential ability to investigate the dynamic aspects
of the physical nature of vehicle-soil interaction in detail. The finite element method
is a numerical technique that finds approximate solutions by subdividing complex
problems described by partial derivative equations (PDE) into a finite number
of small segments. In recent years, studies on the application of FEM to the
analysis of wheel-ground interaction have progressed significantly. In order to
accommodate different types of soil behaviour, a number of constitutive models
have been introduced. Due to the inelastic deformation of the soil when subjected
to normal pressure and/or shear stress at the wheel-soil interface, the behaviour of
soil materials is performed by means of pressure-dependent elasto-plastic models.
However, the high computational cost still hinders its application in real-time
operations.

Discrete Element Method (DEM)

The discrete element method is another numerical approach that represents the
soil as a set of many discrete elements, where each is described by its size, shape,
position, velocity and orientation. In its basic form it assumes that each element
has a stiffness characterised by a spring constant k and has damping denoted by a
viscous damping coefficient η. It also assumes that along the wheel-ground contact
there is friction in the tangential direction denoted by the coefficient µ. However,
the computational cost is of paramount importance for real-time applications,
therefore, this approach is also costly to adopt due to the high computational
requirements.

Empirical model

The empirical model is generally obtained by interpolating a large amount of
experimental data. Cone penetrometer and bevameter are typical instruments that
can measure and derive soil parameters. However, in most cases the mathematical
relations obtained by means of interpolation data have no physical meaning and
are strictly specific to the studied environment.

Semi-empirical model

Semi-empirical model theory deals with physical dynamics under a few assumptions.
Bekker pioneered the formulation of terramechanical models [19], [20]. Later, Wong
[21] and Reece [22] developed another model, which is widely used in straight

9

Automation systems for phenotyping in the agricultural domain

and constant motion. These models consider the wheel as a non-deformable rigid
ground travelling on a soft deformable ground, combining both elastic and plastic
theories. However, over the years various research has been carried out to improve
these models. Semi-empirical models are derived from theoretical analysis and
experimental data. They are most commonly used because of their high fidelity
and physical significance and are also suitable for real-time applications [23].

2.2.2 Reference model

A free body diagram of a rigid drive wheel on a soft soil is shown in Fig. 2.3.
Two different reference frames for wheel and terrain are defined, respectively
ΣW{xw, yw, zw} and ΣT{xT , yT , zT}. The rigid drive wheel has radius r and width
b, with θ1 and θ2 indicating the entry and exit angles. Between them the contact
angle θ ∈ [θ1, θ2] is considered. Furthermore, z1 and z2 represent the maximum
and residual sinkage. In the case of a steerable wheel, the steering angular rate
ωS must be considered in addition to the heading rate ωD. The slip angle β is to
be considered between the direction of the speed and the longitudinal axis of the
wheel, and the shear stress τ{τx, τy} is therefore generated. The normal stress is
denoted by σ. Finally, assuming that the wheel is resting perpendicularly on flat
ground, three forces can be highlighted, the normal force FN , the drawbar pull
force FDP and lateral force FS, and two resistant torques, driving torque MD and
steering torque MS, from the soil to the wheel.

Figure 2.3: Free body diagram of a rigid drive wheel on a soft soil.

10

Automation systems for phenotyping in the agricultural domain

As expressed through Bekker’s terramechanical theory in [24], the wheel-soil
interaction generates shear and normal stresses. The latter can be calculated
through [22]

σ(θ) = Cσh
n(θ) (2.1)

where h(θ) is the wheel sinkage in function of θ, n the sinkage exponent and Cσ
the pressure sinkage modulus that is usually expressed as

Cσ = kc
b

+ kφ (2.2)

where kc and kφ are respectively the cohesive and frictional moduli of sinkage. The
wheel sinkage h(θ) of (2.1) is geometrically given by

h(θ) =

r(cos θ − cos θ1) if θ ∈ [θm, θ1]
r
{
cos

[
θ1 − θ−θ2

θm−θ2
(θ1 − θm)

]
− cos θ1

}
if θ ∈ [θ2, θm)

(2.3)

in which θm is the angle where the maximal normal stress occurs and it is express
as

θm = (c1 + c2s)θ1 (2.4)
and s is the slip ratio defined as

s = 1− vx
rωD

(2.5)

where is then possible to notice the relationship between the angular rate ωD and
the forward velocity vx.

The contact angle coefficients c1 and c2 given in (2.4), depend on soil type and,
as reported in [22], typical values are c1 = 0.4 and c2 ∈ [0, 0.3]. It is therefore
possible to approximate (2.4), for many slip rate values, as

θm = 1
2(θ1 + θ2) (2.6)

The entrance and exit angles θ1 and θ2 in (2.3) can be calculated as follow

θi = (−1)i−1 cos−1 r − zi
r

i = 1,2 (2.7)

The shear stress is expressed as [25]

τx(θ) = τ(θ)
(
1− e

−jx(θ)
Kx

)
(2.8a)

τy(θ) = τ(θ)
(
1− e

−jy(θ)
Ky

)
(2.8b)

11

Automation systems for phenotyping in the agricultural domain

where τ(θ) is the shear stress that corresponds to the normal stress computed by
means the Coulomb’s equation

τ(θ) = c+ σ(θ) tanφ (2.9)
in which c the soil cohesion factor and φ is the internal friction angle. Kx and
Ky in (4.1) are the longitudinal and lateral shearing deformation modulus. As
reported in [22] and in [26], the corresponding shearing deformation jx and jy can
be formulated as

jx(θ) = r[θ1 − θ − (1− s)(sin θ1 − sin θ)] (2.10a)
jy(θ) = r(1− s)(θ1 − θ) tan β. (2.10b)

Assuming that the speed of the wheel v is constant, the wheel-soil forces can be
calculated as follows

FN = rb
∫ θ1

θ2
[σ(θ) cos θ + τx(θ) sin θ]dθ (2.11a)

FDP = rb
∫ θ1

θ2
[τx(θ) cos θ − σ(θ) sin θ]dθ (2.11b)

FS = rb
∫ θ1

θ2
τy(θ)dθ + FB (2.11c)

where FB is the bulldozing resistance [27] shown in Fig. 2.4. Note that only the
quantity FN is known a priori and the rest of the quantities need to be estimated.
The bulldozing area is also shown by a ground swell phase with internal friction
angle φ and a destructive phase with a destructive angle ψc. Thus,

FB = rb
∫ θ1

θ2
fB(θ)dθ (2.12)

fB(θ) = D1h(θ)
[
c+ 1

2D2ρdh(θ)
]
[r − h(θ) cos θ] (2.13)

where

D1 = cotψc + tan(φ+ ψc), (2.14a)

D2 = cotψc + cot2 ψc
cotψ (2.14b)

and ρd is the soil density. The destructive angle, can be approximated as

ψc = π − 2φ
4 . (2.15)

12

Automation systems for phenotyping in the agricultural domain

Figure 2.4: Bulldozing resistance on wheel side.

It is possible to rewrite (2.11) in a compact form by defining the force vector
F = [FN , FDP , FS]T and the stress vector X = [σ, τx, τy]T and obtaining

F = rb
∫ θ1

θ2
I(θ)X(θ)dθ + IBFB (2.16)

where the coordinate rotational matrix

I(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

and the vector IB = [0,0,1]T represent the bulldozing distribution. The driving and
steering resistance torque are finally defined as

MD = r2b
∫ θ1

θ2
τx(θ)dθ (2.17)

MS =
∫ θ1

θ2
sin θdFS −

∫ b
2

− b2
ydFDP . (2.18)

Assuming FDP is uniformly distributed along the normal of the wheel plane, the
right integral of (2.18) is null, so combining with (2.11b), (2.18) can be rewritten
as

MS = r2b
∫ θ1

θ2
sin θ)[τy(θ) + fB(θ)]dθ (2.19)

13

Automation systems for phenotyping in the agricultural domain

At the end of the exposition of the current model, it is possible to state that
equations (2.16), (2.17) and (2.19) constitute the main references of the wheel-soil
interaction for a rigid wheel on soft soil.

2.2.3 Parameter estimation
The measurement and interpretation of the spatio-temporal variability of soils
and vegetation is fundamental to the application of precision agriculture. The
monitoring of such variations can be done through the acquisition of environmental
data by remote and/or proximal sensors placed on the machines. In order to keep
the reliability of vehicles in the terrain high, it would be ideal to be able to predict
the characteristics of the surrounding environment with a high degree of accuracy
so that the entire system can be planned and controlled quickly.

In lasts years many methods have been studied to determine soil parameters.
Ding et al. [28] classified the soil parameters into three separate sets and then
decomposed the wheel-soil model to solve them sequentially. This type of approach
has also been experimentally validated by Xia et al. [29]. Hutangkabodee et al. [30],
[31] adopted the composite Simpson’s rule to fit the integrals in the model and then
Newton-Raphson method to find solutions of approximated nonlinear equations set
numerically. As these methods are very complex in terms of calculations, Iagnemma
et al. [32] used an online estimation approach. However, the success of the method
used depends mainly on the quality of the assumptions. With the aim of estimating
N and Cσ, J.Y. Wong [33] proposed the plate sinkage test, and for c, φ and K the
shear test. Thus, starting from measurable quantities such as FDP , MD and z1, it
is possible to estimate the terramechanical parameters.

Real-time dominant parameters estimation method

In order to safeguard energy expenditure and calculation complexity, a real-time
estimation strategy is proposed by [34] concerning only a few focal parameters, the
so-called dominant parameters: the sinkage exponent n and the internal friction
angle φ. The former dominates normal stress, while the latter determines the
relationship between shear stress and normal stress, which are the two main forces
in the soil-wheel interaction. These two parameters were chosen because they
are the most sensitive and dominate the other parameters, which can be set with
empirical values. In this way, it is possible to have a good estimate, greatly easing
the complexity of on-board calculations. The algorithm used to estimate the two
parameters in real-time must have the ability to follow external disturbances very
quickly and, as the wheel-ground reference is empirically defined, must take account
of modelling errors. Hence, it has to be able to tolerate errors and disturbances
in order to keep the parameter estimates stable. This can be achieved by means

14

Automation systems for phenotyping in the agricultural domain

of an error-tolerant switched robust extended Kalman filter (ETS-REKF). The
REKF itself has the inherent ability to tolerate errors due to external disturbances,
but with the addition of the ETS the ability to tolerate modelling errors is added,
allowing the filtering mode to be switched between robust and optimal. The whole
structure is shown in Fig. 2.5 [34]. However, this method precludes the direct
measurement of certain parameters such as force and torque directly from the
wheel.

Figure 2.5: Structure of the real-time dominant parameters estimation method.

Sinkage visual measurement based on homography

An important parameter to estimate accurately is wheel sinkage, as several im-
portant capabilities depend on it, such as being able to adjust torque to improve
traction or identify terrain. Based on the method proposed by Reina er al. [35],
which included a camera to estimate wheel sinkage, but which, due to some image
transformations led to deformations of the images, thus producing errors in the
system, L. Wang et al. [36] show how it is possible to exploit homography for this
purpose. The homography is obtained by means of an image of the wheel to which
a number of reference points have been attached, thus finally obtaining the sinking
of the wheel in 3D space Fig. 2.6. This method is more accurate and cost-effective
than those used in the past, as the sinking of the wheel can be calculated directly
from the camera, without additional sensors.

The method in question involves, in order to obtain the sinking of the wheel,
firstly determining the homography between the plane of the wheel and that of the
camera image and then analysing the variations in intensity of the image using a
1D spatial filter. This kind of filter transforms the original image into a binary one
where all points corresponding to the wheel will be equivalent to 1 and all others
to 0. Finding then the left pl and right pr contact points when the filter output
reaches its minimum by sliding along the lower quadrants as shown in Fig. 2.7. In

15

Automation systems for phenotyping in the agricultural domain

(a) Captured image for measurement. (b) Contact point detection.

Figure 2.6: Data acquisition method.

order to make the process faster, in fact, the circle of the wheel has been divided
into two portions, upper and lower, and only the latter will be analysed.

Figure 2.7: 1D filter sliding.

In the case analysed, however, the wheels are rigid and of a single colour well
defined, so inaccuracies may arise if these features are missing. In addition, further
problems with the display of the wheel rim could occur if the camera was held
fixed and the wheel steered.

16

Automation systems for phenotyping in the agricultural domain

All-wheel-drive vehicles speed estimation

Obtaining an accurate estimate of vehicle’s speed is an important achievement
since, in this way, it is possible to improve the slip rate and, consequently, provide
adequate torque to the drive wheels. In two-wheel drive vehicles, this is done by
relatively simple methods based on the free-rolling wheels. This is clearly not
possible in all-wheel-drive (AWD) vehicles as all wheels are subject to constant
torque application. In order to overcome this problem, other solutions have been
adopted such as using sensors already on board or using other systems such as
GPS.

Velocity estimation using GPS

In [37], the global positioning system (GPS) is used to calculate vehicle speed,
as well as wheel slip and vehicle slip angle. Wheel slip is measured, as usual,
by making the difference between the speed measured by the GPS and the one
measured in the wheel. In computing the lateral slip angle, the direction of travel
can be determined from the GPS speed, while the vehicle heading can be obtained
by integrating the gyroscope yaw. If the steering angle is not available, the yaw
rate measured by the gyroscope can be used as input to a Kalman filter to estimate
the vehicle heading and gyro bias.

Using two GPS antennas instead of one makes calculations easier. The slip
angle in fact becomes the difference between the GPS velocity vector of the first
antenna and the GPS measurement of the second antenna’s heading. In this way,
errors in direction estimation caused by the integration of data received from the
gyroscope are also eliminated.

Problems from detecting speed and other components using the GPS signal
could arise if a high amount of weather-related noise occurs. In addition, it may
happen that the signal is too low and therefore the speed estimate is unreliable or
completely unrealistic.

Youla controller output observer

Alcantar et al. in [38] show how, by exploiting the inertial measurement unit (IMU),
it is possible to take advantage of the yaw rate measurements and accelerometer.
The latter, in particular, provides longitudinal and lateral acceleration from which
the lateral slip angle could be calculated and, in turn, can be used to contribute to
the stability control system. In 2.8a, the entire proposed system.

In Fig. 2.8b, instead, is shown the equivalent feedback control problem where
the input are the IMU measurements, such as longitudinal acceleration ax, lateral
acceleration ay and yaw rate ωy and the correspondent outputs are the longitudinal
speed Ûest, the lateral speed V̂est and the lateral slip angle β̂est estimates. The

17

Automation systems for phenotyping in the agricultural domain

(a) Vehicle state estimation concept. (b) Equivalent feedback control problem.

Figure 2.8: Structure including Youla controller design.

Figure 2.9: Vehicle model.

outputs of the Youla controller are the forces corresponding to the centre of gravity,
longitudinal and lateral, and the yaw moment, Fx, Fy and My respectively. These
are the inputs for the vehicle estimation model, shown in Fig. 2.9 and, given the
vehicle mass m and inertia yaw moment jy, the desired data can be extrapolated.

18

Chapter 3

Vineyard row path following

3.1 Row following problem statement

The yield of a grape plant depends on various physical, chemical and biological
factors such as climate, soil properties, geographical location, pest and disease
infestation, etc. In order to monitor the condition of the vines in relation to the
events occurring during the growing and harvesting season, it is of fundamental
importance to have an appropriate analysis. Over the years, this role has been
dispensed with by man manually and this process is highly labor-intensive and
wasteful in terms of time, requires well-defined competency and can be subject
to the operator’s personal judgment. For this reason, it is necessary to improve
the process by implementing the use of autonomous vehicles. One of the most
impactful technology areas in the agricultural sector is undoubtedly robotics,
especially autonomous robotics for targeted work on plants, as well as robot-driven
sensor platforms. Robots are in fact used to reduce the human workforce element
in the various stages of working the soil, from preparation and sowing to harvesting,
using driverless tractors. For these reasons, the development of an autonomous
robot capable of inspecting vineyards, able to recognise the surrounding environment
and, in particular, follow the row of vines without hindrance in order to carry out
the analysis, may be useful.

Let us assume that we have a vineyard consisting of several rows and that each
side of each row needs to be analysed. In this scenario, we formulate the following
problem: developing a control algorithm for a 4WD mobile robot that allows the
latter to visit each row at a predetermined distance.

19

Vineyard row path following

3.2 Proposed solution
The solution proposed in this paper is based on two main ROS nodes and an
Intel RealSense D435. Several useful data are acquired from the latter, including
point clouds which are extrapolated and filtered by the first script. Using the
RANdom SAmple Consensus (RANSAC) robust regression algorithm, the most
popular technique to date for extracting single planar patches from noisy datasets
containing multiple surfaces, the best-fitting plane is calculated. Both scripts are
either subscriber and publisher, so in this case a vector containing data referring to
the normal of the recognised plane is published. The second script, subscribed to
the topic of the first, the data received is processed and, depending on the position
of the robot with respect to the plane, the action to be performed by the robot
(move away, approach or rotate) is selected and sent.

3.3 Development of the proposed solution
3.3.1 Solution design by means of ROS/Gazebo simulation

framework
A small model of the robot was made in order to emulate the movements within
the simulation environment. The components of the robot are described in a .xacro

Figure 3.1: Two-wheel-drive robot model with laser scan.

design file (see Appendix A). As shown in Fig. 3.1, it is a two-wheel-drive robot
with a free-rolling central sphere. Protruding at the front centre, it is possible
to observe the laser scan. The latter is made real and functional by the Gazebo
plug-in called "gazebo_ros_head_hokuyo_controller", at an angle of 180°. In Fig.

20

Vineyard row path following

(a) Robot pose in Gazebo.

(b) Point cloud visualization in Rviz.

Figure 3.2: The figure in a shows the robot inside the Gazebo simulator, while b
shows the view obtained on Rviz of the laser scan point cloud.

3.2b is shown, with reference to Fig. 3.2a, how the robot perceives the point cloud
by means of laser scanning. After setting up the model, motion controls were
developed using a python script (see Appendix B.1) in order to maintain a roughly
stable distance from the wall. The scanning area is divided into five smaller areas
and, for simplicity’s sake, three of these are used to define the various detection

21

Vineyard row path following

Figure 3.3: Laser detection cases.

cases: Front-Left, Front and Front-Right (Fig. 3.3). There are then eight possible
combinations and, depending on the case, a decision is made. In this way, the
robot will follow the wall as long as it is present, while if it finds itself in a situation
where no wall is present nearby, it will start looking for one to follow.

3.3.2 Implementation of the proposed solution
Matlab data processing

A first setup, shown in Fig. 3.4, consisting of an Intel® RealSense™ D435 depth
camera, used to scan a real wall in order to obtain the point cloud, an Intel®
RealSense™ T265 tracking camera, used to track the robot odometry, and other
sensors was set up in order to perform short acquisitions to collect essential data
for algorithm development.

After acquiring the bag using ROS, the point cloud was then reconstructed using
MATLAB to calculate the distance of the robot from the wall. The reconstructed
point cloud is shown in Fig. 3.5a and the best fitting plane reconstructed on the
point cloud using the pcfitplane (see Appendix B.2) function is shown in Fig. 3.5b.

In addition, during the calculation of the best fitting plane, instant by instant,
the distance of the plane from the robot was calculated, shown in Fig. 3.6 where
it is also possible to notice some poorly defined peaks due to some glass windows

22

Vineyard row path following

Figure 3.4: The figure shows the initial setup consisting of a mobile cart with
sensors: 1) Intel® RealSense™ D435 depth camera, 2) Intel® RealSense™ T265
tracking camera, 3) GPS, 4) IMU.

along the wall. Fig. 3.6 also shows the odometry of the x-axis (oriented from the
robot towards the wall) of the robot.

Online plane detection

Obtaining a fitted plane to the point cloud very quickly is a crucial step for the
robot’s performance as the used camera sends data at 30fps. A python script
was implemented for this purpose, but the computation speed was low and as a
consequence only a maximum of 10fps could be achieved for the plane determination.
Because of this, the whole algorithm was rewritten in C++, increasing performance
considerably by a factor of three. In Appendix B.3 the entire algorithm is given. The
first operation performed is the conversion from PointCloud2 to PointCloud, which
is required to perform the next steps, including the use of the plane recognition
function. The point cloud is then filtered, limiting its height and depth to realistic

23

Vineyard row path following

(a) Flat wall. (b) Point cloud fitted plane.

Figure 3.5: Point cloud reconstruction.

Figure 3.6: Wall distance and robot odometry over the acquisition time.

estimated values: [0.1, 1] for the z axis and [−0.6, 0.3] for the y axis (considering
the camera in a horizontal position) [39]. This procedure allows us to obtain all the
information about the plane normal with respect to the robot, and thus distance
and inclination. The data obtained is then sent, via a suitable ROS topic, to the

24

Vineyard row path following

motion control algorithm.

Motion control

The purpose of the Motion Control algorithm, shown in Appendix B.4, is to receive
the vector containing the data about the plane normal values and to analyse them.
The model is based on predefined distances and angles from the plane, respectively
d_des (distance of the robot from the plane) and nx_des (x component of the
normal). While the former is expressed in metres and can be set to a preferred value
with a certain tolerance d_in, the latter has a chosen value of 0, with tolerance
nx_in, since if the component on the x-axis is zero, the robot is perpendicular to
the estimated plane. In both cases, a hysteresis allowance has been provided, so
that the robot does not remain in the boundary edge. Thus d_out for the distance
and nx_out for the angle indicate the maximum amounts, added to the desired
value, that can be tolerated beyond which the robot’s realignment logic comes
into play. After analysing the data, the Motion Controller can then determine to
perform various actions, namely: approaching or moving away from the wall if it
is too far or too close, or clockwise or anticlockwise rotation if the x-component
of the normal is negative or positive. Once the action has been determined, the
command is sent to the next node, the Control Joy.

Control joy

The Control Joy algorithm was developed in an initial phase so that the robot could
be controlled exclusively by the Controller shown in the Fig. 3.7, and then the
automatic function was implemented, managed by the Motion Control algorithm.

Figure 3.7: Robot remote control.

The first action to take, after starting all the scripts necessary for operation,
to take control of the robot is to press the left and right triggers simultaneously

25

Vineyard row path following

and then the A button. This is a safety check, designed to prevent unintentional
commands being given inadvertently. The robot is then ready to be controlled,
and depending on the various key combinations, a different mode can be chosen.
In each mode the left and right triggers are used to move forward and backward
respectively. The default mode is two-wheel steering, in which it is possible to go
forwards and backwards by steering with the front wheels via the right Thumbstick.
To switch to side steering mode (Fig. 3.8a), use the Directional Pad, which rotates
all four wheels ninety degrees, making lateral movement possible. Holding down
the right Thumbstick switches to circle steering mode (Fig. 3.8b) and the left and
right triggers are then used to rotate clockwise and counterclockwise respectively.
The last mode is four-wheel steering, for which the left Thumbstick is used. In this
mode, the front and rear wheels rotate discordantly to reduce the steering angle.
This first part of the code had already been developed and tested by my colleague,
PhD student Fabio Vulpi.

(a) Side steering mode. (b) Circle steering mode.

Figure 3.8: This image shows the two main modes used in the proposed solution.

The automatic mode is only activated when the ’Right Bumper’ is pressed. In
this way the commands of the remote controller are inhibited, with the exception
of the button to switch the automatic mode on/off, and only the instructions
received via the topic cmd_vel from the Motion Control node are taken into
account. Various safety protocols are applied to preserve the status of electric
motors. In fact, it has been made impossible to drive the robot when it is in the
process of changing modes and the wheels have not completed the transition, or
the SecureVelShutdown() function is used so that the motors do not stop instantly
when the acceleration command stops, but gradually.

26

Vineyard row path following

Odometry

Odometry is a localisation method which uses information from sensors such as
encoders to derive an estimated position relative to the point of origin. It is
particularly useful in autonomous vehicles as it facilitates certain tasks in the field
thanks to the intrinsic knowledge of the current position. The pose, body position,
is composed of two entities, i.e. position and direction of the robot. It can therefore
be represented by x, y and θ coordinates. In order to determine the current robot
position and thus update its pose, the variation must be computed using the sensor
readings. In our case, 1024-bit encoders were used to control the rotation of the
wheel. As a 1:4 gearbox is placed between the motor and the wheel, the final
calculation to obtain the encoder resolution is Encres = 2π

4096 = 0,0015 rad/bit.
Knowing also the steering angle, fixed at 30 degrees, it is possible to calculate the
centre of instantaneous rotation. The steering angle is fixed at 30 degrees, which
allows the centre of instantaneous rotation to be calculated. In addition, since the
circumference of the wheel is a known dimension, this makes it possible to calculate
the distances travelled by using the encoder ticks. The calculations and procedures
are shown in detail in Appendix B.6.

However, incremental encoders on wheels measure their rotation, but not the
robot’s attitude in a fixed absolute reference system. If a wheel slips, the encoder
detects a displacement that is not consistent with the change in attitude of the
robot. For this reason it is important to combine the odometry measurement with
a second measurement, such as GPS or visual odometry, in order to calculate the
amount of slippage and refine the positioning of the robot in space.

27

Chapter 4

Tests and experiments

This chapter describes the experimental tests carried out through which data nec-
essary for the production of improvements was collected. In detail, the first section
describes the indoor experiments, in which paths and obstacles were simulated,
while the second section describes the outdoor experimentation campaign.

Figure 4.1: Robot raised on stands.

28

Tests and experiments

4.1 Indoor tests
Indoor tests took place during the entire node design period in order to find and
fix any bugs or problems. At first, the robot was kept elevated on tripods (Fig.
4.1) to test the model and exclude any possibility of damage to the robot.

In order to test the implemented functionalities and the decision-making capacity
of the Motion Control algorithm, a first test was carried out by simulating the
distance and inclination variations of the wall as shown in Fig. 4.2.

Figure 4.2: The picture depicts the robot, raised, with the Intel® RealSense™
D435 camera mounted on top to identify the orientation of the moving panel.

When good results were obtained, we moved on to testing the robot in controlled
environments specially composed to provide for the activation of every possible
mode that could be selected by the control algorithm. Fig. 4.3 shows the robot
that independently follows the wall and then, by rotating, adapts to the different
inclinations of the pathway.

4.2 Outdoor tests
The outdoor tests were carried out in San Cassiano (LE) and they lasted 3 days.
The first day was taken up with the final configuration of the robot and the assembly
of the final setup, depicted in Fig. 4.4 on the robot body composed of five cameras,
GPS, IMU and two additional Intel® NUCs connected to each other and to the
central unit of the robot via LAN. The remaining two days were spent collecting
data and conducting experiments among the vineyard rows. Unfortunately, as can

29

Tests and experiments

Figure 4.3: Robot following the path.

Figure 4.4: Final robot setup for outdoor acquisitions.

30

Tests and experiments

be seen in Fig. 4.5 it was not possible to activate the robot’s automatic control
algorithm because the soil was too soft and, since the wheels were too small and
thin for the type of soil, the robot was not able to move to align itself with a
sufficiently high accuracy. However, it was possible to test the plane recognition
software (Fig. 4.6) and a lot of useful data was acquired for offline analysis and
development of future implementations.

Figure 4.5: Final robot setup for outdoor acquisitions.

Moreover, the outdoor tests have shown the need to filter the data for online
decision analysis.

31

Tests and experiments

Figure 4.6: Pointcloud visualisation of the vineyard row on Rviz. In white the
filtered points, taken into account, while the green bow tie shows the estimated
plan, the purple ball is the centre of it.

4.3 Data analysis

From the data acquired during the experimental tests, especially the outdoor tests,
it emerged that the high reactivity and therefore high oscillation of these, can result
in the selection of incorrect robot motion modes and poor accuracy and reliability.
For this reason, a Kalman Filter was implemented in order to smooth the data.

Starting with the state equations,

θ̇k+1 =ωθ̇ (4.1a)
θk+1 =θk + θ̇∆t+ ωθ (4.1b)
ḋk+1 =ωḋ (4.1c)
dk+1 =dk + ḋ∆t+ ωd (4.1d)

where θ is the inclination of the robot with respect to the row and d the distance,

32

Tests and experiments

the following matrices were obtained:

A =

0 0 0 0

∆t 1 0 0
0 0 0 0
0 0 ∆t 1

 (4.2a)

B =

0
0
0
0

 (4.2b)

C =
[
0 1 0 0
0 0 0 1

]
(4.2c)

D = 0 (4.2d)

The matrices A B C D were obtained using a linear time invariant model (LTI).
Thus, using the Kalman equations the Kalman Filter model was developed using
Matlab (see Appendix B.7).

xk+1|k = A ∗ xk|k (4.3a)
Pk+1|k = A ∗ Pk|k ∗ A′ +Q (4.3b)

K = Pk+1|k ∗ C ′ ∗ inv(C ∗ Pk+1|k ∗ C ′ +R) (4.3c)
xk+1|k+1 = xk+1|k +K ∗ (y − C ∗ xk+1|k) (4.3d)
Pk+1|k+1 = I −K ∗ C) ∗ Pk+1|k (4.3e)
yk+1|k+1 = (C ∗ xk+1|k+1 (4.3f)

xk|k = xk+1|k+1 (4.3g)
Pk|k = Pk+1|k+1 (4.3h)

In the above equations, x and y are the input and output respectively, P is the
covariance matrix (a measure of the estimated accuracy of the estimated state)
and K is the gain that minimises the residual error.

The implementation of a Kalman filter may often be challenging due to the
complexity of obtaining a good estimate of the noise covariance matrices Q and R.
The first depends on the sensitivity of the sensor while the second is the covariance
of the process noise and after numerous refinement tests, good results were obtained

by setting R =
[
0.5 0
0 0.5

]
and Q =

0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1

 we observe the result in

Fig. 4.7 which shows a smoother and less angular curve. In this way it is possible

33

Tests and experiments

to avoid high peak surges and instead maintain a more linear trajectory. This
allows the robot to be more accurate and travel strategies more efficient.

Figure 4.7: Comparison of measured and Kalman Filtered angle and distance.

34

Chapter 5

Conclusions

5.1 Achievements
In conclusion, it is therefore possible to say that depth cameras can be of great help
in precision farming and can be an inexpensive but valuable means of developing
effective products. The elaborated model, based on the detection of the plane
with respect to the received point cloud, proved to be valid and can represent an
excellent starting point for future implementations. Thanks to both indoor and
outdoor tests, the objectives set were validated, in particular the addition of the
Kalman Filter for data processing proved to be of great impact and necessary to
improve the decision-making process and thus increase the accuracy, reliability and
repeatability of the robot.

5.2 Future work
Future work could be divided into three main tasks:

• Perception improvement;

• Autonomous phenotyping;

• Cooperative analysis.

One of the goals of perception that should be aimed at is therefore to improve the
control part that concerns the interaction of the wheel on the ground. Autonomous
phenotyping would make the process more efficient, the use of autonomous robots
would then automate the data collection and increase the temporal resolution of
the growth status by precisely highlighting any phytosanitary problems. Depending
on the type of crop, it may be useful or necessary to approach field inspections with
different methodologies. In some circumstances an area-based inspection would

35

Conclusions

be indispensable, while in other environments a co-operative analysis (e.g. robot
on wheels and drone) might be useful, resulting in a multi-layer map with a more
defined amount of information. In order to achieve the set objectives, the research
activity proposes to start from the study of the state of the art to examine in
detail the aspects related to the application of complex systems in the context of
agriculture.

A methodology that can be implemented in the future could involve the use of
methods based on neural networks with the aim of recognising the type of plant,
the state of ripeness of the fruit, any problems related to its state of health and any
additional information for a complete analysis. As reported in [40] and [41], the
deep neural network has proven to be a particularly effective and fruitful technique,
it gives the possibility to manage and classify data with a high adaptability. Further
studies also show that the use of neural networks is applicable to the recognition of
specific plants and their possible diseases.

The use of neural networks in agriculture, specifically in trait control, phenotyp-
ing and contiguous operation, certainly has enormous advantages. In particular,
one would have a large amount of detailed and accurate data in a short period of
time, thus regulating the use of fertilisers, drugs, pesticides and water dosage in a
specific way thus avoiding waste and drastically reducing the pollution produced.
Traction control directed according to the type of terrain or obstacle to be tackled
would allow greater reliability of agricultural vehicles and greater autonomy. The
latter could find applications in aerospace rovers, where the ability not to get stuck
is crucial.

36

Appendix A

Gazebo model

A.1 Main part

1 <?xml ve r s i on=" 1 .0 " ?>
2 <robot name="m2wr" xmlns :xacro=" h t tp : //www. ros . org /wik i / xacro ">
3

4 <xac r o : i n c l ud e f i l ename=" $(f i nd m2wr_description) / urdf /mat e r i a l s .
xacro " />

5 <xac r o : i n c l ud e f i l ename=" $(f i nd m2wr_description) / urdf /m2wr . gazebo "
/>

6 <xac r o : i n c l ud e f i l ename=" $(f i nd m2wr_description) / urdf /macros . xacro
" />

7

8 <l i n k name=" l i nk_cha s s i s ">
9 <!−− pose and i n e r t i a l −−>

10 <pose>0 0 0 .1 0 0 0</pose>
11 <i n e r t i a l>
12 <mass value=" 5 " />
13 <o r i g i n rpy=" 0 0 0 " xyz=" 0 0 0 .1 " />
14 <i n e r t i a ixx=" 0.0395416666667 " ixy=" 0 " i x z=" 0 " iyy="

0.106208333333 " i y z=" 0 " i z z=" 0.106208333333 " />
15 </ i n e r t i a l>
16 <!−− body −−>
17 <c o l l i s i o n name=" c o l l i s i o n_ c h a s s i s ">
18 <geometry>
19 <box s i z e=" 0 .5 0 .3 0 .07 " />
20 </geometry>
21 </ c o l l i s i o n>
22 <v i s u a l>
23 <o r i g i n rpy=" 0 0 0 " xyz=" 0 0 0 " />
24 <geometry>
25 <box s i z e=" 0 .5 0 .3 0 .07 " />

37

Gazebo model

26 </geometry>
27 <mate r i a l name=" blue " />
28 </ v i s u a l>
29 <!−− c a s t e r f r on t −−>
30 <c o l l i s i o n name=" c a s t e r_ f r on t_co l l i s i o n ">
31 <o r i g i n rpy=" 0 0 0 " xyz=" 0 .35 0 −0.05 " />
32 <geometry>
33 <sphere rad iu s=" 0 .05 " />
34 </geometry>
35 <su r f a c e>
36 <f r i c t i o n>
37 <ode>
38 <mu>0</mu>
39 <mu2>0</mu2>
40 <s l i p 1>1 .0</ s l i p 1>
41 <s l i p 2>1 .0</ s l i p 2>
42 </ode>
43 </ f r i c t i o n>
44 </ su r f a c e>
45 </ c o l l i s i o n>
46 <v i s u a l name=" ca s t e r_ f ront_v i sua l ">
47 <o r i g i n rpy=" 0 0 0 " xyz=" 0 .2 0 −0.05 " />
48 <geometry>
49 <sphere rad iu s=" 0 .05 " />
50 </geometry>
51 </ v i s u a l>
52 </ l i n k>
53

54 <l i n k name=" sen so r_ la s e r ">
55 <i n e r t i a l>
56 <o r i g i n xyz=" 0 0 0 " rpy=" 0 0 0 " />
57 <mass value=" 1 " />
58 <xac r o : c y l i n d e r_ i n e r t i a mass=" 1 " r=" 0 .05 " l=" 0 .1 " />
59 </ i n e r t i a l>
60

61 <v i s u a l>
62 <o r i g i n xyz=" 0 0 0 " rpy=" 0 0 0 " />
63 <geometry>
64 <cy l i nd e r rad iu s=" 0 .05 " l ength=" 0 .1 " />
65 </geometry>
66 <mate r i a l name=" white " />
67 </ v i s u a l>
68

69 <c o l l i s i o n>
70 <o r i g i n xyz=" 0 0 0 " rpy=" 0 0 0 " />
71 <geometry>
72 <cy l i nd e r rad iu s=" 0 .05 " l ength=" 0 .1 " />
73 </geometry>
74 </ c o l l i s i o n>

38

Gazebo model

75 </ l i n k>
76

77 <j o i n t name=" jo in t_sen so r_ la s e r " type=" f i x ed ">
78 <o r i g i n xyz=" 0 .15 0 0 .05 " rpy=" 0 0 0 " />
79 <parent l i n k=" l i nk_cha s s i s " />
80 <ch i l d l i n k=" s en so r_ la s e r " />
81 </ j o i n t>
82

83 <xacro : l ink_whee l name=" l ink_right_wheel " />
84 <xacro : j o in t_whee l name=" jo int_r ight_whee l " c h i l d=" l ink_right_wheel

" or ig in_xyz=" −0.05 0 .20 0 " />
85

86 <xacro : l ink_whee l name=" l ink_le f t_whee l " />
87 <xacro : j o in t_whee l name=" jo in t_ le f t_whee l " c h i l d=" l ink_le f t_whee l "

or ig in_xyz=" −0.05 −0.20 0 " />
88 </ robot>

A.2 Macros

1 <?xml ve r s i on=" 1 .0 " ?>
2 <robot xmlns :xacro=" h t tp : //www. ros . org /wik i / xacro ">
3 <xacro:macro name=" l ink_wheel " params="name">
4 <l i n k name=" ${name} ">
5 <i n e r t i a l>
6 <mass value=" 0 .2 " />
7 <o r i g i n rpy=" 0 1 .5707 1 .5707 " xyz=" 0 0 0 " />
8 <i n e r t i a ixx=" 0.000526666666667 " ixy=" 0 " i x z=" 0 " iyy="

0.000526666666667 " i y z=" 0 " i z z=" 0 .001 " />
9 </ i n e r t i a l>

10 <c o l l i s i o n name=" l i nk_r i gh t_whee l_co l l i s i on ">
11 <o r i g i n rpy=" 0 1 .5707 1 .5707 " xyz=" 0 0 0 " />
12 <geometry>
13 <cy l i nd e r l ength=" 0 .04 " rad iu s=" 0 .1 " />
14 </geometry>
15 </ c o l l i s i o n>
16 <v i s u a l name=" ${name}_visual ">
17 <o r i g i n rpy=" 0 1 .5707 1 .5707 " xyz=" 0 0 0 " />
18 <geometry>
19 <cy l i nd e r l ength=" 0 .04 " rad iu s=" 0 .1 " />
20 </geometry>
21 </ v i s u a l>
22 </ l i n k>
23 </xacro:macro>
24

25 <xacro:macro name=" jo int_whee l " params="name ch i l d or ig in_xyz ">

39

Gazebo model

26 <j o i n t name=" ${name} " type=" cont inuous ">
27 <o r i g i n rpy=" 0 0 0 " xyz=" ${ or ig in_xyz } " />
28 <ch i l d l i n k=" ${ ch i l d } " />
29 <parent l i n k=" l i nk_cha s s i s " />
30 <ax i s rpy=" 0 0 0 " xyz=" 0 1 0 " />
31 <l im i t e f f o r t=" 10000 " v e l o c i t y=" 1000 " />
32 <jo i n t_p rop e r t i e s damping=" 1 .0 " f r i c t i o n=" 1 .0 " />
33 </ j o i n t>
34 </xacro:macro>
35

36 <xacro:macro name=" cy l i nd e r_ i n e r t i a " params="mass r l ">
37 <i n e r t i a ixx=" ${mass ∗(3∗ r ∗ r+l ∗ l) /12} " ixy = " 0 " i x z = " 0 "
38 iyy=" ${mass ∗(3∗ r ∗ r+l ∗ l) /12} " i y z = " 0 "
39 i z z=" ${mass ∗(r ∗ r) /2} " />
40 </xacro:macro>
41 </ robot>

A.3 Materials

1 <?xml ve r s i on=" 1 .0 " ?>
2 <robot xmlns :xacro=" h t tp : //www. ros . org /wik i / xacro ">
3 <mate r i a l name=" black ">
4 <co l o r rgba=" 0 .0 0 .0 0 .0 1 .0 " />
5 </mate r i a l>
6 <mate r i a l name=" blue ">
7 <co l o r rgba=" 0.203125 0.23828125 0.28515625 1 .0 " />
8 </mate r i a l>
9 <mate r i a l name=" green ">

10 <co l o r rgba=" 0 .0 0 .8 0 .0 1 .0 " />
11 </mate r i a l>
12 <mate r i a l name=" grey ">
13 <co l o r rgba=" 0 .2 0 .2 0 .2 1 .0 " />
14 </mate r i a l>
15 <mate r i a l name=" orange ">
16 <co l o r rgba=" 1 .0 0.423529411765 0.0392156862745 1 .0 " />
17 </mate r i a l>
18 <mate r i a l name="brown ">
19 <co l o r rgba=" 0.870588235294 0.811764705882 0.764705882353 1 .0 " />
20 </mate r i a l>
21 <mate r i a l name=" red ">
22 <co l o r rgba=" 0.80078125 0.12890625 0.1328125 1 .0 " />
23 </mate r i a l>
24 <mate r i a l name=" white ">
25 <co l o r rgba=" 1 .0 1 .0 1 .0 1 .0 " />
26 </mate r i a l>

40

Gazebo model

27 </ robot>

41

Appendix B

Algorithms

B.1 Wall following

1 #! / usr /bin /env python
2

3 import rospy
4 from sensor_msgs .msg import LaserScan
5 from geometry_msgs .msg import Twist
6 from nav_msgs .msg import Odometry
7 from t f import t rans f o rmat i ons
8

9 import math
10

11 pub_ = None
12 regions_ = {
13 ' r i g h t ' : 0 ,
14 ' f r i g h t ' : 0 ,
15 ' f r on t ' : 0 ,
16 ' f l e f t ' : 0 ,
17 ' l e f t ' : 0 ,
18 }
19 state_ = 0
20 state_dict_ = {
21 0 : ' f i nd the wa l l ' ,
22 1 : ' turn l e f t ' ,
23 2 : ' f o l l ow the wal l ' ,
24 }
25

26 de f c lbk_la se r (msg) :
27 g l oba l regions_
28 regions_ = {
29 ' r i g h t ' : min (min (msg . ranges [0 : 1 4 3]) , 10) ,

42

Algorithms

30 ' f r i g h t ' : min (min (msg . ranges [1 4 4 : 2 8 7]) , 10) ,
31 ' f r on t ' : min (min (msg . ranges [2 8 8 : 4 3 1]) , 10) ,
32 ' f l e f t ' : min (min (msg . ranges [4 3 2 : 5 7 5]) , 10) ,
33 ' l e f t ' : min (min (msg . ranges [5 7 6 : 7 1 3]) , 10) ,
34 }
35

36 take_act ion ()
37

38

39 de f change_state (s t a t e) :
40 g l oba l state_ , state_dict_
41 i f s t a t e i s not state_ :
42 pr in t 'Wall f o l l ow e r − [%s] − %s ' % (state , state_dict_ [s t a t e

])
43 state_ = s t a t e
44

45 de f take_act ion () :
46 g l oba l regions_
47 r e g i on s = regions_
48 msg = Twist ()
49 l inear_x = 0
50 angular_z = 0
51

52 s t a t e_de s c r i p t i on = ' '
53

54 d = 1 .5
55

56 i f r e g i on s [' f r on t '] > d and r eg i on s [' f l e f t '] > d and r eg i on s ['
f r i g h t '] > d :

57 s t a t e_de s c r i p t i on = ' case 1 − nothing '
58 change_state (0)
59 e l i f r e g i on s [' f r on t '] < d and r eg i on s [' f l e f t '] > d and r eg i on s ['

f r i g h t '] > d :
60 s t a t e_de s c r i p t i on = ' case 2 − f r on t '
61 change_state (1)
62 e l i f r e g i on s [' f r on t '] > d and r eg i on s [' f l e f t '] > d and r eg i on s ['

f r i g h t '] < d :
63 s t a t e_de s c r i p t i on = ' case 3 − f r i g h t '
64 change_state (2)
65 e l i f r e g i on s [' f r on t '] > d and r eg i on s [' f l e f t '] < d and r eg i on s ['

f r i g h t '] > d :
66 s t a t e_de s c r i p t i on = ' case 4 − f l e f t '
67 change_state (0)
68 e l i f r e g i on s [' f r on t '] < d and r eg i on s [' f l e f t '] > d and r eg i on s ['

f r i g h t '] < d :
69 s t a t e_de s c r i p t i on = ' case 5 − f r on t and f r i g h t '
70 change_state (1)
71 e l i f r e g i on s [' f r on t '] < d and r eg i on s [' f l e f t '] < d and r eg i on s ['

f r i g h t '] > d :

43

Algorithms

72 s t a t e_de s c r i p t i on = ' case 6 − f r on t and f l e f t '
73 change_state (1)
74 e l i f r e g i on s [' f r on t '] < d and r eg i on s [' f l e f t '] < d and r eg i on s ['

f r i g h t '] < d :
75 s t a t e_de s c r i p t i on = ' case 7 − f r on t and f l e f t and f r i g h t '
76 change_state (1)
77 e l i f r e g i on s [' f r on t '] > d and r eg i on s [' f l e f t '] < d and r eg i on s ['

f r i g h t '] < d :
78 s t a t e_de s c r i p t i on = ' case 8 − f l e f t and f r i g h t '
79 change_state (0)
80 e l s e :
81 s t a t e_de s c r i p t i on = 'unknown case '
82 rospy . l o g i n f o (r e g i on s)
83

84 de f f ind_wal l () :
85 msg = Twist ()
86 msg . l i n e a r . x = 0 .2
87 msg . angular . z = 0 .3
88 re turn msg
89

90 de f tu rn_le f t () :
91 msg = Twist ()
92 msg . angular . z = −0.3
93 re turn msg
94

95 de f fo l low_the_wal l () :
96 g l oba l regions_
97 msg = Twist ()
98 msg . l i n e a r . x = 0 .3
99 re turn msg

100

101 de f main () :
102 g l oba l pub_
103 rospy . in it_node (' r ead ing_lase r ')
104 pub_ = rospy . Pub l i she r (' /cmd_vel ' , Twist , queue_size=1)
105 sub = rospy . Subsc r ibe r (' /m2wr/ l a s e r / scan ' , LaserScan , c lbk_lase r)
106 r a t e = rospy . Rate (20)
107 whi le not rospy . is_shutdown () :
108 msg = Twist ()
109 i f state_ == 0 :
110 msg = f ind_wal l ()
111 e l i f state_ == 1 :
112 msg = turn_le f t ()
113 e l i f state_ == 2 :
114 msg = fol low_the_wal l ()
115 pass
116 e l s e :
117 rospy . l o g e r r ('Unknown s t a t e ! ')
118

44

Algorithms

119 pub_ . pub l i sh (msg)
120

121 r a t e . s l e e p ()
122

123 i f __name__ == '__main__ ' :
124 main ()

B.2 MATLAB plane detection

1 c l e a r a l l , c l o s e a l l , c l c
2 load (s t r c a t (f o l d e r , " /MATS/ " , " bag .mat "))
3

4 %%
5

6 maxDistance = 0 . 1 0 ;
7 r e f e r enc eVec to r = [0 , 0 , 1] ;
8 maxAngularDistance = 5 ;
9

10 wa l lD i s tS t ruc t = c e l l (l ength (data . po intc loud) ,1) ;
11 f o r i = 1 : l ength (data . po intc loud)
12 ptCloud = pointCloud (data . po intc loud { i , 1} .XYZ) ;
13

14 % Detect the f i r s t plane , the tab le , and ex t r a c t i t from the
po int c loud .

15 [model1 , i n l i e r I n d i c e s , o u t l i e r I n d i c e s] = p c f i t p l a n e (ptCloud , . . .
16 maxDistance , r e f e r enceVec to r , maxAngularDistance) ;
17 plane1 = s e l e c t (ptCloud , i n l i e r I n d i c e s) ;
18 remainPtCloud = s e l e c t (ptCloud , o u t l i e r I n d i c e s) ;
19

20 VOID_QUOTE = double (mean(plane1 . Locat ion (: , 3))) ;
21 AVG_PlaneModel = planeModel ([0 0 −1 VOID_QUOTE]) ;
22

23 wa l lD i s tS t ruc t { i , 1 } . d i s t ance = AVG_PlaneModel . Parameters (1 , 4) ;
24 wa l lD i s tS t ruc t { i , 1 } . stamp . sec = data . po intc loud { i , 1} . Header .

Stamp . Sec ;
25 wa l lD i s tS t ruc t { i , 1 } . stamp . Nsec = data . po intc loud { i , 1} . Header .

Stamp . Nsec ;
26 i
27 end
28 %%
29

30 d = ze ro s (l ength (wa l lD i s tS t ruc t) ,1) ;
31 t1 = ze ro s (l ength (wa l lD i s tS t ruc t) ,1) ;
32

33 f o r i = 1 : l ength (d)

45

Algorithms

34 d(i , 1) = wa l lD i s tS t ruc t { i , 1} . d i s t ance ;
35 t1 (i , 1) = wa l lD i s tS t ruc t { i , 1} . stamp . s ec + wa l lD i s tS t ruc t { i , 1} .

stamp . Nsec∗10^(−9) . . .
36 − wa l lD i s tS t ruc t {1 , 1} . stamp . sec − wa l lD i s tS t ruc t {1 , 1} . stamp

. Nsec∗10^(−9) ;
37 end
38

39 %%
40

41 bag = rosbag (" bag . bag ")
42

43 bSel = s e l e c t (bag , 'Topic ' , ' /camera/depth/ c o l o r / po in t s ') ;
44 bSel1 = s e l e c t (bag , 'Topic ' , ' / t265 /odom/sample ') ;
45

46 msgStructs1 = readMessages (bSel1 , 'DataFormat ' , ' s t r u c t ') ;
47

48 s t a r t = msgStructs1 {1} . Header . Stamp . Sec ;
49

50 f o r i = 1 : l ength (msgStructs1)
51 x (i) = msgStructs1 { i } . Pose . Pose . Po s i t i on .X;
52 y (i) = msgStructs1 { i } . Pose . Pose . Po s i t i on .Y;
53 z (i) = msgStructs1 { i } . Pose . Pose . Po s i t i on . Z ;
54

55 t (i) = msgStructs1 { i } . Header . Stamp . Sec − s t a r t ;
56 end
57 %%
58 c l o s e a l l
59

60 f i g u r e (1)
61 n e x t t i l e
62 s e t (gcf , ' c o l o r ' , 'w ') ;
63 s e t (gca , ' f o n t s i z e ' , 25)
64 g r id on , hold on
65 p lo t (t1 , d , 'LineWidth ' , 1 . 5)
66 t i t l e ('Wall a c q u i s i t i o n ')
67 l egend ('Wall d i s t anc e ') , x l ab e l ('Time (s) ') , y l ab e l (' Distance (m) ')
68

69 f i g u r e (1)
70 n e x t t i l e
71 s e t (gcf , ' c o l o r ' , 'w ') ;
72 s e t (gca , ' f o n t s i z e ' , 25)
73 g r id on , hold on
74 p lo t (t , x , ' r ' , ' l i n ew id th ' , 1 . 5)
75 t i t l e ('Robot odometry ')
76 l egend ('Odom ') , x l ab e l ('Time (s) ') , y l ab e l (' Distance (m) ')

46

Algorithms

B.3 Plane detection

1 #inc lude " ro s / ro s . h "
2 #inc lude " std_msgs/ St r ing . h "
3 #inc lude <std_msgs/Float32Mult iArray . h>
4

5 #inc lude <mot ion_contro l l e r /wa l l . h>
6

7 #inc lude " sensor_msgs/PointCloud2 . h "
8 #inc lude <iostream>
9 #inc lude <fstream>

10 #inc lude <sstream>
11

12 #inc lude <pc l_convers ions / pc l_convers ions . h>
13 #inc lude <pc l / point_types . h>
14 #inc lude <pc l / point_cloud . h>
15 #inc lude <pc l /PCLPointCloud2 . h>
16 #inc lude <pc l / conve r s i on s . h>
17 #inc lude <pcl_ros / trans forms . h>
18

19 #inc lude <pc l / point_cloud . h>
20 #inc lude <pc l / sample_consensus / ransac . h>
21 #inc lude <pc l / sample_consensus /sac_model_plane . h>
22 #inc lude <Eigen/Core>
23

24 #inc lude <pc l /Mode lCoe f f i c i en t s . h>
25 #inc lude <pc l / i o /pcd_io . h>
26 #inc lude <pc l / sample_consensus /model_types . h>
27 #inc lude <pc l / segmentat ion / sac_segmentation . h>
28 #inc lude <pc l / f i l t e r s / condit iona l_removal . h>
29

30 #inc lude <math . h>
31

32 #inc lude <chrono>
33 #inc lude <ros / conso l e . h>
34

35 #de f i n e th r e sho ld 0 .01
36

37

38 c l a s s distSubPub
39 {
40 pub l i c :
41 distSubPub ()
42 {
43 // pub l i s h e r
44 wall_pub_ = n_. adve r t i s e <mot ion_contro l l e r : : wal l >(" / wa l l i n f o /

LatCam_frame " , 1000) ;

47

Algorithms

45 pc_pub_= n_. adve r t i s e <sensor_msgs : : PointCloud2> (" / wa l l i n f o /pc "
, 1000) ;

46 // sub s c r i b e r
47 wall_sub_ = n_. subscr ibe<sensor_msgs : : PointCloud2>(" /LatCam/

depth/ c o l o r / po in t s " , 1 , &distSubPub : : po intc loudCal lback , t h i s) ;
48

49 }
50 void po intc loudCal lback (const boost : : shared_ptr<const sensor_msgs

: : PointCloud2>& input) {
51

52 pc l : : PCLPointCloud2 pcl_pc2 ;
53 pc l_convers ions : : toPCL(∗ input , pcl_pc2) ;
54 pc l : : PointCloud<pc l : : PointXYZ>: : Ptr temp_cloud (new pc l : :

PointCloud<pc l : : PointXYZ>) ;
55 pc l : : fromPCLPointCloud2 (pcl_pc2 ,∗ temp_cloud) ;
56

57 // bu i ld the cond i t i on
58 pc l : : ConditionAnd<pc l : : PointXYZ>: : Ptr range_cond (new pc l : :

ConditionAnd<pc l : : PointXYZ> ()) ;
59 range_cond−>addComparison (pc l : : FieldComparison<pc l : : PointXYZ

>: : ConstPtr (new pc l : : FieldComparison<pc l : : PointXYZ> (" z " , pc l : :
ComparisonOps : :GT, 0 . 1))) ;

60 range_cond−>addComparison (pc l : : FieldComparison<pc l : : PointXYZ
>: : ConstPtr (new pc l : : FieldComparison<pc l : : PointXYZ> (" z " , pc l : :
ComparisonOps : : LT, 1 . 0))) ;

61 range_cond−>addComparison (pc l : : FieldComparison<pc l : : PointXYZ
>: : ConstPtr (new pc l : : FieldComparison<pc l : : PointXYZ> (" y " , pc l : :
ComparisonOps : : LT, 0 . 3))) ;

62 range_cond−>addComparison (pc l : : FieldComparison<pc l : : PointXYZ
>: : ConstPtr (new pc l : : FieldComparison<pc l : : PointXYZ> (" y " , pc l : :
ComparisonOps : :GT, −0.6))) ;

63

64 // bu i ld the f i l t e r
65 pc l : : ConditionalRemoval<pc l : : PointXYZ> condrem ;
66 condrem . se tCond i t i on (range_cond) ;
67 condrem . setInputCloud (temp_cloud) ;
68 condrem . setKeepOrganized (t rue) ;
69 // apply f i l t e r
70 condrem . f i l t e r (∗ temp_cloud) ;
71

72

73 // Convert to ROS data type
74 pc l : : PCLPointCloud2 temp_cloud2 ;
75 pc l : : toPCLPointCloud2 (∗ temp_cloud , temp_cloud2) ;
76 sensor_msgs : : PointCloud2 temp_cloud_fi lt ;
77 pc l_convers ions : : moveFromPCL(temp_cloud2 , temp_cloud_fi lt) ;
78 pc_pub_ . pub l i sh (temp_cloud_fi lt) ;
79

80

48

Algorithms

81

82 pc l : : Mode lCoe f f i c i en t s : : Ptr c o e f f i c i e n t s (new pc l : :
Mode lCoe f f i c i en t s) ;

83 pc l : : Po in t Ind i c e s : : Ptr i n l i e r s (new pc l : : Po in t Ind i c e s) ;
84 // Create the segmentat ion ob j e c t
85 pc l : : SACSegmentation<pc l : : PointXYZ> seg ;
86 // Optional
87 seg . s e tOp t im i z eCoe f f i c i e n t s (t rue) ;
88 // Mandatory
89 seg . setModelType (pc l : :SACMODEL_PLANE) ;
90 seg . setMethodType (pc l : :SAC_RANSAC) ;
91 seg . s e tDi s tanceThresho ld (th r e sho ld) ;
92 seg . setInputCloud (temp_cloud) ;
93

94 // auto start_time = std : : chrono : : h igh_reso lut ion_c lock : : now() ;
95 t ry {
96 seg . segment (∗ i n l i e r s , ∗ c o e f f i c i e n t s) ;
97 mot ion_contro l l e r : : wa l l wallmsg ;
98 wallmsg . header . stamp = ros : : Time : : now() ;
99 wallmsg . header . frame_id = " /LatCam_depth_optical_frame " ;

100 wallmsg . d i s t ance = −c o e f f i c i e n t s −>va lues [3] ;
101 wallmsg . normal_vector . push_back (c o e f f i c i e n t s −>va lues [0]) ;
102 wallmsg . normal_vector . push_back (c o e f f i c i e n t s −>va lues [1]) ;
103 wallmsg . normal_vector . push_back (c o e f f i c i e n t s −>va lues [2]) ;
104 wall_pub_ . pub l i sh (wallmsg) ;
105 //ROS_INFO_STREAM(" try ") ;
106 }
107 catch (. . .) {
108 ROS_INFO_STREAM(" catch ") ;
109 i f (i n l i e r s −>ind i c e s . s i z e () == 0)
110 {
111 //PCL_ERROR (" Could not es t imate a planar model f o r the

g iven datase t . ") ;
112 ROS_INFO_STREAM(" no i n l ") ;
113 }
114 }
115

116 // auto end_time = std : : chrono : : h igh_reso lut ion_c lock : : now() ;
117 // auto time = end_time − start_time ;
118

119 }
120

121 pr i va t e :
122 ro s : : NodeHandle n_;
123 ro s : : Pub l i she r wall_pub_ ;
124 ro s : : Pub l i she r pc_pub_ ;
125 ro s : : Subsc r ibe r wall_sub_ ;
126 } ;
127

49

Algorithms

128 i n t main (i n t argc , char ∗∗ argv)
129 {
130 ro s : : i n i t (argc , argv , " distance_node ") ;
131 distSubPub dspo ;
132 ro s : : sp in () ;
133

134 re turn 0 ;
135 }

B.4 Motion control

1 #!/ usr /bin /env python
2

3 import rospy
4 from mot ion_contro l l e r . msg import wa l l
5 import t f2_ros
6 import tf2_geometry_msgs
7 from geometry_msgs .msg import Point , PointStamped , Twist ,

PolygonStamped , Point32
8 from t f . t r ans f o rmat i ons import quaternion_mult ip ly
9 import numpy as np

10

11 d_flg = False
12 nx_flg = False
13

14 d_des = 0 .6
15 d_in = 0.05
16 d_out = 0 .1
17

18 nx_des = 0
19 nx_in = 0.05
20 nx_out = 0.15
21

22

23 c l a s s motionCommands (ob j e c t) :
24

25 de f __init__(s e l f) :
26 s e l f . vel_msg = Twist ()
27 s e l f . vel_msg . l i n e a r . x = 0
28 s e l f . vel_msg . l i n e a r . y = 0
29 s e l f . vel_msg . l i n e a r . z = 0
30 s e l f . vel_msg . angular . x = 0
31 s e l f . vel_msg . angular . y = 0
32 s e l f . vel_msg . angular . z = 0
33

50

Algorithms

34 de f goSt ra i ght (s e l f) :
35 s e l f . vel_msg . l i n e a r . x = 0 .2
36 re turn s e l f . vel_msg
37

38 de f r ightRot (s e l f) :
39 s e l f . vel_msg . angular . z = −0.2
40 re turn s e l f . vel_msg
41

42 de f l e f tRo t (s e l f) :
43 s e l f . vel_msg . angular . z = 0 .2
44 re turn s e l f . vel_msg
45

46 de f goFurther (s e l f) :
47 s e l f . vel_msg . l i n e a r . y = 0 .2
48 re turn s e l f . vel_msg
49

50 de f goCloser (s e l f) :
51 s e l f . vel_msg . l i n e a r . y = −0.2
52 re turn s e l f . vel_msg
53

54 de f motionCallback (data) :
55 g l oba l vel_pub
56 g l oba l d_flg
57 g l oba l nx_flg
58 g l oba l t r a n s f
59 g l oba l point_pub
60 g l oba l poly_pub
61 g l oba l d_des
62 g l oba l d_in
63 g l oba l d_out
64

65 g l oba l nx_des
66 g l oba l nx_in
67 g l oba l nx_out
68 mC = motionCommands ()
69

70 p_cam = [data . d i s t ance ∗data . normal_vector [0] , data . d i s t anc e ∗data .
normal_vector [1] , data . d i s t anc e ∗data . normal_vector [2]]

71

72 p_base = PointStamped (po int=(tf2_geometry_msgs . do_transform_point
(PointStamped (po int=Point (p_cam [0] , p_cam [1] , p_cam [2])) , t r a n s f) .
po int))

73 p_base . header . stamp = rospy . Time . now()
74 p_base . header . frame_id = " base_l ink "
75 point_pub . pub l i sh (p_base)
76

77 p = np . array ([p_base . po int . x , p_base . po int . y , p_base . po int . z])
78 d = np . l i n a l g . norm(p)
79

51

Algorithms

80 nq0 = [data . normal_vector [0] , data . normal_vector [1] , data .
normal_vector [2] , 0]

81 t ransq = [t r a n s f . t rans form . r o t a t i on . x , t r a n s f . t rans form . r o t a t i on . y
, t r a n s f . t rans form . r o t a t i on . z , t r a n s f . t rans form . r o t a t i on .w]

82 nq1 = quaternion_mult ip ly (quaternion_mult ip ly (transq , nq0) ,[−
t ransq [0] , − t ransq [1] , − t ransq [2] , t ransq [3]])

83 rospy . l o g i n f o (nq1)
84 nx = nq1 [0]
85

86 n_base = np . array ([nq1 [0] , nq1 [1] , nq1 [2]])
87 u = np . array ([−n_base [1] , n_base [0] , 0]) /np . l i n a l g . norm(np . array ([−

n_base [1] , n_base [0] , 0]))
88 v = np . c r o s s (n_base , u)
89 v = v/np . l i n a l g . norm(v)
90 poly = PolygonStamped ()
91 poly . header . stamp = rospy . Time . now()
92 poly . header . frame_id = " base_l ink "
93 poly . polygon . po in t s = [Point32 (x=p[0]−u [0] , y=p[1]−u [1] , z=p[2]−u

[2]) ,
94 Point32 (x=p [0]+u [0] , y=p [1]+u [1] , z=p [2]+u [2]) ,
95 Point32 (x=p[0]−v [0] , y=p[1]−v [1] , z=p[2]−v [2]) ,
96 Point32 (x=p [0]+v [0] , y=p [1]+v [1] , z=p [2]+v [2])]
97 poly_pub . pub l i sh (poly)
98

99 i f abs (nx−nx_des)<nx_out :
100 i f abs (nx−nx_des)<nx_in :
101 i f not nx_flg :
102 nx_flg = True
103 i f abs (d−d_des)<d_out :
104 i f abs (d−d_des)<d_in :
105 i f d_flg :
106 vel_msg = mC. goSt ra i ght ()
107 e l s e :
108 d_flg = True
109 vel_msg = mC. goSt ra i ght ()
110

111 e l s e :
112 i f d_flg :
113 vel_msg = mC. goSt ra i ght ()
114 e l s e :
115 i f d < d_des−d_in :
116 vel_msg = mC. goFurther ()
117 e l s e :
118 vel_msg = mC. goCloser ()
119 e l s e :
120 d_flg = False
121 i f d < d_des−d_out :
122 vel_msg = mC. goFurther ()
123 e l s e :

52

Algorithms

124 vel_msg = mC. goCloser ()
125 e l s e :
126 i f nx_flg :
127 i f abs (d−d_des)<d_out :
128 i f abs (d−d_des)<d_in :
129 i f d_flg :
130 vel_msg = mC. goSt ra i ght ()
131 e l s e :
132 d_flg = True
133 vel_msg = mC. goSt ra i ght ()
134

135 e l s e :
136 i f d_flg :
137 vel_msg = mC. goSt ra i ght ()
138 e l s e :
139 i f d < d_des−d_in :
140 vel_msg = mC. goFurther ()
141 e l s e :
142 vel_msg = mC. goCloser ()
143 e l s e :
144 d_flg = False
145 i f d < d_des−d_out :
146 vel_msg = mC. goFurther ()
147 e l s e :
148 vel_msg = mC. goCloser ()
149 e l s e :
150 i f nx < 0 :
151 vel_msg = mC. r ightRot ()
152 e l s e :
153 vel_msg = mC. l e f tRo t ()
154

155 e l s e :
156 nx_flg = False
157 i f nx < 0 :
158 vel_msg = mC. r ightRot ()
159 e l s e :
160 vel_msg = mC. l e f tRo t ()
161

162 t ry :
163 vel_pub . pub l i sh (vel_msg)
164 #rospy . l o g i n f o (vel_msg)
165 except :
166 pass
167

168 de f motionControl () :
169 g l oba l vel_pub
170 g l oba l t r a n s f
171 g l oba l point_pub
172 g l oba l poly_pub

53

Algorithms

173

174 rospy . in it_node (" cmd_vel ")
175 vel_pub = rospy . Pub l i she r (" cmd_vel " , Twist , queue_size=1)
176 point_pub = rospy . Pub l i she r (" wa l l i n f o /base_frame/ po int " ,

PointStamped , queue_size=1)
177 poly_pub = rospy . Pub l i she r (" wa l l i n f o /base_frame/polygon " ,

PolygonStamped , queue_size=1)
178

179 t fBu f f e r = t f2_ros . Buf f e r ()
180 l i s t e n e r = t f2_ros . Trans formListener (t fBu f f e r)
181 t r a n s f = []
182 whi le t r a n s f == [] :
183 t ry :
184 t r a n s f = t fBu f f e r . lookup_transform (' base_l ink ' , '

LatCam_depth_optical_frame ' , rospy . Time (0))
185 except :
186 pass
187 rospy . Subsc r ibe r (" / wa l l i n f o /LatCam_frame " , wal l , motionCallback ,

queue_size=None)
188 rospy . sp in ()
189

190 i f __name__ == "__main__" :
191 t ry :
192 motionControl ()
193 except rospy . ROSInterruptException :
194 pass

B.5 Control joy

1 #!/ usr /bin /env python
2

3 import time
4 import rospy
5 import numpy as np
6 import math
7 import t f
8 from geometry_msgs .msg import Twist
9 from std_msgs .msg import Bool , S t r ing

10 from sensor_msgs .msg import Joy
11 from robo_explorer . msg import robo_io
12 import os
13

14 # JOY CMD VECTOR JCV
15 # l2 r2 lao lav rao rav l 3 f o fv
16 # AX5 AX4 AX0 AX1 AX2 AX3 B14 AX6 AX7

54

Algorithms

17

18 s t a t = 0
19 ready = 0
20

21 V = 0
22 W = 0
23 velcom = Twist ()
24 Vmax = 300 #pwm
25 DecelRate = 0.05
26 AccelRate = 0.05
27 secure_bound = 0.07
28 s ecure t ime = 5
29

30 c i r c f l g = False
31 wd4flg = False
32 s s t r f l g = False
33 motcont f lg = False
34 r e c f l g = False
35

36 l 2 = 1
37 r2 = 1
38 l ao = 0
39 l av = 0
40 rao = 0
41 rav = 0
42 r3 = 0
43 f o = 0
44 fv = 0
45 L = False
46

47 de f motion_cal lback (cmds) :
48 g l oba l velcom
49 velcom = cmds
50

51 de f c a l l b a ck (jcmd) :
52 g l oba l s t a t
53 g l oba l ready
54 g l oba l l 2
55 g l oba l r2
56 g l oba l l ao
57 g l oba l lav
58 g l oba l rao
59 g l oba l rav
60 g l oba l r3
61 g l oba l f o
62 g l oba l fv
63 g l oba l L
64 g l oba l motcont f lg
65 g l oba l motsub

55

Algorithms

66 g l oba l r e c f l g
67 i f s t a t == 0 :
68 i f ready == 0 :
69 i f jcmd . axes [5]==−1 and jcmd . axes [4]==−1:
70 ready = 1
71 rospy . l o g i n f o ("PRESS A TO START TRANSMISSION")
72 e l s e :
73 rospy . l o g i n f o ("PRESS L2 AND R2 TO INITIALIZE

TRANSMISSION")
74 e l s e :
75 i f jcmd . buttons [0]==1:
76 s t a t = 1
77 rospy . l o g i n f o ("READY TO TRANSMIT")
78 e l s e :
79 rospy . l o g i n f o ("PRESS A TO START TRANSMISSION")
80 e l s e :
81 l 2 = jcmd . axes [5]
82 r2 = jcmd . axes [4]
83 l ao = −jcmd . axes [0]
84 l av = jcmd . axes [1]
85 rao = −jcmd . axes [2]
86 rav = jcmd . axes [3]
87 r3 = jcmd . buttons [1 4]
88 f o = −jcmd . axes [6]
89 fv = jcmd . axes [7]
90 i f jcmd . buttons [1]==1:
91 r e c f l g = ~ r e c f l g
92 l i g h t = robo_io ()
93 i f r e c f l g :
94 #os . system (' sh /home/oem/Documents/AutoBags/ record . sh

')
95 os . system (' sh /media/oem/Samsung_T5/AutoBags/ record .

sh ')
96 l i g h t . out_0 = True
97 modpub . pub l i sh (l i g h t)
98 time . s l e e p (1)
99 l i g h t . out_0 = False

100 modpub . pub l i sh (l i g h t)
101 e l s e :
102 nodes = os . popen (" rosnode l i s t ") . r e a d l i n e s ()
103 f o r i in range (l en (nodes)) :
104 nodes [i] = nodes [i] . r e p l a c e (" \n " , " ")
105 f o r node in nodes :
106 i f " r ecord " in node :
107 os . system (" rosnode k i l l "+ node)
108 l i g h t . out_0 = True
109 modpub . pub l i sh (l i g h t)
110 time . s l e e p (0 . 5)
111 l i g h t . out_0 = False

56

Algorithms

112 modpub . pub l i sh (l i g h t)
113 time . s l e e p (0 . 5)
114 l i g h t . out_0 = True
115 modpub . pub l i sh (l i g h t)
116 time . s l e e p (0 . 5)
117 l i g h t . out_0 = False
118 modpub . pub l i sh (l i g h t)
119 i f jcmd . buttons [4]==1:
120 l i g h t = robo_io ()
121 i f L == False :
122 l i g h t . out_0 = True
123 modpub . pub l i sh (l i g h t)
124 rospy . l o g i n f o ("LIGHT ON")
125 e l s e :
126 l i g h t . out_0 = False
127 modpub . pub l i sh (l i g h t)
128 rospy . l o g i n f o ("LIGHT OFF")
129 L = ~L
130 i f jcmd . buttons [7]==1:
131 motcont f lg = not (motcont f lg)
132 i f motcont f lg :
133 motsub = rospy . Subsc r ibe r (' /cmd_vel ' , Twist ,

motion_cal lback)
134 e l s e :
135 motsub . un r e g i s t e r ()
136

137

138

139 de f contro l_joy () :
140 g l oba l s ecure t ime
141 rospy . in it_node (' contro l_joy ')
142 g l oba l pub
143 g l oba l modpub
144 g l oba l motsub
145

146 g l oba l c i r c f l g
147 g l oba l wd4f lg
148 g l oba l s s t r f l g
149 g l oba l motcont f lg
150

151 g l oba l l 2
152 g l oba l r2
153 g l oba l l ao
154 g l oba l lav
155 g l oba l rao
156 g l oba l rav
157 g l oba l r3
158 g l oba l f o
159 g l oba l fv

57

Algorithms

160

161 g l oba l V
162 g l oba l W
163 g l oba l r a t e
164 g l oba l velcom
165

166 v = 0
167

168 pub = rospy . Pub l i sher (' / robo_explorer /cmd_vel ' , Twist , queue_size
=10)

169 modpub = rospy . Pub l i she r (' / robo_explorer / io_status ' , robo_io ,
queue_size=10)

170 statpub = rospy . Pub l i she r (' / robo_explorer / s t a t e ' , Str ing ,
queue_size=10)

171 rospy . Subsc r ibe r (' / joy ' , Joy , c a l l b a ck)
172 r a t e = rospy . Rate (10)
173 motsub = rospy . Subsc r ibe r (' /cmd_vel ' , Twist , motion_cal lback)
174 time . s l e e p (1)
175 motsub . un r e g i s t e r ()
176 statpub . pub l i sh (" 2wd")
177

178 whi le not rospy . is_shutdown () :
179 ve l = Twist ()
180 i f motcont f lg :
181 i f velcom . angular . z !=0 and velcom . l i n e a r . x==0 and velcom .

l i n e a r . y==0:
182 i f c i r c f l g==False and wd4f lg==False and s s t r f l g==

False :
183 SecureVelShutdown ()
184 dw4ON = robo_io ()
185 dw4ON. out_3 = True
186 modpub . pub l i sh (dw4ON) # 4WD ON
187 rospy . l o g i n f o (" 4WD ON")
188 time . s l e e p (1)
189 cstON = robo_io ()
190 cstON . out_2 = True
191 modpub . pub l i sh (cstON) # CIRC ON
192 rospy . l o g i n f o ("CIRCLE STEERING ON")
193 time . s l e e p (1)
194 chve l = Twist ()
195 chve l . l i n e a r . x = 0
196 chve l . l i n e a r . y = 0
197 chve l . angular . z = −1
198 pub . pub l i sh (chve l)
199 time . s l e e p (secure t ime)
200 c i r c f l g = True
201 statpub . pub l i sh (" c i r c ")
202 e l i f c i r c f l g==True and wd4f lg==False and s s t r f l g==

False :

58

Algorithms

203 pass
204 e l i f c i r c f l g==False and wd4f lg==True and s s t r f l g==

False :
205 SecureVelShutdown ()
206 cstON = robo_io ()
207 cstON . out_2 = True
208 modpub . pub l i sh (cstON) # CIRC ON
209 rospy . l o g i n f o ("CIRCLE STEERING ON")
210 time . s l e e p (1)
211 SecureVelShutdown ()
212 chve l = Twist ()
213 chve l . l i n e a r . x = 0
214 chve l . l i n e a r . y = 0
215 chve l . angular . z = −1
216 pub . pub l i sh (chve l)
217 time . s l e e p (secure t ime)
218 wd4flg = False
219 c i r c f l g = True
220 statpub . pub l i sh (" c i r c ")
221 e l i f c i r c f l g==False and wd4f lg==False and s s t r f l g==

True :
222 SecureVelShutdown ()
223 i f W != 0 :
224 SecureVelShutdown ()
225 chve l = Twist ()
226 chve l . l i n e a r . x = 0
227 chve l . l i n e a r . y = 0
228 chve l . angular . z = 0
229 pub . pub l i sh (chve l)
230 time . s l e e p (secure t ime)
231 sstOFF = robo_io ()
232 sstOFF . out_1 = True
233 modpub . pub l i sh (sstOFF) #SIDESTEER OFF
234 rospy . l o g i n f o ("SIDE STEERING OFF")
235 time . s l e e p (1)
236 cstON = robo_io ()
237 cstON . out_2 = True
238 modpub . pub l i sh (cstON) # CIRC ON
239 rospy . l o g i n f o ("CIRCLE STEERING ON")
240 time . s l e e p (1)
241 SecureVelShutdown ()
242 chve l = Twist ()
243 chve l . l i n e a r . x = 0
244 chve l . l i n e a r . y = 0
245 chve l . angular . z = −1
246 pub . pub l i sh (chve l)
247 time . s l e e p (secure t ime)
248 s s t r f l g = False
249 c i r c f l g = True

59

Algorithms

250 statpub . pub l i sh (" c i r c ")
251 W = −1
252 i f np . abs (V−velcom . angular . z) <= secure_bound :
253 V = velcom . angular . z
254 e l s e :
255 V = V + np . s i gn (velcom . angular . z) ∗AccelRate
256

257 e l i f velcom . angular . z==0 and velcom . l i n e a r . x!=0 and
velcom . l i n e a r . y==0:

258 i f c i r c f l g==False and wd4f lg==False and s s t r f l g==
False :

259 SecureVelShutdown ()
260 i f W != 0 :
261 chve l = Twist ()
262 chve l . l i n e a r . x = 0
263 chve l . l i n e a r . y = 0
264 chve l . angular . z = 0
265 pub . pub l i sh (chve l)
266 time . s l e e p (secure t ime)
267 dw4ON = robo_io ()
268 dw4ON. out_3 = True
269 modpub . pub l i sh (dw4ON) # 4WD ON
270 rospy . l o g i n f o (" 4WD ON")
271 time . s l e e p (1)
272 sstON = robo_io ()
273 sstON . out_1 = True
274 modpub . pub l i sh (sstON) #SIDESTEER ON
275 rospy . l o g i n f o ("SIDE STEERING ON")
276 time . s l e e p (1)
277 s s t r f l g = True
278 statpub . pub l i sh (" s i d e ")
279 e l i f c i r c f l g==True and wd4f lg==False and s s t r f l g==

False :
280 SecureVelShutdown ()
281 chve l = Twist ()
282 chve l . l i n e a r . x = 0
283 chve l . l i n e a r . y = 0
284 chve l . angular . z = 0
285 pub . pub l i sh (chve l)
286 time . s l e e p (secure t ime)
287 cstOFF = robo_io ()
288 cstOFF . out_2 = True
289 modpub . pub l i sh (cstOFF) #CIRC OFF
290 rospy . l o g i n f o ("CIRCLE STEERING OFF")
291 time . s l e e p (1)
292 sstON = robo_io ()
293 sstON . out_1 = True
294 modpub . pub l i sh (sstON) #SIDESTEER ON
295 rospy . l o g i n f o ("SIDE STEERING ON")

60

Algorithms

296 time . s l e e p (1)
297 c i r c f l g = False
298 s s t r f l g = True
299 statpub . pub l i sh (" s i d e ")
300 W = 0
301 e l i f c i r c f l g==False and wd4f lg==True and s s t r f l g==

False :
302 SecureVelShutdown ()
303 i f W != 0 :
304 SecureVelShutdown ()
305 chve l = Twist ()
306 chve l . l i n e a r . x = 0
307 chve l . l i n e a r . y = 0
308 chve l . angular . z = 0
309 pub . pub l i sh (chve l)
310 time . s l e e p (secure t ime)
311 sstON = robo_io ()
312 sstON . out_1 = True
313 modpub . pub l i sh (sstON) #SIDESTEER ON
314 rospy . l o g i n f o ("SIDE STEERING ON")
315 time . s l e e p (1)
316 wd4flg = False
317 s s t r f l g = True
318 statpub . pub l i sh (" s i d e ")
319 e l i f c i r c f l g==False and wd4f lg==False and s s t r f l g==

True :
320 pass
321 i f W != 0 :
322 SecureVelShutdown ()
323 chve l = Twist ()
324 chve l . l i n e a r . x = 0
325 chve l . l i n e a r . y = 0
326 chve l . angular . z = 0
327 pub . pub l i sh (chve l)
328 time . s l e e p (secure t ime ∗2)
329 W = 0
330 i f np . abs (V−velcom . l i n e a r . x) <= secure_bound :
331 V = velcom . l i n e a r . x
332 e l s e :
333 V = V + np . s i gn (velcom . l i n e a r . x) ∗AccelRate
334

335 e l i f velcom . angular . z==0 and velcom . l i n e a r . x==0 and
velcom . l i n e a r . y !=0:

336 i f c i r c f l g==False and wd4f lg==False and s s t r f l g==
False :

337 SecureVelShutdown ()
338 i f W != 0 :
339 chve l = Twist ()
340 chve l . l i n e a r . x = 0

61

Algorithms

341 chve l . l i n e a r . y = 0
342 chve l . angular . z = 0
343 pub . pub l i sh (chve l)
344 time . s l e e p (secure t ime)
345 dw4ON = robo_io ()
346 dw4ON. out_3 = True
347 modpub . pub l i sh (dw4ON) # 4WD ON
348 rospy . l o g i n f o (" 4WD ON")
349 time . s l e e p (1)
350 sstON = robo_io ()
351 sstON . out_1 = True
352 modpub . pub l i sh (sstON) #SIDESTEER ON
353 rospy . l o g i n f o ("SIDE STEERING ON")
354 time . s l e e p (1)
355 s s t r f l g = True
356 statpub . pub l i sh (" s i d e ")
357 e l i f c i r c f l g==True and wd4f lg==False and s s t r f l g==

False :
358 SecureVelShutdown ()
359 chve l = Twist ()
360 chve l . l i n e a r . x = 0
361 chve l . l i n e a r . y = 0
362 chve l . angular . z = 0
363 pub . pub l i sh (chve l)
364 time . s l e e p (secure t ime)
365 cstOFF = robo_io ()
366 cstOFF . out_2 = True
367 modpub . pub l i sh (cstOFF) #CIRC OFF
368 rospy . l o g i n f o ("CIRCLE STEERING OFF")
369 time . s l e e p (1)
370 sstON = robo_io ()
371 sstON . out_1 = True
372 modpub . pub l i sh (sstON) #SIDESTEER ON
373 rospy . l o g i n f o ("SIDE STEERING ON")
374 time . s l e e p (1)
375 c i r c f l g = False
376 s s t r f l g = True
377 statpub . pub l i sh (" s i d e ")
378 W = 0
379 e l i f c i r c f l g==False and wd4f lg==True and s s t r f l g==

False :
380 SecureVelShutdown ()
381 i f W != 0 :
382 SecureVelShutdown ()
383 chve l = Twist ()
384 chve l . l i n e a r . x = 0
385 chve l . l i n e a r . y = 0
386 chve l . angular . z = 0
387 pub . pub l i sh (chve l)

62

Algorithms

388 time . s l e e p (secure t ime)
389 W = 0
390 sstON = robo_io ()
391 sstON . out_1 = True
392 modpub . pub l i sh (sstON) #SIDESTEER ON
393 rospy . l o g i n f o ("SIDE STEERING ON")
394 time . s l e e p (1)
395 wd4flg = False
396 s s t r f l g = True
397 statpub . pub l i sh (" s i d e ")
398 e l i f c i r c f l g==False and wd4f lg==False and s s t r f l g==

True :
399 pass
400 i f W != −1:
401 SecureVelShutdown ()
402 chve l = Twist ()
403 chve l . l i n e a r . x = 0
404 chve l . l i n e a r . y = 0
405 chve l . angular . z = −1
406 pub . pub l i sh (chve l)
407 time . s l e e p (secure t ime ∗2)
408 W = −1
409 i f np . abs (V−velcom . l i n e a r . y) <= secure_bound :
410 V = velcom . l i n e a r . y
411 e l s e :
412 V = V + np . s i gn (velcom . l i n e a r . y) ∗AccelRate
413 e l s e :
414 SecureVelShutdown ()
415 e l s e :
416 i f boo l (r2 !=1) != bool (l 2 !=1) :
417 i f np . abs (V−((1− r2) /2+(l2 −1)/2)) <= secure_bound :
418 V = (1− r2) /2+(l2 −1)/2
419 e l s e :
420 V = V + np . s i gn ((1− r2) /2+(l2 −1)/2) ∗AccelRate
421 e l s e :
422 i f np . abs (V)>secure_bound :
423 V = np . s i gn (V) ∗(np . abs (V)−DecelRate)
424 e l s e :
425 V=0
426

427 i f rao !=0 and r3==0 and lao==0 and fo==0 and fv==0:
428 i f c i r c f l g==False and wd4f lg==False and s s t r f l g==

False :
429 pass
430 e l i f c i r c f l g==True and wd4f lg==False and s s t r f l g==

False :
431 SecureVelShutdown ()
432 chve l = Twist ()
433 chve l . l i n e a r . x = 0

63

Algorithms

434 chve l . l i n e a r . y = 0
435 chve l . angular . z = 0
436 pub . pub l i sh (chve l)
437 time . s l e e p (secure t ime)
438 cstOFF = robo_io ()
439 cstOFF . out_2 = True
440 modpub . pub l i sh (cstOFF) #CIRC OFF
441 rospy . l o g i n f o ("CIRCLE STEERING OFF")
442 time . s l e e p (1)
443 dw4OFF = robo_io ()
444 dw4OFF. out_3 = True
445 modpub . pub l i sh (dw4OFF) #4WD OFF
446 rospy . l o g i n f o (" 4WD OFF")
447 time . s l e e p (1)
448 c i r c f l g = False
449 statpub . pub l i sh (" 2wd")
450 e l i f c i r c f l g==False and wd4f lg==True and s s t r f l g==

False :
451 i f W!=0:
452 SecureVelShutdown ()
453 chve l = Twist ()
454 chve l . l i n e a r . x = 0
455 chve l . l i n e a r . y = 0
456 chve l . angular . z = 0
457 pub . pub l i sh (chve l)
458 time . s l e e p (secure t ime)
459 dw4OFF = robo_io ()
460 dw4OFF. out_3 = True
461 modpub . pub l i sh (dw4OFF) #4WD OFF
462 rospy . l o g i n f o (" 4WD OFF")
463 time . s l e e p (1)
464 wd4flg = False
465 statpub . pub l i sh (" 2wd")
466 e l i f c i r c f l g==False and wd4f lg==False and s s t r f l g==

True :
467 SecureVelShutdown ()
468 i f W!=0:
469 chve l = Twist ()
470 chve l . l i n e a r . x = 0
471 chve l . l i n e a r . y = 0
472 chve l . angular . z = 0
473 pub . pub l i sh (chve l)
474 time . s l e e p (secure t ime)
475 sstOFF = robo_io ()
476 sstOFF . out_1 = True
477 modpub . pub l i sh (sstOFF) #SIDESTEER OFF
478 rospy . l o g i n f o ("SIDE STEERING OFF")
479 time . s l e e p (1)
480 dw4OFF = robo_io ()

64

Algorithms

481 dw4OFF. out_3 = True
482 modpub . pub l i sh (dw4OFF) #4WD OFF
483 rospy . l o g i n f o (" 4WD OFF")
484 time . s l e e p (1)
485 s s t r f l g = False
486 statpub . pub l i sh (" 2wd")
487 W = −1∗np . s i gn (rao)
488

489 e l i f r3==1 and lao==0 and fo==0 and fv==0:
490

491 i f c i r c f l g==False and wd4f lg==False and s s t r f l g==
False :

492 SecureVelShutdown ()
493 dw4ON = robo_io ()
494 dw4ON. out_3 = True
495 modpub . pub l i sh (dw4ON) # 4WD ON
496 rospy . l o g i n f o (" 4WD ON")
497 time . s l e e p (1)
498 cstON = robo_io ()
499 cstON . out_2 = True
500 modpub . pub l i sh (cstON) # CIRC ON
501 rospy . l o g i n f o ("CIRCLE STEERING ON")
502 time . s l e e p (1)
503 chve l = Twist ()
504 chve l . l i n e a r . x = 0
505 chve l . l i n e a r . y = 0
506 chve l . angular . z = −1
507 pub . pub l i sh (chve l)
508 time . s l e e p (secure t ime)
509 c i r c f l g = True
510 statpub . pub l i sh (" c i r c ")
511 e l i f c i r c f l g==True and wd4f lg==False and s s t r f l g==

False :
512 pass
513 e l i f c i r c f l g==False and wd4f lg==True and s s t r f l g==

False :
514 cstON = robo_io ()
515 cstON . out_2 = True
516 modpub . pub l i sh (cstON) # CIRC ON
517 rospy . l o g i n f o ("CIRCLE STEERING ON")
518 time . s l e e p (1)
519 SecureVelShutdown ()
520 chve l = Twist ()
521 chve l . l i n e a r . x = 0
522 chve l . l i n e a r . y = 0
523 chve l . angular . z = −1
524 pub . pub l i sh (chve l)
525 time . s l e e p (secure t ime)
526 wd4flg = False

65

Algorithms

527 c i r c f l g = True
528 statpub . pub l i sh (" c i r c ")
529 e l i f c i r c f l g==False and wd4f lg==False and s s t r f l g==

True :
530 i f W != 0 :
531 SecureVelShutdown ()
532 chve l = Twist ()
533 chve l . l i n e a r . x = 0
534 chve l . l i n e a r . y = 0
535 chve l . angular . z = 0
536 pub . pub l i sh (chve l)
537 time . s l e e p (secure t ime)
538 sstOFF = robo_io ()
539 sstOFF . out_1 = True
540 modpub . pub l i sh (sstOFF) #SIDESTEER OFF
541 rospy . l o g i n f o ("SIDE STEERING OFF")
542 time . s l e e p (1)
543 cstON = robo_io ()
544 cstON . out_2 = True
545 modpub . pub l i sh (cstON) # CIRC ON
546 rospy . l o g i n f o ("CIRCLE STEERING ON")
547 time . s l e e p (1)
548 SecureVelShutdown ()
549 chve l = Twist ()
550 chve l . l i n e a r . x = 0
551 chve l . l i n e a r . y = 0
552 chve l . angular . z = −1
553 pub . pub l i sh (chve l)
554 time . s l e e p (secure t ime)
555 s s t r f l g = False
556 c i r c f l g = True
557 statpub . pub l i sh (" c i r c ")
558 W = −1
559

560 e l i f rao==0 and r3==0 and lao !=0 and fo==0 and fv==0:
561 i f c i r c f l g==False and wd4f lg==False and s s t r f l g==

False :
562 i f W != 0 :
563 SecureVelShutdown ()
564 chve l = Twist ()
565 chve l . l i n e a r . x = 0
566 chve l . l i n e a r . y = 0
567 chve l . angular . z = 0
568 pub . pub l i sh (chve l)
569 time . s l e e p (secure t ime)
570 dw4ON = robo_io ()
571 dw4ON. out_3 = True
572 modpub . pub l i sh (dw4ON) # 4WD ON
573 rospy . l o g i n f o (" 4WD ON")

66

Algorithms

574 time . s l e e p (1)
575 wd4flg = True
576 statpub . pub l i sh (" 4wd")
577 e l i f c i r c f l g==True and wd4f lg==False and s s t r f l g==

False :
578 SecureVelShutdown ()
579 chve l = Twist ()
580 chve l . l i n e a r . x = 0
581 chve l . l i n e a r . y = 0
582 chve l . angular . z = 0
583 pub . pub l i sh (chve l)
584 time . s l e e p (secure t ime)
585 cstOFF = robo_io ()
586 cstOFF . out_2 = True
587 modpub . pub l i sh (cstOFF) #CIRC OFF
588 rospy . l o g i n f o ("CIRCLE STEERING OFF")
589 time . s l e e p (1)
590 c i r c f l g = False
591 wd4flg = True
592 statpub . pub l i sh (" 4wd")
593 e l i f c i r c f l g==False and wd4f lg==True and s s t r f l g==

False :
594 pass
595 e l i f c i r c f l g==False and wd4f lg==False and s s t r f l g==

True :
596 SecureVelShutdown ()
597 chve l = Twist ()
598 chve l . l i n e a r . x = 0
599 chve l . l i n e a r . y = 0
600 chve l . angular . z = 0
601 pub . pub l i sh (chve l)
602 time . s l e e p (secure t ime)
603 sstOFF = robo_io ()
604 sstOFF . out_1 = True
605 modpub . pub l i sh (sstOFF) #SIDESTEER OFF
606 rospy . l o g i n f o ("SIDE STEERING OFF")
607 time . s l e e p (1)
608 s s t r f l g = False
609 wd4flg = True
610 statpub . pub l i sh (" 4wd")
611 W = −1∗np . s i gn (l ao)
612

613 e l i f rao==0 and r3==0 and lao==0 and (fo !=0 or fv !=0) :
614 i f c i r c f l g==False and wd4f lg==False and s s t r f l g==

False :
615 SecureVelShutdown ()
616 i f W != 0 :
617 chve l = Twist ()
618 chve l . l i n e a r . x = 0

67

Algorithms

619 chve l . l i n e a r . y = 0
620 chve l . angular . z = 0
621 pub . pub l i sh (chve l)
622 time . s l e e p (secure t ime)
623 dw4ON = robo_io ()
624 dw4ON. out_3 = True
625 modpub . pub l i sh (dw4ON) # 4WD ON
626 rospy . l o g i n f o (" 4WD ON")
627 time . s l e e p (1)
628 sstON = robo_io ()
629 sstON . out_1 = True
630 modpub . pub l i sh (sstON) #SIDESTEER ON
631 rospy . l o g i n f o ("SIDE STEERING ON")
632 time . s l e e p (1)
633 s s t r f l g = True
634 statpub . pub l i sh (" s i d e ")
635 e l i f c i r c f l g==True and wd4f lg==False and s s t r f l g==

False :
636 SecureVelShutdown ()
637 chve l = Twist ()
638 chve l . l i n e a r . x = 0
639 chve l . l i n e a r . y = 0
640 chve l . angular . z = 0
641 pub . pub l i sh (chve l)
642 time . s l e e p (secure t ime)
643 cstOFF = robo_io ()
644 cstOFF . out_2 = True
645 modpub . pub l i sh (cstOFF) #CIRC OFF
646 rospy . l o g i n f o ("CIRCLE STEERING OFF")
647 time . s l e e p (1)
648 sstON = robo_io ()
649 sstON . out_1 = True
650 modpub . pub l i sh (sstON) #SIDESTEER ON
651 rospy . l o g i n f o ("SIDE STEERING ON")
652 time . s l e e p (1)
653 c i r c f l g = False
654 s s t r f l g = True
655 statpub . pub l i sh (" s i d e ")
656 e l i f c i r c f l g==False and wd4f lg==True and s s t r f l g==

False :
657 i f W != 0 :
658 SecureVelShutdown ()
659 chve l = Twist ()
660 chve l . l i n e a r . x = 0
661 chve l . l i n e a r . y = 0
662 chve l . angular . z = 0
663 pub . pub l i sh (chve l)
664 time . s l e e p (secure t ime)
665 sstON = robo_io ()

68

Algorithms

666 sstON . out_1 = True
667 modpub . pub l i sh (sstON) #SIDESTEER ON
668 rospy . l o g i n f o ("SIDE STEERING ON")
669 time . s l e e p (1)
670 wd4flg = False
671 s s t r f l g = True
672 statpub . pub l i sh (" s i d e ")
673 e l i f c i r c f l g==False and wd4f lg==False and s s t r f l g==

True :
674 pass
675

676 i f f o !=0 and fv !=0:
677 pass
678 e l i f f o==0 and fv !=0:
679 W = 0
680 e l i f f o !=0 and fv==0:
681 W = −1
682 e l i f rao==0 and r3==0 and lao==0 and fo==0 and fv==0:
683 i f c i r c f l g==True :
684 SecureVelShutdown ()
685 chve l = Twist ()
686 chve l . l i n e a r . x = 0
687 chve l . l i n e a r . y = 0
688 chve l . angular . z = 0
689 pub . pub l i sh (chve l)
690 time . s l e e p (secure t ime)
691 cstOFF = robo_io ()
692 cstOFF . out_2 = True
693 modpub . pub l i sh (cstOFF) #CIRC OFF
694 rospy . l o g i n f o ("CIRCLE STEERING OFF")
695 time . s l e e p (1)
696 dw4OFF = robo_io ()
697 dw4OFF. out_3 = True
698 modpub . pub l i sh (dw4OFF) #4WD OFF
699 rospy . l o g i n f o (" 4WD OFF")
700 time . s l e e p (1)
701 c i r c f l g = False
702 statpub . pub l i sh (" 2wd")
703 i f s s t r f l g==False :
704 W = 0
705 e l s e :
706 pass
707

708 ve l . l i n e a r . x = −V∗Vmax
709 ve l . l i n e a r . y = 0
710 ve l . angular . z = W
711 pub . pub l i sh (ve l)
712 r a t e . s l e e p ()
713

69

Algorithms

714 de f SecureVelShutdown () :
715 g l oba l pub
716 g l oba l V
717 g l oba l W
718 chve l = Twist ()
719 whi le np . abs (V)>secure_bound :
720 V = np . s i gn (V) ∗(np . abs (V)−DecelRate)
721 chve l . l i n e a r . x = −V∗Vmax
722 chve l . l i n e a r . y = 0
723 chve l . angular . z = W
724 pub . pub l i sh (chve l)
725 r a t e . s l e e p ()
726

727 i f __name__ == '__main__ ' :
728 contro l_joy ()

B.6 Odometry

1 #!/ usr /bin /env python
2

3 import time
4 import rospy
5 import numpy as np
6 import math
7 import t f
8 from geometry_msgs .msg import Point , Pose , Quaternion , Twist , Vector3
9 from std_msgs .msg import S t r ing

10 from nav_msgs .msg import Odometry
11 from t f . t r ans f o rmat i ons import quaternion_mult ip ly
12

13 s t a t e = " 2wd"
14 R = 0.13
15 EncRes = (np . p i ∗2) /4096
16 diag = np . sq r t (0 .58∗∗2+0.75∗∗2) /2
17 s t e e rang = np . p i /6
18 width = 0.58
19 depth = 0.75
20 cir2wd = np . array ([depth /2 , (width /2)+depth∗np . tan (np . p i/2− s t e e rang)

, 0])
21 cir4wd = np . array ([0 , (width /2)+(depth /2) ∗np . tan (np . p i/2− s t e e rang) , 0])
22 # enc top i c [time stamp , RL, RR, FR, FL, count]
23

24 x = 0
25 y = 0
26 th = 0

70

Algorithms

27

28 #l t = 0
29 #l e = np . array ([0 , 0 , 0 , 0])
30

31 de f enc_cal lback (data) :
32 g l oba l odom_pub
33 g l oba l odom_broadcaster
34 g l oba l s t a t e
35 g l oba l W
36 g l oba l l t
37 g l oba l l e
38 g l oba l x
39 g l oba l y
40 g l oba l th
41

42 g l oba l R
43 g l oba l EncRes
44 g l oba l d iag
45 g l oba l s t e e rang
46 g l oba l cir2wd
47 g l oba l cir4wd
48 g l oba l depth
49 g l oba l width
50

51 enc = data . data . s p l i t (' , ')
52 ct = f l o a t (enc [0])
53 ce = np . array ([f l o a t (enc [1]) , f l o a t (enc [2]) , f l o a t (enc [3]) , f l o a t (

enc [4])])
54 t ry :
55 dt = ct− l t
56 dg = le−ce
57

58 odom = Odometry ()
59 i f s t a t e == " c i r c " :
60 vx = 0
61 vy = 0
62 dth = R∗EncRes ∗(np . abs (dg)) .mean () / diag
63 vth = np . s i gn (dg [1]) ∗dth/dt
64 i f s t a t e == " 2wd" :
65 i f W == −1:
66 dst = R∗EncRes ∗(dg)
67 dst = (1/ dt) ∗np . array ([dst [0] / (width/2+cir2wd [1]) ,
68 dst [1] / (cir2wd [1]−width /2) ,
69 dst [2] / np . s q r t (depth∗∗2+(cir2wd [1]−

width /2) ∗∗2) ,
70 dst [3] / np . s q r t (depth∗∗2+(cir2wd [1]+

width /2) ∗∗2)])
71 omg = np . array ([0 , 0 , (np . abs (dst)) .mean ()])
72 ve l = np . c r o s s (−omg , cir2wd)

71

Algorithms

73 vx = ve l [0]
74 vy = ve l [1]
75 vth = −omg [2]
76 e l i f W == 1 :
77 dst = R∗EncRes ∗(dg)
78 dst = (1/ dt) ∗np . array ([dst [0] / (cir2wd [1]−width /2) ,
79 dst [1] / (width/2+cir2wd [1]) ,
80 dst [2] / np . s q r t (depth∗∗2+(cir2wd [1]+

width /2) ∗∗2) ,
81 dst [3] / np . s q r t (depth∗∗2+(cir2wd [1]−

width /2) ∗∗2)])
82 omg = np . array ([0 , 0 , (np . abs (dst)) .mean ()])
83 ve l = np . c r o s s (omg , np . array ([cir2wd [0] , − cir2wd [1] ,

c ir2wd [2]]))
84 vx = ve l [0]
85 vy = ve l [1]
86 vth = omg [2]
87 e l s e :
88 ds = R∗EncRes ∗(dg .mean ())
89 vx = ds/dt
90 vy = 0
91 vth = 0
92 e l i f s t a t e == " 4wd" :
93 i f W == −1:
94 dst = R∗EncRes ∗(dg)
95 dss = (1/ dt) ∗np . array ([dst [0] / np . s q r t ((depth /2) ∗∗2+(

cir4wd [1]+ width /2) ∗∗2) ,
96 dst [1] / np . s q r t ((depth /2) ∗∗2+(cir4wd

[1]−width /2) ∗∗2) ,
97 dst [2] / np . s q r t ((depth /2) ∗∗2+(cir4wd

[1]−width /2) ∗∗2) ,
98 dst [3] / np . s q r t ((depth /2) ∗∗2+(cir4wd

[1]+ width /2) ∗∗2)])
99 omg = np . array ([0 , 0 , (np . abs (dss)) .mean ()])

100 ve l = np . c r o s s (−omg , cir4wd)
101 vx = ve l [0]
102 vy = ve l [1]
103 vth = −omg [2]
104 e l i f W == 1 :
105 dst = R∗EncRes ∗(dg)
106 dss = (1/ dt) ∗np . array ([dst [0] / np . s q r t ((depth /2) ∗∗2+(

cir4wd [1]−width /2) ∗∗2) ,
107 dst [1] / np . s q r t ((depth /2) ∗∗2+(cir4wd

[1]+ width /2) ∗∗2) ,
108 dst [2] / np . s q r t ((depth /2) ∗∗2+(cir4wd

[1]+ width /2) ∗∗2) ,
109 dst [3] / np . s q r t ((depth /2) ∗∗2+(cir4wd

[1]−width /2) ∗∗2)])
110 omg = np . array ([0 , 0 , (np . abs (dss)) .mean ()])

72

Algorithms

111 ve l = np . c r o s s (omg , np . array ([cir4wd [0] , − cir4wd [1] ,
c ir4wd [2]]))

112 vx = ve l [0]
113 vy = ve l [1]
114 vth = omg [2]
115 e l s e :
116 ds = R∗EncRes ∗(dg .mean ())
117 vx = ds/dt
118 vy = 0
119 vth = 0
120 e l i f s t a t e == " s i d e " :
121 i f W == −1:
122 ds = R∗EncRes ∗(dg .mean ())
123 vx = 0
124 vy = −ds/dt
125 vth = 0
126 e l s e :
127 ds = R∗EncRes ∗(dg .mean ())
128 vx = ds/dt
129 vy = 0
130 vth = 0
131 th = th+vth∗dt
132 odom . header . stamp = rospy . Time . now()
133 odom . header . frame_id = "odom"
134 odom_quat = t f . t r ans f o rmat i ons . quaternion_from_euler (0 , 0 , th

)
135 quat = odom_quat
136 V_odom = quaternion_mult ip ly (quat , [vx , vy , 0 , 0])
137 V_odom = quaternion_mult ip ly (V_odom,[− quat [0] , − quat [1] , − quat

[2] , quat [3]])
138 x = x + V_odom[0] ∗ dt
139 y = y + V_odom[1] ∗ dt
140 odom_broadcaster . sendTransform ((x , y , 0 .) , odom_quat , rospy .

Time . now() , " base_l ink " , "odom")
141 odom . pose . pose = Pose (Point (x , y , 0 .) , Quaternion (∗odom_quat)

)
142 odom . child_frame_id = " base_l ink "
143 odom . tw i s t . tw i s t = Twist (Vector3 (vx , vy , 0) , Vector3 (0 , 0 ,

vth))
144

145 odom_pub . pub l i sh (odom)
146 except :
147 pass
148

149 l t = ct
150 l e = ce
151

152

153 de f ve l_ca l lback (data) :

73

Algorithms

154 g l oba l W
155 W = data . angular . z
156 #rospy . l o g i n f o (W)
157

158 de f s ta t e_ca l l back (data) :
159 g l oba l s t a t e
160 s t a t e = data . data
161 #rospy . l o g i n f o (s t a t e)
162

163 de f odom_publisher () :
164 g l oba l odom_pub
165 g l oba l s t a t e
166 g l oba l W
167 g l oba l odom_broadcaster
168 g l oba l x
169 g l oba l y
170 g l oba l th
171 x = 0
172 y = 0
173 th = 0
174 rospy . in it_node (' odom_publisher ')
175 odom_pub = rospy . Pub l i she r (" / robo_explorer /odom" , Odometry ,

queue_size=10)
176 ve l sub = rospy . Subsc r ibe r (' / robo_explorer /cmd_vel ' , Twist ,

ve l_ca l lback)
177 s ta t sub = rospy . Subsc r ibe r (' / robo_explorer / s t a t e ' , Str ing ,

s ta t e_ca l l back)
178 encsub = rospy . Subsc r ibe r (' / robo_explorer / enc ' , Str ing ,

enc_cal lback)
179 odom_broadcaster = t f . TransformBroadcaster ()
180 rospy . sp in ()
181

182 i f __name__ == '__main__ ' :
183 odom_publisher ()

B.7 Kalman Filter

1 c l e a r a l l , c l c
2 t = ze ro s (l ength (c e l l b a g {19 , 2}) ,1) ;
3 f o r i =1: s i z e (c e l l b a g {19 , 2} ,1)
4 d i s t anc e (i , 1) = c e l l b a g {19 , 2}{ i , 1} . Distance ;
5 NormalVector = c e l l b a g {19 , 2}{ i , 1} . NormalVector ;
6 ang le (i , 1) = rad2deg (atan2 (NormalVector (1) , NormalVector (3))) ;
7 t (i , 1) = double (c e l l b a g {20 , 2}{ i , 1} . Header . Stamp . Sec) + . . .

74

Algorithms

8 double (c e l l b a g {20 , 2}{ i , 1} . Header . Stamp . Nsec)
∗10^(−9) − . . .

9 double (c e l l b a g {20 , 2}{1 , 1} . Header . Stamp . Sec) − . . .
10 double (c e l l b a g {20 , 2}{1 , 1} . Header . Stamp . Nsec)

∗10^(−9) ;
11 end
12 t (1 , 1) = 0 ;
13

14 dt = 0 . 1 5 ;
15 A = [0 0 0 0 ; dt 1 0 0 ; 0 0 0 0 ; 0 0 dt 1] ;
16 C = [0 1 0 0 ; 0 0 0 1] ;
17

18 R = 0.5∗ diag ([1 1]) ;
19 Q = 0.1∗ diag ([1 1 1 1]) ;
20

21 x0 = [0 0 0 1 . 5] ' ;
22 P0 = 0.1∗ eye (4) ;
23

24 x_k_k = x0 ;
25 P_k_k = P0 ;
26

27 y_kp1_kp1 = ze ro s (51 ,2) ;
28

29 Ns = length (t) ;
30 y = [ang le d i s t ance] ' ;
31

32 f o r k = 1 :Ns
33 x_kp1_k = A ∗ x_k_k ;
34 P_kp1_k = A ∗ P_k_k ∗ A' + Q;
35

36

37 K = P_kp1_k ∗ C' ∗ inv (C ∗ P_kp1_k ∗ C' + R) ;
38 x_kp1_kp1 = x_kp1_k + K ∗ (y (: , k) − C ∗ x_kp1_k) ;
39

40 P_kp1_kp1 = (eye (4) − K ∗ C) ∗P_kp1_k ;
41

42 y_kp1_kp1(k , :) = (C ∗ x_kp1_kp1) ' ;
43

44 x_k_k = x_kp1_kp1 ;
45 P_k_k = P_kp1_kp1 ;
46

47 end
48

49 %%
50 c l o s e a l l
51 s e t (gcf , ' c o l o r ' , 'w ') ;
52 s e t (gca , ' f o n t s i z e ' , 25)
53

54 f i g u r e (1)

75

Algorithms

55 n e x t t i l e
56 g r id on , hold on
57 p lo t (t , y_kp1_kp1 (: , 1) , 'b ' , ' l i n ew id th ' , 1 . 5)
58 p lo t (t , angle , ' r ' , ' l i n ew id th ' , 1 . 5)
59

60 t i t l e ("Kalman F i l t e r ")
61 l egend (" F i l t e r e d ang le " , " Measured ang le ")
62 x l ab e l (" Time [s] ")
63 y l ab e l (" Angle [] ")
64

65 f i g u r e (1)
66 n e x t t i l e
67 g r id on , hold on
68 p lo t (t , y_kp1_kp1 (: , 2) , 'b ' , ' l i n ew id th ' , 1 . 5)
69 p lo t (t , d i s tance , ' r ' , ' l i n ew id th ' , 1 . 5)
70

71 l egend (" F i l t e r e d d i s t ance " , " Measured d i s t anc e ")
72 x l ab e l (" Time [s] ")
73 y l ab e l (" Distance [m] ")

76

Bibliography

[1] R. Gebbers and V. Adamchuk. Precision Agriculture and Food Security. 2010
(cit. on p. 1).

[2] R. Casa. Agricoltura di Precisione, Metodi e tenologia per migliorarne l’efficienza.
2018 (cit. on p. 2).

[3] L. Tamburino, G. Bravo, Y. Clough, and Kimberly A Nicholas. From popula-
tion to production: 50 years of scientific literature on how to feed the world.
eng. Vol. 24. Elsevier B.V, 2020, p. 100346 (cit. on p. 3).

[4] D. De Wrachien, B. Schultz, and M. B Goli. Impacts of population growth
and climate change on food production and irrigation and drainage needs: A
world-wide view. eng. 2021 (cit. on p. 3).

[5] M. A Gehan and E. A Kellogg. High-throughput phenotyping. eng. Vol. 104. 4.
United States: Botanical Society of America, 2017, pp. 505–508 (cit. on p. 3).

[6] Naïo Technologies. https://www.naio-technologies.com (cit. on p. 4).
[7] I. Beloev, D. Kinaneva, G. Georgiev, G. Hristov, and P. Zahariev. Artificial

Intelligence-Driven Autonomous Robot for Precision Agriculture. eng. Vol. 24.
1. Sciendo, 2021, pp. 48–54 (cit. on p. 4).

[8] Geert Verhoeven. Taking computer vision aloft - archaeological three-dimensional
reconstructions from aerial photographs with photoscan. eng. Vol. 18. 1. Chich-
ester, UK: John Wiley Sons, Ltd, 2011, pp. 67–73 (cit. on p. 6).

[9] Zhihua Xu, Lixin Wu, Yonglin Shen, Fashuai Li, Qiuling Wang, and Ran
Wang. Tridimensional Reconstruction Applied to Cultural Heritage with the
Use of Camera-Equipped UAV and Terrestrial Laser Scanner. eng. Vol. 6. 11.
MDPI AG, 2014, pp. 10413–10434 (cit. on p. 6).

[10] Adam Mathews and Jennifer Jensen. Visualizing and Quantifying Vineyard
Canopy LAI Using an Unmanned Aerial Vehicle (UAV) Collected High Density
Structure from Motion Point Cloud. eng. Vol. 5. 5. MDPI AG, 2013, pp. 2164–
2183 (cit. on p. 6).

77

BIBLIOGRAPHY

[11] J. Bendig, A. Bolten, and G. Bareth. UAV-based imaging for multi-temporal,
very high resolution crop surface models to monitor crop growth variability.
2013 (cit. on p. 6).

[12] Marie Weiss and Frédéric Baret. Using 3D Point Clouds Derived from UAV
RGB Imagery to Describe Vineyard 3D Macro-Structure. eng. Vol. 9. 2. MDPI,
2017, p. 111 (cit. on p. 6).

[13] Yi Lin. LiDAR: An important tool for next-generation phenotyping technology
of high potential for plant phenomics? eng. Vol. 119. Elsevier B.V, 2015,
pp. 61–73 (cit. on p. 7).

[14] David Deery, Jose Jimenez-Berni, Hamlyn Jones, Xavier Sirault, and Robert
Furbank. Proximal Remote Sensing Buggies and Potential Applications for
Field-Based Phenotyping. eng. Vol. 4. 3. MDPI AG, 2014, pp. 349–379 (cit. on
p. 7).

[15] Michael Schaefer and David Lamb. A Combination of Plant NDVI and LiDAR
Measurements Improve the Estimation of Pasture Biomass in Tall Fescue
(Festuca arundinacea var. Fletcher). eng. Vol. 8. 2. MDPI AG, 2016, p. 109
(cit. on p. 7).

[16] Greg J Rebetzke, Jose A Jimenez-Berni, William D Bovill, David M Deery, and
Richard A James. High-throughput phenotyping technologies allow accurate
selection of stay-green. eng. Vol. 67. 17. England: Oxford University Press,
2016, pp. 4919–4924 (cit. on p. 7).

[17] Andrew N French, Michael A Gore, and Alison Thompson. Cotton phenotyping
with lidar from a track-mounted platform. eng. Vol. 9866. SPIE, 2016, 98660B–
98660B-8. isbn: 9781510601079 (cit. on p. 7).

[18] Matthew H Siebers, Everard J Edwards, Jose A Jimenez-Berni, Mark R
Thomas, Michael Salim, and Rob R Walker. Fast Phenomics in Vineyards:
Development of GRover, the Grapevine Rover, and LiDAR for Assessing
Grapevine Traits in the Field. eng. Vol. 18. 9. Switzerland: MDPI, 2018,
p. 2924 (cit. on p. 7).

[19] M. G. Bekker. Theory of land locomotion. 1956 (cit. on p. 9).
[20] M. G. Bekker. Introduction to terrain-vehicle systems. 1969 (cit. on p. 9).
[21] J. Wong. Theory of ground vehicles. 2008 (cit. on p. 9).
[22] J. Wong A. and R. Reece. Prediction of wheel performance based on the

analysis of soil-wheel stresses. 1967 (cit. on pp. 9, 11, 12).
[23] V. Vattiata. Modeling and identification of wheel-soil interaction for precision

agriculture robotics. 2020 (cit. on p. 10).
[24] M. G. Bekker. Off-the-Road Locomotion. 1960 (cit. on p. 11).

78

BIBLIOGRAPHY

[25] Z. Janosi and B. Hanamoto. The analytical determination of drawbar pull as
a function of slip for tracked vehicle in deformable soils. 1961 (cit. on p. 11).

[26] G. Ishigami, A. Miwa, K. Nagatani, and K. Yoshida. Terramechanics- based
model for steering maneuver of planetary exploration rovers on loose soil. 2007
(cit. on p. 12).

[27] H. Shibly, K. Iagnemma, and S. Dubowsky. An equivalent soil mechan- ics
formulation for rigid wheels in deformable terrain with application to planetary
exploration rovers. 2005 (cit. on p. 12).

[28] L. Ding, K. Yoshida, K. Nagatani, H. B. Gao, and Z. Q. Deng. Parameter
identification for planetary soil based on a decoupled ana- lytical wheel-soil
interaction terramechanics model. 2009 (cit. on p. 14).

[29] K. R. Xia, L. Ding, H. B. Gao, and Z. Q. Deng. Motion-control- based
analytical model for wheel-soil interaction mechanics of lunar rover. 2011
(cit. on p. 14).

[30] S. Hutangkabodee, Y. H. Zweiri, L. D. Seneviratne, and K. Althoefer. Per-
formance prediction of a wheeled vehicle on unknown terrain using identified
soil parameters. 2006 (cit. on p. 14).

[31] S. Hutangkabodee, Y. H. Zweiri, L. D. Senviratne, and K. Althoefer. Validation
of soil parameter identification for track-terrain interaction dynamics. 2007
(cit. on p. 14).

[32] K. Iagnemma, S. Kang, H. Shibly, and S. Dubowsky. Online terrain parameter
estimation for wheeled mobile robots with application to planetary rovers. 2004
(cit. on p. 14).

[33] J. Y. Wong. Terramechanics and Off-Road Vehicle Engineering. 1989 (cit. on
p. 14).

[34] Y. Li, L. Ding, and G. Liu. Error-Tolerant Switched Robust Extended Kalman
Filter With Application to Parameter Estimation of Wheel-Soil Interaction.
2014 (cit. on pp. 14, 15).

[35] G. Reina, L. Ojeda, A. Milella, and J. Borenstein. Wheel Slippage and Sinkage
Detection for Planetary Rover. 2006 (cit. on p. 15).

[36] L. Wang, X. Dai, and H. Ju. Homography-based visual measurement of wheel
sinkage for a mobile robot. 2010 (cit. on p. 15).

[37] D. M. Bevly and J. C. Gerdes. The Use of GPS Based Velocity Measurements
for Improved Vehicle State Estimation. 2000 (cit. on p. 17).

[38] J. V. Alcantar, F. Assadian, and M. Kuang. Vehicle Velocity State Estimation
using Youla Controller Output Observer. 2018 (cit. on p. 17).

79

BIBLIOGRAPHY

[39] Martin A Fischler and Robert C Bolles. Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis and Auto-
mated Cartography. eng. 1981 (cit. on p. 24).

[40] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. 2015 (cit. on p. 36).
[41] A. Kamilaris and F. Prenafeta-Boldú. Deep learning in agriculture: a survey.

2018 (cit. on p. 36).

80

	List of Figures
	Glossary
	Introduction
	Precision Agriculture
	Intelligent self-driving tractors
	Purpose and approach
	Outline

	Automation systems for phenotyping in the agricultural domain
	Vision systems for automation
	Wheel-soil interaction models
	Finite Element Method (FEM)
	Reference model
	Parameter estimation

	Vineyard row path following
	Row following problem statement
	Proposed solution
	Development of the proposed solution
	Solution design by means of ROS/Gazebo simulation framework
	Implementation of the proposed solution

	Tests and experiments
	Indoor tests
	Outdoor tests
	Data analysis

	Conclusions
	Achievements
	Future work

	Gazebo model
	Main part
	Macros
	Materials

	Algorithms
	Wall following
	MATLAB plane detection
	Plane detection
	Motion control
	Control joy
	Odometry
	Kalman Filter

	Bibliography

