
POLITECNICO DI TORINO

Corso di Laurea in Ingegneria Informatica

Tesi di Laurea

Automatic Malware Signature
Generation

Relatori

Prof. Antonio Lioy

Ing. Andrea Atzeni

Michele Crepaldi

Anno accademico 2020-2021

Acknowledgements

I would like to express my sincere gratitude to Professor Antonio Lioy and Ing. Andrea Atzeni
for the opportunity they gave me of working on this thesis and for their assistance at every stage
of the research project.

I would like to extend my sincere thanks to Ing. Andrea Marcelli for the technical support he
offered me and for his insightful comments and suggestions.

Special thanks to my uncle Davide who read the various versions of this thesis, gave me many
helpful tips and helped me to define the final document structure and correct grammatical errors.

My most important thanks go to my family to whom I am deeply grateful.
In particular I would like to thank my parents for their unwavering support and trust in me, for
how they raised me and for the sacrifices they made for me to reach this goal. I hope to make
you proud of me and to repay you for the love you have given me over the years.

I would also like to thank my sister Ilaria, my grandparents, my uncles and my cousins for
always being there for me, no matter the circumstances. I’m proud to be part of this family.

I would also like to make a special thanks to my beloved Giulia who has always believed in me
and has never failed to cheer me up and make me happy even in the most stressful and difficult
days. I hope I can repay you with the same support you gave me on this journey.

Finally, I would like to thank my dearest friends who kept me company during my studies,
alleviating the resulting tiredness and tension, despite having made different choices and taken
separate paths.

3

Summary

In most recent years the proliferation of malicious software, namely Malware, has had a massive
increase: according to AV Atlas Dashboard [1] the new malware samples (and PUA - Potentially
Unwanted Application) currently detected every day are about 440.000 (at the time of writing),
and this number is predicted to only keep growing. The total number of known Microsoft Windows
malicious software (and PUA) passed from about 55 million in 2011, to about 400 million in 2016,
and finally to nearly 830 million now. The huge number of malware samples out there in the wild
renders the detection through manually generated signatures (patterns that identify malicious
code) infeasible and consequently imposes the urgent need for tools able to automatically detect
malware and possibly describe it in a human-interpretable way. Several methodologies have been
proposed through the years, ranging from signature-based detection (especially with Yara Rules)
to various Machine Learning approaches like Decision Trees, Naive Bayes models and Neural
Networks.

This thesis presents a novel model, called Multi Task Joint Embedding (MTJE), built
upon previous works inML-based (Machine Learning) automatic PE (Microsoft Windows Portable
Executable) malware detection and description and introduces a new evaluation procedure on the
learned implicit representation/signature of malware samples that may prove the applicability of
its usage in the Malicious family prediction and ranking tasks. The model is trained on an open
source large scale dataset of malware and benignware samples with the aim of creating high qual-
ity implicit signatures capable of correctly detecting (and describing) unseen malware samples
as well as obfuscated malware and new variants, with high True Positive Rate (TPR) and high
Recall at low False Positive Rates (FPRs).

The results show that the proposed MTJE model generates implicit signatures (samples
embeddings) which provide higher TPRs, Accuracies, Recalls, Precisions and F1 Scores at low
false positive rates with respect to the ones produced by the reference previous methods on
the corresponding tasks. When testing the learned representations of the MTJE model on the
Malware Family prediction and ranking tasks, however, the results were less promising.

Therefore, a new Malware Family Classifier model, built on top of the MTJE model base
topology, was created. This new model was specifically trained and evaluated on the malware
family classification task using a specially crafted dataset of 10.000 PE files, exploiting the pa-
rameters from a previous MTJE model training run, with the aid of transfer learning. The
introduction of this new Family Classifier provided more meaningful results, although not excep-
tional, in the family classification task while also demonstrating the potential of using Transfer
learning in this context. This new model, however, could not be used to produce family rank-
ings nor to query samples based on their similarity and was limited to working only with a fixed
number of predefined families.

Therefore, a new Contrastive (Siamese) Model was created based on the MTJE model
which overcame such limitations by refining the MTJE model implicit representations of PE
executables using the Online Triplet Loss in a contrastive learning setting. In this way, the final
learned implicit representations of PE files could address both the family prediction/classification
and ranking tasks with meaningful results with an indefinite number of families at the cost of
having a slightly worse performance in the family classification task than the Family Classifier.

Future (and more performant) works capable of overcoming some of the final models limitations
may be very useful to the IT-Security field in the current scenario and could even enable the
generation of explicit (and thus more interpretable) signatures derived from the learned implicit
ones.

4

Contents

1 Introduction 8

2 Background 12

2.1 Malware . 12

2.1.1 Why is Malware used . 13

2.1.2 Common Malware types . 13

2.2 Detection evasion . 17

2.2.1 Reverse-Engineering . 17

2.2.2 Malware analysis . 18

2.2.3 Anti-reversing . 19

2.2.4 Anti-disassembly . 20

2.2.5 Anti-debugging . 23

2.2.6 Anti-virtual machine . 27

2.2.7 Packers and unpacking . 28

2.2.8 Code Obfuscation . 29

2.2.9 Obfuscated Malware . 35

3 Detection Techniques 37

3.1 Integrity Checker . 37

3.2 Signature-based Detection . 38

3.2.1 Yara Rules . 38

3.3 Semantic Based Detection . 47

3.4 Behavioural Based Detection . 47

3.5 Heuristics-based Detection . 47

3.6 Machine Learning . 48

3.6.1 ALOHA: Auxiliary Loss Optimization for Hypothesis Augmentation 49

3.6.2 Automatic Malware Description via Attribute Tagging and Similarity Em-
bedding . 52

3.6.3 Learning from Context: Exploiting and Interpreting File Path Information
for Better Malware Detection . 56

3.7 Malware Normalization . 59

5

4 Workflow and Datasets used 60

4.1 Sorel 20M Dataset . 61

4.1.1 Sorel 20M Dataset Description . 61

4.1.2 Ember Features . 62

4.1.3 Improving the Dataset Loading Speed . 66

4.2 Fresh Dataset . 76

4.2.1 Fresh Dataset Generator (Dataloader) implementation 77

4.2.2 Base Model Evaluation with Fresh Dataset 80

4.2.3 Family Classifier Training and Evaluation 82

4.2.4 Contrastive Learning Model Training and Evaluation 83

5 Previous Methods 84

5.1 Implementation . 84

5.1.1 ALOHA model . 84

5.1.2 Joint Embedding . 88

5.2 Experiments . 93

5.3 Training and Evaluation algorithms . 94

5.3.1 Training . 94

5.3.2 Evaluation . 96

5.3.3 Results Computation and plotting . 97

6 Proposed Models 98

6.1 Multi Task Joint Embedding (MTJE) Model . 98

6.1.1 Implementation . 99

6.1.2 Experiments . 104

6.1.3 Training and Evaluation algorithms . 105

6.1.4 Evaluate Fresh algorithm . 105

6.2 Malware Family Classifier . 110

6.2.1 Implementation . 111

6.2.2 Experiments . 114

6.2.3 Family Classifier Training and Evaluation algorithms 114

6.3 Contrastive Learning Model . 118

6.3.1 Implementation . 120

6.3.2 Experiments . 122

6.3.3 Contrastive Learning Model Training and Evaluation algorithms 123

6

7 Results 133

7.1 Malware Detection results . 133

7.1.1 Summary . 136

7.1.2 Comments . 136

7.2 Malware Description via SMART tags results . 137

7.2.1 Mean per-sample tagging scores . 140

7.2.2 Comments . 141

7.3 Family Prediction and Ranking Results . 141

7.3.1 Example rankings . 145

7.3.2 Comments . 148

7.4 Family Classification Results . 149

7.4.1 Comments . 152

7.4.2 Families study . 153

7.5 Contrastive Learning Results . 155

7.5.1 Example rankings . 159

7.5.2 Comments . 161

7.6 Computation Time . 162

8 Conclusions 164

8.1 Future Work . 165

Bibliography 167

List of Figures 170

List of Tables 172

7

Chapter 1

Introduction

Malware first made its appearance in the 1960s. Then, hackers used to design computer viruses
mainly for fun, as an exciting prank/experiment; their creations would generally display harmless
messages and then spread to other computers [2]. There are numerous examples of malware
created at that time within a laboratory setting: for example the Darwin game in 1962 and
Creeper in 1971.

In the early 1980s, the concept of malware caught on in the technology industry, and numerous
examples of viruses and worms appeared both on Apple and IBM personal computers. With the
introduction of the World Wide Web and the commercial internet in the 1990s it eventually
became widely popularized, so much that Yisreal Radai coined the term malware in 1990.

Figure 1.1: Poem displayed by Elk Cloner virus

The previously mentioned 1960s and 1970s malware were all kept within a laboratory envi-
ronment and never managed to escape to the wild. Elk Cloner (1981) was the first known virus
to have been able to escape its creation environment. It spread through infected floppy disks and
simply displayed the ’poem’ shown in figure 1.1 on the user’s screen without causing any delib-
erate harm. Following the success of that prank gone wild, the first Microsoft PC virus, called
Brain, was then created in 1986. Again, like Elk Cloner, Brain was mostly annoying rather than
harmful, but it was also the first known virus capable of concealing its presence on disk thus evad-
ing detection. In 1988 an experimental, self-propagating, self-replicating program called Morris,
was released on the internet [3] and became the first known worm. In 1988 made its appearance
also the first example of intentionally harmful virus, the Vienna virus, which encrypted data and
destroyed files. This led to the creation of the first antivirus tool ever [2].

In the following decades malware has evolved both regarding its complexity and malware
sample numbers. In particular, according to AV Atlas [1], in 2019 and 2020 (and until mid 2021
- that is until the time of writing) the number of newly generated malware blew with respect to
previous years, as shown in graph 1.2, to the point that approximately 5.1 new Microsoft Windows
malware (and PUA) are currently generated per second, ∼ 18,500 per hour. Consequently, as
reported by AV Atlas dashboard and as shown in graph 1.3, in recent years the total amount
of unique malware (and PUA) variants reached impressive numbers, to the point that they are

8

Introduction

now more than 830 millions. Moreover, nowadays malware commonly use obfuscation and other
sophisticated techniques, such as Polymorphism and Metamorphism, to evolve their structure
thus evading detection.

Figure 1.2: AV Atlas - Total Amount of New Malware and PUA

Figure 1.3: AV Atlas - Total Amount of Malware and PUA

For all these reasons, signature-based detection techniques (such as manually generated Yara
Rules), which are typically used by most commercial anti-virus solutions, are becoming inefficient
in the present scenario. In fact, it is now straight up impossible for analysts to manually analyse
each malware variant that is found in the wild. Furthermore, even when a new malware family
is identified and an appropriate amount of its samples are analysed, the generated signature may
not be capable of detecting new variations or may even be rendered useless through the use of
obfuscation and/or polymorphic mechanisms. There is therefore the need for automated malware
analysis solutions capable of automatically generating (implicit or explicit) signatures effective at

9

Introduction

distinguishing malicious from benign code while being less susceptible to code modifications and
obfuscation attempts.

This thesis presents a research aimed at satisfying this need for automated malware detec-
tion solutions. In particular, it presents a novel model built upon previous works on ML-based
(Machine Learning) automatic Malware detection and description designed for PE (Microsoft
Windows Portable Executable) files. Moreover, it introduces a new evaluation procedure that may
prove the applicability of the model learned implicit representation/signature of malware samples
in the Malware family prediction and ranking tasks. These tasks are particularly interesting for
malware analysts since they allow them to quickly categorize malware samples as being part of
specific sets (families) with common behavioural and structural characteristics.

The proposed framework life cycle can be conceptually divided in four phases (as shown in
figure 1.4): model architecture definition, model training and validation, model evalu-
ation and finally model deployment. In particular, in the first phase the proposed FNN (Feed-
forward Neural Network) model architecture, called Multi Task Joint Embedding (MTJE),
is defined and implemented taking inspiration from previous works such as the ALOHA and the
Joint Embedding models presented in papers [4] and [5], respectively. In the second phase,
instead, the proposed MTJE model is trained (and validated) on an open source large scale
dataset of malware and benignware samples (Sorel20M [6]) with the aim of creating high quality
implicit signatures capable of detecting (and describing via SMART tags) unseen malware sam-
ples, as well as obfuscated malware and new variants, with high True Positive Rate (TPR) and
high Recall at low False Positive Rates (FPRs). The first two phases here described are iteratively
repeated until a model with satisfactory training and validation loss trends is generated. In the
third phase, on the other hand, the final model architecture is tested on the malware detection
and description tasks and the corresponding prediction scores are computed and plotted. More-
over, in this phase the model learned representation of PE files is also tested on the Malware
family prediction and ranking tasks using a novel dataset, referred to as fresh dataset in this
document, containing 10.000 samples belonging to 10 of the most widespread malware families in
Italy at the time of writing, specifically created for that purpose. In both datasets the samples
are directly represented by the numerical feature representation extracted statically from specific
fields of their Windows Portable Executable (PE) file header. The MTJE model thus relies
exclusively on static analysis features which are generally simpler, less computationally intensive
and thus faster than dynamic analysis ones (behavioural characteristics of executables). Finally,
in the last phase the final model architecture is deployed in the wild. In particular, it can be
used as an automatic malware detection tool that provides additional description tags useful for
remediation. Moreover, potentially, if the corresponding evaluation results allow it, it could also
be used to provide information about the malware family each analysed sample most probably
belongs to, among the set of families of interest.

Figure 1.4: Proposed Framework Life Cycle

This thesis focuses on the first three phases previously mentioned. In particular, it concen-
trates on defining, training and evaluating the best model architecture possible for the tasks at
hand. However, some code optimization challenges resulting from the slowness of the code in the
instance used for the experiments meant that it could be possible to train the model only with
the first half of the samples of the Sorel20M dataset in a reasonable time, with some approxima-
tions on the samples dispersion when random sampling them from the dataset. This resulted in
slightly worse performance than might be expected using the current architecture with the entire
dataset. Nevertheless, the deployment of the proposed MTJE model on a real-world scenario is
theoretically possible with the current final architecture, although it would be better to train the
model on the whole Sorel20M dataset on a better instance first in order to see its true potential.

10

Introduction

At a later moment, the proposed framework was extended with the addition of a Malware
Family Classifier model head defined on top of the proposed MTJE model base topology in
order to improve its relatively poor results in the Malware family prediction/classification
task. This new model was then specifically trained (and tested) for such purpose using the
training and test subsets of the relatively small fresh dataset, which contain the information
about the malware family each sample belongs to. However, instead of training the newly defined
architecture from scratch on such small dataset at the risk of overfitting, the technique called
Transfer Learning was used by transferring the knowledge (the learned model parameters)
from a previous MTJE model training run on the large Sorel20M dataset onto the new model
base topology (the one shared with the MTJE model architecture), before training. Then,
during the training procedure, some of the imported parameters were ’fine-tuned ’ while the ones
corresponding to the newly added Family Classifier head were learned from scratch.

However, this new Family Classifier model could not be used to produce family rankings
nor to query samples based on their similarity to some anchor, which are very useful tasks in the
field of Information Security since they allow to quickly obtain samples similar to the currently
analysed one, facilitating its study. Moreover this model was also limited to working only with a
fixed number of predefined families. Therefore, in order to overcome such limitations a new model
- referred to as Contrastive model in this document - was introduced consisting of a Siamese
Network which refined, in a contrastive learning setting, the implicit representation of PE files
(PE Embeddings) learned by a previous MTJE model training run on the Sorel20M dataset (with
the aid of Transfer Learning) using samples from the training subset of the fresh dataset with the
Online Triplet Loss function. The final PE Embeddings can, in fact, be used to address both
the family prediction/classification - applying the distance weighted k-NN (k Nearest Neighbours)
algorithm in the resulting embedding space - and ranking tasks and to query samples based on
their similarity in the Embedding space.

11

Chapter 2

Background

2.1 Malware

Malware, short for malicious software, is a general term for all types of programs designed to
perform harmful or undesirable actions on a system. In fact in the context of IT security the term
malicious software commonly means [7]:

”Software which is used with the aim of attempting to breach a computer system’s
security policy with respect to Confidentiality, Integrity and/or Availability.”

Malware consists of programming artefacts (code, scripts, active content, and other software)
designed to disrupt or deny operation, gain unauthorized access to system resources, gather
information that leads to loss of privacy or exploitation, and other abusive behaviour. Malware is
not (and should not be confused with) defective software - software that has a legitimate purpose
but contains harmful bugs (programming errors).

Different companies, organizations and people describe malware in various ways. For example
Microsoft defines it in a generic way:

”Malware is a catch-all term to refer to any software designed to cause damage to a
single computer, server, or computer network” [8].

The National Institute of Standards and Technology (NIST), on the other hand,
presents multiple definitions for malware, describing it as ”hardware, firmware, or software that
is intentionally included or inserted in a system for a harmful purpose” [9].

In another more specific definition NIST affirms that Malware is:

”A program that is inserted into a system, usually covertly, with the intent of compro-
mising the confidentiality, integrity, or availability of the victim’s data, applications,
or operating system or of otherwise annoying or disrupting the victim” [9].

The computer system whose security policy is attempted to be breached is usually known
as the target for the malware. The cybercriminal who originally launched the malware with
the purpose of attacking one or more targets, on the other hand, is generally referred to as the
initiator of the malware. Furthermore, depending on the malware type, the initiator may or may
not exactly know what the set of targets is [7].

According to the above definitions software is defined as malicious in relation to an attempted
breach of the target’s security policy . In other words, software is often identified as malware
based on its intended use, rather than on the particular technique or technology used to build it.

12

Background

2.1.1 Why is Malware used

Generally, cybercriminals use malware to access targets’ sensitive data, extort ransoms, or simply
cause as much damage as possible to the affected systems.

More generally, malware serves a variety of purposes. For example, some of its most common
uses are: [10]

❼ To profit financially (either directly or through the sale of products or services).
For example, attackers may use malware to infect targets’ devices with the purpose of
stealing their credit account information or cryptocurrency. Alternatively, they may sell
their malware to other cybercriminals or as a service offering (malware-as-a-service).

❼ As a means of revenge or to carry out a personal agenda. For example, Brian Krebs
of Krebs on Security was struck by a big DDoS attack in 2016 after having talked about a
DDoS attacker on his blog.

❼ To carry out a political or social agenda. For example, there exist many Nation-state
actors (such as state-run hacker groups in China and North Korea) and hacker groups such
as Anonymous.

❼ As a way to entertain themselves. Some cybercriminals perpetrate attacks on victims
just for fun.

Obviously there are also reasons for non-malicious actors to create and/or deploy some types
of malware too - for example they can be used to test a system’s security, to spy on someone as
part of a legal act/police operation, etc.

2.1.2 Common Malware types

There are different ways of categorizing malware; one way is by how the malicious software
spreads. Another one is by what it does once it has successfully infected its victim’s computers
(i.e. what is its payload, how it exploits the system or makes it vulnerable).

By how they spread

Terms like trojan, virus and worm are commonly used interchangeably to indicate generic mal-
ware, but they actually describe three subtly different ways malicious software can infect target
computers [11]:

❼ Trojan horse . Generally speaking, a Trojan Horse, commonly referred to as a Trojan, is
any program that disguises itself as legitimate and invites the user to download and run
it, concealing a malicious payload. When executed, the payload - malicious routines - may
immediately take effect and cause many undesirable effects, such as deleting the user files
or installing additional malware or PUAs (Potentially Unwanted Apps), depending on the
payload attached to them [3].

Trojans may hide in games, apps, or even software patches, or they may rely on social
engineering and be embedded in attachments included in phishing emails. However, they
cannot self-replicate but rely on the system operators to activate.

❼ Virus. The term computer virus is used for describing a passive self-replicating malicious
program. Usually spread via infected websites, file sharing, or email attachment downloads,
it lies dormant until the infected host file or program is activated. At that point it spreads
to other executables (and/or boot sectors) by embedding copies of itself into those files.
A virus, in fact, in order to spread from one computer to another, usually relies on the
infected files possibly ending up, by some means or another, in the target system. The
mean of transport (file, media file, network file, etc.) is often referred to as the virus vector.

13

Background

Depending on how complex the virus code is, it may be able to modify its copies upon
replication. For the transport of the infected files to the target system(s), the virus may
rely on an unsuspecting human user (who for example uses a USB drive containing the
infected file) or may initiate the transfer itself (for example, it may send the infected files
as an e-mail attachment) [7].

Viruses may also perform other harmful actions other than just replicating, such as creat-
ing a backdoor for later use, damaging files, stealing information, creating botnets, render
advertisements or even damaging equipment.

❼ Worm . A worm is a self-replicating, active malicious program that exploits various system
vulnerabilities to spread over the network. Particularly, it relies on vulnerabilities present
in the target’s operating system or installed software. Worms usually consume a lot of
bandwidth and processing resources due to continuous scanning and may render the host
unstable, sometimes even causing crashes. Apart from replicating, computer worms also
contain ”payloads” which are pieces of code written to perform various nefarious actions on
the affected hosts, for example stealing data, deleting files or creating bots - which can lead
the infected systems to become part of a botnet [3].

Moreover, attackers can also install malware ”manually” on a computer, either by gaining
physical access to the target system or by using privilege escalation methods to obtain remote
administrator access [12].

By what they do

There is a wide range of potential attack techniques used by malware, some of which are briefly
described below:

❼ Adware . Adware is any software package which automatically plays, displays, or downloads
advertisements to a computer. These can be in the form of pop-up ads, ad banners in
websites, or advertisements displayed by software, that lure the user into making a purchase.
The goal of Adware is, in fact, to generate revenue for its author.

Often times adware comes even bundled with ”free”, or discounted, versions of non-malicious
software and/or applications since it is usually seen by developers as a way to recover
development costs [13].

Adware, by itself, is annoying but somewhat harmless, since it is solely designed to de-
liver ads; however, it often comes bundled with spyware (such as keyloggers), and/or other
privacy-invasive software that is capable of tracking user activity and stealing information
[14].

❼ Backdoor . A backdoor, also called Remote Access Trojan (RAT), is a vulnerability delib-
erately buried into software’s code allowing to bypass typical protection mechanisms, like
credentials-based login authentication. Once a system has been compromised (by others
types of malware or other methods), one or more backdoors may be installed. This is done
with the purpose of allowing the attacker easier access in the future without alerting the
user or the system’s security programs. Moreover, backdoors may also be installed before
other malicious software, to allow attackers entry [13].

On the other hand, it is not uncommon to see many (non-malicious) device or software
manufacturers ship their products with intentionally hidden backdoors to allow company
personnel or law enforcement to access to the system when needed [15]. Alternatively,
backdoors are sometimes hidden in programs also by intelligence services.

❼ Browser Hijacker . A Browser Hijacker, also called hijackware, is a type of malicious
program which considerably modifies the behaviour of the victim’s web browser. It can
be used to make money off unwanted ads, to steal information from users, or to infect the
systems with other malware by redirecting users to malicious websites [15].

14

Background

❼ Bots/Botnet . In general, bots (short for robots) are software programs designed to au-
tomatically perform specific operations. Some bots are used for legitimate and harmless
purposes such as video programming, video gaming, internet auctions and online contest,
among other functions. It is however becoming increasingly common to see bots being used
maliciously. Malicious bots can be (and usually are) used to form botnets. A botnet is
defined as a network of host computers (zombies/bots) that is controlled by an attacker -
the bot-master [3]. Botnets are frequently used for DDoS (Distributed Denial of Service)
attacks, but there are other ways that botnets can be useful to cybercriminals: for example
they can be employed to carry out brute force attacks on websites or to distribute malware
[10].

❼ Crypto-miner . Crypto-miners are a relatively new malware type. Cybercriminals employ
this type of malicious tools to mine Bitcoin and/or other similar digital currencies on the
target machine by exploiting the computing power of the victim’s system, without the owner
realising it. Obviously, the mined coins end up in the attackers’ digital crypto wallets.

Recently, a more modern method of crypto-mining that works within browsers (also called
crypto-jacking), has become quite popular [16].

❼ File-less malware . As the term suggests, File-less malware is a type of malware that op-
erates from a victim’s computer memory, not from files on the hard drive, taking advantage
of legitimate code and tools (known as LOLBins [10]) already existing within the system.
File-less malware leaves no malware files to scan and no malicious processes to detect, and
is therefore harder to detect and remove than traditional malware: it is, in fact, up to
ten times more successful [17]. Furthermore, it also renders forensic analysis more difficult
because it disappears from the victim’s computer upon rebooting.

❼ Keylogger . Keyloggers, often considered as being a sub-category of spyware, are malicious
programs which secretly track keystrokes on a keyboard, without the system owner consent
- action that is usually referred to as keylogging or Keystroke logging. The collected data
is stored and sent to the attacker who uses it to figure out highly sensitive information
such as passwords, usernames and payment details. Keylogging can be performed in vari-
ous ways, ranging from hardware and software-based approaches to the more sophisticated
electromagnetic and acoustic analysis [13].

❼ RAM Scraper . RAM scraper malware, also known as Point-of-Sale (POS) malware,
targets POS systems like cash registers or vendor portals, harvesting data temporarily stored
in RAM (Random Access Memory). Doing so the attacker can easily access unencrypted
credit card numbers [15].

❼ Ransomware . Ransomware, also known as encryption or crypto Trojan, is a malicious
program that, after having infected a host or network, holds the system captive and displays
a message requesting a ransom to the host/network users. In particular, it encrypts data
on the infected system (or anyway it locks down the system preventing user access) and
only unblocks it when the correct password - decryption key - is entered. Without the
latter, is practically impossible to regain access to the system. Digital currencies such as
Bitcoin and Ether are the most common means of payment, making it difficult to track
cybercriminals. Moreover, paying the ransom does not guarantee the user to receive the
necessary decryption key. Additionally, some forms of ransomware threaten victims to
publicize sensitive information within the encrypted data in order to convince them to pay
the ransom.

❼ Rogue Security Software . Rogue Security Software can be considered as a from of scare-
ware. This type of malware programs presents itself as a security tool to remove risks from
the user’s system. In reality, this fake security software installs more malware onto the
system [15].

❼ Rootkit . A rootkit is generally thought as a type of malicious software, or a collection of
software tools, designed to remotely access or control a computer without being detected
by users or security programs. An attacker who has installed a rootkit on a system is able
to perform a wide range of malicious activities such as remotely executing files, logging user

15

Background

activities, installing hidden malware, etc. Since a rootkit operates stealthily and continually
hides its presence, its prevention, detection and removal can be difficult and often relies on
manual methods [14].

More recently, the term rootkit has often been used to refer also to concealment routines
in a malicious program. These highly advanced and complex routines are written to hide
malware within legitimate processes on the infected computer. In fact, once a malicious
program has been installed on a system, it is essential that it remains hidden, to avoid
detection and disinfection [13].

❼ Scareware . Scareware is a generic term for malware that uses social engineering to frighten
and manipulate users, inducing them into thinking their system is vulnerable or has been
compromised. However, in reality no danger has actually been detected: it is a scam. The
attack succeeds when the user purchases unwanted - and potentially dangerous - software
in an attempt to eliminate the ”threat”. Generally, the suggested software is additional
malware or allegedly protective software with no value whatsoever [16].

Some versions of scareware act as a sort of shadow version of ransomware; they claim to
have taken control of the victim’s system and demand a ransom. However they are actually
just trying to fool the victim [12].

❼ Spyware . Spyware, another name for privacy-invasive software, is a type of malicious
software that spies on user activity on the infected system. Specifically it can collect various
types of personal information about users, such as Internet browsing habits, credit card
details and passwords, without their knowledge. The information gathered is then sent
back to the responsible cybercriminal(s).

However, the functions of spyware often go far beyond simple activity monitoring and infor-
mation gathering. In fact, they may also interfere with the user’s control of the computer
in other ways, such as installing additional software, redirecting web browser activity and
changing computer settings [13].

Law enforcement, government agencies and information security organizations often use
spyware to monitor communications in a sensitive environment or during an investigation
[18].

Other cyber-threats

Other cyber threats which are not strictly, and should not be confused with, malware are, for
example:

❼ Software Bug . A software bug is an error, or flaw, in a computer program code or system
that causes it to produce an incorrect or unexpected result, or to behave in unintended
ways. Usually, most of these defects arise from human errors made in the program’s source
code. Minor bugs only slightly affect the behaviour of a program and can therefore remain
undiscovered for quite a long time. On the other hand, more significant bugs can cause
crashes or freezes [14].

❼ Software Vulnerability . In computer security, a vulnerability is a hole or a weakness in an
application, which can be a design flaw or an implementation bug, that can be exploited by a
threat actor, such as an attacker, to bypass access controls like user authentication, override
access privileges, steal data or perform other unauthorized actions within a computer system
potentially causing harm to the stakeholders of an application. Stakeholders include the
application owner, application users, and other entities that rely on the application [19].

❼ Malvertising . Malvertising is the use of legitimate ads or ad networks to covertly deliver
malware to unsuspecting users’ computers. For example, a cybercriminal might pay to place
a malicious ad on a legitimate website. When clicked, it either redirects the victims to a
malicious website or installs malware on their computer. In some cases, the code embedded
in an ad might even execute automatically without any action from the user, a technique
referred to as a drive-by-download.

16

Background

❼ Phishing . Phishing is a type of social engineering attack in which the attacker attempts,
through email messages (or other means), to trick users into divulging passwords or other
personal and financial information, downloading a malicious attachment or visiting a website
that installs malware on their systems.

Some phishing emails are highly sophisticated and can deceive even experienced users, espe-
cially if the attacker has successfully compromised a known contact’s email account and uses
it to spread phishing attacks or malware such as worms. Others are less sophisticated and
simply spam as many emails as possible with messages such as ”Check your bank account
details” [20].

❼ Spam . In cybersecurity, unsolicited emails are generally referred to as spam. Typically,
spam includes emails carrying unwanted advertisements, fraud attempts, links to malicious
websites or malicious attachments. Most spam emails contain one or more of the following
characteristic traits [15]:

– Poor spelling and grammar

– Unusual sender address

– Unrealistic claims

– Suspicious links

General considerations on malware types

Malware samples are usually categorised both by their means of infection and their behavioural
category: for instance, WannaCry is a ransomware worm. Moreover, a particular piece of malware
may have various forms with different attack vectors: e.g., the banking malware called Emotet has
been spotted in the wild as both a trojan and a worm [12]. Finally, many instances of malware
fit into multiple categories: for example Stuxnet is both a worm, a virus and a rootkit.

2.2 Detection evasion

From the creation of the first malwares in 1960s, which were designed by hackers mainly for fun,
a strong competition between attackers and defenders has risen. In order to defend from malware
attacks, anti-malware groups have been developing increasingly complex (and clever) new tech-
niques. On the other hand, malware developers have conceived and adopted new tactics/methods
to avoid the malware detectors [21].

The first types of anti-malware tools were mostly based on the assumption that malware
structures do not change appreciably during time. In fact, initially, the malware machine code was
completely unprotected. This allowed analysts to exploit opcode sequences to recognise specific
malware families. Recently, however, a big advancement led to the so-called second generation
malware [22], which employs several obfuscation techniques and can create numerous variants of
itself, with the purpose of evading such opcode signatures. This posed a challenge to anti-malware
developers.

The first malware to exhibit a detection avoidance behaviour was the Brain virus [23], in 1986.
Such malware, in fact, managed to conceal the infected disk section whenever the user attempted
to read it, forcing the computer to display clean data instead of the infected part. From that
moment on, the ever increasing popularity of detection evasion techniques among malware writers
has shown that malware survival in the victim’s machine has become of primal importance: the
longer the malware remains undetected, the more harm it can do and the more profitable it is to
its writer [3].

2.2.1 Reverse-Engineering

Reverse engineering, in broad terms, indicates the process of extracting knowledge, ideas, design
philosophy etc. from anything man-made [24].

17

Background

Software reverse engineering is the application of reversing methodologies and techniques to
extract knowledge from a software product in order to better understand its inner workings.

Both malicious actors and malware analysts/investigators extensively use reversing techniques,
but with opposing purposes. Malware developers often use them to discover vulnerabilities in sys-
tems or programs, while analysts and antivirus software developers use them mainly for analysing
malicious programs to understand how they work, what damages they can cause, how they infect
the system and reproduce and, most importantly, how they can be removed, detected and avoided.

2.2.2 Malware analysis

Malware analysis is the process of extracting as much information as possible from malicious sam-
ples discovered in the wild, which usually are in the form of machine code executables (compiled
executables), in order to determine their purpose and functionality (and associated threats). This
process allows security teams to take a number of useful actions such as: developing effective
detection techniques against the analysed malicious code, containing its damage, reversing its
effects on the targeted system, developing removal tools that can delete it from infected machines
(to cleanly remove a piece of malware from an infected machine it is usually not enough to delete
the binary itself) and designing methods to guard systems against future infections [25].

Initially, malware analysts/researchers had to manually analyse each malware sample. This
process was however rather complex, it required high expertise, and was quite time-consuming.
Moreover, the number of malware samples that nowadays need to be analysed on a daily basis
is of the order of thousands. This implies that the analysis of malware samples can no longer be
exclusively done manually. As such, several analysis tools have been developed in recent years to
facilitate analysts in analysing malware samples.

Traditionally, there are two main types of analysis: static and dynamic. Moreover, these
two types can be, and frequently are, combined together (hybrid analysis) in various stages of
malware analysis to optimize results [3].

Static analysis

Static analysis consists of examining the code of an executable file without actually executing it.
Static analysis techniques usually extract peculiar features from malicious samples in order to be
able to recognise them and distinguish them from benign ones. The features usually extracted
are, for example, string signatures, byte-sequence n-grams, library or API calls, opcode frequency
distributions, peculiar attributes found in the executable header etc. However, this approach,
since it is based on signatures/features extracted from already analysed samples, is not much
effective on zero-day and evolutionary malware.

A malware analyst performing manual static analysis usually disassembles the binary first,
meaning that he translates the program’s machine code instructions back into assembly language,
generating a more human-interpretable code listing. The disassembled binary can then be subject
of more advanced static analysis techniques such as control flow analysis, data flow analysis and
many more. This is done in order to try understanding the program functionality and inner
workings, among other useful information [25].

Static analysis has a number of advantages with respect to dynamic analysis, such as that it
is usually faster (and safer) than dynamic approaches and that it takes into account the entire
program code and not just sub-parts of it. However, a general disadvantage of static analysis
is that many times the information collected during this type of analysis is very simple and
not always sufficient for a conclusive decision on the malicious intent of a file. It is, however,
good practice to start the analysis of a suspicious executable file extracting as much information
as possible through various static techniques before passing to the dynamic counterpart. The
information statically extracted may in fact provide useful knowledge to better apply dynamic
techniques and enhance the final results.

Additionally, another common problem to deal with when using static analysis is that, since
malicious code is written directly by the adversary, it can be purposefully designed to be hard to

18

Background

analyse statically. For example, analysis evasion techniques like packing, encryption and obfus-
cation can be exploited by malware authors to hinder both disassembly and code analysis steps
typical of static analysis approaches, ultimately leading to incorrect or useless information [3].

Dynamic analysis

Contrary to static analysis, dynamic techniques analyse the program’s code while or after ex-
ecution in a controlled environment. These techniques, while being non-exhaustive, have the
significant advantage that they analyse only those instructions that are actually executed by the
running process. This implies that dynamic analysis is less susceptible to anti-analysis attempts
like code obfuscation or anti-disassembly [25]. Moreover, dynamic analysis is also more effective
in terms of malicious behaviour detection, since it doesn’t look at the disassembled code but,
through the use of monitoring tools, it tracks the operations that the code performs on the file
system, registry, network etc. It is however, computationally more expensive and time consuming.

Basic dynamic analysis consists of observing the sample under analysis interacting with the
system. For example, this can be done by first taking a snapshot of the original system state, then
introducing the malware into the system, executing it and finally comparing the new system state
with the original one. The changes detected can then be used for infection removal on infected
systems and/or for modelling effective signatures/features.

Advanced dynamic analysis, on the other hand, consists of directly examining the executed
malware internal state while it is being run. This is done typically by monitoring the APIs and
OS function calls invoked, the files created and/or deleted, the registry changes and the data
processed by the program under analysis during its interaction with the system. The information
extracted in this way can be used to understand the malware behaviour and functionality [3].

When using dynamic techniques, however, malware analysts don’t simply run malware ex-
ecutables on their own systems, which most probably are connected to Internet, as they could
easily escape the analysis environment and infect other hosts/networks. It is, in fact, advised to
deploy dynamic techniques on ”safe” and controlled (isolated) environments such as dedicated
stand-alone hosts, virtual machines or emulators.

The use of clean dedicated hosts, reinstalled after each dynamic analysis run, is however not
the most efficient solution due to the environment re-installation process overheads. On the
other hand, using virtual machines (for example VMware) to perform dynamic analysis is more
efficient. In fact, in this case, since the malware only affects the virtual machine environment, it is
enough, after a dynamic analysis run, to simply discard the infected hard disk image and replace
it with a clean one. Unfortunately, a significant drawback is that the malware being analysed may
determine it is running in a virtualized environment and, as a result, modify its behaviour. To
counter this last problem one could make use of emulators, which are theoretically undetectable
by analysed malware. These tools, however, run the code under analysis significantly slower and
are therefore sometimes detectable using specially crafted time-related code.

Hybrid analysis

Hybrid Analysis is the combination of static and dynamic analysis. It is a technique that integrates
run-time information extracted through dynamic analysis with information extracted through
static analysis in order to have a complete view of the malware’s behaviour while avoiding the
problems posed by anti-analysis techniques as much as possible.

2.2.3 Anti-reversing

Anti-reversing techniques were originally meant to complicate the reverse engineering process,
making it as difficult as possible for hackers or any malicious user. Attackers employing reversing
methodologies can, in fact, get an insight of the logic of the code as well as hidden information
by disassembling the binaries of unprotected files.

19

Background

However, anti-reversing techniques are nowadays extensively used also by malware authors in
order to make their creations difficult to analyse in an attempt to avoid, or at least postpone,
detection as much as possible.

There exist several anti-reversing approaches, each with its own advantages and disadvantages.
However it is common practice to use a combination of more than one of them for protecting the
same file.

In the next sections some of the more common anti-reversing techniques are discussed.

2.2.4 Anti-disassembly

Anti-disassembly techniques use specially crafted code and/or data in a program to cause disas-
sembly analysis tools to generate an incorrect program listing [26]. The use of these techniques
by attackers therefore implies a time-consuming analysis for malware analysts, ultimately pre-
venting the retrieval/reconstruction of the source code in a reasonable time. Furthermore, anti-
disassembly techniques may also inhibit various automated analysis tools and heuristic-based
engines which take advantage of disassembly analysis to identify or classify malware.

These techniques exploit the disassemblers’ inherent weaknesses and assumptions about the
code being analysed, which open an opportunity for malware authors to deceive the analysis.

For example, while disassembling a program, each sequence of executable code instructions
can have multiple disassembly representations, some of which may be invalid and obscure the
real purposes of the program. Therefore, malware authors, in order to add anti-disassembly
functionality to their creations, can produce sequences of code that deceive the disassembler into
outputting a list of instructions that differs from those that would be executed at runtime [26].

There are two types of disassembler algorithms: linear and flow-oriented (recursive). In par-
ticular, the linear variant is easier to implement, but it is also more simplistic and error-prone
with respect to the other one.

Linear Disassemblers

The linear disassembly strategy is based upon the basic assumption that the program’s instruc-
tions are organized one after the other, linearly. In fact, this type of disassemblers iterates over
a block of code, disassembling one instruction at a time, sequentially, without deviating. More
specifically, the tool uses the size of the currently disassembled instruction to figure out what
bytes to disassemble next, without accounting for control-flow instructions [26].

Linear disassemblers are therefore easy to implement and work reasonably well when working
with small sections of code. They introduce, however, occasional errors even with non-malicious
binaries. In fact, one of the main drawbacks of this technique is that it blindly disassembles code
until the end of the section, assuming the bytes encountered are nothing but instructions packed
together, without distinguishing between code, data and pointers.

In a PE-formatted executable file, for example, the executable code is typically contained
inside a single .text section. However, for almost all binaries, this code section contains also data,
such as pointer values. These pointers are blindly disassembled and interpreted by the linear
disassembler as instructions. Malware authors can therefore exploit this behaviour for example
by implanting in the code section data bytes that form the opcodes of multi-byte instructions.

Flow-Oriented Disassemblers

The flow-oriented (or recursive) disassembly strategy is more advanced than the previous one and
is, in fact, the one used by most commercial disassemblers like IDA Pro [26].

Differently form the linear strategy, the flow oriented one examines each instruction, builds a
list of locations to disassemble (the ones reached by code) and keeps track of the code flow. This
implies that, while disassembling a code section, this type of disassembler will not blindly parse

20

Background

the bytes immediately following those of the JMP instructions, but it will disassemble the bytes
at the jump destination addresses.

This behaviour is more resilient and generally provides better results with respect to the linear
approach, but also implies a greater complexity. In fact, while a linear disassembler has no choices
to make about which instructions to disassemble at any given time, flow-oriented disassemblers
have to make choices and assumptions, in particular when dealing with conditional branches and
call instructions. In particular, in the case of conditional branches, the disassembler needs to
follow both the false branch (most flow-oriented disassemblers will process the false branch of
any conditional jump first) and the true one. In typical compiler-generated code there would be
no difference in output if the disassembler processes one branch or the other first. However, in
handwritten assembly and anti-disassembly code, taking one branch or the other first can often
produce different disassembly listings for the same block of code, leading to problems in analysis.

Anti-Disassembly Techniques

Jump Instructions with the Same Target One of the most used anti-disassembly techniques
consists of two consecutive conditional jump instructions both pointing to the same target [26].

Here is an example:

1 74 03 jz loc

2 75 01 jnz loc

3

4 loc:

Listing 2.1: Jump Instructions with the Same Target

In this case, the conditional jump jz loc is immediately followed by a jump to the same
target but with opposite condition: jnz loc. This implies that the location loc will always be
jumped to. Consequently, the combination of jz with jnz acts, in this case, like an unconditional
jmp instruction. A disassembler, however, won’t recognize this given that it disassembles just
one instruction at a time. During the disassembly process, in fact, when the jnz instruction is
encountered, the disassembler takes the false branch of the instruction first and therefore continues
disassembling, even though this branch will never be executed in practice.

Jump Instructions with a Constant Condition Another common anti-disassembly tech-
nique is composed of a single conditional jump instruction with an always true (or false) condition
[26].

Example:

1 33 C0 xor eax, eax

2 74 01 jz loc

3

4 loc:

Listing 2.2: Jump Instructions with a Constant Condition

The first instruction in the example code, xor eax, eax, sets the EAX register to zero and,
consequently, it sets the zero flag. The next instruction, jz (jump if zero flag is set), appears
to be a conditional jump but in reality is not conditional at all. In fact, at this point in the
program execution, the zero flag will always be set. The disassembler, however, will process the
false branch first, even if in reality it would never trigger.

Impossible Disassembly The simple anti-disassembly techniques mentioned above are fre-
quently coupled with the use of a, so called, rogue byte. A rogue byte is a data byte, which is not
part of the program logic flow, strategically placed after a conditional jump instruction in order to
trick the disassembler. The byte inserted usually is the opcode for a multi-byte instruction, there-
fore disassembling it prevents the real following instructions from being properly disassembled
[26].

21

Background

In all these cases, however, a reverse engineer is able to properly disassemble the code with
the use of interactive disassemblers like IDA Pro, ignoring the rogue bytes. However, there are
some conditions in which no traditional assembly listing can accurately represent the instructions
that are executed. These are exploited by the so called impossible disassembly techniques which
produce code that can be disassembled only by using a vastly different representation of the code
than what is provided by currently available disassemblers.

The core idea behind these techniques is to make the rogue byte part of a legitimate instruction
that is executed at runtime. This way the rogue byte becomes not ignorable during disassembly.
In this scenario any given byte may be a part of multiple instructions that are executed. This is
done using jump instructions. The processor, while running the code, will interpret and execute
the bytes following the logical flow of the program, so there is no limitation on the number of
instructions the same byte can be part of; a disassembler, however, has such limitations since it
will usually represent a single byte as being part of a single instruction.

Example:

1 EB

2 JMP -1

3 FF

4 INC EAX

5 C0

6 48 DEC EAX

Listing 2.3: Impossible Disassembly

In this simple example the first instruction is a 2-byte jmp -1 instruction (EB FF). Its target
is its own second byte. At run time this causes no errors because the FF byte is the first byte of
the next instruction inc eax (FF C0). However, when disassembling, if the disassembler interprets
the FF byte as part of the jmp instruction, it won’t be able to interpret it also as the beginning
of the inc eax instruction.

This 4-byte example code increments the EAX register, and then decrements it, therefore it
is essentially a complex NOP sequence. Being a simple and small sequence it could easily be
inserted at any location in a program code in order to fool disassemblers. However this sequence
is also easily recognisable by reverse engineers and substituted with NOP instructions using IDA
Pro or other instruments and/or scripts or forced to be interpreted as data bytes and therefore
skipped by the disassembler.

However this was only a simple example sequence. More complex and ingenious sequences can
be made to fool disassemblers while being harder to detect.

Control Flow Obscuring Techniques

Control-flow analysis (CFA) is a static-code-analysis technique for determining the control flow
of a program. Modern disassemblers like IDA Pro are able to correlate function calls and extract
high-level information about the program knowing how functions are related to each other [26].

Control-flow analysis can however be easily defeated by malware authors by employing simple
but effective tricks.

The Function Pointer Problem Function pointers are a common programming idiom present
in widely adopted programming languages such as C, while being extensively used in the back-
ground in object oriented languages like C++ and Java [26].

As opposed to referencing a data value, a function pointer points to executable code within
memory. Dereferencing the function pointer yields the referenced function, which can be invoked
and passed arguments to as in a normal function call. Such invocation is also known as an
”indirect” call, since, doing so, the function is indirectly invoked through a variable instead
of directly through a fixed identifier or address. In assembly code this corresponds to a call
instruction with a function pointer as argument.

22

Background

Function pointers, however, greatly reduce the information that can be automatically extracted
by disassemblers about the program control flow. Moreover, if function pointers are used in
specially crafted, or non-standard code, the resulting executable can be difficult to reverse-engineer
without the use of dynamic analysis techniques.

As a result, function pointers, in combination with other anti-disassembly techniques, can
greatly increase the complexity and difficulty of reverse-engineering.

Return Pointer Abuse Among the instructions capable of transferring control within a pro-
gram the most obvious ones are the already mentioned call and jmp instructions; however there
are other more subtle ways malware authors can change the control flow of a program [26]. One
example to this is the explicit use of the retn instruction.

The retn instruction is generally used in combination with the call instruction to properly
return from the called subroutine/function: when a call instruction is reached during program
execution, a return pointer, which points to the address of the instruction immediately following
the end of the call instruction itself, is pushed on the stack, before jumping to the call instruction
target. The pushed return address is then used upon reaching the retn instruction to exit the
current subroutine and return to the calling one.

The call instruction can be thus seen as the combination of a push and jmp; the retn instruc-
tion, on the other hand, is the combination of pop and jmp: it pops the last value pushed to the
stack and jumps to it.

The retn instruction is therefore typically used to return from a function call, but it could
also be used for other purposes. When used for such other reasons the disassembler is generally
fooled, because it still will interpret it as a return from a function call. Therefore it won’t show
any code cross-reference to the target being jumped to and will also prematurely terminate the
function being analysed.

Misusing Structured Exception Handlers Another powerful anti-disassembly (and anti-
debugging) technique works by exploiting the Structured Exception Handling (SEH) mechanism,
which is extensively used by C++ and other programming languages since it provides programs
a way to smartly handle error conditions [26].

Exceptions can be triggered for various reasons: for example when dividing by zero or accessing
an invalid memory region. Moreover, software exceptions can also be raised by the code itself
by calling the RaiseException function. When an exception is raised it makes its way through
the SEH chain, which is a list of functions specifically designed to handle exceptions, until it is
caught by one exception handler in the chain. Each function in the list can either handle the
exception (a.k.a. catch it) or pass it to the next handler in the list. Unhandled exceptions are the
ones that make their way to the last handler. The last exception handler is the code responsible
for triggering the ”unhandled exception” message to the user.

Exception handling is used in almost all programs and exceptions happen regularly in most
processes (and are handled silently). A malicious actor could, however, exploit this mechanism to
achieve covert flow control by adding his own specially crafted handler on top of the SEH chain.

This can be done at runtime simply by pushing some specific values on the stack, effectively
adding a new entry in the Exception handling chain. This procedure, however, is subject to the
constraints imposed by the Software Data Execution Prevention (Software DEP), which is a
security feature that prevents the addition of third-party exception handlers at runtime. However
various workarounds to this protection can be used in the case of handwritten assembly code.

2.2.5 Anti-debugging

Another popular anti-analysis technique, besides anti-disassembly, is anti-debugging. Malware
authors use anti-debugging techniques to recognise when their malicious program is under the
control of a debugger or to interfere with the debugger behaviour. This is done in an attempt

23

Background

to slow down the malware analysts who use debuggers to understand how the malware operates.
Malwares using these techniques usually alter their normal control flow paths or cause crashes if
they detect they are running in a debugger, thus interfering with analysis [26].

Windows Debugger Detection

In Windows OS various techniques can be used to detect if a process is being run in a debugger:
for example this can be done by exploiting the Windows API itself or by manually checking
memory structures looking for debugger artefacts [26].

Using the Windows API One of the simplest ways to know if a debugger is attached to a
process is by using Windows API functions. Inside the Windows API there are, in fact, functions
that were specifically designed to detect debuggers; moreover some functions that were originally
created with other purposes can also be used for performing debugger detection [26].

Malware analysts can counter this technique by manually modifying the malware code during
execution - in particular the API function result flag - after the call to make sure the desired path
is taken, or by straight up removing/skipping the API function call.

Here are some examples of common Windows API functions used for anti-debugging purposes:

❼ IsDebuggerPresent This is the simplest API function that can be used for detecting a
debugger. It determines whether the current process is being debugged by a user-mode
debugger. It does so by getting the value of the field IsDebugged from the Process Environ-
ment Block (PEB) structure. In particular this functions returns zero if the process is not
running within a debugger context and a non-zero value otherwise.

❼ CheckRemoteDebuggerPresent This API function is similar to the previously described
one (IsDebuggerPresent) but it checks for a remote debugger on the specified process. The
term remote in the name CheckRemoteDebuggerPresent does not imply that the debugger
necessarily resides on a different machine; instead, it indicates that the debugger resides
in a separate and parallel process. This function takes a process handle as argument, and
checks if that process has a debugger attached. It can however be used also to check the
current process by passing its handle.

❼ NtQueryInformationProcess This function can retrieve different kinds of information
from a process. The first argument for this function is the process handle, the second one is
the ProcessInformationClass parameter which specifies the information to retrieve. When
using the value ProcessDebugPort for this parameter, for example, the function returns a
zero if the process is not being debugged; otherwise it returns a non-zero value representing
the debugger port number.

❼ OutputDebugString This function, originally designed to simply send a string to a de-
bugger for display, can also be used to detect the presence of a debugger. In fact, in there
is no debugger attached, the function will internally set the last-error code. In a few lines
of code it is thus possible to know if a debugger is present or not:

1 DWORD errorValue = 12345;

2 // set custom last error code

3 SetLastError(errorValue);

4

5 // try outputting string on debugger;

6 // if no debugger is present, it will set

7 // the last-error code to a new value

8 OutputDebugString("Test for Debugger");

9

10 if(GetLastError() == errorValue){

11 // a debugger is present

12 ExitProcess();

13 }

14 else{

15 // no debugger was detected

24

Background

16 RunMaliciousPayload();

17 }

18

Listing 2.4: OutputDebugString debugger detection

Manually Checking Structures Malware authors usually don’t simply take advantage of the
Windows API functions for detecting the presence of a debugger, rather they generally prefer
checking the PEB structure (and others) by themselves. One of the reasons why this is true is
that API calls can be easily hooked by a rootkit to return false information, thus thwarting this
technique [26].

❼ Checking the BeingDebugged Flag The Windows PEB structure contains all user-
mode parameters associated with a process, including the process environment data such as
environment variables, addresses in memory and debugger status, among other things.

A malicious program can explicitly check the BeingDebugged flag within the PEB structure
to understand if a debugger is attached to its process (it is zero if no debugger is present).

Example:

1 mov eax, dword ptr fs:[30h] ; get PEB address

2 mov ebx, byte ptr [eax+2] ; get BeingDebugged flag value

3 test ebx, ebx ; test if the value is 0

4 jz NoDebuggerDetected ; if 0, no debugger was detected

5

Listing 2.5: BeingDebugged manual check

Malware analysts can counter this technique by detecting this specific code sequence (and
other similar ones) in the code and then manually changing the BeingDebugged flag to zero,
or alternatively forcing the jump to be taken (or not) by modifying the zero flag before the
jump instruction.

❼ Checking the ProcessHeap Flag The ProcessHeap, which is an undocumented location
within a reserved array inside the PEB structure, contains the location of the first heap of
a process allocated by the loader. This heap can be used for debugger detection purposes
since it contains some information telling if it was created within a debugger or not. In
particular malware usually check the values of the fields called ForceFlags and Flags.

To overcome this technique, malware analysts can change the ProcessHeap flags manually
or use a hide-debug plug-in for their debugger.

❼ Checking NTGlobalFlag Processes started within a debugger run slightly differently
than others, therefore they create memory heaps differently. The information needed to
determine how to create heap structures is stored at an undocumented location in the PEB.
Practically, a value of 0x70 at this location indicates that the process is running within a
debugger.

Again, in order to counter this technique, malware analysts can change the flags manually
or use a hide-debug plug-in for their debugger.

Checking for System Residue Debugging tools typically leave some traces of their presence
on the system. Malicious programs can therefore be designed to search for these traces in order
to determine when they are being analysed. For example, malware can search for references to
debuggers in the registry keys [26]. Moreover, malware can also be designed to search through
the system for files and directories commonly related to debuggers, such as debugger program
executables. Finally, malwares can also detect debugger residues in live memory, by viewing the
current process listing or, more commonly, by performing a FindWindow in search for a debugger.

25

Background

Identifying Debugger Behaviour

Debuggers are very useful to malware analysts because they can be used to set breakpoints in
the code or even to single-step through a process running code to ease the reverse-engineering
process. These operations, however, modify the process code and are therefore easily detectable
[26].

INT Scanning A common anti-debugging technique exploited by malware authors consists in
making the process scan its own code in search for an INT 3 (opcode 0xCC) instruction. INT
3 is, in fact, a software interrupt used by debuggers: when setting a breakpoint the debugger
replaces the target instruction in the running program with the opcode 0xCC (INT 3) which
causes the process to call the debug exception handler [26].

Malware analysts can counter this technique exploiting hardware breakpoints instead of soft-
ware ones.

Performing Code Checksums Another anti-debugging technique consists in calculating the
checksum (cyclic redundancy check (CRC) or MD5 checksum) of a section of the process code.
This has the same net effects as scanning the code for software interrupts [26].

Again this technique can be countered by using hardware breakpoints instead of software ones,
or by modifying the program control flow at runtime with a debugger.

Timing Checks One of the most widespread techniques for debugger detection is to perform
timing checks. Processes, in fact, tend to run substantially slower when executed within a debugger
context. Moreover analysts usually run programs in single steps in order to better understand
the code behaviour; this in turn greatly increases execution time [26].

Using timing checks it is possible to detect a debugger in the following ways:

1. Recording one timestamp before and another after the execution of some operations and
then comparing them. If the lag is greater than a specified threshold then a debugger is
probably being used.

2. Recording 2 timestamps, one before and the other after raising an exception. If the current
process is being debugged then the exception will be handled by the debugger itself more
slowly than normal. Moreover, by default, debuggers ask for human intervention when an
exception occurs, thus causing huge delays.

Typically, the timestamps are recorded using directives such as the rdtsc instruction and
the QueryPerformanceCounter and GetTickCount windows API functions. In particular, the
rdtsc instruction and the GetTickCount function return the number of ticks/milliseconds that
have elapsed since the last system reboot while the QueryPerformanceCounter queries a high-
resolution counter which stores counts of activities performed by the processor. These functions,
when used as described above, allow malwares to detect the presence of debuggers.

The use of timing checks for anti-debugging purposes can be discovered by malware analysts
either during debugging or while performing static analysis by identifying specific sequences of
instructions. Moreover, these timing checks more frequently detect debuggers when the analyst is
single-stepping though the code or setting a breakpoint between the two time related instruction
calls. This implies that, to counter this technique, malware analysts can avoid setting break-
points and single-stepping in the protected code regions, or alternatively modify the result of the
timestamps comparison as needed.

26

Background

2.2.6 Anti-virtual machine

Malware analysts often use virtual machines (VMs) or other isolated environments like sandboxes,
to analyse malware samples. With the purpose of evading analysis and bypassing security systems,
malware authors often design their code to detect isolated environments. The techniques used
with such purpose are called Anti-virtual machine techniques (Anti-VM). Once a virtual machine
is detected, the evasion mechanism may alter the malware’s behaviour, or it may even prevent
the malicious code from running altogether [26].

VMware Artefacts

Virtual machines are designed to emulate real hardware functionality. To achieve that, however,
some artefacts inevitably remain on the system, which can reveal that a virtual machine is indeed
being used. These kinds of artefacts can be specific files, processes, registry keys, services, network
device adapters etc. [26].

Here are some examples of anti-virtual machine techniques applied to detect VMware virtu-
alization software:

❼ Checking for Processes Indicating a VM. When a VMware virtual machine is running
and VMware tools is installed, three VMware-related processes can be found in the system
process listing: VMwareService.exe, VMwareTray.exe and VMwareUser.exe. A malicious
software can therefore easily detect if VMware is being run searching through the process
listing for the VMware string.

❼ Checking for Files Indicating a VM. The VMware default installation path usually also
contains artefacts. Searching for the string VMware in such location may reveal the use of
a virtualized environment.

❼ Checking for Registry Keys. VMware Tools may leave some artefacts also in the registry.
More specifically, the presence of specific registry entries may reveal the use of VMware.

❼ Checking for Known Mac Addresses. In order to connect a virtual machine to a
network it needs to have its own virtual network interface card (NIC). This implies that
VMware software needs to create a MAC address for the virtual machine, to associate to
its NIC. However, VMware utilises default addresses with a specific starting sequence which
depends on its current version. Therefore a malicious software may be able to identify it is
running in a VMware virtual machine simply by checking the system MAC address against
common VMware values.

In order to counter anti-virtual machine techniques, malware analysts need to identify the
specific checks for VMware artefacts in the malicious code and then manually patch them. For
example, depending on the anti-VM technique used, they may patch the malware code while
debugging to artificially make all checks pass, or modify the name of VMware processes in order
to make them undetectable by the malicious software.

Vulnerable Instructions

The virtual machine monitor program, which monitors the virtual machine execution, has some
security weaknesses that may allow malware to detect its usage. In particular, in order to avoid
performance issues deriving from fully emulating all instructions, VMware allows certain instruc-
tions to execute without being properly virtualized. This in turn means that certain instruction
sequences may return different results when running within a VMware virtualized environment
than they do on native hardware. This discrepancy can be used by malware authors to detect
VMware usage [26].

However, those specific instructions are not typically used within a program unless it is specifi-
cally performing VMware detection, because they are useless when executed in user mode. There-
fore, avoiding this type of anti-VM technique can be as easy as patching the malicious code to
prevent it calling these instructions.

27

Background

2.2.7 Packers and unpacking

Packing programs, commonly known as packers, are software programs that take an executable
file or dynamic link library (DLL), compress and/or encrypt its contents and then pack it into a
new executable file [26].

When packers are used on malicious programs, the malicious code appearance is changed as a
consequence of the applied compression and/or encryption. The packing of files thus hinders basic
static analysis and simple malware detection techniques. Moreover, a packer specifically designed
to make the file difficult to analyse may even employ anti-reverse-engineering techniques, such as
anti-disassembly, anti-debugging and/or anti-VM on the resulting compressed version; on top of
that some packers, using randomization, are also able to generate different variants of a single file
every time it is packed [27].

Malware authors have therefore increasingly been using these tools to hide their creations from
anti-malware solutions and malware analysts. In order to analyse packed malware, in fact, it must
be unpacked first. Properly unpacking a packed program, however, is generally not easy.

Packed files usually contain two basic components:

❼ A number of data blocks containing the compressed and/or encrypted version of the original
executable file.

❼ An unpacking stub able to dynamically recover the original executable file at runtime.

When the packed file is executed, the unpacking stub is loaded by the OS and begins unpacking
the original executable code in memory. When the unpacking process is completed the control
flow is transferred, with a jmp, call or the more stealthy retn instruction (also referred to as tail
jump), to the original file entry point (OEP). This implies that someone attempting to perform
static analysis on the packed program, would actually analyse the unpacking stub and not the
original code.

Packer types

Commercial and custom made packers can be divided in several levels of complexity depending on
the packing techniques used and the additional features they have. The authors of [28] identified 6
main types of packers with increasing complexity. Packer types from 1 to 5 allow, sooner or later
at runtime, to have a complete view over the original (unpacked) malicious code, meaning that
the unpacker stub unpacks all the code at once. However, what makes them differ is the amount
and complexity of the encryption (and obfuscation) methodologies used during packing. On the
other hand, type 6 packers unpack only a slice of code at a time in memory, never revealing the
whole original code altogether. This implies that malware analysts need to take several memory
dumps, instead of just one, if they want to get the complete unpacked code.

Another possible classification of packers can be made based on their purposes and behaviours.
Following this idea packers can be broadly classified into the following four categories [29]:

❼ Compressors utilise compression algorithms to shrink files while exploiting few or no anti-
unpacking tricks. Popular compressors include the Ultimate PE Packer (UPack), Ultimate
Packer for Executables (UPX), and ASPack.

❼ Crypters encrypt and obfuscate the original file contents. Crypters such as Yoda’s Crypter
and PolyCrypt PE are widely used among malware developers.

❼ Protectors combine features from both compressors and crypters. Some popular commer-
cial protectors are Armadillo and Themida.

❼ Bundlers are used to pack a software package of multiple executable files into a single
bundled executable. The files within the package can then be unpacked and accessed without
extracting them to disk. Some notable PE bundlers are PEBundle and MoleBox.

28

https://upx.github.io/
http://www.aspack.com/
https://sourceforge.net/projects/yodap/
https://www.oreans.com/Themida.php
https://www.bitsum.com/pebundle.asp
https://www.molebox.com

Background

Packers detection

Packed executables can be detected through a heuristic approach known as Shannon Entropy
Calculation. Entropy is, generally speaking, a measure of uncertainty, disorder, in a system or
program. The idea behind this approach is that compressed or encrypted executables tend to
resemble random data, thus they have higher entropy than unencrypted/uncompressed programs.
This approach, however, does not tell any information about the packer used to obtain the packed
sample [26].

One common way to tackle this problem is through packer signatures checking. Tools like
PEiD and Sigbuster use such method. These tools are, however, not always successful due to the
huge number of packer variations and evolutions present in the wild, and the fact that malware
authors frequently modify commercially available packers code or create their own packers so that
their packed malicious programs do not match any known signature.

Unpacking

Unpacking is the process of restoring the original contents from packed executables in order to
allow AV programs and security researchers to analyse the original executable code. There are
three different techniques to unpack a packed executable: automated static unpacking, automated
dynamic unpacking and manual unpacking ([26], [29]).

Automated static unpacking programs are dedicated routines designed to decompress and/or
decrypt executables packed by specific packers, without actually executing the suspicious pro-
grams. This method, when it works, is the fastest and most secure method to unpack an exe-
cutable. Automatic static unpackers are, however, specific to a single packer. Moreover, they are
not able to unpack packed samples that were created with the intention of hindering analysis.

Automated dynamic unpackers, on the other hand, use programs to run or emulate the packed
executable allowing the unpacking stub to unpack the original executable code in memory. Once
the original executable is unpacked, the in-memory program’s code is written on disk, and the
automated unpacker reconstructs the original import table.

Most often security researchers prefer to perform manual unpacking. The two most common
approaches used to manually unpack a program are:

❼ Discover what packing algorithm has been used to pack a sample and then write a custom
program/script to revert it. This process is however quite time consuming.

❼ Manually run the packed program to allow the unpacking stub to unpack the original code
in memory, then dump the process on disk and finally manually modify the PE header so
that the program is complete. This process is more efficient than the previous one.

2.2.8 Code Obfuscation

Obfuscation is a technique that generally makes programs harder to understand [30], both for
humans and automatic tools. In order to do so, it transforms a program into a new version which
is structurally different and more difficult to analyse while retaining the same functionality as the
original. The new version of the program is therefore said to be computationally equivalent to the
original one [31].

Originally, this technology was conceived for the legitimate purpose of protecting the intellec-
tual property of software developers; however it has been widely exploited also by malware authors
to evade detection [32]. In particular, in order to elude anti-malware scanners, malware typically
use obfuscation techniques to evolve their body into new generations [33], which eventually can
be even harder to disassemble and analyse.

Obfuscation techniques can be broadly divided into 2 main sub-categories:

❼ Data-based obfuscation

29

https://www.aldeid.com/wiki/PEiD

Background

❼ Control-based obfuscation

However, malware authors usually combine those 2 types of obfuscation techniques in complex
and ingenious ways to strengthen the resulting protection [34].

Data-Based Obfuscation

Data-based obfuscation techniques focus on modifying data values and non-control computations.
In the following paragraphs some of the most common data-based obfuscation techniques will be
described.

Constant Unfolding Constant folding is a technique commonly used by compilers to optimize
a program’s code. It does so by replacing expressions with results known at compile time with
the results themselves [34].

For example, a compiler usually transforms the following expression 2.6, into 2.7.

1 x = 4 * 5;

Listing 2.6: Constant folding, before

1 x = 20;

Listing 2.7: Constant folding, after

Constant unfolding is, instead, an obfuscation technique that performs the exact inverse oper-
ation: it replaces the constants in the program’s code with some expressions having the constant
as a result.

For example, the listing 2.8, after Constant unfolding may become 2.9. The two listings are
equivalent. Moreover, there is an infinite amount of listings equivalent to 2.8 that can be generated
following this principle.

1 push 0h

Listing 2.8: Constant unfolding, before

1 push 0F9CBE47Ah

2 add dword ptr [esp], 6341B86h

Listing 2.9: Constant unfolding, after

Data-Encoding Schemes The previously described technique is, however, easily defeated by
simply applying the standard compiler’s constant folding optimization. This is possible because
both the data encoding and decoding functions (f(x) = x−6341B86h and f−1(x) = x+6341B86h
respectively) were present in the code one after the other. To prevent this flaw, fully Homomorphic
(operation-preserving) mappings can be employed, together with the application of some oper-
ations on the encoded data before decoding it back. This technique is however still not widely
used because the automatic tools that apply it are still too inefficient [34].

Dead Code Insertion Dead code elimination is another common compiler optimization tech-
nique. Its objective is to remove program statements/expressions that have no real effects on the
program operation and final results [34].

For example, the listing 2.10, using dead code elimination would become 2.11.

1 int f(){

2 int x, y;

3 x = 1; // this assignement is useless, here x is dead

4 y = 2; // y is never used, it is thus dead.

5 x = 3;

6 return x; // x is live

7 }

Listing 2.10: Dead code elimination, before

30

Background

1 int f(){

2 return 3;

3 }

Listing 2.11: Dead code elimination, after

Obfuscators, on the other hand, use the so-called dead code insertion technique in an attempt
to make the code harder to follow. This technique performs the inverse operation with respect
to dead code elimination, adding dead code in the original program’s code. However, when used
alone, this techniques produces an obfuscated program that can be efficiently de-obfuscated by
using the compiler’s dead code elimination optimization.

Arithmetic Substitution via Identities This technique aims at replacing certain operators
with combinations of other operators with equal net result. By exploiting the equivalence between
different combinations of operators the code can be changed arbitrarily without modifying the
effective program behaviour and final result [34]. Here are some examples of operator equivalences:

1 -x == !x + 1

2

3 x-1 == !(-x)

4

5 x+1 == -(!x)

6

7 rotate_left(x,y) == (x << y) | (x >> (bits(x) - y))

8

9 rotate_right(x,y) == (x >> y) | (x << (bits(x) - y))

Listing 2.12: Operators equivalences

Register Reassignment Another simple obfuscation technique is called register reassignment.
An obfuscator using this technique switches the registers used throughout the code at every
application, while keeping the same program code and behaviour [33]. An analyst/attacker using
wildcard searching, however, easily defeats this technique.

Instruction Substitution Instruction substitution creates variants of a program’s original code
by replacing some instructions with other equivalent ones [33].

Pattern-Based Obfuscation Pattern-based obfuscation is another commonly used technique
similar in principle to instruction substitution, but more complex. It consists in constructing
patterns (transformations) that map single or multiple adjacent instructions into a more complex,
computationally equivalent, sequence of instructions [34].

For example, the sequence in listing 2.13 might be converted into the one in 2.14, as well as
2.15 or even 2.16.

1 push reg32

Listing 2.13: Original sequence

1 push imm32

2 mov dword ptr [esp], reg32

Listing 2.14: Obfuscation using pattern 1

1 lea esp, [esp-4]

2 mov dword ptr [esp], reg32

Listing 2.15: Obfuscation using pattern 2

1 sub esp, 4

2 mov dword ptr [esp], reg32

Listing 2.16: Obfuscation using pattern 3

31

Background

Moreover, patterns can be arbitrarily complicated. For example a listing such as 2.17, could
be substituted by the more complex 2.18.

1 sub esp, 4

Listing 2.17: Original sequence 2

1 push reg32

2 mov reg32, esp

3 xchg [esp], reg32

4 pop esp

Listing 2.18: Obfuscation of sequence 2

Malware authors (and also software developers wishing to protect their intellectual property)
can use hundreds of patterns in the same program. Moreover, most protections randomly apply
patterns so that obfuscating the same program multiple times yields different results. On top
of that, patterns can also be applied iteratively: after transforming the original code C into C’
using pattern P, another pattern P’ can be applied to C’ in order to obtain C”, and so on.

Some patterns preserve semantic equivalence, meaning that the CPU state will be the same
when executing them or the original code. Some other patterns, however, do not. Therefore,
depending on the code logic, some substitutions are safe (meaning that the program behaviour and
final results are preserved) while others are not. This makes the job of an obfuscator challenging.

Control-Based Obfuscation

Standard static analysis tools generally make assumptions similar to the ones human reverse engi-
neers make when analysing code. Compilers, in fact, predictably translate control flow constructs
and data structures. As a result, reverse engineers (and static analysis tools) can easily recognise
the original code high level control flow. Control-based obfuscation transforms the code control
flow structures in non standard ways in order to complicate both static and dynamic code analysis
[34].

Some examples of standard static analysis tools assumptions are:

❼ The CALL instruction is always used with the sole purpose of invoking functions.

❼ Both sides of a conditional branch may feasibly be taken at runtime.

❼ Function calls almost always return.

❼ All control transfers target code locations, not data locations.

❼ Exceptions are used in standard and predictable ways.

❼ etc..

By violating these assumptions, control-based obfuscation techniques confuse disassemblers
and other static analysis tools making the analysis more difficult.

Functions In/Out-Lining Reverse engineers frequently rely on control-flow and call graphs
to better understand a program’s high-level logic. In particular a call graph represents calling
relationships between subroutines (functions) in a computer program. Each node of a call graph
represents a procedure and each edge (f → g) indicates that function f eventually calls procedure
g. By making the call graph harder to interpret, obfuscators can hinder the reverse engineers’
capability of understanding the program behaviour [34]. In order to do so, the following two
techniques can be used:

❼ Inline functions. The code belonging to a sub-routine is merged into the code of its caller.
If the sub-routine is called multiple times, however, the code size can quickly grow.

32

Background

❼ Outline functions. A subpart of a function is extracted and transformed into an indepen-
dent function and replaced by a call to the newly created function.

Using these two operations in combination on a program code results in a degenerated call
graph with no clear logic. Moreover, also the function prototypes can be modified by adding extra
fake arguments, reordering them and so on, to further hide the high-level logic.

Destruction of Sequential and Temporal Locality Usually, in non-obfuscated code, the
instructions of a single basic block lie one after the other (sequential locality), and basic blocks
related to one another (such as successive blocks) are close to each other (sequential locality of
temporally related code). This is done in order to maximize the instruction cache locality and
reduce the number of branches in the final code. Reverse engineers thus can usually rely on the
fact that all the code responsible for a specific operation resides in a single region [34].

Malware authors, on the other hand, can make manual analysis more difficult by violating this
assumption with the introduction of unconditional branches that break sequential locality and
temporal locality of multiple basic blocks. However, by constructing the control-flow graph and
removing spurious unconditional branches the original control flow can be restored.

Processor-Based Control Indirection Instructions like JMP and CALL are, for most proces-
sors, the 2 essential control flow transfer primitives. In order to make analysis more difficult, one
could obfuscate these primitives, for example by using dynamically computed branch addresses
or by emulating them.

For example the JMP instruction 2.19, can be replaced by the (almost) semantically equivalent
listing 2.20.

1 jmp target_addr

Listing 2.19: Processor-based control indirection, before

1 push target_addr

2 ret

Listing 2.20: Processor-based control indirection, after

Operating System-Based Control Indirection Obfuscation techniques can also exploit op-
erating system primitives and structures similarly to the previously mentioned anti-disassembler
techniques. For example, the Structured Exception Handler (SEH), Vectored Exception Handler
(VEH) and Unhandled Exception Handler are commonly used to obfuscate the control flow of
Microsoft Windows executables (in Unix-like systems the signal handlers setjmp and longjmp are
commonly used instead) [34].

Subroutine Reordering Subroutine reordering is an obfuscation technique that randomly
changes the order of a program’s subroutines in the original code. This technique can thus
generate n! code variations, where n is the number of subroutines [33].

Opaque Predicates An opaque predicate is a non-trivial boolean expression with a constant
result (always true or always false) known only at compilation/obfuscation time. By combining it
with a conditional jmp instruction it is possible to introduce an additional branch in the control
flow graph (CFG). This specific combination corresponds to the previously mentioned Jump
instruction with a constant condition anti-disassembly technique. The added branch should look
as real as possible in order to elude detection, and it can be used to insert junk code or to form
cycles in the control-flow graph to better hide the original program logic [34].

33

Background

Simultaneous Control-Flow and Data-Flow Obfuscation

Data-flow obfuscation and Control-flow obfuscation techniques are commonly used together to
complicate analysis.

Junk Code Insertion This technique consists in introducing a dead code block (meaning
that it will never be executed at runtime) between two other code blocks. Typically utilised in
conjunction with opaque predicates, this technique is used to further confuse a disassembler that
is disassembling an invalid path. Moreover, the junk code typically contains partially invalid
instructions, or branches to invalid addresses with the objective of over-complicating the CFG
[34].

1 push eax

2 xor eax, eax

3 jz 9

4 ;<junk code start>

5 jg 4

6 inc esp

7 ret

8 ;<junk code end>

9 pop eax

Listing 2.21: Junk Code example

Listing 2.21 presents an example of this technique. More precisely the instruction at line 2
(xor eax, eax) zeroes the EAX register clearing the zero flag (it is set to 0); therefore, at runtime,
the conditional jump (jz 9) at line 3 is always taken. The following instructions are therefore
junk code.

Control-Flow Graph Flattening Control-flow graph flattening consists in replacing all con-
trol structures within a sub-part of the control flow graph with a single switch statement commonly
called dispatcher. This is done with the purpose of hiding the true basic block relationships within
the dispatcher. When using this technique, first a subpart of the program control flow graph is
selected to be substituted by the dispatcher. Some transformations may then be applied to the
basic blocks inside the chosen sub-graph (they are split or merged) to further complicate analysis
and finally each basic block updates the context of the dispatcher to reflect the relative basic
block relationships. The final resulting graph offers no clues about the structure of the algorithm,
but has the same logic [34].

CFG flattening is frequently used, together with opaque predicates, to insert dead code paths
in the CFG.

Code Transposition An obfuscator using the technique called code transposition effectively
reorders the sequence of code instructions of a program without changing its behaviour [33]. To
achieve this two approaches are commonly followed:

❼ Randomly shuffling the instructions and then recovering the original execution order by
inserting unconditional branches. This is easily defeated, restoring the original program, by
removing (and following) the unconditional branches.

❼ Choosing and reordering independent instructions that have no impact on the others. This
approach is harder to implement given the complexity of finding independent instructions,
but is more effective.

Code Virtualization Code virtualization consists in transforming a program binary code (com-
piled for a specific machine) into a different binary representation that is understood by an in-
terpreter embedded in the code. More specifically, the instruction set from the source machine
is converted into a new, randomly chosen, instruction set. This means that a specific block of
Intel x86 instructions, for example, can be converted into a different instruction set, preventing

34

Background

an analyst/attacker from recognizing the generated virtual opcodes after the transformation from
x86 instructions [34].

Usually, only some specific blocks of the program code are virtualized (and not the whole
program) and inserted back into the executable file alongside the associated interpreter. At run
time, the interpreter assumes execution control and translates the virtualized code back to the
original byte code before executing it.

When an analyst tries to decompile a virtualized block of code, however, he will not find the
original x86 instructions. Instead, he will find a completely new instruction set he is not able
to recognize even when using decompilers. This will force him to identify how each opcode is
executed and how the specific interpreter works for each protected application.

Some examples of code virtualization tools include VMProtect and CodeVirtualizer.

Code Integration Code integration, one of the most sophisticated obfuscation techniques, was
first introduced by Win97/Zmist malware. A malware using this technique first decompiles the
target program into a set of manageable objects, it then inserts itself between them and finally
reassembles the code [33].

2.2.9 Obfuscated Malware

The huge amount of malware released in the wild since the creation of the first virus in 1960s can
be split into two generations. More specifically, the first generation malwares were static, their
code and behaviour did not change. The more sophisticated second generation malwares, on the
other hand, change their internal structure between one variant and the other maintaining the
same malicious behaviour in order to avoid detection.

Encrypted Malwares

The first second-generation malwares ever existed exploited encryption in order to evade detection
by signature-based antivirus scanners. An encrypted malware typically consists of two parts: the
encrypted main body and a decryption code (also called decryptor). The objective of the decryptor
is to recover the original malware code from the encrypted body whenever the infected file is run
[31].

Moreover, to hide from signature-based scanners, encrypted malware can encrypt its code
using a different key at each infection, thus creating a unique encrypted body. The decryption
routine (decryptor), however, remains the same from one generation to another. This means that
encrypted malwares can be detected with signature-based scanners by searching for the decryptor
specific code pattern [22].

The first known malware to exploit encryption for detection evasion was CASCADE which
spread in the 1980s and early 1990s.

Packed Malwares

Malware authors are nowadays increasingly exploiting packers (or even multiple packers at once)
to produce numerous variants of the same original malware code [3]. As stated by Perdisci, et
al. [35], more than 80% of the new malware currently discovered are actually packed versions of
already existing malware.

As already mentioned previously, packers are used to compress original executable files into
smaller sizes. Moreover, encryption is sometimes also applied to the compressed version of the
files in order to make the unpacking process more difficult.

While many malware authors frequently use commercial and readily available packers to gen-
erate new malware variants, it is not uncommon to see malware authors writing and using custom
packers. This fact can be exploited by analysts to detect if a file is malicious, without further
analysis, based on the fact that benign software vendors would almost never use custom packers.

35

https://vmpsoft.com/
https://www.oreans.com/CodeVirtualizer.php

Background

Oligomorphic Malwares

Malware authors tried to overcome the short comings of encrypted malware developing malicious
programs that can mutate the used decryptor from one variant to another. Initially the decryptor
could only be changed slightly. However, a common method used by oligomorphic malware - also
called semipolymorphic - to provide more diverse decryptors is, in practice, to randomly select
one decryption routine at infection time from a set of pre-defined decryptors [22].

However, this type of malware is able to generate at most a few hundred different decryptors.
For example the virus called Win95/Memorial was capable of constructing up to 96 different
decryptor patterns. This means that signature-based detection techniques are still able to detect
oligomorphic malwares by generating the signature of all the decryptors utilised by the specific
malware strain [31]. Still, signature based techniques are not an effective approach to detect
oligomorphic malware [3].

Polymorphic Malwares

The oligomorphic malware limitations led malware authors to develop a more advanced type of
malware called polymorphic, which, similarly to oligomorphic malware, consists of two parts: the
malware encrypted main body and the decryptor. The decryptor is again run when the malware is
executed and it enables the execution of the original malware code decrypting the encrypted body.
When replication occurs, the malware encrypts its code with a different key, generates the new
associated decryptor and encloses it in the new malware variant code. However, in this type of
malware countless numbers (millions) of distinct decryptors can be generated by using a powerful
toolkit called the Mutation Engine (MtE). In particular the mutation engine is responsible of
preventing signature based detection by rearranging the decryptor code using different obfuscation
methods including, for example, dead-code insertion, register reassignment, subroutine reordering,
instruction substitution, code transposition/integration, etc. [31]. The malware appearance is thus
changed at each infection [22].

Even though polymorphic malware can create a large number of different decryptors effectively
hindering signature matching techniques, still the constant malware body, which appears after
decryption, can be used for detection. In particular, by using emulation techniques, it is possible
to execute the malware in a Sandbox without resulting in any harm to the system. As soon as the
constant malware body is decrypted and loaded into memory, the common detection techniques,
such as signature based scanning, can be applied [3].

Various armouring techniques are thus used by malware authors to prevent detection by em-
ulation, however most antivirus scanners are now capable of addressing also these techniques
effectively defeating polymorphic malwares.

Metamorphic Malwares

After the oligomorphic and polymorphic malware types were effectively defeated, malware au-
thors designed a new and more advanced approach: metamorphic malware. This, similarly to
polymorphism, uses obfuscation techniques to create new variants of the original malware in order
to evade detection [31]. However, in this case, instead of generating new decryptors, it is the
malware body itself to be mutated through generations to appear different while having the same
behaviour and functionality. Metamorphic malware is in fact said to be body-polymorphic. In
practice the malware code logic is maintained while its appearance is changed using obfuscation
techniques such as dead-code insertion, register reassignment, code transposition and more. This
way, every generated malware variation appears different making signature based detection inef-
fective [22]. Moreover, many metamorphic malwares are also capable of interleaving their own
code inside host programs, thus making detection even harder.

However, a metamorphic malware, in order to efficiently evolve its code, needs to be able
to recognise, parse and mutate its own body during propagation. This is far from being easy.
Moreover, creating a true metamorphic malware without arbitrarily increasing its code size is also
challenging [3].

36

Chapter 3

Detection Techniques

Malware detection is the process of identifying malicious from benign code with the purpose of
protecting systems from malwares and/or eventually recover from their nefarious effects [3].

In order to counter malware attacks and threats, in recent years many anti-malware tools have
been developed. Many of these are based on static features (such as signatures) with the assump-
tion that most malware is static, as they don’t mutate/change significantly at infection/replication
time [22].

However, attackers are nowadays increasingly using the more sophisticated second generation
malwares, which strongly mutate at each infection. Researchers and anti-malware software devel-
opers are thus focusing their attention on the creation of more advanced tools capable of detecting
these types of evolving malwares.

3.1 Integrity Checker

When compromising a computer system or network some changes are inevitably made within
the target environment. This implies that systems, like integrity checkers, that rely on actively
monitoring changes made to existing files within the target operating system, can be used to
perform intrusion detection [3].

Generally, integrity checkers, use hashing functions like the md5 sum, Sha1 or Sha256 to
calculate the digest of files and/or executables which are then stored in a database of digests.
Program and file digests are then periodically re-calculated and compared against the ones in the
database looking for modifications. If the digest of a file is different and no software updates nor
patches were applied, then the file was probably tampered with.

Integrity checkers present a number of challenges:

❼ The system state in which the initial file digests are calculated has to be considered clean.
However, this is difficult to be guaranteed.

❼ The application of system (and software) updates and patches, which modify system files
and programs, must be followed by an update of the digests database, otherwise there will
be a very high false positive rate.

❼ The digests database needs to be stored securely and there has to be an offline (and safe)
backup, otherwise there would be a single point of failure.

Integrity checking can be considered as an important tool for detecting any system modifi-
cation, but it is more an incident recovery method rather than a malware intrusion/infection
prevention method.

37

Detection Techniques

3.2 Signature-based Detection

Signature-based detection is the simplest and most widely used method in commercial anti-virus
software (together with heuristic-based techniques) but is becoming less and less effective as the
number of malware variants and second generation malwares increases [36].

Signature-based detection relies on signatures - specific unique byte code sequences/strings ex-
tracted from malware samples - to detect the presence of malicious files in a system. Signatures are
typically created using static analysis techniques and are selected to be long enough to uniquely
characterize a specific malware family with respect to benign programs (and other malware fami-
lies). The signatures, which are created by malware experts from a significant number of already
identified malware samples, are saved in a signature database and deployed in anti-malware tools.
These tools in turn scan the files in the target systems and consider as malicious any file that
matches one of the known signatures [3]. This implies that the database of signatures must be
maintained and frequently updated, especially whenever new malware variants are identified and
new signatures are generated in order to detect them.

Some signature-based algorithms require an exact match between the signature of the analysed
sample and one of the known signatures, others instead make use of wildcard characters to detect
slight variations allowing them to detect even some second generation (evolving) malwares.

Anyway, the signature based detection approach is fast, easy to use and has a high positive rate;
however, given that the number of known malwares is increasing so fast, it is quickly becoming
time-consuming, expensive and impractical. Moreover, it is a completely reactive technique which
is unable to counter threats/attacks from new malware families/variants until they cause damages.
Additionally, most second-generation malwares are able to escape this type of detection [22].

3.2.1 Yara Rules

YARA is a widely accepted open-source signature-based malware analysis tool which has emerged
in recent years thanks to its flexible and customisable nature. It allows malware analysts/re-
searchers to develop malware ”descriptions” based on text or binary patterns, commonly referred
to as Yara rules. Yara rules, which combine simple regular expression matching with logic rules,
can be used to identify specific malware families, the presence of CVE s, specific functionality
signatures or even generic maliciousness indicators. Given the success obtained by this technique,
many commercial malware analysis tools nowadays support Yara rules natively [37].

Yara rules can be generated either manually or automatically. Generating rules manually
obviously requires high expertise, whereas generating them using automated tools is a relatively
easy task. However, automatically generated rules are not guaranteed to be effective and may
require post-processing operations for their optimization [38].

Malware analysts typically create Yara rules manually by reverse engineering malware samples
looking for common Indicator of Compromise (IoC) strings. This is followed by the development
and iterative refinement of the rules which are considered effective based on their coverage and false
positive rate on a dataset of malicious, benign and out-of-family samples. Developing effective
Yara rules can therefore be challenging and very time consuming, even for expert users with years
of experience [39].

Yara Rules syntax

Listing 3.1 presents an example of the syntax of a simple Yara rule.

1 rule RuleName

2 {

3 meta:

4 description = "description of rule"

5 author = "name"

6 date = "dd/mm/yyyy"

7 reference = "url"

8

38

Detection Techniques

9 strings:

10 ✩text_string1 = "text1 you wish to find in malware"

11 ✩text_string2 = "text2 you wish to find in malware"

12

13 ✩hex_string1 = {hex1 you wish to find in malware}

14 ✩hex_string2 = {hex2 you wish to find in malware}

15

16 ✩reg_exp_string1 = /regular expression1 you wish to find in malware/

17 ✩reg_exp_string2 = /regular expression2 you wish to find in malware/

18

19 condition:

20 ✩text_string1 or ✩text_string2 or

21 ✩hex_string1 or ✩hex_string2 or

22 ✩reg_exp_string1 or ✩reg_exp_string2

23 }

Listing 3.1: YARA Rules Syntax

As it can be seen in the above example, Yara rules must start with the keyword ’rule’,
followed by the actual RuleName, which is the rule identifier. The RuleNames follow the same
lexical conventions of the C programming language. They are, in fact, case sensitive, they cannot
exceed 128 characters and they can contain only alphanumeric characters (with the addition
of the underscore character), with the exception of the first character which cannot be a digit.
Furthermore there is a list of YARA reserved keywords that cannot be used as identifiers [40].

Yara rules main body contains three sections: meta, strings and condition.

Meta section The rule author can include additional information about the rule as a list of
attribute-value pairs - also called metadata - in the meta section, at the top of the rule. The
values can be strings, integers or boolean values. The metadata, however, cannot be used in the
condition section [41].

Some commonly used meta tags are, for example, author and description, which convey in-
formation about the author and purpose of the rule. Moreover, malware analysts sometimes also
leave tags with the hashes of the malicious files used for the creation of the rule, or references to
blog posts with similar information [37].

Strings section This section contains the strings/patterns/signatures that a file must contain
to ’trigger’ the rule. This section is optional and can be omitted if it is not necessary. YARA
supports searching for 3 string types: Hexadecimal Strings, Text (ASCII) Strings and Regular
Expressions.

❼ Hexadecimal Strings: Hexadecimal Strings will match hexadecimal characters/sequences of
raw bytes in the file being analysed. Example:

1 rule ExampleRule

2 {

3 strings:

4 ✩my_hex_string = { E2 34 A1 C8 23 FB }

5

6 condition:

7 ✩my_hex_string

8 }

9

Listing 3.2: YARA Hexadecimal example

Three special flexible formats, namely wildcards, jumps and alternatives, can be used to
complement the search.

– Wildcards are represented by the ’?’ symbol. They indicate that some bytes in the
pattern are unknown and should match anything. For example:

39

Detection Techniques

1 rule WildcardExample

2 {

3 strings:

4 ✩hex_string = { E2 34 ?? C8 A? FB }

5

6 condition:

7 ✩hex_string

8 }

9

Listing 3.3: YARA Hexadecimal Wildcard example

– Jumps are used in circumstances when the values of the pattern are known but their
length varies. For example:

1 rule JumpExample

2 {

3 strings:

4 ✩hex_string = { F4 23 [4-6] 62 B4 }

5

6 condition:

7 ✩hex_string

8 }

9

Listing 3.4: YARA Hexadecimal Jump example

In particular, in listing 3.4, the value ’[2-3] ’ indicates that any arbitrary sequence from
2 bytes to 3 bytes long can occupy the sequence at that position.

– Alternatives, whose syntax resembles regular expressions, are used in situations in
which the author wants to provide different alternatives for a given fragment of the
hex string. For example:

1 rule AlternativesExample

2 {

3 strings:

4 ✩hex_string = { F4 23 (62 B4 | 56) 45 }

5

6 condition:

7 ✩hex_string

8 }

9

Listing 3.5: YARA Hexadecimal Alternatives example

In particular, in listing 3.5, the value ’(62 B4 | 56)’ indicates that one sequence between
’62 B4 ’ and ’56 ’ can occupy that position.

❼ Text Strings: Text strings are generally readable sequences of ASCII characters which are
then matched in the condition section [37].

Example of a rule matching an ASCII-encoded, case-sensitive string:

1 rule TextExample

2 {

3 strings:

4 ✩text_string = "foobar"

5

6 condition:

7 ✩text_string

8 }

9

Listing 3.6: YARA Text Strings example

Additionally, in order to specify how YARA should search for strings, some modifiers can
be added at the end of each string definition. Moreover, even more than one modifier can
be used in combination. Here are described some of the available modifiers:

– nocase: Text strings in YARA are, by default, case-sensitive. However it is possible to
search for strings in case-insensitive mode by appending the modifier ’nocase’ at the
end of the string definition, in the same line. Example:

40

Detection Techniques

1 rule CaseInsensitiveTextExample

2 {

3 strings:

4 ✩text_string = "foobar" nocase

5

6 condition:

7 ✩text_string

8 }

9

Listing 3.7: YARA nocase example

– wide: The ’wide’ modifier can be used to search for strings encoded with two bytes per
character (also known as wide character strings), which are typically found in many
executable binaries.

For example, if the string ”Borland” appears in the file encoded as two bytes per
character, then the following rule will match:

1 rule WideCharTextExample1

2 {

3 strings:

4 ✩wide_string = "Borland" wide

5

6 condition:

7 ✩wide_string

8 }

9

Listing 3.8: YARA Wide Character Strings example

– xor : YARA can also encode text before searching it in the analysed file. The ’xor ’
modifier, for example, can be used to search for strings with a single byte XOR applied
to them.

The following rule will search for every string resulting from a single-byte XOR applied
to the string ”This program cannot”:

1 rule XorExample1

2 {

3 strings:

4 ✩xor_string = "This program cannot" xor

5

6 condition:

7 ✩xor_string

8 }

9

Listing 3.9: YARA XOR-ed Strings example

– base64 : The ’base64 ’ modifier can be used to search for strings that have been base64
encoded.

For example, the following rule searches for all the possible base64 permutations of the
string ”This program cannot”:

1 rule Base64Example1

2 {

3 strings:

4 ✩a = "This program cannot" base64

5

6 condition:

7 ✩a

8 }

9

Listing 3.10: YARA Base64 encoded Strings example

❼ Regular Expressions: Starting from version 2.0, YARA has been complemented with its own
regular expression engine, which is one of its most powerful features. Regular expressions
are defined in the same way as text strings, but enclosed in forward slashes instead of
double-quotes [38].

Example:

41

Detection Techniques

1 rule RegExpExample

2 {

3 strings:

4 ✩re1 = /md5: [0-9a-fA-F]{32}/

5 ✩re2 = /state: (on|off)/

6

7 condition:

8 ✩re1 and ✩re2

9 }

10

Listing 3.11: YARA Regular Expression

Conditions section The last section of YARA rules, which is the only one really required,
contains the rule conditions that determine when the rule gets triggered. These conditions are
Boolean expressions similar to those used in programming languages [41]. Through the use of all
the usual logical and relational operators, conditions can be made arbitrarily complex in order to
accommodate the author specific needs [37].

Inside the Conditions section, among other things, it is possible to:

❼ Count strings Sometimes it is necessary to know how many times a string appears in the
analysed file, not only if it is present or not. The number of occurrences of each string
defined in the string section can be retrieved by using a variable whose name is the string
identifier with a ’#’ character in place of the initial ’✩’ character.

For example:

1 rule CountExample

2 {

3 strings:

4 ✩a = "dummy1"

5 ✩b = "dummy2"

6

7 condition:

8 #a == 6 and #b > 10

9 }

10

Listing 3.12: YARA Count example

❼ Check String at specific offset/in offset range: It is sometimes necessary to know if
a particular string is available at some specific offset of the file or at some virtual address
within the process address space. In such situations it is possible to use the ’at ’ operator.

The ’in’ operator, on the other hand, allows to search for a specific string within a range of
offsets or addresses, rather than at an exact one.

Examples:

– The rule in listing 3.13 fires if the a string is located at offset 100 and b at offset 200
of the running process.

1 rule AtExample

2 {

3 strings:

4 ✩a = "dummy1"

5 ✩b = "dummy2"

6

7 condition:

8 ✩a at 100 and ✩b at 200

9 }

10

Listing 3.13: YARA At example

– The rule in listing 3.14 is triggered if the a and b strings are found in memory locations
between 0 and 100 and between 100 and filesize, respectively, of the running process
main memory.

42

Detection Techniques

1 rule InExample

2 {

3 strings:

4 ✩a = "dummy1"

5 ✩b = "dummy2"

6

7 condition:

8 ✩a in (0..100) and ✩b in (100..filesize)

9 }

10

Listing 3.14: YARA In example

❼ Check file size: ’filesize’ is a special variable that can be used in rules conditions, which
holds the size of the file being scanned in bytes.

Example:

1 rule FileSizeExample

2 {

3 condition:

4 filesize > 200KB

5 }

6

Listing 3.15: YARA Filesize example

❼ Check a set of strings: When it is necessary to know if a file contains a certain number
of strings from a given set, the ’of ’ operator can be used.

Example:

1 rule OfExample

2 {

3 strings:

4 ✩a = "dummy1"

5 ✩b = "dummy2"

6 ✩c = "dummy3"

7

8 condition:

9 2 of (✩a, ✩b, ✩c)

10 }

11

Listing 3.16: YARA Of example

Additional modules The core functionality of YARA can be extended through the use of
modules. Some modules like the PE module and the Cuckoo module are officially distributed with
YARA, however additional ones can also be created. Here are mentioned some useful (in this
context) Yara modules:

❼ YARA with PE Starting with version 3.0, YARA can parse Portable Executable (PE)
files [40]. For example, the rule in listing 3.17 will check for the string ”abc”, will parse the
PE file and look for ”CreateProcess” and ”httpsendrequest” function names in the import
sections named ’Kernel32.dll ’ and ’wininet.dll ’, respectively.

1 Import "PE"

2

3 rule PE_Parse_Check

4 {

5 strings:

6 ✩string_pe="abc" nocase

7

8 condition:

9 pe.imports("Kernel32.dll", "CreateProcess") and

10 pe,imports("wininet.dll", "httpsendrequest") and

11 ✩string_pe

12 }

13

Listing 3.17: YARA with PE example

43

Detection Techniques

❼ YARA with PEiD YARA can also be integrated with PEiD to check what packer was
used to compile the malicious/suspicious executable [40].

Yara Rules Advantages and Disadvantages

1. Advantages: Yara rules offer several advantages over other malware analysis techniques.
Here are some of the most notable ones [38]:

❼ Yara rules allow malware analysts to write flexible and custom rules in an easy and
efficient way.

❼ Yara rules are an open standard which works on most of the major operating systems
such as Windows, Linux and Mac OS.

❼ Yara rules can be easily integrated into Python and C/C++ programming languages.

❼ Yara rules can be used both for static and dynamic malware analysis.

❼ Several automatic tools have been developed, and are readily available, to automatically
generate Yara rules easily and efficiently.

❼ There are various public repositories of Yara rules which offer readily available rules
for malware analysis.

2. Limitations: Yara rules, however, also have some limitations. Here are some of the most
notable ones [38]:

❼ Yara rules are commonly written based on IoC (Indicator of Compromise) strings,
however, malware authors can easily obfuscate, replace or encrypt these IoC strings in
their creations in order to evade detection. This could make these rules less effective.

❼ IoC strings are usually extracted from existing malware samples/families through the
use of reverse engineering techniques. The use of these techniques in manually creating
effective rules, however, requires a highly specialised skill-set and years of experience.

❼ The effectiveness of Yara rules is generally influenced by the types and number of
IoC strings included in the rules. However, achieving the right balance of both is a
challenging task.

❼ Yara rules are effective in detecting malwares which match known malware signatures.
It may, however, completely miss new and unique malware variants.

Yara Rules Automatic Generators

There are various automatic Yara rules generator tools available. In the following the most
notable ones will be briefly described:

YarGen Tool The python-based tool called YarGen exploits some smart techniques, namely
fuzzy regular expressions, Naive Bayes classifier and Gibberish Detector, to generate Yara rules.

The produced rules include features (strings and opcodes) common to malware samples that
don’t match with the provided goodware databases. A predefined number of features (generally
up to 20 strings) are selected, based on their potential utility and a number of heuristics, to be
combined and used by the rule in order to maintain a reasonable operation speed.

This tool is able to generate two types of rules: basic rules and super rules. Basic rules can
generally target specific malware samples, where super rules are able to target a set of malware
samples or a whole malware family [38].

The yarGen authors encourage its use as a starting point for rule construction, followed by
manual adjustments to refine yarGen’s output [39].

1. YarGen tool advantages:

44

Detection Techniques

❼ It allows generation of Yara rules based on both opcodes and strings.

❼ It supports the use of PE (portable executable) modules, which are used to interpret
Windows operating system executables such as DLL and COM files.

❼ It can be integrated with other anti-malware software in order to improve its effective-
ness.

❼ It reduces the false positive rate by checking all strings against databases of goodware
samples.

❼ It is deployed as a simple and easy-to-use python script that can be run through a
command-line interface.

2. YarGen tool disadvantages:

❼ It requires post-processing of the generated rules for increasing their effectiveness.

❼ It requires significant resources for generating opcode-based rules and for loading good-
ware files.

❼ The rule generation process is slow.

❼ The creation of super rules may cause redundancy and duplication of rules.

❼ All dependencies and built-in databases have to be installed in order for the tool to
work successfully.

YaraGenerator Tool This python-based tool uses string prioritization logic and code refac-
toring to generate Yara rules with a completely different signature for different file types, such as
EXE s, PDF s, and Emails.

The generated Yara rules contain only strings (opcodes are not supported) extracted from
malware samples that do not match with the provided database of strings from blacklisted files.
In particular 30,000 blacklisted strings are contained in such database, arranged based on the
different file formats. The produced Yara rules contain a large number of strings which are
selected randomly. In fact, no score computation takes place in order to weight the different
strings [38].

1. YaraGenerator tool advantages :

❼ It can generate specialised rules for specific file formats.

❼ It supports the use of PE (portable executable) modules, which are used to interpret
Windows operating system executables such as DLL and COM files.

❼ It reduces the false positive rate by checking all strings against databases of blacklisted
strings.

❼ It is deployed as a simple and easy-to-use python script that can be run through a
command-line interface.

2. YaraGenerator tool disadvantages:

❼ It requires post-processing of the generated rules for increasing their effectiveness.

❼ It generates rules based on a random selection of features (strings). This implies that
the most appropriate strings may not be selected in many cases, thus making the
produced rules less effective on average.

❼ It does not support the use of opcodes.

❼ It was developed as a work-in-progress project and has not been updated since.

45

Detection Techniques

Yabin Tool This is another python-based tool, developed by the Alien Vault Open Threat
Exchange (OTX) community, for the automatic generation of Yara rules.

In this case Yara rules are created by finding rare functions in specific malware samples or
families. Functions are recognised by checking specific byte sequences called function prologues,
which define the start of the code of a function. For example, the byte sequence ’55 8B EC ’
usually specifies the start of a function in programs compiled by Microsoft Visual Studio.

The generated Yara rules include strings common to malware samples that don’t match with
the provided whitelist of commonly used library functions. Such whitelist was obtained from
100 GB of non-malicious software in order to exclude common library functions. The produced
Yara rules contain a list of hexadecimal strings to be compared against suspicious files looking
for similarities in their byte-sequences [38].

1. Yabin tool advantages:

❼ It can be used to cluster malware samples based on the reuse of their code.

❼ The list of patterns to search for can be extended during the rule post-processing phase.

❼ With the purpose of excluding commonly used library functions in the produced rules,
a large whitelist obtained from numerous non-malicious executable files is provided
with the tool.

❼ It is deployed as a simple and easy-to-use python script that can be run through a
command-line interface.

2. Yabin tool disadvantages:

❼ It requires post-processing of the generated rules for increasing their effectiveness.

❼ Some specific file types/formats may not be supported.

❼ The created rules contain only function prologues. No other string types are used.

❼ Since it relies on function prologues, it works only with unpacked executables.

❼ It is not designed to work on .NET executables, Java files and Microsoft documents.

❼ It was mainly developed for research and testing purpose, not for production use.

AutoYara Tool Compared to the previously mentioned tools like YarGen, which rely on a
number of heuristics and string features, AutoYara tool makes larger rules using the redundancy
and conjunction of components to achieve extremely low false-positive rates [39].

The two primary concerns of the AutoYara authors while designing this tool were:

1. Yara rules that generate a lot of false positives could slow down the investigation

2. Malware analysts often have few samples (≤ 10) when creating a Yara rule

AutoYara authors thus developed a workflow composed of two steps: the first step leveraged
recent works in finding frequent larger n-grams, for n ≤ 1024, to find several candidate byte
strings that could become features. In the second step a bi-clustering method, which consists of
simultaneously clustering the rows and columns of an input data matrix, is used on those strings to
construct the output rules. Most bi-clustering algorithms require the specific number of bi-clusters
to be known in advance, and enforce no overlaps between bi-clusters. The AutoYara authors
exploited an already existing bi-clustering algorithm extending it to work when the number of
bi-clusters is not known a priori (the number of bi-clusters gets determined automatically) and to
allow overlapping bi-clusters, discarding rows and columns that do not fit in any bi-cluster [39].

AutoYara uses bi-clustering because it allows to easily produce complex and effective logic
rules that enable the creation of signatures with low false positive rates.

To build a good Yara rule, in fact, one needs to know:

46

Detection Techniques

1. which features should be used at all

2. which features should be combined into ’and ’ statements (which reduce the False Positive
Rate), and which should be placed into ’or ’ statements (which increase the True Positive
Rate)

Bi-clustering provides a simple approach to do this jointly over the features, rather than consid-
ering the features one at a time. In particular, the features within a bi-cluster are combined into
an ’and ’ statement since they co-occur; moreover the ’and ’ statements from multiple bi-clusters
are placed into an ’or ’ statement resulting in a disjunction of conjunctions rule formulation.

1. AutoYara tool advantages:

❼ It is fast, allowing it to be deployed even on low-resource equipment (like remote
networks).

❼ It was designed with the intent of producing Yara rules with low false positive rates.

❼ It was designed to be able to generate Yara rules from as few as ≤ 10 available samples.

2. AutoYara tool disadvantages:

❼ It requires post-processing of the generated rules for increasing their effectiveness.

❼ It a very recent tool, mainly developed for research purposes and not for production
use.

3.3 Semantic Based Detection

Semantic-based malware detection aims at identifying malware by deducing the analysed code
logic and comparing it to a database of already known malicious logic patterns. This technique,
differently from signature-based detection which looks at the code syntactic properties, tracks
the semantics of the program code instructions. This implies that semantic-based detection ap-
proaches are capable of overcoming some obfuscation attempts and may even be able to detect
unknown malware variants [3].

3.4 Behavioural Based Detection

Behavioural-based malware detection consists in the use of behavioural patterns for the identifica-
tion of malicious software. This is done by dynamically analysing malware samples and extracting
specific system/application behaviours and activities in order to form a behavioural signature of
a malware strain. New samples are then analysed in the same way and classified as malicious if
their behavioural pattern is similar to the behavioural signature of a known malware [3].

Behavioural-based detection is for the most part immune to obfuscation attempts. However,
its applicability is limited since it is based on the time consuming dynamic analysis and on the
challenging task of determining the unsafe activities/behaviours to consider within the target
environment.

3.5 Heuristics-based Detection

As opposed to traditional signature-base detection methods which identify malware by examining
code for specific bytes/strings, heuristic-based detection uses rules and/or algorithms to search for
commands or instructions not commonly found in harmless applications, thus indicating possible
malicious intents [42].

Heuristic-based anti-malware tools may exploit different scanning techniques such as:

47

Detection Techniques

❼ File analysis (static heuristic analysis): the suspicious program is disassembled and its
source program is examined looking for known malware patterns (stored in a heuristic
database). If the percentage of matched code exceeds a predefined threshold then the code
is marked as probably infected [43].

❼ File emulation (dynamic heuristic analysis): in this approach, the suspicious piece of code
is examined in a virtual machine (or sandbox) looking for suspicious operations such as
attempts at executing other executables, at changing the Master Boot Record, at concealing
themselves etc. that are uncommon in benign programs.

❼ Genetic signature detection: this technique is designed to spot different malware variations
within the same family using previous malware definitions [44].

Heuristic analysis is a more effective technique than the signature-based approach for the de-
tection of unknown malware, particularly for encrypted and polymorphic variants [22]. Nowadays
it can be found in most mainstream antivirus solutions in the market, combined with signature-
based scanners in order to improve the detection rate while reducing false alarms [3].

3.6 Machine Learning

In recent years, the rapid proliferation and increased sophistication of malicious software, coupled
with the rising popularity of machine learning techniques in many fields, led to the adoption
of more general ML-based approaches to malware detection in addition to the use of manually
generated signatures and heuristics [5].

In particular, the application of machine learning for Information Security (ML-Sec) methods
to perform malware detection generally consists in training a highly parametrized ML classifier to
reliably (as much as possible) predict a binary label (malicious or benign) using features extracted
from sample files. In order to do this the classifier parameters are numerically optimized to learn
general concepts of malware and benignware, by minimizing the misclassification loss between
predictions and the actual ground truths. This is based on the assumption that, if the samples
are well labelled and malware/benignware samples in the training set are similar enough to those
seen at test/deployment time, the learned detection function should work well on unseen samples
[4].

Most static ML-Sec classifiers work on learned embeddings over portions of files (e.g. headers),
learned embeddings over full files, or most commonly, on pre-engineered numerical feature vectors
designed to summarize the content from each file. Learned embeddings generally are the result
of convolutional architectures which do not presume a fixed file structure. However, the process
of embedding features directly from inputs is expensive, and does not scale gracefully. Moreover,
generic bytes do not present structural localities/hierarchies typical of images and text inputs
that can be exploited by convolutional filters. Pre-engineered feature vector representations, on
the other hand, quickly distil content useful for classification from each file [45]. There are various
possible ways to statically craft feature vectors, for example:

❼ tracking per-byte statistics over sliding windows

❼ using byte histograms and/or n-gram histograms

❼ treating bytes as pixel values in an image

❼ computing opcode and function call graph statistics

❼ computing symbol statistics

❼ extracting hashed/numerical metadata values

❼ extracting hashes of delimited tokens

❼ etc.

48

Detection Techniques

The process of transforming a sample file into its numerical feature representation is called feature
extraction and consists of some numerical transformations that preserve the aggregate and fine-
grained information of each sample [4].

ML methods generally require many high quality samples in order to train effective models.
When creating datasets for these models, labels are often collected from vendor aggregation feeds,
which combine detection results from various vendors for each malware sample. This can be done,
for example, by using a 1−/5+ criterion or by using statistical estimation methods. The 1−/5+
criterion works as follows: if a file has one or fewer vendors reporting it as malicious, the file
is labelled as ’benign’; on the other hand, if a sample has five or more vendors reporting it as
malicious, the file is labelled as ’malicious’. Moreover, it is common practice to introduce a time
lag to let vendors update their models to account for new malware samples. When deployed,
classifiers are periodically re-trained on new data/labels to reflect the current malware trends
[45].

The advantage of machine learning techniques with respect to signature engines, where the
aim is to reactively blacklist/whitelist samples that hard-match manually-defined patterns (sig-
natures), is that, by being more general, they are able to detect not only known malwares but
also novel malware strains/variants, providing some degree of proactive detection [36].

Commercial anti-malware solutions/engines have nowadays integrated ML on top of standard
detection methods (without replacing them) with the aim of enhancing the detection results,
especially for second generation malwares and novel malware strains. Popular ML techniques
employed by such tools are, for example, deep neural networks (DNN), boosted decision tree
ensembles, Näıve Bayes models, Data Mining approaches and Hidden Markov Models. Moreover,
multiple vendors in the IT security industry nowadays have dedicated ML-Sec teams [22].

The following recent static ML-based malware detection methods will be described in the next
sections:

❼ ALOHA: Auxiliary Loss Optimization for Hypothesis Augmentation

❼ Automatic Malware Description via Attribute Tagging and Similarity Embedding

❼ Learning from Context: Exploiting and Interpreting File Path Information for Better Mal-
ware Detection

3.6.1 ALOHA: Auxiliary Loss Optimization for Hypothesis Augmenta-
tion

In a recent work called ALOHA: Auxiliary Loss Optimization for Hypothesis Augmen-
tation, [4], Rudd et al. observed that, although ML-based malware detection is frequently framed
as a binary classification task (using a simple binary cross-entropy loss function), there are often a
number of other sources of contextual metadata for each input sample available at training time,
beyond just aggregate malicious/benign labels. Such metadata might include malicious/benign
labels from multiple sources (e.g. from various security vendors), malware family information,
temporal information, counts of affected endpoints, and associated tags. However, this metadata
is, in many cases, not available at deployment time, making it difficult to include it as input fea-
tures. The authors thus proposed to leverage the metadata collected from threat intelligence feeds
as auxiliary targets in a multi-target learning approach. Simultaneously optimizing the classifier
parameters for multiple targets (labels) while training a model may, in fact, have a regularizing
effect leading to better generalization, particularly if the auxiliary targets are related to the main
target of interest.

In practice, in their work [4] the authors fit a deep neural network with multiple additional
targets derived from metadata in a threat intelligence feed for Portable Executable (PE) malware
and benignware. The additional losses include a multi-source malicious/benign loss, a count loss
on multi-source detections, and a semantic malware attribute tag loss.

49

Detection Techniques

Inner Workings

The model presented in [4] (fig. 3.1) is composed of a base feed-forward neural network consisting
of 5 blocks, each composed of Dropout, a dense layer, batch normalization, and an exponential
linear unit (ELU) activation, with 1024, 768, 512, 512, and 512 hidden units respectively. This
base topology applies the function f(·) to the input feature vector x (of size 1024 in this case) to
produce an intermediate 512 dimensional representation of the input file h = f(x). An additional
block for each output of the model, consisting of one or more dense layers and activation functions,
is then appended on top of the base net. This composition of the base topology and the target-
specific ”heads” is denoted as ftarget(x).

The output for the main malicious/benign label prediction task - fmal(x) - is always present
(it constitutes the baseline model) and consists of a single dense layer followed by a sigmoid
activation function on top of the base shared network. On top of that are added one or more
auxiliary outputs with a similar structure to the one described above: one fully connected layer
(two for the tag prediction task) with a task-specific activation function. Finally, the multi-task
loss is produced by computing the sum, across all tasks, of the per-task losses multiplied by the
task-specific weights (1.0 for the malicious/benign label prediction task and 0.1 for all other tasks)
[4].

Figure 3.1: ALOHA model architecture

Malware Loss The task of predicting if a given binary file, represented by its features x(i),
is malicious or benign is optimized by minimizing the binary cross-entropy loss between the
malicious/benign output label of the network ŷ(i) = fmal(x

(i)) and the ground truth label y(i).
This results in the following loss for a dataset with M samples:

Lmal(X,Y) =
1

M

MX
i=1

lmal(fmal(x
(i)), y(i))

= − 1

M

MX
i=1

y(i) log(ŷ(i)) + (1− y(i)) log(1− ŷ(i))

(3.1)

A ”1-/5+” criterion was used for labelling a given file as malicious or benign [4].

50

Detection Techniques

Vendor Count Loss The first additional target used by the authors of [4] is the count of
malicious reports for a given sample from the vendor aggregation service. This is based on the
assumption that the more a sample gets reported by different vendors, the more likely it is to be
malicious. To model count data, the authors used the Poisson noise model parametrized by the
parameter µ, where µ is the mean and variance of the Poisson distribution. The probability of an
observation of y counts is therefore:

P (y|µ) = µye−µ/y! (3.2)

The model is then trained to estimate µ for each sample x(i) such that the likelihood of y(i)|µ(i)

is maximized (or, equivalently, the negative log-likelihood is minimized). The output of the model
vendor count head, for sample i, is denoted as fcnt(x

(i)). Thereafter, an activation function a(·),
which maps fcnt(x

(i)) to the non-negative real numbers, is used, so the final approximation for
parameter µ is: µ(i) = a(fcnt(x

(i))). In particular, the activation function used in [4] is an
exponential linear unit activation (ELU).

Letting y(i) denote the actual number of vendors that deemed sample x(i) malicious, the
corresponding negative log-likelihood loss over the dataset is:

Lp(X,Y) =
1

M

MX
i=1

lp(a(fcnt(x
(i))), y(i))

=
1

M

MX
i=1

µ(i) − y(i) log(µ(i)) + log(y(i)!)

(3.3)

which is referred to in [4] as the Poisson or vendor count loss. In practice, the term log(y(i)!) is
ignored when minimizing this function loss since it does not depend on the network parameters.

Per-Vendor Malware Loss The authors of [4] identified a subset V = {v1, ..., vV } of 9 vendors
that each produced a result for (nearly) every sample in their data. Each vendor result was added
as additional target by adding an extra fully connected layer per vendor followed by a sigmoid
activation function to the end of the shared baseline architecture. A per-vendor binary cross-
entropy loss was then employed during training. The aggregate vendors loss Lvdr for the V = 9
selected vendors is simply the sum of the individual vendor losses:

Lvdr(X,Y) =
1

M

MX
i=1

VX
j=1

lvdr(fvdrj (x
(i)), y(i)vj)

= − 1

M

MX
i=1

VX
j=1

y(i)vj log(ŷ(i)vj) + (1− y(i)vj) log (1− ŷ(i)vj)

(3.4)

where lvdr is the per-sample binary cross-entropy function and fvdrj (x
(i)) = ŷ

(i)
vj is the output of

the network that is trained to predict the label y
(i)
vj assigned by vendor j to input sample x(i) [4].

Malicious Tags Loss Finally, further additional targets were provided in the form of malicious
tags. This was done in an attempt to exploit information contained in family detection names
provided by different vendors. In particular, the tags used as auxiliary targets in [4] are: flooder,
downloader, dropper, ransomware, crypto-miner, worm, adware, spyware, packed, file-infector and
installer.

These tags were created by parsing individual vendor detection names, using a set of 10 vendors
which provided high quality detection names. After having extracted the most common tokens,
the tokens not related to well-known malware family names were filtered out. Finally, a mapping
between tokens and tags was created based on the authors experience.

The tag prediction task was then defined as a multi-label binary classification, since zero or
more tags from the set of possible tags T = {t1, ..., tT } can be present at the same time for a

51

Detection Techniques

given sample. This was implemented as a multi-headed architecture: two additional layers per
tag were added to the end of the shared baseline architecture, a fully connected layer of size
512-to-256, followed by a fully connected layer of size 256-to-1, followed by a sigmoid activation
function. Each of the possible T = 11 tags had its own binary cross-entropy loss term. Finally,
the aggregate tag loss was computed as the sum of the individual tag losses [4]. For the dataset
with M samples the loss thus was:

Ltag(X,Y) =
1

M

MX
i=1

TX
j=1

ltag(ftagj (x
(i)), y

(i)
tj)

= − 1

M

MX
i=1

TX
j=1

y
(i)
tj log(ŷ

(i)
tj) + (1− y

(i)
tj) log(1− ŷ

(i)
tj)

(3.5)

where y
(i)
tj indicates whether sample i is annotated with tag j, and ŷ

(i)
tj = ftagj (x

(i)) is the
prediction of the network for that value.

Final Loss Finally, in [4] each model used a loss weight of 1.0 on the aggregate malicious/benign
loss and 0.1 on each auxiliary loss. Therefore, when adding the K targets to the main loss, the
final loss that gets back-propagated through the model was:

L(X,Y) = Lmal(X,Y) + 0.1

KX
k=1

Lk(X,Y) (3.6)

3.6.2 Automatic Malware Description via Attribute Tagging and Sim-
ilarity Embedding

As explained by Ducau et al. in [5], in order to counter and remediate a malware infection on a
system/network it is of vital importance to understand the nature (malware family and variant) of
the attack in progress. In fact, knowing the malicious capabilities associated with each suspicious
file found on a system/network gives important clues to the system end user, administrator or
security operator that help define a remediation procedure, identify possible root causes, and
evaluate the severity and potential consequences of the attack.

Machine learning detection methods, which have the potential to identify even new malware
samples/variants as malicious, however, generally produce a simple binary malicious/benign label
with no further information about the type of threat posed by malicious samples, which in turn
does not allow the identification of relationships between malware samples. On the other hand,
most commercial anti-malware solutions provide, when they alert about potentially harmful files
detected in a machine, detection names coming from specific hand-written signatures created by
reverse engineers to identify particular threats, that are theoretically useful for categorizing known
malware variants. However, even these detection names are problematic. In fact, the increasing
number of feature-rich malware and the fact that different vendors use differing malware naming
conventions led to inconsistent and highly vendor-specific detection names. Moreover, it is now
common to see detection names which only act as unique identifiers without providing actionable
information about the type of potential harm the malicious sample is capable of doing.

The authors of [5] therefore proposed the use of SMART (Semantic Malware Attribute Rele-
vance Tagging) tags, which are human interpretable, high level descriptions of the capabilities of
a given malware sample, to approach malicious software description. These SMART tags, which
were derived by leveraging the underlying knowledge encoded in detection names from different
anti-malware vendors in the industry, are non-exclusive, meaning that one malware family can be
associated with multiple tags and a given tag can be associated with multiple malware families.
In [5], the authors defined a set of malicious tags T , with |T | = 11 different tags (or descriptive
dimensions) of interest that they then used to describe malicious PE files: adware, crypto-miner,
downloader, dropper, file-infector, flooder, installer, packed, ransomware, spyware and worm.

These tags were then used to train a Joint Embedding neural network to learn a low di-
mensional Euclidean representation (embedding) space in which malware samples with similar

52

Detection Techniques

characteristics are close to each other, having access only to the static binary representation of
files; this in turn is used at test/deployment time for automatically predicting tags for new (un-
seen) files in real time. The representation of a malware sample in the embedding space can
therefore be taught also as an implicit signature describing its capabilities.

Multi-Label Classification The authors of [5] applied multi-label classification in order to
perform semantic attribute tagging. The most trivial way of implementing a multi-label classi-
fication model is by learning one classifier per-label. This approach, however, is far from being
efficient since the single per-tag classifiers are independently optimized. In this scenario, it is more
common to use a single classifier with multiple outputs (multi-label learning) and multiple tar-
get losses which are combined and jointly optimized during training (multi-objective loss). This
approach yields a more compact representation while also improving classification performance
with respect to using independent classifiers. In [5], the authors used a multi-label deep neural
network as baseline architecture.

An alternative approach to multi-label classification is to learn a compact shared vector (em-
bedding) space representation on which to map both input samples and labels - a joint embedding
- where similar content across modalities are projected into similar vectors in the same low dimen-
sional space [5]. Then, at test/deployment time, in order to determine likely labels, a similarity
comparison between vectors belonging to this learned latent space is performed, e.g. via inner
product. In [5], the authors used a joint embedding model that maps malware tags and executable
files into the same low dimensional Euclidean joint-embedding space for the malware description
problem.

Tag Distillation from Detection Names Ducau et al. [5] relied on semi-automatic strategies,
even if they are noisier than manual labelling, because they allowed them to label millions of files
that can be then used to train a classifier. In particular, they designed a labelling function
which annotates PE files using the previously mentioned set of tags T by combining information
extracted from the detection names got from ten reputable anti-malware vendors.

The labelling process consisted of the three main stages presented in figure 3.2:

Figure 3.2: Tag Distillation from Detection Names Process

The token extraction phase consisted of normalizing and parsing the multiple detection names
and converting them in sets of sub-strings. In a similar way to what is done by the malware
labelling tool AVClass, which was proposed by Marcos et al. in [46], the token-to-tag mapping
stage uses rules created from expert knowledge by a group of malware analysts, that associate
relevant tokens with the set of tags of interest. Finally, this mapping is extended by mining
statistical relationships between tokens to improve tagging stability and coverage.

Tags Prediction - Inner Workings In [5], in order to predict - in a multi-label classification
manner - zero or more tags per sample from the set of T possible tags T = {t1, t2, ..., tT }, the
authors proposed two different neural network architectures, represented in 3.3 and 3.4, which
they referred to as Multi-Head and Joint Embedding nets.

In particular, the Multi-Head net (fig. 3.3) consisted of a base topology common to the
prediction of all tags, and one output head per tag. The shared base topology, which can be
thought of a feature extraction (or embedding) network that transforms the input features x into
a low dimensional hidden vector h, consisted of an input feed-forward layer of output size 2048,
followed by a batch normalization layer, an ELU non-linearity and three blocks, each composed by
dropout, a linear layer, batch normalization and ELU of output sizes 512, 128, and 32 respectively.

53

Detection Techniques

Each head, on the other hand, is a binary classifier that predicts the presence or absence of each
tag. This is implemented as a single linear layer composed of the same type of basic blocks as in
the main base architecture, but with output size 11 (the number of tags being predicted) and a
sigmoid non-linearity instead of the ELU activation function to compute the predicted probability
for each label. The binary cross-entropy losses between each head output and the corresponding
ground truth tags are computed and then added together to form the final loss.

Figure 3.3: Multi Head model architecture

Figure 3.4: Joint Embedding model architecture

The Joint Embedding model (fig. 3.4), instead, was designed to map both the labels (malware
tags) and the binary file features x to vectors in a joint Euclidean latent-space in such a way that,
for a given similarity function, the transformations of semantically similar labels are close to each
other, and the embedding of a binary file should be close to that of its associated labels in the
same space. In practice, the Joint Embedding model consisted of a PE embedding network, a tag
embedding matrix E, and a prediction layer.

The PE embedding network, using the same base topology as the Multi-Head model, learns a
non-linear function ϕθ(·), with parameters θ, that maps the input binary representation of the PE

54

Detection Techniques

executable file x ∈ Rd into a vector h ∈ RD in low dimensional Euclidean space (with D = 32),

ϕθ(x) : Rd → RD (3.7)

The tag embedding matrix E ∈ RT×D of learnable parameters learns a mapping from a tag
tn ∈ T = {t1, ..., tT }, to a distributed representation e ∈ RD in the joint embedding space (with
D = 32).

ϕE(t) : {t1, ..., tT } → RD (3.8)

In practice, the embedding vector for tag tn is simply the n-th row of the tag embedding matrix,
i.e. ϕE(tn) = En.

Finally, the prediction layer compares both tag and sample embeddings (e and h respectively)
and produces a similarity score. This is later run through a sigmoid non-linearity to estimate the
probability that sample x is associated with tag t for each t ∈ T . In the final model implementation
presented in [5], the similarity score used was the dot product between the embedding vectors.
The output of the network fn(x|θ,E) therefore was,

ŷn = fn(x|θ,E) = σ(⟨ϕE(n), ϕθ(x)⟩)
= σ(⟨En,h⟩)

(3.9)

where σ is the sigmoid activation function, and ŷn is the probability estimated by the model of
tag tn being a descriptor for x.

Furthermore, the authors of [5] constrained the embedding vectors for the tags such that:

||En||2 ≤ C, n = 1, ..., T (3.10)

with C equal to 1, which has a regularizing effect.

During training, the parameters of both embedding functions ϕθ(·) and ϕE(·) are jointly
optimized to minimize the binary cross-entropy loss for the prediction of each tag via back-
propagation and stochastic gradient descent. The loss function to minimize for a mini-batch of
M samples is:

L = − 1

M

MX
i=1

TX
n=1

fn(x
(i)|θ,E) log(t(i)n) + (1− fn(x

(i)|θ,E)) log(1− t(i)n)

= − 1

M

MX
i=1

TX
n=1

ŷ(i)n log(t(i)n) + (1− ŷ(i)n) log(1− t(i)n)

(3.11)

where t
(i)
n = 1 if sample i is labelled with tag tn or zero otherwise, and ŷ

(i)
n is the probability

predicted by the network of that tag being associated with the i-th sample.

Finally, at test/deployment time, in order to get a vector of tag similarities for a given sample
x with PE embedding vector h, the matrix of tag embeddings E ∈ RT×D is multiplied (dot
product) by h ∈ RD; the output is then scaled to obtain a prediction vector ŷ = σ(E · h) ∈ RT ,
where σ is the element-wise sigmoid function which transforms the similarity values into valid
probabilities. Each element in ŷ is then the predicted probability for each tag.

Evaluation of Tagging Algorithms The performance evaluation of tagging algorithms can
be done along two orthogonal dimensions: per-tag or per-sample. The former aims at quantifying
the tagging algorithm performance at identifying each tag, while the latter focuses on evaluating
the tagging algorithm performance for a given sample, across all tags.

One suitable way to evaluate the per-tag performance of a model is by measuring the Area
Under the Receiver Operating Characteristic curve (AUC-ROC, or simply AUC) for each of the
tags being predicted. A ROC curve is created by plotting the True Positive Rate (TPR) against
the False Positive Rate (FPR). Furthermore, given the binary True/False nature of the target
value for the n-th tag of a given sample (tn ∈ {0, 1}), the typical binary classification evaluation

55

Detection Techniques

metrics such as Accuracy (eq. 3.12), Precision (eq. 3.13), Recall (eq. 3.14), and F-score (eq.
3.15) can also be computed. However, in order to compute these metrics, the output probability
prediction needs to be binarized first. This can be done by simply choosing a threshold, indepen-
dently for each tag, so that the FPR on the validation set is, for example, 0.01 and then using the
resulting 0/1 predictions. The equations of the mentioned binary cross-entropy statistics are:

accuracy =
TP + TN

TP + FP + TN + FN
(3.12)

precision =
TP

TP + FP
(3.13)

recall =
TP

TP + FN
(3.14)

fβscore = (1 + β2) · precision× recall

β2 · precision+ recall
(3.15)

where TP , TN , FP and FN are the number of True Positives, True Negatives, False Positives
and False Negatives respectively.

On the other hand, the Mean Jaccard similarity (eq. 3.16) and Mean per-sample Accuracy
(eq. 3.17) metrics can be used to assess the per-sample performance of a tagging algorithm. In
particular, the Jaccard similarity (or index) can be used as a figure of how similar the set of tags
associated with a specific sample is with respect to the set of tags predicted for the same sample
after binarizing the predictions. The per-sample accuracy is instead defined as the percentage
of samples for which the target vector is equal to the prediction vector, i.e. all tags correctly
predicted. For an evaluation dataset with M samples the equations of the per-sample evaluation
metrics are:

Mean Jaccard similarity = J(T (i), ˆT (i)) =
1

M

MX
i=1

J(T (i), T̂ (i)) =
1

M

MX
i=1

T (i) ∩ T̂ (i)

T (i) ∪ T̂ (i)
(3.16)

Mean per-sample accuracy =
1

M

MX
i=1

I(y(i) = ŷ(i)) (3.17)

where T (i) is the set of tags associated with sample i, T̂ (i) is the set of tags predicted for the
same sample after binarizing the predictions, y ∈ {0, 1}T is the binary target vector for a PE file
(where yn indicates whether the n-th tag applies to the file), ŷ is the binarized prediction vector
from a given tagging model and I(condition) is the indicator function which is 1 if the condition
in the argument is true, 0 otherwise.

3.6.3 Learning from Context: Exploiting and Interpreting File Path
Information for Better Malware Detection

Recent static portable executable (PE) malware detection techniques, including [4], typically
employ ML-Sec classifiers designed to work with a single numerical feature vector, derived from
each file, as input, having as output one or more target labels/tasks. However, as noted by
Kyadige et al. in [45], there is still much unused orthogonal information that could be exploited
regarding the sample files, such as the file paths. The authors in [45] thus proposed utilizing
the static source of contextual information represented by PE file paths as auxiliary data to the
classifier in order to augment static ML detectors. File paths, which are already commonly used
by malware analysts to correct and investigate detection errors, are available statically with very
little overhead, and can seamlessly be integrated into a multi-view static ML detector.

File paths are not inherently malicious or benign; however, given that many malware strains
use specifically crafted file paths to perpetrate their malicious intents (a file path may in fact be
chosen to increase the odds of the malware being executed, to avoid disk scans, or to hide from

56

Detection Techniques

the user’s view), they provide much instrumental information that can be used to enhance the
overall detection.

In [45], the authors thus proposed the use of a multi-view neural network which combines, in
input, information about the PE file content - via feature vectors - with information about how
likely it is to see such file in a specific location - through file paths - and outputs a detection score.

To compare their results, they actually focused their experiments on three models:

❼ A baseline file-content-only PE model, which takes only the PE features as input and outputs
a malware confidence score.

❼ Another baseline file-path-only FP model, which takes only the file paths as input and
outputs a malware confidence score.

❼ Their proposed multi-view PE file-content + contextual file-path (PE + FP) model, which
takes both the PE file content features and file paths as inputs, and also outputs a malware
confidence score.

The experiments were conducted on a dataset of files and file paths collected from actual scans
on customer endpoints from a large anti-malware vendor.

Feature Engineering In order to be able to use file paths in a feed-forward neural network
along with PE file content feature vectors, the file paths, which are strings of variable length,
needed to be converted into numerical vectors of fixed size. To do this, the authors of [45] created
a lookup table keyed on each character with a numeric value (between 0 and the character set
size) representing each character. Moreover, the conversion required the file paths to be trimmed
to a fixed size, therefore the authors considered just the first 100 characters of each file path.

As features for the content of the PE files, they used floating point 1024-dimensional feature
vectors consisting of four distinct feature types, similar to [47]:

1. A 256-dimensional (16x16) 2D histogram of windowed entropy values per byte with a window
size of 1024.

2. A 256-dimensional (16x16) 2D logarithmically scaled string length/hash histogram.

3. A 256-dimensional bin of hashes of metadata from the PE header, including PE metadata,
imports, exports, etc.

4. A 256-dimensional (16x16) byte standard deviation/entropy histogram.

In total, they represented each sample as two feature vectors: A PE-content feature vector of size
1024 and a contextual file-path feature vector of size 100 [45].

Inner Workings The model proposed in [45] (fig. 3.5) has two inputs, the 1024 element
PE-content feature vector, xPE , and the 100 element file-path integer vector, xFP . The two
distinct inputs are fed to two different base sub-networks, each composed by a series of layers
with input-specific parameters: θPE for the PE content part and θFP for the file-path part. The
two sets of parameters (θPE and θFP) are jointly optimized during training. The outputs of these
base sub-networks are then concatenated and passed through a series of final hidden layers - a
joint output sub-network with parameters θO terminating with a final dense layer followed by a
sigmoid activation function. The final sigmoid activation is used to have as output a detection
score between 0 (benign) and 1 (malicious). However, the threshold for determining if a sample is
malicious or benign can be set anywhere along the [0.0, 1.0] range according to false positive rate
(FPR) and detection rate (TPR) trade-offs for the application at hand - a reasonable threshold
is typically at or below 10−3 FPR.

The PE base sub-network (with parameters θPE) passes its input xPE through a series of 5
blocks with sizes 1024, 768, 512, 512, and 512, each consisting of four layers: a Fully Connected

57

Detection Techniques

layer, a Normalization layer, a Dropout layer with dropout probability of 0.05, and a Rectified
Linear Unit (ReLU) activation function.

The FP base sub-network (with parameters θFP), on the other hand, passes xFP first into
an Embedding layer that converts the integer input vector into a (100, 32) embedding. This
embedding is then fed into 4 parallel convolution blocks with filters of size 2, 3, 4 and 5 respectively,
each composed by a 1-D convolution layer with 128 filters, a Layer Normalization layer and a 1-D
sum layer to flatten the output to a vector. The flattened outputs of these convolution blocks are
then concatenated and serve as input to two dense blocks similar to those found in the PE input
arm.

Finally, the outputs from the two base sub-networks are then concatenated and passed into
the joint output path with parameters θO. This output sub-network is composed by dense blocks
(same form as in the PE input arm) of layer sizes 512, 256 and 128. Finally, a single fully-connected
layer is employed to project the 128-D output from the previous blocks into a 1-D output, followed
by a sigmoid activation function that provides the final output score of the model.

Figure 3.5: PE + FP model architecture

The PE-only model can be easily derived from the PE+FP model by removing the FP arm,
taking only xPE as input and fitting parameters θPE and θO. Similarly, the FP-only model can
be constructed by using the PE+FP model but without the PE sub-network, taking only xFP

as input and fitting parameters θFP and θO. Obviously the first layer of the output sub-network
needs to be modified to match the output from the previous layer.

In [45], the authors fit all models using a binary cross entropy loss function. Therefore, denoting
the output of the model as f(x; θ), where x is the model input, θ are the model parameters and
y ∈ {0,1} are the ground truth labels, the loss is:

L(x, y; θ) = −y log (f(x; θ)) + (1− y) log (1− f(x; θ)). (3.18)

During training, the equation is optimized for θ̂: the optimal set of parameters that minimize
the combined loss over the dataset.

θ̂ = argmax
θ

MX
i=1

L(x(i), yi; θ), (3.19)

58

Detection Techniques

where yi and x(i) are the label and feature vector of the ith training sample, respectively, and M
is the number of samples in the dataset [45].

3.7 Malware Normalization

In order to improve the detection rate of existing anti-malware techniques against malware pro-
duced by advanced packers and toolkits, code normalization techniques can be exploited. These
techniques generally consist of a normalizer which accepts obfuscated code as input and tries to
eliminate obfuscation producing as output the normalized executable. After normalization, the
usual signature-based techniques can be applied on the normalized sample [22].

59

Chapter 4

Workflow and Datasets used

Figure 4.1: Workflow

The workflow presented in image 4.1 summarizes the steps taken throughout the experiments
conducted and reported in this document. In particular, for each different model architecture and
combination of parameters, the model is first trained and evaluated on the large-scale dataset
called Sorel 20M dataset [6] on the task of SMART tagging and/or malicious/benign label
prediction. Next, the model evaluation results are computed and plotted. The model is then
evaluated also using a smaller dataset, referred to as Fresh dataset in this document, specifically
crafted for the task of predicting the malware family each specific sample belongs to. The results
of this second evaluation are computed and plotted in a separate step.

Finally, if the base model is an instance of either the Joint Embedding or the proposed
Multi Task Joint Embedding (MTJE) model the Fresh dataset is optionally split into
training, validation and test subsets and used for the generation of two additional models: a
Malware Family Classifier and a Contrastive Learning Model.

In particular, on one hand, the base model learned implicit representation of PE files is refined
by using the training (and validation) subsets of the Fresh Dataset to train (and validate) the
architecture resulting by the addition of a family multi-class classifier head on top of the model
base topology. The resulting classifier is then evaluated on the test subset of the same dataset
and the corresponding results are computed and plotted.

On the other hand, the base model learned mapping of PE files in the embedding space is
fine-tuned by training (and validating) a Siamese network - obtained by duplicating the model
base topology - in a contrastive learning setting. Again, the resulting model is then evaluated on
the test subset of the Fresh dataset and the corresponding results are computed and plotted.

The whole process presented until now is repeated for n runs times and finally the mean
evaluation results of the base and contrastive models are computed, aggregating the results of the
single runs.

60

Workflow and Datasets used

4.1 Sorel 20M Dataset

Figure 4.2: Workflow steps which use the Sorel20M dataset

The Sorel-20m large-scale dataset, which was released in 2020 and is used in the workflow steps
shown in image 4.2, consists of nearly 20 million files, each represented by the corresponding
pre-extracted features, metadata (including the SHA256 hash digest), malicious/benign label
derived from multiple sources, vendor detection counts and descriptive SMART tags which serve
as additional targets [6].

The Sorel-20m dataset was built upon the EMBER dataset [48] - the first standard and
open dataset specifically designed to be used for static malware detection - addressing some
of its drawbacks that limited its utility as a malware benchmark set. In particular, EMBER
contained 900,000 training samples (300K malicious, 300K benign and 300K unlabelled) and
200,000 test samples (100K malicious, 100K benign) and is therefore of limited size compared
to the private/proprietary datasets commercial malware models are usually trained on, which
contain from tens to hundreds of millions of samples. Additionally, the small number of validation
samples makes it difficult to evaluate the model performance at low false positive rates due to
high variance. Finally, the EMBER dataset only provides a single binary malware/benignware
label with no additional information.

Sorel-20m, on the other hand, provides an order of magnitude more samples for analysis:
when using the recommended time splits to establish training, validation and test sets, there are
12,699,013 training samples, 2,495,822 validation samples and 4,195,042 test samples, respectively.
Furthermore, Sorel20M [6] provides 9,919,251 samples of malware (7,596,407 training samples,
962,222 validation samples and 1,360,622 test samples), which have been disarmed by setting
both the optional headers.subsystem and file header.machine to 0 in order to prevent execution.
Additionally, complete PE metadata, obtained via the Python pefile module using the dump dict
method, is provided for each sample. Finally, the dataset provides for each sample a number of
additional target labels (SMART tags) that describe behaviour inferred from vendor family labels,
together with the vendor detection count and the malicious/benign label.

4.1.1 Sorel 20M Dataset Description

The complete dataset, which is available as a AWS bucket, consists of the following items:

❼ 9,919,251 original (disarmed) malware samples compressed via the Python zlib.compress
function

❼ A SQLite3 and two LMDB databases:

– The SQLite3 ”meta.db” database contains malware labels, tags, detection counts, and
first/last seen times

– The ”ember features” LMDB database contains the EMBER features (EMBER fea-
tures version 2)

61

Workflow and Datasets used

– the ”pe metadata” LMDB database contains the PE metadata extracted through the
pefile module, as described above

❼ Moreover, some Pre-trained baseline models (a Pytorch feed-forward neural network (FNN)
model and a LightGBM gradient-boosted decision tree model) and their results are also
provided, but will not be used in this document.

All samples are identified by their sha256 hash which serves as the primary key for the SQLite3
database, and as the key to be used to access the two LMDB databases. LMDB entries are stored
as arrays or dictionaries (for Ember feature vectors and PE metadata, respectively) that are then
serialized with msgpack and compressed with zlib.

The data was collected from January 1st, 2017 to April 10th, 2019. In [6], Harang et al.
suggest to use the following time-splits of the data (based on the first-seen time in RL telemetry):
training data from the beginning of collection until November 29th, 2018; validation data from
then until January 12th, 2019; and testing data from January 12th, 2019 to the end of the data.

LMDB database, what is it? Lightning Memory-Mapped Database (LMDB) is a B+trees-
based database management library that provides a high-performance embedded transactional
database with full ACID semantics in the form of a key-value store (it is not a relational database).

The entire database is exposed in a memory map, and all data fetches return data directly
from the mapped memory, so no mallocs nor memcpys occur during data fetches. Therefore, the
library is extremely simple as it requires no page caching layer of its own (the OS is responsible
for managing the pages), and it is extremely high performant and memory-efficient.

The memory map can be used as a read-only or read-write map. It is read-only by default
as this provides total immunity to corruption [49]. LMDB may also be used concurrently in a
multi-threaded or multi-processing environment, with read performance scaling linearly by design.
In particular it uses shared memory copy-on-write semantics with a single writer; however unlike
many similar key-value databases, write transactions do not block readers, nor do readers block
writers.

4.1.2 Ember Features

As previously mentioned, Sorel20M dataset consists of a bunch of databases (SQLite3 and LMDB),
indexed by the sha256 hash of the files, which contain the feature vectors representing the samples
together with the corresponding labels/metadata. In particular the feature vectors were derived
from the sample files code through the use of an open source feature extraction function released
by Anderson et al. [48] in 2018 as an attachment to the Endgame Malware BEnchmark for
Research (EMBER) dataset. In particular, Sorel20M uses version 2 of this feature extraction
code which adds information on data directories to the feature representation with respect to
version 1.

The PE file format and the features extracted by the EMBER feature extraction code will be
described in the next two sections. Before that, here is a brief description of the EMBER dataset
which may be useful in this context.

The EMBER dataset, which was extracted from a large corpus of Windows Portable Exe-
cutable (PE) malicious and benign files, consists of a collection of JSON lines, where each line
contains a single JSON object. Each object includes the following types of data:

❼ the sha256 hash of the original file as a unique identifier;

❼ coarse time information (month resolution) about when the file was first seen;

❼ a malicious/benign label, which may be 0 for benign, 1 for malicious or -1 for unlabelled;

❼ 8 groups of raw features that include both parsed values as well as format-agnostic his-
tograms.

62

Workflow and Datasets used

A notable difference with respect to Sorel20M, however, is that the EMBER dataset is com-
prised of raw features that are human-readable instead of directly having the feature vectors
required for model building. This was done to allow researchers to decouple raw features from the
vectorizing strategy and to improve model interpretability. Anyway, the authors of [48] provided
also the code for producing numeric feature vectors from those raw features. The raw feature ex-
traction code and the numeric feature vector generation code were used in succession by Sorel20M
authors to directly obtain the feature vector representations from samples.

PE File Format

The Portable Executable (PE) format is a file format for executables, object code, dynamically-
linked libraries (DLLs), FON font files and more, used in 32-bit and 64-bit versions of Windows
operating systems (it is currently supported on Intel, AMD and variants of ARM instruction set
architectures).

The PE format structure consists of a number of standard headers (as it can be seen in
figure 4.3) followed by one or more sections and it encapsulates the information necessary for the
Windows OS loader to manage the wrapped executable code: for example, among other things, it
tells the dynamic linker how to map the file into memory. In particular, the PE structure usually
consist of the following 3 headers:

❼ Common Object File Format (COFF) file header: it contains important information about
the file such as the type of machine for which it is intended, its nature (DLL, EXE, OBJ),
the number of sections, the number of symbols, etc.

❼ Optional Header : it can be further divided into:

– Standard COFF fields: they identify the linker version, the size of the code, the size of
initialized and uninitialized data, the address of the entry point, etc.

– Windows Specific fields: they provide windows-specific information such as minor and
major operating system, subsystem and image versions, stack and heap sizes, section
and file alignment, etc.

– Data Directories: they provide pointers to the sections that follow it, which include
tables for exports, imports, resources, exceptions, debug information, certificate infor-
mation, and relocation tables.

❼ Section Table: it outlines the name, offset and size of each section in the PE file.

PE sections, on the other hand, contain code and initialized data that will be mapped at
execution time into executable or readable/write-able memory pages, respectively, by the Windows
loader, as well as imports, exports and resources defined by the file. Each section contains a header
that specifies its size and address. A windows executable typically has nine predefined sections
named .text, .bss, .rdata, .data, .rsrc, .edata, .idata, .pdata, and .debug. Some applications however
do not need all of these sections, while others may define still more sections to suit their specific
needs.

Among the different sections a PE file may contain here are described some of the most
common:

❼ Executable code section, .text : it holds the program code. The .text section also contains
the code entry point and the Import Address Table (IAT) (which is used as a lookup table
when the application is calling a function in a different module).

❼ Data sections, .bss, .rdata, .data : The .bss section contains uninitialized data for the ap-
plication, the .rdata section contains read-only data. All other application/global variables
are stored in the .data section.

❼ Resources section, .rsrc: it contains resource information for a module, such as the ones
required for user interfaces: cursors, fonts, bitmaps, icons, menus, etc.

63

Workflow and Datasets used

Figure 4.3: PE file structure

❼ Export data section, .edata : it contains export data for the application or DLL.

❼ Import data section, .idata : it contains import data, including the import directory and
import address name table.

64

Workflow and Datasets used

❼ .reloc section: it stores Relocation tables which are used by the Windows loader to rebase
the PE file if it cannot be loaded at its preferred base address. In fact, PE files normally do
not contain position-independent code but are compiled to a preferred base address, and all
addresses emitted by the compiler/linker are fixed ahead of time.

❼ .tls section: it contains special thread local storage (TLS) structures for storing thread-
specific local variables.

A basic PE file normally contains a .text code section and one or more data sections (.data,
.rdata or .bss).

It is interesting to notice how packers sometimes create new sections, for example, the UPX
packer creates a section UPX1 to store packed data and an empty section UPX0 that reserves
an address range for runtime unpacking [48].

Feature Set Description

The EMBER feature extraction code extracts 8 groups of raw features that include both parsed
features and format-agnostic histograms and string counts.

In particular, the EMBER dataset authors [48] made a distinction between human-readable
raw features and numerical model features (or vectorized features) derived from the dataset. Model
features consist of a feature matrix of fixed size used for training models, representing the nu-
merical summary of raw features, wherein strings, imported names, exported names, etc., are
captured using the feature hashing trick [50].

Parsed features The first 5 groups of features are extracted after parsing the PE file. Anderson
et al. [48] leveraged the Library to Instrument Executable Formats (LIEF) [51] as a convenient PE
parser. LIEF names are used for strings that represent symbolic objects, such as characteristics
and properties.

❼ General file information - The set of raw features belonging to the general file information
group includes the file size and basic information obtained from the PE header: the virtual
size of the file, the number of imported and exported functions, whether the file has a debug
section, thread local storage, resources, relocations, and the number of symbols etc.

❼ Header information - From the COFF header, the timestamp, the target machine (string)
and a list of image characteristics (list of strings) are extracted. From the optional header,
instead, the EMBER feature extracting code extracts the target subsystem (string), DLL
characteristics (a list of strings), the file magic value as a string (e.g. ”PE32”), major and
minor image, linker, system and subsystem versions, and the code, headers and commit sizes.
Then, in order to create the model features, string descriptors such as DLL characteristics,
target machine, subsystem, etc. are summarized using the feature hashing trick, with 10
bins allotted for each indicator vector.

❼ Imported functions - Imported functions and libraries are extracted from the parsing
of the import address table. To create numerical features, the feature vector genera-
tion code collects the set of unique library names and uses the hashing trick with 256
bins. Similarly, the hashing trick (with 1024 bins) is used to capture individual function
names, by representing each as a string in the library:FunctionName format (e.g. ker-
nel32.dll:CreateFileMappingA).

❼ Exported functions - The raw features include a list of the exported functions. These
strings are summarized into model features using the hashing trick with 128 bins.

❼ Section information - Specific section properties are extracted from each section. They
include the section name, size, entropy, virtual size, and a list of strings representing the
section characteristics. Then the entry point is captured and specified by name. To convert
them to model features, the hashing trick is again used on (section name, value) pairs to
create vectors containing section size, section entropy, and virtual size (50 bins each). The
hashing trick is also used on the entry point characteristics (list of strings).

65

Workflow and Datasets used

Format-agnostic features The next 3 groups of features are instead format agnostic, meaning
that they do not require the PE file to be parsed for their extraction.

❼ Byte histogram - The byte histogram contains 256 integer values, representing the counts
of each byte value within the file. When generating model features, this byte histogram is
normalized to a distribution, since the file size is represented as a feature in the general file
information.

❼ Byte-entropy histogram - The byte entropy histogram, on the other hand, approximates
the joint distribution p(H,X) of entropy H and byte value X. This is done as described
by Saxe et al. in [47], by computing the scalar entropy H for a fixed-length window and
pairing it with each byte occurrence within the window. This is repeated as the window
slides across the input bytes. In particular, EMBER feature extraction code uses a window
size of 2048 and a step size of 1024 bytes, with 16× 16 bins that quantize entropy and the
byte value. These counts are then normalized to sum to 1.

❼ String information - EMBER features also include simple statistics about printable strings
(consisting of characters in the range 0x20 to 0x7f, inclusive) that are at least five printable
characters long. In particular, the code extracts information like the number of strings,
their average length, a histogram of the printable characters within those strings, and the
entropy of characters across all printable strings. In addition, the string feature group also
provides the number of strings that begin with specific character sequences such as C:\
(case insensitive) that may indicate a path, http:// or https:// (case insensitive) that may
indicate a URL, HKEY that may indicate a registry key, etc.

Feature vector normalization

When using the Sorel-20m dataset to train and evaluate their example classifier, the authors of
[6] first applied a Normalization function on the feature vector of each sample. In particular, the
function used on each vector component was the one reported in eq. 4.1.

f(x) =

− log (1− x) if x < 0

x if x = 0

log (1 + x) if x > 0

=

(
log (1 + x)

(1+ x
|x|)
2 − log (1− x)

(1− x
|x|)
2 if x /= 0

x if x = 0
(4.1)

This normalization should provide a regularizing effect resulting in better model generalization
on unseen samples and was therefore also used for all the experiments conducted and reported in
this document.

4.1.3 Improving the Dataset Loading Speed

Dataset Pre-Processing

Harang et al. [6] provided, together with the Sorel20M dataset, the python/pytorch code they
used to load it into main memory and pass it as input to their example model. This code,
however, is particularly I/O bounded. In fact, in order to load the data related to a single sample
i it first gets the corresponding sha256 hash from the SQLite3 database (which is already loaded
in memory) and then uses it as key to access the LMDB database of features. The extracted
features are then decompressed, deserialized and normalized. When loading the entire dataset,
one batch of data of size batch size (= 8192 by default) is loaded at a time, repeating this process
for batch size randomly chosen samples for each batch until the end of the epoch. The code is
therefore especially dependant on the hard disk random access speed. The authors of [6] managed
to train their model for 10 epochs in under 90 minutes, by training it on an AWS instance with
high I/O speeds (exploiting a NVMe SSD), not suffering from any bottleneck. However, when
using the less powerful Colab Pro instance (which provides a NVIDIA T4 or P100 GPU, 2 CPU
cores, 25GB of RAM and 147GB of disk space), not optimized for I/O performance, the time

66

Workflow and Datasets used

needed for loading the dataset and subsequentially for training the model increased excessively.
This made the use of the original data loading code for the purposes of this project unfeasible.

In order to speed up the dataset loading code the dataset was therefore pre-processed and
saved in a easier (and faster) to read format. In particular, the entire dataset was sequentially
pre-processed (the features were decompressed, deserialized and normalized) and loaded into
a set of 3 parallel memory mapped numpy arrays (for the features, labels and sha256 hashes
respectively) using the original data loading code, similarly to what was done in the original code
at every cycle. The resulting numpy arrays were then saved as-is to file. During training (or
evaluation) the pre-processed dataset files were read back into memory mapped numpy arrays
as-is and then used in conjunction with the default Pytorch Dataloader class, with no additional
processing needed. This greatly speeded up the overall training. The main drawback of this
approach is that the dataset was saved with its features being decompressed, thus taking up a
much larger disk portion than the original dataset version.

When using an instance with limited disk size, the amount of space occupied by the dataset
is a concern. In particular, the Colab Pro instance used for this project had up to ∼ 130GB of
free disk space and this made it possible to train the models with only approximately half of the
samples provided by Sorel20M. In fact, for all the conducted experiments only the first 6.000.000
(of 12.699.013) training samples, the first 1.153.846 (of 2.495.822) validation samples and the first
1.846.154 (of 4.195.042) test samples of Sorel20M dataset were considered. The performance of
the models presented in this document inevitably suffered from the usage of a smaller dataset
during training; this means that the results obtained cannot be directly compared to those of
other models which used the entire Sorel-20m dataset. However, the code was designed to work
with any dataset size so additional experimentations with more powerful instances can easily be
made in the future.

Generator (Dataloader) versions

Pytorch Dataloader In the first implementation of the pre-processed data loading code the
original Pytorch Dataloader was used by passing it a specially crafted class called Dataset (derived
from the Pytorch torch.utils.data.Dataset class) which is responsible for loading the pre-processed
version of the dataset and for retrieving the data (features, labels and sha256) for each sample ’i ’.

Algorithm 1 Dataset class, Init function

1: class Dataset
2: function Init(self, ds root, mode, n samples, return shas, ...)
3: self.return shas ← return shas
4: ...
5: X path ← os.path.join(ds root, ’X {} {}.dat ’.format(mode, n samples))
6: y path ← os.path.join(ds root, ’y {} {}.dat ’.format(mode, n samples))
7: S path ← os.path.join(ds root, ’S {} {}.dat ’.format(mode, n samples))
8:

9: self.S ← load as memmap(S path, dtype=np.dtype(’U64 ’), mode=”r+”)
10: self.y ← load as memmap(y path, dtype=np.float32, mode=”r+”)
11: self.X ← load as memmap(X path, dtype=np.float32, mode=”r+”)
12: end function

In particular, as it can be seen in algorithms 1 and 2, the Dataset class consists of 2 main
member functions (although other less important member functions such as the Len function
are also implemented): Init and GetItem. In the Init constructor function (alg. 1) the dataset,
consisting of features (X), labels (y) and sha256 hashes (S), gets loaded into a set of 3 parallel
memory mapped arrays. In the GetItem member function (alg. 2), instead, the data (features,
labels and/or sha256 hash) corresponding to the sample with index ’index ’ is retrieved and re-
turned to the function caller (that will be the Pytorch original Dataloader itself). Alternatively,
the GetAsTensors member function (alg. 3) directly returns the tensors (memory mapped arrays)
containing all the shas, features and labels. This will be later used by the alternative generators.

67

Workflow and Datasets used

Algorithm 2 Dataset class, GetItem function

13: function GetItem(self, index)
14: features ← self.X [index]
15:

16: labels ← {}
17: labels[’malware’] ← self.y [index][0]
18: labels[’count ’] ← self.y [index][1]
19: labels[’tags’] ← self.y [index][2:]
20:

21: if self.return shas then
22: sha ← self.S [index]
23: return sha, features, labels
24: else
25: return features, labels
26: end if
27: end function

Algorithm 3 Dataset class, GetAsTensors function

28: function GetAsTensors(self)
29: if self.return shas then
30: return self.S, self.X, self.y
31: else
32: return self.X, self.y
33: end if
34: end function
35: end class

Algorithm 4 Pytorch Dataloader definition

1: ds ← Dataset(ds root, mode, n samples, return shas, ...)
2: generator ← Pytorch DataLoader(ds, batch size, shuffle, n workers)

Before model training/evaluation the dataset generator (dataloader) is defined by passing this
dataset class to the Pytorch Dataloader implementation (torch.utils.data.Dataloader) together
with additional arguments specifying the batch size, the number of workers and whether to shuffle
the data during loading (alg. 4). Then, during training, the Pytorch Dataloader class will load
the batches of data by iteratively calling the Dataset class GetItem function batch size times for
each batch concatenating the extracted samples together using the torch.cat function.

As previously mentioned, this implementation is faster than the original Sorel20M dataloader
code while being also relatively simple; however, given how the pre-processed dataset is saved
(consecutive samples are saved on consecutive locations on disk) it is still somewhat inefficient.
In fact, the time needed for completing 10 training epochs on a less powerful instance is still
unreasonable. One possible optimization would be to read batches in one go as big chunks rather
than calling the GetItem function on the Dataset once per sample and then concatenating the
resulting data. However, random sampling during model training introduces a regularization
effect which generally improves model generalization on unseen samples, therefore it would be
better to find an optimization combining both data loading efficiency and random sampling.

Generator alt1/alt2 The first attempts at optimizing the generator were inspired by the index
select and shuffle in-place versions of the FastTensorDataLoader class suggested in [52].
In particular, the alternative generator 1 (’alt1 ’), again loads the pre-processed dataset as a set
of memory mapped arrays and assigns them to a set of tensors (X, y and S) from which batches
of data are randomly sampled using the Pytorch index select function in multithreading. In the
alternative generator 2 (’alt2 ’), on the other hand, the tensors created by loading the dataset
as done in alt1 are randomly shuffled in place at each iteration. Then the batches of data are
extracted (in order) from them in multithreading.

68

Workflow and Datasets used

Algorithm 5 Alt1/Alt2 FastTensorDataLoader class, Init function

1: function Init(self, tensors, batch size, shuffle, n workers, ...)
2: self.tensors ← tensors
3: self.batch size ← batch size
4: self.shuffle ← shuffle
5: self.n workers ← n workers
6: self.dataset len ← tensors[0].shape[0]
7:

8: if num workers > 1 then
9: self.async results ← []

10: self.pool ← ThreadPool()
11: end if
12:

13: self.n batches ← ceil(self.dataset len / self.batch size)
14: end function

Algorithm 6 Alt1 FastTensorDataLoader class, Iter function

1: function Iter(self)
2: if self.shuffle = true then
3: self.indices ← randperm(self.dataset len)
4: else
5: self.indices ← None
6: end if
7:

8: self.i ← 0
9: return self

10: end function

Algorithm 7 Alt2 FastTensorDataLoader class, Iter function

1: function Iter(self)
2: if self.shuffle = true then
3: r ← randperm(self.dataset len)
4: for i, t ∈ enumerate(self.tensors) do
5: self.tensors[i] ← t [r]
6: end for
7: end if
8:

9: self.i ← 0
10: return self
11: end function

In practice, both versions of the generator share (for the most part) the Init and Next functions.
The main differences are, instead, in the Iter and GetBatch functions.

The Init function (alg. 5) is used for setting up some FastTensorDataLoader class variables
and optionally initializing the ThreadPool used for multithreading.

The Iter function purpose is to set up the parameters for the current cycle at the beginning of
each epoch. The two generator alternatives have, however, different Iter functions. In particular,
generator alt1 Iter function (alg. 6) resets the count of extracted samples and, if shuffling is
enabled, randomly generates the current epoch indices (which define the order the samples are
extracted from the dataset tensors). On the other hand, generator alt2 Iter function (alg. 7)
resets the count of extracted samples, and, if shuffling is enabled, randomly permutes in-place the
dataset tensors themselves.

69

Workflow and Datasets used

Algorithm 8 Alt1/Alt2 FastTensorDataLoader class, Next function

1: function Next(self)
2: if self.i ≥ self.dataset len then
3: if (self.n workers = 1 or len(self.async results) = 0) then
4: raise StopIteration
5: end if
6: end if
7:

8: if self.num workers = 1 then
9: batch ← GetBatch(self.tensors, self.batch size, self.i, (self.indices))

10: self.i ← self.i + self.batch size
11: return batch
12: else
13: while self.i < self.dataset len and len(self.async results) < self.n workers do
14: arguments ← (self.tensors, self.batch size, self.i, (self.indices))
15: async task ← self.pool.apply async(GetBatch, arguments)
16: self.async results.append(async task)
17: self.i ← self.i + self.batch size
18: end while
19:

20: current result ← self.async results.pop(0)
21: return current result.get()
22: end if
23: end function

In order to get a batch of data, the Next function (alg. 8), which is similar for both generator
versions, is used. In particular, this function monitors the number of samples already extracted
from the dataset tensors and raises a StopIteration exception when it has cycled through all the
data. Moreover, this function is also responsible for extracting and returning batches of data from
the dataset tensors. This can be done in sequence or in multithreading. Specifically, when the
number of workers selected is 1 the function sequentially gets one single batch and returns it after
having updated the count of already extracted samples for the current epoch. On the other hand,
if more than 1 worker is used the function prepares a number of asynchronous batch extraction
tasks to be run in parallel by the threads in the thread pool, then it waits for the first result and
returns it. The next call to the function will prepare other tasks and wait for the next first result.
The exact number of asynchronous tasks prepared at each call is chosen dynamically to keep a
fix-sized array (of size ”num workers”) of async results always full.

Finally, in algorithm 9 it is shown the GetBatch function used by generator alt1 : if the sample
indices are provided they are used with the index select function to select the data samples for
the current batch of data, otherwise a set of consecutive samples is drawn from the dataset.
The GetBatch function used by generator alt2 (alg. 10) is simpler: it simply selects a set of
consecutive samples from the dataset tensors since those were already shuffled if needed.

Unfortunately, the presented two generator alternatives did not improve the data loading
process enough. More specifically, when considering 6M samples, generator alt1 was only slightly
faster than the original Pytorch Dataloader, while alt2 was even significantly slower. Generator
alt1, in fact, was still fairly similar to the Pytorch Dataloader implementation having used the
index select function instead of the slower torch.cat. On the other hand, generator alt2 worked
by shuffling the entire dataset tensors prior to batch extraction. If this solution surely has the
potential of being more efficient for small to moderately sized datasets, it can become a bottleneck
for huge datasets.

70

Workflow and Datasets used

Algorithm 9 Alt1 GetBatch function

1: function GetBatch(tensors, batch size, i, indices, ...)
2: batch ← []
3: if indices is provided then
4: indices ← indices[i :(i + batch size)]
5:

6: for all t ∈ tensors do
7: batch data ← index select(t, indices)
8: batch.append(batch data)
9: end for

10: else
11: for all t ∈ tensors do
12: batch data ← t [i :(i + batch size)]
13: batch.append(batch data)
14: end for
15: end if
16:

17: return batch
18: end function

Algorithm 10 Alt2 GetBatch function

1: function GetBatch(tensors, batch size, i, ...)
2: batch ← []
3: for all t ∈ tensors do
4: batch data ← t [i :(i + batch size)]
5: batch.append(batch data)
6: end for
7:

8: return batch
9: end function

Generator alt3 The generator alternative 3 (’alt3 ’) managed to considerably speed up the
dataset loading process making a trade off between loading speed and samples dispersion. In
fact, the time needed for 1 training epoch (considering 6M training samples) passed from being
of approximately 6 hours to ∼ 15 minutes.

This optimization uses a new FastTensorDataLoader class which exploits a pool of threads to
asynchronously load the dataset into memory in chunks of consecutive data. In particular each
thread loads into memory ’n chunks’ randomly chosen chunks. Each thread then proceeds to
concatenate together its ’n chunks’ chunks, which contain ’chunk size ’ malware samples each,
generating each a chunk aggregate, which is then randomly shuffled and returned by the thread.
The chunk aggregates are asynchronously inserted in a queue (the order depends on the threads
instantiation order) of fixed length equal to the number of workers used. The main dataloader
thread manages the chunk aggregate queue, instantiating the parallel threads such that the
queue is always full. Moreover, the main dataloader thread sequentially extracts, when possible,
one chunk aggregate at a time from the queue and then proceeds to return one batch of data
at a time from it, when needed.

More specifically, in the Init function (alg. 11), which is similar to the Init of the previous
alternatives, some FastTensorDataLoader variables are set/computed, and a ThreadPool is
initialized if necessary.

The Iter function (alg. 12), instead, is used to reset the current chunk aggregate (and its size)
and the number of already processed chunks for the current cycle at the beginning of each epoch.
Moreover, it also randomly or sequentially (linearly) - depending on whether shuffling is required
- initializes the chunk indices, which define the order in which the data chunks are retrieved.

71

Workflow and Datasets used

Algorithm 11 Alt3 FastTensorDataLoader class, Init function

1: class FastTensorDataloader
2: function Init(self, tensors, batch size, chunk size, chunks, shuffle, n workers, ...)
3: self.tensors ← tensors
4: self.batch size ← batch size
5: self.chunk size ← chunk size
6: self.chunks ← chunks
7: self.shuffle ← shuffle
8: self.n workers ← n workers
9: self.dataset len ← tensors[0].shape[0]

10:

11: if num workers > 1 then
12: self.async results ← []
13: self.pool ← ThreadPool()
14: end if
15:

16: self.n batches ← ceil(self.dataset len / self.batch size)
17: self.n chunks ← ceil(self.dataset len / self.chunk size)
18: self.last chunk size ← self.dataset len % self.chunk size
19: end function

Algorithm 12 Alt3 FastTensorDataLoader class, Iter function

20: function Iter(self)
21: if self.shuffle = true then
22: self.chunk indices ← randperm(self.n chunks)
23: else
24: self.chunk indices ← arange(self.n chunks)
25: end if
26:

27: self.chunk agg ← None
28: self.chunk agg size ← 0
29: self.chunk i ← 0
30: return self
31: end function

In algorithm 13 it is presented the FastTensorDataLoader alt3 Next member function,
which is used for managing the asynchronous extraction of chunks of consecutive samples from
the dataset and for returning a single batch of data at a time. In particular, if the selected number
of workers is 1, then, if all the data of the current chunk aggregate has been cycled through (or
it is the first function call) the function simply extracts a single new chunk aggregate (which is
a concatenation of multiple chunks selected randomly or linearly depending on the value of the
self.shuffle variable) through the GetChunks function. The number of already processed chunks
for the current epoch and the number of extracted samples from that specific chunk aggregate
are then updated/reset accordingly. This is however done only if the number of chunks already
processed is less than the total amount of chunks, otherwise the StopIteration exception is raised.
If, on the other hand, the number of workers is greater than 1, the function prepares a number of
asynchronous chunk aggregate extraction tasks such that the queue (of size equal to the number of
workers selected) in which they are inserted is always full, until the number of extracted chunks is
less than the total amount. It then updates the number of extracted chunks appropriately. Then,
when the current chunk aggregate data has been explored completely (or if it is the first function
call), the StopIteration exception is raised if the async task queue is empty, which means that
there are no more chunk aggregates for the current epoch; otherwise the function gets the first
async task from the queue and waits for its result: the extracted chunk aggregate. Independently
from the number of workers used, the function then proceeds to efficiently get a single batch of
data from the current already-in-memory chunk aggregate and returns it.

72

Workflow and Datasets used

Algorithm 13 Alt3 FastTensorDataLoader class, Next function

32: function Next(self)
33: if self.n workers = 1 then
34: if self.chunk agg is None or self.i ≥ self.chunk agg size then
35: if self.chunk i ≥ self.n chunks then
36: raise StopIteration
37: end if
38:

39: start i ← self.chunk i
40: end i ← start i + self.chunks
41: arguments ← (self.tensors, self.chunk indices[start i :end i],
42: self.chunk size, self.last chunk size,
43: self.n chunks, self.shuffle)
44: self.chunk agg, self.chunk agg size ← GetChunks(arguments)
45: self.chunk i ← end i
46: self.i ← 0
47: end if
48: else
49: while self.chunk i < self.n chunks and len(self.async results) < self.n workers do
50: start i ← self.chunk i
51: end i ← start i + self.chunks
52: arguments ← (self.tensors, self.chunk indices[start i :end i],
53: self.chunk size, self.last chunk size,
54: self.n chunks, self.shuffle)
55: async task ← self.pool.apply async(GetChunks, arguments)
56: self.async results.append(async task)
57: self.chunk i ← end i
58: end while
59:

60: if self.chunk agg is None or self.i >= self.chunk agg size then
61: if len(self.async results) = 0 then
62: raise StopIteration
63: end if
64:

65: current result ← self.async results.pop(0)
66: self.chunk agg, self.chunk agg size ← current result.get()
67: self.i ← 0
68: end if
69: end if
70:

71: batch ← GetBatch(self.chunk agg, self.batch size, self.i)
72: self.i ← self.i + batch[0].shape[0]
73: return batch
74: end function
75: end class

The GetBatch function used in generator alt3 is the same one already exploited in version
alt2 (alg. 10); however, generator alt3 sees the addition of the GetChunks function (alg. 14)
which is used to extract a number of chunks of consecutive data from the dataset and combine them
into an aggregate chunk. In particular, the function first computes the size of the resulting chunk
aggregate depending on the number of chunk indices specified and the chunk size (considering as
a special case the last chunk of the dataset which may have a smaller size). Then, the chunk
aggregate itself is initialized as a series of properly sized empty tensors (one for samples features,
one for labels and one for sha256 hashes) which are later filled sequentially by the data chunks
got from the dataset tensors. Finally, the chunk aggregate data gets shuffled in place, if needed,
and returned.

73

Workflow and Datasets used

Algorithm 14 Alt3 GetChunks function

1: function GetChunks(tensors, chunk indices, chunk size, last chunk size, n chunks, shuffle)
2: if n chunks −1 in chunk indices then
3: chunk agg size ← (len(chunk indices) −1) × chunk size + last chunk size
4: else
5: chunk agg size ← len(chunk indices) × chunk size
6: end if
7:

8: chunk agg ← []
9: for all t ∈ tensors do

10: chunk agg.append(emptyTensor)
11: end for
12:

13: c start ← 0
14: for all idx ∈ [0, ..., len(chunk indices)] do
15: t start ← chunk indices[idx] × chunk size
16: if chunk indices[idx] /= n chunks −1 then
17: c end ← c start + chunk size
18: t end ← t start + chunk size
19: else
20: c end ← c start + last chunk size
21: t end ← t start + last chunk size
22: end if
23:

24: for i, t ∈ enumerate(tensors) do
25: chunk agg [i][c start :c end] ← t [t start :t end]
26: end for
27: c start ← c end
28: end for
29:

30: if shuffle then
31: r ← randperm(chunk agg size)
32: for i, t ∈ enumerate(chunk agg) do
33: chunk agg [i] ← t [r]
34: end for
35: end if
36:

37: return chunk agg, chunk agg size
38: end function

As it can be seen from the algorithms provided, this version of the generator depends on the
value of a number of parameters among which the most important ones are chunk size and
n chunks. Indeed, selecting different values for chunk size and n chunks has an impact on the
speed of the generator and on the samples dispersion: the samples are not anymore randomly
chosen from the whole dataset, but from a random sub-part of it (the chunk aggregate). This
effectively decreases the amount of dispersion (and randomness) of batches, possibly affecting the
final model generalization. It is therefore better to consider a higher value for n chunks possibly
decreasing chunk size. Furthermore, the values for chunk size and n chunks should be chosen
in conjunction since their product results in the number of samples loaded into main memory
(RAM) at once for a single worker thread. Increasing too much this number (together with the
number of workers used) can potentially saturate the main memory (RAM) of the instance used.

Generator parameters optimization To understand the behaviour of the FastTensorDat-
aLoader alt3 on the target instance and choose the best combination of values for the parameters
chunk size and n chunks when using 8 threads (which is double the amount of cores available
in the instance used for this project), the code speed was cross evaluated using powers of 2 for

74

Workflow and Datasets used

both values. In particular the data loading code was evaluated using values for chunk size and
n chunks got from two intervals and the corresponding average speed and average elapsed time
heatmaps were plotted.

In practice chunk size and n chunks values were chosen to be the powers of 2 ranging from
24 to 214 (included) and from 23 to 213, respectively. Moreover, in order to constrain the evaluation
to meaningful values only, two additional parameters have to be set: min mul and max mul. In
fact, as previously mentioned, the product of chunk size × n chunks gives the total number of
samples in one chunk aggregate residing in main memory; this quantity must be constrained to
a certain range to avoid using too much RAM while being able to retrieve at least one batch of data
from the chunk aggregate. The parameters min mul and max mul are used exactly to indicate
the minimum and maximum number of batches retrievable from the resulting chunk aggregates
and therefore indirectly pose a constrain on the product chunk size × n chunks.

The data loading code (generator alt3) performance was evaluated setting min mul to a
value of 1, while max mul was set to 32. Those values were chosen in order to always be able
to retrieve at least one batch from the chunk aggregate without saturating the RAM available
on the instance used for this project (in fact, having for max mul a value greater than 32 would
mean having 32× batch size samples loaded into memory at the same time, per worker, which
was too much for the available instance).

Figure 4.4: Generator Alt.3 Speeds Heatmap, Higher is Better

Given the resulting heatmaps (4.4, 4.5), for all the experiments conducted for this project
chunk size and n chunks were permanently set to 256, which seemed to be a good compromise
between data loading speed and samples dispersion.

In any case, with respect to the previous solutions (original Pytorch dataloader and the gen-
erators alt1 and alt2) the speed up was huge. This new version took, in fact, approximately
15 minutes, on average, to complete 1 training epoch while the previous solution took, at best,

75

Workflow and Datasets used

∼ 6 hours. Therefore this alternative generator was the one selected to be used for loading the
dataset in all the conducted experiments. However, it has to be reiterated that this generator
version works by approximating the random sampling step during training which in turn may
hinder the model generalization on unseen samples. The results presented in this document may
therefore be slightly lower than what could be achieved on a more powerful instance using the
original Pytorch dataloader.

Figure 4.5: Generator Alt.3 Elapsed Times Heatmap, Lower is Better

4.2 Fresh Dataset

Figure 4.6: Workflow steps which use the Fresh dataset

In order to evaluate the learned implicit representation of PE files (embedding) of the proposed
MTJE model on the malware family prediction and ranking tasks (fig. 4.6), a further dataset,

76

Workflow and Datasets used

also referred to as fresh dataset throughout this document (and in the code), was created. The
same dataset was also later used to train, validate and evaluate the Malware Family Classifier
and Contrastive Learning Model after being split into training, validation and test subsets. This
dataset consisted of a number of sample files represented by their feature vectors along with the
corresponding family labels and sha256 hashes.

More specifically, a number ’m ’ of PE malware families were selected from the list of the most
prominent ones present in Italy at the time of writing (as reported by CERT-AGID summary [53])
of which Malware Bazaar provided at least ’x ’ sample files. Then, ’x ’ sample files per family were
downloaded by Malware Bazaar [54] along with their metadata information (label, sha256 hash
etc.) and the corresponding numerical feature vectors were extracted using the EMBER (version
2.0) feature extraction and numerical feature generation codes [48] (and Sorel-20m normalization).
Malware Bazaar is a malware sample database maintained by malware analysts which provides
examples of malware executables and manually crafted classifications/descriptions for different
malware families and it is therefore a good source for creating the new (fresh) dataset.

A function called build fresh dataset was specifically implemented with the purpose of cre-
ating the fresh dataset, given the following arguments:

❼ a list of ’f ’ malware families (with f ≥ m) in order of importance;

❼ the number ’x ’ of samples per family to download;

❼ the number ’m ’ of families to consider.

More specifically, the function downloads, if possible, ’x ’ samples per malware family from Mal-
ware Bazaar ordering them by the time they were first seen (from most to least recent), otherwise
it skips the malware family and considers the next in order of importance between the ones se-
lected. It then extracts the features from each sample and creates the new dataset containing n
= x × m samples which are then stored on disk as (numpy) memory mapped arrays (as it was
done with the pre-processed Sorel20M dataset). Therefore, between the f ≥ m malware families
provided to the function, only the first m for which x PE samples can be retrieved from Malware
Bazaar are considered.

In particular, the fresh dataset created for this project consists of x = 1.000 samples per
family, for a total of 10.000 PE samples, considering the following m = 10 families: FormBook,
AgentTesla, Gozi, Quakbot, Loki, Heodo, RemcosRAT, TrickBot, GuLoader and AveMariaRAT.

4.2.1 Fresh Dataset Generator (Dataloader) implementation

Algorithm 15 Fresh Dataset class, Init function

1: class Dataset
2: function Init(self, S, X, y, sig to label dict, return shas)
3: self.S ← S
4: self.X ← X
5: self.y ← y
6: self.N ← len(S)
7: self.sig to label dict ← sig to label dict
8: self.n families ← len(sig to label dict.keys())
9: self.return shas ← return shas

10: self.sig to label inv dict ← {v : k ∀ k, v ∈ self.sig to label dict.items()}
11: end function

77

Workflow and Datasets used

Algorithm 16 Fresh Dataset class, FromFile function

12: function FromFile(cls, ds root, return shas)
13: ndim ← 2381
14: X path ← os.path.join(ds root, ’X fresh.dat’)
15: y path ← os.path.join(ds root, ’y fresh.dat’)
16: S path ← os.path.join(ds root, ’S fresh.dat’)
17: sig to label path ← os.path.join(ds root, ’sig to label.json’)
18:

19: S ← load as memmap(S path, dtype=np.dtype(’U64’), mode=’r+’)
20: y ← load as memmap(y path, dtype=np.float32, mode=’r+’)
21: X ← load as memmap(X path, dtype=np.float32, mode=’r+’)
22: sig to label dict ← json.load(sig to label path)
23:

24: return cls(S, X, y, sig to label dict=sig to label dict, return shas=return shas)
25: end function

Algorithm 17 Fresh Dataset class, GetItem function

26: function GetItem(self, index)
27: features ← self.X [index]
28:

29: label ← self.y [index]
30:

31: if self.return shas then
32: shas ← self.S [index]
33: return sha, features, label
34: else
35: return features, label
36: end if
37: end function

Algorithm 18 FreshDataset class, GetAsTensors function

38: function GetAsTensors(self)
39: if self.return shas then
40: return self.S, self.X, self.y
41: else
42: return self.X, self.y
43: end if
44: end function
45: end class

The dataset class used for opening the fresh dataset - shown in alg. 15, 16, 17 and 18 - is
similar to the one used for the Sorel-20m dataset. This version, however, is also instantiatable
with an already opened dataset/subset providing the corresponding tensors. The Init function,
presented in alg. 15, in fact, instantiates the dataset given a set of already loaded dataset tensors
(containing the shas, features and labels) as input, while the FromFile function (alg. 16) opens
the dataset, loads it as as set of memory mapped arrays and finally calls the class Init function.

Algorithm 19 shows how the fresh dataset generator (Dataloader) gets instantiated. This
dataloader instantiation is similar to the one previously presented when loading the Sorel-20m
dataset through the Pytorch dataloader with the addition of the possibility to split the dataset
into training, validation and test sub-sets. In particular, if the dataset split proportions are
provided (in the form of a list containing 3 integer values), the dataset is split into training,
validation and test subsets by first opening the entire fresh dataset and then splitting it by using
the purposefully created TrainValidTestSplit function, presented in alg. 20. On the other hand,
if the split proportions are not provided, the entire fresh dataset is opened from file without being
split.

78

Workflow and Datasets used

Algorithm 19 Fresh Dataloader definition

1: if splits is not None and len(splits) = 3 then
2: ds ← Dataset(ds root, return shas)
3: splits sum ← sum(splits)
4: for all i ∈ range(len(splits)) do
5: splits[i] ← splits[i] / splits sum
6: end for
7:

8: S, X, y ← ds.GetAsTensors()
9: S train, S valid, S test, X train, X valid, X test, y train, y valid, y test ←

10: TrainValidTestSplit(S, X, y, proportions=splits,
11: n samples tot=len(ds),
12: n families=ds.n families)
13: train generator ← Pytorch DataLoader(Dataset(S train, X train, y train, ...), ...)
14: valid generator ← Pytorch DataLoader(Dataset(S valid, X valid, y valid, ...), ...)
15: test generator ← Pytorch DataLoader(Dataset(S test, X test, y test, ...), ...)
16: generator ← (train generator, valid generator, test generator)
17: else
18: ds ← Dataset.FromFile(ds root, return shas)
19: generator ← Pytorch DataLoader(ds, ...)
20: end if

Algorithm 20 Train Valid Test Split function

1: function TrainValidTestSplit(*tensors, proportions, n samples tot, n families)
2: n samples per family ← n samples tot // n families
3: n samples ← {’test’: math.floor(proportions[2] × n samples per family),
4: ’valid’: math.floor(proportions[1] × n samples per family),
5: ’train’: math.ceil(proportions[0] × n samples per family)}
6: indices ← {}
7: for all i ∈ range(n families) do
8: if i = 0 then
9: start ← 0

10: for all k, v ∈ n samples.items() do
11: end ← start + v
12: indices[k] ← np.arange(start, end)
13: start ← end
14: end for
15: else
16: start ← i × n samples per family
17: for all k, v ∈ n samples.items() do
18: end ← start + v
19: indices[k] ← np.concatenate(indices[k], np.arange(start, end))
20: start ← end
21: end for
22: end if
23: end for
24:

25: rv ← []
26: for all t ∈ tensors do
27: rv.append(t [indices[’train’]])
28: rv.append(t [indices[’valid’]])
29: rv.append(t [indices[’test’]])
30: end for
31: return rv
32: end function

79

Workflow and Datasets used

The purpose of the TrainValidTestSplit (alg. 20) function is that of splitting the tensors
passed as input into 3 subsets, following the given proportions. This is done by first computing
the number of samples, per family, to select for each of the sub-splits by multiplying the respective
proportion by the Fresh Dataset total number of samples per family. The function then computes
the sub-splits indices assigning the first n samples[’test’] samples (per family) of the original
dataset (which are the most recent ones) to the test sub-split, the following n samples[’valid’]
samples (per family) to the validation sub-split and the remaining ones (which are the least
recent ones) to the training sub-split. Finally, the input tensors are split by indexing them using
the previously computed indices.

4.2.2 Base Model Evaluation with Fresh Dataset

Figure 4.7: Base Model Evaluation with Fresh dataset Workflow steps

The actual base model evaluation on the fresh dataset is computed by another function called
EvaluateFresh. This function evaluates the model learned representation in both the f-way
malware family classification and malware family ranking tasks.

f-way Malware Family Classification task evaluation The base model learned represen-
tation first gets evaluated on the task of f-way family classification via nearest neighbour search,
using the fresh dataset. In particular a function called EvaluateFreshScores randomly samples k
files per family as anchor samples, and q files per family as query samples. Each of the (f × q)
query samples is then predicted to belong to the same class as its closest anchor sample in feature
space (Joint Embedding space in case of the Joint Embedding and MTJE Models). The number
q of query samples - per family - considered during the actual evaluation is set to 23 and the
number of anchor samples k is varied from 1 to 10 (included). The sampling (for both anchors
and query samples), classification and evaluation steps are repeated 15 times per value of k to
obtain uncertainty estimates for the results. More specifically, the accuracies and the values of
a number of other binary cross-entropy macro (per-class average) and micro (global average)
statistics such as precision, recall and f1-score are collected for each number of anchors k and the
resulting trends are plotted (with uncertainty estimates). Moreover, the function saves to file also
the confusion matrixes corresponding to the best and worst classification accuracy results for the
number k of anchors which produced the overall best accuracy. Finally, also the per-family, micro
(global average) and macro (per-family average) ROC-AUC scores are computed for each number
k of anchors and the resulting trends are plotted (with uncertainty).

Malware Family Ranking task evaluation On the other hand, to evaluate the base model
learned representation on the family ranking task, the function first randomly selects ’q ’ query
samples among the ones in the fresh dataset. Then, it computes the similarity (using the base
model GetSimilarity function) between each query sample with the other n − 1 samples present
in the fresh dataset, ordering the latter by similarity. At this point, for each query sample there

80

Workflow and Datasets used

is a ranking of all the other n− 1 samples sorted from most to least similar. Using those rankings
the function finally calculates the MRR (Mean Reciprocal Rank) and MAP (Mean Average
Precision) scores for the base model learned representation.

The Mean Reciprocal Rank (MRR, eq. 4.3) is the average of the Reciprocal Ranks (RR, eq.
4.2) of a series of queries. In particular, the Reciprocal Rank (RR) of a query response is the
multiplicative inverse of the rank (position in the ranking) of the single sample belonging to the
family of interest which classified with the highest rank (the closest to the query sample).

RR(i) =
1

ranki
(4.2)

MRR =
1

q

qX
i=1

RR(i) =
1

q

qX
i=1

1

ranki
(4.3)

where ranki refers to the rank position of the first relevant sample (meaning the first sample with
the same family as the current query sample) for the i -th query and q is the number of queries.

The MAP score (eq. 4.6), on the other hand, takes into account all the samples in the family
of interest, with proper weights, instead of considering just the best classified one. Therefore,
a model will have a higher MRR score if it classifies a single sample of the family of interest
higher in the ranking; by contrast, it will have a higher MAP score if it classifies all the samples
belonging to the family of interest higher in the ranking.

P (k) =
|Relevant Samples Retrieved @k|

k
(4.4)

AvgP (k) =

nX
k=1

P (k)× rel(k)

Number of Relevant Samples
(4.5)

MAP =
1

q

qX
i=1

AvgP (i) (4.6)

where P(k) denotes the precision at position k in the ranking, AvgP(k) indicates the average
precision at position k in the ranking, n is the number of samples in the fresh dataset, rel(k)
is an indicator function which equals 1 if the sample item at rank k is a relevant sample for
the current query, zero otherwise, and finally q is the number of queries. Moreover, a sample is
considered relevant if its family is the same as that of the current query sample.

The EvaluateFresh function provides, together with the MRR and MAP scores, the com-
plete rankings for the q query samples in a single json file. Moreover, for convenience, 4 particular
rankings are also saved as csv files. These 4 rankings are those that produced:

❼ the maximum RR (Reciprocal Rank);

❼ the minimum RR (Reciprocal Rank);

❼ the maximum AP (Average Precision);

❼ the minimum AP (Average Precision).

For all experiments presented in this document the number of query samples q was set to 100.

81

Workflow and Datasets used

4.2.3 Family Classifier Training and Evaluation

Figure 4.8: Family Classifier Training and Evaluation Workflow steps

The Fresh Dataset - which contains 10.000 samples of malicious PE files belonging to 10 different
malware families - provides, as previously mentioned, the information regarding the malware
family each of its samples belongs to. When split into training, validation and test subsets, it can
also be used to directly train, validate and evaluate a Malware Family Classifier model.

When trying to improve the relatively poor results of the proposed MTJE model in the
malware Family prediction task, the 10.000 samples of the Fresh Dataset were divided following a
7-1-2 ratio: the training subset was created selecting the first 700 samples, per family, and therefore
consisted of 7.000 samples. The validation and test subsets, instead, respectively consisted of 1.000
and 2.000 samples (100 and 200 samples per family, respectively). The resulting dataset splits
were then used to train (and evaluate) both a malware family classifier built on top of the MTJE
model (using transfer learning) and a separate comparable malware family classifier trained from
scratch. In particular, the training and validation subsets were used for training the classifier and
validating its accuracy, while the test subset served for evaluating the classifier accuracy (and
other classification scores) on unseen samples. The resulting multi-class classification statistics,
which included accuracy, Jaccard Similarity score, recall, precision, f1-score were then computed
and plotted together with the resulting model AUC-ROC scores and confusion matrixes.

In particular, the Jaccard Similarity score, recall, precision, f1-score and AUC-ROC scores
were computed by averaging the respective class scores in 3 different ways:

❼ micro average: calculates the metrics globally by counting the total true positives, false
negatives and false positives.

❼ macro average: calculates the metrics for each class (family) label, and finds their un-
weighted mean (thus not taking class imbalance into account).

❼ weighted average: calculates the metrics for each class (family) label, and finds their
average, weighted by support (the number of true instances for each label) effectively altering
the ”macro” average to account for label imbalance.

82

Workflow and Datasets used

4.2.4 Contrastive Learning Model Training and Evaluation

Figure 4.9: Contrastive Model Training and Evaluation Workflow steps

At a later moment the training, validation and test subsets of the Fresh Dataset - obtained as
described in the previous section (4.2.3) by following a 7-1-2 ratio - were also used both to fine-
tune (and evaluate) the parameters from a previous MTJE model training run using a Siamese
network (with transfer learning) and to train (and evaluate) an identical Siamese network entirely
from scratch (with no transfer learning applied). In particular, the training and validation subsets
were used for training the Siamese network in a contrastive learning setting by optimizing the
Triplet Loss function, while the test subset was utilized to evaluate the resulting refined/learned
implicit representation of PE files in the malware Family Classification (using k-NN - k Nearest
Neighbours - approach) and ranking tasks. The resulting rankings, MAP and MRR scores along
with the multi-class classification statistics - including accuracy, Jaccard Similarity score, recall,
precision and f1-score (micro, macro andweighted averaged) - were then computed and plotted
together with the resulting confusion matrix.

The malware family predictions and rankings, in this case, were obtained in a slightly different
way with respect to how it was done when evaluating the MTJE model on the same tasks, as
described in section 4.2.2. In particular, the rankings were created by considering the samples from
the test subset as query samples and the samples from the training subset as anchors, generating
one ranking per query by sorting the anchor samples based on their Euclidean distance to the
current query and then truncating the resulting rankings to the top ’a’ (= 100 in all experiments)
samples. On the other hand, the family classification predictions were obtained by applying the
Distance Weighted k-NN approach on the newly created rankings using odd values of ’k ’ from
’k nn min’ (= 1) to ’k nn max ’ (= 11). In particular, the Distance Weighted k-NN approach
is a refinement of the k-NN classification algorithm which consists of weighing the contribution
of each of the k nearest neighbours according to their distance to the current query sample xq,
ultimately assigning greater weights wi to closer neighbours. The k-NN decision function was
therefore the following (eq. 4.7):

ya = F (xa) = argmax
v

X
(xi,yi)∈Dk

wi × I(v = yi) (4.7)

where (xa, ya) is an anchor sample, (xi, yi) ∈ Dk is one of the k nearest neighbours, Dk is the set
of all the k nearest training data points to the query sample, I(condition) is the identity function
which outputs a 1 if the condition is true, 0 otherwise and wi is the inverse of the square distance
between the current nearest neighbour and the query sample, as depicted in equation 4.8:

wi =
1

d(xa, xi)2
(4.8)

where d(a, b) is the Euclidean distance between data points a and b.

The mean trends (varying the number of k Nearest Neighbours ’k’) of the classification statis-
tics resulted from the evaluation of the contrastive model were then computed and plotted along
with the confusion matrix corresponding to the value of ’k’ which produced the best accuracy.

83

Chapter 5

Previous Methods

The state of the art malware detection/description methods presented above (section 3.6), namely
Auxiliary Loss Optimization for Hypothesis Augmentation (ALOHA model, [4]), Automatic Mal-
ware Description via Attribute Tagging and Similarity Embedding (Joint Embedding model, [5])
and Learning from Context: Exploiting and Interpreting File Path Information for Better Malware
Detection (File content + contextual file path (PE + FP) model, [45]), represent a good
starting point for further research in this topic. Moreover, the models used in those methods can
easily be modified to work with Sorel20M dataset, with the exception of the PE + FP model
[45] given that the mentioned dataset provides no file path information (and it is unfeasible to
extend it with the needed additional information).

Both the ALOHA [4] and Joint Embedding [5] models were therefore implemented in
Python/Pytorch following the descriptions in the respective papers and having as a starting point
the example code of Sorel20M dataset.

5.1 Implementation

Both the implementations developed for this project only loosely followed the structure of the orig-
inal models as described in the respective papers. Here are presented the actual implementation
details.

5.1.1 ALOHA model

Figure 5.1: ALOHA model implementation architecture

84

Previous Methods

The ALOHA model implementation developed for this project (shown in figure 5.1) consists of a
shared base topology and a number of output heads. The shared base topology is composed of 5
blocks, each consisting of Dropout, a dense layer, a Batch Normalization layer, and an Exponential
Linear Unit (ELU) activation function, with 1024, 768, 512, 512, and 512 hidden units respec-
tively. The exact number of layers, along with the layer dimensions, the dropout probability, the
normalization function (layer normalization or batch normalization) and the activation function
(ELU, ReLU, PReLU or LeakyReLU) used, however, are dynamically set in the code at network
definition, thus providing a good amount of customizability. The shared model base, given an
input sample feature vector x (of size 2381) got from Sorel20M dataset, outputs an intermediate
representation h = f(x) of size 512 which is then used as input to the different parallel output
heads.

The output heads used in this implementation are similar to those described in the origi-
nal ALOHA paper ([4]) with the exclusion of the Per-Vendor Malicious/Benign prediction head
which could not be reproduced given the lack of the needed information (namely the per-vendor
malicious/benign labels) in the Sorel20M dataset. In particular, for each output head (Mali-
cious/Benign label, Vendor Count and Malicious tags prediction heads) an additional block -
consisting of one or more dense layers and activation functions - was appended to the shared base
topology. Moreover, the Vendor Count and Malicious tags prediction heads were made optional,
meaning that they can be turned on or off dynamically in the code at network definition.

More specifically, for the Malicious/Benign label prediction head, which overall applies func-
tion fmal(x) to each sample feature vector x, a single dense layer followed by the sigmoid acti-
vation function was used. The binary cross entropy loss Lmal between the resulting fmal(x) and
the ground truth ymal is then computed exactly as described in paper [4] (and as presented in
paragraph 3.6.1, eq. 3.1).

The Vendor Count output head, on the other hand, is composed of a single dense layer followed
by the ReLU activation function, and outputs fcnt(x). Again, the negative log likelihood loss Lcnt

with respect to the ground truth value ycnt is computed as described by Rudd et al. [4] (and as
presented in paragraph 3.6.1, eq. 3.3).

Finally, the Malicious (SMART) tags output head consists of three additional dense layers of
size 64, 64 and n tags (11) respectively, interleaved by the ELU activation function and followed
by a final sigmoid non linearity. The resulting structure therefore has T = 11 parallel paths,
one for each tag, that simultaneously compute the functions ftagi(x),∀i ∈ 1, ..,11. The aggregate
tag loss Ltag is then computed, as described in paper [4] (and as presented in paragraph 3.6.1,
eq. 3.5), as the sum of the individual per-tag binary cross entropy losses Ltagi ,∀i ∈ 1, ..,11 with
respect to each individual ground truth tag ytagi .

The final aggregate loss L(x, y) is computed as the weighted sum of the losses of all the output
heads, as previously described in paragraph 3.6.1 (eq. 3.6).

Net Definition

Algorithms 21, 22 and 23 show some pseudo-code describing how the ALOHA model was actually
implemented using Python language and Pytorch library. In particular alg. 21 describes how the
the model is constructed/initialized: first the model shared base topology is defined as a sequence
of layers composed each of a Pytorch linear layer, a normalization layer (which can be chosen
to be either Layer Normalization or Batch Normalization), an activation function dynamically
chosen at network instantiation among the ones provided by the Pytorch library, and Dropout.
Then, the malware (Malicious/Benign) head is defined as a single Pytorch linear layer followed
by a Sigmoid activation. The Vendor Count head, on the other hand is simply composed of a
single linear layer followed by a Rectified Linear Unit (ReLU) non linearity. Finally, the SMART
Tag prediction head consists of a sequence of 3 linear layers interleaved by ELU activations and
trailed by a final Sigmoid activation function.

85

Previous Methods

Algorithm 21 ALOHA Net class, Init function

1: class Net
2: function Init(self, use malware, use counts, use tags, n tags, feature dimension,

layer sizes, dropout p, activation function, normalization function)
3:

4: self.use malware ← use malware
5: self.use counts ← use counts
6: self.use tags ← use tags
7: self.n tags ← n tags
8: layers ← []
9:

10: if layer sizes is None then
11: layer sizes ← [512, 512, 128]
12: end if
13:

14: for all i, ls ∈ enumerate(layer sizes) do
15: if i = 0 then
16: layers.append(nn.Linear(feature dimension, ls))
17: else
18: layers.append(nn.Linear(layer sizes[i −1], ls))
19: end if
20:

21: layers.append(normalization function(ls))
22: layers.append(activation function())
23: layers.append(nn.Dropout(dropout p))
24: end for
25:

26: self.model base ← nn.Sequential(*tuple(layers))
27:

28: self.malware head ← nn.Sequential(nn.Linear(layer sizes[-1], 1), nn.Sigmoid())
29: self.count head ← nn.Sequential(nn.Linear(layer sizes[-1], 1), nn.ReLU())
30: self.tag head ← nn.Sequential(nn.Linear(layer sizes[-1], 64), nn.ELU(),
31: nn.Linear(64, 64), nn.ELU(),
32: nn.Linear(64, n tags), nn.Sigmoid())
33: end function

Algorithm 22 ALOHA Net class, Forward function

34: function Forward(self, data)
35: rv ← {}
36: base out ← self.model base(data)
37:

38: if self.use malware then
39: rv [’malware’] ← self.malware head(base out)
40: end if
41:

42: if self.use counts then
43: rv [’count’] ← self.count head(base out)
44: end if
45:

46: if self.use tags then
47: rv [’tags’] ← self.tag head(base out)
48: end if
49:

50: return rv
51: end function

86

Previous Methods

Alg. 22, instead, describes how the input data (PE file numerical feature vectors of size = 2381)
is forwarded through the network to produce the final predictions. In particular, the input feature
vector first passes through the shared base topology to produce an intermediate representation
base out, which is then used as input for all the output heads to produce their predictions.

Algorithm 23 ALOHA Net class, Compute Loss function

52: function ComputeLoss(predictions, labels, loss wts)
53: if loss wts is None then
54: loss wts ← {’malware’: 1.0, ’count’: 0.1, ’tags’: 1.0}
55: end if
56:

57: loss dict ← {’total’: 0.}
58: if ’malware’ ∈ labels then
59: malware loss ← Binary cross entropy(predictions[’malware’], labels[’malware’])
60:

61: if ’malware’ ∈ loss wts then
62: weight ← loss wts[’malware’]
63: else
64: weight ← 1.0
65: end if
66:

67: loss dict [’malware’] ← malware loss
68: loss dict [’total’] ← loss dict [’total’] + malware loss × weight
69: end if
70:

71: if ’count’ ∈ labels then
72: count loss ← PoissonNLLLoss(predictions[’count’], labels[’count’])
73:

74: if ’count’ ∈ loss wts then
75: weight ← loss wts[’count’]
76: else
77: weight ← 1.0
78: end if
79:

80: loss dict [’count’] ← count loss
81: loss dict [’total’] ← loss dict [’total’] + count loss × weight
82: end if
83:

84: if ’tags’ ∈ labels then
85: tags loss ← Binary cross entropy(predictions[’tags’], labels[’tags’])
86:

87: if ’tags’ ∈ loss wts then
88: weight ← loss wts[’tags’]
89: else
90: weight ← 1.0
91: end if
92:

93: loss dict [’tags’] ← tags loss
94: loss dict [’total’] ← loss dict [’total’] + tags loss × weight
95: end if
96:

97: return loss dict
98: end function
99: end class

Finally, in alg. 23 it is shown how the loss between the model predictions and the actual labels
gets computed. In particular, the final total loss is the weighted sum of the losses of the different

87

Previous Methods

output heads which are enabled for the current run. Both the Malicious/Benign and the SMART
tags prediction heads use the binary cross entropy loss function to compute the loss between their
predictions and the ground truth labels. On the other hand, the Vendor Count prediction head
uses the PoissonNLLLoss (Negative log likelihood loss with Poisson distribution) function.

5.1.2 Joint Embedding

Figure 5.2: Joint Embedding model implementation architecture

The implementation of the Joint Embedding model developed for this project (fig. 5.2) is com-
posed of 3 main parts: the Model Base/PE Embedding topology, the Tag Embedding and the
Prediction Layer.

The model base topology consists of a series of 5 dense blocks, each composed by Dropout, a
linear layer, a Batch Normalization layer and ELU (Exponential Linear Unit) activation function,
of output sizes 1024, 768, 512, 512 and 512 respectively. Similarly to the ALOHA implementation,
at network definition it is again possible to dynamically set the exact number of layers, together
with the linear layer sizes, the dropout probability, the actual normalization function to use
between Batch Normalization and Layer Normalization and the activation function (between
ELU, ReLU, PReLU and LeakyReLU) for the base topology. Anyway, the model base topology
outputs an intermediate representation h of size 512 given an input sample feature vector x (of
size 2381). This intermediate representation is then used as input to a further linear layer with
output size equal to the chosen Joint Embedding size (set to 32 throughout all the experiments).
The output of this further layer is the one used as input to the Prediction Layer and corresponds
to the representation of the input file features x in the Joint Embedding space.

On the other hand, the Tag Embedding matrix E ∈ RT×32, which is the same as the original
implementation [5], maps each tag tn to the corresponding representation in the Joint Embedding
space and is therefore used as second input to the Prediction Layer.

Finally, the Prediction Layer combines the sample (PE) and tags embeddings producing a
similarity score matrix that is run through a sigmoid activation function (by value) resulting
in the probabilities of each tag t being associated to sample x. The function used to compute
the similarity score between the two embedding vectors can be chosen dynamically at network
definition between: the dot product (eq. 5.1), the cosine similarity (eq. 5.2) or the inverse of the
Euclidean distance. In particular, there are 3 versions of inverted Euclidean distance that can be
selected at network definition: exp (eq. 5.3), inv (eq. 5.4) or inv pow (eq. 5.5).

88

Previous Methods

dot product(a,b) = a · b =

DX
i=1

aibi (5.1)

cosine similarity(a,b) =
a · b
∥a∥∥b∥

=

PD
i=1 aibiqPD

i=1 a
2
i

qPD
i=1 b

2
i

(5.2)

euclidean similarity exp(a,b) = e(
−d(a,b)

α) (5.3)

euclidean similarity inv(a,b) =
1

1 + d(a,b)
α

(5.4)

euclidean similarity inv pow(a,b) =
1

1 + d(a,b)2

α

(5.5)

where d(a,b) is the Euclidean distance between points a and b as defined in eq. 5.6 and α is
a multiplicative factor that can be arbitrarily set at network definition when using one of the
inverted Euclidean distance functions. In the final Joint Embedding model implementation α is
set to 1.0.

d(a,b) =

vuut DX
i=1

(ai − bi)2 (5.6)

The predicted tag probabilities outputted by the Prediction Layer are then used to compute
the respective binary cross entropy losses with respect to the ground truth tags yti ,∀i ∈ 1, ..,11,
exactly as described in paper [5] (and presented in paragraph 3.6.2, eq. 3.11), which are combined
together to form the final loss L(x, y).

Net Definition

Algorithm 24 (Joint Embedding model, Init function) shows how the Joint Embedding
model was implemented in Python/Pytorch code. More specifically, it describes how the network
is initialized/defined: first a base topology is defined similarly to the one used in the ALOHA
model implementation previously described (a series of linear layers interleaved by normalization
layers, activation functions and dropout). The PE embedding sub-network, on the other hand,
is defined as a simple linear layer with output size equal to the chosen embedding dimension,
followed by a Normalization layer and an activation function. Finally, the Tags embedding is
defined as an embedding matrix of size (n tags, embedding dimension), constraining the maximum
norm of each tag embedding to max embedding norm (set to 1 throughout the experiments).

Alg. 25 (Joint Embedding model, Forward function with dot product), instead, de-
scribes how the input data (the numerical feature vectors of PE files) is forwarded through the
network to produce the final tag predictions. In particular, the input data is first fed into the
model base topology to produce an intermediate representation base out . This transient output
is then used as input for the PE Embedding topology to produce the representation of samples
in the joint embedding space (pe embedding). On the other hand, the tags embeddings (one per
tag) are extracted from the tags embedding matrix. The similarity scores between the embed-
dings of samples and tags are computed via a simple dot product (implemented through a matrix
multiplication). Finally the tag probabilities are obtained by mapping the similarity scores to the
range [0,1] through the sigmoid function.

89

Previous Methods

Algorithm 24 Joint Embedding Net class, Init function

1: class Net
2: function Init(self, use malware, use counts, use tags, n tags, feature dimension, embed-

ding dimension, max embedding norm, layer sizes, dropout p, activation function, normaliza-
tion function)

3:

4: self.n tags ← n tags
5: self.embedding dimension ← embedding dimension
6: layers ← []
7:

8: if layer sizes is None then
9: layer sizes ← [512, 512, 128]

10: end if
11:

12: for all i, ls ∈ enumerate(layer sizes) do
13: if i = 0 then
14: layers.append(nn.Linear(feature dimension, ls))
15: else
16: layers.append(nn.Linear(layer sizes[i −1], ls))
17: end if
18:

19: layers.append(normalization function(ls))
20: layers.append(activation function())
21: layers.append(nn.Dropout(dropout p))
22: end for
23:

24: self.model base ← nn.Sequential(*tuple(layers))
25: self.sigmoid ← nn.Sigmoid()
26:

27: self.pe embedding ← nn.Sequential(
28: nn.Linear(layer sizes[-1], self.embedding dimension),
29: normalization function(self.embedding dimension),
30: activation function())
31: self.tags embedding ← nn.Embedding(self.n tags, self.embedding dimension,
32: max norm=max embedding norm)
33: end function

Algorithm 25 Joint Embedding Net class, Forward function (with Dot Product)

34: function Forward(self, data)
35: rv ← {}
36: base out ← self.model base(data)
37:

38: pe embedding ← self.pe embedding(base out)
39: tags embedding ← self.tags embedding(Dataset.encoded tags)
40:

41: similarity scores ← torch.matmul(pe embedding, tags embedding.T)
42: rv [’similarity’] ← similarity scores
43: rv [’probability’] ← self.sigmoid(similarity scores)
44: return rv
45: end function

In alg. 26 (Joint Embedding model, Forward function with cosine similarity) is
presented an alternative to the aforementioned Model forward function that uses the Co-
sine similarity instead of the dot product to compute the similarity scores. For the most
part this version is equal to the previous one but for how the similarity scores are computed.
In fact, in this case they correspond to the Cosine similarities between the pe embedding

90

Previous Methods

and the tags embedding , which are values in the range [−1, 1], mapped to values in the [0, 1]
interval. Moreover, in this case, since the similarity scores are already in the [0, 1] range, the tag
probabilities coincide with the similarity scores.

Algorithm 26 Joint Embedding Net class, Forward function (with Cosine similarity)

46: function Forward(self, data)
47: ...
48: similarity scores ← torch.div(torch.add(Cosine similarity(
49: pe embedding, tags embedding, dim=2), 1.0), 2.0)
50: rv [’similarity’] ← similarity scores
51: rv [’probability’] ← similarity scores
52: return rv
53: end function

A further alternative to the Model forward function which uses one of the Inverted Pairwise
Euclidean Distances proposed in sec. 5.1.2 instead of the dot product, is presented in alg. 27
(Joint Embedding model, Forward function with Inverted Pairwise Euclidean (IPE)
Distance). Again, this alternative is pretty much equal to the original forward function (alg.
25). In this case, however, the similarity scores are produced by inverting the euclidean distances
between the embeddings of samples and tags in the joint latent space through the use of the
specially crafted DistanceToSimilarity function presented in alg. 28 (which simply applies the
selected distance inversion formula among the ones mentioned in sec. 5.1.2).

Algorithm 27 Joint Embedding Net class, Forward function (with IPE Distance)

54: function Forward(self, data)
55: ...
56: distances ← torch.cdist(pe embedding, tags embedding, p=2.0)
57: similarity scores ← DistanceToSimilarity(distances, a=sim function a,
58: function=sim function)
59: rv [’similarity’] ← similarity scores
60: rv [’probability’] ← similarity scores
61: return rv
62: end function

Algorithm 28 Distance-to-Similarity function

1: function DistanceToSimilarity(distance, a, function)
2: if function = ’exp’ then
3: similarity ← torch.exp(torch.div(distances, −a))
4:

5: else if function = ’inv’ then
6: similarity ← torch.pow(torch.add(torch.div(distances, a), 1.0), -1.0)
7:

8: else if function = ’inv pow’ then
9: similarity ← torch.pow(

10: torch.add(torch.div(torch.pow(distances, 2.0), a), 1.0), -1.0)
11:

12: else
13: raise Exception
14: end if
15:

16: return similarity
17: end function

Alg. 29 (JointEmbedding model, GetEmbedding function) presents the GetEmbedding
function which is used to extract the PE embedding representation corresponding to the input file
feature vector. This is particularly useful when performing different kinds of model performance

91

Previous Methods

evaluations together with the GetSimilarity function, which instead returns the similarity be-
tween two different input embeddings. Of course, depending on the similarity function selected
at model definition the GetSimilarity function has to be different. In particular, if the dot prod-
uct is selected the function, shown in algorithm 30 (JointEmbedding model, GetSimilarity
function with Dot Product), simply computes the similarity scores as the dot product between
the two input embeddings and then defines the probabilities by further applying the sigmoid ac-
tivation function on those scores. On the other hand, if the cosine similarity is selected, the
function (alg. 31 - JointEmbedding model, GetSimilarity function with Cosine Simi-
larity) assigns to both similarity scores and resulting probabilities the normalized (to the [0,1]
range) cosine similarity between the two embeddings. Finally, in case the Inverted Pairwise
Euclidean Distance is selected, the function (alg. 32 - JointEmbedding model, GetSim-
ilarity function with Inverted Pairwise Euclidean (IPE) Distance) first computes the
euclidean distance between the two input embeddings and then assigns to both similarity scores
and resulting probabilities the inversion of such distances through the use of the DistanceToSim-
ilarity function.

Algorithm 29 Joint Embedding Net class, GetEmbedding function

63: function GetEmbedding(self, data)
64: rv ← {}
65: base out ← self.model base(data)
66: pe embedding ← self.pe embedding(base out)
67: rv [’embedding’] ← pe embedding
68: return rv
69: end function

Algorithm 30 Joint Embedding Net class, GetSimilarity function (with Dot Product)

70: function GetSimilarity(self, first embedding, second embedding)
71: similarity scores ← torch.matmul(first embedding, second embedding.T)
72:

73: return {’similarity’: similarity scores, ’probability’: self.sigmoid(similarity scores)}
74: end function

Algorithm 31 Joint Embedding Net class, GetSimilarity function (with Cosine similarity)

75: function GetSimilarity(self, first embedding, second embedding)
76: similarity scores ← torch.div(torch.add(F.cosine similarity(
77: first embedding, second embedding), 1.0), 2.0)
78:

79: return {’similarity’: similarity scores, ’probability’: similarity scores}
80: end function

Algorithm 32 Joint Embedding Net class, GetSimilarity function (with IPE Distance)

81: function GetSimilarity(self, first embedding, second embedding)
82: distances ← torch.cdist(first embedding, second embedding, p=2.0)
83: similarity scores ← DistanceToSimilarity(distances, a=self.embedding dimension,
84: function=sim function)
85:

86: return {’similarity’: similarity scores, ’probability’: similarity scores}
87: end function

92

Previous Methods

Algorithm 33 Joint Embedding Net class, Compute Loss function

88: function ComputeLoss(predictions, labels, loss wts)
89: loss dict ← {’total’: 0.}
90:

91: similarity loss ← Binary cross entropy(
92: predictions[’probability’], labels[’tags’], reduction=’none’).sum(dim=1).mean(dim=0)
93:

94: loss dict [’jointEmbedding’] ← similarity loss
95: loss dict [’total’] ← similarity loss
96:

97: return loss dict
98: end function
99: end class

Finally, in algorithm 33 it is described how the loss which guides the training procedure is
computed. In particular, it corresponds to the binary cross entropy loss between the predicted
tag probabilities and the actual tag labels, as depicted by the formulas mentioned in paragraph
3.6.2.

5.2 Experiments

Both models were trained (and validated) for 10 epochs each on the first 6M training and 1.153.846
validation samples of the pre-processed Sorel20M dataset (loaded with generator alt3) using dif-
ferent numbers of layers, layer sizes (numbers of nodes per layer), activation functions, normaliza-
tion functions and dropout values for the model base topology. Moreover, various combinations
optimizers (Adam or SGD), learning rates (LR), momentum, weight decay and loss weights
were used in separate training runs. Moreover, in the case of the Joint Embedding model also
different similarity score functions such as the cosine similarity and the inverse of the Euclidean
distance were tested instead of the dot product. The models which performed best during valida-
tion were then evaluated on the first 1.846.154 test samples of Sorel20M dataset looking for their
tag and/or malicious/benign label (present only in the ALOHA model implementation) predic-
tion binary cross entropy statistics and mean per-sample scores such as TPR, accuracy, recall,
precision, f1 score, Jaccard similarity and mean-per-sample-accuracy at FPR = 1% as well as the
resulting tag and/or malicious/benign ROC curves and AUC scores.

The final ALOHA architecture, which had a base topology consisting of 5 layers of sizes 1024,
768, 512, 512 and 512 respectively, with dropout probability pd = 5% and ELU activation func-
tion, in particular, was trained with a learning rate LR = 10−3, Adam optimizer, no momentum
nor weight decay and loss weights set to 1.0 for the malicious/benign head, 0.1 for the count head
and 0.1 for the tag head (as described in the original paper [4]).

On the other hand, the base topology of the final Joint Embedding architecture consisted of
5 layers of sizes 1024, 768, 512, 512, and 512 respectively, with dropout probability pd = 5% and
ELU activation function. The overall model was trained with a learning rate LR = 10−3, Adam
optimizer, no momentum nor weight decay. Moreover, the final model used the dot product as
similarity score between embeddings.

The ALOHA and Joint Embedding model implementations evaluation results are reported in
chapter 7.

93

Previous Methods

5.3 Training and Evaluation algorithms

Figure 5.3: Base Model Training and Evaluation Workflow steps

Both the ALOHA and the Joint Embedding model implementations (and also the proposed
MTJE model that will be defined in next chapter) are trained and evaluated following the
procedures depicted by algorithms 34 (Train network function) and 35 (Evaluate network
function).

5.3.1 Training

Figure 5.4: Base Model Training Workflow step

In particular, as shown in alg. 34, the training function first imports the chosen Net and Dataset
generator (dataloder) implementations and some run variables situated in a config file, depending
on the network and generator types selected by the user. Next, the model itself is defined by call-
ing the init member function of the previously imported Net class with all the needed parameters
(such as: number of tags, input feature dimension, layer sizes, dropout probability, etc.). Then,
the selected optimizer (Adam or SGD) is instantiated by passing to the corresponding Pytorch
function the model parameters to optimize, the chosen learning rate, weight decay and momen-
tum. This is followed by the definition of the training and validation generators with the proper
parameters. Next, the model is trained for ’epochs’ epochs. At each epoch the model is first set
into training mode, then, for all the mini-batches randomly sampled from the training generator
the optimizer gradients are re-set and the input features are forwarded through the network to get
the output predictions. The loss for the current mini batch is then computed and logged. Finally
the model parameters are updated by computing the loss gradients and back-propagating them
through the network. Moreover, after each training epoch the model is also validated on samples
provided by the validation generator. In particular, the model is first set into evaluation mode,

94

Previous Methods

then, for all the mini-batches of data got from the validation generator the input features are
passed through the network to produce the output predictions which are in turn used to compute
the loss term. The aggregate loss, in this case, is simply logged (no gradients are computed).
Finally, at the end of each epoch the model and optimizer state parameters are saved to file.

Algorithm 34 Train Network function

1: function TrainNetwork(ds path, net type, gen type, batch size, epochs,
use malicious labels, use count labels, use tag labels, feature dimension, workers, ...)

2:

3: Net, Dataset, get generator, run params ← import modules(net type, gen type)
4:

5: model ← Net(use malicious labels, use count labels,
6: use tag labels, len(Dataset.tags),
7: feature dimension, run params[’layer sizes’],
8: run params[’dropout p’], run params[’activation function’],
9: run params[’normalization function’])

10:

11: opt ← run params[’optimizer’](model.parameters(), run params[’lr’],
12: run params[’weight decay’], run params[’momentum’])
13:

14: generator ← get generator(ds path, batch size,
15: ’train’, workers,
16: training n samples, use malicious labels,
17: use count labels, use tag labels)
18:

19: val generator ← get generator(ds path, batch size,
20: ’validation’, workers,
21: validation n samples, use malicious labels,
22: use count labels, use tag labels)
23: ...
24: for all epoch ∈ range(epochs) do
25: model.train()
26:

27: for all i, (features, labels) ∈ enumerate(generator) do
28: opt.zero grad()
29: out ← model(features)
30: loss dict ← model.ComputeLoss(out, labels, run params[’loss wts’])
31: loss ← loss dict [’total’]
32: log(loss dict)
33: loss.backward()
34: opt.step()
35: end for
36:

37: model.eval()
38:

39: for all i, (features, labels) ∈ enumerate(val generator) do
40: torch.no grad()
41: out ← model(features)
42: loss dict ← model.ComputeLoss(out, labels)
43: log(loss dict)
44: end for
45:

46: model.save(epoch)
47: save opt state(opt, epoch)
48: end for
49: end function

95

Previous Methods

5.3.2 Evaluation

Figure 5.5: Base Model Evaluation Workflow step

The evaluation function, presented in alg. 35, begins in a similar way as the training function
by importing the Net and Dataset generator classes along with some run parameters. Then, the
function continues by calling the model (init) member function with all the needed parameters
and by loading the model state checkpoint chosen by the user. This function, however, then sets
the model into evaluation mode and defines the test dataset generator. Then, for all the mini-
batches of data got from the test generator the feature vectors of the input samples are passed to
the network and the corresponding predictions are produced and saved to file.

Algorithm 35 Evaluate Network function

1: function EvaluateNetwork(ds path, checkpoint file, net type, gen type, batch size, evalu-
ate malware, evaluate count, evaluate tags, feature dimension, ...)

2:

3: Net, Dataset, get generator, run params ← import modules(net type, gen type)
4:

5: model ← Net(evaluate malware, evaluate count,
6: evaluate tags, len(Dataset.tags),
7: feature dimension, run params[’layer sizes’],
8: run params[’dropout p’], run params[’activation function’],
9: run params[’normalization function’])

10:

11: model.load state dict(checkpoint file)
12: model.eval()
13:

14: generator ← get generator(ds path, batch size,
15: ’test’, workers,
16: test n samples, evaluate malware,
17: evaluate count, evaluate tags,
18: return shas=True)
19: ...
20: for all shas, features, labels ∈ generator do
21: predictions ← model(features)
22: save to file(shas, labels, predictions)
23: end for
24: end function

96

Previous Methods

5.3.3 Results Computation and plotting

Figure 5.6: Base Model Results Computation and Plotting Workflow step

The actual binary cross entropy statistics (such as TPR, Accuracy, Recall, etc.. at different
FPRs) and the resulting AUC-ROC scores and ROC curves are computed, plotted and saved
to file by a distinct set of functions which are not presented in this document given that they
simply implement and apply the corresponding mathematical formulas. Moreover, after n runs
another set of functions computes the mean and standard deviation of the scores resulting from
the different runs and plots the mean ROC curves.

97

Chapter 6

Proposed Models

6.1 Multi Task Joint Embedding (MTJE) Model

The ALOHA model (described in section 5.1.1) is based on the idea of enhancing the model
performance and generalization on the task of Malicious/Benign label prediction with respect to
a more simple single-task model by exploiting additional tasks (Vendor Count prediction, SMART
Tags prediction, etc.) which are jointly optimized in a Multi-objective/multi-task learning fashion.
Multi-objective learning has, in fact, proven to be beneficial for the model generalization since it
provides a regularization effect which results in overall better training/validation loss curves and
arguably better evaluation results.

On the other hand, the Joint Embedding model (presented in section 5.1.2) was designed
with the idea of constructing an embedding space in which both the samples and tag labels can
be mapped to, such that each sample ends up close to the tags it is associated with (and possibly
far from the other unrelated tags). The Joint Embedding model is trained by optimizing its
parameters on the single tag prediction task by means of the similarity between tags and samples
embeddings, without additional tasks.

The natural follow-up to those models is a fusion between their two base ideas ultimately
creating a model with the main objective of creating a joint embedding space, as done by the
Joint Embedding model, while exploiting Multi-objective learning during model training, as
done by the ALOHA model. This model, which is called Multi Task Joint Embedding
(MTJE) model throughout this document, could potentially perform better in the SMART tag
prediction task than the Joint Embedding model implementation given that during the training
procedure its parameters are updated considering also the additional targets. Moreover, it could
also perform better than the ALOHA model implementation in the Malicious/Benign label
prediction task since the SMART tags prediction task is solved by the MTJE model in a more
difficult way - by learning the joint embedding and calculating similarities - compared to the
original solution based on multi-label binary classification with one head for each tag. Harder
complementary tasks are, in fact, often used when exploiting multi-task learning because they
help in finding a more informed latent representation of samples which in turn leads to better
performances during testing/deployment.

Moreover, the fact that the learned embedding should pull samples close to their associated
tags (and far from the others) also means that samples which are similar or exhibit similar
capabilities (sharing the same tags) should be close to each other in the latent space. In turn, the
representation of PE files in the learned embedding space, along with the distance function used
in this space, enables the computation of file-to-file similarities. This makes it possible to measure
how similar two malware samples are in terms of their capabilities. The Joint Embedding and
MTJE model approaches are therefore interesting from the perspective of predicting the specific
malware family PE files belong to based on their distances with respect to known malware samples.
Notice, however, that both the Joint Embedding net and the MTJE model are trained with a
different objective - that of predicting the SMART tags associated to each malware sample (and

98

Proposed Models

also the malicious/benign label and vendor count for the MTJE model). It is not uncommon in
the ML field to train a model on a specific task and then testing (or deploying) it on a different
- but most probably related - task with little degradation in model performance. Moreover,
the models are trained on a dataset of malware samples which intrinsically belong to different
malware families (although the effective family labels are not provided in the dataset), therefore
the information about the family of each sample is implicitly present.

Therefore the MTJE model and the Joint Embedding model implementations are not only
evaluated on the tasks they ware trained for (SMART tag, Malicious/Benign label and Vendor
Count prediction tasks), but also on the f-way Malware Family Classification task and on
the Malware Family Ranking task. Again, for the reasons mentioned above, the MTJE model
should perform better than the Joint Embedding model implementation also in these last tasks.

If the MTJE model performs well enough on the malware family prediction and ranking
tasks, it could be possible to use its learned embedding space to define implicit signatures of
malware samples belonging to a specific malware family using the corresponding representation
in this space, a.k.a. the embedding. These signatures could then be used to craft Yara Rules
with the use of a specially crafted custom Yara module that dynamically extracts the embedding
representation for new PE files and compares them to known signatures. The resulting rules
could in turn be used to detect similar samples as belonging to the specific family represented
by each rule. Yara Rules created in this way could potentially inherit the good properties of ML
methods such as being able to detect not only known malware strains but also novel variants, being
less susceptible to obfuscation attempts, etc. while being compatible with the highly expressive
approach that is Yara.

6.1.1 Implementation

Figure 6.1: MTJE Model architecture

The MTJE model implementation (fig. 6.1) consists of 3 main topologies: the Shared Model
Base sub-network, the Tag Embedding and the multiple parallel Output Heads.

The model shared base topology is composed of 5 sequential dense blocks of output sizes 1024,
768, 512, 512 and 512 respectively. These dense blocks have the same form as those used in
the ALOHA and Joint Embedding model implementations described above (in 5.1.1 and 5.1.2
respectively): in particular a linear layer with dropout is used, followed by batch normalization
and ReLU activation function. Again, at network definition it is possible to dynamically set
the parameters for this base topology such as the exact size and number of linear layers, the
dropout probability pd, the normalization function and the non-linear activation function used.

99

Proposed Models

This shared base topology transforms a given input sample feature vector x (of size 2381) into its
intermediate representation h of size 512 which is then used as input to the parallel output heads.

The Tag Embedding matrix E ∈ RT×32, which maps the tags to their corresponding represen-
tation in the Joint Embedding space, is the same as the one used in the Joint Embedding model
implementation (5.1.2) and is therefore also equal to the one used in the original implementation
described in [5]. This matrix is used as second input for the Prediction Layer of the tags prediction
output head.

Similarly to the ALOHAmodel implementation (5.1.1), this model uses multiple parallel output
heads, each relative to a different task, whose parameters are jointly optimized during training
by back-propagating the gradients computed from an aggregate loss. In particular, the tasks
used in this case are: the Malicious/Benign label prediction task (optional), the Vendor Count
estimation task (optional) and the SMART Tags prediction task. The first two output heads (the
Malicious/Benign label prediction head and the Vendor Count estimation head) are the same as
those used in the ALOHA model implementation (5.1.1) and can optionally be turned on or off
at network definition.

In particular, the Malicious/Benign label prediction head is composed of a single dense layer
followed by the sigmoid non-linearity. The loss between the output of the malicious/benign label
prediction head fmal(x) and the ground truth label ymal is computed using the binary cross-
entropy loss function.

The Vendor Count prediction head, instead, consists of a single linear layer, followed by the
ReLU non-linearity, whose parameters are updated in order to optimize the negative log-likelihood
loss, as described in 3.6.1 (and [4]), between the predicted and the ground truth count value.

The Tag prediction head, on the other hand, is always on and consists of the same components
used in the Joint Embedding model implementation (5.1.2): the linear layer which maps each
sample intermediate representation h to its PE Embedding in the Joint Embedding space
and the Prediction Layer, which produces a similarity score matrix between sample and tag
embeddings. The resulting matrix is then run through a sigmoid non-linearity (by value) to
produce the tags probabilities for sample x. The similarity function used in this model can be
chosen from one of the following at network definition: dot product (5.1), cosine similarity (5.2)
or one of the inverse Euclidean distances (exp (5.3), inv (5.4) or inv pow (5.5)). The loss for the
Tag prediction head is computed as the sum over all tags of the individual cross entropy losses
between the predicted tags and the ground truth labels, as described in 3.6.2 (and [5]).

Finally the individual head losses are aggregated together by computing their weighted sum.
Different weights can be assigned to the distinct heads in order to tune their importance in the
final loss term, in turn affecting how the model parameters are updated during back-propagation.

Net Definition

As presented by algorithm 36 (MTJE model, Init function), the MTJE model is initialized
first by defining the model shared topology (model base) as a sequence of blocks composed each
of a linear layer, a Normalization layer, an activation function and dropout, exactly as previously
done for the ALOHA and Joint Embedding model implementations. Next, similarly to the
Joint Embedding implementation, the pe embedding topology and the tags embedding matrix
are defined: the first as a single linear layer with output size equal to the embedding dimension (=
32), followed by a Normalization layer and an activation function, and the latter as an embedding
matrix of size (n tags, embedding dimension). The most important novelty compared to the
Joint Embedding model is the presence of also the Malicious/Benign label and Vendor Count
prediction heads from the ALOHA model implementation. In particular, the Malicious/Benign
head (malware head) is defined as a linear layer of output size 1 immediately followed by a sigmoid
non-linearity. The Vendor Count head (count head), on the other hand, is set to be a simple linear
layer trailed by the ReLU non-linearity.

100

Proposed Models

Algorithm 36 MTJE Model Net class, Init function

1: class Net
2: function Init(self, use malware, use counts, use tags, n tags, feature dimension, embed-

ding dimension, max embedding norm, layer sizes, dropout p, activation function, normaliza-
tion function)

3:

4: self.use malware ← use malware
5: self.use counts ← use counts
6: self.n tags ← n tags
7: self.embedding dimension ← embedding dimension
8: layers ← []
9:

10: if layer sizes is None then
11: layer sizes ← [512, 512, 128]
12: end if
13:

14: for all i, ls ∈ enumerate(layer sizes) do
15: if i = 0 then
16: layers.append(nn.Linear(feature dimension, ls))
17: else
18: layers.append(nn.Linear(layer sizes[i −1], ls))
19: end if
20:

21: layers.append(normalization function(ls))
22: layers.append(activation function())
23: layers.append(nn.Dropout(dropout p))
24: end for
25:

26: self.model base ← nn.Sequential(*tuple(layers))
27: self.sigmoid ← nn.Sigmoid()
28:

29: self.pe embedding ← nn.Sequential(
30: nn.Linear(layer sizes[-1], self.embedding dimension),
31: normalization function(self.embedding dimension),
32: activation function())
33:

34: self.malware head ← nn.Sequential(nn.Linear(layer sizes[-1], 1), nn.Sigmoid())
35:

36: self.count head ← nn.Sequential(nn.Linear(layer sizes[-1], 1), nn.ReLU())
37:

38: self.tags embedding ← nn.Embedding(self.n tags, self.embedding dimension,
39: max norm=max embedding norm)
40: end function

The input data (numerical feature vectors of PE files) is forwarded through the model as shown
in alg. 37 (MTJE model, Forward function (with dot product)). In particular, it first
passes through the model base topology (model base) to produce an intermediate representation
base out which is then forwarded to the various parallel output heads. Themalware label prediction
head and the vendor count prediction head, if enabled, produce the corresponding predictions given
as input the transient latent representation base out. On the other hand, for the tags prediction
topology, the intermediate representation base out is fed into the pe embedding sub-net producing
the latent representation of the input data samples in the joint embedding space (PE embedding).
The tag similarity scores are then computed by applying the dot product (via a simple matrix
multiplication) between the PE embedding and the tags embedding matrix (tags embedding).
Finally, the tags probability predictions are produced by applying the sigmoid activation function
on the previously computed similarity scores.

101

Proposed Models

Algorithm 37 MTJE Model Net class, Forward function (with Dot Product)

41: function Forward(self, data)
42: rv ← {}
43: base out ← self.model base(data)
44:

45: if self.use malware then
46: rv [’malware’] ← self.malware head(base out)
47: end if
48:

49: if self.use counts then
50: rv [’count’] ← self.count head(base out)
51: end if
52:

53: pe embedding ← self.pe embedding(base out)
54: tags embedding ← self.tags embedding(Dataset.encoded tags)
55: rv [’similarity’] ← torch.matmul(pe embedding, tags embedding.T)
56: rv [’probability’] ← self.sigmoid(similarity scores)
57:

58: return rv
59: end function

Algorithm 38 MTJE Model Net class, Forward function (with Cosine similarity)

60: function Forward(self, data)
61: ...
62: similarity scores ← torch.div(
63: torch.add(Cosine similarity(pe embedding, tags embedding, dim=2), 1.0), 2.0)
64: rv [’similarity’] ← similarity scores
65: rv [’probability’] ← similarity scores
66: return rv
67: end function

Algorithm 39 MTJE Model Net class, Forward function (with IPE Distance)

68: function Forward(self, data)
69: ...
70: distances ← torch.cdist(pe embedding, tags embedding, p=2.0)
71: similarity scores ← DistanceToSimilarity(distances, a=sim function a,
72: function=sim function)
73: rv [’similarity’] ← similarity scores
74: rv [’probability’] ← similarity scores
75: return rv
76: end function

If, however, the user chooses to try a different similarity function other than the dot prod-
uct , two alternatives are available: the cosine similarity or the inverted pairwise euclidean
(IPE) distance . In particular both the MTJE model Forward function (with cosine
similarity), shown in alg. 38, and the MTJE model Forward function (with inverted
pairwise Euclidean (IPE) distance), shown in alg. 39, are for the most part identical to
the original forward function but for the computation of the similarity scores. The version of
this function that uses the cosine similarity, in fact, computes the similarity scores as the cosine
similarities between the sample and tag embeddings, which are values in the range [−1,1], normal-
izing them to the [0,1] interval. On the other hand, the version which uses the inverted pairwise
Euclidean distance computes those scores as the euclidean distances between the two embeddings,
inverted using the DistanceToSimilarity function already mentioned in sec. 5.1.2. Again, sim-
ilarly to what was done in the Joint Embedding model implementation, in both cases the final tag
probabilities coincide with the computed similarity scores.

102

Proposed Models

The MTJE model implementation uses exactly the same GetEmbedding and GetSimi-
larity functions as those used in the Joint Embedding model implementation, shown in alg.
29. Again, these functions are particularly useful when performing evaluations on the learned
embedding.

Algorithm 40 MTJE Model Net class, Compute Loss function

77: function ComputeLoss(predictions, labels, loss wts)
78: if loss wts is None then
79: loss wts ← {’malware’: 1.0, ’count’: 0.1, ’tags’: 1.0}
80: end if
81: loss dict ← {’total’: 0.}
82:

83: if ’malware’ ∈ labels then
84: malware loss ← Binary cross entropy(predictions[’malware’], labels[’malware’])
85: if ’malware’ ∈ loss wts then
86: weight ← loss wts[’malware’]
87: else
88: weight ← 1.0
89: end if
90:

91: loss dict [’malware’] ← malware loss
92: loss dict [’total’] ← loss dict [’total’] + malware loss × weight
93: end if
94:

95: if ’count’ ∈ labels then
96: count loss ← PoissonNLLLoss(predictions[’count’], labels[’count’])
97: if ’count’ ∈ loss wts then
98: weight ← loss wts[’count’]
99: else
100: weight ← 1.0
101: end if
102:

103: loss dict [’count’] ← count loss
104: loss dict [’total’] ← loss dict [’total’] + count loss × weight
105: end if
106:

107: if ’tags’ ∈ labels then
108: similarity loss ← Binary cross entropy(predictions[’probability’], labels[’tags’],
109: reduction=’none’).sum(dim=1).mean(dim=0)
110: if ’tags’ ∈ loss wts then
111: weight ← loss wts[’tags’]
112: else
113: weight ← 1.0
114: end if
115:

116: loss dict [’jointEmbedding’] ← similarity loss
117: loss dict [’total’] ← loss dict [’total’] + similarity loss × weight
118: end if
119:

120: return loss dict
121: end function
122: end class

Finally, algorithm 40 (MTJE model, ComputeLoss function) describes how the MTJE
model loss computation is implemented in Python/Pytorch code. In particular the final total
loss corresponds to the weighted sum of the losses from each enabled output head. The weights
used in this computation can be defined by the user at network definition. The loss computation

103

Proposed Models

code regarding the Malicious/Benign label prediction and the Vendor Count prediction heads was
taken from the ALOHA model implementation. The first loss is thus implemented as the binary
cross entropy loss between the predicted malware label and the respective ground truth label,
the latter instead corresponds to the Negative Log Likelihood with Poisson distribution
between the predicted count and the ground truth value. On the other hand, the Tags prediction
loss computation is taken from the Joint Embedding model implementation and is therefore
the mean of the per-sample sum of all tag losses, each of which is computed as the binary cross
entropy loss between the predicted tag probability and the ground truth tag.

6.1.2 Experiments

The proposed MTJE model was trained multiple times for 10 epochs on the first 6M training
and 1.153.846 validation samples of the pre-processed Sorel20M dataset (loaded with generator
alt3) with both the optional output heads (Malicious/Benign label prediction and Vendor Count
prediction) on. Each run the model was trained with different network hyper-parameters like the
size (number of hidden units per layer) and number of layers, normalization function, activation
function and dropout value for the base topology. Other hyper-parameters that were iteratively
changed were the used optimizer (Adam or SGD), learning rate (LR), momentum, weight decay,
loss weights and the similarity score function used (chosen between the dot product, the cosine
similarity and one of the inverted Euclidean Distances: exp, inv or inv pow).

Then, for the evaluation of the resulting model the first 1.846.154 test samples of the Sorel20M
pre-processed dataset were used to asses the model TPR, accuracy, recall, precision, f1 score,
Jaccard similarity, and mean-per-sample accuracy at different FPRs of interest (particularly at
FPR = 1%) for the tags and malicious/benign label prediction task, as well as the corresponding
ROC curves and AUC scores.

Moreover, this model learned representation (embedding) of PE samples, together with the
Joint Embedding model one, was also tested on the Fresh Dataset - which contains 10.000
malicious samples belonging to 10 different malware families - to asses its performance in the
malware family classification and ranking tasks with respect to the mentioned previous methods.
The malware families represented by the fresh dataset were chosen among the most wide-spread
PE malware families present in Italy at the time of writing (as reported by [53]) for which Malware
Bazaar [54] provided at least 1.000 samples.

In particular, the learned representation was first evaluated on the task of f-way family clas-
sification via nearest neighbour search as previously described in 4.2.2 by randomly sampling
k (∈ [1, 10]) anchor samples and q (= 23) query samples, per-family, and assigning to the
(f × q = 230) query samples the same class as their closest anchor in embedding space. The
sampling (for both anchors and query samples), classification and evaluation processes were re-
peated 15 times per value of k to obtain uncertainty estimates for the results. The trends of some
binary cross entropy statistics like accuracy, precision, recall and f1-score were computed along
with the ROC-AUC score trends and some confusion matrixes.

Then, the learned embedding was evaluated on the malware family ranking task (as described
in 4.2.2) by randomly selecting q (= 100) query samples from the Fresh Dataset and computing,
for each of them, the ranking of the other nsamples−1 = 9.999, ordering them by similarity. Then,
given the resulting rankings, the MAP and MRR scores were calculated.

The final MTJE model architecture consisted of 5 layers of sizes 1024, 768, 512, 512, and
512, respectively (keeping them consistent to the ALOHA and Joint Embedding model implemen-
tations in order to be able to compare their results), with dropout probability pd = 5%, Batch
normalization, ReLU activation function and the dot product as similarity score function. The
training was carried out with a learning rate LR = 10−3, Adam optimizer, no momentum nor
weight decay, and loss weights set to 1.0 for the malicious/benign head, 0.1 for the count head
and 1.0 for the SMART tag (joint embedding) head.

The MTJE model evaluation results are reported in chapter 7.

104

Proposed Models

6.1.3 Training and Evaluation algorithms

Figure 6.2: MTJE Model Training and Evaluation Workflow steps

As previously mentioned in section 5.3, the MTJE model training and evaluation procedures
are the same as those used for the ALOHA and Joint Embedding model implementations. In
particular, the training procedure is presented in alg. 34, while the model evaluation is shown in
alg. 35.

6.1.4 Evaluate Fresh algorithm

Figure 6.3: MTJE Model Evaluation on Fresh Dataset Workflow steps

Algorithm 41 Evaluate Fresh function

1: function EvaluateFresh(fresh ds path, checkpoint path, net type, min n anchor samples,
max n anchor samples, n query samples, n evaluations, batch size)

2:

3: EvaluateFreshScores(fresh ds path, checkpoint path, net type,
4: n query samples, min n anchor samples,
5: max n anchor samples, n evaluations, batch size)
6:

7: EvaluateFreshRankings(fresh ds path, checkpoint path, net type,
8: n query samples, n evaluations, batch size)
9: end function

As previously mentioned, both the MTJE model and the Joint Embedding model imple-
mentations are also evaluated on the f-way malware family classification and family ranking tasks.
In particular the function presented in algorithm 41 (Evaluate fresh function) is used to pro-
duce both the mentioned evaluation results. More specifically, it calls the following two functions
in succession: EvaluateFreshScores and EvaluateFreshRankings.

105

Proposed Models

Model Evaluation on f-way Malware Family Classification/Ranking tasks

Figure 6.4: MTJE Model Evaluation on Fresh Dataset Workflow step

Algorithm 42 Evaluate Fresh Scores function

1: function EvaluateFreshScores(ds path, checkpoint path, net type, n queries,
min anchors, max anchors, n evaluations, batch size)

2:

3: Net, run params ← import modules(net type)
4:

5: model ← Net(use malware=False, use counts=False, n tags=len(Dataset.tags),
6: feature dimension=2381, embedding dimension=32,
7: layer sizes=run params[’layer sizes’],
8: dropout p=run params[’dropout p’],
9: activation function=run params[’activation function’],

10: normalization function=run params[’normalization function’])
11:

12: model.load state dict(checkpoint path)
13: model.eval()
14: generator ← get generator(ds path, batch size, return shas=True, shuffle=True)
15: predictions ← {}
16: for all n anchors ∈ range(min anchors, max anchors +1) do
17: predictions[n anchors] ← []
18:

19: for all j ∈ range(n evaluations) do
20: anchors ← GetSamples(model, generator, n families, n anchors)
21: queries ← GetSamples(model, generator, n families, n queries, other=anchors)
22: similarity scores ←model.GetSimilarity(queries[’embeddings’],
23: anchors[’embeddings’])[’similarity’]
24: predictions[n anchors].append({
25: ’shas’: queries[’shas’],
26: ’labels’: queries[’labels’],
27: ’predictions’: anchors[’labels’][argmax(similarity scores)],
28: ’probabilities’: nn.Softmax([[max(sims[[j ∀ j ∈ range(len(sims))
29: if anchors[’labels’][j] = i]]) ∀ i ∈ range(n families)]
30: ∀ sims ∈ similarity scores])})
31: end for
32: end for
33:

34: save to file(predictions)
35: end function

106

Proposed Models

Algorithm 43 Evaluate Fresh Rankings function

1: function EvaluateFreshRankings(ds path, checkpoint path, net type, n query samples,
n evaluations, batch size)

2:

3: Net, run params ← import modules(net type)
4:

5: model ← Net(use malware=False, use counts=False, n tags=len(Dataset.tags),
6: feature dimension=2381, embedding dimension=32,
7: layer sizes=run params[’layer sizes’],
8: dropout p=run params[’dropout p’],
9: activation function=run params[’activation function’],

10: normalization function=run params[’normalization function’])
11:

12: model.load state dict(checkpoint path)
13: model.eval()
14: generator ← get generator(ds path, batch size, return shas=True, shuffle=True)
15: ranking scores ← {’MRR’: [], ’MAP’: []}
16: global ranks to save ← None
17: for all j ∈ range(n evaluations) do
18: queries ← GetSamples(model, generator, n families, n query samples)
19: rank per query ← []
20:

21: for all shas, features, labels ∈ generator do
22: embeddings ← model.GetEmbedding(features)[’embedding’]
23: similarity scores ← model.GetSimilarity(queries[’embeddings’],
24: embeddings)[’similarity’]
25:

26: for all i, s ∈ enumerate(queries[’shas’]) do
27: indices ← -similarity scores[i, [j ∀ j ∈ range(len(similarity scores[i]))
28: if shas[j] /= s]].argsort()
29: rank per query.append({
30: ’query sha’: s,
31: ’ground truth label’: queries[’labels’][i],
32: ’ground truth family’: label to sig(queries[’labels’][i]),
33: ’rank shas’: shas[indices],
34: ’rank labels’: labels[indices],
35: ’rank families’: [label to sig(lab) ∀ lab ∈ labels[indices]]
36: })
37: end for
38: end for
39: ranking scores, global ranks to save, rank per query ← ComputeRankingScores(
40: ranking scores, global ranks to save, rank per query)
41: end for
42:

43: log(ranking scores)
44: save to file(global ranks to save)
45: end function

The EvaluateFreshScores function, shown in alg. 42, begins by importing the Net class corre-
sponding to the chosen net type and then instantiates it by providing the needed arguments (such
as the feature dimension, the embedding dimension, the layer sizes, etc.). Next, the function loads
the model checkpoint state parameters corresponding to the selected training run, it sets the model
into evaluation mode and instantiates the fresh dataset generator (dataloader). After these prelim-
inary steps, for all the values of ’n anchors’ between ’min anchors’ and ’max anchors’ (included),
the function performs ’n evaluations’ evaluations recording the model predictions, which will be
later used to compute the corresponding accuracy (and other statistics) results. In particular,
for each evaluation ’n anchors’ anchors and ’n queries’ query samples, per-family, are randomly

107

Proposed Models

selected (without overlaps) from the fresh dataset using the GetSamples function and the simi-
larity scores between their embeddings are computed by using the modelGetSimilarity function.
Finally, the function produces and saves to file the family predictions, by getting, for each query
sample, the family label of the most similar anchor sample in the previously computed similarity
score matrix. Moreover, the function also computes the per-sample family label probabilities by
retrieving the similarity score corresponding to the most similar anchor sample, for each family,
and subsequently applying the Softmax function to the resulting list of family scores.

The EvaluateFreshRankings function, presented in algorithm 43, again begins by importing
the selected Net class. It then instantiates the model with the needed parameters, loads the
selected checkpoint state parameters, sets the model to evaluation mode and defines the fresh
dataset generator (dataloader). Next, for ’n evaluations’ times, the function randomly selects
’n query samples’ query samples, per family, from the previously defined fresh dataset generator.
The function then cycles through all the mini-batches of data from the fresh dataset generator and
gets the samples embeddings by feeding the model with their numerical feature vectors. Then,
in order to generate the family rankings, the function computes the similarity scores between the
query embeddings and the mini-batch embeddings (which may contain also the query sample
latent representation) by using the model GetSimilarity function. Next, for each query sample
the function generates one ranking by ordering the samples shas, family labels and family names
by their similarity with the current query sample (excluding the current query sample from the
ranking). Finally, the function uses the ComputeRankingScores function, presented in alg. 44,
to compute the MRR and MAP scores and save a bunch of interesting rankings, namely the ones
which produced the maximum and minimum RR (reciprocal rank) and AP (average precision),
for the current evaluation. The overall mean and standard deviation of both ranking scores are
computed and saved at the end of the cycle.

Algorithm 44 Compute Ranking Scores function

1: function ComputeRankingScores(ranking scores, global ranks to save, rank per query)
2: rs ← binarize(rank per query)
3: ranking scores[’MRR’].append(mean reciprocal rank(rs))
4: ranking scores[’MAP’].append(mean average precision(rs))
5:

6: queries indexes ← {
7: ’max rr’: max reciprocal rank index(rs),
8: ’min rr’: min reciprocal rank index(rs),
9: ’max ap’: max average precision index(rs),

10: ’min ap’: min average precision index(rs)
11: }
12:

13: ranks to save ← {key : rank per query [index] ∀ key, index ∈ queries indexes.items()}
14: global ranks to save.append if relevant(ranks to save)
15: return ranking scores, global ranks to save, rank per query
16: end function

The GetSamples function, used by functions EvaluateFreshScores and EvaluateFreshRank-
ings and presented in alg. 45 selects ’n samples to get ’ samples for each of the ’n families’ families
from the provided generator (fresh dataset) excluding samples present in the ’other ’ set (if pro-
vided). In order to do this, the function cycles through the provided generator and gets the shas,
labels, features and embedding of the samples not in the ’other ’ set and then selects, for each
family, as many samples as possible until all families have exactly ’n samples to get ’ samples.

108

Proposed Models

Algorithm 45 Get Samples function

1: function GetSamples(model, generator, n families, n samples to get, other)
2: samples ← None
3: samples families ← [0 ∀ ∈ range(n families)]
4:

5: for all shas, features, labels ∈ generator do
6: if other is not None then
7: indices ← [i ∀ i, sha ∈ enumerate(shas) if sha not in other [’shas’]]
8: shas ← [shas[i] ∀ i ∈ indices]
9: features ← features[indices]

10: labels ← labels[indices]
11: end if
12:

13: embeddings ← model.GetEmbedding(features)[’embedding’]
14: for all n ∈ range(n families) do
15: if samples families[n] ≥ n samples to get then continue
16: end if
17:

18: indices ← [i ∀ i, label ∈ enumerate(labels) if label = n]
19: indices ← indices[:n samples to get] if len(indices) > n samples to get else indices
20: if samples is None then
21: samples ← {’shas’: shas[indices],
22: ’labels’: labels[indices],
23: ’features’: features[indices],
24: ’embeddings’: embeddings[indices]}
25: else
26: samples[’shas’].extend(shas[indices])
27: samples[’labels’].extend(labels[indices])
28: samples[’features’].extend(features[indices])
29: samples[’embeddings’].extend(embeddings[indices])
30: end if
31:

32: samples families[n] ← samples families[n] + len(indices)
33: end for
34:

35: if all(n ≥ n samples to get ∀ n ∈ samples families) then break
36: end if
37: end for
38:

39: return samples
40: end function

Fresh Results Computation and Plotting

Figure 6.5: MTJE Fresh Results Computation and Plotting Workflow step
109

Proposed Models

The actual trends of the binary cross entropy statistics for the f-way malware family classification
task (Accuracy, Recall, precision etc..) and the resulting AUC-ROC scores are computed, plotted
and saved to file by a distinct set of functions which are not presented in this document given
that they simply implement and apply the corresponding mathematical formulas.

6.2 Malware Family Classifier

Given the MTJE model relatively poor results in the Malware Family Classification task (which
it was never trained for), the next step was the development of a Malware Family Classifier
specifically trained (and tested) on the Fresh Dataset - which contains information about the
malware family each sample belongs to - for such task. However, this dataset, which contains
10.000 samples divided in 7.000 training, 1.000 validation and 2.000 test samples, is arguably too
small to produce a general enough model able to reliably predict the family label for each malware
sample without overfitting on the training sub-split. This problem was therefore tackled with the
aid of transfer learning.

Transfer Learning (TL) is a machine learning (ML) technique, especially popular in deep
learning, that focuses on storing knowledge gained while solving one problem and applying it to
a different but related problem. Transfer Learning is usually defined in terms of domains and
tasks. A domain D consists of: a feature space X and a marginal probability distribution P (X),
where X = {x1...., xn} ∈ X . Given a specific domain, D = {X , P (X)}, a task consists of two
components: a label space Y and an objective predictive function f : X → Y. The function
f is used to predict the corresponding label f(x) of a new instance x. This task, denoted by
T = {Y, f(x)}, is learned from the training data consisting of pairs {xi, yi}, where xi ∈ X and
yi ∈ Y. Given a source domain DS and learning task TS , a target domain DT and learning task
TT , where DS /= DT , or TS /= TT , transfer Learning aims to help improve the learning of the
target predictive function fT (·) in DT using the knowledge in DS and TS . In practice, when using
transfer learning, a base network is first trained on a base (large) dataset solving a specific task,
and then the learned features are repurposed, or transferred, to a second target network to be
trained on a target dataset and task.

Transfer Learning is typically exploited in one of the following two ways:

❼ Feature Extraction. In this case, the latent representations learned by a previous network
- trained on the source domain to solve the source task - are used to extract meaningful
features from new samples. A new classifier is then simply added on top of the pre-trained
model and trained from scratch on the target domain, to solve the target task. Given that
the shared base network already contains features that are generically useful for classifying
samples, it is not needed to re(train) the entire model.

❼ Fine Tuning. Here, a few of the last layers of a frozen pre-trained model base are un-freezed
and jointly trained together with the newly-added classifier layers. The higher-order feature
representations are thus fine-tuned in the model base topology in order to make them more
relevant for the specific target task.

The intuition behind using Transfer Learning in this context is the following: a model trained
on a large and general enough dataset of PE samples (such as the MTJE model trained on Sorel-
20m dataset) could effectively serve as a generic model of the world of PE files. These learned
feature representations can then be taken advantage of while solving the different but related task
of Malware Family Classification without having to start from scratch by training a model on a
large dataset. This in turn should make it possible to train a Malware Family Classifier using the
relatively small Fresh Dataset while obtaining meaningful results.

A Malware Family Classifier was thus constructed by adding a multi-class classifier sub-network
on top of the PE embedding layer of the trained MTJE model - thus exploiting the learned
embedding representation of PE files. The resulting model was trained (and validated) on the
training (and validation) sub-split of the fresh dataset such that the imported MTJE model
parameters are just fine-tuned while those of the newly added classifier are learned from scratch.

110

Proposed Models

This practice should provide improved results in the Malware Family Classification task with
respect to using just the MTJE model learned representation of PE files (as presented in last
section) as well as with respect to a similarly complex family classifier trained entirely from scratch
with the ’small ’ fresh dataset.

In order to evaluate the effectiveness of this approach with respect to simply training an
equivalent family classifier entirely from scratch, two models were defined and trained with the
same model hyper-parameters (learning rate, number of layers, etc.) and for the same amount of
epochs: one had some of its parameters imported from a pre-trained MTJE model and fine-tuned
while the other was trained entirely from scratch. The resulting two models were then evaluated
by recording and comparing their accuracy and some micro (global average), macro (unweighted
per-class average) and weighted (per-class average, weighted by support) multi-class classification
statistics such as Jaccard-score, recall, precision and f1-score along with the corresponding AUC-
ROC scores.

6.2.1 Implementation

Figure 6.6: Family Classifier Model architecture

As shown in figure 6.6, the Malware Family Classifier model architecture consists of 3 main
topologies: the Shared Model Base topology, the PE Embedding layer and the Family Classifier
output head.

In particular, the Shared Base topology and the PE Embedding layer are defined to be equal
to those used by the MTJE model (and Joint Embedding Model) implementation. This is
done in order to be able to apply transfer Learning by importing the model parameters from a
previous MTJE model training run on the Sorel-20m dataset. These parameters can be then
fine-tuned (further optimized) on the new family classification task using samples from the fresh
dataset. On the other hand, the Family Classifier output head, which is built on top of the PE
Embedding layer, is new and its parameters are therefore always learned from scratch.

The Family Classifier topology consists of 5 dense blocks of output sizes 128, 256, 128, 64 and
10, respectively. These dense blocks are designed in the same way as the ones used in the MTJE
model base topology - a linear layer with dropout, followed by batch normalization and ReLU
activation function - but for the last one which simply consists of a simple linear layer trailed by
the Sigmoid non-linearity. As always, at network definition it is possible to dynamically set the
hyper-parameters for this topology (as well as for the shared base topology) such as the exact size
and number of layers, the dropout probability pd, the normalization function and the activation
function used. However, most of the hyper-parameters for the Family classifier topology are
shared with the model shared base with the exception of the size and number of layers, which
can be independently set. The Family classifier output head transforms a given input sample PE
embedding (of size 32) into a set of 10 class scores (one per family) which can be used to produce
the family label probabilities by applying the softmax function. The final family prediction, for
each sample, is then computed by taking the family label with the highest score/probability. The

111

Proposed Models

loss between the family class output prediction ffam(x) and the ground truth family label yfam,
on the other hand, is computed using the Pytorch Cross Entropy Loss function. This corresponds
to computing the mean of the per-sample losses as depicted by equation 6.1.

L =

PN
i=1 L(i, yfami

)

N
(6.1)

where N is the total number of samples for the current training mini-batch and L(i, yfami
) is the

loss for sample i having ground truth family label yfami
as defined in equation 6.2.

L(x, fam) = − log

ex[fam]P

j e
x[j]

!
= −x[fam] + log

X
j

ex[j]

 (6.2)

where x[j] denotes the sample class score for family j.

Net Definition

Algorithm 46 Malware Family Classifier Net class, Init function, part 1

1: class Net
2: function Init(self, families, feature dimension, embedding dimension, layer sizes,

fam class layer sizes, dropout p, activation function, normalization function)
3:

4: self.families ← families
5: self.n families ← len(families)
6: self.encoded families ← [idx ∀ idx ∈ range(self.n families)]
7: self.embedding dimension ← embedding dimension
8: self.loss criterion ← nn.CrossEntropyLoss()
9: layers ← []

10: fam class layers ← []
11: if layer sizes is None then
12: layer sizes ← [512, 512, 128]
13: end if
14:

15: if fam class layer sizes is None then
16: fam class layer sizes ← [64, 32]
17: end if
18:

19: for all i, ls ∈ enumerate(layer sizes) do
20: if i = 0 then
21: layers.append(nn.Linear(feature dimension, ls))
22: else
23: layers.append(nn.Linear(layer sizes[i −1], ls))
24: end if
25:

26: layers.append(normalization function(ls))
27: layers.append(activation function())
28: layers.append(nn.Dropout(dropout p))
29: end for
30:

31: self.model base ← nn.Sequential(*tuple(layers))
32: self.sigmoid ← nn.Sigmoid()
33:

34: self.pe embedding ← nn.Sequential(
35: nn.Linear(layer sizes[-1], self.embedding dimension),
36: normalization function(self.embedding dimension),
37: activation function())
38: ▷ Continues on next page..

112

Proposed Models

Algorithm 47 Malware Family Classifier Net class, Init function, part 2

39: ▷ Continued from previous page..
40: for all i, ls ∈ enumerate(fam class layer sizes) do
41: if i = 0 then
42: fam class layers.append(nn.Linear(embedding dimension, ls))
43: else
44: fam class layers.append(nn.Linear(fam class layer sizes[i −1], ls))
45: end if
46:

47: fam class layers.append(normalization function(ls))
48: fam class layers.append(activation function())
49: fam class layers.append(nn.Dropout(dropout p))
50: end for
51:

52: fam class layers.append(nn.Linear(fam class layer sizes[-1], self.n families))
53: self.family classifier ← nn.Sequential(*tuple(fam class layers))
54: self.softmax output ← nn.Softmax(dim=1)
55: end function

Algorithms 46-47 (Malware Family Classifier, Init function) shows how the Family Clas-
sifier model is initialized. In particular the function first defines the model shared base topology
(model base) as a sequence of blocks composed each of a linear layer, a Normalization layer, an
Activation function and dropout, exactly as previously done in the MTJE model implementation.
Next, the pe embedding topology is constructed as a single linear layer with output size equal to
the embedding dimension (= 32), followed by a Normalization layer and an Activation function.
Thereafter, the function defines the Family Classifier topology as a sequence of dense blocks -
equal to the ones used in the shared base part - trailed by a final linear layer of output size equal
to the number of family labels (= 10) and, optionally, a Softmax non-linearity.

Algorithm 48 Malware Family Classifier Net class, Forward function

56: function Forward(self, data)
57: base out ← self.model base(data)
58: pe embedding ← self.pe embedding(base out)
59: scores ← self.family classifier(pe embedding)
60: rv ← {’scores’: scores,
61: ’probs’: self.softmax output(scores)}
62:

63: return rv
64: end function

Algorithm 48 (Malware Family Classifier, Forward function), on the other hand, shows
how the input data (numerical feature vectors of PE files) is forwarded through the model. In
particular, the function feeds the model base topology (model base) with the input data producing
an intermediate representation base out. This intermediate representation is then forwarded to
the pe embedding subnet which outputs the PE latent representation of the input samples (of size
32). At the beginning of the family classifier model training procedure, the mapping function
between the features of the input samples and the produced PE embeddings corresponds, if
transfer Learning was applied, to the one learned by the MTJE model using the Sorel-20m
dataset. The output class (family) scores are computed by feeding the Family classifier topology
with the produced PE embeddings. Finally, the family label probabilities are simply obtained by
applying the Softmax function to the previously computed family scores.

Finally, as presented by algorithm 49 (Malware Family Classifier, ComputeLoss func-
tion), the loss between the predicted family scores and the ground truth family label is simply
computed by applying the selected loss criterion, which corresponds in this case to the Pytorch
cross entropy loss function.

113

Proposed Models

Algorithm 49 Malware Family Classifier Net class, Compute Loss function

65: function ComputeLoss(self, predictions, labels, loss wts)
66:

67: return self.loss criterion(predictions[’scores’], labels)
68: end function
69: end class

6.2.2 Experiments

The resulting model was trained (and validated) for 25 epochs on the training and validation
sub-splits of the Fresh Dataset using different numbers of layers and numbers of nodes per layer
(layer sizes) for the Family classifier additional output head while keeping the same model shared
base topology inherited by the previously described MTJE model implementation. Moreover,
both the Adam and SGD optimizers were used in separate family classifier training runs with
various combinations of learning rates (LR), momentum, weight decay and loss weights. The
model which performed best during validation was then evaluated on the test sub-split of the
Fresh Dataset producing the corresponding accuracy and multi-class classification micro (global
average), macro (unweighted per-class average) and weighted (per-class average, weighted by
support) scores such as Jaccard Similarity, recall, precision, f1 score, as well as the resulting OVO
(One Vs. One) and OVR (One Vs. Rest) AUC-ROC scores.

The final Family Classifier output head architecture consisted of 5 layers of sizes 128, 256, 128,
64, and 10 respectively, with dropout probability pd = 5% and ReLU activation function and was
trained with a learning rate LR = 10−3, Adam optimizer, no momentum, weightdecay = 0.01
and batchsize = 250.

The evaluation results of the Family Classifier model implementation in the Malware Family
classification task are reported in chapter 7.

6.2.3 Family Classifier Training and Evaluation algorithms

Figure 6.7: Family Classifier Training and Evaluation Workflow steps

Algorithms 50-51 (Family Classifier Train function) and 52 (Family Classifier Evaluate
function) show how the Family Classifier model implementation gets trained and evaluated
using samples from the Fresh Dataset.

114

Proposed Models

Family Classifier Training

Figure 6.8: Family Classifier Training Workflow step

Algorithm 50 Family Classifier Train function, part 1

1: function TrainNetwork(fresh ds path, checkpoint path, batch size, epochs,
train split proportion, valid split proportion, test split proportion, workers, ...)

2:

3: split proportions ← [train split proportion,
4: valid split proportion,
5: test split proportion]
6:

7: train gen, valid gen, ← get generator(fresh ds path,
8: splits=split proportions,
9: batch size=batch size,

10: return shas=True,
11: num workers=workers, ..)
12:

13: model ← Family Net(families=[label to sig(lab) ∀ lab ∈ range(n families)],
14: feature dimension=2381,
15: embedding dimension=32,
16: layer sizes=run params[’layer sizes’],
17: fam class layer sizes=run params[’fam class layer sizes’],
18: dropout p=run params[’dropout p’],
19: activation function=run params[’activation function’],
20: normalization function=run params[’normalization function’])
21:

22: if checkpoint path is not None then
23: model.load state dict(checkpoint path, strict=False)
24: parameters to optimize ← [
25: {’params’: model.family classifier.parameters()},
26: {’params’: model.pe embedding.parameters(), ’lr’: run params[’lr’] / 10},
27: {’params’: model.model base.parameters(), ’lr’: run params[’lr’] / 10}
28:]
29: else
30: parameters to optimize ← model.parameters()
31: end if
32:

33: opt ← run params[’optimizer’](parameters to optimize, run params[’lr’],
34: run params[’weight decay’], run params[’momentum’])
35: scheduler ← MultiStepLR(opt, milestones=[(3 × epochs) // 4], gamma=0.1)
36:

37: ▷ Continues on next page..

115

Proposed Models

Algorithm 51 Family Classifier Train function, part 2

38: ▷ Continued from previous page..
39: for all epoch ∈ range(epochs) do
40: model.train()
41:

42: for all shas, features, labels ∈ train gen do
43: opt.zero grad()
44: out ← model(features)
45: loss ← model.ComputeLoss(out, labels)
46: preds ← [argmax(line) ∀ line ∈ out [’scores’]]
47: accuracy ← sum(1 ∀ i, pred ∈ enumerate(preds) if pred = labels[i]) / len(labels)
48: log(loss)
49: log(accuracy)
50: loss.backward()
51: opt.step()
52: end for
53:

54: scheduler.step()
55: model.eval()
56:

57: for all shas, features, labels ∈ valid gen do
58: torch.no grad()
59: out ← model(features)
60: loss ← model.ComputeLoss(out, labels)
61: preds ← [argmax(line) ∀ line ∈ out [’scores’]]
62: accuracy ← sum(1 ∀ i, pred ∈ enumerate(preds) if pred = labels[i]) / len(labels)
63: log(loss)
64: log(accuracy)
65: end for
66:

67: model.save()
68: end for
69: end function

The Family Classifier Training function, as shown in alg. 50-51, first opens and loads the
Fresh Dataset splitting it in training, validation and test subsets following the selected proportions.
The Family Classifier model then gets instantiated by providing the necessary parameters to its
init function. Next, if a checkpoint of a MTJE model training run is provided, it is used to
initialize the state parameters of the shared base topology and PE embedding layer of the newly
instantiated Family Classifiermodel. Then, the learning rates for the parameters of the different
parts of the model architecture are set such that those of the shared base and PE embedding
topologies ones are just fine-tuned while training the model (by using a smaller learning rate).
Then, the selected optimizer (Adam or SGD) gets instantiated given the model parameters,
selected learning rate, weight decay and momentum. At this point a scheduler is also instantiated
with the purpose of modifying the learning rate (multiplying it by 0.1) after 3/4 of the total
number of epochs. After these preliminary steps, the function trains (and validates) the Family
Classifier model for ’epochs’ epochs. More specifically, at each epoch, the model is set into
training mode and then, for all the mini-batches of data randomly sampled from the fresh dataset
training generator, the input features are fed into the model to obtain the corresponding output
class (family) scores. Next, the loss between the predicted class scores and the ground truth
family labels is computed and used to produce the gradients which are back-propagated through
the network. Moreover, the function also computes the predicted family label by selecting, for each
sample, the family label with the maximum class score, and the model accuracy for the current
mini-batch by dividing the number of correct predictions by the total amount of predictions.
Then, the previously computed model loss and accuracy are logged and the model is set into
validation mode after having updated the scheduler. Finally, for each mini-batch of data from the
fresh dataset validation generator, the function computes and logs the model loss and accuracy.

116

Proposed Models

Family Classifier Evaluation

Figure 6.9: Family Classifier Evaluation Workflow step

Algorithm 52 Family Classifier Evaluate function

1: function EvaluateNetwork(fresh ds path, checkpoint path, batch size,
train split proportion, valid split proportion, test split proportion, workers, ...)

2:

3: split proportions ← [train split proportion,
4: valid split proportion,
5: test split proportion]
6:

7: , , test gen ← get generator(fresh ds path,
8: splits=split proportions,
9: batch size=batch size,

10: return shas=True,
11: num workers=workers, ..)
12:

13: model ← Family Net(families=[label to sig(lab) ∀ lab ∈ range(n families)],
14: feature dimension=2381,
15: embedding dimension=32,
16: layer sizes=run params[’layer sizes’],
17: fam class layer sizes=run params[’fam class layer sizes’],
18: dropout p=run params[’dropout p’],
19: activation function=run params[’activation function’],
20: normalization function=run params[’normalization function’])
21:

22: model.load state dict(checkpoint path)
23: model.eval()
24:

25: for all shas, features, labels ∈ test gen do
26: out ← model(features)
27: preds ← [argmax(line) ∀ line ∈ out [’scores’]]
28: accuracy ← sum(1 ∀ i, pred ∈ enumerate(preds) if pred = labels[i]) / len(labels)
29: log(accuracy)
30: save to file(labels, out [’probs’])
31: end for
32: end function

Algorithm 52 (Family Classifier Evaluation function) shows how the Family Classifier
model evaluation function is implemented in Python/Pytorch code. In particular, the function
first opens and loads the Fresh Dataset splitting it in training, validation and test subsets following
the selected proportions, as done by the training function. The Family Classifier model then gets

117

Proposed Models

instantiated by providing the necessary arguments to its init function and the checkpoint state
parameters from a previous training run are loaded. Thereafter, the model is set into evaluation
mode and, for all the mini-batches of data from the Fresh Dataset test generator, the model
predictions, overall accuracy and family label probabilities are computed and saved to file/logged.

Family Classifier Results Computation and Plotting

Figure 6.10: Family Classifier Results Computation and Plotting Workflow step

The Family classifier evaluation micro (global average), macro (unweighted per-family average)
and weighted (per-family average, weighted by support) scores, such as Jaccard similarity score,
recall, precision and f1-score, are computed and saved to file, together with the resulting OVO
(One Vs. One) and OVR (One Vs. Rest) AUC-ROC scores and confusion matrix, by a distinct
set of functions - which simply apply the respective mathematical formulas - not presented in this
document.

6.3 Contrastive Learning Model

Although the Family Classifier presented in the previous section manages to provide better re-
sults in the malware family prediction/classification task compared to the original MTJE model
learned representation of PE files, it still presents some limitations. One of the shortcomings
of such model is the fact that, since the family prediction is obtained by applying the softmax
function on the model output tensor - of fixed size - which contains the per-family probabilities, it
only works when a fixed number of families is defined. At model deployment time, however, it is
very much convenient for malware analysts and system administrators to have a model that works
with an indefinite number of malware families. In fact, with the ever increasing number of new
malware families and variants that are appearing every day it is important to allow some degree
of flexibility to the model by enabling the periodic updating of the model learned parameters
with up-to-date samples even belonging to malware families never seen before. Furthermore, the
Family Classifier model directly produces the malware family prediction and therefore cannot be
used to produce rankings or to query samples based on their similarity to some anchor. However,
these are very useful tasks in the field of Information Security since they allow to quickly obtain
samples similar to the currently analysed one, facilitating its study.

A new model was therefore introduced consisting of a Siamese Network which refines, in a
contrastive learning setting, the implicit representation of PE files learned by a previous MTJE
model training run on the Sorel20M dataset with the aid of Transfer Learning. In particular, this
was done by training the new model on the training subset of the Fresh Dataset using as loss
function the Triplet Loss.

The Triplet loss is a loss function frequently used in image recognition which was first
introduced by the paper [55] from Google for solving the face recognition task.

118

Proposed Models

In this project the Triplet loss was used in order to learn good embeddings for the input PE
files such that, in the embedding space, PE files from the same family are close to each other and
form well separated clusters.

The goal of the Triplet loss is to make sure that:

❼ Two examples with the same label have their embeddings close to each other in the embed-
ding space

❼ Two examples with different labels have their embeddings far away

At the same time, the loss function should not push the training embeddings of each label to
collapse into very small clusters during training.

The Triplet loss function is defined over triplets of embeddings:

❼ an anchor sample ’a’

❼ a positive sample ’p’ of the same class as the anchor

❼ a negative sample ’n’ of a different class

Therefore the loss to minimize during training, given a triplet (a, p, n) and a distance func-
tion d(a, b) between two data points a and b (which was set to be the Squared Euclidean Norm
throughout the experiments), is:

L = max(d(a, p)− d(a, n) +margin, 0) (6.3)

This pushes the distance d(a, p) to 0 and d(a, n) to be greater than d(a, p)+margin. Moreover,
as soon as ’n’ becomes an ’easy negative’ the loss becomes 0. The margin present in the triplet
loss, which is very similar to the margin used in SVMs, here is used to separate the clusters of
each class.

Given how the triplet loss was defined there are three categories of triplets:

❼ Easy triplets: triplets which have a loss of 0, because d(a, p) +margin < d(a, n)

❼ hard triplets: triplets where the negative is closer to the anchor than the positive, i.e.
d(a, n) < d(a, p)

❼ semi-hard triplets: triplets where the negative is not closer to the anchor than the positive,
but which still have positive loss: d(a, p) < d(a, n) < d(a, p) +margin

Since each of these definitions depend on where the negative is, relatively to the anchor and
positive, the previously defined categories can be extended to the negatives samples: hard neg-
atives, semi-hard negatives or easy negatives.

There are two possible approaches to produce triplets from a dataset of samples belonging to
different classes:

❼ Offline Triplet Mining: following this approach the triplets are produced offline at the
beginning of each epoch. In particular, all the embeddings on the training set are computed,
and then only the hard or semi-hard triplets are selected. These triplets can then be used
to train the model for one epoch.

In practice, first a list of triplets (i, j, k) is produced, then a series of batches of these triplets
of size B is created. This means that during training it is needed to compute 3B embeddings
to get the B triplets, compute the loss of these B triplets and then back-propagate it through
the network.

This makes this approach not very efficient since it requires a full pass on the training set
to generate triplets and to update the offline mined triplets regularly.

119

Proposed Models

❼ Online Triplet Mining: following this approach the useful triplets are computed on the
fly, for each batch of inputs. In practice, given a batch of B examples (for instance B PE
files), B embeddings are computed obtaining a maximum of B3 triplets, most of which are
not valid. In particular a triplet (i, j, k), with i, j, k ∈ [1, B], is said to be valid if samples
i and j have the same label but are distinct, and sample k has a different label.

This technique provides more triplets for a single batch of inputs, and does not require any
offline mining. It is therefore much more efficient.

The approach chosen for this project is that of Online Triplet Mining since it is more effi-
cient and doesn’t require substantial (if any) modifications to the current Fresh Dataset dataloader
implementation.

When using Online Triplet Mining, supposing to have a batch of input samples of size
B = FK, composed of F different families with K samples each, there are two possible strategies
to pick triplets among the valid ones to be used to compute the loss of the model:

❼ Batch All: in this case all the valid triplets are selected and the resulting loss is averaged
only on the hard and semi-hard triplets. It is crucial in this case to not take into account
the easy triplets (those with loss 0), as averaging on them would make the overall loss very
small. This strategy therefore produces a total of FK(K − 1)(FK −K) triplets with FK
anchors, K − 1 possible positives per anchor and FK −K possible negatives.

❼ Batch Hard: in this case, on the other hand, only the hardest positive (with the biggest
distance d(a, p)) and the hardest negative (with the smallest distance d(a, n)) among the
batch are selected. This strategy thus produces FK triplets which are the hardest among
the batch. Some papers, such as [56], affirm that the batch hard strategy generally yields
the best performance among the two, however this really depends on the dataset and task
it is used for. In any case this strategy is generally less stable than the other and renders
the model harder to optimize.

Both strategies were implemented and used in different experiments to train the new siamese
model. However, only the results of the Batch All strategy, which led to the best validation
performance, are reported in chapter 7.

6.3.1 Implementation

Figure 6.11: Contrastive Learning Model architecture

120

Proposed Models

The Contrastive Learning Model, as explained in the previous section and as it is shown
in figure 6.11, theoretically consists of a Siamese network obtained by duplicating the Shared
Model Base and PE Embedding layer of the MTJE model in order to effectively have one
model per triplet element. Being a Siamese network, the inner weights of the parallel models
are shared during all phases of the training procedure (forward pass, gradients computation and
back-propagation) and are jointly optimized in order to minimize the Triplet loss. Following this
interpretation, each of these parallel models gets as input one sample - an anchor, a positive and a
negative, respectively - and outputs the corresponding PE Embedding (of size 32). The Triplet
loss is then computed on those 3 embeddings and used for optimizing the model - following the
selected triplet mining strategy - only if the current triplet is valid.

Figure 6.12: Contrastive Learning Online Model architecture

However, as shown in figure 6.12, it is much more convenient to consider the siamese model
as a single model which takes as input, at different times, the elements of a triplet - an anchor,
a positive and a negative - and outputs the corresponding PE Embeddings (of size 32). The
Triplet loss is then computed on those 3 embeddings and it is used to optimize the (single)
model parameters. In practice, for every batch of data from the Fresh Dataset each sample is
passed through the model to obtain the corresponding PE Embedding, then all the possible
combinations of 3 embeddings that produce valid triplets (or only the hardest ones, depending on
the selected triplet mining strategy) are generated and used as input to the Triplet loss function.

Overall, the model is therefore simply composed of a Shared Model Base topology and a
PE embedding layer situated on top of it, which are identical to the ones used in the previously
defined MTJE model. This is done in order to be able to apply Transfer Learning by importing
the model parameters from a previousMTJEmodel training run on the Sorel-20m dataset. These
parameters can then be fine-tuned (further optimized) by minimizing the Triplet loss function
using samples from the training subset of the Fresh Dataset, thus generating a better implicit
representation of PE files (PE Embedding) belonging to the same domain as those in the test
subset of the Fresh Dataset.

After training, the learned Embeddings of PE files can be evaluated on the malware family
prediction/classification and ranking tasks in a similar way as it was done when evaluating the
MTJE model learned embeddings on the same tasks.

Net Definition

As presented by algorithm 53 (Contrastive Learning Model, Init function), the Contrastive
(Siamese) Model is initialized by first defining the model shared base topology (model base) as a
sequence of blocks composed each of a linear layer, a Normalization layer, an Activation function
and dropout, exactly as previously done for the MTJE model (and Family Classifier) imple-
mentation. Next, the pe embedding topology is defined as a single linear layer with output size

121

Proposed Models

equal to the embedding dimension (= 32), followed by a Normalization layer and an Activation
function.

Algorithm 53 Contrastive Learning Model Net class, Init function

1: class Net
2: function Init(self, feature dimension, embedding dimension, layer sizes, dropout p, acti-

vation function, normalization function)
3:

4: self.embedding dimension ← embedding dimension
5: layers ← []
6: if layer sizes is None then
7: layer sizes ← [512, 512, 128]
8: end if
9:

10: for all i, ls ∈ enumerate(layer sizes) do
11: if i = 0 then
12: layers.append(nn.Linear(feature dimension, ls))
13: else
14: layers.append(nn.Linear(layer sizes[i −1], ls))
15: end if
16:

17: layers.append(normalization function(ls))
18: layers.append(activation function())
19: layers.append(nn.Dropout(dropout p))
20: end for
21:

22: self.model base ← nn.Sequential(*tuple(layers))
23: self.pe embedding ← nn.Sequential(
24: nn.Linear(layer sizes[-1], self.embedding dimension),
25: normalization function(self.embedding dimension),
26: activation function())
27: end function

The input data (numerical feature vectors of PE files) is forwarded through the model as
shown in alg. 54 (Contrastive Learning Model, Forward function). In particular, it first
passes through the model base topology (model base) to produce an intermediate representation
base out which is then forwarded to the pe embedding subnet which outputs the corresponding
PE Embedding (of size 32). At the beginning of the Contrastive Model training procedure, the
mapping function between the features of the input samples and the produced PE embeddings
corresponds, if transfer Learning was applied, to the one learned by the MTJE model using the
Sorel-20m dataset.

Algorithm 54 Contrastive Learning Model Net class, Forward function

28: function Forward(self, data)
29: base out ← self.model base(data)
30: pe embedding ← self.pe embedding(base out)
31:

32: return pe embedding
33: end function
34: end class

6.3.2 Experiments

The Contrastive (Siamese) model defined in the previous section was trained (and validated) for
25 epochs on the training and validation subsets of the Fresh Dataset using different combinations
of learning rates (LR), momentum, weight decay, Online Triplet Mining strategy (between Batch

122

Proposed Models

Hard and Batch All) and margin while keeping the same model shared base topology inherited
by the previously described MTJE model implementation. Moreover, both the Adam and SGD
optimizers were used in different runs. The model which performed best during validation was
then evaluated using the test subset of the Fresh Dataset first on the malware family prediction/-
classification task - using the Distance Weighted k-NN approach with different values of k -
producing the corresponding accuracy and multi-class classification micro (global average), macro
(unweighted per-class average) and weighted (per-class average, weighted by support) scores such
as the Jaccard Similarity, recall, precision and f1 score along with the corresponding confusion
matrixes. The same model was then also evaluated, again using the test subset of the Fresh
Dataset, on the family ranking task producing the corresponding ranking MRR and MAP scores,
along with some example rankings which produced the best and worst AP (Average Precision)
and RR (Reciprocal Rank).

The final Contrastive (Siamese) model was trained with a learning rate LR = 0.01, Adam
optimizer, weight decay = 0.1, batch size = 250, no momentum, using the Batch All Online
Triplet Mining strategy with margin = 0.3, rank size = 100, knn k min = 1, knn k max = 11
and using the squared euclidean norm as distance function.

The evaluation results of the Contrastive (Siamese) model implementation in the malware
family classification and ranking tasks are reported in chapter 7.

6.3.3 Contrastive Learning Model Training and Evaluation algorithms

Figure 6.13: Contrastive Model Training and Evaluation Workflow steps

Algorithms 55-56 (Contrastive Model Train function) and 62-63 (Contrastive Model Eval-
uate function) show how the Contrastive Model implementation gets trained and evaluated
using samples of the Fresh Dataset.

123

Proposed Models

Contrastive Learning Model Training

Figure 6.14: Contrastive Model Training Workflow step

Algorithm 55 Contrastive Learning Model Train function, part 1

1: function TrainNetwork(fresh ds path, checkpoint path, batch size, epochs,
train split proportion, valid split proportion, test split proportion, workers, ...)

2:

3: split proportions ← [train split proportion,
4: valid split proportion,
5: test split proportion]
6:

7: train gen, valid gen, ← get generator(fresh ds path,
8: splits=split proportions,
9: batch size=batch size,

10: return shas=True,
11: num workers=workers, ..)
12:

13: model ← Contrastive Net(
14: feature dimension=2381,
15: embedding dimension=32,
16: layer sizes=run params[’layer sizes’],
17: dropout p=run params[’dropout p’],
18: activation function=run params[’activation function’],
19: normalization function=run params[’normalization function’])
20:

21: if checkpoint path is not None then
22: model.load state dict(checkpoint path, strict=False)
23: parameters to optimize ← [
24: {’params’: model.pe embedding.parameters(), ’lr’: run params[’lr’]},
25: {’params’: model.model base.parameters(), ’lr’: run params[’lr’] / 10}
26:]
27: else
28: parameters to optimize ← model.parameters()
29: end if
30:

31: opt ← run params[’optimizer’](parameters to optimize, run params[’lr’],
32: run params[’weight decay’], run params[’momentum’])
33: scheduler ← MultiStepLR(opt, milestones=[(3 × epochs) // 4], gamma=0.1)
34:

35: ▷ Continues on next page..

124

Proposed Models

Algorithm 56 Contrastive Learning Model Train function, part 2

36: ▷ Continued from previous page..
37:

38: for all epoch ∈ range(epochs) do
39: model.train()
40:

41: for all shas, features, labels ∈ train gen do
42: opt.zero grad()
43: pe embeddings ← model(features)
44: if run params[’hard’] then
45: loss ← BatchHardTripletLoss(labels, pe embeddings,
46: margin=run params[’margin’],
47: squared=run params[’squared’])
48: else
49: loss, pos fraction ← BatchAllTripletLoss(labels, pe embeddings,
50: margin=run params[’margin’],
51: squared=run params[’squared’])
52: log(pos fraction)
53: end if
54:

55: log(loss)
56: loss.backward()
57: opt.step()
58: end for
59:

60: scheduler.step()
61: model.eval()
62:

63: for all shas, features, labels ∈ valid gen do
64: torch.no grad()
65: pe embeddings ← model(features)
66: if run params[’hard’] then
67: loss ← BatchHardTripletLoss(labels, pe embeddings,
68: margin=run params[’margin’],
69: squared=run params[’squared’])
70: else
71: loss, pos fraction ← BatchAllTripletLoss(labels, pe embeddings,
72: margin=run params[’margin’],
73: squared=run params[’squared’])
74: log(pos fraction)
75: end if
76:

77: log(loss)
78: end for
79:

80: model.save()
81: end for
82: end function

In particular, as shown in alg. 55-56, the Contrastive Model training function first opens
and loads the Fresh Dataset splitting it into training, validation and test subsets following the
selected proportions. Then, the function instantiates the Contrastive Model itself by providing
the necessary parameters to the Contrastive Net class init method. Next, if a checkpoint of a
previous MTJE model training run is provided it is used to initialize the state parameters of the
shared base topology and PE embedding layer of the newly instantiated Contrastive Model.
Then, the learning rates for the parameters of the different parts of the model architecture are set
such that those of the shared base topology are just fine-tuned while training the model (by using a

125

Proposed Models

smaller learning rate). Then, the selected optimizer (Adam or SGD) gets instantiated given the
model parameters, selected learning rate, weight decay and momentum. At this point a scheduler
is also instantiated with the purpose of modifying the learning rates for the model parameters -
multiplying them by 0.1 - after 3/4 of the total number of epochs. After these preliminary steps,
the function trains (and validates) the Contrastive Model for ’epochs’ epochs. In particular,
at each epoch the model is set into training mode and then, for all the mini-batches of data
randomly sampled from the Fresh Dataset training generator, the features of the input samples
are fed into the model to obtain the corresponding pe embeddings. Next, according to the selected
Online Triplet Mining Strategy (Batch Hard or Batch All) the Triplet Loss is computed
using function BatchHardTripletLoss or BatchAllTripletLoss. The computed loss is then logged
and used to compute the gradients which are back-propagated through the network. Moreover, in
case the Batch All strategy is used, the function also computes and logs the fraction of positive
triplets mined (where triplet loss > 0) ’pos fraction’ which can be used as an additional indication
of model convergence since in such strategy the loss tends to oscillate and never settle. Finally,
the model is set into validation mode and for each mini-batch of data from the Fresh Dataset
validation generator the function computes and logs the triplet loss (and fraction of positive
triplets mined, if required) following the same Online Triplet Mining Strategy.

Algorithm 57 Batch Hard Triplet Loss function

1: function BatchHardTripletLoss(labels, embeddings, margin, squared)
2:

3: pairwise dist ← PairwiseDistances(embeddings, squared)
4:

5: mask anchor positive ← GetAnchorPositiveTripletMask(labels)
6: anchor positive dist ← torch.mul(mask anchor positive, pairwise dist)
7: hardest positive dist ← torch.max(anchor positive dist, dim=1, keepdim=True)[0]
8:

9: mask anchor negative ← GetAnchorNegativeTripletMask(labels)
10: max anchor negative dist ← torch.max(pairwise dist, dim=1, keepdim=True)[0]
11: anchor negative dist ← pairwise dist + max anchor negative dist
12: × (1.0 - mask anchor negative)
13: hardest negative dist ← torch.min(anchor negative dist, dim=1, keepdim=True)[0]
14:

15: triplet loss ← hardest positive dist - hardest negative dist + margin
16: triplet loss ← torch.maximum(triplet loss, torch.zeros like(triplet loss))
17: triplet loss ← torch.mean(triplet loss)
18:

19: return triplet loss
20: end function

Algorithm 57 (BatchHardTripletLoss function) describes how the Triplet loss is com-
puted when using the Batch Hard Online Triplet Mining Strategy. In particular, the Batch-
HardTripletLoss function begins by computing a 2D matrix called pairwise dist, which contains
the euclidean distances between all possible pairs of sample embeddings, by using function Pair-
wiseDistances. Next, the function finds the hardest positive for each anchor by computing a
2D mask of valid pairs (a, p) (such that a /= p and a and p have the same labels) using function
GetAnchorPositiveTripletMask, setting to 0 any element of matrix pairwise dist outside of the
mask and then selecting the pair (a, p) with maximum distance. The selected hardest positive
surely forms a valid pair since all invalid pairs have their distance set to 0 by the mask. The
function then finds the hardest negative by computing a 2D mask of pairs (a, n) using the
function GetAnchorNegativeTripletMask and selecting for each row the valid pair (a, n) with the
minimum distance. In this case, the invalid pairs are ignored in the selection of the hardest
negative by getting the maximum distance for each row of pairwise dist and then adding it to
all invalid pairs (a, n) of the same row. Finally, the function computes the actual Triplet loss by
averaging the result of formula 6.3 applied using the hardest positive and hardest negative for each
anchor sample.

126

Proposed Models

Algorithm 58 Get Anchor Positive Triplet Mask function

1: function GetAnchorPositiveTripletMask(labels)
2:

3: indices equal ← torch.eye(labels.size()[0]).bool()
4: indices not equal ← torch.logical not(indices equal)
5:

6: labels equal ← torch.eq(torch.unsqueeze(labels, 0), torch.unsqueeze(labels, 1))
7:

8: mask ← torch.logical and(indices not equal, labels equal)
9:

10: return mask
11: end function

Algorithm 59 Get Anchor Negative Triplet Mask function

1: function GetAnchorNegativeTripletMask(labels)
2:

3: labels equal ← torch.eq(torch.unsqueeze(labels, 0), torch.unsqueeze(labels, 1))
4:

5: mask ← torch.logical not(labels equal)
6:

7: return mask
8: end function

The previously mentioned GetAnchorPositiveTripletMask function, which returns a 2D
mask where mask[a, p] is True if and only if a and p are distinct and have the same label, is
detailed in alg. 58. This function first produces a 2D mask called indices not equal by selecting
the non-identical samples (inverting an identity matrix), then it produces a 2D mask named
labels equal by selecting the samples with equal label and finally applies the logical and function
to obtain the final 2D mask called mask.

The GetAnchorNegativeTripletMask function, on the other hand, returns a 2D mask
where mask[a, n] is True if and only if a and n have distinct labels, as shown in alg. 59. In
particular, it first produces a 2D mask called labels equal by selecting the samples with equal
label and then applies the logical not function to obtain the final 2D mask named mask.

The computation of the Triplet loss using the Batch All Online Triplet Mining Strategy is
described by algorithm 60 (BatchAllTripletLoss function). More specifically, the BatchAll-
TripletLoss function begins in a similar way as the BatchHardTripletLoss function by com-
puting a 2D matrix called pairwise dist containing the euclidean distances between all possible
pairs of sample embeddings, using function PairwiseDistances. It then creates a 3D tensor called
triplet loss of shape (B,B,B) where the element at index (i, j, k) contains the loss for triplet
(i, j, k). This 3D tensor thus contains the losses of all possible triplets. Next, the function gener-
ates a 3D mask named mask of valid triplets with function GetTripletMask which is used to set
to 0 the loss for all invalid triplets (where label(a) /= label(p) or label(n) = label(a) or a = p) in
the 3D matrix named triplet loss. Finally, the function removes the negative losses (i.e. the easy
triplets), calculates the fraction of positive triplets (where triplet loss > 0) with respect to the
valid ones and computes the final Triplet loss by averaging over the positive triplets.

The GetTripletMask function, as described by algorithm 61, returns a 3D mask where
mask[a, p, n] is True if and only if the triplet (a, p, n) is valid, where a triplet (i, j, k) is considered
valid if i, j and k are distinct and labels[i] = labels[j] and labels[i] /= labels[k]. More specifically,
the function first creates 3 3D masks named i not equal j, i not equal k and j not equal k, respec-
tively, by extending a 2D mask called indices not equal obtained by selecting the non-identical
samples (inverting an identity matrix). These 3 masks are then combined using the logical and
function to create the 3D mask named distinct indices which is used to select the triplets where
samples i, j and k are distinct. The function then creates 2 more 3D masks called i equal j and
i equal k by extending a 2D mask named label equal obtained by selecting the samples with the

127

Proposed Models

same label. These 2 masks are then combined using the logical and function after having in-
verted the i equal k mask to produce the 3D mask called valid labels which is used to select the
triplets where labels[i] = labels[j] and labels[i] /= labels[k]. Finally, the function combines the
distinct indices and valid labels masks using the logical and function to obtain the final 3D mask
called mask.

Algorithm 60 Batch All Triplet Loss function

1: function BatchAllTripletLoss(labels, embeddings, margin, squared)
2:

3: pairwise dist ← PairwiseDistances(embeddings, squared)
4:

5: anchor positive dist ← torch.unsqueeze(pairwise dist, 2)
6: anchor negative dist ← torch.unsqueeze(pairwise dist, 1)
7:

8: triplet loss ← anchor positive dist - anchor negative dist + margin
9:

10: mask ← GetTripletMask(labels)
11: triplet loss ← torch.mul(mask, triplet loss)
12:

13: triplet loss ← torch.maximum(triplet loss, torch.zeros like(triplet loss))
14:

15: valid triplets ← torch.gt(triplet loss, 1e-16)
16: num positive triplets ← torch.sum(valid triplets)
17: num valid triplets ← torch.sum(mask)
18: fraction positive triplets ← num positive triplets / (num valid triplets + 1e-16)
19:

20: triplet loss ← torch.sum(triplet loss) / (num positive triplets + 1e-16)
21:

22: return triplet loss, fraction positive triplets
23: end function

Algorithm 61 Get Triplet Mask function

1: function GetTripletMask(labels)
2:

3: indices equal ← torch.eye(labels.size()[0]).bool()
4: indices not equal ← torch.logical not(indices equal)
5: i not equal j ← torch.unsqueeze(indices not equal, 2)
6: i not equal k ← torch.unsqueeze(indices not equal, 1)
7: j not equal k ← torch.unsqueeze(indices not equal, 0)
8:

9: distinct indices ← torch.logical and(
10: torch.logical and(i not equal j, i not equal k), j not equal k)
11:

12: label equal ← torch.eq(torch.unsqueeze(labels, 0), torch.unsqueeze(labels, 1))
13: i equal j ← torch.unsqueeze(label equal, 2)
14: i equal k ← torch.unsqueeze(label equal, 1)
15:

16: valid labels ← torch.logical and(i equal j, torch.logical not(i equal k))
17:

18: mask ← torch.logical and(distinct indices, valid labels)
19:

20: return mask
21: end function

128

Proposed Models

Contrastive Learning Model Evaluation

Figure 6.15: Contrastive Model Evaluation Workflow step

The Contrastive Model evaluation function, presented in algorithm 62-63-64 (Contrastive Model,
Evaluate function), begins (as shown in alg. 62) by opening and loading the Fresh Dataset split-
ting it in training, validation and test subsets following the selected proportions, similarly to what
was done in the training function. The actual Contrastive Model then gets instantiated by provid-
ing the necessary arguments to its init member function. Next, the checkpoint state parameters
from a previous training run are loaded and the model is set into evaluation mode.

Algorithm 62 Contrastive Learning Model Evaluate function, part 1

1: function EvaluateNetwork(fresh ds path, checkpoint path, batch size,
train split proportion, valid split proportion, test split proportion, rank size, knn k min,
knn k max, workers, ...)

2:

3: split proportions ← [train split proportion,
4: valid split proportion,
5: test split proportion]
6:

7: train generator, , test gen ← get generator(fresh ds path,
8: splits=split proportions,
9: batch size=batch size,

10: return shas=True,
11: num workers=workers, ..)
12:

13: label to sig ← test gen.dataset.label to sig
14: n families ← test gen.dataset.n families
15:

16: model ← Contrastive Net(
17: feature dimension=2381,
18: embedding dimension=32,
19: layer sizes=run params[’layer sizes’],
20: dropout p=run params[’dropout p’],
21: activation function=run params[’activation function’],
22: normalization function=run params[’normalization function’])
23:

24: model.load state dict(checkpoint path)
25: model.eval()
26: ▷ Continues on next page..

129

Proposed Models

Then, as shown in alg. 63, the function considers the samples from the test subset of the
Fresh Dataset as query samples for the computation of the corresponding ranking and family
predictions. In practice, for all the mini-batches of data from the Fresh Dataset test generator,
the feature vectors of the input samples are fed into the model to obtain the corresponding PE
Embedding representations called query pe embeddings. Next, the function cycles through all the
mini-batches of data from the Fresh Dataset train generator in order to obtain the rankings for the
current test mini-batch considering the samples from the training subset of the Fresh Dataset as
anchors. More specifically, the function obtains the PE Embedding representation of the training
samples - anchor pe embeddings - by forwarding the corresponding features through the (same)
model and then computes the Euclidean distances between the embeddings of the query and
anchor samples. These distances are used to update a set of 3 tensors of fixed size (equal to
the selected rank size) called top shas, top labels and top distances, respectively, which contain
the shas, labels and distances (to the current query sample) of the top ’rank size’ most similar
samples, per query, ordered by similarity.

Algorithm 63 Contrastive Learning Model Evaluate function, part 2

27: ▷ Continued from previous page..
28: for all query shas, query features, query labels ∈ test gen do
29: torch.no grad()
30: query pe embeddings ← model(query features)
31: top shas ← None
32: top labels ← None
33: top distances ← None
34:

35: predictions = {}
36: for all anchor shas, anchor features, anchor labels ∈ train generator do
37: torch.no grad()
38: anchor pe embeddings ← model(anchor features)
39:

40: distances ← torch.cdist(query pe embeddings, anchor pe embeddings, p=2.0)
41:

42: if top distances is None then
43: top distances ← distances
44:

45: indices ← top distances.argsort(dim=1)
46:

47: top shas ← anchor shas[indices[:rank size]]
48: top labels ← anchor labels[indices[:rank size]]
49: top distances ← top distances[indices[:rank size]]
50: else
51: top shas ← np.concatenate(top shas, anchor shas)
52: top labels ← torch.cat(top labels, anchor labels)
53: top distances ← torch.cat(top distances, distances)
54:

55: indices ← top distances.argsort(dim=1)
56:

57: top shas ← top shas[indices[:rank size]]
58: top labels ← top labels[indices[:rank size]]
59: top distances ← top distances[indices[:rank size]]
60: end if
61: end for
62: ▷ Continues on next page..

130

Proposed Models

At the end of the inner cycle, as shown in algorithm 64, these 3 tensors (top shas, top labels
and top distances) are used to generate the actual rankings for the query samples of the current
test mini-batch. Thereafter, the function applies the Distance Weighted k-NN approach using
the generated rankings to obtain the actual family predictions for the test samples of the current
mini-batch. In particular, for each odd value of k from knn k min to knn k max, the function
gets the first k labels from the current top labels tensor, computes each nearest neighbour weight
inverting the square of its distance to the query sample and assigns to the current query the family
with the highest cumulative score. Finally, the function computes the ranking scores (MAP and
MRR) and saves to file both the produced rankings and family predictions.

Algorithm 64 Contrastive Learning Model Evaluate function, part 3

63: ▷ Continued from previous page..
64: for k, s ∈ enumerate(query shas) do
65: ranks.append({
66: ’query sha’: s,
67: ’ground truth label’: query labels[k],
68: ’ground truth family’: label to sig(query labels[k]),
69: ’rank shas’: top shas[k],
70: ’rank labels’: top labels[k],
71: ’rank families’: [label to sig(lab) ∀ lab ∈ top labels[k]]
72: })
73: end for
74:

75: start ← knn k min if knn k min mod2 /= 0 else knn k min +1
76: end ← knn k max +1
77: for all k ∈ range(start, end, 2) do
78: knn labels ← top labels[:, :k]
79: knn weights ← torch.pow(top distances[:, :k], -2)
80:

81: knn scores ← torch.zeros((knn labels.shape[0], n families))
82: for all idx, labs ∈ enumerate(knn labels) do
83: knn scores[idx].index add (0, torch.tensor([int(lab) ∀ lab ∈ labs]),
84: knn weights[idx])
85: end for
86:

87: predictions[str(k)] ← torch.argmax(knn scores, dim=1)
88: end for
89:

90: save to file(predictions)
91: ranking scores, ranks to save ← compute ranking scores(ranks)
92: log(ranking scores)
93: save to file(ranks to save)
94: end for
95: end function

131

Proposed Models

Contrastive Learning Model Results Computation and Plotting

Figure 6.16: Contrastive Model Results Computation and Plotting Workflow step

The Contrastive (Siamese) Model evaluation accuracy and micro (global average), macro (un-
weighted per-family average) and weighted (per-family average, weighted by support) scores, such
as the Jaccard similarity score, recall, precision and f1-score, are computed for each odd value of
k and saved to file - together with the resulting confusion matrixes - by a distinct set of functions
which are not presented in this document since they simply apply the respective mathematical
formulas. Moreover, after n runs another set of functions plots the trends of the previously
computed multi-class classification scores as the number of nearest neighbours k changes from
knn k min to knn k max.

132

Chapter 7

Results

This chapter presents the evaluation results of the different models implemented. In particular,
in the first section (7.1) are depicted the results of the different base models (ALOHA, Joint
Embedding and MTJE model) on the task of malware detection (Malicious/Benign label pre-
diction). The evaluation results of the same base models on the task of malware description
via SMART tags are presented in a separate section (7.2). Then, another section (7.3) presents
the results of the base models on the family prediction and ranking tasks using samples from
the Fresh Dataset. Sections (7.4) and (7.5), on the other hand, present the evaluation results of
the Family Classifier and of the Contrastive Model, respectively, on the family classification and
ranking (when possible) tasks. Finally, section (7.6) presents the computation time needed to
complete one experiment using the computational power of the available instance along with the
total computation time spent to complete all the experiments conducted for this project.

7.1 Malware Detection results

In this section the result of the different models concerning the Malicious/Benign label predic-
tion task are presented. In particular for each model are shown the corresponding AUC-ROC
(Area Under ROC Curve) score (table 7.1) and the various binary cross entropy loss statistics
(TPR (True Positive Rate), Accuracy, Recall, Precision and F1 Score) at different FPRs
(False Positive Rates) (table 7.2). Moreover, for the TPR statistic, also the MTJE model Error
and Standard Deviation Reductions with respect to the other models are presented, in percentage.
Next, the ROC (Receiving Operating Characteristic) curves of the different models are shown in
figures 7.1, 7.2 and 7.3.

The models considered in this section are:

❼ ALOHA (M/B only): ALOHA model implementation described in section 5.1.1, with
only the Malicious/Benign label prediction head enabled. This model thus represents a
simple single task FNN designed exclusively for the malicious label prediction task.

❼ ALOHA: final ALOHA model implementation described in section 5.1.1, with all the ad-
ditional output heads enabled.

❼ MTJE model: final proposed MTJE model implementation described in section 6.1.1.

Malware Label ALOHA (M/B only) ALOHA MTJE Model

AUC-ROC 0.995±0.000 0.995±0.001 0.996±0.001

Table 7.1: AUC-ROC (Area Under Curve) of the different models for the Malware Label
prediction task. Results were aggregated over 3 training runs with different weight initializations
and minibatch orderings. Best results are shown in bold.

133

Results

Malware Label FPR

10−5 10−4 10−3 10−2 10−1

TPR

ALOHA (M/B only) 0.215±0.032 0.647±0.033 0.883±0.005 0.959±0.003 0.990±0.001

ALOHA 0.599±0.023 0.790±0.005 0.879±0.007 0.956±0.011 0.990±0.001

MTJE Model 0.622±0.058 0.836±0.007 0.909±0.001 0.959±0.001 0.992±0.001

Error Reduction wrt
ALOHA (M/B only)

51.8% 53.5% 22.2% 0.0% 20.0%

Error Reduction wrt
ALOHA

5.7% 21.9% 24.8% 6.8% 20.0%

Std Reduction wrt
ALOHA (M/B only)

-81.2% 78.8% 80.0% 66.7% 0.0%

Std Reduction wrt
ALOHA

-152.2% -40.0% 85.7% 90.9% 0.0%

Accuracy

ALOHA (M/B only) 0.696±0.012 0.863±0.013 0.954±0.002 0.978±0.001 0.935±0.000

ALOHA 0.845±0.009 0.919±0.002 0.953±0.003 0.977±0.004 0.935±0.000

MTJE Model 0.854±0.023 0.936±0.003 0.964±0.000 0.978±0.000 0.935±0.000

Recall

ALOHA (M/B only) 0.215±0.032 0.647±0.033 0.883±0.005 0.959±0.003 0.990±0.001

ALOHA 0.599±0.023 0.790±0.005 0.879±0.007 0.956±0.011 0.990±0.001

MTJE Model 0.622±0.058 0.836±0.007 0.909±0.001 0.959±0.001 0.992±0.001

Precision

ALOHA (M/B only) 1.000±0.000 1.000±0.000 0.998±0.000 0.984±0.000 0.862±0.000

ALOHA 1.000±0.000 1.000±0.000 0.998±0.000 0.984±0.000 0.862±0.000

MTJE Model 1.000±0.000 1.000±0.000 0.998±0.000 0.984±0.000 0.862±0.000

F1 Score

ALOHA (M/B only) 0.353±0.043 0.785±0.024 0.937±0.003 0.971±0.001 0.921±0.000

ALOHA 0.749±0.018 0.883±0.003 0.935±0.004 0.970±0.006 0.922±0.000

MTJE Model 0.765±0.044 0.911±0.004 0.952±0.001 0.971±0.000 0.922±0.001

Table 7.2: Mean and standard deviation results (TPR, Accuracy, Recall, Precision and F1-Score)
of the different models in the Malware Label prediction task at different FPRs (False Positive
Rates). Results were aggregated over 3 training runs with different weight initializations and
minibatch orderings. Best results are shown in bold. Under the TPR results are also presented
the percentage reduction in mean detection error and in ROC curve standard deviation introduced
by the MTJE model with respect to the ALOHA and Joint Embedding models.

134

Results

Figure 7.1: ROC curve and AUC-ROC statistics of the ALOHA (M/B only) model for the pre-
diction of the Malware Label. The line represents the mean TPR at a given FPR, while the
shaded region represents the standard deviation. Statistics were computed over 3 training runs,
each with random parameter initialization.

Figure 7.2: ROC curve and AUC-ROC statistics of the ALOHA model for the prediction of
the Malware Label. The line represents the mean TPR at a given FPR, while the shaded
region represents the standard deviation. Statistics were computed over 3 training runs, each with
random parameter initialization.

135

Results

Figure 7.3: ROC curve and AUC-ROC statistics of the MTJE model for the prediction of the
Malware Label. The line represents the mean TPR at a given FPR, while the shaded region
represents the standard deviation. Statistics were computed over 3 training runs, each with
random parameter initialization.

7.1.1 Summary

Here (table 7.3) it is presented a brief summary of the previously mentioned statistics for the
different models at FPR = 1%.

Malware Label (at FPR = 1%)

Model TPR Accuracy Precision Recall F1 score

ALOHA (M/B only) 0.959±0.003 0.978±0.001 0.984±0.000 0.959±0.003 0.971±0.001

ALOHA 0.956±0.011 0.977±0.004 0.984±0.000 0.956±0.011 0.970±0.006

MTJE Model 0.959±0.001 0.978±0.000 0.984±0.000 0.959±0.001 0.971±0.000

Table 7.3: Summary of the mean and standard deviation results of the different models in the
Malware Label prediction task at FPR = 1%. Results were aggregated over 3 training runs
with different weight initializations and minibatch orderings. Best results are shown in bold.

7.1.2 Comments

As shown in table 7.1, the proposed MTJE model implementation provided a slightly better
AUC-ROC score than both the ALOHA model implementations when tested on the malware
detection - Malicious/Benign label prediction - task. Moreover, table 7.2 shows that the MTJE
model implementation consistently provided better scores for all the binary cross entropy statistics
used as performance measures than the other two models at different FPRs (False Positive Rates).
Most importantly, the MTJE model implementation performed better than the other models at
FPR = 1%, as summarized in table 7.3. These results prove the effectiveness of using the harder
problem of creating a Joint Embedding space where samples are close to their associated SMART
tags as an additional task to improve the performance of the model at the malware detection task.

136

Results

7.2 Malware Description via SMART tags results
In this section the evaluation results of the different models in the SMART tagging prediction
task are presented. More specifically, table 7.4 shows, for each predicted tag, the AUC-ROC
scores relative to the different models. Table 7.5, on the other hand, presents the per-tag binary
cross entropy statistics at FPR = 1%. Finally, figures 7.4, 7.5 and 7.6 present, for each model,
a single graph showing the mean ROC curves of all predicted tags plus the Malware label (if
available).

The models considered in this section are:

❼ ALOHA: final ALOHA model implementation described in section 5.1.1, with all the ad-
ditional output heads enabled.

❼ Joint Embedding: final Joint Embedding model implementation described in section 5.1.2.

❼ MTJE model: final proposed MTJE model implementation described in section 6.1.1.

AUC-ROC ALOHA Joint
Embedding

MTJE Model

Adware Tag 0.969±0.004 0.975±0.001 0.976±0.000

Crypto-miner Tag 0.989±0.001 0.993±0.001 0.989±0.000

Downloader Tag 0.967±0.002 0.980±0.002 0.983±0.002

Dropper Tag 0.973±0.001 0.976±0.001 0.979±0.000

File-infector Tag 0.985±0.000 0.982±0.003 0.987±0.000

Flooder Tag 0.985±0.001 0.985±0.000 0.985±0.000

Installer Tag 0.971±0.004 0.973±0.002 0.981±0.000

Packed Tag 0.980±0.003 0.981±0.001 0.983±0.001

Ransomware Tag 0.980±0.008 0.990±0.002 0.985±0.003

Spyware Tag 0.961±0.002 0.975±0.004 0.973±0.003

Worm Tag 0.975±0.007 0.957±0.012 0.964±0.002

Table 7.4: Mean and standard deviation AUC-ROC (Area Under Curve) scores of the different
models for the the prediction of the different Tags. Results were aggregated over 3 training runs
with different weight initializations and minibatch orderings. Best results are shown in bold.

TPR Accuracy Precision Recall F1 score

Adware Tag (at FPR = 1%)

ALOHA 0.682±0.039 0.972±0.002 0.806±0.009 0.682±0.039 0.738±0.026

Joint Embedding 0.688±0.004 0.973±0.000 0.808±0.001 0.688±0.004 0.743±0.002

MTJE Model 0.701±0.015 0.973±0.001 0.811±0.003 0.701±0.015 0.752±0.010

Crypto-miner Tag (at FPR = 1%)

ALOHA 0.761±0.138 0.987±0.002 0.512±0.046 0.761±0.138 0.611±0.077

Joint Embedding 0.926±0.001 0.989±0.000 0.565±0.000 0.926±0.001 0.701±0.000

MTJE Model 0.746±0.159 0.987±0.002 0.505±0.054 0.746±0.159 0.601±0.090

Downloader Tag (at FPR = 1%)

ALOHA 0.599±0.018 0.957±0.002 0.845±0.004 0.599±0.018 0.701±0.014

Joint Embedding 0.665±0.006 0.963±0.000 0.859±0.001 0.665±0.006 0.750±0.004

...continued on next page

137

Results

...continued from previous page

TPR Accuracy Precision Recall F1 score

MTJE Model 0.691±0.008 0.965±0.001 0.863±0.001 0.691±0.008 0.767±0.005

Dropper Tag (at FPR = 1%)

ALOHA 0.663±0.045 0.948±0.006 0.906±0.006 0.663±0.045 0.765±0.032

Joint Embedding 0.735±0.022 0.957±0.003 0.915±0.002 0.735±0.022 0.815±0.014

MTJE Model 0.729±0.013 0.957±0.002 0.914±0.001 0.729±0.013 0.811±0.008

File-infector Tag (at FPR = 1%)

ALOHA 0.844±0.001 0.966±0.000 0.942±0.000 0.844±0.001 0.890±0.000

Joint Embedding 0.863±0.002 0.970±0.000 0.943±0.000 0.863±0.002 0.901±0.001

MTJE Model 0.854±0.003 0.968±0.000 0.943±0.000 0.854±0.003 0.896±0.002

Flooder Tag (at FPR = 1%)

ALOHA 0.904±0.002 0.990±0.000 0.141±0.000 0.904±0.002 0.243±0.000

Joint Embedding 0.905±0.005 0.990±0.000 0.141±0.001 0.905±0.005 0.244±0.001

MTJE Model 0.905±0.002 0.990±0.000 0.141±0.000 0.905±0.002 0.244±0.001

Installer Tag (at FPR = 1%)

ALOHA 0.724±0.044 0.985±0.001 0.567±0.015 0.724±0.044 0.636±0.026

Joint Embedding 0.736±0.001 0.985±0.000 0.571±0.000 0.736±0.001 0.643±0.000

MTJE Model 0.773±0.009 0.986±0.000 0.583±0.003 0.773±0.009 0.665±0.005

Packed Tag (at FPR = 1%)

ALOHA 0.710±0.015 0.952±0.002 0.918±0.002 0.710±0.015 0.801±0.010

Joint Embedding 0.749±0.032 0.957±0.004 0.922±0.003 0.749±0.032 0.826±0.021

MTJE Model 0.766±0.010 0.959±0.001 0.924±0.001 0.766±0.010 0.838±0.007

Ransomware Tag (at FPR = 1%)

ALOHA 0.855±0.001 0.983±0.000 0.825±0.000 0.855±0.001 0.840±0.001

Joint Embedding 0.861±0.003 0.983±0.000 0.826±0.001 0.861±0.003 0.843±0.002

MTJE Model 0.855±0.000 0.983±0.000 0.825±0.000 0.855±0.000 0.840±0.000

Spyware Tag (at FPR = 1%)

ALOHA 0.599±0.027 0.948±0.003 0.877±0.005 0.599±0.027 0.712±0.021

Joint Embedding 0.724±0.004 0.962±0.000 0.897±0.000 0.724±0.004 0.801±0.002

MTJE Model 0.713±0.004 0.960±0.000 0.895±0.000 0.713±0.004 0.793±0.003

Worm Tag (at FPR = 1%)

ALOHA 0.611±0.017 0.930±0.003 0.920±0.002 0.611±0.017 0.734±0.013

Joint Embedding 0.663±0.008 0.938±0.001 0.926±0.001 0.663±0.008 0.773±0.006

MTJE Model 0.669±0.008 0.939±0.001 0.926±0.001 0.669±0.008 0.777±0.006

Table 7.5: Summary of the mean and standard deviation results of the different models for the
prediction of the different tags at FPR = 1%. Results were aggregated over 3 training runs with
different weight initializations and minibatch orderings. Best results are shown in bold.

138

Results

Figure 7.4: Mean ROC curve and AUC-ROC statistics of the ALOHA model for the prediction
of all tags/labels. The line represents the mean TPR at a given FPR. Statistics were computed
over 3 training runs, each with random parameter initialization.

Figure 7.5: Mean ROC curve and AUC-ROC statistics of the Joint Embedding model for the
prediction of all tags/labels. The line represents the mean TPR at a given FPR. Statistics were
computed over 3 training runs, each with random parameter initialization.

139

Results

Figure 7.6: Mean ROC curve and AUC-ROC statistics of the MTJE model for the prediction of
all tags/labels. The line represents the mean TPR at a given FPR. Statistics were computed over
3 training runs, each with random parameter initialization.

7.2.1 Mean per-sample tagging scores

Here (table 7.6) are presented the Mean per-sample scores, more specifically the Jaccard Sim-
ilarity and Mean per-Sample Accuracy scores, achieved by the various models at different
FPRs.

Mean per-sample FPR

tagging scores 10−5 10−4 10−3 10−2 10−1

Jaccard Similarity

ALOHA 0.711±0.012 0.748±0.010 0.799±0.006 0.864±0.001 0.794±0.014

Joint Embedding 0.684±0.009 0.742±0.009 0.820±0.005 0.884±0.001 0.785±0.007

MTJE Model 0.695±0.019 0.761±0.008 0.826±0.003 0.885±0.001 0.799±0.002

Mean per-Sample Accuracy

ALOHA 0.646±0.006 0.690±0.001 0.749±0.000 0.796±0.001 0.699±0.020

Joint Embedding 0.640±0.001 0.684±0.005 0.761±0.005 0.810±0.000 0.684±0.008

MTJE Model 0.649±0.010 0.703±0.010 0.773±0.003 0.813±0.000 0.695±0.001

Table 7.6: Mean and standard deviation of mean per-sample tagging results (Jaccard simialrity
and mean per-sample accuracy) for the different models. Results were aggregated over 3 training
runs with different weight initializations and minibatch orderings. Best results are shown in bold.

140

Results

7.2.2 Comments

As shown in table 7.4, the MTJE model implementation provided better AUC-ROC scores than
the ALOHA and Joint Embedding model implementations for most of the target SMART
tags. More specifically, it performed better when dealing with the Adware, Downloader, Dropper,
File-infector, Flooder, Installer and Packed tags. The Joint Embedding model implementation,
on the other hand provided a higher AUC-ROC score than the other models for the Crypto-miner,
Flooder (on par with the MTJE model implementation), Ransomware and Spyware tags. Finally,
the ALOHA model implementation performed better than the other models only on the Worm
tag. It is interesting to notice, however, that the MTJE model implementation results for the
tags on which it did not perform best, were always the second best and anyway comparable to
the best results.

On top of that, table 7.5 shows that the MTJE model implementation provided the best
scores for all the binary cross entropy statistics used as performance measures (at FPR = 1%)
when dealing with the Downloader, Flooder, Installer, Packed and Worm tags. It also provided
the best TPR, Precision, Recall and F1 score at FPR = 1% for the Adware tag, while having the
same accuracy than the Joint Embedding model implementation but with a higher standard
deviation. On the other hand, the MTJE model implementation provided worse scores for all
binary cross entropy statistics than the Joint Embedding model implementation for the Crypto-
miner, File-infector (for which it provided the same precision), Ransomware (for which it provided
the same accuracy) and Spyware tags. Finally, the MTJE model implementation provided in
general worse results than the Joint Embedding model implementation for the Dropper tag
but for the Accuracy score, for which it provided the same mean value with a lower standard
deviation. Again, it is interesting to notice that when the MTJE model did not provide the best
results it was always the second best (and the scores were comparable).

Finally, table 7.6 shows that the MTJE model implementation provided, in general, better
Jaccard Similarity and Mean per-Sample Accuracy than the ALOHA and Joint Embedding
model implementations at different FPRs (False Positive Rates). More importantly, it provided
better results at FPR = 1% than the other two models.

These results prove the effectiveness of introducing the Malicious/Benign label prediction and
Vendor Count estimation tasks, coming from the ALOHA model implementation, as additional
targets in order to improve over the Joint Embedding model implementation on the SMART
tag prediction task results.

7.3 Family Prediction and Ranking Results
This section shows the performance evaluation results of the different models in the Malware
Family Prediction and Ranking tasks. More specifically, figures 7.7, 7.8 and 7.9, present,
respectively, the (mean and standard deviation) accuracy and (micro and macro averaged) AUC
ROC trends of the models obtained by varying the number of anchor samples used during the
evaluation. Table 7.7, on the other hand shows the scores of the models - while figures 7.10b,
7.10a, 7.10c and 7.10d show the confusion matrixes corresponding to the best predictions - when
using the number k of anchor samples which produced the overall best accuracy, resulting from
the evaluation on the Malware Family Prediction task. Finally, table 7.8 shows the mean and
standard deviation of the MRR (Mean Reciprocal Rank) and MAP (Mean Average Precision)
scores corresponding to the produced rankings of the different model implementations.

In particular, the joint embedding representations of PE files (of size 32) learned by the
Joint Embedding and MTJE model implementations were compared also to the intermediate
implicit latent representation h (of size 512) of the ALOHA and ALOHA (M/B only) model
implementations. In fact, it is possible to compare the results of the different models (including
both ALOHA model implementations) on the family prediction and ranking tasks, given that also
the implicit latent representation h of the ALOHA-based implementations can be used to compute
sample distances. However, when comparing the different scores also the difference in size of the
chosen representations should be take into consideration. A smaller representation has, in fact,
much higher value than a bigger one, provided it performs well enough, since it allows quicker
comparisons between files consequently making the tasks of storing, indexing and querying large
databases of malware more efficient.

141

Results

Figure 7.7: Accuracy Trend (varying the number of anchor samples used) resulting from the
evaluation of the different models on the Malware Family Prediction task. The line represents
the mean Accuracy, while the shaded region represents the standard deviation. Statistics were
computed over 15 evaluation of the same models with different query and anchor samples.

Figure 7.8: AUC-ROC (Micro) Trend (varying the number of anchor samples used) resulting from
the evaluation of the different models on the Malware Family Prediction task. The line represents
themean AUC-ROC (Micro), while the shaded region represents the standard deviation. Statistics
were computed over 15 evaluation of the same models with different query and anchor samples.

142

Results

Figure 7.9: AUC-ROC (Macro) Trend (varying the number of anchor samples used) resulting
from the evaluation of the different models on the Malware Family Prediction task. The line rep-
resents the mean AUC-ROC (Macro), while the shaded region represents the standard deviation.
Statistics were computed over 15 evaluation of the same models with different query and anchor
samples.

ALOHA
(M/B only)

ALOHA Joint
Embedding

MTJE Model

Accuracy 0.299±0.048 0.398±0.051 0.273±0.058 0.223±0.044

Recall Micro 0.299±0.048 0.398±0.051 0.273±0.058 0.223±0.044

Recall Macro 0.299±0.048 0.398±0.051 0.273±0.058 0.223±0.044

Precision Micro 0.299±0.048 0.398±0.051 0.273±0.058 0.223±0.044

Precision Macro 0.295±0.093 0.465±0.056 0.291±0.088 0.154±0.055

f1 score Micro 0.299±0.048 0.398±0.051 0.273±0.058 0.223±0.044

f1 score Macro 0.248±0.050 0.386±0.054 0.216±0.062 0.147±0.042

AUC ROC Micro 0.734±0.020 0.737±0.040 0.688±0.031 0.655±0.027

AUC ROC Macro 0.750±0.023 0.736±0.043 0.711±0.034 0.689±0.035

n. of anchors 5 10 7 4

Table 7.7: Mean and standard deviation scores obtained by evaluating the different models on
the Malware Family Prediction task with the number k of anchors which produced the maximum
accuracy (for each). Statistics were computed over 15 evaluation of the same models with different
query and anchor samples. Best results are shown in bold.

143

Results

(a) ALOHA (M/B only) implementation (b) ALOHA implementation

(c) Joint Embedding implementation (d) MTJE model implementation

Figure 7.10: Confusion Matrix corresponding to the best prediction when using the number k of
anchors which produced the overall best accuracy, resulting from the evaluation of the different
models on the Malware Family Prediction task.

ALOHA
(M/B only)

ALOHA Joint
Embedding

MTJE Model

MRR 0.254±0.015 0.259±0.008 0.253±0.012 0.253±0.010

MAP 0.106±0.001 0.106±0.000 0.106±0.000 0.106±0.000

Table 7.8: Mean and standard deviation MRR (Mean Reciprocal Rank) and MAP (Mean Average
Precision) results of the different models in the Family Ranking task. Results were aggregated
over 3 training runs with different weight initializations and minibatch orderings. Best results are
shown in bold.

144

Results

7.3.1 Example rankings

Here are presented, for each model, 4 example rankings which produced the maximum and mini-
mum AP (Average Precision) and RR (Reciprocal Rank) scores.

Max AP ALOHA (M/B) ALOHA

Sha256 Label Family Sha256 Label Family

Query 24133d.. 0 formbook e3639a.. 0 formbook

0 8fea1e.. 3 quakbot 6f16d3.. 0 formbook

1 02ad1e.. 0 formbook 0655ee.. 0 formbook

2 8da806.. 0 formbook 40f8cf .. 0 formbook

3 0c95f0.. 8 guloader f7c1ec.. 0 formbook

4 95fa71.. 9 avemariarat 620c36.. 2 gozi

5 4b8466.. 6 remcosrat 38e003.. 6 remcosrat

6 191008.. 0 formbook 93e548.. 0 formbook

7 768da5.. 9 avemariarat 1ddaae.. 4 loki

8 e92575.. 0 formbook 5b9f32.. 3 quakbot

9 f0cae3.. 3 quakbot 83d036.. 4 loki

Max AP 0.186 0.174

Next position 14 position 10

Max AP Joint Embedding MTJE Model

Sha256 Label Family Sha256 Label Family

Query c0a92a.. 6 remcosrat 389ec4.. 7 trickbot

0 21f9ef .. 6 remcosrat aa447e.. 7 trickbot

1 49c7a5.. 6 remcosrat cbe743.. 7 trickbot

2 f75cb4.. 2 gozi 8dc3da.. 6 remcosrat

3 91b004.. 6 remcosrat e37438.. 7 trickbot

4 2d54d3.. 3 quakbot 2cadf2.. 7 trickbot

5 f86765.. 9 avemariarat 545bc3.. 8 guloader

6 0ea373.. 0 formbook b56a1e.. 7 trickbot

7 4a9558.. 6 remcosrat e14108.. 6 remcosrat

8 019f79.. 7 trickbot 80e880.. 2 gozi

9 a2f8c1.. 9 avemariarat 4688b8.. 7 trickbot

Max AP 0.190 0.183

Next position 11 position 17

Table 7.9: ALOHA (M/B), ALOHA, Joint Embedding and MTJE model example rankings (lim-
ited to the first 10 samples) having the maximum Average Precision (max AP). The elements
matching the query sample are shown in bold. The last line of each table indicates the position
in the ranking where to find the next element belonging to the same family as the query sample.

145

Results

Max RR ALOHA (M/B) ALOHA

Sha256 Label Family Sha256 Label Family

Query 228f0e.. 0 formbook bcec95.. 0 formbook

0 f51577.. 0 formbook 7b30aa.. 0 formbook

1 d7ece5.. 3 quakbot 2edfad.. 8 guloader

2 040062.. 4 loki ecdf7d.. 9 avemariarat

3 80b83b.. 1 agenttesla 74fb06.. 3 quakbot

4 add45f.. 6 remcosrat 0fea0b.. 7 trickbot

5 608a6d.. 8 guloader 3d4f29.. 3 quakbot

6 3cb853.. 6 remcosrat b73730.. 7 trickbot

7 fb120a.. 6 remcosrat acf60e.. 4 loki

8 60984e.. 1 agenttesla a60e97.. 4 loki

9 457344.. 6 remcosrat 3b2629.. 7 trickbot

Max RR 1.000 1.000

Next position 10 position 11

Max RR Joint Embedding MTJE Model

Sha256 Label Family Sha256 Label Family

Query 32897c.. 2 gozi 807414.. 1 agenttesla

0 b4e412.. 2 gozi d6c10d.. 1 agenttesla

1 0dac03.. 7 trickbot d0dbb5.. 7 trickbot

2 300ec7.. 7 trickbot 876680.. 2 gozi

3 d9afac.. 7 trickbot 6dba26.. 7 trickbot

4 b1a303.. 0 formbook bd91fc.. 8 guloader

5 b71dc1.. 7 trickbot a31584.. 6 remcosrat

6 774cff.. 3 quakbot df907a.. 5 heodo

7 1c8aaa.. 1 agenttesla 3763ee.. 9 avemariarat

8 a6d3dc.. 1 agenttesla 277238.. 0 formbook

9 d01615.. 1 agenttesla 3ad3d1.. 5 heodo

Max RR 1.000 1.000

Next position 12 position 14

Table 7.10: ALOHA (M/B), ALOHA, Joint Embedding and MTJE model example rankings
(limited to the first 10 samples) having the maximum Reciprocal Rank (max RR). The elements
matching the query sample are shown in bold. The last line of each table indicates the position
in the ranking where to find the next element belonging to the same family as the query sample.

146

Results

Min AP ALOHA (M/B) ALOHA

Sha256 Label Family Sha256 Label Family

Query f9b156.. 2 gozi ef89d3.. 8 guloader

0 c7fc61.. 6 remcosrat 246a1e.. 3 quakbot

1 a5ebcb.. 5 heodo 4a9e32.. 5 heodo

2 494519.. 5 heodo 84353f.. 5 heodo

3 4469b2.. 3 quakbot f0125d.. 2 gozi

4 e0c023.. 0 formbook e0e601.. 1 agenttesla

5 a3f0b1.. 7 trickbot 0e20f3.. 4 loki

6 c27598.. 5 heodo 357ab6.. 6 remcosrat

7 830072.. 7 trickbot f39db6.. 9 avemariarat

8 ca90a8.. 6 remcosrat a98b59.. 5 heodo

9 341186.. 7 trickbot 719219.. 7 trickbot

Min AP 0.062 0.062

Next position 20 position 39

Min AP Joint Embedding MTJE Model

Sha256 Label Family Sha256 Label Family

Query c89a67.. 7 trickbot e619c7.. 3 quakbot

0 d99c4c.. 5 heodo 71cb97.. 0 formbook

1 b34153.. 5 heodo 10f1ad.. 1 agenttesla

2 868b30.. 2 gozi 1f1f38.. 2 gozi

3 3a5181.. 8 guloader 74499f.. 1 agenttesla

4 6cf9e4.. 4 loki d75380.. 6 remcosrat

5 cf36fa.. 8 guloader d0f6f2.. 0 formbook

6 f2a200.. 2 gozi 7b30aa.. 0 formbook

7 c8eaf6.. 0 formbook 0d0364.. 6 remcosrat

8 e2c837.. 2 gozi ac0afc.. 6 remcosrat

9 1331f9.. 0 formbook d3d0a5.. 0 formbook

Min AP 0.063 0.065

Next position 67 position 49

Table 7.11: ALOHA (M/B), ALOHA, Joint Embedding and MTJE model example rankings
(limited to the first 10 samples) having the minimum Average Precision (max AP). The elements
matching the query sample are shown in bold. The last line of each table indicates the position
in the ranking where to find the next element belonging to the same family as the query sample.

147

Results

Min RR ALOHA (M/B) ALOHA

Sha256 Label Family Sha256 Label Family

Query 5f9b8c.. 8 guloader b845b6.. 1 agenttesla

0 90770a.. 4 loki 6c3efe.. 5 heodo

1 f70695.. 5 heodo a09ad5.. 0 formbook

2 1a778e.. 5 heodo bad7c7.. 2 gozi

3 b0ea42.. 4 loki 18498c.. 7 trickbot

4 0d77b2.. 9 avemariarat b840f4.. 0 formbook

5 300dd4.. 0 formbook 3bfc15.. 6 remcosrat

6 a98ba3.. 0 formbook 76cf64.. 6 remcosrat

7 cb5547.. 6 remcosrat 8b6690.. 9 avemariarat

8 86a419.. 9 avemariarat 31cce8.. 8 guloader

9 3c2770.. 2 gozi c15a76.. 2 gozi

Min RR 0.008 0.009

Next position 128 position 113

Min RR Joint Embedding MTJE Model

Sha256 Label Family Sha256 Label Family

Query 4a9e32.. 5 heodo dbfdd9.. 8 guloader

0 cedbc9.. 7 trickbot 861dd1.. 2 gozi

1 b48f0a.. 6 remcosrat dca295.. 3 quakbot

2 174bce.. 2 gozi c89194.. 1 agenttesla

3 8af585.. 9 avemariarat feb0ce.. 1 agenttesla

4 4e8a4f.. 3 quakbot 26ee0a.. 1 agenttesla

5 0558ff.. 9 avemariarat 32e56e.. 2 gozi

6 7f3487.. 0 formbook 510e00.. 3 quakbot

7 a6e4d5.. 8 guloader d21f7c.. 6 remcosrat

8 850c25.. 1 agenttesla c3df57.. 0 formbook

9 853d14.. 6 remcosrat 27bc44.. 3 quakbot

Min RR 0.011 0.009

Next position 94 position 106

Table 7.12: ALOHA (M/B), ALOHA, Joint Embedding and MTJE model example rankings
(limited to the first 10 samples) having the minimum Reciprocal Rank (max RR). The elements
matching the query sample are shown in bold. The last line of each table indicates the position
in the ranking where to find the next element belonging to the same family as the query sample.

7.3.2 Comments

Figures 7.7, 7.8 and 7.9 and table 7.7 show that the representation of PE files in the joint em-
bedding space (of size 32) leaned by the MTJE model performed worse than the one learned
by the Joint Embedding model (again of size 32) at the f-way malware family prediction task.

148

Results

Moreover, the learned embeddings of both the MTJE model and Joint Embedding model im-
plementations performed worse than the implicit latent representations - outputted by the base
shared topology - of the ALOHA (M/B only) and ALOHA models (of size 512) at the same
task. Figures 7.10b, 7.10a, 7.10c and 7.10d, which show the confusion matrixes corresponding to
the best predictions, reflect these results by showing a better confusion matrix for the ALOHA
model implementation and worse confusion matrixes for both the MTJE model and Joint Em-
bedding model implementations. Again, it is to be reminded that the representations of PE
files in the joint embedding space learned by these last two models (MTJE model and Joint
Embedding), of size = 32, are 16 times smaller than the implicit latent representations of the
ALOHA and ALOHA (M/B only) models, of size = 512. Ideally, these smaller representa-
tions of PE files should encode the most important characteristics of input samples to be used
for the f-way family prediction task; however, they were not constructed for such purpose, but
rather for assigning a set of SMART tags to each sample in order to describe its functionality.
Furthermore, the fact that some families may share the same set of tags can further hinder the
generation of a representation in the joint embedding space that can be used to distinguish be-
tween such families. Consequently, in this case, the bigger implicit latent representation provided
by the ALOHA model, being more generic does a better job at encoding those characteristics
resulting in higher scores on the f-way family prediction task.

Table 7.8, on the other hand, shows that the representations of PE files in the joint embedding
space learned by the MTJE model and Joint Embedding model provide similar MRR (Mean
Reciprocal Rank) and MAP (Mean Average Precision) scores in the Family Ranking task. Again,
the ALOHA model implicit latent representation - outputted by the base shared topology -
performs generally better in this task than the other models. Anyway, in this case the scores
are comparable. In particular, the MAP scores of the different models are practically the same,
while the MRR of the ALOHA model is slightly higher than the others. This is reflected by
the example rankings shown in tables 7.9, 7.10, 7.11 and 7.12.

These results underline the inadequacy of the representation of PE files in the joint embedding
space learned by the MTJE model when used for the Malware Family Prediction and Ranking
tasks, thus highlighting the need for an alternative solution specifically designed for the Malware
Family Classification task.

7.4 Family Classification Results

In this section the results of the different Family Classifier implementations are presented and
compared. In particular, table 7.13 presents the mean and standard deviation of the classification
accuracy obtained by evaluating the Family Classifiers built on top of the Joint Embedding and
MTJE model implementations along with a Family Classifier model trained entirely from scratch
with no Transfer Learning applied (Family Classifier Only). Table 7.14, on the other hand,
shows the Micro averaged, Macro averaged and Weighted averaged multi-class classification
scores resulting from the evaluation of the different Family Classifiers. Finally, figures 7.11, 7.12
and 7.13 show the resulting confusion matrixes of the different models.

Family Classifier on
Joint Embedding

Family Classifier on
MTJE Model

Family Classifier
only

Accuracy 0.445±0.005 0.465±0.003 0.414±0.007

Table 7.13: Mean and Standard deviation of the Family Classifier accuracy obtained by evaluating
the Family Classifiers built on top of the Joint Embedding and MTJE model implementations
along with a Family Classifier model with no Transfer Learning applied (Family Classifier Only).
Results were aggregated over 3 training runs with different weight initializations and minibatch
orderings. Best results are shown in bold.

149

Results

Family Classifier
on Joint

Embedding

Family Classifier
on MTJE Model

Family Classifier
only

Jaccard
Similarity

Micro 0.286±0.004 0.303±0.002 0.261±0.006

Macro 0.318±0.001 0.339±0.002 0.282±0.011

Weighted 0.318±0.001 0.339±0.002 0.282±0.011

Recall

Micro 0.445±0.005 0.465±0.003 0.414±0.007

Macro 0.445±0.005 0.465±0.003 0.413±0.008

Weighted 0.445±0.005 0.465±0.003 0.414±0.007

Precision

Micro 0.445±0.005 0.465±0.003 0.414±0.007

Macro 0.507±0.001 0.538±0.006 0.473±0.009

Weighted 0.507±0.001 0.538±0.006 0.473±0.009

F1-score

Micro 0.445±0.005 0.465±0.003 0.413±0.008

Macro 0.438±0.003 0.460±0.005 0.397±0.010

Weighted 0.438±0.003 0.460±0.005 0.397±0.010

AUC
ROC
OVO

Micro - - -

Macro 0.815±0.004 0.830±0.002 0.800±0.012

Weighted 0.815±0.004 0.830±0.002 0.800±0.012

AUC
ROC
OVR

Micro - - -

Macro 0.815±0.004 0.830±0.002 0.800±0.012

Weighted 0.815±0.004 0.830±0.002 0.800±0.015

Table 7.14: Mean and Standard deviation of the Family Classifier scores obtained by evaluating
the Family Classifiers built on top of the Joint Embedding and MTJE model implementations
along with a Family Classifier model with no Transfer Learning applied (Family Classifier Only).
Results were aggregated over 3 training runs with different weight initializations and minibatch
orderings. Best results are shown in bold.

150

Results

Figure 7.11: Confusion Matrix resulting from the evaluation of the Family Classifier built on top
of the pre-trained Joint Embedding model.

Figure 7.12: Confusion Matrix resulting from the evaluation of the Family Classifier built on top
of the pre-trained MTJE Model.

151

Results

Figure 7.13: Confusion Matrix resulting from the evaluation of the Family Classifier Only
Model (trained entirely from scratch with no transfer learning).

7.4.1 Comments

As shown in table 7.13, the Family Classifier built on top of the MTJE model provided a
higher Accuracy than both the Family Classifier built on top of the Joint Embedding model
and the equally complex Family Classifier with no transfer learning applied.

Table 7.14 confirms the better performance of the Family Classifier built on top of the
MTJE model in the Malware Family Classification task by showing that it consistently provided
the best Micro, Macro and Weighted averaged scores for all multi-class classification statistics
used as performance metrics. It is interesting to notice that the Family Classifier built on
top of the Joint Embedding model was, instead, always the second best, while the Family
Classifier with no transfer learning applied was always last. This proves the effectiveness of
utilizing the technique of transfer learning to reduce overfitting when training the classifier using
the training subset of the relatively small Fresh Dataset.

Interestingly, looking at the confusion matrixes resulting from the evaluation of the different
Family Classifiers on the test sub-split of the Fresh Dataset, shown in figures 7.11, 7.12 and
7.13, it is possible to notice some similarities in the errors committed (some of which are even
similar to the ones done when using the representation of PE files learned by the base model for
the f-way family prediction task). In fact, in all three cases these observations can be made:

❼ samples of class FormBook are often misclassified as being of class AgentTesla or Loki

❼ samples of class AgentTesla are often misclassified as being of class FormBook or Loki

❼ samples of class Gozi are often misclassified as belonging to class TrickBot

❼ samples of class Loki are often misclassified as being of class AgentTesla or FormBook

❼ samples of class RemcosRAT are often misclassified as belonging to class FormBook or
AgentTesla

❼ samples of class TrickBot are often misclassified as belonging to class Heodo

152

Results

❼ samples of class GuLoader are often misclassified as belonging to class Loki

❼ samples of class AveMariaRAT are often misclassified as belonging to class AgentTesla ,
FormBook or Loki

In order to understand why that is and how it could be possible to improve the classifier
performance it is necessary to carry out a more in-depth study on the different malware families
under analysis.

7.4.2 Families study

Here is a brief description of the malware families represented by the samples of the Fresh Dataset:

❼ FormBook , nowadays also called XLoader, is an Info Stealer trojan that harvests user
credentials from various web browsers and emails, collects screenshots, monitors and logs
keystrokes, and can execute commands on infected devices - including rebooting or shutting
down systems, downloading and executing files, and unpacking archive files - according to
the orders received from Command-and-Control (C2) servers. Its code, which is written in
C, uses a number of evasion techniques to make it harder for researchers to analyse [57].

❼ AgentTesla is a .NET-based spyware, keylogger and RAT (Remote Access Trojan) that
collects information about the actions of its victims by recording keystrokes and user in-
teractions. The collected information is then sent back to the Command and Control (C2)
servers. Samples of this malware family often come equipped with multiple persistence
mechanisms that help them avoid detection [58].

❼ Gozi , also known as Ursnif, is one of the most widely spread banking trojans in the world.
As such, it is aimed at stealing banking credentials and usually targets corporate victims.
It can silently collect the system activity of the victims, record keystrokes, and keep track
of network traffic and browser activity. It is stealthy and stores the collected data in an
archive before sending it to the C2 [59].

❼ QuakBot , also known as Qakbot and QBot, is a modular information stealer/banking Tro-
jan which main purpose is to steal banking credentials and other financial information from
infected systems. It is also known to be a loader. Samples of this malware family are usually
equipped with various sophisticated evasion techniques, info-stealing functions, worm-like
functionality, and a strong persistence mechanism. In fact, its persistence mechanism is
believed (by some researchers) to be one of the best in its class. Moreover, QuakBot is
polymorphic, has anti-VM, anti-debug and anti-sandbox functionally and therefore it is
quite difficult to be analysed. Nowadays, QuakBot is frequently being dropped by other
malware such as Heodo (Emotet) [60].

❼ Loki Bot is an information stealer malware that collects credentials and other private data
from infected machines, and then submits that info to a command and control server.
The private data collected includes stored passwords, login credential information from
Web browsers, and a variety of cryptocurrency wallets. Samples belonging to this malware
family employ several obfuscation techniques such as encryption in order to evade detection;
moreover some of them also utilize function hashing to obfuscate the libraries they utilize
(not all libraries, but the majority of them) [61].

❼ Heodo, also known as Emotet, is an extremely sophisticated and destructive Trojan used
to download and install other malware. First versions of the Heodo malware functioned
as a banking trojan aimed at stealing banking credentials from infected hosts. Anyway,
the authors soon updated the trojan and reconfigured it to work primarily as a loader. In
particular, the second-stage payloads can be any type of executable code, from Emotet’s own
modules to malware developed by other cybercrime gangs. For example, Heodo is known
to download on infected systems the TrickBot and QuakBot banking trojans. Heodo can
act like a worm and spread using local networks, which makes it extremely hard to clean up.
In addition to this, the Trojan is polymorphic and has advanced persistence and detection
evasion mechanics, such as anti-sandbox and anti-VM [62].

153

Results

❼ RemcosRAT is a Remote Access Trojan (RAT) used to remotely control infected systems.
This malware, upon installation, opens a backdoor on the computer granting full access to
the remote user. It can also capture screenshots, record keystrokes on infected machines,
and send the collected information to host servers. Moreover, samples belonging to this
malware family often use obfuscation techniques, such as encryption, to stay hidden from
antivirus software [63].

❼ TrickBot is an advanced banking trojan that attackers can use to steal payment credentials
from the victims. It is typically delivered via a spam email containing a malicious document
or malicious URL. Once this document has been opened, a macro gets executed which
downloads the next stage of the infection process. In some cases, the second stage of this
infection chain is a loader like Heodo which in turn drops TrickBot . Moreover, TrickBot
employs several obfuscation and evasion techniques and has also been commonly observed
to drop other malware families [64].

❼ GuLoader (also known as CloudEyE) is a small downloader/dropper written in Visual Ba-
sic. It typically downloads RATs/Stealers, such as AgentTesla , FormBook , Loki , Rem-
cosRAT and Netwire, often but not always from Google Drive. GuLoader gets constantly
updated: the newer versions of this malware family exhibit sandbox evasion techniques, code
randomization features, C2 URL encryption, and additional payload encryption [65].

❼ AveMariaRAT , also called Warzone RAT, is a Remote Access Trojan, info-stealer and
keylogger. It is used to remotely control and steal information from infected systems. When
researchers first discovered this Trojan, it was thought to be rather simplistic. However, it
is actually a modular RAT with an advanced design. It is capable of stealing a wide range of
data from infected machines and has also advanced functions such as privilege escalation and
remote camera control. Moreover, upon installation, it downloads to the infected machine
additional plug-ins and sometimes even other malwares such as Loki [66].

Families FormBook , AgentTesla and Loki , while being fundamentally different, share some
common traits: namely the fact that they all are info-stealers with (sometimes) remote execution
capabilities, they all communicate with C2 servers and are equipped with evasion and persistence
mechanisms. However, FormBook is written in C, AgentTesla using the .NET framework (with
C#) and Loki with C++ and C#. It is thus not clear why the proposed Family Classifier
often confuses the samples of one malware family for those of another.

Families Gozi and TrickBot are both banking trojans that communicate with C2 servers
and exhibit detection evasion functions. On the other hand, Gozi only shares with RemcosRAT
the fact that it communicates with C2 servers and that it uses obfuscation and evasion techniques
to evade detection. Nevertheless, Gozi is often misclassified as TrickBot or RemcosRAT by
the proposed Family Classifier.

RemcosRAT malware family has in common with families AgentTesla and FormBook
the fact that it is a RAT (FormBook is not a RAT but has remote execution capabilities),
that it communicates with C2 hosts and that it uses obfuscation techniques to stay hidden from
antivirus software. Again, it is not clear why the model often misclassified samples belonging to
the RemcosRAT malware family as belonging to the AgentTesla or FormBook families.

Regarding the other misclassified samples, it is interesting to notice how samples belonging
to the TrickBot family, which are frequently dropped on infected hosts by Heodo, get often
mistaken by the proposed Family Classifier exactly for samples belonging to the Heodo family.
In a similar way, samples of families GuLoader and AveMariaRAT , which often drop other
RATs/Stealers including Loki , AgentTesla , FormBook and RemcosRAT , are frequently mis-
taken by the proposed Family Classifier for samples belonging to the those dropped families.
This may suggest an improper categorization of samples given by the authors of some reports on
Malware Bazaar.

Moreover, the fact that 46% of the samples of family FormBook which were categorized by
the proposed Family Classifier as belonging to class AgentTesla were classified in the same
way also by some commercial solutions such as the ReversingLabs Titanium Cloud, seems to
support this hypothesis.

154

Results

Finally, by looking at the available samples in general it can be noticed how some samples
which were categorized by the authors of the corresponding report as belonging to one family are
categorized by all available commercial anti-virus solutions as belonging to other families or even
as being non-malicious.

The fact that anyone can upload samples (and reports) on Malware Bazaar is on one hand
extremely helpful for the generation of a big database of up-to-date malware samples from all over
the world. On the other hand, this also opens up the possibility of errors in categorizations given
by the analysts’ different interpretations and modes of operation. Moreover, this gets accentuated
by the fact that also commercially available anti-virus solutions do not agree on the classification
of extremely up-to-date samples. Conversely, in order to be able to generate and properly evaluate
a high quality ML model a dataset is needed with as least errors in classification as possible, at
least for what concerns the test subpart. However, it is difficult to generate a high-quality dataset
from a database of malware samples with such uncertainty like Malware Bazaar.

Furthermore, this fact also makes it difficult to assess which proposed Family Classifier
misclassifications are actual errors and why the model made those decision - which is already
extremely difficult to understand when working with Neural Networks.

7.5 Contrastive Learning Results

This section shows the performance evaluation results of the different Contrastive models at the
Malware Family Prediction/Classification and Ranking tasks. More specifically, table
7.15 presents the mean and standard deviation of the family classification accuracy obtained by
evaluating the Contrastive Models based on the Joint Embedding and MTJE model imple-
mentations along with a Contrastive Model with no Transfer Learning applied (Contrastive
Model Only) using the k-NN algorithm with the value of k which provided the best accuracy.
Figures 7.14, on the other hand, show the classification (mean and standard deviation) accuracy
trends of the different models as the number of Nearest Neighbours k changes. Next, table 7.16
presents the Micro, Macro and Weighted averaged multi-class classification scores of the the
same models obtained using the k-NN algorithm with the value of k which provided the best
accuracy. The corresponding Confusion Matrixes of the different Contrastive models are instead
depicted in figures 7.15-7.16-7.17. Finally, table 7.17 shows the mean and standard deviation of
the MRR and MAP scores corresponding to the produced rankings of the different Contrastive
Models.

Contrastive Joint
Embedding (with

k = 9)

Contrastive MTJE
Model (with k = 5)

Contrastive Model
only (with k = 11)

Accuracy 0.427±0.003 0.431±0.007 0.415±0.013

Table 7.15: Mean and Standard deviation of the accuracy obtained by evaluating the Contrastive
Model based on the Joint Embedding and MTJE model along with a Contrastive Model with
no Transfer Learning applied (Contrastive Model Only) on the family classification task.
Results were aggregated over 3 training runs with different weight initializations and minibatch
orderings. Best results are shown in bold.

155

Results

(a) Contrastive Joint Embedding (b) Contrastive MTJE Model

(c) Contrastive Model Only

Figure 7.14: Mean and standard deviation of the accuracy trends obtained by evaluating the
Contrastive Model based on the Joint Embedding and MTJE model implementations along
with a Contrastive Model with no Transfer Learning applied (Contrastive Model Only) on
the malware family classification task using the k-NN algorithm as the number k of nearest
neighbours changes from 1 to 11. Results were aggregated over 3 training runs with different
weight initializations and minibatch orderings.

156

Results

Contrastive Joint
Embedding (with

k = 9)

Contrastive MTJE
Model (with k = 5)

Contrastive Model
only (with k = 11)

Jaccard
Similarity

Micro 0.271±0.002 0.274±0.006 0.262±0.010

Macro 0.310±0.006 0.313±0.003 0.292±0.008

Weighted 0.310±0.007 0.314±0.003 0.291±0.009

Recall

Micro 0.427±0.003 0.431±0.007 0.415±0.013

Macro 0.427±0.002 0.430±0.007 0.415±0.012

Weighted 0.427±0.003 0.431±0.007 0.415±0.013

Precision

Micro 0.427±0.003 0.431±0.007 0.415±0.013

Macro 0.481±0.003 0.502±0.008 0.469±0.014

Weighted 0.481±0.004 0.501±0.009 0.469±0.014

F1-score

Micro 0.427±0.003 0.431±0.007 0.415±0.013

Macro 0.433±0.006 0.434±0.001 0.400±0.003

Weighted 0.433±0.007 0.435±0.001 0.400±0.004

Table 7.16: Mean and Standard deviation of the multi-class classification scores obtained by eval-
uating the 2 Contrastive Models obtained by transferring the knowledge from a previous training
run on the Sorel-20m dataset of the Joint Embedding and MTJE model implementations,
respectively, along with a Contrastive Model with no Transfer Learning applied (Contrastive
Model Only) on the family classification task using the k-NN algorithm. Results were aggre-
gated over 3 training runs with different weight initializations and minibatch orderings. Best
results are shown in bold.

Figure 7.15: Confusion Matrix resulting from the evaluation of the Contrastive Model obtained
by transferring the knowledge from a previous Joint Embedding model training run on the
Sorel-20m dataset on the family classification task using the k-NN algorithm with k = 9.

157

Results

Figure 7.16: Confusion Matrix resulting from the evaluation of the Contrastive Model obtained by
transferring the knowledge from a previous MTJE model training run on the Sorel-20m dataset
on the family classification task using the k-NN algorithm with k = 5.

Figure 7.17: Confusion Matrix resulting from the evaluation of the Contrastive Model trained from
scratch (with no transfer learning) on the family classification task using the k-NN algorithm with
k = 11.

158

Results

Contrastive Joint
Embedding

Contrastive MTJE
Model

Contrastive Model
Only

MRR 0.506±0.008 0.509±0.002 0.503±0.011

MAP 0.441±0.003 0.443±0.002 0.437±0.004

Table 7.17: Mean and standard deviation MRR (Mean Reciprocal Rank) and MAP (Mean Average
Precision) results obtained by evaluating the Contrastive Model based on the Joint Embedding
and MTJE model implementations along with a Contrastive Model with no Transfer Learning
applied (Contrastive Model Only) on the Family Ranking task. Results were aggregated over
3 training runs with different weight initializations and minibatch orderings. Best results are
shown in bold.

7.5.1 Example rankings

Here are presented, for each Contrastive Learning model, 4 example rankings which produced the
maximum and minimum AP (Average Precision) and RR (Reciprocal Rank) scores.

Max AP Contrastive Contrastive Contrastive

Joint Embedding MTJE Model Model Only

Sha256 Label Family Sha256 Label Family Sha256 Label Family

Query 2d2796.. 8 guloader 35287c.. 8 guloader 15c19c.. 5 heodo

0 2bb8df .. 8 guloader 22b138.. 8 guloader 4a36c2.. 5 heodo

1 62b561.. 8 guloader 5f9b8c.. 8 guloader bbcda6.. 5 heodo

2 3b6bd5.. 8 guloader ea8a5f .. 8 guloader 445915.. 5 heodo

3 279013.. 8 guloader 34cc64.. 8 guloader cafc08.. 5 heodo

4 2d2e4e.. 8 guloader 024efd.. 8 guloader 912186.. 5 heodo

5 7174dc.. 8 guloader ac74bf .. 8 guloader f906c1.. 5 heodo

6 092150.. 8 guloader f12049.. 8 guloader 9662b2.. 5 heodo

7 69d83c.. 8 guloader 28d54a.. 8 guloader 34a0a3.. 5 heodo

8 314e93.. 8 guloader a28301.. 8 guloader 63f16a.. 5 heodo

9 2a44e9.. 8 guloader ab58ae.. 8 guloader 30b629.. 5 heodo

Max AP 1.000 1.000 1.000

Table 7.18: Example rankings (limited to the first 10 samples) having the maximum Average
Precision (max AP) between the ones produced by the 2 Contrastive Models obtained by trans-
ferring the knowledge from a previous training run of the Joint Embedding and MTJE model
implementations, respectively, and by a Contrastive Model with no Transfer Learning applied
(Contrastive Model Only). The elements matching the query sample are shown in bold.

159

Results

Max RR Contrastive Contrastive Contrastive

Joint Embedding MTJE Model Model Only

Sha256 Label Family Sha256 Label Family Sha256 Label Family

Query 7308f0.. 3 quakbot 35287c.. 8 guloader 9e955c.. 7 trickbot

0 770919.. 3 quakbot 22b138.. 8 guloader 973029.. 7 trickbot

1 27dd2f .. 3 quakbot 5f9b8c.. 8 guloader 4c3ccb.. 5 heodo

2 dfae1e.. 3 quakbot ea8a5f .. 8 guloader d0de78.. 7 trickbot

3 246a1e.. 3 quakbot 34cc64.. 8 guloader 537cae.. 7 trickbot

4 6c0091.. 3 quakbot 024efd.. 8 guloader a0e0ca.. 7 trickbot

5 184a00.. 3 quakbot ac74bf .. 8 guloader 27311e.. 7 trickbot

6 d15b9a.. 3 quakbot f12049.. 8 guloader 713ea2.. 7 trickbot

7 e64497.. 3 quakbot 28d54a.. 8 guloader 6ae0b4.. 7 trickbot

8 a66698.. 3 quakbot a28301.. 8 guloader 128857.. 7 trickbot

9 8048dc.. 3 quakbot ab58ae.. 8 guloader 02f92c.. 7 trickbot

Max RR 1.000 1.000 1.000

Table 7.19: Example rankings (limited to the first 10 samples) having the maximum Reciprocal
Rank (max RR) between the ones produced by the 2 Contrastive Models obtained by transfer-
ring the knowledge from a previous training run of the Joint Embedding and MTJE model
implementations, respectively, and by a Contrastive Model with no Transfer Learning applied
(Contrastive Model Only). The elements matching the query sample are shown in bold.

Min AP Contrastive Contrastive Contrastive

Joint Embedding MTJE Model Model Only

Sha256 Label Family Sha256 Label Family Sha256 Label Family

Query a3b2db.. 0 formbook 241991.. 7 trickbot ff69d2.. 2 gozi

0 adf26e.. 7 trickbot 0417c3.. 5 heodo a8bfae.. 5 heodo

1 5271ab.. 7 trickbot ecdeac.. 5 heodo e0dda0.. 5 heodo

2 623b7d.. 7 trickbot c5a06a.. 5 heodo e28d1b.. 5 heodo

3 7db413.. 7 trickbot 0f6356.. 5 heodo 417fd8.. 5 heodo

4 1689b8.. 7 trickbot a9471c.. 5 heodo 6ed52c.. 5 heodo

5 b544cd.. 7 trickbot d9fc0b.. 5 heodo f196bb.. 5 heodo

6 ea6a9b.. 7 trickbot 5d000f.. 5 heodo 596c44.. 5 heodo

7 31652f.. 7 trickbot 05509e.. 5 heodo f249cd.. 5 heodo

8 99f7ef.. 7 trickbot 348634.. 5 heodo b5105e.. 5 heodo

9 2c9404.. 7 trickbot d185f7.. 5 heodo 7eba4d.. 5 heodo

Min AP 0.000 0.000 0.000

Table 7.20: Example rankings (limited to the first 10 samples) having the minimum Average
Precision (min AP) between the ones produced by the 2 Contrastive Models obtained by trans-
ferring the knowledge from a previous training run of the Joint Embedding and MTJE model
implementations, respectively, and by a Contrastive Model with no Transfer Learning applied
(Contrastive Model Only). The elements matching the query sample are shown in bold.

160

Results

Min RR Contrastive Contrastive Contrastive

Joint Embedding MTJE Model Model Only

Sha256 Label Family Sha256 Label Family Sha256 Label Family

Query a3b2db.. 0 formbook 241991.. 7 trickbot ff69d2.. 2 gozi

0 adf26e.. 7 trickbot 0417c3.. 5 heodo a8bfae.. 5 heodo

1 5271ab.. 7 trickbot ecdeac.. 5 heodo e0dda0.. 5 heodo

2 623b7d.. 7 trickbot c5a06a.. 5 heodo e28d1b.. 5 heodo

3 7db413.. 7 trickbot 0f6356.. 5 heodo 417fd8.. 5 heodo

4 1689b8.. 7 trickbot a9471c.. 5 heodo 6ed52c.. 5 heodo

5 b544cd.. 7 trickbot d9fc0b.. 5 heodo f196bb.. 5 heodo

6 ea6a9b.. 7 trickbot 5d000f.. 5 heodo 596c44.. 5 heodo

7 31652f.. 7 trickbot 05509e.. 5 heodo f249cd.. 5 heodo

8 99f7ef.. 7 trickbot 348634.. 5 heodo b5105e.. 5 heodo

9 2c9404.. 7 trickbot d185f7.. 5 heodo 7eba4d.. 5 heodo

Min RR 0.000 0.000 0.000

Table 7.21: Example rankings (limited to the first 10 samples) having the minimum Reciprocal
Rank (min RR) between the ones produced by the 2 Contrastive Models obtained by transfer-
ring the knowledge from a previous training run of the Joint Embedding and MTJE model
implementations, respectively, and by a Contrastive Model with no Transfer Learning applied
(Contrastive Model Only). The elements matching the query sample are shown in bold.

7.5.2 Comments

As shown in table 7.15, by properly choosing the number of Nearest Neighbours k to consider
when using the k-NN approach on the learned embedding space, the Contrastive Model based
on the MTJE model provided a higher Accuracy than both the Contrastive Model based on
the Joint Embedding model implementation and the identical Contrastive Model with no
transfer learning applied (Contrastive Model Only). Moreover, table 7.16 shows that, with
the same values of k the Contrastive Model based on the MTJE model also performed better
than the other contrastive models for all micro, macro and weighted averaged multi-class
classification scores. This is reflected by the resulting Confusion Matrixes, shown in figures
7.15-7.16-7.17. The results of theContrastive Model based on theMTJEmodel in the malware
family classification task are not as good as those obtained with the Family Classifier, however
the Contrastive Model learned implicit representation of PE files (PE embeddings) can be
used not only to classify the samples but also to quickly query and/or rank samples based on the
similarity between their (small) embeddings. Moreover, the Contrastive Model can learn good
embeddings for an indefinite number of families while the Family Classifier works only with a
finite (and fixed) amount. The Contrastive Model is therefore more flexible than the Family
Classifier at the cost of having a slightly worse performance in the family classification task.

Additionally, table 7.17 and the example rankings shown in 7.18, 7.19, 7.20 and 7.21, highlight
the better performance of the Contrastive Model based on the MTJE model with respect to
the other contrastive models in the family ranking task.

It should be noted that the results just discussed are not directly comparable with those
obtained when evaluating the MTJE model (and others) on the family prediction and ranking
tasks given the different evaluation procedures employed. In fact, while evaluating the MTJE
model on the same tasks the whole Fresh Dataset was considered by randomly selecting some
anchor and query samples out of it, and the evaluation was repeated 15 times per different number
of selected anchor samples. On the other hand, when evaluating the Contrastive Model the

161

Results

samples from the test subset of the Fresh Dataset were considered as queries and the samples from
the training subset as anchors. This was done to reflect a real world scenario where the samples
on which the model is deployed appear temporally later than the samples the model was trained
on. This means that the evaluation results of the learned representation of the MTJE model
are more optimistic than those obtained with the Contrastive Model. This accentuates the
fact that the implicit representations of PE files learned with the Contrastive Model performed
much better with respect to those obtained with the MTJE model.

Finally, by looking at the Confusion matrixes resulting from the evaluation of the Con-
trastive Model on the family classification task it can be noticed how these are similar to those
obtained with the Family Classifier model. In particular, the errors made by the models while
classifying the samples are very similar. This seems to confirm the hypothesis discussed in section
7.4.2 as to why the models make so many mistakes.

7.6 Computation Time

This section presents an overview of the time needed to complete the experiments conducted for
this project using a Colab Pro instance (which provides a NVIDIA T4 or P100 GPU, 2 CPU
cores, 25GB of RAM and 147GB of disk space). In particular, table 7.22 shows how much time
was necessary to complete each step of a single experiment along with the computation time
needed for the whole workflow. On the other hand, table 7.23 shows the total computation time
spent to complete all the experiments.

Time Required
per Run

N. of Runs per
Experiment

Time Required
per Experiment

Base Model Training ∼ 3h 5m 34s 3 ∼ 9h 16m 42s

Base Model Evaluation ∼ 4m 57s 3 ∼ 14m 51s

Base Model Results
Computation

∼ 5m 0s 3 ∼ 15m 0s

Base Model Evaluation on
Fresh Dataset

∼ 8m 12s 3 ∼ 24m 36s

Fresh Results Computation ∼ 11s 3 ∼ 33s

Family Classifier Training ∼ 31s 3 ∼ 1m 33s

Family Classifier Evaluation ∼ 6s 3 ∼ 18s

Family Classifier Results
Computation

∼ 4s 3 ∼ 12s

Contrastive Model Training ∼ 32s 3 ∼ 1m 36s

Contrastive Model
Evaluation

∼ 19m 7s 3 ∼ 57m 21s

Contrastive Model Results
Computation

∼ 10s 3 ∼ 30s

Base Model Mean Results
Computation

- 1 ∼ 5m 24s

Contrastive Model Mean
Scores Computation

- 1 ∼ 7s

Complete Workflow ∼ 3h 44m 24s - ∼ 11h 18m 43s

Table 7.22: Average computation time required to complete one experiment.

162

Results

Total Number of
Experiments

Total Computation Time

∼ 90 ∼ 1018h 4m 30s

Table 7.23: Approximated overall computation time required to complete all experiments con-
ducted for this project.

As it can be seen in table 7.22, a base model (ALOHA (M/B only) ALOHA, Joint Embedding or
MTJE model) training run took, on average, a little over 3 hours to complete when using generator
alt3 and considering only the first 6M training samples of the Sorel20M dataset for 10 epochs.
The base model performance evaluation step and the computation of the corresponding results
took each 5 minutes (per run). The evaluation of the base model on the Fresh Dataset took instead
approximately 8 minutes, on average, while the Family Classifier training, evaluation and results
computation steps required less than 1 minute each (per run). Moreover, the Contrastive Model
training, evaluation and results computation steps took, on average, approximately 30 seconds,
20 minutes and 10 seconds, respectively. A single workflow cycle thus took approximately 3 hours
and 45 minutes to complete. By multiplying the computation time of each step by the number
of runs executed for each experiment and then aggregating the results together considering also
the 5 minutes and a half it takes, on average, to compute the mean results of the base model and
the 7 seconds it takes to compute the Contrastive Model mean results, it is possible to obtain
the approximated overall time spent to complete one whole experiment. In particular, table 7.22
shows that in order to complete one full experiment the Colab Pro instance approximately took,
on average, 11 hours and 20 minutes.

The experiments conducted for this project were approximately 90, as reported in the table
7.23. Thereafter, the overall time spent for completing all the experiments was of approximately
1018 hours and 5 minutes, which corresponds to ∼ 42 days, 10 hours and 5 minutes of continuous
computation.

163

Chapter 8

Conclusions

The objective of this thesis was the creation of an automatic malware signature generation tool
capable of generating (implicit or explicit) signatures of PE malicious files with high recall at low
false positive rates, possibly capable of detecting not only known malware strains but also novel
variants, while also being less susceptible to obfuscation attempts.

To achieve this goal an attempt was made by first designing the MTJE model, described in
6.1.1, which improved the results of the ALOHA model implementation 5.1.1 (from work [4]) in
the Malicious/Benign label prediction - also called Malware detection - task while also providing
slightly better results than the Joint Embedding model implementation 5.1.2 (from work [5])
in the task of malware description via SMART tags. The learned representation of PE files in the
Joint Embedding space, which is used to classify a sample as malicious or benign and to assign it
the corresponding tags based on its similarity (or distance) to the tag labels in the same space,
can in fact be thought as the implicit signature of the malicious samples seen during training.
These signatures, however, have little interpretability. It is in fact difficult to understand how
the model decides to map a file to a specific location in the Joint Embedding space, therefore
assigning it a specific set of tags.

Moreover, when tested on the Family Prediction and Family Ranking tasks, these signatures
did not performe as good as in the previous tasks. This, however, can be due to the relatively
small size of the dataset (half of the Sorel-20M dataset) used during training and to the code
approximations introduced in the dataset loading process to speed up the code. In fact, even the
Joint Embedding model implementation - which provided good results, as stated in paper [5],
when trained on a considerably larger number of samples (70M samples) and tested on samples
much more similar to the training ones - did not perform well when trained with half of the Sorel-
20M dataset (6M samples) and tested on the Family Prediction and Family Ranking tasks using
the Fresh Dataset. Regarding the similarity between test and training samples it has to be noted
that in paper [5] the authors used the test dataset of the joint embedding model, which contains
samples recorded only a few months later than those used for training, also for the f-way family
classification task; the Fresh Dataset used for this project, on the other hand, consists of samples
obtained in mid 2021 while the Sorel-20m dataset used for training contains samples dating back
to 2018 - 2019.

Anyway, the introduction of a Family Classifier - specifically trained for the malware family
classification task - on top of the MTJE model PE embedding layer provided more meaningful
results, although not exceptional, in the family classification task while also demonstrating the
potential of using Transfer learning in this context. This new model, however, could not be
used to produce family rankings nor to query samples based on their similarity and was limited
to working only with a fixed number of predefined families. The adoption of a Contrastive
(Siamese) Model obtained by transferring the knowledge from a previousMTJEmodel training
run on the Sorel-20m dataset (with transfer learning) overcame such limitations by producing
’good ’ (and small) embeddings of PE executables which can be used to address both the family
prediction/classification and ranking tasks with meaningful results with an indefinite number of
families at the cost of having a slightly worse performance in the family classification task.

164

Conclusions

8.1 Future Work

The MTJE model, Family Classifier and Contrastive Model implementations have the po-
tential to be very useful tools to the IT-Security field in the current scenario. Indeed, they can
be used to detect, describe (via semantic attribute tags) and classify malicious software in an in-
fected system. This is particularly useful for countering a malware infection on a system/network,
defining a remediation procedure, identifying possible root causes, and evaluating the severity and
potential consequences of the attack. Moreover, by providing a more general description of PE
files, they should also be able to detect not only known malwares but also novel malware strain-
s/variants, providing some degree of proactive detection.

The current implementation of the MTJE model provided very good results in the tasks of
Malware detection and Malware description via SMART tags, considering the number
of samples it was trained on. Moreover, the Family Classifier and the Contrastive Model
performed relatively well on the Malware Family Classification and Ranking (when possi-
ble) tasks considering the small and low quality dataset (Fresh Dataset) they were trained on.
However, these models have also some limitations, such as the results in the family classifica-
tion and ranking tasks which could be much better if a bigger and higher quality dataset was
used during training, and the lack of interpretability of the resulting implicit signatures. Future
works capable of overcoming these shortcomings may be extremely helpful to malware analysts,
antivirus software developers and system administrators and could even enable the generation of
explicit (and thus more interpretable) signatures derived from the learned implicit ones.

Here are listed some suggestions that can be taken into account for overcoming the first
limitation:

❼ Training the MTJE model on the entire Sorel20M dataset (and not just a sub-part of it)
with no code optimizations/approximations on a more powerful instance - which can be
done with little modifications to the code developed for this project - alone should provide
improved results in both the Malware detection and description (via SMART tags) tasks.
Moreover, this could also improve the performance of the resulting learned representation
of PE Files on the Family prediction and ranking tasks.

❼ A higher-quality, larger and more recent dataset of PE samples with respect to the Sorel20M
dataset, could further enhance the performance of the resulting model in all three tasks
(especially for the family prediction and ranking tasks). Moreover, a dataset providing also
the information regarding the family each sample belongs to could remove the need for
a specially crafted Fresh Dataset. This could be beneficial given that the Fresh Dataset
was built by downloading samples from Malware Bazaar, which is a website where analysts
can share malware samples with the InfoSec community and as such may provide many
misclassified samples.

❼ On the other hand, a higher-quality (and possibly larger) dataset of PE malicious files with
the corresponding family label with respect to the current Fresh Dataset could improve the
performance of the Family Classifier and Contrastive Model implementations.

❼ Finally, a model designed following the idea of paper ”Learning from Context: Ex-
ploiting and Interpreting File Path Information for Better Malware Detection”
[45] - described in section 3.6.3 - of exploiting additional orthogonal input features derived
statically from the samples has the potential of providing a more informed representation
of PE files which may result in better implicit signatures and improved results in all previ-
ously mentioned tasks. For example, additional information like the File Path where the
malicious sample was seen on an endpoint host (as suggested in work [45]), or the image
representation of malware samples byte code (as described in paper [67]) could be forwarded
through a series of convolutional layers to automatically extract the best latent represen-
tation of samples to be used in parallel with the currently developed shared base topology
output. This, however, implies the need for a dataset providing such additional features.

On the other hand, the fact that the signatures generated with the proposed approach are
implicit, and therefore not easily interpretable, can be considered as another limitation. In fact,

165

Conclusions

in order to trust the decisions of the designed model malware analysts need to know how they
are taken, what aspects of the input features are more relevant in the decision, why some samples
are mapped close to each other in the latent space, etc. However, this is difficult - although
not impossible - to do when working with Neural Networks. In order to overcome the lack of
interpretability of the generated implicit signatures the following attempts could be made:

❼ Generating a model based on a more interpretable approach, such as Decision Trees, with
a mapping between inputs and outputs similar to the one of the proposed approach. This is,
however, a challenging task which does not guarantee the same performance of the original
implicit signatures.

❼ Extracting explicit signatures, for example in the form of Yara Rules, from the implicit
ones in one of the following ways:

– A custom YARA module could be implemented by embedding the proposed Family
Classifier or Contrastive Model (or even the MTJE model, if it becomes good
enough at the family prediction task) inside the rule. In particular, the custom module
should enable the extraction of EMBER (version 2.0) feature vectors from file binaries
and subsequently the generation of the corresponding implicit signatures/latent rep-
resentations, when the rule is deployed. Then, the generated implicit signatures can
be used to decide the family the current sample most probably belongs to between a
set of families of interest (the ones the model was trained on). Finally, the rule should
be triggered if the predicted family corresponds to the one it represents. This would
make the proposed approach compatible with the highly expressive language that is
Yara; however, it would not improve the interpretability of the generated signatures
since the decision making process is unchanged.

– Alternatively, machine learning model interpretability tools such as LIME and SHAP
could be employed to try understanding the decision making process of the (trained)
MTJE model, Family Classifier and/or Contrastive Model, highlighting the char-
acteristics of PE samples that influence the decision process the most, for each family.
Then, for each family, it could be possible to manually generate one or more Yara Rules
by detecting those features that are common to samples of the same family and not to
others (through a Union of Disjunctions formulation). This most certainly would help
malware analysts in the job of creating Yara rules and can thus be seen as an aiding
tool for such purposes. This also has the advantage of easily detecting new malware
variants and obfuscated malware, but has the great disadvantage of no longer being an
automatic signature generation tool - it is in fact semi-automatic given that a malware
analyst has to generate the final Yara Rule.

– Finally, another alternative is to try to use the representation of PE examples in the
joint embedding space learned by the MTJE model to cluster new malware samples
into non-overlapping groups and then create, for each group, the Yara Rules manually
or through automatic Yara Rules generators such as the aforementioned (in section
3.2.1) YarGen, YaraGenerator, Yabin and AutoYara. This could be thought of
as a middle ground between the two previous solutions, in the sense that it would
generate true Yara Rules while also being (potentially) completely automatic.

166

Bibliography

[1] “Av-atlas.” https://portal.av-atlas.org/, Accessed: 2021-07-19
[2] J. Regan, “What is malware? how malware works and how to prevent it.” https://www.

avg.com/en/signal/what-is-malware, 2019, Accessed: 2021-03-15
[3] A. P. Namanya, A. Cullen, I. U. Awan, and J. P. Disso, “The world of malware: An overview”,

2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud),
2018, pp. 420–427, DOI 10.1109/FiCloud.2018.00067

[4] E. M. Rudd, F. N. Ducau, C. Wild, K. Berlin, and R. Harang, “Aloha: Auxiliary loss
optimization for hypothesis augmentation”, 2019

[5] F. N. Ducau, E. M. Rudd, T. M. Heppner, A. Long, and K. Berlin, “Automatic malware
description via attribute tagging and similarity embedding.”, arXiv: Learning, 2019

[6] R. Harang and E. M. Rudd, “Sorel-20m: A large scale benchmark dataset for malicious pe
detection”, 2020

[7] R. Sharp, “An introduction to malware.” https://orbit.dtu.dk/en/publications/

an-introduction-to-malware, 2017
[8] R. Moir, “Defining malware: Faq.” https://docs.microsoft.com/en-us/

previous-versions/tn-archive/dd632948(v=technet.10)?redirectedfrom=MSDN,
2009, Accessed: 2021-03-15

[9] NIST, “malware.” https://csrc.nist.gov/glossary/term/malware, Accessed: 2021-03-
15

[10] C. Crane, “What is malware? 10 types of malware and how they work.” https:

//www.thesslstore.com/blog/what-is-malware-types-of-malware-how-they-work/,
2020, Accessed: 2021-03-15

[11] Symantec, “Difference between viruses, worms, and trojans.” https://knowledge.

broadcom.com/external/article?legacyId=TECH98539, 2019, Accessed: 2021-03-15
[12] J. Fruhlinger, “Malware explained: How to prevent, detect and

recover from it.” https://www.csoonline.com/article/3295877/

what-is-malware-viruses-worms-trojans-and-beyond.html, 2019, Accessed: 2021-03-
15

[13] P. Mullins, “Malware and its types.” http://www.idc-online.com/technical_

references/pdfs/information_technology/Malware%20and%20its%20types.pdf, Ac-
cessed: 2021-03-15

[14] N. DuPaul, “Common malware types: Cybersecurity 101.” https://www.veracode.com/

blog/2012/10/common-malware-types-cybersecurity-101, 2012, Accessed: 2021-03-15
[15] S. Ingalls, “Types of malware and best malware protection practices.” https://www.

esecurityplanet.com/threats/malware-types/, 2021, Accessed: 2021-03-15
[16] MyraSecurity, “What is malware?.” https://www.myrasecurity.com/en/

what-is-malware/, Accessed: 2021-03-15
[17] K. Baker, “The 11 most common types of malware.” https://www.crowdstrike.com/

cybersecurity-101/malware/types-of-malware/, 2021, Accessed: 2021-03-15
[18] McAfee, “What is malware?.” https://www.mcafee.com/en-us/antivirus/malware.html,

Accessed: 2021-03-15
[19] OWASP, “Owasp: Vulnerabilities.” https://owasp.org/www-community/

vulnerabilities/, Accessed: 2021-07-22
[20] Comtact, “What are the different types of malware?.” https://comtact.co.uk/blog/

what-are-the-different-types-of-malware, 2019, Accessed: 2021-03-15

167

https://portal.av-atlas.org/
https://www.avg.com/en/signal/what-is-malware
https://www.avg.com/en/signal/what-is-malware
https://doi.org/10.1109/FiCloud.2018.00067
https://orbit.dtu.dk/en/publications/an-introduction-to-malware
https://orbit.dtu.dk/en/publications/an-introduction-to-malware
https://docs.microsoft.com/en-us/previous-versions/tn-archive/dd632948(v=technet.10)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/tn-archive/dd632948(v=technet.10)?redirectedfrom=MSDN
https://csrc.nist.gov/glossary/term/malware
https://www.thesslstore.com/blog/what-is-malware-types-of-malware-how-they-work/
https://www.thesslstore.com/blog/what-is-malware-types-of-malware-how-they-work/
https://knowledge.broadcom.com/external/article?legacyId=TECH98539
https://knowledge.broadcom.com/external/article?legacyId=TECH98539
https://www.csoonline.com/article/3295877/what-is-malware-viruses-worms-trojans-and-beyond.html
https://www.csoonline.com/article/3295877/what-is-malware-viruses-worms-trojans-and-beyond.html
http://www.idc-online.com/technical_references/pdfs/information_technology/Malware%20and%20its%20types.pdf
http://www.idc-online.com/technical_references/pdfs/information_technology/Malware%20and%20its%20types.pdf
https://www.veracode.com/blog/2012/10/common-malware-types-cybersecurity-101
https://www.veracode.com/blog/2012/10/common-malware-types-cybersecurity-101
https://www.esecurityplanet.com/threats/malware-types/
https://www.esecurityplanet.com/threats/malware-types/
https://www.myrasecurity.com/en/what-is-malware/
https://www.myrasecurity.com/en/what-is-malware/
https://www.crowdstrike.com/cybersecurity-101/malware/types-of-malware/
https://www.crowdstrike.com/cybersecurity-101/malware/types-of-malware/
https://www.mcafee.com/en-us/antivirus/malware.html
https://owasp.org/www-community/vulnerabilities/
https://owasp.org/www-community/vulnerabilities/
https://comtact.co.uk/blog/what-are-the-different-types-of-malware
https://comtact.co.uk/blog/what-are-the-different-types-of-malware

Bibliography

[21] P. Szor, “The art of computer virus and defence”, Symantec press, 1st ed., 2005, ISBN:
978-0-321-30454-4

[22] A. Sharma and S. K. Sahay, “Evolution and detection of polymorphic and metamorphic
malwares: A survey”, International Journal of Computer Applications, vol. 90, Mar 2014,
pp. 7–11, DOI 10.5120/15544-4098

[23] E. Skoudis and L. Zeltser, “Malware: Fighting malicious code”, Prentice Hall Professional,
2004, ISBN: 978-0-131-01405-3

[24] E. Eilam, “Reversing: Secrets of reverse engineering”, John Wiley &; Sons, Inc., 2005, ISBN:
9780764574818

[25] U. Bayer, A. Moser, C. Kruegel, and E. Kirda, “Dynamic analysis of malicious code”, Journal
in Computer Virology, vol. 2, 08 2006, pp. 67–77, DOI 10.1007/s11416-006-0012-2

[26] M. Sikorski and A. Honig, “Practical malware analysis: The hands-on guide to dissecting
malicious software”, No Starch Press, 1st ed., 2012, ISBN: 978-1-59327-290-6

[27] L. Sun, S. Versteeg, S. Boztas, and T. Yann, “Pattern recognition techniques for the classi-
fication of malware packers”, 07 2010, pp. 370–390, DOI 10.1007/978-3-642-14081-5 23

[28] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G. Bringas, “Sok: Deep packer inspection:
A longitudinal study of the complexity of run-time packers”, 2015 IEEE Symposium on
Security and Privacy, 2015, pp. 659–673, DOI 10.1109/SP.2015.46

[29] W. Yan, Z. Zhang, and N. Ansari, “Revealing packed malware”, IEEE Security Privacy,
vol. 6, no. 5, 2008, pp. 65–69, DOI 10.1109/MSP.2008.126

[30] A. Balakrishnan and C. Schulze, “Code obfuscation literature survey.” http://pages.cs.

wisc.edu/~arinib/writeup.pdf, 2005

[31] I. You and K. Yim, “Malware obfuscation techniques: A brief survey”, 11 2010, pp. 297–300,
DOI 10.1109/BWCCA.2010.85

[32] E. Konstantinou, “Metamorphic virus: Analysis and detection.” https://www.ma.rhul.ac.

uk/static/techrep/2008/RHUL-MA-2008-02.pdf, 2008, Technical Report of University of
London

[33] I. You and K. Yim, “Malware obfuscation techniques: A brief survey”, 2010 International
Conference on Broadband, Wireless Computing, Communication and Applications, 2010,
pp. 297–300, DOI 10.1109/BWCCA.2010.85

[34] B. Dang, A. Gazet, E. Bachaalany, and S. Josse, “Practical reverse engineering: X86, x64,
arm, windows kernel, reversing tools, and obfuscation”, Wiley Publishing, 1st ed., 2014,
ISBN: 1118787315

[35] R. Perdisci, A. Lanzi, and W. Lee, “Classification of packed executables for accurate com-
puter virus detection”, Pattern Recognition Letters, vol. 29, 10 2008, pp. 1941–1946, DOI
10.1016/j.patrec.2008.06.016

[36] V. Nguyen, “A study of polymorphic virus detection”, 11 2018, DOI
10.13140/RG.2.2.19853.79842

[37] S. Simon, “What is yara? get to know this malware research tool.” https://www.

binarydefense.com/what-is-yara-get-to-know-this-malware-research-tool/, Ac-
cessed: 2021-03-15

[38] N. Naik, P. Jenkins, R. Cooke, J. Gillett, and Y. Jin, “Evaluating automatically generated
yara rules and enhancing their effectiveness”, 2020 IEEE Symposium Series on Computational
Intelligence (SSCI), 2020, pp. 1146–1153, DOI 10.1109/SSCI47803.2020.9308179

[39] E. Raff, R. Zak, G. Lopez Munoz, W. Fleming, H. S. Anderson, B. Filar, C. Nicholas, and
J. Holt, “Automatic yara rule generation using biclustering”, Proceedings of the 13th ACM
Workshop on Artificial Intelligence and Security, Nov 2020, DOI 10.1145/3411508.3421372

[40] S. Ninja, “Yara: Simple and effective way of dissecting malware.” https://resources.

infosecinstitute.com/topic/yara-simple-effective-way-dissecting-malware/, Ac-
cessed: 2021-03-15

[41] P. Arntz, “Explained: Yara rules.” https://blog.malwarebytes.com/security-world/

technology/2017/09/explained-yara-rules/#:~:text=YARA%20is%20a%20tool%

20that,that%20look%20for%20certain%20characteristics., Accessed: 2021-03-15

[42] Y. Miao, “Understanding heuristic-based scanning vs. sandboxing.” https://www.opswat.

com/blog/understanding-heuristic-based-scanning-vs-sandboxing, 2015, Accessed:
2021-06-13

168

https://doi.org/10.5120/15544-4098
https://doi.org/10.1007/s11416-006-0012-2
https://doi.org/10.1007/978-3-642-14081-5_23
https://doi.org/10.1109/SP.2015.46
https://doi.org/10.1109/MSP.2008.126
http://pages.cs.wisc.edu/~arinib/writeup.pdf
http://pages.cs.wisc.edu/~arinib/writeup.pdf
https://doi.org/10.1109/BWCCA.2010.85
https://www.ma.rhul.ac.uk/static/techrep/2008/RHUL-MA-2008-02.pdf
https://www.ma.rhul.ac.uk/static/techrep/2008/RHUL-MA-2008-02.pdf
https://doi.org/10.1109/BWCCA.2010.85
https://doi.org/10.1016/j.patrec.2008.06.016
https://doi.org/10.13140/RG.2.2.19853.79842
https://www.binarydefense.com/what-is-yara-get-to-know-this-malware-research-tool/
https://www.binarydefense.com/what-is-yara-get-to-know-this-malware-research-tool/
https://doi.org/10.1109/SSCI47803.2020.9308179
https://doi.org/10.1145/3411508.3421372
https://resources.infosecinstitute.com/topic/yara-simple-effective-way-dissecting-malware/
https://resources.infosecinstitute.com/topic/yara-simple-effective-way-dissecting-malware/
https://blog.malwarebytes.com/security-world/technology/2017/09/explained-yara-rules/#:~:text=YARA%20is%20a%20tool%20that,that%20look%20for%20certain%20characteristics.
https://blog.malwarebytes.com/security-world/technology/2017/09/explained-yara-rules/#:~:text=YARA%20is%20a%20tool%20that,that%20look%20for%20certain%20characteristics.
https://blog.malwarebytes.com/security-world/technology/2017/09/explained-yara-rules/#:~:text=YARA%20is%20a%20tool%20that,that%20look%20for%20certain%20characteristics.
https://www.opswat.com/blog/understanding-heuristic-based-scanning-vs-sandboxing
https://www.opswat.com/blog/understanding-heuristic-based-scanning-vs-sandboxing

Bibliography

[43] Kaspersky, “What is heuristic analysis?.” https://usa.kaspersky.com/resource-center/
definitions/heuristic-analysis, Accessed: 2021-06-13

[44] Forcepoint, “What is heuristic analysis?.” https://www.forcepoint.com/cyber-edu/

heuristic-analysis, Accessed: 2021-06-13
[45] A. Kyadige, E. M. Rudd, and K. Berlin, “Learning from context: Exploiting and interpreting

file path information for better malware detection”, 2019
[46] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero, “Avclass: A tool for massive malware

labeling”, 09 2016, pp. 230–253, DOI 10.1007/978-3-319-45719-2 11
[47] J. Saxe and K. Berlin, “Deep neural network based malware detection using two dimensional

binary program features”, 2015
[48] H. S. Anderson and P. Roth, “Ember: An open dataset for training static pe malware machine

learning models”, 2018
[49] H. Chu, “Lightning memory-mapped database manager (lmdb) documentation.” http://

www.lmdb.tech/doc/, Accessed: 2021-06-22
[50] K. Weinberger, A. Dasgupta, J. Attenberg, J. Langford, and A. Smola, “Feature hashing for

large scale multitask learning”, 2010
[51] “Lief project.” https://github.com/lief-project/LIEF

[52] J. Mu, “Fasttensordataloader.” https://discuss.pytorch.org/t/

dataloader-much-slower-than-manual-batching/27014/6

[53] CERT-AGID, “Cert-agid threat summary.” https://cert-agid.gov.it/tag/riepilogo/

[54] “Malware bazaar.” https://bazaar.abuse.ch/browse/

[55] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face recog-
nition and clustering”, 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Jun 2015, DOI 10.1109/cvpr.2015.7298682

[56] A. Hermans, L. Beyer, and B. Leibe, “In defense of the triplet loss for person re-
identification”, 2017

[57] “Any.run malware trends - formbook.” https://any.run/malware-trends/formbook, Ac-
cessed: 2021-09-05

[58] “Any.run malware trends - agenttesla.” https://any.run/malware-trends/agenttesla,
Accessed: 2021-09-05

[59] “Any.run malware trends - ursnif.” https://any.run/malware-trends/ursnif, Accessed:
2021-09-05

[60] “Any.run malware trends - qbot.” https://any.run/malware-trends/qbot, Accessed:
2021-09-05

[61] “Any.run malware trends - lokibot.” https://any.run/malware-trends/lokibot, Ac-
cessed: 2021-09-05

[62] “Any.run malware trends - emotet.” https://any.run/malware-trends/emotet, Accessed:
2021-09-05

[63] “Any.run malware trends - remcos.” https://any.run/malware-trends/remcos, Accessed:
2021-09-05

[64] “Any.run malware trends - trickbot.” https://any.run/malware-trends/trickbot, Ac-
cessed: 2021-09-05

[65] “Malpedia - cloudeye.” https://malpedia.caad.fkie.fraunhofer.de/details/win.

cloudeye, Accessed: 2021-09-05
[66] “Any.run malware trends - avemariarat.” https://any.run/malware-trends/avemaria,

Accessed: 2021-09-05
[67] A. Bensaoud, N. Abudawaood, and J. Kalita, “Classifying malware images with convolutional

neural network models”, 10 2020

169

https://usa.kaspersky.com/resource-center/definitions/heuristic-analysis
https://usa.kaspersky.com/resource-center/definitions/heuristic-analysis
https://www.forcepoint.com/cyber-edu/heuristic-analysis
https://www.forcepoint.com/cyber-edu/heuristic-analysis
https://doi.org/10.1007/978-3-319-45719-2_11
http://www.lmdb.tech/doc/
http://www.lmdb.tech/doc/
https://github.com/lief-project/LIEF
https://discuss.pytorch.org/t/dataloader-much-slower-than-manual-batching/27014/6
https://discuss.pytorch.org/t/dataloader-much-slower-than-manual-batching/27014/6
https://cert-agid.gov.it/tag/riepilogo/
https://bazaar.abuse.ch/browse/
https://doi.org/10.1109/cvpr.2015.7298682
https://any.run/malware-trends/formbook
https://any.run/malware-trends/agenttesla
https://any.run/malware-trends/ursnif
https://any.run/malware-trends/qbot
https://any.run/malware-trends/lokibot
https://any.run/malware-trends/emotet
https://any.run/malware-trends/remcos
https://any.run/malware-trends/trickbot
https://malpedia.caad.fkie.fraunhofer.de/details/win.cloudeye
https://malpedia.caad.fkie.fraunhofer.de/details/win.cloudeye
https://any.run/malware-trends/avemaria

List of Figures

1.1 Poem displayed by Elk Cloner virus . 8

1.2 AV Atlas - Total Amount of New Malware and PUA 9

1.3 AV Atlas - Total Amount of Malware and PUA . 9

1.4 Proposed Framework Life Cycle . 10

3.1 ALOHA model architecture . 50

3.2 Tag Distillation Process . 53

3.3 Multi Head model architecture . 54

3.4 Joint Embedding model architecture . 54

3.5 PE + FP model architecture . 58

4.1 Workflow . 60

4.2 Sorel20M workflow steps . 61

4.3 PE file structure . 64

4.4 Generator alt.3 speed heatmap . 75

4.5 Generator alt.3 elapsed times heatmap . 76

4.6 Fresh dataset workflow steps . 76

4.7 Model Fresh evaluation workflow steps . 80

4.8 Family Classifier training and evaluation workflow steps 82

4.9 Contrastive Model training and evaluation workflow steps 83

5.1 ALOHA model implementation architecture . 84

5.2 Joint Embedding model implementation architecture 88

5.3 Training and evaluation workflow steps . 94

5.4 Training workflow step . 94

5.5 Evaluation workflow step . 96

5.6 Results Computation and plotting workflow step 97

6.1 MTJE Model architecture . 99

6.2 MTJE Model Training and evaluation workflow steps 105

6.3 MTJE Model fresh evaluation workflow steps . 105

6.4 MTJE Model fresh evaluation workflow step . 106

170

List of Figures

6.5 MTJE Fresh results computation and plotting workflow step 109

6.6 Family Classifier model architecture . 111

6.7 Malware Family Classifier Training and Evaluation workflow steps 114

6.8 Family Classifier Training Workflow step . 115

6.9 Family Classifier Evaluation Workflow step . 117

6.10 Family Classifier Results Computation and Plotting step 118

6.11 Contrastive Learning model architecture . 120

6.12 Contrastive Learning Online model architecture . 121

6.13 Contrastive Model Training and Evaluation workflow steps 123

6.14 Contrastive Model Training Workflow step . 124

6.15 Contrastive Model Evaluation Workflow step . 129

6.16 Contrastive Model Results Computation and Plotting step 132

7.1 Malware Label prediction task ALOHA (M/B only) ROC curve 135

7.2 Malware Label prediction task ALOHA ROC curve 135

7.3 Malware Label prediction task MTJE Model ROC curve 136

7.4 Tags prediction task ALOHA mean ROC curve . 139

7.5 Tags prediction task Joint Embedding mean ROC curve 139

7.6 Tags prediction task MTJE Model mean ROC curve 140

7.7 Family Prediction Accuracy Trends . 142

7.8 Family Prediction AUC-ROC (Micro) Trends . 142

7.9 Family Prediction AUC-ROC (Macro) Trends . 143

7.10 Family Prediction Confusion Matrixes (Max Accuracy) 144

7.11 Family Classifier Joint Embedding Confusion Matrix 151

7.12 Family Classifier MTJE Model Confusion Matrix 151

7.13 Family Classifier Only Joint Embedding Confusion Matrix 152

7.14 Contrastive Model Accuracy Trends . 156

7.15 Contrastive Model based on Joint Embedding Confusion Matrix 157

7.16 Contrastive Model based on MTJE Model Confusion Matrix 158

7.17 Contrastive Model Only Joint Embedding Confusion Matrix 158

171

List of Tables

7.1 Malware Label prediction task AUC-ROC results 133

7.2 Malware Label prediction task results . 134

7.3 Summary of Malware Label prediction task results 136

7.4 Tags prediction task AUC-ROC results . 137

7.5 Tags prediction task results . 138

7.6 Tags prediction task mean per-sample scores . 140

7.7 Family Prediction Scores at Maximum Accuracy 143

7.8 Family ranking MRR and MAP scores . 144

7.9 Family ranking max AP example . 145

7.10 Family ranking max RR example . 146

7.11 Family ranking min AP example . 147

7.12 Family ranking min RR example . 148

7.13 Family Classifier Accuracy Results . 149

7.14 Family Classifier Scores . 150

7.15 Contrastive Model Accuracy Results . 155

7.16 Contrastive Model Scores . 157

7.17 Contrastive Model family ranking MRR and MAP scores 159

7.18 Contrastive Model family ranking max AP example 159

7.19 Contrastive Model family ranking max RR example 160

7.20 Contrastive Model family ranking max AP example 160

7.21 Contrastive Model family ranking max AP example 161

7.22 Computation Time Per Experiment . 162

7.23 Overall Computation Time . 163

172

	Introduction
	Background
	Malware
	Why is Malware used
	Common Malware types

	Detection evasion
	Reverse-Engineering
	Malware analysis
	Anti-reversing
	Anti-disassembly
	Anti-debugging
	Anti-virtual machine
	Packers and unpacking
	Code Obfuscation
	Obfuscated Malware

	Detection Techniques
	Integrity Checker
	Signature-based Detection
	Yara Rules

	Semantic Based Detection
	Behavioural Based Detection
	Heuristics-based Detection
	Machine Learning
	ALOHA: Auxiliary Loss Optimization for Hypothesis Augmentation
	Automatic Malware Description via Attribute Tagging and Similarity Embedding
	Learning from Context: Exploiting and Interpreting File Path Information for Better Malware Detection

	Malware Normalization

	Workflow and Datasets used
	Sorel 20M Dataset
	Sorel 20M Dataset Description
	Ember Features
	Improving the Dataset Loading Speed

	Fresh Dataset
	Fresh Dataset Generator (Dataloader) implementation
	Base Model Evaluation with Fresh Dataset
	Family Classifier Training and Evaluation
	Contrastive Learning Model Training and Evaluation

	Previous Methods
	Implementation
	ALOHA model
	Joint Embedding

	Experiments
	Training and Evaluation algorithms
	Training
	Evaluation
	Results Computation and plotting

	Proposed Models
	Multi Task Joint Embedding (MTJE) Model
	Implementation
	Experiments
	Training and Evaluation algorithms
	Evaluate Fresh algorithm

	Malware Family Classifier
	Implementation
	Experiments
	Family Classifier Training and Evaluation algorithms

	Contrastive Learning Model
	Implementation
	Experiments
	Contrastive Learning Model Training and Evaluation algorithms

	Results
	Malware Detection results
	Summary
	Comments

	Malware Description via SMART tags results
	Mean per-sample tagging scores
	Comments

	Family Prediction and Ranking Results
	Example rankings
	Comments

	Family Classification Results
	Comments
	Families study

	Contrastive Learning Results
	Example rankings
	Comments

	Computation Time

	Conclusions
	Future Work

	Bibliography
	List of Figures
	List of Tables

