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SUMMARY 

Robots are becoming an integral component of our society and robot-assisted learning 

has proved to be effective in promoting students’ interest and learning in STEM subjects. 

An underexplored area of robot-assisted learning is how the physically embodied nature of 

robots can be utilized to support learning through non-verbal communication, such as 

gesturing. In this paper, we discuss the design and development of a NAO robot that supports 

geometry reasoning with gestures. We evaluate two different ways for a robot to interact 

with college aged students (N = 30) while reasoning about geometric conjectures, and 

randomly assigned participants in two conditions. In the dynamic condition, the robot uses 

dynamic gestures that represent and manipulate geometric shapes in the conjectures. In the 

control conditions the robot uses beat gestures that only serve to match the rhythm of speech. 

We found that learners in the dynamic condition use more gestures, and more dynamic 

gestures, themselves and spend more time focusing their attention on the robot. These results 

support the use of dynamic gestures in robot-assisted learning, and suggest non-verbal 

communication from robots can have a positive impact on student activity.
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CHAPTER 1 

INTRODUCTION 

Education has become a major concern in people's lives. In particular, guiding students 

through their courses has become increasingly crucial in order to stimulate student career 

exploration and enhance their reasoning abilities. Unfortunately, a lack of motivation appears 

to have a negative impact on student performance in topics or fields related to mathematics, 

science, technology, and engineering (STEM). By 2019, it is estimated that 92% of traditional 

STEM occupations are expected to require some sort of post-secondary education, including 

some level of industry-based certification. [1].  While there is a growing need for STEM talent 

not just in the United States but across the world, numerous reports have suggested that the US 

is not doing a great job of aiding students who want to achieve STEM degrees. [2] and the main 

issues associated with this problematic situation is the lack of student academic preparation at 

during their studies. One of the reasons for this failure is the use of ineffective traditional 

learning methods [3]. In traditional education, professors and lecturers frequently utilize 

didactic lecture-based teaching approaches to deliver and explain material in courses [4]. 

Students are often sitting quietly, scribbling away as a teacher talks on and on, and even when 

they are asked to apply the learned information to a problem, they use the information in a 

systematic way to solve an arbitrary problem. This happens because students’ focus is set in 

taking notes instead of understanding and engrossing new ideas. Moreover, instructors have an 

entire class to manage, hence a teacher’s lecture is generally one-size-fits-all and cannot be 

dedicated to only one student [5]. Reduced school budgets, an increase in the number of 

students per classroom, and a demand for more personalized curricula for students are driving 

research into technology-based support that complements teachers' efforts. [6]. The importance 
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of bridging the gap between the scientific character of STEM-related topics and the use of 

engaging teaching and learning methodologies was stressed by Rockland, et al. [7]. To meet 

the need for more engaging and effective learning approaches, our goal is to supplement 

traditional undergraduate education with robots designed to foster deeper thinking and 

reasoning in STEM, with a particular focus on geometry notions, describing the interactive 

process with the robot and the outcomes. 

 

1.1 Educational Robot as Tutoring Agent 

While in the past, robots were predominately used in factories for purposes such as 

manufacturing and transportation, in more recent years robots began to act as partners, 

assistants or companions of humans [8, 9]. Service robots are starting to cooperate with people, 

as Figure 1 shows, and assist them in their everyday tasks, including shopping, education, and 

companionship.  

 

 

Figure 1: Pepper robot as shopping assistant [103] 
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Research in human-robot interaction has shown how readily humans ascribe social attributes 

to robots, and many service robots now interact with humans as social entities, referred to as 

social robots. The rise of social robots is thought to be due to their participation in social human 

contact. Social robots [10, 11, 12] are autonomous or semi-autonomous robots that interact 

with humans in accordance with human social conventions. The responsibilities of social robots 

are becoming increasingly diverse, according to researchers [13]. 

An educational robot is a specific application of social robots and may represent a unique 

alternative or support to traditional educational methods since a robot can be more affordable 

than a human tutor and can be dedicated to one student at a time. Robots are typically 

programmed with updated information, and they can be quickly reprogrammed or be given 

modified curricular approaches, therefore delivering students with the latest methodologies 

pertaining to any sector [14]. The flexibility of robots allows for a variety of uses in education. 

Some robots can be used as “learning assistants”, such as University of Hertfordshire’s 

intelligent assistant, Kaspar [15], while other can be used for “medical training” or “intelligent 

toys for pre-school children” [16], like Miko [17], shown in Figure 2, an artificial intelligence-

based robot that can talk, respond, educate, and entertain kids. Overall, robot supported 

learning has been found to enhance both cognitive and affective educational outcomes [18]. 

 

Figure 2: Miko robot interacting with a child [104] 
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One of the major challenges in robotics is to recognize which kind of gestures are 

particularly important in human–human communication and emulate them in such a way that 

they add communicative value [19]. Because of the robot's presence in the social and physical 

surroundings, as well as the expectations the robot creates in the user, the employment of a 

social robot in education adds to this set of problems [18]. A great way to set appropriate 

expectations for the robot is to clearly define it's role, and using a low pressure peer or tutor 

role may benefit student engagement [20]. For this reason, in this study the robot was designed 

as a study companion capable of peer-to-peer interaction. 

 

1.2 Design Criteria of Educational Robot  

In this section we discuss the design of educational robots and in Table I we synthetize 

differences and similarities of educational robots, grouping them by their forms. 

Form. Robot appearance can be categorized in three forms: humanoid, semi-humanoid, and 

pet-like. A humanoid form is conducive to forming gestures, since that type of non-verbal 

communication from robots may be best understood in familiar human form. For example, Nao 

[21] looks like a child, and encourage kids to interact. While humanoid robots walks on two 

robotic legs, semi-humanoid robots, such as Robovie [22], utilize wheels to move around. Pet-

like robots may take the form of pets, animals, or fantasy characters. Pet-like robots are usually 

built with specific goals in mind, such as iCat, which is designed to give the user emotional 

feedback [33]. Some design elements, such as fur-like materials for pet-like robots and silicon 

for others, may be required depending on the robot's form. Robots would be covered in metal 

and plastic if they didn't have any additional "skin". 
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TABLE I: DIFFERENCES AND SIMILARITIES IN DESIGN OF EDUCATIONAL ROBOT 

 Humanoid Semi-humanoid Pet-like 

DOF More than 20 More than 20 More than 20 

Mobility Two legs Wheels Paws or wheels 

Interaction with gestures Possible Possible Not possible 

Speech recognition and 
speech synthesis 

Depends on 
software 

Depends on 
software 

Depends on 
software 

Sensors Navigation and 
interaction sensors 

Navigation and 
interaction sensors 

Navigation and 
interaction sensors 

 

Mobility. These education robots cover a big range of degrees-of-freedom (DOF). More 

than 20 degrees of freedom are common in humanoids, semi-humanoids, and legged pet robots. 

Two legs offer mobility for humanoid robots, while wheels give maneuverability and stability 

for semi-humanoids. The arms of humanoid and semi-humanoid robots can be utilized for 

gesturing and delivering feedback to the user, which is an advantage. 

Interaction Capability. Robots must be able to engage with users in order to be a learning 

peer or instructor, hence speech recognition and speech synthesis are the most critical features. 

The user gives or receives instructions and feedback via voice processing software. While 

software plays a large role in gesture recognition, generating appropriate gestures to match the 

robot's audio is primarily a hardware challenge. Humanoids and semi-humanoids have an edge 

over pet robots in this sense. Only robots with arms can use gestures to communicate and give 

directions. 

Sensors. Without the ability to detect its environment and users, full robot autonomy is hard 

to reach. Navigation sensors and interaction sensors are the two types of sensors available. In 

navigation, ultrasonic sensors are used to avoid collisions and help course planning. Collision 
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avoidance can be aided by the installation of pressure and touch sensors on the feet and other 

body parts. Communication requires the use of a microphone and speakers. In robot vision 

systems, video cameras are frequently utilized as the physical eyes of robots. 

 

1.3 The Role of Gestures in Education 

One strength of a robot tutor is that it can be programmed to provide precise verbal and non-

verbal communication, including the types of gestures it uses. Prior work in math education 

research has demonstrated that some beneficial gestures can aid in mathematical reasoning 

[97], suggesting that a similar situation can be recreated for geometrical reasoning. The use of 

body-based reasoning makes the robot especially helpful in supporting student reasoning about 

geometry, from an embodied cognition perspective [23]. Researchers support the idea that 

speech combined with body gestures, lead humans to develop higher-order thought [24, 25], 

supporting that this combination is a powerful and useful tool to inspect and understand how 

scholastic learning and performance can be improved [97]. A widespread problem in 

educational settings that do not support combination of speech and gestures, is the increasing 

difficulty that students demonstrate in constructing proofs, frequently basing their thought only 

on salient perceptual features or specific concrete examples [26, 27]. Recent embodied learning 

research has discovered that encouraging students to utilize productive gestures while 

reasoning about geometric proofs can help them think more clearly. [28]. As a result, learning 

how geometrical proofs are generated is an essential educational topic, and it may be 

particularly well suited to learn about the embodied and grounded nature of abstract cognition 

in general. 
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In this study we build on this work and aim to understand the benefits and process of 

reasoning that undergraduate and graduate students can have when the robot interacts with 

them using dynamic gestures compared with beat gestures. We analyze students’ speech and 

gestures as they construct proofs for the two different conditions, focusing our attention on 

dynamic gestures, that are particularly relevant for geometrical proof, and on characteristics of 

student speech during proof production that can possess structural elements of deductive 

reasoning. This study adds to a growing body of knowledge about the use of speech and gesture 

as grounding mechanisms in geometric reasoning. Our findings on the impact of a robot using 

dynamic gestures while performing geometric reasoning activities will help researchers better 

understand how people construct and express geometrical proofs, as well as contribute to the 

fields of educational robotics, embodied cognition, and geometrics education.  
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CHAPTER 2 

BACKGROUND 

Robots are designed with human-like characteristics including language, personality, 

emotion, and gender. Individuals socially interact with computers equipped with 

anthropomorphic cues, behaving “towards computers as they might towards other human 

beings, although understanding instinctively that computers are not animate,” according to the 

Computers Are Social Actors (CASA) study [29, 30, 31]. Users respond with social behaviors 

to robots, as robots are in social settings displaying social behaviors [32, 33, 34].  

As robots become more popular in our daily lives, it is critical that we comprehend how 

these technologies can be applied in educational settings. Saerbeck et al. [35] explored whether 

social engagement with a robot interface might be used effectively in education.  Their research 

involved an interactive cat (iCat, shown in figure 3) whose purpose was to teach a new language 

to a child. This platform has the appearance of a cat, and it stands at a height of about 40 cm. 

A socially supportive iCat was compared to a neutral iCat in the study. Students in the socially 

friendly iCat scenario were more motivated, which is critical for any instructional tool to be 

effective over time. 

 

Figure 3: iCat shows different emotions 
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In March 2004, Han et al. of Korea built the world's first e-learning household robot (IROBI) 

[36]. IROBI, a humanoid robot with a head and torso, showed the potential of robots as a new 

medium for education. Voice and a touch panel were used to engage with IROBI. While 

performing this research, Han et al. contrasted common media assisted learning and WBI to 

Home Robot-assisted learning. When compared to the other instructional media, they found 

that IROBI was the most successful in fostering and enhancing the kid’s concentration, interest, 

and achievement.  

 

2.1 Physical Embodiment and Social Presence  

Numerous research have indicated that a physical robotic embodiment can boost the effect 

of being viewed as a social interaction partner [37]. In comparison to identical robots with a 

digital embodiment, several studies [38, 39] found that robots with a physical embodiment have 

a beneficial influence on feeling the robot's social presence. When interacting with a robot, 

users' experiences are knitted together by characteristics including embodiment, social 

presence, reciprocity, and rapport [40]. Based on the findings of Segura et al. [41], Deng et al. 

[42] trace the relationships between embodiment, social presence, and rapport: “...for tasks that 

are relationship-oriented, social engagement is important for maintaining rapport, and physical 

embodiment is beneficial for increasing social presence, and in turn, engagement and rapport.”  

In a learning setting, the physical robotic embodiment is excellent for a student interacting 

with a robot tutor. As a result, research has been performed on implementing social qualities 

[43] in educational robots [35, 44] in an effort to assess the RBE strategy. Robots are presently 

being utilized to teach math [45], history [44], new languages [46], and new tasks [47] in the 

field of education. Some studies change the robot's feedback (positive, negative, neutral) and 
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behavioral tactics [48], while others change the type of learning adaptation [45]. Students are 

more involved when it delivers positive feedback [35], [44], are more inclined to learn from it 

when it provides personalized learning [45], and have better recall capacity when the robot uses 

particular behavioral strategies to capture them. [48]. 

 

2.2 Benefits of Robot as Peer  

Peer learning is a bi-directional reciprocal learning activity in which students actively aid 

and encourage one another to gain knowledge and skills [49]. Learning with peers has the 

potential to provide learners with unique motivational and cognitive benefits [50]. Peer tutoring 

has been found to benefit both a peer tutor and a peer tutee, enhancing self-esteem and social 

adjustment in both [51]. As a result, students who actively participate in both roles in peer 

learning are more likely to gain from the learning interaction. Mutual peer engagement using 

social robots is a newer paradigm that has been found to improve student learning [52, 53]. A 

mixed-initiative peer-like dialog agent was created in a project to help college students acquire 

Computer Science fundamentals [53]. By shifting task initiative, the agent acted as either a less 

knowledgeable or a more knowledgeable peer (i.e., who is contributing to achieve a goal). A 

fixed rule-based model was adopted to identify when to switch initiative within a collaborative 

problem-solving setting in order to build this reciprocal peer agent model. Based on our 

previous research, we believe that interactions with a peer robot, which led student to be at the 

same time a tutor and a tutee of the robot, can foster student learning and social engagement 

more effectively than interactions with a robot that is either a tutor or a tutee. 
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2.3 Robot Appearance and Behavior  

Because the physical presence of the robot is responsible for the good learning outcomes, 

the question of what exactly it is about the robot's presence that enhances learning remains 

unanswered. The appearance of a robot [54, 55], its nonverbal behavior [56], and other 

behavioral features all influence how a robot is judged (e.g., predictability: [57] etc.). In terms 

of behavior, the robot's level of interaction skills should have a significant impact on people's 

opinions for various reasons. Firstly, in contacts with non-human entities, general conduct 

appears to play a significant role. [58]. Moreover, for a social robot to perform its purpose, 

interaction skills are required [59], and in Davis’s research [60], a perceived usefulness of 

technology is related to people's attitudes toward and intentions to utilize it, as shown in figure 

4. If a robot has poor interaction skills, the interactions with it will be judged in a different way 

than when the robot has excellent interaction skills. The way in which a social robot interacts 

with people may be a major factor in people's evaluations of the robot. According to 

Rickenberg and Reeves [58], the evaluation of a character “depends on what the character does, 

what it says, and how it presents itself” (p. 55). 

 

Figure 4: Technology acceptance model 

Among possible behavior we considered a gesturing robot. In 1980, Mehrabian [61] 

demonstrated that gestures generate 55% of the meaning of any message sent by humans. The 
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speech pattern (tone, intonation, loudness, pitch) accounts for another 38%, whereas the words 

account for only 7%. R. Subramani [62] found that nonverbal communication conveys 65% of 

the message during any given communication in Tirukkural (India). Kleinsmith et al. [63] also 

claimed that nonverbal communication is incomplete without gestures. Even though the 

findings of the above-mentioned experts differ, we can easily conclude that nonverbal 

communication plays a significant role in our daily interactions. 

In prior work a system that integrates a humanoid educational agent into a math-learning 

scenario was built [64]. Students watched lessons on mathematical equivalency in which an 

avatar made either a gesture or did not make a motion, with the same eye gaze, head position, 

and mouth movements in both cases. They claim that when instruction is accompanied by 

gesture, learners are more likely to benefit from it than when education is not accompanied by 

gesture. When conveying a valid technique for solving a math problem that complement the 

strategy provided in the preceding speech, gesture has been demonstrated to be particularly 

useful in instruction [65]. 

 

2.4 Gesture as Simulated Action  

Regarding gesture and gesture production, a useful insight is given by the Gesture as 

Simulated Action (GSA) framework presented by Hostetter and Alibali (2008) [66]. Gestures, 

according to the GSA framework, depict the instinctive motor activity that occurs when people 

consider and discuss mental simulations of motor acts. The term "simulation" was used in a 

variety of settings in cognitive science and neuroscience, but, in this case, it refers to the 

activation of motor and perceptual systems in the absence of external input. The likelihood of 

a gesture at a given instant, according to the GSA framework, is determined by three factors: 
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the producer's mental simulation of an action or perceptual state, motor system activity for 

speech production, and the height of the speaker's current gesture threshold. The basic 

architecture of the GSA framework is depicted in Figure 5. 

 

 

Figure 5: Architecture of the GSA framework 

 

The gesture threshold is the minimal amount of activation required for an action simulation 

to produce a gesture, and it is the only variable that may be affected by temporary features of 

the communicative context. Even solid activated action simulations may not be represented as 

gestures if the threshold is high, whereas even weakly activated simulations can be revealed 

with gestures if the threshold is low. Based on criteria such as cognitive skills, personality, 

culture, and experience learning different languages, there may be stable disparities in the set 

points of people's gesture thresholds. People's gesture thresholds vary depending on transient 

features of the cognitive or communicative environment, in addition to these more constant 
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differences. When speaking in French, a high-gesture language, bilingual French–English 

speakers, for example, make more gestures than when speaking in English. [67], revealing that 

speakers’ thresholds may shift depending on the communicative context. Surely, for listeners 

to benefit from speakers' gestures, they must be able to see the motions. The effect of audience 

visibility on speakers' gestures has been studied extensively [68], and several of them have 

found that when speaking to listeners who can see the gestures, speakers gesture at a higher 

rate than when speaking to listeners who can't see the gestures [69, 70, 71]. According to the 

GSA research, this consequence arises when speakers' gesture thresholds are lower if their 

listeners are visible, letting more simulations to overcome the limit. Another interesting 

conclusion is that when presenters believe the information will be extremely relevant and 

beneficial to their audience, they will gesture more than when the content will have little clear 

utility [72]. When communicating to their kids about safety information that is relevant to 

circumstances that the mothers believe to be especially dangerous, for example, mothers use 

more gestures [73]. Similarly, while delivering knowledge that is fresh to their pupils, teachers 

use more gestures than when expressing information that is being reviewed [74, 75]. This 

suggests that speakers’ use of gesture increases when they want to share an important 

information that they want the listeners understand.
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CHAPTER 3 

HYPOTHESES 

This study is designed to understand how a gesturing robot can promote reasoning about 

geometry conjectures in a study session with undergraduate students. We also wanted to 

explore how robot’s gestures can enhance a student's engagement and focus on the 

conversation. Nonverbal communication is effective at expressing speakers' emotions and 

attitudes [76]. Existing research has indicated that including body gestures and facial 

expressions into verbal communication can enhance communication efficiency greatly [77]. 

In human-robot interaction, interest has rising for the interpretation of robots’ nonverbal 

behaviors. In our study we explore the nonverbal behavior by focusing on gestures, referring 

to dynamic gestures as a moving gesture represented by a sequence of various images 

conveying information [78], while with beat gestures we identify those which do not carry 

any speech content but are more in tune with the rhythm of speech [79]. In earlier works, 

research on robot gesture’s influence on humans has been conducted, for example according 

to Riek et al. [80], the pace of robot gestures can elicit a variety of emotions and attitudes. 

People are more likely to cooperate with sudden gestures than with smooth ones. Kim et al. 

[81] discovered that varying the size, pace, and frequency of gestures can reveal distinct 

personalities. None of those previous studies, however, provide insights on the correlation 

between different kind of gestures in a learning environment. We base our research knowing 

that other studies have shown that, in general, the gestures people see from others have the 

potential to change our thoughts and a clear example in education can be found in the 

gestures teachers produce, since those gestures have an impact on what learners take from 

their lessons and may therefore influence learning. [82]. Another key element to remember 
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is that humans adapt to their surroundings, especially to the behavior of other humans when 

they interact [83]. The mirror system has been identified as a critical component in the 

process of learning from others' behaviors and the ability to respond appropriately to them 

[84]. Specifically, mirror neurons fire when subjects observe other individuals perform 

meaningful actions. Mirroring, according to researchers, is a critical component in the 

development of social skills such as the ability to recognize intentions, goals of others and 

the ability to express empathy, as well as in acquiring language and gestures [85, 86]. As a 

consequence of mirroring, the gestures that learners themselves produce can also have an 

impact on learning.  Several studies [87, 88] have shown that doing gesture can affect how 

we take in new information and encourage to express ideas that otherwise would not have 

been expressed. Given all the above premises, mostly made on human-human interaction, 

we hypothesize that similar results can be achieved on a human-robot interaction, hence we 

expect that by seeing the gesturing robot, students will tend to gesture more themselves and 

that those movements will influence cognition and benefit geometrical thinking and learning. 

Another interesting mechanism we would like to investigate is gesture’s ability to direct 

visual attention. In a previous work [89] eye tracking was used to measure gesture’s ability 

to direct visual attention. They found out that children who were shown instructional videos 

that included spoken and gestured instruction look more to the gesture space than children 

who learned through spoken instruction alone. Based on this finding, we want to further 

explore and detail this mechanism by making a distinction between types of gestures and 

supposing that dynamic gestures shape visual attention more than beat gestures, with the 

consequence of enhancing student’s engagement. Our research is guided by the following 

research question: How does the type gestures used by a robot impact a person’s reasoning 

about geometry and their attention to the robot? 
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3.1 Hypotheses 

Based on our research question, we hypothesize that: 

Learners who interact with a robot that uses dynamic gestures to reason about a geometry 

conjecture when compared to learners who receive the same instruction from a robot using 

only beat gestures will be more like to: 

● H1: produce more dynamic gestures during their own reasoning about a conjecture. 

● H2: provide accurate proofs in their own geometric reasoning tasks. 

● H3: direct their attention towards the robot. 

3.2 Robot 

For our research we used a humanoid NAO robot, whose physical features look less 

mechanical with respect to other robots, to provide a comfortable environment for the 

student, reducing the gap between humans and robots. The humanoid robot NAO, which 

first appeared on the market in 2008, was created with the intention of appearing friendly. 

NAO has the appealing appearance of a human toddler, with a height of 57 centimeters and 

a weight of roughly 4.5 kilograms, as depicted in Figure 6. The robot has 25 degrees of 

freedom which enable him to fluently move and adapt to the environment, 7 touch sensors 

to perceive his surroundings and locate himself in space and is equipped with 4 directional 

microphones and speakers to interrelate with humans. NAO is the answer for a performant 

yet affordable humanoid robot. 
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Figure 6: Nao robot characteristics 

 

Hardware and Sensors: The NAO robot has a unique, proprietary hip kinematics system 

that utilizes only one motor instead of three and allows NAO to bend forward while 

spreading its legs. The Maxon TM coreless brush DC motors used by the NAO robot are 

famous for their precision and dependability. Every 20 [ms] cycle, the sensor data feed is 

updated. The NAO kit includes a variety of sensors, as well as two gyrometers and three 

accelerometers for real-time signal gathering. The capacitive sensors on NAO allow it to 

receive tactile input via touch. These are separated into three segments and are positioned 

on its forehead.  

Motion Control Software:  This humanoid robot is programmable with the Choregraphe 

application, which allows to create animations, behaviors and text to speech, allowing to test 

them on a simulated robot, or directly on a real one. Choregraphe is a powerful tool that, 

thanks to its user-friendly interface, allows even complex behavior to be readily 

implemented. There are useful pre-programmed behaviors that can be enriched with your 

own Python code and voice shape that can be customized to create a more friendly 



 
 

 
 

19 
 
 

 

experience. Its platform agnostic nature enables program control on Windows, MAC OS, 

and even Linux. In Figure 7 it is possible to see an example of the Choregraphe software. 

 

 

Figure 7: An example of Choregraphe interface 

 

3.3 Gesture Production 

Often social robot interactions are designed to be similar to use similar social interactions 

as a human-human system. However, in the application of HRI, space-separation and time-

separation of humans and robots inevitably result in lower quality interaction [90]. To 

improve this situation and to design more “natural” human-computer interfaces, an attempt 

to replicate on the robot different gestures used in human-human interactions has been made. 

Because humanoid robots have similar appearances and control joints that allow them to 

duplicate a variety of fluid arm gestures, mimicking human gestures appears to be a viable 

method [91]. 
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Beat gestures by definition are gestures that are used to emphasize parts of the speech do 

without having any meaning [92]. In particular, beat gestures are commonly generated to 

communicate highlight and create rhythm during speech acts [93]. In our work, we create 

beat gestures by implementing a retraction phase, in which one or both arms are brought 

toward the speaker body (see figure 8.1), followed by an extension phase, in which 

previously retracted arms reach the point of maximum extension (see figure 8.2). The 

extension phase coincide with the onset of a stressed syllable, which is a part of a word that 

people naturally say with greater emphasis than others. The retraction phase quickly follows 

the extension phase, where the words have less emphasis than in the previous phase. We 

added in beat gestures to match the pace of the speech and at points in the speech that marks 

the transition from one “cause” sentence to the “effect” sentence (i.e. if/then). 

        

   Figure 8.1: Retraction phase         Figure 8.2: Extension phase 

 

In a dynamic gesture the message is contained in the temporal sequence, therefore they 

require more computational complexity than static gestures, and recognition of dynamic 

gestures is more challenging than static gestures [94]. In particular, dynamic gestures closely 
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represent the objects themselves, with the hand acting as the object that is being moved or 

manipulated [92]. We create dynamic gestures as a representation of what is salient in the 

speaker’s mental simulation of the situation while speaking [95], hence there is an 

observable correspondence between the forms of speakers’ gestures and the transformation 

of the mental simulations they describe [96]. To define sensible dynamic gestures to mimic 

geometry shapes for a given conjecture, we referred to a previous study of human gesture 

production in geometry, where specific productive gestures were associated with increased 

reasoning and proof making about geometric conjectures [97]. We included those productive 

gestures alongside other gestures to generate a more realistic gesturing experience. An 

example of this can be seen in figure 9, where the NAO robot was reasoning about whether 

or not the area of a rectangle is doubled when both its length and width are doubled. The 

relevant action sequence is in Figure 9 and is composed by the first three gestures in which 

the robot first represents a rectangle with his arms (Figure 9, left), then doubles the length 

(Figure 9, middle) and width (Figure 9, right) performing two reflections while keeping its 

arm bent to a 90-degree angle. After this sequence, to increase the reality and sociality of the 

robot, another sequence in which the robot rotates its head first to the left and then to the 

right is added, to simulate a check on its arms position, shown in Figure 10 
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Figure 9: Relevant action in dynamic gesture sequence 

  

Figure 10: Additional gestures in dynamic gesture sequence 
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CHAPTER 4 

ROBOT DESIGN AND DEVELOPMENT 

The development of the NAO robot was done through Choregraphe, a multi-platform 

desktop application that allowed us to easily create applications containing speech, gestures 

and others powerful behaviors. A specific behavior is developed in a box and boxes can be 

connected with other boxes in order to implement the whole interaction experience. In Figure 

10 is depicted how the robot was able to simulate reasoning on a geometry conjecture. 

 

Figure 11: Development of robot reasoning in Choregraphe 

 

4.1 Speech 

The first feature we implemented on the robot was the speech. The robot had to be able 

to speak in order to enunciate geometry conjectures, give and explanation of them and ask 

the students their opinion on geometry conjectures. In the robot reasoning part, the speech 

was designed in such a way to recreate a true flow of reasoning, using key expressions like 

“Let me think about it” or “I think this might be true, let me see”. The speech feature was 
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implemented using the “say” box, shown in Figure 11, an already built behavior present in 

Choregraphe which allows to easily recreate a speech by typing the sentences we want the 

robot says and adjusting voice shaping and speed, if needed, as shown in Figure 12. 

 

Figure 12: The "Say" behavior in Choregraphe 

 

Figure 13: How to set "Say" parameters in Choregraphe 

 

4.2 Gestures 

The core part of our study focuses on gestures, hence an important feature to implement was 

the robot possibility to perform specific types of gestures. We created two new libraries of 

gestures in Choregraphe, one for the dynamic gestures (in Figure 13) and the other for beat 

gestures (in Figure 14). 
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Figure 14: The dynamic gestures library implemented in Choregraphe 
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Figure 15: The beat gestures library implemented in Choregraphe 

 

To implement a gesture sequence on Choregraphe, a new Timeline needs to be created. 

Firstly, the robot has to be set in a starting position and this can be done by clicking on the 

specific part of the body we want to move in the virtual 3D robot; once clicked, the motion 

widget (shown in Figure 15) appears and from here the joint values can be easily changed to 

reach the desired position. Last step is to right-click on the first keyframe and select the store 

joints in keyframe option. This feature, shown in Figure 16, allows to save the joints values 

of NAO robot: the joints of the whole body, the head, the arms or the legs. 

The whole process can be repeated to implement a sequence, saving in sequence all the 

needed keyframes. 
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Figure 16: Gesture implementation using the motion widget 

 

 
Figure 17: Gesture implementation by storing joints values in keyframe 

4.3 Speech and Gesture Coordination 

Very often we needed to control the flow of robot behavior and in particular to create a 

correct harmonization between speech and gestures production to match a particular 

geometric reasoning with its related geometric gesture. To implement this coordination, the 

box “WaitForSpeechAndGesture” was used. The box takes as input the output of the two 

behavior that need to be synchronized and, as soon as it receives a signal from one of the 

two, set up a signal received. When the box receives both signals, meaning that all the 

previous behavior are completed, it sends another signal to start the next behavior, connected 
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as output of the box. An example of multiple coordination among speech and gesture can be 

found in Figure 17. 

 

Figure 18: Coordination between speech and gesture 

 

4.4 Speech Recognition 

To make the interaction with the robot smooth and semi-autonomous, a basic speech 

recognition script was needed. When the student is asked to reason about four geometry 

conjectures, to switch from one to the other, formulas like “This conjecture was difficult to 

solve, but you were great! Are you ready for the next one?” are used. The robot waits for the 

student to say “yes” and proceed further only when recognize the word. If the student says 

“no”, the robot allows some extra time before asking it again. In this way, we allow the 

students to take their time to swipe the tablet pages and show the following conjecture. If 

the robot hears a word different from “yes” or “no”, the “hasn’t hear box” is triggered and 

the robot ask the question again. An example of the implementation of speech recognition is 

showed in Figure 18. 
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Figure 19: Implementation of speech recognition in Choregraphe 
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CHAPTER 5 

METHOD 

The experimental procedure is designed as an investigation of human and humanoid robot 

interaction in a geometry study session.  

5.1 Participants 

Thirty undergraduate and graduate students between 19 and 26 years of age 

(female=37%, age M=20.5 years) from a large, public university in Chicago were recruited 

to participate in the study and reason about eight geometrical conjectures with a robot. 

5.2 Activity Procedures 

We chose to create two different conditions with the same NAO robot helping 

undergraduate and graduate students (N = 30) with geometry conjectures, interacting with 

them one at a time. To ensure that all recruited participants did not have high levels of math 

or geometry expertise, they were required to complete a pre-screening survey to determine 

eligibility prior to scheduling a session. Any participant who scored a 100% on the pre-

screening geometry quiz was ineligible for the study while the others were classified as 

eligible and their background information were collected, including age, sex, major, self-

reported English fluency, and the last time they took a geometry or math class. Prior to 

interacting with the robot we asked the student to sign the consent form and then participants 

completed standardized spatial reasoning and verbal fluency tests.  

Participants were randomly assigned, with half of the students the gestures used by the 

robot were dynamic hand gestures (dynamic condition), and for the other half, the gestures 

used were beat gestures (beat condition). It is important to notice that the difference among 

the two conditions was only in the gestures that the robot used, since the speech and all the 
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others interaction features were the same. In both conditions, participants worked with the 

robot on their own, and had unlimited time to reason about eight geometry conjecture. After 

setting up the experiment, an experimenter was remotely available to assist as necessary, but 

the participants were not typically given any assistance from the experimenter, who provided 

minimal responses to questions. This setting is intended to mimic a real-world situation such 

as a student doing his homework at home, with no other presence in the room rather than the 

robot. The NAO robot was placed on the desk, in front of the student, with a tablet next to 

it. The sessions were video recorded with a front view and we used the recorded interactions 

and responses in the analyses.  Another camera was placed on the back of the student and 

connected wirelessly to a computer, to allow the experimenter to have a real time vision of 

the ongoing session. A diagram representing the environment setting can be found in Figure 

20.  
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Figure 20: Schema of the environment setting during experiments 

The robot began presenting itself and asking the student their name as well as some 

icebreaker questions, such as their favorite hobbies. Then, an explanation on how to use the 

system was given by the robot. Then, to help the student familiarize with the robot a brief 

storytelling activity was used as a warmup task, with the student trying to guess the ending 

of the story. 

The participant then worked with the robot as a study companion to reason about 8 

geometric problems of different difficulty and answer whether they believed the conjecture 
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was true or false. The geometry conjecture used during the experiment are based on those 

used in a previous study by N. Mitchell, shown in Table II.  

 

TABLE II: CONJECTURES USED FOR THE STUDY 

N Conjecture Statement Answer Difficulty 

1 The area of a parallelogram is the same as the area of 
a rectangle with the same base and width 

True Easy 

2 If you double the length and the width of a rectangle, 
then the area is exactly doubled 

False Difficult 

3 The diagonals of a rectangle always have the same 
length 

True Easy 

4 If one angle of a triangle is larger than the second 
angle, then the side opposite first angle is longer than 
the side opposite the second angle 

True Medium 

5 The sum of the length of two sides of a triangle is 
always greater than the length of the third side 

True Easy 

6 Given that you know the measure of all three angles 
of a triangle, there is only one unique triangle that can 
be formed with these three angle measurements 

False Difficult 

7 The opposite angle of two lines that cross are always 
the same 

True Easy 

8 Reflecting any point over the x-axis is the same as 
rotating the point 90 degrees clockwise about the 
origin 

False Medium 

 

Each conjecture statement was shown on the tablet screen, one at a time, and the student 

was told to swipe pages as soon as he was ready to proceed with the next conjecture. The 

robot reasoned about the first 4 conjectures, explaining why it believed its opinion was true 

or false, then the participant reasoned about the other 4 conjectures. In both cases the robot 

read aloud the conjecture statement and during the last 4 conjectures, the robot asked for the 

student's opinion, suggesting the student orally explain their answer. Figure 21 shows an 

example of the study session. At the end of the experiment the students completed a post-
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task survey where they were asked to complete six questions about their perception of the 

robot. 

 

 

Figure 21: Study session with the robot 

 

5.3 Data Collection 

5.3.1 Pre-Screening 

An online pre-screening was distributed to all interested students via Qualtrics to 

determine their eligibility prior to scheduling a session. In particular, all students needed to 

speak English fluently and be enrolled in a major different from Math or Geometry. The 

prescreener also included a geometry quiz to test their geometry knowledge and ensure they 

were not math experts. The quiz consists of 7 true/false questions about geometry 

conjectures, some easy along with medium difficulty ones. For each correct answer the 

student earns one point and if the total earned score is equal to 7, they are classified as 
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ineligible. Otherwise, the participant is invited to enroll in the study, and is asked to complete 

a demographic survey. 

 

5.3.2 Randomization Checks 

As a randomization check several measures were included, to estimate whether the 

randomized groups were relatively equivalent. These measures included the pre-screening 

geometry test, a verbal fluency test and a spatial reasoning instrument. 

The verbal fluency test is a one minute verbal functioning test where students have to say 

aloud as many unique words as they can starting with a given letter [98]. Each participant's 

score is the number of correct words.  

A spatial reasoning test was used to determine a candidate's ability to manipulate 2D and 

3D objects, visualize movements and change between shapes, and spot patterns between 

those shapes. For this test we chose 6 questions of different difficulty from a previous study 

conducted by Ramful et al. [99]. Each question has 4 possible answers, but only one of which 

was correct. The students were given 8 minutes to complete the assessment and later each 

question was scored with 0 in case of incorrect answer or 1 in case of correct answer, with a 

maximum possible score of 6. 

5.3.3 Post Task Survey 

A post task survey was distributed to all participants to collect feedback on their 

interaction with the robot. The survey consists in 5 Likert-style items and one open-ended 

question. In the Likert-style items the student was asked how much they agreed with five 

statements and are given a choice between five answers, from 1 (strongly agree) to (strongly 

disagree). These questions were about 1) if they thought the robot is friendly (one item), 2) 
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if they thought the robot made a good study partner (two items), and 3) if they thought the 

robot’s gestures were helpful (two items).    

In the open-ended question students were asked what they would change or improve about 

the experience with the robot. The questions and format used for the post task survey can be 

found in Figure 22. 

 

 

Figure 22: Questions and format used for the post task survey  
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CHAPTER 6 

MEASURES AND ANALYSES 

 

6.1 Gesture Coding 

We based our gesture coding on prior work by Pier, et al. (2019). We started by 

recognizing gesture sequences, which started when a participant lifted their hands and 

concluded when they dropped their hands. As a result, a gesture sequence could consist of a 

single gesture or several motions. We decided to code all general gestures sequences and 

subsequently to examine the category the gestures belong to. We coded each gesture 

sequence if it contained at least one representational gestures, a category of gestures that 

represent the ideas and items to which they refer [100]. We focused on a subtype of 

representational gestures that we believe may enhance reasoning: we define dynamic 

gestures as motion that depict the gradual changing of a geometrical entity with body 

movement. When a student forms a triangle shape with their hands, this is a representational 

gesture that refers to a triangle in the participants mental model of the geometric conjecture. 

If that student then begins to move their hands to change the length of the sides or angle of 

the triangle, this is a dynamic gesture that manipulates the representation of the triangle. We 

coded each gesture sequence as representational or dynamic if it contained any instance of 

these gesture types within the entire gesture sequence. It is important to note that, any gesture 

sequence can be composed of multiple gestures, including dynamic gestures and beat 

gestures mixed up. We did not attempt to count each gesture instance, as often gestures are 

intermingled and difficult to distinguish between starting and ending points. Fig. 5 provides 

several examples of dynamic gesture sequences produced by participants. Throughout this 
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paper, when we use the expression “gestures'', we are referring to gesture sequences. Each 

gesture sequence was then coded into one of three categories: (1) representational if the 

participant produced at least one representational gesture in the sequence; (2) dynamic if the 

participant produced at least one dynamic gesture in the sequence or (3) non-representational 

if the participant produced only beat gestures and not any representational gestures. We 

monitored the number of dynamic, representational and non-representational gesture 

sequences performed while the participant was reasoning about the last four conjectures. 

 

6.2 Eye Gaze Direction 

We used video recordings to code information about the participant’s eye movements 

during the first four conjectures when the robot explained their reasoning about each 

conjecture. Video recordings were examined to determine where the participant was looking 

during these activities and coded for “looking at robot” when the participant’s gaze was 

directed to any part of the robot and coded “looking at tablet” when the participant’s gaze 

was directed to the tablet screen, and “looking at other” when their gaze moved away from 

the robot or tablet. We placed the tablet and the robot with a Euclidean distance of 45 cm 

between them, which decomposed on the Cartesian axis was 40cm along the x-axis and 20cm 

along the y-axis, as represented in the schema in Figure. We were able to distinguish between 

looking at the robot and tablet because to switch from one item to the other participant 

needed not only to spin their eyes but also to slightly turn their head. ATLAS software was 

used to distinguish the intervals of time in which the student was looking at the tablet and in 

which the student was looking at the robot. 
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6.3 Speech and proof validity 

Participants’ verbalizations during their reasoning about the last four conjectures were 

transcribed from the video recordings by the researcher. All records were analyzed and if 

necessary were edited for correctness. The script were separated into 4 documents (one for 

every conjecture). Verbalizations were then examined, and it was checked if, for each 

conjecture, the student gave a correct answer and, in case of correctness, the reasoning or 

justification for that answer was analyzed to determine whether the participant reasoning 

related to the context of the conjecture.  

The reasoning was classified as non-correct when the premises of the reasoning were 

unrelated with the conclusion, or the conjecture statement itself was unrelated with the whole 

reasoning. For example, if the conjecture statement is about opposite angles and they reason 

on opposite sides length, this was labeled as incorrect reasoning. The reasoning is incorrect 

also when there is no reasoning at all, and the student just guess an answer or is not able to 

provide any justification for his response. All others form of reasoning were classified as 

correct. 

Note that while these examples only include verbalizations, we coded for proof validity 

using both speech and motions, for instance speaking the expression "the triangle" while 

picturing a growing triangle with hands suggests the speaker was reasoning about general 

triangles. 

 

6.4 Post-task Survey 

Participants were asked to complete a post-task survey after the interaction with the robot. 

A score from 1 to 5 was assigned to each survey response, according to the legend in Table 

III. All the surveys responses were analyzed and divided in two groups: two questions (Q2 
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and Q3) were used to measure the participants feelings about studying with the robot, while 

other two (Q3 and Q4) were used to measure participants feelings about the effectiveness of 

the robot’s gestures. In the first close question (Q1) we asked the students how friendly the 

robot was and since we got a 5 score from all the participants excluded this question from 

the analysis. In this paper, no further measures were conducted for the open question. 

TABLE III: RESPONSE AND SCORE ASSOCIATION FOR THE POST-TASK SURVEY 

Response Score 

Strongly agree 5 

Somewhat agree 4 

Neither agree nor disagree 3 

Somewhat disagree 2 

Strongly disagree 1 

 

 

6.5 Analyses  

Analyses were run based on 30 participants, randomly divided in two groups: 15 for 

dynamic condition and 15 for beat condition. 

To ensure random assignment to condition groups, all group characteristics were 

compared for mean differences, ensuring that no correlation occurred for verbal fluency and 

spatial reasoning among the two groups.  

To test our hypotheses about the relationships between robot gesture type and dynamic 

gestures, reasoning and attention, we divided the session in four different parts and 

performed several and different calculations for each of them.  

1. The first part was considered as a warmup task, hence no further analysis is required.  
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2. The second part corresponds to the robot reasoning, in particular it begins when the 

robot start enunciates the first geometrical conjecture and ends right after the fourth 

conjecture proof production. For this part the total amount of time the student was 

looking at the tablet or at the robot was computed while the robot was talking. No 

computation has been made while the robot was silent between one conjecture and 

the following.  

3. The third part corresponds to the student reasoning and begin with the fifth conjecture 

enunciation. For this part the total amount of gesture sequences, representational 

gesture sequences and dynamic gesture sequences the student performed during his 

reasoning was counted. 

4. The fourth and last part starts right after the student reasoning, when the participant 

is asked to complete the post-task survey. For this part we  

We calculated a t-test to compare differences in mean scores between the groups, for (1) 

dynamic gestures sequences occurrences in control condition and dynamic condition, (2) 

amount of time the student is looking at the robot in control condition and dynamic condition 

(3) proof correctness in control condition and dynamic condition, and (4) proof validity in 

control condition and dynamic condition. An alpha of 0.05 was used as our cutoff for 

determining statistically significant differences between measures. 
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CHAPTER 7 

RESULTS 

Between the dynamic and beat condition groups, all group characteristics were 

determined to be similar (See Table IV), fulfilling our randomization check. For the dynamic 

condition, 71.66% of the proof produced was valid, whereas for the beat condition 56.66% 

of the proof produced was valid. Regarding dynamic gestures across the two conditions, 

60% of all participants in both situations made at least one dynamic gesture sequence; this 

was true for 73.33 percent of the dynamic group and 60 percent of the beat group. In addition, 

the students who spent most time looking at the robot rather than at the tablet was 86.66% 

in the dynamic condition and 53.33% in the beat condition. 

 

TABLE IV: COMPARISON OF GROUP CHARACTERISTICS BETWEEN DYNAMIN AND BEAT CONDITIONS. 

Measure Beat Mean (SD) Dynamic Mean (SD) 

Age 20.86 (1.55) 20.26 (1.98) 

Spatial Reasoning Ability 5.13 (0.64) 5.13 (0.83) 

Verbal Fluency Ability 16.4 (2.06) 16.73 (2.12) 

 

 

7.1 Hypothesis #1: Dynamic Gestures  

The number of produced dynamic gesture in the dynamic condition (34 in total, M = 2.26,  

SD=2.31) is double the number of produced dynamic gesture in the beat condition 

(17 in total, M = 1.13, SD=1.06). The difference in dynamic gestures between the 

two conditions, was not statistically significant t(28) = 1.72, p = 0.95). However, 

analyzing the number of gesture sequences (Beat: 27, Dynamic: 53) and the number 
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of representational gesture sequences (Beat: 25, Dynamic: 53) we noticed that 

students used gestures mostly for reasoning, with just 2 cases in which they don’t 

make any representation in gesturing. Moreover, what is interesting to highlight is 

that the total number of gesture sequences measured is statistically different between 

the two conditions where the beat condition (M = 1.80, SD = 1.58) sequences were 

lower than the dynamic condition (M = 3.53, SD = 2.7, t(28) = 2.15, p = 0.04) 

sequences. A similar result was found for the representational gesture sequence 

measure, where representational sequences for the beat condition (M = 1.66, SD = 

1.58) were higher than those in the beat condition (M = 3.53, SD = 2.61, t(28) = 2.37, 

p = 0.02). All the results can be found in Table V. 

 

TABLE V: DIFFERENCES IN GESTURE MEASURES 

Measure Group Total Num M (SD) t(28) p 

Gesture  Beat 27 1.80 (1.56) 2.15 0.04 

Sequences Dynamic 53 3.53 (2.70)   

Representational  Beat 25 1.66 (1.58) 2.37 0.02 

Gestures Dynamic 53 3.53 (2.61)   

Dynamic  Beat 17 1.13 (1.06) 1.72 0.095 

Gestures Dynamic 34 2.26 (2.31)   

 

 

7.2 Hypothesis #2: Reasoning and Proof 

Table VI presents the differences between proof correctness and reasoning correctness in 

dynamic condition and beat condition. It has been found no difference in the answer 
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correctness among the two groups, since the total number of correct answers is the same (45 

over 60 in both cases), and the mean of correct answer per participant is also the same (3 

correct answer) with a slightly higher standard deviation in the beat group (SD  = 0.92) 

compared to the dynamic group (SD = 0.65). A marginal difference has been observed for 

the construction of a valid proof, analyzing the reasoning flow of participants. Even if 

measures are not statistically different, we noticed that in the beat condition the correctness 

of reasoning was lower than in the dynamic condition, with a total of 34 correct proof 

production in the beat (M = 2.26, SD=1.43) compared to 43 correct proof production in the 

dynamic (M = 2.86, SD=0.91). 

 

TABLE VI: DIFFERENCES IN REASONING MEASURES 

Measure Group Total Num M (SD) t(28) p 

Proof  Beat 45 3 (0.92) 0 1 

Correctness Dynamic 45 3 (0.65)   

Reasoning  Beat 34 2.26 (1.43) 1.3 0.18 

Correctness Dynamic 43 2.86 (0.91)   

 

 

Further analysis on proof correctness has been carried out to classify proof correctness 

divided by each theorem. In Table VII is shown the total number of corrected answers for 

each theorem, divided by condition. Results show that the students had more or less the same 

difficulty in solving the theorems, since comparing the two conditions, the difference among 

the same theorem correctness in never more than 1. 
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TABLE VII: RESPONSE CORRECTNESS FOR EACH THEOREM, DIVIDED BY CONDITION 

 

 

7.3 Hypothesis #3: Attention 

In order to measure whether robot’s dynamic gestures direct student attention on the 

gesture area, hence on the robot itself, we examined where the student was looking at during 

the robot reasoning, and those results are shown in Table VIII. The total time, measured in 

seconds, that students looked at the robot gesturing is 899.61 in the beat condition and 

1766.37 in the dynamic condition. In average 33.36% of the total time was spent looking at 

the robot in the beat condition while 61.85% of the total time was spent looking at the robot 

in the dynamic condition. The difference between the two measures had been found to be 

statistically significant, with a p value of 0.019. 
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TABLE VIII: DIFFERENCES IN LOOKING MEASURES 

Measure Group Total Num Percentage M (SD) t(28) p 

Looking  Beat 899.61 s 33.36% 79.36 s (46.65) 2.49 0.019 

Robot Dynamic 1766.37 s 61.85% 117.76 s (37.26)   

 

In order to have a more accurate idea of the time spent on each conjecture in both 

condition and to ensure that no significant difference occurs among the two conditions 

regarding this time, in Table IX is shown the seconds that, in average, were required to 

complete each task. 

  

TABLE IX: TIME SPENT (S) IN EACH THEOREM, DIVIDED BY CONDITION 

 

 

7.4 Post Task Survey Results 

 From the data analysis conducted on the post task survey we found that when they 

were asked questions about their feelings about studying with the robot, in both condition 
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students mostly agreed that the robot was a good study companion and if they had the 

possibility, they would study with a robot like that. In fact, we found out a score mean of 

4.25 (SD = 0.40, median = 4) for the beat condition and a score mean of 4.73 (SD = 0.41, 

median = 5) for the dynamic condition. An interesting finding is about students’ feelings on 

the effectiveness of robot’s gestures. In our result we got that almost all students in the 

dynamic condition agreed with the extent that the robot’s gestures helped them focusing and 

understanding better the conjecture discussed, with a score mean of 4.86 (SD = 0.29, median 

= 5). In the beat condition we got a quite different result, since we found out a mean of 3.50 

(SD = 0.38, median = 3.5). The previous results are shown in Table X. Unlike the other 

results, in this case we chose to use a Mann-Whitney non-parametric test to compare 

differences, because the survey results are not a continuous variable and the Mann-Whitney 

non-parametric test can be used when the measured variables are of ordinal type and were 

recorded with an arbitrary and not a very precise scale [101]. Since there were more than 

eight observations for each condition, we report on the calculated z statistic and 

corresponding p value to determine significance of the difference. 

 

TABLE X: POST TASK SURVEY RESULTS 

Measure Group M (SD) z p 

Feelings about studying Beat 4.25 (0.40) 3.08 0.00025 

with the robot Dynamic 4.73 (0.41)   

Feelings about effective- Beat 3.50 (0.38) 4.37 <0.0001 

ness of robot’s gestures Dynamic 4.86 (0.29)   
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CHAPTER 8 

DISCUSSION 

In this thesis we presented the quantitative measures of gesture rates, proof and reasoning 

correctness, eye gaze and self-reported measures of perception of the robot, in order to test 

the hypotheses that: interacting with a dynamic gesturing robot will result in a greater 

production of dynamic gestures from the student itself, strengthening their reasoning and 

directing their attention toward the robot. We found strong statistical support favoring that 

the dynamic gesturing robot enhanced gesture production in students, not only regarding the 

number of dynamic gestures produced, but there is also a considerable difference in the 

number of representational gesture sequence, too. An explanation of this finding can be 

found considering the GSA framework, explained in section 2.4, where we reported that 

according to this theory, human gestures production depends also on the height of the 

speaker current gesture threshold and that this threshold may be lowered when speakers 

knows that listeners are seeing them and when speakers want to convey an important 

information. Of course students know that the robot cannot see them while they are gesturing 

but, an interpretation of this phenomenon can be given considering how the robot interaction 

skills enhance the social part of the robot, leading the students to act as if the robot is a 

human. The fact that students are gesturing more in the dynamic condition could mean that 

a dynamic gesturing robot enhances social presence more than a beat gesturing robot. This 

result is in line with other research [102] in which the use of different types of gestures 

positively or negatively predicted participants’ perceptions of the naturalness of the robot’s 

behaviors, describing how robots might selectively use different types of gesture to improve 

specific interaction outcomes. 
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We also found that the dynamic gesturing robot captures the student attention more than 

the beat gesturing robot, confirming our hypothesis that dynamic gestures direct student’s 

attention toward the robot, a very similar result found by previous studies on the human 

educational gestures [89].  

However, we did not find differences in proof correctness but just a slightly perceivable 

difference in the correctness of their reasoning. This suggests that in this case, the use of 

gestures did not enhance their reasoning, but it is worth further exploration to better 

understand why this is inconsistent with human-human interaction studies. 

What is interesting to me, is the different perception of usefulness and willingness to use 

the robot between the two conditions, emerged from the post-task survey. What is visible 

from the results is that the remarkable difference between the two conditions was not about 

the student’s perception of the robot, but the differences in their willingness to use the robot 

in an educational setting and the perception they had about robot’s gestures. In particular, 

the majority of them found the robot’s gestures helpful in the conjectures understanding and 

believe that the gestures help them in focusing on the conjecture. This result is confirmed 

from the analysis of student attention we discussed earlier, that showed a stronger focus on 

the robot in the dynamic condition. 
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