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Abstract

The aim of this thesis is to validate the new exact solution for a 1D
compressible flow experiencing wall friction and heat exchange and to
solve, numerically, a flow in which are present all the possible factors
driving the flow properties changes: area variation, friction and heat
exchange. The numerical scheme used for this purpose is an high reso-
lution Godunov scheme: a finite volume upwind scheme which belongs
to the class of the Riemann solvers.
The numerical code has been validated by comparing the numerical
simulations with the analytical steady state solutions for the Fanno
flow, the Rayleigh flow and the flow across a nozzle, with and without
a straigh shock in the divergent part. The validated code has been
used to assess the consistency of the new exact solution pertaining a
flow with wall friction and heat exchange. Finally, the obtained nu-
merical code has been used to solve a one-dimensional flow in which all
the possible factors driving the flow properties changes are taken into
account.
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1 Introduction

The compressible fluid flow has a substantially di↵erent behavior with
respect to the incompressible one, especially in supersonic cases. In
fact, in a fluid flow, in presence of area variation, friction and heat
exchange, a sudden alteration of properties can occur, causing shock
waves. To properly characterize this phenomena, high resolution shock-
capturing method are required. The mathematical model that will be
used to analyze the compressible gas behaviour is the Euler’s equa-
tions model in presence of perfect gas with a source term. It will be
the starting point to develop our numerical scheme .
At the moment, for the one-dimensional compressible flow are available
exact solutions for an isoentropic nozzle, for the Fanno flow and for the
Rayleigh flow. Recently, also exact solutions for conic nozzle with wall
friction and constant area duct with heat exchange and wall friction [1]
have been found.
After a theoretical description of the physical model we will introduce
the mathematical model of the Euler equations in presence of perfect
gas with a source term and its properties. It will be the starting point
to develop our high resolution Godunov scheme. These are very re-
cent numerical solvers based on the resolution of a Riemann problem
at each point of the computational domain. These numerical methods
follow the physic of the problem and they are very suitable for the ap-
plication on compressible fluid flows. Even if the theoretical approach
to the subject was fully developed in the early 50’ by Sergei Godunov,
they found popularity and applications only in the last decades thanks
to the exponential evolution of the computational power. Despite the
great performances of these numerical methods, they are still used for
very few academic application but they can gain popularity in the next
years.
The practical implementation of a numerical code into a calculator will
be introduced with all the steps to develop an algorithm. At the end
the code will be validated through the comparison with simple models
for which an analytical steady state solution is present. At the end
of this document we will have a one dimensional high resolution nu-
merical method . The great utility for the 1D models computed with
an High resolution Godunov scheme as first design for thermofluid dy-
namics systems such as heat exchangers, refrigerator’s systems and gas
transport systems is underlined: the one-dimensional codes are much
easier to be obtained with respect to the three dimensional ones but
they give satisfying results in very short times.
Once that the numerical code will be validated, we will build an High
Resolution Godunov scheme solving a De Laval nozzle with the pres-
ence of wall friction, heat exchange and area variation at the same time.

6



The exact solution for this model is not available at the time and so,
the only way to analyze this problem is through a numerical solution.

2 The physical compressible flow field in 1D

As presented by Ferrari in [2] (chapter 11), the physical case that we’re
going to study in the further chapters can be inserted into the analytical
one-dimensional models for a compressible fluid. In this field of study
we can find three di↵erent main sub-models :

1. 1D compressible isentropic flow with area variation;

2. Fanno flow: 1D viscous adiabatic flow through a constant cross-
section area pipe;

3. Rayleigh flow: 1D inviscid diabatic flow through a constant cross-
section area pipe;

in which we will consider both the subsonic and supersonic flows. These
three models are all steady-state and will be described in the follow-
ing pages. The one-dimensional unsteady gas-dynamic models are the
starting points for a simple modeling of 1D thermo-fluid machines.
We must be aware of the fact that this model can only describe the
variation of the properties along the longitudinal axis with a good de-
scription for the physic involved and a simply mathematical descrip-
tion until, 2D phenomena, such as oblique shocks, appear. The use of
a one-dimensional model is a good choice when these hypothesis are
observed:

• the change of the section must be little in respect with the axial
length;

• we are looking for the mean flow properties for each section. The
fluid properties don’t vary along a single section but only from a
longitudinal point to another;

• great curvature radius of the duct in respect with the diameter
are required.

The cases in which our model cannot be used, will be analyzed in the
following pages.
Our numerical model will include all these three cases simultaneously.
To check the e↵ectiveness of the numerical code in respect to the single
physical sub-case, a validation must be performed using the analytical
solutions. After this the general code will be considered able to work,
at the same time, in presence of area variation, wall friction and heat
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exchange with the external ambient.

2.1 Causes of variation of fluid properties inside a 1D con-
duct.

Considering a 1D fluid-dynamic model without di↵usive e↵ects and
a fluid flow inside a constant area duct, the only way in which its
properties can change, is because of the presence of a source term. The
sources in the 1D model are of 3 types:

• Area variation inside the duct;

• friction between the fluid and the walls of the duct;

• heat exchange with the external environment.

If none of this source is present the fluid properties will remains the
same inside the duct.
The study of the influence of each of these sources upon the fluid prop-
erties will be studied in the following pages

2.1.1 Area variation

If we consider an adiabatic flow without the presence of friction on the
walls with an Area modeled as A = A(x) , where A(x) is a continuous
function with the second derivative continuous, we obtain, by applying
the principle of the conservation of total energy, a constant total Tem-
perature flow at steady state.
In our study case we will consider a De Laval nozzle with subsonic

flow at inlet with, as boundary conditions, a fixed total pressure p01 and
total temperature T 0

1 at the inlet (Reservoir properties) and a varying
outlet pressure p2.
Fixing the inlet properties and varying the outlet pressure we can ap-
preciate all the di↵erent working behaviour for our nozzle classified in
function of the pressure ratio as reported in figure (1) :

• p/p01 = pad/p0.
We are in design working condition and the outlet flow is super-
sonic. The flow becomes sonic at the throat where the critical
pressure pc = p01(

2
(γ+1))

γ
γ−1 is reached . It expands iso-entropically

until the pad design pressure is reached.

• ps/p01 < p/p01 < p01/p
0
1.

In this condition the outlet pressure is a slightly lower than the
inlet total pressure and the flow is fully subsonic along the nozzle.
This is called Venturi working condition.
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Figure 1: De Laval nozzle di↵erent working conditions depending on outlet
pressure.

• p/p01 = ps/p01.
This is the limit condition for which the flow becomes sonic at
the throat and subsonic at the outlet because the diverging part
acts as a di↵user and it compresses the flow till the pressure ps.

• ps/p01 > p/p01 > pslimit
/p01.

In this condition we reach the sonic state at the end of the con-
verging part and, in the diverging one, the flow becomes super-
sonic until a straight shock occurs, making the flow subsonic and
the evolution no more across the entire nozzle. The evolution
continues with a compression in the last diverging part until the
outlet pressure p2 is reached. The straight shock travels to the
exit section as we reduce the outlet pressure.

• pad/p01 < p/p01 < pslimit/p01.
In this case we have no more straight shock inside our diverging
part and we cannot use a 1D model to analyze the flow properties
variation. In fact from experimental evidences, in this working
condition there is the presence of oblique shocks in the diverg-
ing part that can continue also outside the nozzle with the post-
expansion phenomena. The flow is not isoentropic and we need
at least a 2D model to evaluate the property variation inside our
nozzle.

• p/p01 < pad/p01.
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Figure 2: De Laval nozzle area profile

In this condition the profile of pressure is the same in the case
of design working condition but we have outside expansion waves
that occurs with the post-expansion dynamic.

The shape considered in our model is :

A(x) = 2.5(x+ 0.1) +
0.3

x+ 0.1
, (1)

and it is represented in figure (2). If no shock is present inside the
divergent part, we will have an isotropic flow (no friction and no heat
exchanges). The steady state analytical solutions for the flow properties
will be found in the section (7.2).

2.1.2 The Fanno Flow

As described in [5], the Fanno flow is a stationary uni-dimensional com-
pressible flow along a duct with constant-cross section area without
exchange of energy with the ambient and with the presence of viscous
e↵ect on the walls. Since the total enthalpy and the mass flow in this
model are constant, we have a total temperature constant flow as in
case of area variation.
The frictional e↵ect, in this model, induces the changes in the prop-
erties of the flow and is the only source of entropy. It will increase
in any case when friction is present until a maximum Entropy state is
reached. It will correspond to the sonic outlet condition. If a flow has
an initial subsonic state, the friction e↵ect will increase the velocity
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and the Mach number and decrease the enthalpy and the pressure of
the flow.
We can have two di↵erent main cases for our flow:

• Subsonic flow. If the flow at the inlet of our duct is subsonic the
friction will transform the total pressure into internal energy with
an increase of temperature and a decrease in density. This e↵ect
will cause an increase in speed to keep the mass flow constant. The
friction in this case produces an acceleration of the flow until Mach
= 1 is reached. This is the chocked condition and, once is reached,
the flow cannot be more influenced by the inlet properties and so,
changing the pressure ratio, the flow will still remain the same
inside the duct. In this chocked condition the only parameter that
can modify the flow properties is the length of duct. Increasing
the length the Mach=1 condition will be the same whereas the
mass flow will reduce. This e↵ect is crucial in long pipes design.

• Supersonic flow. If the flow is initially supersonic the e↵ect of
friction will reduce Mach number and speed and will increase
pressure and enthalpy. Since the flow is supersonic the only pa-
rameter that can a↵ect the flow properties is the pipe length. If
we increase it, the flow will reduce its Mach number, tending to
a Mach=1 outlet condition as limit. This is also called star con-
dition and depends on the inlet properties of the flow and it will
correspond to a length of the duct and to a set of properties (star
properties) at the outlet in which the Mach number will be equal
to one. When the length is increased more than the star length,
a steady state shock occurs. The shock appears in order to fulfill
the second law of thermodynamic because no supersonic flow can
became subsonic with a continuous evolution. After this shock
the Mach number will be lower than one and the evolution will
continue till the sonic state if the downstream pressure is lower
than the star one.

In any case the overall e↵ect of the friction will include a decrease in
the total pressure for both supersonic or subsonic case and so, the wall
friction, tends to reduce the e↵ectiveness of all types of flow machinery.
The evolution of the flow is deeply influenced by whether the flow is
initially subsonic or supersonic. The e↵ect of the friction is evident in
particular in the supersonic case where, for the same variation in Mach
number for a subsonic case, we have a loss in total pressure doubled.
This is the reason why we use short ducts in case of supersonic flows.
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2.1.3 The Rayleigh flow

From [2]: in Rayleigh flow, the change in the flow properties is induced
only by an heat exchange with the external environment since frictional
e↵ects and area variations are absent. The changes in flow properties
are linked to the variations of the total temperature induced by the
heat flow. If we know the heat exchanged in every section we can
understand all the changes in properties.
The heat exchange will be, for this model, the only source of Entropy
and, as for the Fanno flow, also for Rayleigh flow we will have a state of
maximum entropy, if the flow is heated up enough, that will correspond
to Mach=1 for any case. The main situations for this model are two for
the case of heating (positive heat flow) and two for the case of cooling
(negative heat flow). For our purpose we will analyze only the heating
cases:

• Subsonic flow.
Starting from a subsonic inlet the presence of a positive heat flow
increases the total temperature as qin = cp(T 0

2 − T 0
1 ) from the

state one to the state two. This variation induces an increase in
the Mach number proportional to the heat induced by the system.
As for every subsonic flow we can reach at maximum the Mach=
1 state at the outlet. In this case the heat flow tends to reduce
pressure, density and the total pressure.
A peculiar situation is linked ,in this case, with the Temperature
variation.
The temperature increase until Mach= 1p

γ
is reached and de-

creases in 1 > Mach > 1p
γ
range, with γ = cp/cv. This phe-

nomenon, apparently paradoxical, find explanation in a moving
flow where, the speed in the 1 > Mach > 1p

γ
part, increases with

a rate higher than the Temperature.For this reason, the flow cool
down to reduce the density and to keep the mass flow conserved .
When the Mach = 1 is reached we have the chocking condition
for the flow (star condition) to which we can link a qlim. In this
condition the flow cannot stand more inlet heat flow and further
introduction of heat will cause the mass flow rate to reduce while
the outlet conditions remain the same. Increasing the length of
the duct, if we have a constant introduction of heat for every x
section, we are indirectly introducing more heat in the system and
so the length can cause a variation for the properties of the flow.

• Supersonic flow.
When the inlet flow is supersonic, this is non-sensitive to the
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upstream properties variation and, the only driving term for a
change in properties becomes the length of the duct. The ex-
change of heat along this length induces an increase in speed and
in pressure. Also the total pressure increases in this case whereas
the Mach number decreases until limit of Mach=1. The length
correspondent to this state will be the limit L⇤. In this state
the flow cannot absorb more heat without lowering the mass flow
rate and it is defined as chocked. Increasing further the length
we are introducing more heat and when q > qlim there will be
the creation of an adiabatic shock to respect the second law of
Thermodynamic. Thanks to this shock the flow downstream is
subsonic and will become sonic at the outlet. Nevertheless the
location of the shock cannot be inside the duct because the shock
will not cause any total temperature variation. For this reason
the only acceptable location will be inside the De Laval nozzle
feeding the duct. As the heat increases further, the shock will
travel more and more upside to the nozzle. In this way the flow
will be subsonic chocked along the duct.

In case of cooling the variation of properties and the di↵erent cases are
just opposite respect to the heating case.

2.1.4 Analogy between The Fanno, the Rayleigh and the Area

Variation flow.

The three models studied before, present some analogy between theme-
selves:

• In case of subsonic flow in a nozzle there is a limit Area section
and a limit outlet pressure after which the flow become sonic and
so, insensible to the upstream flow properties. For the Fanno and
the Rayleigh flow we can observe the same phenomena but driven
from di↵erent e↵ects (friction and heat);

• another analogy is between Fanno and Rayleigh about the mass
flow rate. In the Fanno subsonic flow, if we increase too much
the work produced by the friction or if we reduces too much the
outlet pressure, there will be a change in mass flow as well as in
case of a Rayleigh subsonic flow if we increase too much the heat
exchanged or reduce too much the outlet pressure;

• the supersonic Fanno and Rayleigh flows presents some similar
features about the Entrophy generation. In Fanno the friction
causes Entropy generation whereas in Rayleigh the heat exchange
causes the same e↵ect;
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• All the three models in supersonic case present the creation of a
shock in some condition. This shock is source of Entropy and its
generation is the only way to respect the second law of thermo-
dynamic;

• Both the area variation and the Fanno flow are models with a
constant total temperature in steady state.

• The variation of pressure for all these models can also be source
of instabilities in all the subsonic cases. If L<Lmax or 0 < q < qlim
and diminishing the pressure at the outlet we arrive to the critic
value, the mass flow cannot vary anymore. If we reduce again the
outlet pressure there will be the creation of dissipative phenomena
(post-expansion) outside the duct to reach the outlet environment
pressure. A similar e↵ect can be found in a supersonic flow with
an outlet pressure higher than the critical one.

3 The one-dimensional Euler Equations

The homogeneous Euler equations constitute a system of non-linear
hyperbolic conservation laws that describes the dynamic behaviour of
a compressible material. This model comes directly from the Navier-
Stokes-Fourier system of equations in which are neglected the di↵usive
mechanisms. Because of this, discontinuous solution as shock waves
can born and so, the numerical scheme to solve them must be able to
correctly reproduce them. For the validation of our numerical model
the choice of The Euler equations, as analytical starting point, is mo-
tivated by the fact that the absence of the di↵usive mechanisms makes
this model the most unstable one for a compressible flow. If our nu-
merical scheme will work fine with this model, it will work fine also
for NSF. There are several set of variables used to describe the fluid
properties under consideration. In our case we will use the primi-
tive variables formulation at the boundaries (⇢, u, p) and the conserved
variable formulation (⇢, ⇢u,E) into the inner domain. The latter set of
variables derives directly from the fundamental laws of conservation of
mass, Newton’s Second Law and the law of conservation of total energy
without any di↵usive flux and with an ideal Equation of state. They
will be analyzed in (3.1).
The primitive variables’ formulation will be the starting point for the
Method of Characteristics whereas the conservative variable formula-
tion is the starting point for the application of the Godunov scheme
(conservative Upwind scheme). In our case we will start from the un-
steady 1D Euler equations’ model with a perfect gas.
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3.1 Definition of a conservation law

A formulation is considered a conservation law if the variation in time
of the total amount of a quantity inside a given domain is equal to
the balance between the amount of that quantity entering and leaving
the domain plus the contribution from source terms generating that
quantity. If we can mathematically lead back a general equation to
this form:

δ

δt

Z

Γ

yΓ dΓ+

Z

A

F · n dA =

Z

Γ

QΓ dΓ+

I
Q

A
· n dA , (2)

our equation is a conservation law. The terms in the equation 2 are :

• δ

δt

R
Γ yΓ dΓ : the accumulation term. It highlights how much our

quantity changes in time.

•
R
A
F · n dA : the inflow term. It accounts for the rate of how

much of our quantity enters across the domain boundaries and
how much is leaving the domain’s boundaries.

•
R
Γ QΓdΓ and

H
Q

A
· n dA : volume and surface source terms.

They account for how much of our quantity is generated on the
surface or into our domain.

The equations we will work with, are all conservation laws because they
can be rendered to the (2) equation’s form.

3.2 Integral form of the Euler’s conservation laws

The integral formulation of the conservation laws involved in the Eu-
ler’s model, is the starting point for any finite volume method and
requires stringent hypothesis on the functions involved but it is the
starting point for every numerical method able to solve correctly dis-
continuous phenomena. The di↵erential formulation, instead, holds on
less stringent smoothness hypothesis on the flow variables that are not
verified in discontinuities cases and so it will give bad results in pres-
ence of shocks. For these reasons we will choose the integral form of
the conservation laws for our Euler’s equations. The following analysis
is taken from [6].

3.2.1 Conservation of Mass

The conservation of mass law states that no mass can be generated or
annihilated into a general V volume. It is written in this form:

Z Z Z

V

@⇢

@t
dV +

Z Z

A

n · (⇢V) dA = 0 , (3)
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where the first integral is the variation in time of the mass inside the
control volume whereas the second integral is mass inflow entering
through the surfaces with a speed V less the mass outflow exiting
the surfaces with a speed V, per unit of time. Considering a V control
volume independent on time we can have the final form:

d

dt

Z Z Z

V

⇢ dV = −
Z Z

A

n · (⇢V) dA . (4)

3.2.2 Conservation of Momentum

The conservation of momentum, in the Euler’s equations, comes di-
rectly from the application of Newton’s second law neglecting the dif-
fusive phenomena and states that the rate of change of the momentum
quantity in any control volume V is equal to the total force acting on
the volume V. Considering the definition of momentum:

M(t) =

Z Z Z

V

⇢V dV , (5)

with the definition of the forces acting on the surfaces of the control
volume and of the volume forces:

fS =

Z Z

A

S dA, fV =

Z Z Z

V

⇢ g dV , (6)

in which we can recognize the S vector of stresses, the total force acting
on the control volume can be written as:

ftot = fS + fV . (7)

Equaling the time derivative of M(t) and ftot and elaborating the equa-
tion, we obtain:

d

dt

Z Z Z

V

(⇢V) dV = −
Z Z

A

V(n · ⇢V) dA+ ftot , (8)

in which the general CV is time independent.
The rate of change in time of the momentum quantity, can be seen as
due to the net of the entering and exiting momentum quantity across
the surfaces and due to the sources of momentum located on the sur-
faces and in the CV.
Neglecting the viscous stresses and the volume sources we obtain the
conservation of momentum in integral form for the Euler equations:

d

dt

Z Z Z

V

(⇢V) dV = −
Z Z

A

V(n · ⇢V) dA . (9)
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3.2.3 Conservation of total Energy

The conservation of total Energy states that, in a control volume (CV),
the rate of change of total Energy is equal to the work done, per unit
of time, by all the forces acting in the CV and by the net between the
total energy entering, minus the total energy leaving the CV across the
surfaces.
The total energy quantity is defined as:

Etot =

Z Z Z

V

E dV , (10)

defined as E = U + EC + Ep sum of Internal energy, Kinetic energy
and Potential energy.
The work produced by the surface and the volume forces if given by
the dot product between the general force and the general speed (f ·V).
Here we summarize the terms accounting for the surface forces’ work
and for the volume forces’ work:

ES = −
Z Z

A

p(V · n)dA+

Z Z

A

V · (n · ⇧) dA (11)

EV =

Z Z Z

V

⇢(V · g) dV . (12)

Considering a single CV independent on time the conservation of energy
is given by:

d

dt

Z Z Z

V

E dV = −
Z Z

A

(n · EV) dA+ ES + EV + EQ , (13)

with EQ is the heat flow into the CV per unit of time across a general
surface element dA:

EQ = −
Z Z

A

(n ·Q) . (14)

Neglecting the viscous e↵ects, the heat exchanges and the volume and
surface work terms, we obtain the conservation of total energy for the
homogeneous Euler’s equations.

3.3 Conservative formulation

The conservative formulation of the Euler’s equations in di↵erential
form using the conserved variable set, is the starting point for the
application of Finite Volume methods. The system can be expressed
as:

Ut + F(U)
x
= 0 (15)
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in which U is the vector of the conserved variables whereas F(U) is
the vector of the fluxes. They are defined as

U =

2

4
u1

u2

u3

3

5 ⌘

2

4
⇢
⇢u
E

3

5 , F(U) =

2

4
f1
f2
f3

3

5 ⌘

2

4
⇢u

⇢u2 + p
u(E + p)

3

5 . (16)

In this system ⇢ is the density, p is the pressure, u is the flow velocity
and E is the total energy per unit volume:

E = ⇢ (
1

2
u2 + e) . (17)

To close our system of equations we need an equation of state to express
the specific internal energy for our fluid. The fluid considered in our
model is the dry air modeled as a perfect gas obeying to the ideal
thermal equation of state:

pV = RT , (18)

with R specific gas constant. In this model the specific heats at con-
stant pressure and at constant volume can be expressed as:

cp =
γR

γ − 1
, cv =

R

γ − 1
, (19)

with γ = cp/cv for an ideal gas. For our purpose we will use γ = 1.4,
that is a very good approximation of the dry air as ideal gas in a
temperature range from 0° C to 1000°C and it results experimentally
accurate for the monatomic gasses. Thanks to the equation of state
we can link the density and the pressure through the specific internal
energy as :

e = e(p, ⇢) =
p

(γ − 1)⇢
. (20)

For these conditions the speed of sound can be expressed as

a =

r
γp

⇢
. (21)

The system is now in a closed form and we can analyze its mathematical
properties that allows us to solve numerically our problem.

3.4 Properties of the homogeneous Euler equations

In this part we’ll discuss about the fundamental properties of the Euler
equations in homogeneous form (15) as starting point to apply the
Godunov numerical method in the further chapter. We will focus only
on the properties useful to our scope.
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3.4.1 Quasi-linear form, Eigenvalues and Eigenvectors

A system of PDE is called quasi-linear when the coefficients of the
highest order derivatives of the dependent variables, don’t depend on
the highest order derivatives of the variable itself. Our Euler system
of conservation laws can be written in a quasi-linear form applying the
chain rule to the equation 15 :

@F(U)

@x
=

@F

@U

@U

@x
, (22)

obtaining the expression:

Ut +A(U)Ux = 0 (23)

where the A(U) matrix is called Jacobian matrix defined as

A(U) =
@F

@U
=

2

64

@f1

@u1

@f1

@u2

@f1

@u3
@f2

@u1

@f2

@u2

@f2

@u3
@f3

@u1

@f2

@u2

@f3

@u3

3

75 (24)

in which f1, f2, f3 are the fluxes and u1, u2, u3 the conserved variables.
The Euler’s equations (15) satisfy also the homogeneity properties
which is the starting point for the Flux Vector Splitting methods.
Thanks to this property the fluxes of the system can be written in
this form:

F(U) = A(U)U . (25)

Computing A(U) for the Euler equations we obtain :

A(U) =

2

4
0 1 0

−1
2(γ − 3)(u2

u1
)2 (3− γ)(u2

u1
) γ − 1

−γu2u3

u
2
1

+ (γ − 1)(u2
u3
)3 γu3

u1
− 3

2(γ − 1)(u2
u1
)2 γ(u2

u1
)

3

5

The Eigenvalues of the Jacobian matrix A are :

λ1 = u− a ,λ2 = u ,λ3 = u+ a (26)

and the Eigenvectors correspondent and composing the matrix K are:

K1 =

2

4
1

u− a
H − ua

3

5 ,K2 =

2

4
1
u

1
2u

2

3

5K3 =

2

4
1

u+ a
H + ua

3

5 , (27)

with total enthalpy H = (E + p)/⇢ ⌘ 1
2u

2 + h.
The Eigenvectors are linearly independent and the Eigenvalues all real.
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3.4.2 Hyperbolicity and Non-linearity for the Euler’s equations.

A system of partial di↵erential equation of m equations in m unknowns
is said to be hyperbolic in a generic point (x,t) of a domain x-t if
the Jacobian matrix associated, has m real Eigenvalues and a corre-
sponding set of m linearly independent right Eigenvectors. If all the
Eigevalues are distinct the system is strictly hyperbolic. The unsteady
one-dimensional Euler’s equations are a set of non-linear hyperbolic
equations because the Eigenstructure (26) satisfies the property just
described.
The main features of an hyperbolic homogeneous system of PDEs are
based on the fact that , in this kind of problems, the information pro-
vided at time t = 0 propagates in time along characteristic curves. The
slope of these curves in x-t plane is given by their Eigenvalues. In a
linear hyperbolic PDE the initial information remains constant evolv-
ing in time whereas the information of a non-linear hyperbolic PDE
are distorted because of the non-linearity.
The Euler equations are non-linear since the speed of propagation of
the information of the system, are dependent on the system properties.

3.4.3 Characteristic lines and Well Posed Problem theory

A characteristic curve is defined as a curve in the x-t domain along
which a PDE set of equations can be decomposed in ODE. The number
of characteristic lines for an hyperbolic system is equal to the number
of Eigenvalues. Thanks to the Method of Characteristics the Euler
equations can be decoupled in a set of 3 wave equations along which
the Riemann variables remains constant. Even if this method will not
be used in the Godunov scheme, it reveals the physical meaning of the
propagation of information mechanism inside the Euler’s equations.
Following the characterization of Hadamard:

Definition 3.1 ”A mathematical model describing physical phenom-

ena is a well-posed problem if:

• a solution exist

• the solution is unique

• the solution’s behaviour changes continuously with the initial con-

ditions and the boundary conditions.”

An hyperbolic system of PDEs composes a well-posed problem if :

• The domain is infinite and initial conditions are provided for every
point of the domain and for every unknown property. The initial
conditions must not be provided along characteristic lines.
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• The domain is limited, boundary conditions are provided for each
piece of boundary in the number foregone by the Theory of Char-
acteristic and both initial conditions and boundary conditions
must not be provided along characteristic lines.

In these cases a solution exist and it is unique.

Now that we have faced all the properties for the homogeneous
Euler’s equations we can introduce the complete model, including a
source term, that will be used for the Godunov numerical method. The
Eigenstructure will remain the same of the homogeneous analysis.

3.5 Generalized Euler equations with source term

To fully describe the behaviour of the physical model presented in the
chapter (2) we have to add the uni-dimensional source terms to our
homogeneous Euler equations.

3.5.1 Generalized Euler equations

Even if the di↵usive mechanisms are not involved into the Euler equa-
tions, they can be modeled by uni-dimensional source terms accounting
for the viscous e↵ect induced by the friction in our duct walls and for
the heat exchanged in any section. From [2] chapter 5.5.1, the model
that includes the friction and the heat exchange with environment is:

8
><

>:

@⇢

@t
+ @(⇢u)

@x
= 0

@(⇢u)
@t

+ @(p+⇢u
2)

@x
= −4⌧w

D

@(⇢ etot)
@t

+ @(⇢uh0)
@x

= 4 q̇f

D

(28)

in which we have ⌧w , q̇f that are respectively the friction on the walls
and the thermal power exchanged through the walls by convection.
All the right-side terms of the system (28) are treated , as volume terms,
with a dependence only on the system’s quantity and not dependent
on the derivatives in time and space of them.
Considering the ⌧w coefficient linked with the Moody diagram as ⌧w =
λ⇢u

8 |u| and considering f = λ/4 we can write :

⌧w = f⇢
u

2
|u|. (29)

Considering an infinitesimal volume Adx = ⇡D2dx/4 for a circular
shape area (for other shapes an equivalent diameter can be chosen), we
have:

⌧w⇡Ddx

⇡/4D2dx
=

4⌧w
D

, (30)
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the ratio between the work produced by the friction force on the in-
finitesimal duct length over the infinitesimal duct volume.

3.5.2 Evaluation of friction factor f

In the previous model we have used an f mean friction factor along the
duct as starting point for our model. Following [2] for lengths higher
than 50D and a subsonic compressible flow, the f friction factor isn’t
a↵ected by the Mach number and we can evaluate f = λ/4 with a good
approximation with:

1p
λ
= −2 log10

2.51

ReD
p
λ
, (31)

for smooth ducts and with the Colebrook-White formula:

1p
λ
= −2 log1 0

 
2.51

ReD
p
λ
+

✏

3.71D

!
(32)

for non-smooth ducts with ✏ relative roughness. The value of λ(Re, ✏)
can be found with iterative methods for a material and a length, finding
the Reynolds number and knowing the experimental relative roughness.
In a length from 0 to 50D and a subsonic flow we cannot consider a
flow one-dimensional because of the change in the speed profiles. In
this case we can introduce an fapp mean apparent friction factor that
will include a coefficient to take in account the speed change for each
section. This will be similar to the Moody diagram one in case of
turbulent flow whereas it will be higher than the Moody one in case of
laminar flow.
In the supersonic flows, the length Lmax is usually too much short to
have a fixed profile of speed and so it is used always an fapp coefficient to
take in account the speed variations in a single section. Experimental
evidences in supersonic flows have outlined a value of 0.002 < f < 0.003
in the supersonic field for 1.2 <Mach< 3 and 25 · 103 < Re < 7 · 105.
These values are doubled in respect to the incompressible ones for the
same Reynolds range and they underlines the crucial di↵erence between
compressible and incompressible flows.
In our numerical model we will use the experimental value: f = 0.003.

3.5.3 Evaluation of the heat exchanged

The quantity considered in the Rayleigh model is an heat flow enter-
ing each diameter section from the external. For the purpose of this
work we are considering a positive constant flow for each section . This
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choice is motivated by the fact that the heat flow constant value allows
to find the analytical solution in a much simple way whereas a variable
heat flow should be analyzed with a more complex approach.
A variable heat flow should be defined by a convective heat transfer for
each section proportional to the di↵erence between the inner temper-
ature and the environment’s temperature multiplied by the convective
heat transfer coefficients. Since the difficulty to correctly model the
convective heat transfer coefficient, especially for a supersonic flow,
this case has been not considered in what follows, where a constant
heat flux has been considered.

3.5.4 The Euler’s equation with Area variation

To take to account also the Area variation, in our Euler’s equations,
we can refer to the model presented by Toro in ([6]) chapter 1.6.2 :

Ut + F (U)x = S , (33)

with:

U =

2

4
⇢
⇢u
E

3

5 , F(U) =

2

4
⇢u

⇢u2 + p
u(E + p)

3

5 S = − 1

A

dA

dt

2

4
⇢
⇢u

(E + p)

3

5

with dA

dt
= At + uAx.

In our case we will consider the variation of the area A only dependent
on space and so At = 0. Thanks to this particular formulation we
can avoid to rebuild the complete Eigenproblem of the Euler equation
and we can use the same Eigenstructure of the homogeneous Euler’s
system. In this way, in our Godunov scheme, the area variation will be
considered only into the source term. The goodness of this formulation
will be proved in the Validation section.

3.5.5 Complete Euler model with source term

Merging the two previous models (3.5.4) and (3.5.1) we arrive, finally,
to the complete model for the unsteady one-dimensional Euler’s equa-
tion with wall friction, heat exchange with the environment and area
variation.
The model can be written as:

8
><

>:

@⇢

@t
+ @(⇢u)

@x
= − 1

A

dA

dx
⇢u

@(⇢u)
@t

+ @(p+⇢u
2)

@x
= −4⌧w

D
− 1

A

dA

dx
⇢u2

@(⇢etot)
@t

+ @(⇢uh0)
@x

= 4q̇f
D

− 1
A

dA

dx
u(E + p)

(34)
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or in compact form as eq.(33) with :

U =

2

4
⇢
⇢u
E

3

5 , F(U) =

2

4
⇢u

⇢u2 + p
u(E + p)

3

5S =

2

66664

− 1
A

dA

dx
⇢u

−4⌧w
D

− 1
A

dA

dx
⇢u2

4q̇f
D

− 1
A

dA

dx
u(E + p)

3

77775
(35)

4 The Riemann problem for the Euler’s Equations

In agreement with [6]: the exact solution of the Riemann problem for
the Euler’s equations is the starting point for a Godunov scheme and
it contains the fundamental physic behind the behaviour of compress-
ible materials. There is no closed-form solution for Riemann problem

Figure 3: The Riemann problem

for Euler’s equation with ideal gasses, neither substituting the energy
equation with a more easy homoentropic or iso-thermal evolution but,
it is possible to find a solution iteratively with any practical degree of
accuracy.
The first exact Riemann solver for the Euler Equation is accredited
to Godunov. There are two Riemann’s solvers developed by Godunov
but for our purpose we’ll use the more efficient second Riemann solver.
In this chapter we’ll describe the solution of the Riemann problem as
elementary waves which divide our domain in di↵erent parts with dif-
ferent properties depending on the wave considered and upon the initial
conditions for the Riemann problem.

8
><

>:

Ut + F(U)
x
= 0

U(x, 0) = U(0)(x) =

(
UL ifx < 0

UR ifx > 0 .

(36)
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The classical solution of the Riemann problem is graphically depicted
in figure (4)

Figure 4: The Riemann problem’s solution.

with three non-linear waves, each one associated with an eigenvalue,
which seize three internal zones and which nature depends upon the
right and left initial conditions.
The wave associated with the second eigenvalue λ2 is a contact discon-

tinuity whereas the waves associated to λ1 and λ3 can both be a shock

wave or a rarefaction fan depending on the initial conditions and on
the properties for the Riemann problem inside the di↵erent zones of
the (x-t) domain. The property in the inner domain must be investi-
gated through an iterative process which will be described in details in
chapter (4.1), since no exact solution exists for this Riemann problem.
In the figure (5) we have a shock wave for the first eigenvalue, a con-
tact discontinuity and a rarefaction fan for the third eigenvalue. For
the rarefaction wave we have that :

uR − aR  uR⇤ − aR⇤ . (37)

For the shock wave related to the third eigenvalue:

uL⇤ + aL⇤ > S3 > uL + aL , (38)

with S3 speed of the shock. For the contact discontinuity associated
with the eigenvalue two we have :

uR⇤ = uL⇤ = S2 (39)

with S2 speed of the discontinuity. We must characterize now each
discontinuity and how the properties change across them.
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Figure 5: Example for a Riemann problem’s solution.

4.0.1 The non-linear wave equation.

To correctly forecast the change of the properties across a general dis-
continuity we need the characterization of the non-linearities and shock
formation.
The analysis is restricted to a single non linear wave equation. The
Riemann problem for the Euler’s equations will use the same reason-
ing.
In a non-linear case the characteristic speed λ(u) of a discontinuity is
function of the solution itself and so, the initial value is propagated
with changes as shocks and distortions of the initial data. Mathemat-
ically, these phenomena, are linked to the convex nature of the flux
function for which some values in the domain move faster than others.
If in times after the initial instant the initial data transform into a
flatter region we are in an expansive region and the λx > 0 while, if the
data becomes narrower and steeper we have a compressive region and
λx < 0. In the Euler’s equations model there’s an increasing compres-
sion e↵ect that can end with the creation of a shock wave (in Euler’s
homogeneous equation we have an inviscid model and more predispo-
sition in creating shocks.)
We will analyze the change of properties across each discontinuity
present in the Riemann problem for the Euler’s equations.

4.0.2 Contact discontinuity

A contact wave is a discontinuity across which the only properties that
change are the density and all the properties related to it (internal en-
ergy, sound speed, temperature etc.). The pressure and speed, instead,
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keep constant across it. These results came directly from the evalua-
tion of the Eigenstructure of the Euler’s equations. We can arrive to
the relation:

d⇢ =
d(⇢u)

u
=

dE

1/2u2
(40)

and rearranging it we can arrive to define that, across a contact dis-
continuity:

p = constant u = constant . (41)

4.0.3 Rarefaction waves

Rarefaction waves are associated with the first and third eigenvalues.
Recalling Riemann’s invariant and the Entropy formulation we can
state that the p, ⇢ and u vary as:

across λ1 = u− a

(
IL(u, a) = u+ 2a

γ−1 = constant

s = constant
(42)

across λ3 = u+ a

(
IR(u, a) = u− 2a

γ−1 = constant

s = constant
(43)

Across a rarefaction wave the Entropy keeps constant, the shape is a
fan type enclosed between an head and a tail and the properties vary
as prescribed by general Riemann’s invariant. The variation of the
properties will be discussed for the Euler equation in chapter (4.5.2).

4.0.4 Shock waves

The shock waves are discontinuities related to first and third Eigenval-
ues.
Across this discontinuity p, ⇢ and u changes. The relations across shock
discontinuity are exposed by the Rankine-Hugoniot (RH) condition for
a steady state shock. The general RH condition gives the general Shock
speed as :

S =
∆f

∆u
, (44)

with :

∆f = f(u(xR, t))− f(u(xL, t)) , ∆u = u(xR, t)− (u(xL, t) , (45)

respectively the flux function and the speed around the discontinuity.
When the frame is fixed the speed is null and so more easy relations
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can be applied. To analyze our case we cannot work with a null speed
but we can use the relative speeds in a transformed plane:

urel⇤ = u⇤ − S3 , urelR = uR − S3 , (46)

with S3 shock speed. Applying the Rankine-Hugoniot conditions we
obtain:

⇢⇤urel⇤ = ⇢RurelR ; (47)

⇢⇤u
2
rel⇤ + p⇤ = ⇢Ru

2
relR

+ pR ; (48)

urel⇤(Erel⇤ + p⇤) = urelR(ErelR + pR) . (49)

Developing our RH conditions we resort to the equations useful to un-
derstand how the flow properties changes across a shock. The relation
on the density is:

⇢⇤
⇢R

=
(γ + 1)(MR −MS)2

(γ − 1)(MR −MS)2 + 2
. (50)

The relation for the pressure is:

p⇤
pR

=
2γ(MR −MS)2 − (γ − 1)

(γ + 1)
; (51)

with:
MR = uR/aR MS = S3/aR , (52)

MR Mach number in the flow at the right side in respect with the
shock and MS the shock Mach number. We can relate shock speed S3

to density and pressure ratios using MR −MS. At the end we obtain
an expression for shock speed as function of pressure ratio across the
discontinuity:

S3 = uR + aR

r
(
γ + 1

2γ
)
p⇤
pR

+
γ − 1

2γ
. (53)

4.1 Resolution of Riemann problem for 1D Euler equations

Following the passages proposed by E.Toro in [6] chapter 4 we can fully
solve iteratively the Riemann problem for the equations (15). We’re
going to solve for a single point the Riemann problem for the Euler
equations. In the Godunov scheme this solution will be extended to all
the points inside the computational domain.
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The Riemann problem for the Euler’s equations is an initial value prob-
lem for the system:

8
><

>:

Ut + F(U)
x
= 0

U(x, 0) = U(0)(x) =

(
UL ifx < 0

UR ifx > 0 .

(54)

We’re interested to find a value for each conserved variable (⇢, ⇢u,E)
in all the points (x, t) in the x-t plane for −1 < x < 1 with t > 0.
In case of infinite domain, the solution will depend only on the initial
condition (IVP).
If we consider a discontinuity as figure (3) pointed at x = 0 that sep-
arates two constant states, during the propagation in time, a sudden
variation of the properties of the flow can occur. Depending on the
initial condition and on the property values of the x-t domain the dis-
continuity can lead to di↵erent property variations as shown in figure
(6). To fully define these properties we have to solve the Riemann prob-
lem. For simplicity we will use the primitive variables’ formulation to
find the solution to the Riemann problem and after we’ll return to con-
servative variables to apply the upwind part of the Godunov scheme.
The initial constant properties at left and right of the x = 0 point are
WL = (⇢L, uL, pL) and WR = (⇢R, uR, pR). If no vacuum is present
(vacuum condition will be explained later) the complete solution of the
Riemann problem is given by the subdivision of the x-t plane in in
four constant regions subdivided by the waves generated for each prop-
erty. The eigenvalues of the Euler equations λ1 = u − a , λ2 = u and
λ3 = u + a subdivide the domain into the constant regions. The first
and the third Eigenvalues, depending on the properties in the domain,
can became both a shock discontinuity or a rarefaction fan; the second
eigenvalue, instead, is always a contact discontinuity and defines the
WL⇤ left star region and the WR⇤ right star region.
All the possible cases are four as depicted in figure (7). To find the
complete solution we start knowing the left and the right initial con-
stant properties. After we proceed finding iteratively the p* and u*
properties which are the same in the left and right star regions and,
at the end the ⇢⇤L and ⇢⇤R values which are di↵erent between them.
The only properties that change across the contact discontinuity are
the density and all the properties related to it.
Once we’ve done this we can characterize the first and the third charac-
teristic lines’ nature and we find all the properties in the whole domain.
The problem would be closed and all the zones in x-t plane are defined
if the star properties are known. To clarify we show in figure(8) a clas-
sical pattern solution for a Riemann problem once the star properties
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Figure 6: The Riemann problem’s solution.

are known. In the next section we will fully define the star zones.

4.2 Finding p* and u*

To find the star region properties we must use an iterative method.
Following Toro in [6] : the solution for pressure p* of the Riemann
problem with the ideal gas equation of State is given by the root of the
equation:

f(p,WR,WL) ⌘ fL(p,WL) + fR(p,WR) +∆u = 0 (55)

with
∆u ⌘ uR − uL , (56)

and with fL and fR defined as:

fL(p,WL) =

8
>>>><

>>>>:

(p− pL)

"
AL

p+BL

# 1
2

ifp > pL(shock)

2aL
(γ−1)

"⇣
p

pL

⌘ γ−1
2γ − 1

#
ifp < pL(rarefaction)

(57)

fR(p,WR) =

8
>>>><

>>>>:

(p− pR)

"
AR

p+BR

# 1
2

ifp > pR(shock)

2aR
(γ−1)

"⇣
p

pR

⌘ γ−1
2γ − 1

#
ifp < pR(rarefaction)

(58)
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(a) Left shock wave and right rarefaction
fan.

(b) Left shock wave and right shock wave.

(c) Left rarefaction fan and right rarefac-
tion fan.

(d) Left rarefaction fan and right shock
wave.

Figure 7: All the possible di↵erent wave patterns in the solution of the
Riemann problem.

Figure 8: A Riemann problem ’s solution example.
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and with the constants AL , BL , AR , BR:
(
AL = 2

(γ+1)⇢L
, BL = (γ−1)

(γ+1)pL

AR = 2
(γ+1)⇢R

, BR = (γ−1)
(γ+1)pR

(59)

with p a generic pressure in the zone after the discontinuity. If we have
f(p) = 0 we have found our p⇤.
The iterative nature of the procedure is due to the fact that fL(p,WL)
and fR(p,WR) are dependent on the p⇤ and so we have to impose a ptry
and we have to find the fR and fL functions for this ptry. If f(ptry) = 0,
the ptry is our p⇤ and we’re done. If not, we have to use another ptry
and check again if f(ptry) = 0.
The u* can be found once we know p* as

u⇤ =
1

2
(uL + uR) +

1

2
[fR(p⇤) + fL(p⇤)] . (60)

4.3 fL and fR functions

Both the fL and fR functions depends on the nature of the left and
right waves and both the functions can be a shock or a rarefaction
wave depending on the primitive variables before and after the wave.
We will analyze the left function but all the consideration below can be
applied, considering the right parameters, also for the right function.

4.3.1 fL function in shock case

The left wave is linked to the first eigenvalue λ1 and its nature de-
pends upon p* and WL properties. If we assume that the left wave
is a shock moving with the SL speed ,the relation between left values
(⇢L, pL, uL) and the post-shock values (⇢⇤L, p⇤L, u⇤L) is given by the
Rankine-Hugoniot condition considering a relative speed. In order to
work with the steady state shock formulas we have to introduce the
relative speeds:

uLrel = uL − SL , u⇤rel = u⇤ − SL (61)

that are equivalent to consider our frame moving with the shock speed
SL. The Rankine-Hugoniot condition across the shock wave gives:

⇢LuLrel = ⇢⇤Lu⇤rel , (62)

⇢LuL
2
rel

+ pL = ⇢⇤Lu⇤
2
rel

+ p⇤ , (63)

uLrel(ELrel + pL) = u⇤rel(E⇤rel + p⇤) , (64)
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With ELrel and E⇤rel total energy per unit of volume evaluated using
the relative speeds. After some passages we arrive to a relation for the
⇢⇤L in function of p⇤ :

⇢⇤L = ⇢L

"
(γ−1
γ+1) +

p⇤
pL

(γ−1
γ+1)

p⇤
pL

+ 1

#
. (65)

For the flow velocity in star region we obtain:

u⇤ = uL − fL(p⇤,WL) . (66)

For the fL relation we obtain:

fL(p⇤,WL) = (p⇤ − pL)

"
AL

p⇤ +BL

# 1
2

(67)

with

AL =
2

(γ + 1)⇢L
, BL =

(γ − 1)

(γ + 1)
pL . (68)

4.3.2 fL function for left rarefaction

In case of p⇤ conditions for which we have a rarefaction fan we can find
the properties inside and after the rarefaction fan using the isoentropic
relation and the generalized Riemann invariant linked to the first eigen-
value across the fan to link the properties of the star region with WL.
After some calculation we obtain the fL function in case of rarefaction
fan:

fL(p⇤,WL) =
2aL

(γ − 1)

"⇣ p⇤
pL

⌘ γ−1
2γ − 1

#
; (69)

here aL is found from:

aL =

r
γ
pL
⇢L

(70)

The density in the left part of the star region is given by the isoentropic
evolution across the fan:

⇢⇤L = ⇢L

 
p⇤
pL

! 1
γ

(71)

The flow speed in the star region is :

u⇤ = uL − fL(p⇤,WL) (72)
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4.3.3 fR function for right shock case

The same considerations can be applied in the same way to found fR
in both the cases of shock and rarefaction as the previous procedure.
The starting point in this case are the relative speeds:

uRrel = uR − SR , u⇤rel = u⇤ − SR . (73)

All the other passages are the same of the left case. Here we report the
formulas:

fR(p⇤,WR) = (p⇤ − pR)

"
AR

p⇤ +BR

# 1
2

(74)

with

AR =
2

(γ + 1)⇢R
, BR =

(γ − 1)

(γ + 1)
pR . (75)

The particle velocity in the right star region is:

u⇤ = uR + fR(p,WR) . (76)

4.3.4 fR function for right rarefaction fan

Also for the right rarefaction case there’s the same reasoning as the left
one. Here we report the formulas. After some calculation we obtain
the fR function in case of rarefaction fan:

fR(p⇤,WR) =
2aR

(γ − 1)

"⇣ p⇤
pR

⌘ γ−1
2γ − 1

#
(77)

Where aL is found from

aR =

r
γ
pR
⇢R

(78)

The particle velocity in the right star region is:

u⇤ = uR + fR(p,WR) . (79)

Now we are able to compose our f(p,WR,WL) function by equaling the
left and right u⇤. In fact we know that across the contact discontinuity
the pressure and the speed are constant. The result will be the function

f(p,WR,WL) ⌘ fL(p,WL) + fR(p,WR) +∆u = 0 (80)

The solution of f(p) = 0 numerically defines the left and right case
completely:
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• if p⇤ > pL and p⇤ > pR we have a left and a right shock;

• if pL > p⇤ and pR > p⇤ we have a left and a right rarefaction.

• if pL > p⇤ and p⇤ > pR we have a left rarefaction and a right
shock.

• if p⇤ > pL and pR > p⇤ we have a left shock and a right rarefaction.

Once the right and left conditions are defined we can define the u⇤
speed from one of the two formulas of u⇤ (left and right case) or from
a mean value :

u⇤ =
1

2
(uR + uR) +

1

2
(fR(p,WR)− fL(p,WL)) . (81)

4.4 p* Iterative algorithm

To solve the non-linear f(p) = 0 function we can apply any numer-
ical method. The function f(p) = 0 is monotone and concave and
∆u , pL and pR are the fundamental parameters to find the numerical
root. The main condition to find a unique solution is to respect the
non-vacuum condition. For too much low ∆u the non-linear waves can-
not create in vacuum and the solution of Riemann problem and gives
a negative p⇤. To avoid this condition we must verify the pressure

positive condition for which:

(∆u)critic ⌘
2aL
γ − 1

+
2aR
γ − 1

> uR − uL . (82)

In the resolutive algorithm, if this condition is violated we cannot find a
p⇤ and we have to apply a di↵erent numerical method from the follow-
ing one. If this condition of non-vacuum is respected given the initial
data WL,WL a unique positive solution p⇤ exists. The algorithm used
is Newton-Raphson with a pguess initial value. The choice of the initial
guess can only a↵ect the time to reach the convergence in the method
but it’s not a critical parameter for the success in find the root. The
choice in the algorithm is:

pTR =

"
aL + aR − 1

2(γ − 1)(uR − uL)

aL/p
γ−1
2γ

L
+ aR/p

γ−1
2γ

R

# 2γ
γ−1

, (83)

this is called two rarefaction approximation because, if applied in search-
ing of Riemann solution, it would give a rarefaction discontinuity both
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for the left and right waves. Since the equation (55) is non-linear we
have to guess an initial value and, if it is not correct, to try with an-
other value. To find the correct iteration till the p⇤ value we use the
Newton-Raphson procedure. It is based on the Taylor expansion since
the smooth condition for f(p) is satisfied.

f(p0 + δ) = f(p0) + δf 0(p0) +O(δ2) (84)

If the p0 is a solution for f(p) then

f(p0) + δf 0(p0) = 0 , (85)

so the value corrected p1 = p0 + δ is

p1 = p0 −
f(p0)

f 0(p0)
. (86)

We can iterate this procedure until the relative pressure change (RPC)
between the kth iteration and the kth − 1 iteration is less than a pre-
scribed tolerance , usually ✏ = 10−6.

RPC =
|p(k) − p(k−1)|
1
2 |p(k) + p(k−1)|

(87)

The first derivative of the f(p,WR,WL) to be insert in the numerical
method is:

f 0
k
=

8
><

>:

⇣
Ak

Bk+p

⌘ 1
2
h
1− p−pk

2(Bk+p)

i
ifp > pK(shock)

1
⇢KaK

⇣
p

pK

⌘−(γ+1)/2γ

ifp  pK(rarefaction) ,
(88)

with AK and BK as in (59), in which the (K = L,R) letter generalize
the fact that substituting the value of the left or right wave we can
obtain, respectively, the left or right function first derivative.

4.5 Complete solution of Riemann problem

Thanks to the iterative scheme we’ve found the p⇤ pressure and conse-
quently the u⇤. These values are the same for the left and the right part
in the star region because of the presence of the contact discontinuity.
The last information to be determined are ⇢L⇤ and ⇢R⇤. These values
depend on the type of waves on the left and on the right. We will con-
sider all the possible cases. For shock wave we’ll need only the density
before the wave and the shock speed whereas in the rarefaction case
we’ll need the density before the wave and the tail and head equations.
In this case several cases are analyzed.
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4.5.1 Left Shock Wave

If p⇤ > pL we have a left shock condition and we can workout the ⇢L⇤
density. Now we know p⇤ and u⇤ and recalling the density across a
shock:

⇢⇤L = ⇢L

"
(γ−1
γ+1) +

p⇤
pL

(γ−1
γ+1)

p⇤
pL

+ 1

#
. (89)

To completely know the solution we lack of the SL shock speed in order
to identify the exact position in the x-t system of coordinates of the
complete W⇤ zone. It will be included between the SL and u* line.

Figure 9: Left shock wave sampled solution.

from the Rankine-Hugoniot condition across a shock we can easy iden-
tify SL as function of p⇤ , and W⇤ properties (now all known). In figure
(9) is depicted the division of x-t plane for a left shock.

SL = uL − aL

"
γ + 1

2γ

p⇤
pL

+
γ − 1

2γ

# 1
2

. (90)

We have determined all the properties of the left star region and its
exact location in the x-t plane.

4.5.2 Left Rarefaction fan

If for the left wave we have pL > p⇤ we will have a rarefaction fan. In
this case we will have a rarefaction fan enclosed between an head and a
tail and the star region before the contact discontinuity will start from
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the fan tail.
The ⇢L⇤ can be easily found from the isentropic evolution between left
and star left zone:

⇢⇤L = ⇢L

 
p⇤
pL

! 1
γ

. (91)

To determine the speeds of the head and the tail of the rarefaction
we also need the aL⇤ speed. This can be found with the isentropic
evolution :

a⇤L = aL

 
p⇤
pL

! γ−1
2γ

. (92)

The rarefaction fan is enclosed between an head and a tail as shown in
figure, identified by SHL and STL respectively:

SHL = uL − aL , STL = u⇤ − a⇤L . (93)

To complete the discussion for the left star zone we have to identify

Figure 10: Left rarefaction fan sampled solution

the properties inside the fan WLfan = (⇢, u, p)T . The identification of
a generic point (x,t) inside the fan is made through the characteristic
ray as shown in figure (10). It starts in the zero point of our Riemann
problem and has an inclination

dx

dt
=

x

t
= u− a , (94)
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where a and u are the sought particle sound speed and speed at (x,t).
Using the generalized Riemann invariant IL(u, a) between the state
before the fan and inside the fan, we’re able to link the two states:

uL +
2aL
γ − 1

= u+
2a

γ − 1
. (95)

Using the two above equation the two sound speed and the isentropic
evolution we arrive at :

WLfan =

8
>>>>>>><

>>>>>>>:

⇢ = ⇢L


2

(γ+1) +
(γ−1)

(γ+1)aL
(uL − x

t
)

: 2
γ−1

,

u = 2
(γ+1)


aL + (γ−1)

2 aL + x

t

:
,

p = pL


2

(γ+1) +
(γ−1)

(γ+1)aL
(uL − x

t
)

: 2γ
γ−1

. (96)

4.5.3 Right Shock Wave

Similar considerations can be expressed for the right cases. As for the
left part if p⇤ > pR we have a left shock condition and we can workout
the ⇢R⇤ density. Now we know p⇤ and u⇤ and recalling the density
across a shock:

⇢⇤R = ⇢R

"
(γ−1
γ+1) +

p⇤
pR

(γ−1
γ+1)

p⇤
pR

+ 1

#
. (97)

The SR shock speed is given by

SR = uR + aR

"
γ + 1

2γ

p⇤
pR

+
γ − 1

2γ

# 1
2

. (98)

We have determined all the properties of the right star region and their
exact location in the x-t plane.

4.5.4 Right Rarefaction Wave

As for the left zone if for the right wave we have pR > p⇤ we will have
a rarefaction fan. The ⇢L⇤ can be easily found from the isoentropic
evolution between left and star left zone:

⇢⇤R = ⇢R

 
p⇤
pR

! 1
γ

. (99)
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The a⇤R speed can be found with the isentropic evolution :

a⇤R = aL

 
p⇤
pR

! γ−1
2γ

. (100)

The rarefaction fan is enclosed between an head and a tail as shown in
figure, identified by SHR and STR respectively:

SHR = uR + aR , STR = u⇤ + a⇤R . (101)

To complete the discussion for the right star zone we have to identify
the properties inside the fan WRfan = (⇢, u, p)T . The identification of
a generic point (x,t) inside the fan is made through the characteristic
ray. It starts in the zero point of our Riemann problem and has an
inclination

dx

dt
=

x

t
= u− a , (102)

where a and u are the sought particle sound speed and speed at (x,t).
The properties inside the fan are

WRfan =

8
>>>>>>><

>>>>>>>:

⇢ = ⇢R


2

(γ+1) +
(γ−1)

(γ+1)aR
(uR − x

t
)

: 2
γ−1

,

u = 2
(γ+1)


aR + (γ−1)

2 aR + x

t

:
,

p = pR


2

(γ+1) +
(γ−1)

(γ+1)aR
(uR − x

t
)

: 2γ
γ−1

.

(103)

We have now fully solved the Riemann problem for the Euler equations
in a single point. The utility of this resolution will be seen in the
resolution of the Godunov scheme.

5 Godunov scheme for Non-linear Euler equations

The solution for the Riemann problem for the Euler equations, found
in the previous section, is the starting point for the application of a
Godunov scheme for non-linear system.
The Godunov scheme is an upwind conservative method. As well as all
the conservative numerical methods, the main computational issue for
the Godunov scheme is represented by the research of the numerical
fluxes. In the following passages we’ll find the solution to this problem.
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5.1 Conservative Numerical methods

Numerical methods are mathematical tools used to replace the the
continuous problem represented by the PDEs by a finite set of discrete
values.
For a physical problem in which are present discontinuities such as
shocks, we need stringent requirements on the mathematical formula-
tion of the governing equations and on the numerical schemes. For
these reasons we have chosen in chapter (3.2) the integral formulation
of the Euler’s equation with a set of conserved variable as starting point
for our numerical scheme. The numerical method we’re going to use is
in conservative form. From [3]:

Definition 5.1 ”A numerical method is said to be in conservative form

if it can be written as:

un+1
i

= un

i
− ∆t

∆x

h
Φ

i+ 1
2
(un

ip
, un

ip+1
...)− Φ

i− 1
2
(un

ip
, un

ip+1
...)
i
” , (104)

where Φ is called numerical flux and depends upon the p arguments.
The main property of a conservative scheme is that it maintains the
discretized version of the conservative statement exactly, except for
round-o↵ error for any mesh size over an arbitrary limited region con-
taining the conservative property. Since in our Euler’s equations we are
dealing with PDEs describing conservation law, a conservative scheme
is the most accurate numerical approximation of our problem, espe-
cially in the cases of discontinuities in the solution. The main issue of
the conservative methods is the evaluation of the inter-cell fluxes for
the calculation of the conserved variables at the next time step. The
Godunov scheme is an upwind method because we are evolving in time
the flow properties following the flow direction.

5.2 Convergence, consistency and stability for conservative
schemes

The convergence, for a general numerical scheme guarantees a rela-
tion between the exact solution of a PDE and the numerical solution
of the scheme. In linear case for non-conservative schemes we usually
pass first from the stability and consistency properties through the Von
Neumann analysis. For the non-linear cases the analysis is much more
complicated. In conservative schemes we can use another approach.
From [3] it can be shown that a conservative numerical scheme is con-
sistent with the original conservation law if the numerical fluxes reduce
to the physical flux for a constant flow. When we check consistency
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we refine the mesh of our numerical scheme in time and space domain.
Considering the expression:

un+1
i

= un

i
− ∆t

∆x

h
Φ

i+ 1
2
(un

ip
, un

ip+1
...)− Φ

i− 1
2
(un

ip
, un

ip+1
...)
i
” (105)

As we refine the mesh all the Ui values tend to U physical values:

Numericalflux ⌘ Φ(un

ip
, un

ip+1
...) (106)

Physicalflux ⌘ (u)

if ∆x ,∆t −! 0 Φ(u, u, u, u) = f(u) .

When we check the form (106), we have a consistent conservative nu-
merical scheme. As long as a numerical flux is equal to the physical
flux, we have a constant flow.
The convergence for a non-linear conservative scheme is derived from
the Lax-Wendro↵ theorem :

Theorem 1 ” If the solution Un

i
of the discretized equation in conser-

vative form converges boundarly almost everywhere to some function

U(x, t) when ∆x and ∆t tends to 0, then U(x, t) is a weak solution of

our non-linear PDE”

The solutions of a conservation law can be :

• Genuine solution: the solution is continuous and the first deriva-
tive of the solution can admit a bounded discontinuity (jump
discontinuity);

• Weak solution:the solution is continuous everywhere but we can
have a line in which we can have a discontinuity.

As our physical model forecasts the presence of shock, the convergence
of our conservative scheme to a weak solution will give the correct nu-
merical solution.
Unfortunately the theorem (1) does not guarantee the convergence be-
cause we need to converge boundly to some function. For this reason
we need stability. In linear case we can apply the Von Neumann anal-
ysis to check this property but, in case of conservative schemes, thanks
to Lax-Wendro↵ theorem, we can avoid to check stability if, applying
directly our conservative scheme, we resort to some function as solu-
tion. This function will be, for sure a weak solution that satisfies the
Rankine-Hugoniot condition and so it is physical consistent. The con-
vergence to a weak solution, allowing discontinuities is another peculiar
feature of the conservative schemes because it allows us to work with
discontinuity. A non-conservative scheme could not include a disconti-
nuity in its solution and so it could give wrong results.
The Godunov scheme is a conservative scheme.
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5.3 The Godunov scheme

The conservative schemes, thanks to their telescopic property, allow to
correctly report any discontinuity speed without the presence of error
linked to the derivatives.
The Godunov schemes are shock-capturing method alternative to Flux
vector splitting schemes. They start from the idea to apply a Rie-
mann problem at each border point of the grid in order to evaluate
the numerical flux. We are fully exploiting the telescopic property for
all the possible shocks creating in all the domain. The most impor-
tant point of the Godunov schemes is that they follow the physic of
the problem since, for every point of the domain, we are applying the
Rankine-Hugoniot condition (analytical evaluation of change in physi-
cal properties across a shock).
Considering a grid of discretized constant volumes, for which we have
a constant value related to each point as shown in figure (11), the
Godunov idea is based on the fact that at the cell border we have a
Riemann problem between two consecutive cells. If the physical con-

Figure 11: Piece-wise constant distribution of a property in the x− t plane.

ditions between the properties impose the presence of a shock, we are
capturing the physical phenomenon while, if there’s no a physical shock,
the numerical di↵erence between the two volumes creates a vanishing
shock.
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5.4 Bases of Godunov’s first order method

The starting point for our study case is represented by the Initial-
Boundary value problem (IBVP) for non linear-system hyperbolic con-
servation laws. Di↵erently from the ideal case, in real cases we have a
limited domain and so we must add so he boundary conditions to well
pose our problem (3.4.3).
The initial boundary value problem is here represented:

IBV P

8
><

>:

Ut + F(U)
x
= 0 , PDEs

U(x, 0) = U(0)(x) , ICs

U(0, t) = U1(t) ,U(L, t) = Ur(t) BCs

(107)

Where the vector U(x, t)and F(U) are the vectors of the conserved
variables and of the fluxes found in the chapter (3.3),
U(0)(x) is the set of initial data for every point of the domain and for
every conserved variable at time t = 0.
UL(t) and UR(t) are the functions expressing the evolution in time of
the boundary conditions in the space domain considered. We suppose
the existence of a solution for this problem and the existence of an
integral form in order to admit discontinuities.

5.4.1 Spatial and time discretization

The spatial one-dimensional domain considered is the [0, L] range,
subdivided into N+1 total points and N internal finite volumes Ii =
[x

i− 1
2
, x

i+ 1
2
] each one centered in the i point of the domain. Each finite

volume has the same length dx = L/N .
The geometric discretization is now completed so we can easily know
any position of any finite volume inside the domain and the respective
boundaries.
The last discretization must be made in the time domain [0, T ] to which
we are referring. To guarantee the stability of our model we must im-
pose the dt advancing time interval at any time step following the CFL
condition. This issue is linked to the non-linearity of the Euler’s equa-
tions. The stability condition for dt interval will be explained later in
(5.6)

5.4.2 Inter-cell fluxes solving strategy

The Riemann problem will be used in Godunov method to evaluate
the inter-cell flux looking for the properties in the x/t = 0 position.
The set of variables used to solve the Riemann problem can be di↵er-
ent from the conservative one. In fact, after the resolution of Riemann
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problem we can easily reconstruct the conservative variable inside the
finite volume and the conservative fluxes at the boundaries. We choose
the primitive variable set inside each cell W = (⇢, u, p)T . At time t = 0
we are provided of the initial data
U(0)(x) at each point of the spacial domain with the exception of the
boundary points. In the first order Godunov scheme, the properties
inside each finite volume are considered constant inside each finite vol-
ume. Since the initial data are written in terms of conserved variables
we must algebrically find the respective primitive variables to impose
the Riemann problems. To define all the properties inside the do-
main, we must evaluate the W variables at the boundaries through the
boundary condition problem. Independently on the boundary proper-
ties we are provided, we must end the calculation on the BC with the
primitive variables in order to start the Riemann problems.
Now we have a full set of constant values inside our domain at the
time t = 0. We can now solve the Riemann problem at each x

i+ 1
2
cell

boundary considering the (Un

i
,Un

i+1) data centered respectively inside
the i and i+1 volumes. The solution of the Riemann problem defines
fully all the properties in all the (x,t) points around the point in which
is located the discontinuity. Any of these points is identified by the
slope x/t but for the purpose of the Godunov scheme we are interested

only in the properties at the borders and so for x/t = 0. This concept
will be fundamental when we’ll consider the possible position of our
inter-cell flux inside the eventual rarefaction fan.
At the first time step t = dt we can now identify the numerical fluxes
for:

un+1
i

= un

i
− ∆t

∆x

h
Φ

i+ 1
2
(un

ip
, un

ip+1
...)− Φ

i− 1
2
(un

ip
, un

ip+1
...)
i
, (108)

as :
Φ

i+ 1
2
(un

ip
, un

ip+1
...) . (109)

We can now apply the same procedure for every point and advancing
with the time steps but we must take care of the conditions imposed
to dt and we must impose the boundary conditions.

5.4.3 Boundary conditions with the Method of characteristics

The first step to solve our code with a Godunov scheme is to provide
the boundary conditions for the left and right boundary. The procedure
that we will follow is taken from [3]. The numerical method applied
to have a time evolution of the BC starting form initial data is the
Method of the Characteristics. This is a non-conservative method (we

45



are starting from the non-conservative form for the Euler equation)
based on the decoupling of the Euler equations through the matrix
of the Eigenvectors (27) in wave equations. Once that the Euler’s
equations are decoupled we can apply any numerical scheme to each
wave equation to evaluate the next time step. In the particular case
of the application of the MOC only at the boundary we must supply
also boundary conditions values to correctly define the time evolution
scheme. The number of Boundary conditions that we must provide will
depend deeply on the initial state of our properties whereas the equa-
tions for the time evolution of each BC will depend on the structure of
the problem. In our study case we will include area variation , friction
at the walls and heat exchange.
Since we’re basing our BC evaluation on the primitive variable formula-
tion, we must start from the conservative form of the Euler’s equations
with source term and di↵erentiate them.

8
><

>:

@(⇢A)
@t

+ @(⇢uA)
@x

= 0
@(⇢uA)

@t
+ @(⇢u2+p)A

@x
= p@A

@x
− ⌧⇡D

@(EA)
@t

+ @u(E+p)A
@x

= ⇡Dq

(110)

The first step is passing to the primitive formulation developing the
partial derivatives and to explicit all the source terms.
For the continuity equation we obtain:

@⇢

@t
+ u

@⇢

@x
+ ⇢

@u

@x
= −⇢u

A

@A

@x
. (111)

Developing in the same way the partial derivatives in the momentum

conservation equation we obtain:

uA

 
@⇢

@t
+ u

@⇢

@x
+ ⇢

@u

@x

!
+ ⇢A

 
@u

@t
+ u

@u

@x
+

1

⇢

@p

@x

!
= −u2⇢

@A

@x
− ⌧⇡D

(112)
and by substituting (111) into (112) we obtain

 
@u

@t
+ u

@u

@x
+

1

⇢

@p

@x

!
= −⌧⇡D

⇢A
. (113)

The total Energy conservation equation di↵erentiation is:

@
⇣

1
2⇢u

2 + p

(γ−1)

⌘
A

@t
+

@{uA[
;
1
2⇢u

2 + p

(γ−1)

<
+ p]}

@x
+ = −⇡Dq . (114)
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Expliciting and rearranging derivatives we arrive to:

u2A

2

 
@u

@t
+ u

@⇢

@x
+ ⇢

@u

@x

!
+ ⇢uA

 
@u

@t
+ u

@u

@x
+

1

⇢

@p

@x

!
+

A

(γ − 1)

@p

@t
+

(115)

+
1

2
⇢u3@A

@x
+

uA

(γ − 1)

@p

@x
+

pA

(γ − 1)

@u

@x
+

⇢u

(γ − 1)

@A

@x
+

+
up

(γ − 1)

@A

@x
+

pA

(γ − 1)

@u

@x
= ⇡Dq .

Substituting (112) and (111) and knowing that pγ = a2⇢ we finally
obtain:

@⇢

@t
+ u

@p

@x
+ a⇢2

@u

@x
=

⇡Dq

A
(γ − 1) +

⇡⌧Du

A
(γ − 1)− a2⇢u

A

@A

@x
.

In this form the primitive Euler equations have the same Eigenstructure
of the homogeneous one. The eigenvalues that decouple the equations
are:

λ1 = u− a , λ2 = u , λ3 = u+ a . (116)

and the associated matrix of the Eigenvectors K is :

K =

2

4
1 1 1

−a/⇢ 0 a/⇢
a2 0 a2

3

5 (117)

The system of Euler with the primitive variables, thanks to the homo-
geneity propert, can be written as:

Wt +A(W)Wx = B , (118)

WithA Jacobian matrix andW = (⇢, u, p)T . set of primitive variables.
We can express all in matrix form with:

W =

2

4
⇢
u
p

3

5 A(U)

2

4
u ⇢ 0
0 u 1/⇢
0 ⇢a2 u

3

5 B =

2

4
−⇢u

A

@A

@x

− ⌧⇡D

⇢A

⇡Dq

A
(γ − 1) + ⇡⌧Du

A
(γ − 1)− a

2
⇢u

A

@A

@x

3

5 .

Using the eigenvalues (118) we can diagonalize our system using the
matrix of the Eigenvector K and K−1:

K−1 =

2

4
0 −⇢/2a 1/2a2

−1 0 −1/a2

0 ⇢/2a 1/2a2

3

5 (119)

47



After the pre-multiplication by K−1: we arrive to:

K−1Wt + K−1AKK−1Wx = K−1B , (120)

in which we can recognize the Q = K−1B matrix.

Q =

2

66664

4⌧
2aD + 1

2a2

⇥
4q
D
+ 4⌧u

D

⇤
(γ − 1)− ⇢u

2A

− 1
a2

⇥
4q
D
+ 4⌧u

D

⇤
(γ − 1)

− 4⌧
2aD + 1

2a2

⇥
4q
D
+ 4⌧u

D

⇤
(γ − 1)− ⇢u

2A

3

77775
(121)

Now we are able to express our system of PDEs as a system of ODEs
along the characteristics line. This is made through the Riemann’s
variables as follow:

8
><

>:

R1 = − ⇢

2au+ 1
2a2p

dR1
dt

= Q1 if dx

dt
= λ1

R2 = ⇢+ 1
a2
p dR2

dt
= Q2 if dx

dt
= λ2

R3 =
⇢

2au+ 1
2a2p

dR3
dt

= Q3 if dx

dt
= λ3

(122)

5.4.4 Practical development of physical left boundary conditions

For a De Laval nozzle we need to give a di↵erent number of boundary
conditions, at left and right part, depending on the physical situation.
In the case of subsonic inlet and subsonic outlet we need two fixed BC
at the inlet and 1 BC at the outlet. The reason is linked with the
theory of the characteristics, for which, the number of BC to be given
is the same number of the characteristic lines entering the domain in
this exact boundary as shown in figure (12). The other cases will be
fully analyzed in the following pages.
For the boundary conditions at the inlet we provide the total pressure

Figure 12: De Laval nozzle number of left and right boundary condition’s
number for a subsonic inlet and a subsonic outlet.

P 0
1 and the total temperature T10 . This choice is physically motivated
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by the fact that usually, in the experimental field, the flow properties
are the ones measured through sensor. The total pressure quantities
are the theoretical properties more near to the measured quantities.
The system to find the primitive variables in the Left Boundary con-
dition is:
8
>>>><

>>>>:

P 0
1

n+1 = pn+1
1

 
1 + (γ−1)

2
(un+1

1 )2

(an+1
1 )2

! γ
γ−1

T 0
1

n+1 = T n+1
1 + 1

2
(un+1

1 )2

cp

Rn+1
1 = −⇢

n+1

2a un+1 + 1
2a2p

n+1 dR1
dt

= Q1 if dx

dt
= λ1

. (123)

To know the Riemann variable value at the time n+1, we have to
discretize our wave equation dR1

dt
= Q1 knowing all the properties at

the time t = 0 state . We can use a downwind scheme since the speed
propagation of the Riemann variable λ1 = u− a is always negative for
a subsonic inlet flow. The discretized equation is :

R1
n+1
1 = R1

n

1 +
∆x

∆t


λ1

n

1R1
n+1
1 − λ1

n

2R1
n+1
2

:
+∆t Q1

n

1 , (124)

in which the first subscript refers to the Riemann’s variable we are
considering whereas, the second subscript, refers to the point of the
grid in which the variable is calculated. Solving the first equation of
(122) for all the points of the grid at time t, we can have the R1

n

1 and
the R1

n+1
2 values. Thanks to the initial conditions for all the points

of the domain we know all the values at time t and so we have all to
solve (124). Knowing that a =

p
γp/⇢ with γ = cp/cv we have now

a fully defined non-linear problem (123) with three equations in three
variables (⇢n+1, un+1, pn+1). Because of the non-linearity of the system
we must use a numerical method to solve the system (123). We can
use Newton-Rhapson, already used in (84). We start from F:

F =

8
>>>>>><

>>>>>>:

F1 : P 0
1

n+1 − pn+1
1

 
1 + (γ−1)

2
(un+1

1 )2

(an+1
1 )2

! γ
γ−1

F2 : T 0
1

n+1 − T n+1
1 − 1

2
(un+1

1 )2

cp

F3 : R1
n+1
1 −R1

n

1 − ∆x

∆t


λ1

n

1R1
n+1
1 − λ1

n

2R1
n+1
2

:
−∆tQ1

n

1 ,

(125)
by evaluating the Jacobian J of F system, we can find the Xnew value
after the first iteration. The first value considered is Xold vector, eval-
uated as Xold = F(0) with F(0) evaluated through the properties at
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time t = 0, already known thanks to the ICs.

Xnew = Xold −
F

J
(126)

After some iteration we arrive at convergence and the (⇢n+1, un+1, pn+1)
variables are found. This is the procedure to find time by time the
values at the left boundary.

5.4.5 Practical development of physical right boundary condi-

tions

The same reasoning can be applied to the right boundary to find the
number of Boundary conditions useful to have a completely define the
right boundary problem.
From the theory of characteristics in case of subsonic outlet we need
only one fixed boundary condition at the outlet since the only line
entering the domain is the one associate to the first eigenvalue λ1 =
u− a. We can impose the outlet ambient pressure p2.
The system to solve in order to determine the right boundary conditions
at the time n+1 is:
8
><

>:

PN
n+1 = p2

Rn+1
2 = ⇢n+1 + 1

an+1 2pn+1 dR2
dt

= Q2 if dx

dt
= λ2

Rn+1
3 = ⇢

n+1

2an+1uv +
1

2an+1 2pn+1 dR3
dt

= Q3 if dx

dt
= λ1.

(127)

To evaluate the Rn+1
2 and Rn+1

3 we need to discretize the wave equation
associated. In case of subsonic outlet we can use an upwind scheme
since both λ2 = u and λ3 = u+ a are positive . the equations are:

R2
n+1
1 = R2

n

1 +
∆x

∆t


λ2

n

1R2
n+1
1 − λ2

n

2R2
n+1
2

:
+∆tQ2

n

1 , (128)

and

R3
n+1
1 = R3

n

1 +
∆x

∆t


λ3

n

1R3
n+1
1 − λ3

n

2R3
n+1
2

:
+∆tQ3

n

1 . (129)

Recalling the speed of sound formula a =
p

γp/⇢ we have a linear sys-
tem of equations fully defined. We can solve it by substitution. Find-
ing the (⇢n+1, un+1, pn+1) variables at right boundary we have found
the properties at time step one. The next time step we can apply the
same reasoning for advancing in time our scheme.
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5.5 Application of first order Godunov to the inner domain

As presented by Toro in [6] we have di↵erent versions of the Godunov
scheme. In our numerical method we present the second version of the
Godunov scheme in conservative form:

Un+1
i

= Un

i
+

∆x

∆t


F

i− 1
2
− F

i+ 1
2

:
, (130)

where Un

i
is the finite volume constant value at time n for the i cell.

The inter-cell numerical flux is found as explained in (5.3) finding the
primitive variables at each border of the domain solving the Riemann
problem at each boundary. The generic flux can be written as F

i+ 1
2
=

F(U
i+ 1

2
(0)) evaluated at the right border of the i point using the initial

conditions and solving the Riemann problem at point i+ 1
2 .

5.6 CFL condition

The finite volume formulation (130) is valid if the CFL stability con-
dition on time step ∆t is respected .
This is called the not interference flux condition and it is based on the
hypothesis that, in a Riemann problem at the point i, the waves adja-
cent to i propagated by the other Riemann problems, don’t influence
the i Riemann problem itself. This condition is satisfied if a single wave
can travel at most half cell for each time step. From this condition we
obtain a ∆t interval for which our numerical scheme will be stable:

∆t  ∆x

2Sn
max

. (131)

Smax is the maximum speed, for each time step, calculated in all the
space domain. This stability condition belong to the first formulation
of Godunov scheme but we apply it in our numerical scheme since the
second one CFL condition is less restrictive.

5.7 Practical evaluation of inter-cell fluxes

The evaluation of the inter-cell fluxes is the most important and diffi-
cult task for a conservative scheme.
Once we know the initial value U(0) in each internal point and the
boundary values we can evaluate the inter-cell flux at each border of
each point of the domain.
The evaluation of the properties is made up solving the Riemann prob-
lem at the generic interface x

i+ 1
2
, RP (Ui,Ui+1). The exact point(x,t)

chosen inside the domain of the Riemann problem will be the one with
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the inclination S = x/t = 0. Since the resolution of the Riemann prob-
lem in (4.1) was solved for primitive variables W = (⇢, u, p)T we have
to evaluate the inter-cell fluxes as:

F(U) =

2

4
f1
f2
f3

3

5 ⌘

2

4
⇢u

⇢u2 + p
u(E + p)

3

5 . (132)

The cases are multiple. We have two main cases for which we can
find five other cases each. In figure (13) are summarized the cases for
positive star flow speed and in figure (14) the cases for negative star

Figure 13: cases for the inter cell flux evaluation in case of positive u*.

flow speed :
Summarizing, we have to fully solve the Riemann problem between
two consecutive cells and after this we have to choose the primitive
value correspondent to the S = x/t = 0 slope. Once we’ve done it
we have to insert these values inside the flux formulation and evaluate
all the numerical fluxes for all the inter-cell borders. After this we
can evaluate the Un+1 variables from the system (130). In the table
(15) are practically reported all the possible conditions to evaluate the
inter-cell fluxes.

52



Figure 14: cases for the inter cell flux evaluation in case of negative u*.

Figure 15: Table of all the possible cases for intercell flux evaluation.

5.8 Application of complete Godunov scheme with the pres-
ence of source term

All the passages applied before are true for the resolution for a Godunov
scheme without the presence of a source term. Since our physical model
requires the presence of source terms driving the variation of the prop-
erty studied as explained in part 3.5.5, we have to take in account the
source in our numerical model. Recalling the complete model:

8
><

>:

@⇢

@t
+ @(⇢u)

@x
= − 1

A

dA

dx
⇢u

@(⇢u)
@t

+ @(p+⇢u
2)

@x
= −4⌧w

D
− 1

A

dA

dx
⇢u2

@(⇢etot)
@t

+ @(⇢uh0)
@x

= 4q̇f
D

− 1
A

dA

dx
u(E + p) ,

(133)
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and the numerical scheme to be applied to find the conserved variables
for each point i at time n+1 to consider the presence of a source term
every time, we have to add a numerical source term Sn

i
evaluated at

every point i and at every time step:

Un+1
i

= Un

i
+

∆x

∆t


F

i− 1
2
− F

i+ 1
2

:
+∆t Sn

i
, (134)

with:

Sn

i
=

2

64

− 1
A

n
i
dAn

i
⇢n
i
un

i

−4⌧wn
i

D
n
i

− 1
A

n
i
dAn

i
⇢n
i
u2
i

n

4q̇fn
i

D
n
i

− 1
A

n
i
dAn

i
un

i
(En

i
+ pn

i
)

3

75 , (135)

where all the quantities marked with i must be recomputed for each
time step and at every cell.

6 High-resolution Godunov scheme

To achieve higher results in our numerical model, we’ll improve our
first order Godunov scheme to an high resolution Godunov scheme.
The procedure is developed following [3] and [6].
The high resolution methods are very recent developed concept used
for conservative schemes in order to reduce the oscillations around the
discontinuity and to avoid the dissipation of information.
The dissipation error is a typical loss of information linked to all the
first order schemes. To avoid this, in our Godunov scheme, we have
to level up our scheme to the second order; in this way we are able to
improve the resolution of our numerical solution.
The dispersion error, instead, is a problem linked with the second order
schemes and it consists in numerical oscillations near to the disconti-
nuity that can cause instabilities. To avoid this error we must be able
to switch our scheme from the second to the first order near the dis-
continuities.
The high resolution methods are second order accuracy schemes in the
smooth solution to avoid the dissipation error and switch to the first
order around the discontinuity, in order to avoid the numerical oscil-
lations of the dispersion error. Once reached this type of numerical
method we will have the best possible numerical solution from our Go-
dunov scheme.
The high resolution methods are divided into flux limiter methods, used
in flux vector splitting methods and slope limiter methods, used for the
Godunov schemes. The choice of this slope limiter will be crucial for
switching from the second order of accuracy to the first order.
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The first step to build an high-resolution Godunov scheme is the achieve-
ment of a Second order Godunov scheme.

6.1 Second order Godunov scheme

To transform a first order numerical scheme into a second order one
we must change the order of our constant data inside each computa-
tional grid both in time and space. For the time domain we follow the
linear reconstruction idea that the properties at each cell are no longer
constant but inclined of a certain slope inside the cell as showns in
figure(16).
The second order in the time domain, instead, is reached by evolving
the boundary values of each cell from time t to time t+ 1

2 . If we recall
the finite volume evolution to the time step n+1 :

un+1
i

= un

i
− ∆t

∆x

"
flux

n+ 1
2

i+ 1
2

− flux
n+ 1

2

i− 1
2

#
, (136)

we are considering the flux at the cell boundaries as averaged time val-
ues. To switch to the second order also in time we must develop a linear
time variation di↵erent from the constant one. It will be implemented
after the liner space reconstruction. The linear reconstruction in space

Figure 16: Linear reconstruction of piece-wise constant properties.

is based on this formula:

ui(x) = un

i
+

∆i

∆x
(x− xi) . (137)

In which un

i
is the average value at the center of the cell i, ∆x is the cell

size and ∆i is the slope of the line we are building. It will be chosen in
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the following passages. This linear reconstruction must me performed
at each Ii finite volume of our cell.
The ∆i slope can be chosen from an upwind approximation of the first
derivative as :

8
><

>:

∆i

∆x
=

u
n
i −u

n
i−1

∆x
Upwind formula

∆i

∆x
=

u
n
i+1−u

n
i

∆x
Downwind formula

∆i

∆x
=

u
n
i+1−u

n
i−1

2∆x
Centered formula

. (138)

The time reconstruction is performed considering the Boundary values
at each cell, for each conserved variable fro time t to time t+ 1

2 .

Ū
L

i
= UL

i
+

1

2

∆t

∆x

"
f(uL

i
)− f(uR

i
)

#
, (139)

Ū
R

i
= UR

i
+

1

2

∆t

∆x

"
f(uL

i
)− f(uR

i
)

#
. (140)

After the linear reconstruction in time and space we have a second
order Godunov scheme.

6.2 Slope limiter choice and high resolution Godunov scheme

In the previous chapter we have reached the second order for our
scheme. If we stop now the implementation, we will have an high reso-
lution numerical results in the smooth regions, but we will be subjected
to numerical oscillation near the discontinuities. Since our numerical
scheme must deal with solutions including shocks we must apply a slope
limiter to avoid the instability of our code.
The practical implementation of a slope limiter inside our code will put
the ∆i of the space linear reconstruction (137) at zero when a steep
variation will be recognized and our Godunov scheme will return to the
first order.
In our code we will use a Popular slope limiter from [3]:

∆i

∆x
= min mod

"
un

i
− un

i−1

∆x
,
un

i+1 − un

i

∆x

#
, (141)

where the minmod function states that:

min mod(a, b) =

8
><

>:

a if |a| < |b| and ab > 0

b if |b| < |a| and ab > 0

0 if ab < 0 .

(142)
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These formulas recognize if an oscillation inside our grid is present and
put the slope to zero in this case.
This slope limiter must be applied for each cell and for each term of
U conserved variables. At the end we’ll obtain three slope limiters, for
each conserved variable, for each point at each time step.
Thanks to the slope limiter we have now an High Resolution Godunov
scheme. The practical development of an HR Godunov scheme can be
performed practically through the REA algorithm [3].

6.3 REA Algorithm (Reconstruction Evolution Average)

The practical implementation inside our code will be practically sub-
divided into three steps once we’ve chosen our slope limiter.

• Step 1:Data reconstruction with the linear pattern inside cell at

time n.
With this passage we are passing practically to the second or-
der Godunov scheme. We can define the Boundary extrapolated
values at time n as :

(
UL

i
= Un

i
− 1

2∆i

UR

i
= Un

i
+ 1

2∆i .
(143)

We must perform this evolution for each boundary of each i point,
and for the whole vector U of the conserved variables. We will
obtain a left and a right value for each conserved variable at every
boundary and we will use these value to perform a time evolution.

• Step 2: time evolution of UL

i
and UR

i
.

We are evolving our values at the boundaries from time t to time
t + 1

2 . This step is made to make our code of the second order
also in time.

Ū
L

i
= UL

i
+

1

2

∆t

∆x

"
f(uL

i
)− f(uR

i
)

#
, (144)

Ū
R

i
= UR

i
+

1

2

∆t

∆x

"
f(uL

i
)− f(uR

i
)

#
. (145)

We must perform this evolution for each boundary point and for
the whole vector U of the conserved variables at each boundary.
The values obtained here will be the initial value of our Riemann
problem for each cell.
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• Step 3:solution of the Riemann problem with values Ū
R
i and

¯Ū
L
i+1 at the xi+1

2
boundary.

This step is based on the implementation of the Riemann problem
to find the fluxes at each boundary of the cell starting from the
values calculated in the Step 2. For our xi+1/2 cell boundary the

left initial values will be Ū
R
i and the right initial values will be

Ū
L
i+1.

Since our code base the resolution of Riemann problem on the
vector of the primitive variables , we must find, as last step, the
vector WL

i = ⇢L, uL, pL of the primitive variables from Ū
R
i and

the vector WR
i = ⇢R, uR, pR of the primitive variables from

Ū
L
i+1. It can be performed algebrically.

After all this passages we have all the data to evaluate the Un+1
i

con-
served variables at time n + 1 for each cell i with an high resolution
Godunov scheme:

Un+1
i

= Un

i
+

∆x

∆t


F

i− 1
2
− F

i+ 1
2

:
. (146)

7 Numerical code and exact solutions

In this section we’re going to analyze the numerical code used to repro-
duce the numerical model introduced before. After this we’ll create the
analytical solutions of the models introduced in chapter (2) and we will
validate our numerical code matching it with the analytical solutions.
The program used to compile the code is Matlab, and the version of
the numerical scheme considered here is the High resolution Godunov
scheme. The procedure to test a numerical code is based on evaluating
all the di↵erent cases for which an analytical solution is disposable.
Once we’ve done this we can suppose that the code can work with all
the di↵erent cases at the same time.

7.1 Numerical code

The main architecture of the code is based into three main parts:

• Case parameters, boundary and initial conditions.
In this part we define the full geometry that we’re going to use
in our study case (De Laval nozzle, convergent nozzle, constant
section duct,etc.), the fluid chosen as perfect gas and the mesh

58



size for our numerical grid as well as the time used for our un-
steady evolution. The f and q coefficients can be selected in this
part of the code. In this section we also define the inlet and
outlet boundary conditions and the initial conditions for our grid
following section (3.4.3) and section (5.4.3).

• Left and Right Boundary conditions.
The second part of our code is devoted to the development of
the boundary conditions using the systems developed in section
(5.4.4) and section (5.4.5). This part is crucial for every numerical
code because changing the type of the boundary conditions we can
spot di↵erent physical situations.

• High Resolution Godunov for the inner domain.
The last part is the core of the numerical code and it is the com-
putation inside the inner domain of the properties through the
HR Godunov numerical scheme. At first we have to impose a
slope limiter and we must make the inner grid initial conditions
of second order in time and space as explained in section (6.1) and
then we must use these properties as IC for the general Godunov
scheme as explained in section (6.3). In this part of the code is
also included the CFL stability condition (5.6) changed time by
time and the reiteration of the properties at everytime step

Other parts added are the comments, crucial to clarify every passage
and the plot part which is useful to make more user-friendly the evo-
lution of the results time by time.

7.2 Exact solution for an Area Variation steady-state con-
duct

The analytical solution of a steady state flow inside a duct with area
variation can be found considering the governing equation of the case.
The solution for a De Laval Nozzle is the most general case and recalling
the fig.(1) we have to find the pressure ratios that defines the limits
for which the one-dimensional model is valid. The case for a simply
convergent nozzle will be also treated.

7.2.1 Convergent nozzle and Design supersonic De Laval

Considering a simply convergent nozzle with a subsonic inlet the an-
alytical solution can be found with the subsonic iterations method [2]
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because the equation we are going to use are non linear. We can re-
member our Area profile chosen in (2.1.1) :

A(x) = 2.5(x+ 0.1) +
0.3

x+ 0.1
, (147)

The fist equation to consider is obtained equaling the mass flow rat
equations when the critical section Ac is coincident with the outlet
area Au:

A2
u

2

γ − 1

" 
p2
p01

! 2
γ

−
 
p2
p01

! γ+1
γ
#
= A2

c

 
2

γ + 1

! γ+1
γ−1

(148)

where we can use the Kc coefficient is only dependent on the fluid we
are using:

Kc =

 
2

γ + 1

! γ+1
γ−1

γ − 1

2
. (149)

Rewriting all in the correct way we obtain the subsonic iteration (p2D/p0 >
pc/p0) formula with pc = (2/(γ + 1))(γ/(γ−1)):

1−
 
p2
p01

! γ−1
γ
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c
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!− 2
γ

, (150)

and

p2
p01

=

"
1− A2

c

A2
u

Kc

 
p2
p01

!−2
γ
# γ

γ−1

. (151)

In case of supersonic flow (p2D/p0 < pC/p0) instead we can use the
formula:  

p2
p01

! 2
γ

=
A2

c

A2
u

Kc

"
1−

 
p2
p01

! γ−1
γ
#−1

(152)

which can be rewritten as:

 
p2
p01

!
=

"
A2

c

A2
u

Kc

"
1−

 
p2
p01

! γ−1
γ
#−1# γ

2

. (153)

The iterative method target is to find the pressure ratio exact solution
and it starts imposing a ptry ratio which value must be similar to p2/p01
to avoid the divergence of the algorithm. Starting from this value we
solve the right part of the eq. (150). This value will be used in the
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right part of the eq. (151) to find the final value for the first iteration.
When several iterations are done we converge to the exact pressure
ratio value.
For a chocked convergent nozzle with a subsonic inlet fix the total pres-
sure and total temperature at the inlet, the outlet pressure and the
geometry of our nozzle. From theory is known that if the working ra-
tio p2/p01 < pc/p01 = (2/(γ + 1))

γ
γ−1 is lower than the critical one,

the exit is sonic and so the outlet Area is the critical one and we are
in chocking conditions. Using only the (150) with Ac found from the
minimum section in our geometry, we can find the theoretical solution
for pressure ratio making the Area variyng as a function along our x
axis.
For a convergent nozzle in non-chocked condition, the theoretical solu-
tion is found as the previous passages but substituting the critical area
Ac with the formula:

Ac =
ṁs

γ


2

γ+1

: γ+1
γ−1

p01⇢
0
1

, (154)

where the ⇢01 can be found from the initial conditions as ⇢01 = p
0
1

RT 0

and the mass flow rate ṁ must be taken at the end of the numerical
situation. For a De Laval nozzle in design conditions we must use
both the (150) and the (152). The first iteration must be performed
in the same way of the chocked convergent case. For the supersonic
iteration we must use the (152) considering Ac the minimum section in
the nozzle.
The temperature can be found in the same way for the subsonic case
using the iteration:

1− Tu

T 0
=

A2
c

A2
u

Kc

 
Tu

T 0

!− 2
γ−1

(155)

in function if the Area Au with the Ac as the minimum area with the
same iteration method used for the pressure part. The supersonic part
of the temperature can be found from the supersonic iteration:

Tu

T 0
=

"
A2

c

A2
u

Kc

"
1−

 
Tu

T 0

!#−1# γ−1
2

. (156)
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The other properties can be found in function of the analytical pressure
function with density as :

⇢ = ⇢01

 
p

p01

! 1
γ

, (157)

speed as:

u =

vuut 2γ

γ − 1

p01
⇢01

"
1−

 
p

p01

! γ−1
γ
#
, (158)

Mach number as:

Ma =

vuut 2

γ − 1

" 
p

p01

! γ−1
γ

− 1

#
(159)

7.2.2 De Laval nozzle with straight shocks

This is the last case, for a De Laval nozzle in which the one dimensional
model is valid and it is the case of straight shock. This condition
is present when ps/p0 > p/p0 > pslimit/p0. To find the analytical
solution we must use the eq.(150) until the sonic state is reached (throat
section) and after we must find with another iteration the position of
the shock. The evolution from the inlet to the shock can be considered
isoentropic whereas we must apply the Rankine-Hugoniot conditions to
find the properties downstream the shock. We can use the temperature
iteration for the converging part (155). For the location of the shock
we must hypotize an x location and a correspondent try area Atry to
insert into :

Tsh,1

T 0
=

"
Kc

A2
c

Atry

 
1− Tsh,1

T 0

!−1# γ−1
2

, (160)

with the same iteration on the left and right part to find the the Tsh,1.
The properties just before the shock can be found from:

8
>>>>><

>>>>>:

ush,1 =
p

2cp(T 0 − Tsh,1)

psh,1 = p01

 
Tsh,1

T 0

! γ
γ−1

Mash,1 =
ush,1p
γRTsh,1

,

(161)
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with ush,1 flow velocity, psh,1 pressure and Mash,1 Mach number up-
stream the shock .
The relations after the shock can be found with the Rankine-Huguniot
condition:

psh,2
psh,1

=
2γ

γ + 1
Ma2

sh,1 −
γ − 1

γ + 1
(162)

Ma2
sh,2 =

Ma2
sh,1 +

2
γ−1

2
γ−1Ma2

sh,1 − 1
, (163)

with a variation of total pressure expressed by:

p0
sh,2 = psh,2

 
1 +

γ − 1

2
Ma2

sh,2

! γ
γ−1

. (164)

The last part is the subsonic evolution of temperature till the outlet
pressure modified with the change of total pressure:

1− Tu

T 0
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p01
p0
sh,2
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c
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u
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Tu

T 0

!− 2
γ−1

. (165)

To verify that the guessed shock position is correct, we must check that
the outlet pressure pu is coincident with the p2 theoretical one. So we
can find our pu with the isoentropic evolution from the downstream-
shock case:

pu = p0
sh,2

 
Tu

T 0

! γ
γ−1

. (166)

If the di↵erence between the pu and the p2 is below a tolerance impose
we have reached the convergence. If not we can change the try posi-
tion for shock and the Atry correspondent and make the whole process
again.

7.3 Analytical solution for the Fanno flow

We’re going to validate our numerical code for the Fanno flow. The
first step is finding the flow properties trends by means of the analytical
Fanno flow solution. Following Ferrari in [2], for initial conditions of
the flow we can find an analytical solution for every condition of the
flow (subsonic or supersonic) in function of 4fdx/D. Starting from :

4f
dx

D
=

1−Ma2

γMa4
1

1 + γ−1
2 Ma2

dMa2 , (167)
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and integrating it between [0, Lmax] we obtain:

4f̄
Lmax

D
=

1−Ma2

γMa2
+

1 + γ

2γ
ln

(1 + γ)Ma2

2

 
1 + γ−1

2 Ma2

! (168)

with f̄ mean value in [0, Lmax] section of duct. We know that the Fanno
flow presents a length for both subsonic or supersonic flow for which we
have no discontinuities, maximum entropy and sonic outlet. Exploiting
these properties we can integrate the (167) between two generic section
of the duct and find the properties in every position of the duct. We
can start finding the Mach number and after all the other properties.
We can write :

Z
L

0

4f
dx

D
= 4f̄

dx

D
=

Z
Ma

2
2

Ma
2
1

1−Ma2

γMa4
1
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2 Ma2

dMa2− (169)
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2 Ma2
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.

In our algorithm to find the exact solution we must use the Mach at the
inlet taken from the numerical code and insert it into the (168) equation

and the

 
4f̄ dx

D

!

Ma1

value found, subtracted to the 4f̄ x

D
value in the x

position will be equal to

 
4f̄ dx

D

!

Ma2

in the position x. Applying the

(168) we can find the Ma2 Mach number at section 2. The equation
must be solved with an iterative method because it is non linear. It can
be used for subsonic and supersonic and , for this reason, we will find
two solutions for each x abscissa. To find the subsonic one we must
impose and iteration on the Mach number from 0 to 1 as maximum
value. For the supersonic solutions we must impose iterations staring
form Mach= 1 as try value. The other quantities can be found using
the di↵erential relation in Mach number function exploiting the star
properties at Mach=1 (properties in the critic section). These can be
found simplyifing the di↵erential equations for Mach=1:

p

p⇤ =
1

Ma

vuuut
γ + 1

2

✓
1 + γ−1

2 Ma2
◆ . (170)
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The star property for our flux can be found knowing the pressure at
the inlet for the steady state condition for our numerical solution and
using the inlet Mach number. The same procedure can be applied to
find all the other star properties:

8
>>>>>>>>>>><

>>>>>>>>>>>:

u
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2
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◆

T

T⇤ = γ+1

2

✓
1+ γ−1
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◆
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2 Ma2
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(171)

Now that the star properties are all found from the inlet properties and
the inlet Mach, we can find every property we want using the ratios
found before. We take as an example the formula to find the pressure
at the zone 2 knowing all the inlet properties and having found the
Mach evolution along the nozzle:

p2
p1

=
(p/p⇤)Ma2

(p/p⇤)Ma1

(172)

.
The particular case in which the supersonic Fanno flow creates a straight
shock in the duct can be found using both the previous evolutions and
using another iterative method. To find the right theoretical condition
we must end with a Mach=1 at outlet because this is the lower limit
for a subsonic Fanno flow. To find it, we make an initial hypothesis on
the position of the shock and we solve the supersonic evolution till this
position, we apply the Rankine-Hugoniot condition to find the Mach
downstream the shock:

Ma2
sh,2 =

Ma2
sh,1 +

2
γ−1

2
γ−1Ma2

sh,1 − 1
, (173)

and we continue with a subsonic evolution till the end. If the exit
Mach is equal to one we have finished, otherwise we must make other
iterations on the position of the shock.

7.4 Exact solution for the Rayleigh flow

For the validation for the Rayleigh flow we must find the analytical
solution. We know that the change in properties is linked with the
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change in total temperature induced in each section by the heat intro-
duced or expelled from the system. As study case we will consider the
case in which the heat is introduced into the system. The chocking
condition is determined by the maximum heat that can be absorbed
by the system, after this condition the system outlet Mach number will
be fixed whereas the system will react diminishing the mass flow rate
as long as we increase the length further.
The exact outlet total temperature can be determined with the first
principle of the Thermodynamic for our system in di↵erential form :

Q = cp
dT 0

dx
. (174)

Integrating the right part in Temperature and the left part in time we
obtain:

Q(x− x0) = cp(T
0
2 − T 0

1 ) . (175)

To link the Qgeneral heat flow J/(Kg m) to the q heat flow to be
introduced in our code, we can use the quantity ṁ/Area = ⇢u which
is constant in this flow. The total temperature in section two can be
easily found if the heat introduced is constant for every section. Making
a dimensional analysis we resort to:

T 0
2 =

qD⇡A

ṁAcp
(x− x0) + T 0

1 , (176)

with A area of the duct:

Q =
qD⇡A

ṁA
; (177)

The q in our numerical model is J/(sm2).
The conditions linked with the sonic state at the outlet can be found
using the relations in function of the star conditions:
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Knowing T 0
2 and T 0

1 and having found the T⇤ from the formulas upside
we can find the variation of Mach number along all the duct. Knowing
the Mach evolution the other properties can be found in a generic
section 2 using the ratio:

p2
p1

=
p2/p⇤
p1/p⇤

, (179)
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and knowing the inlet Mach number and initial numerical values for
the properties we want to evaluate. Even in this case we must use an
iteration considering a right initial choice and a limit of research in
order to find the subsonic values in the subsonic flow.

7.5 Analytical solutions for one-dimensional diabatic flows
with wall friction

As explained by Ferrari in [1] is possible to find the exact solution of
a diabatic viscous flow inside a constant section duct with a constant
heat flow.
We start form the conservation of mass:

⇢u = ṁ/A = const (180)

and the momentum balance and total energy equation rearranged to-
gether:
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After some manipulation we can find the solution to this system of
equation explicitly as:
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4fṁq
γ−1
γ

˙|qf |⇡D2

4fṁ
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(182)
where the abscissa x can be evaluated as a function of the kinetic energy
and C represents a constant of integration.
If a subsonic flow is considered, using a tentative value of Ma1 (Mach
number at the pipe inlet) we can obtain u2

1/2 and ṁ from the equations
:
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which refers to an isoentropic evolution from the stagnation conditions
to state 1. The constant C can be determined as:
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(184)
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The equation (182) and the C value found from (184) can be used to
find u2

2/2 in correspondence of the pipe outlet x2 = L. The density ⇢2
can be found from (180) applied for x2 = L and we can use:

h = h0
1 +

q̇f⇡D

ṁ
x− u2

2
(185)

At the end we can find the p2 using ⇢2 and h2 in:

p =
γ − 1

γ
⇢h . (186)

If the p2 value found is equal to a provided datum the guessed Ma1 is
correct, otherwise we must repeat the iteration with other values. Con-
cerning a supersonic flow, the constant C can be evaluated by knowing
the flow properties at the pipe inlet by means of equation (184) and
the solution can be directly obtained.

8 Validation

In this section we show the validation for our High resolution Godunov
scheme. All the di↵erent cases will be considered and the geometrical
and model features, the mesh and the boundary conditions will be
described for every case. Before the comparison between the numerical
model and the analytical solutions, we must perform a convergence
analysis to choose the mesh size and to avoid the possible numerical
errors. We will perform, as an example case a convergence study on a
the De Laval nozzle case. For all the other cases we consider a general
mesh of N = 1000 elements because the results obtained with this
refinement are enough accurate to fulfill the validations.

8.1 Convergence analysis

To complete the discussion upon our numerical code we have to make
a convergence analysis on the mesh size to check, for which mesh size
our solution will be the more near to the numerical one. Our analysis
is based on a convergent divergent nozzle with an area section of :

A(x) = 2.5(x+ 0.1) +
0.3

x+ 0.1
, (187)

an inlet total pressure p0 = 100000 Pa an inlet total temperature T 0 =
500 K and an outlet pressure p2 = 70000 Pa. The length is L = 1 dm.
For di↵erent mesh size we will measure the maximum error between
the numerical and the analytical solution.
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(a) Convergence analysis for minimum er-
ror.

(b) Computational time for di↵erent mesh
sizes

Figure 17: Convergence analysis for a De Laval nozzle.

Figure 18: Shock detail for di↵erent mesh sizes.

The maximum error is measure as the maximum distance between
the exact solution and the numerical solution in the shock position as
shown in fig.(18). From the convergence analysis on a De Laval nozzle
results that, for a mesh of N = 1000 elements, the error is close to 0 as
shown in figure (17a). This will be the selected mesh size to be chosen,
for every unit of length, to reach the best results from our code.
The computational time increases linearly as we increase the mesh size
(fig.17b) and this must be taken into account for the more complex
application of an HR Godunov scheme.
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8.2 Area Variation validation

8.2.1 Convergent chocked nozzle

The results presented in figure (19) are obtained for a convergent
chocked nozzle with an area section of :

A(x) = 2.5(x+ 0.1) +
0.3

x+ 0.1
, x = [0, 0.246] (188)

in the x interval [0, 0.246] with an inlet total pressure p0 = 100000 Pa
an inlet total temperature T0 = 500 K and an outlet pressure p2 =
50000 Pa. The grid is composed by N = 1000 elements. The length is
L = 0.246 dm. The f and q coefficients are null.

(a) Mach number (b) Pressure ratio

(c) Speed (d) Temperature

Figure 19: Convergent chocked nozzle validation with an HR Godunov
scheme.
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8.2.2 De Laval full subsonic nozzle

The results shown in figure (20) are obtained for a convergent divergent
nozzle with an area section of :

A(x) = 2.5(x+ 0.1) +
0.3

x+ 0.1
, (189)

with an inlet total pressure p0 = 100000 Pa an inlet total temperature
T 0 = 500 K and an outlet pressure p2 = 93000 Pa. The grid is com-
posed by N = 1000 elements. The length is L = 1 dm. The f and q
coefficients are null.

(a) Mach number (b) Pressure ratio

(c) Speed (d) Temperature

Figure 20: Subsonic De Laval nozzle validation with an HR Godunov
scheme.
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8.2.3 De Laval nozzle in design condition

The results shown in figure (21) are obtained for a convergent divergent
nozzle with an area section of :

A(x) = 2.5(x+ 0.1) +
0.3

x+ 0.1
, (190)

with an inlet total pressure p0 = 100000 Pa an inlet total temperature
T 0 = 500 K and an outlet pressure p2 = 12000 Pa. The grid is com-
posed by N = 1000 elements. The length is L = 1 dm. The f and q
coefficients are null.

(a) Mach number (b) Pressure ratio

(c) Speed (d) Temperature

Figure 21: De Laval nozzle in design condition validation with an HR Go-
dunov scheme.
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8.2.4 De Laval nozzle with a straight shock

The results shown in figure (22) are obtained for a convergent divergent
nozzle with an area section of :

A(x) = 2.5(x+ 0.1) +
0.3

x+ 0.1
, (191)

with an inlet total pressure p0 = 100000 Pa an inlet total temperature
T 0 = 500 K and an outlet pressure p2 = 70000 Pa. The length is
L = 1 dm. The grid is composed by N = 1000 elements. The f and q
coefficients are null.

(a) Mach number
(b) Pressure ratio

(c) Speed
(d) Temperature

Figure 22: De Laval nozzle with a straight shock validation with an HR
Godunov scheme.
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8.2.5 Remarks

The numerical results converge all to the exact solution for a grid of
N = 1000 points. For the De Laval nozzle we must be careful about
the pressure ratio chosen. In absence of friction and heat exchange
we have seen that there are theoretical limits for the application of
the one-dimensional model. This limit is 0.12 < p/p01 < 0.55 for the
selected geometry. In this range the solution is deeply influenced by
oblique shocks and so, at least a 2D model is required. In the chocked
convergent case the condition of Mach=1 represent a singularity. In
general, the passage from a subsonic flow to a supersonic one, represent
a change in the approach to the problem. This di↵erence in behaviour
can be easily manipulated when we are in well separated condition of
supersonic or subsonic case, giving for each case di↵erent boundary
conditions. The single outlet point in Mach=1 instead, represent the
limit case for which the code tends to oscillate because, in Mach=1,
the nature of the flow changes. This oscillation is also motivated by
the fact that our boundary conditions are built with a non-conservative
formulation (MOC) and so they give very poor results in the particu-
lar cases of shock formations in the BC. This argument is supported
by the fact that, the condition of transition in case of the De Laval
nozzle in which we have Mach=1 in the throat section, doesn’t give
any type of oscillation because it is solved with the internal Godunov
scheme. Another issue for the convergent nozzle can be represented by
the shape of the nozzle. Not all the convergent shapes allow to reach a
sonic condition and we must be careful about the exit section for which
a null variation of Area is needed to reach the sonic state.
The subsonic De Laval Nozzle is a very peculiar case since the pressure
ratio that drives the flow is very low whereas the change in properties
in the throat is very steep. Unless these difficulties satisfactory results
are obtained in our numerical code. The Design De Laval Nozzle case
is reached building transmissive BC at the right Boundary. From [6],
the transmissive boundaries represents the correspondent physical con-
dition for which the waves of the flow can pass the section without any
e↵ect on them. We can so write, for the last boundary:

8
><

>:

⇢(end) = ⇢(end− 1) Density

u(end) = u(end− 1) Speed

P (end) = P (end− 1) Pressure .

(192)

We are practically applying the Godunov resolution also to the right
boundary to overcome the transition zone (0.12 < p/p01 < 0.55), until
the pressure of design is reached. The theoretical results prove this
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approach.

8.3 The Fanno Flow Validation

8.3.1 Subsonic Fanno’s Flow

The results in figure (23) are obtained for a constant section circular
duct with a constant diameter D = 0.7 cm, with an inlet total pressure
p0 = 100000 Pa, inlet total temperature T 0 = 500 K and an outlet
pressure p2 = 70000 Pa. The length is L = 10 cm. The grid is
composed by N = 1000 elements. The f coefficient is equal to 0.003
and the q coefficient is null.

(a) Mach number (b) Pressure ratio

(c) Speed (d) Temperature

Figure 23: Subsonic Fanno’s flow validation with an HR Godunov scheme.
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8.3.2 Supersonic Fanno’s Flow

The results in figure (24 are obtained for a constant section circular
duct with a constant diameter D = 0.7 cm, an inlet total pressure p0 =
100000 Pa, an inlet total temperature T 0 = 500 K, an inlet Mach=2
and an outlet pressure p2 = 70000 Pa. The length is L = 20 cm. The
grid is composed by N = 1000 elements. The f = coefficient is equal
to 0.003 and the q coefficient is null.

(a) Mach number (b) Pressure ratio

(c) Speed (d) Temperature

Figure 24: Supersonic Fanno flow’s validation with an HR Godunov scheme.

8.3.3 Subsonic chocked Fanno’s Flow

The results in figure (25) are obtained for a constant section circu-
lar duct with a diameter D = 0.7 cm, an inlet total pressure p0 =
100000 Pa, an inlet total temperature T 0 = 500 K and an outlet pres-
sure p2 = 50000 Pa. The length is L = 40 cm. The grid is composed
by N = 1000 elements. The f coefficient is equal to 0.003 and the q
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(a) Mach number (b) Pressure ratio

(c) Speed (d) Temperature

Figure 25: Subsonic chocked Fanno flow’s validation with an HR Godunov
scheme.

coefficient is null.

8.3.4 Supersonic Fanno’s flow with a shock

The results in figure (26) are obtained for a constant section circu-
lar duct with a diameter D = 0.7 cm, an inlet total pressure p0 =
100000 Pa, an inlet total temperature T 0 = 500 K , an inlet Mach = 2
and an outlet pressure p2 = 30000 Pa. The length is L = 20 cm. The
grid is composed by N = 1000 elements. The f = 0.003 and the q
coefficient is null.
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(a) Mach number (b) Pressure ratio

(c) Speed (d) Temperature

Figure 26: Supersonic shock Fanno flow’s validation with an HR Godunov
scheme.

8.3.5 Remarks

The numerical results obtained converges all to the exact solutions.
The subsonic case is reached with a very good precision as well as the
supersonic one. For the latter one we have formulated the left bound-
ary conditions for a supersonic inlet. In this case, for the theory of
characteristics we must provide three properties for our boundary to
have a well defined problem. We’ve chosen the Mach number, the total
pressure and the total temperature; the other properties can be evalu-
ated staring from them. Since the Mach at the inlet is fixed, it will be
more easy to evaluate the exact solution in the supersonic cases.
For the subsonic case the right boundary condition was the same of
a generic subsonic outlet whereas, for the supersonic outlet case, we
have applied a Transmissive boundary condition to avoid computa-
tional shocks at the exict of the duct.
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The chocked subsonic case and the straight shock in supersonic case are
the most particular cases. In the supersonic straight shock the length
of duct is the only parameter that can influence the flow properties
for a constant friction factor. When the length of a duct is longer
than the star length we have overcame the limit condition of Mach=1
at the outlet. The flow will keep the sonic state at the outlet but a
straight shock will create inside the nozzle as near to the inlet as we
increase the length over the star length if the downstream pressure is
lower than p⇤. We’ve already seen that the Mach=1 outlet condition
is not easily developed in the code, especially when the mesh per unit
of length diminish. To overcome this problem we can use an hybrid
numerical-analytical boundary condition at the right boundary. Since
the Mach=1 properties at the outlet are well known from the analyti-
cal solution (7.3) (Star properties), we can evaluate them at every time
step and we can fix these condition at the outlet without influence the
final solution.
For the supersonic case the evaluation of the star properties is quite
simple since the properties at the inlet are fixed and depends only on
the Mach number and so, before evolving in time our code, we can
already know if our flow will develop a shock, depending on the inlet
conditions and on the length. Once the length is higher than the star
one, we can fix the outlet conditions as the star one.
For the subsonic case, since the inlet condition changes, at every time
step we have to evaluate the star conditions and to update them. The
parameter that will us when we can fix our outlet boundary conditions
to the star one is the outlet pressure. If it is lower than the star pres-
sure, from theory, we are sure that inside our duct the outlet pressure
must be the star one. Outside the duct the post-expansion mechanism
will make the pressure become equal to the environment one. Because
of this mechanisms of dissipation, that occurs for subsonic flow in ducts
with L < L⇤ with an outlet pressure lower than the star pressure and
because of the right boundary solved with a non conservative method,
the code is unstable for length lower than L = 15 cm and pressure ra-
tios much lower than the pressure star ratio p⇤/p01. The problem can be
overcame building conservative BC or applying a convergent nozzle at
the inlet. In this way we can let the flow inlet condition adapt properly
to the fixed star properties.
To reach the chocking conditions very long ducts must be considered
because, as we increase the length, we modify the inlet properties in it-
erative way. Another issue linked to the variation of the inlet condition
for every time step is the evaluation of the exact solution for all the
subsonic case. We must be sure to have reached the convergence for our
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numerical code before giving the inlet Mach condition for evaluating
the exact solution.

8.4 Rayleigh’s flow validation

8.4.1 Subsonic Rayleigh flow

The results in figure (27), are obtained for a constant cross-section
circular area duct with a diameter D = 0.7 cm, an inlet total pressure
p0 = 100000 Pa an inlet total temperature T 0 = 500 K and an outlet
pressure p2 = 30000 Pa. The length is L = 10 cm. The grid is

(a) Mach number (b) Pressure ratio

(c) Speed (d) Temperature

Figure 27: Subsonic Rayleigh’s flow validation with an HR Godunov scheme.

composed by N = 1000 elements. The q = 300000
J/s/cm2 and the f coefficient is null.
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8.4.2 Supersonic Rayleigh flow

The results presented in figure (28), are obtained for a constant cross-
section circular area duct with a diameter D = 0.7 cm, an inlet total
pressure of p0 = 100000 Pa, an inlet total temperature of T 0 = 500 K,
an inlet Mach = 2 and an outlet pressure p2 = 70000 Pa. The length
is L = 10 cm. The grid is composed by N = 1000 elements. The
q = 300000J/s/cm2 and the f coefficient is null.

(a) Mach number (b) Pressure ratio

(c) Speed (d) Temperature

Figure 28: Supersonic Rayleigh flow’s validation with an HR Godunov
scheme.

8.4.3 Subsonic chocked Rayleigh flow

The results in figure (29), are obtained for a constant section circu-
lar duct with a diameter D = 0.7 cm, an inlet total pressure p0 =
100000 Pa an inlet total temperature T 0 = 500 K and an outlet pres-
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sure p2 = 30000 Pa. The length is L = 30 cm. The grid is composed
by N = 1000 elements. The q = 300000
J/s/cm2 and the f coefficient is null.

(a) Mach number (b) Pressure ratio

(c) Speed (d) Temperature

Figure 29: Subsonic chocked Rayleigh flow’s validation with an HR Godunov
scheme.

8.4.4 Supersonic Rayleigh’s flow with a shock

The results in figure (30) are obtained for a constant section circular
duct with a diameter with a diameter D = 0.7 cm, an inlet total
pressure of p0 = 100000 Pa, an inlet total temperature of T 0 = 500 K,
an inlet Mach=2 and an outlet pressure p2 = 50000 Pa. The length
is L = 12 cm and the grid is composed by N = 1000 elements. The
q = 300000
J/s/cm2 and the f coefficient is null.
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(a) Mach number
(b) Pressure ratio

(c) Speed (d) Temperature

Figure 30: Supersonic shock Rayleigh flow’s validation with an HR Godunov
scheme.

8.4.5 Remarks

The numerical results are in good agreement with the analytical so-
lutions. For the continuous subsonic and supersonic cases, no issues
are present. The supersonic case needs a transmissive boundary to the
right part to avoid a computational shock in the transition zone be-
tween subsonic and supersonic outlet. In the Rayleigh flow, in analogy
with the Fanno flow we will have a limit condition for the flow after
which the outlet properties will remain fixed. This condition and the
relative star properties were found in (7.4) and we must fix them when
the total temperature is higher than the limit total temperature that
can be found easily from star properties. In the supersonic shock case,
we can impose the star properties at the right boundary when the final
total temperature is higher than the limit one. As we can see from
the solutions, the system reacts creating a steady shock that must end
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into the convergent divergent nozzle, making the evolution subsonic in
the duct following the Second law of thermodynamic. Because of the
non conservative boundary conditions at the inlet, the shock results
blocked in the first cell. Unless this condition the whole evolution is
correct. A convergent divergent nozzle can be inserted at the inlet of
the duct to observe the phenomenon. In the chocked subsonic case

we don’t impose any star condition at the right boundary even if the
Mach = 1 problems are still present. The reason has a computational
nature because increasing the mesh size till N = 1000 points, the code
becomes suddenly unstable imposing the star properties. Besides this
consideration, if we make the code working with the classical BC in the
right part we have a correct evolution except for the right last single
value which gives a numerical wrong result. In this case the correct
result without the presence of the analytical exit solution, is another
prove of the e↵ectiveness of the code.
The particular conditions for ducts with L < L⇤ with an outlet pressure
lower than the star pressure makes the code unstable for length lower
than L = 15 cm and pressure ratios much lower than the pressure star
ratio p⇤/p01. The problem in this case is linked to the post-expansion
phenomena occurring in the outlet section and the non-conservative
boundaries and can be solved adding a convergent nozzle at the inlet
of the duct and so, using the Godunov scheme to solve the inlet of the
duct.

8.5 One-dimensional diabatic flows with wall friction valida-
tion

We are ready now to apply our HR Godunov scheme on a one-dimensional
diabatic flows with wall friction validation. This solution has been
found form Ferrari [1] and is the most recent analytical solution for a
1D compressible flow .

8.5.1 Subsonic case

The study case is a subsonic flow in a duct with a length of L = 30 cm
and a constant cross-section area of D = 2.5 cm. We consider an inlet
total pressure of p0 = 100000 Pa, an inlet total temperature of T 0 =
600 K and an inlet Mach=2 with an outlet pressure p2 = 80000 Pa.
We consider a q = 600000 J/s/cm2 and a f = 0.003. The results are
shown in figure (31).
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(a) Mach number (b) Pressure ratio

(c) Speed (d) Temperature

Figure 31: Validation of a subsonic diabatic flow with friction using an HR
Godunov scheme

8.5.2 Supersonic case

The study case is a supersonic continuous flow in a duct with a length
of L = 60 cm and a constant cross-section area of D = 2.5 cm. We
consider an inlet total pressure of p0 = 300000 Pa, an inlet total tem-
perature of T 0 = 800 K and an inlet Mach=2 with an outlet pressure
p2 = 30000 Pa. We consider a q = 100000 J/s/cm2 and a f = 0.003.
The results are shown in figure (32).
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(a) Mach number (b) Pressure ratio

(c) Speed (d) Temperature

Figure 32: Validation of a supersonic continuous diabatic flow with friction
using an HR Godunov scheme

8.5.3 Supersonic case with shock

The study case is a supersonic flow with a straight shock in a duct
with a length of L = 80 cm and a constant cross-section area of D =
2.5 cm. We consider an inlet total pressure of p0 = 300000 Pa, an inlet
total temperature of T 0 = 800 K and an inlet Mach=2 with an outlet
pressure p2 = 30000 Pa. We consider a q = 100000 J/s/cm2 and a
f = 0.003. The results are shown in figure (33).
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(a) Mach number (b) Pressure ratio

(c) Speed (d) Temperature

Figure 33: Validation of a supersonic diabatic flow with friction with a
straight shock using an HR Godunov scheme

8.6 Comparison between First Order and High Resolution
Godunov scheme

The aim of this part is to put in comparison the numerical solutions in
case of First Order and high resolution Godunov scheme . After some
numerical comparison we will analyze the pros and cons of each single
method.

8.6.1 Convergent divergent nozzle

In this example we will compare the first order Godunov scheme and the
high resolution Godunov scheme in the case of a convergent divergent
nozzle with a geometry as fig.(2). We choose a total pressure p0 =
100000 Pa and a total Temperature = 500
K at the inlet and an outlet pressure p2 = 70000 Pa at the outlet with
a length of 1 unit. The mesh size will be formed by N = 200 elements.
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For this comparison we will use only the pressure as reference since

Figure 34: Shock position detail.

(a) Pressure ratio comparison between
a first and an High resolution Godunov
scheme.

(b) Throat position detail.

all the other properties are already validated. The mesh used is a
poor one in order to magnify the di↵erences between the two methods.
From the comparison in figure (fig.(35b)) we can appreciate a better
result of the High resolution Godunov scheme especially in the section
in which there’s the throat area, where a numerical error is present
even for the exact solution. Also in the zone of the shock discontinuity
we can appreciate the best resolution of the HR Godunov scheme as
shown in figure (34). This behaviour is due to the elimination of the
first order’s dissipation error. The time to compute the solution for the
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HR Godunov is three time longer than the first order’s one and it has
a linear increasing trend as we increase the mesh size.

8.6.2 The Fanno’s Flow case

We are going to analyze a supersonic Fanno’s flow for a constant circu-
lar section’s duct with a diameter D = 0.7 cm, an inlet total pressure
of p0 = 100000 Pa, an inlet total temperature of T 0 = 500 K and an
inlet Mach=2. The outlet pressure p2 = 30000 Pa ,the f = 0.003 with
a length L = 20 cm and the q is null. The mesh size will be formed by
N = 500 elements.

(a) Mach number comparison for first or-
der and HR Godunov in Fanno flow.

(b) Shock position detail.

In the Fanno’s flow case comparison we can still appreciate the best
resolution of the HR Godunov scheme as shown in figure (37a). The
computational time is doubled than the first order’s one.

8.6.3 The Rayleigh Flow case

We are going to analyze a supersonic Rayleigh’s flow for a constant
circular section’s duct with a diameter D = 0.7 cm, a length L = 5 dm
an inlet total pressure of p0 = 100000 Pa, an inlet total tempera-
ture of T 0 = 500 K and an inlet Mach=2. The outlet pressure is
p2 = 70000 Pa, the q = 300000J/s/cm2 and the f is null.
In the Rayleigh’s flow case comparison we can observe something strange
in respect with the di↵erent cases. The first order solution is more near
to the exact one than the HR Godunov numerical result for the same
mesh as shown in figure (37b). This can be explained because of the
main issue of the high resolution schemes: the difficulty to reach the
steady state condition. The structure of an HR numerical code is based
on the linear variation of the piece-wise constant values time by time
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(a) Mach number comparison for first or-
der and HR Godunov for Rayleigh flow.

(b) Detail.

and so the variations from a time step to another are numerically cre-
ated by the code.
This method allows us in reaching better numerical results but it
also causes difficulties in reaching a stability state. In this particu-
lar case the resolution due to the steady condition of the first order
code is higher than the numerical resolution performances of the HR
Godunov.

8.6.4 Pros and cons of an High Resolution Godunov scheme

The results showed upside shows a general best performances of the HR
Godunov scheme in respect with a first order Godunov scheme with the
single exception for the supersonic continuous Rayleigh flow analyzed.
The main difficulty for the HR Godunov scheme is to reach the steady
state condition since, because of the linear variation inside the cell, the
constant values are varied many times before a stable SS solution. In
some case the resolution due to the convergence to a steady state of a
first order’s scheme, can be higher than the numerical resolution of the
HR one.
From a qualitative point of view the pros , for an HR Godunov scheme,
are much more than the cons since the resolution is better than the first
order one for most of the cases analyzed.
Looking at the computational time, on the other hand, the HR Go-
dunov require much more time than the first order one since it is a
much more complex method. The computational time for an HR Go-
dunov scheme time grows linearly with the mesh size. In case of further
implementations of the code such as the 2D and 3D solutions the com-
putational times could not justify the better resolution of the numerical
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result.

8.7 Duct feeded by a De Laval nozzle

In this part we are going to analyze the behaviour of a geometry in
which we have composed two simple parts to create a more realistic
situations. In fact, if we want to obtain a supersonic flow, in reality,
we must use a design nozzle to introduce the fluid into our duct. We
will see all the possible patterns for the Fanno and the Rayleigh su-
personic flows with a nozzle at the inlet. All the following cases are,
reasonably, to be considered validated because all the single sub-parts
have been already validated in the previous pages.In all the following
cases we consider a De Laval nozzle without friction or heat exchange.
Only as example here we report the validation of a Rayleigh’s super-
sonic continuous case. The design De Laval used was the same seen in
(8.2.3). The validation of this case is more easy since the Rayleigh’s

(a) Mach number (b) Pressure ratio

(c) Speed

Figure 39: Validation of a Rayleigh flow in a constant cross section duct
feeded by a De Laval nozzle.

star properties of the supersonic flow must not be iterated time by
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time since the inlet properties are constant. The exact solution has
been found combining the two cases. In this case we are introducing
into a L = 1 dm nozzle a subsonic flow with an inlet total pressure
p0 = 100000 Pa an inlet total temperature T0 = 500 K and an outlet
pressure p2 = 30000 Pa. The length of the duct is L = 9 dm with a
constant circular section equivalent to the exit one of the nozzle with
a D = 1.9618 cm The grid is composed by N = 1000 elements. The
q = 0 and f = 0 for the nozzle. The The q = 300000 J/s/cm2 and
f = 0 for the duct. The results are presented in figure (39).

8.7.1 The supersonic Fanno flow with a De Laval nozzle at the

inlet

The cases to be considered in this section are the continuous supersonic
and the supersonic case with a straight shock inside the duct.

• Supersonic Fanno’s flow with a straight shock. In the case we
are introducing into a Ln = 1 dm nozzle a subsonic flow with an
inlet total pressure p0 = 100000 Pa an inlet total temperature
T 0 = 500 K and an outlet pressure p2 = 30000 Pa. The length of
the duct is L = 9 dm with a constant circular section equivalent
to the exit one of the nozzle with a D = 1.9618 cm The grid
is composed by N = 1000 elements. The q = 0 and f = 0
for the nozzle. The q = 0 and f = 0.03 for the duct. For this
particular situation the f coefficient has been magnified to capture
the phenomenon in short length. The result are reported in figure
(40).
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(a) Mach number (b) Pressure ratio

(c) Speed (d) Temperature

Figure 40: De Laval nozzle feeding a Fanno duct (straight shock in the duct)

• Continuous supersonic case. In this case we are introducing into
a Ln = 1 dm nozzle a subsonic flow with an inlet total pressure
p0 = 100000 Pa an inlet total temperature T 0 = 500 K and an
outlet pressure p2 = 30000 Pa. The length of the duct is L = 4 dm
with a constant circular section equivalent to the exit one of the
nozzle with a D = 1.9618 cm The grid is composed by N = 1000
elements. The q = 0 and f = 0 for the nozzle. The q = 0 and
f = 0.003 for the duct. The results are showed in figure (41).
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(a) Mach number (b) Pressure ratio

(c) Speed (d) Temperature

Figure 41: De Laval nozzle feeding a Fanno duct (continuous flow)

8.7.2 Remarks

The results obtained are very useful to understand how the inlet con-
ditions vary as the configuration changes. The whole system is at con-
stant total temperature. In the Supersonic shock case , if we increase
the length of the duct more and more, after the L⇤ length we will see,
as foregone from the theory, the straight shock going inside the nozzle.
The supersonic continuous case confirm our data on the Fanno’s flow
simple duct case. The issues in this kind of configuration is linked to
the great time required for a very good simulation. We are required
of higher number of points to obtain better results, especially in the
nozzle part with high computational times.
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8.7.3 The supersonic Rayleigh flow with a design nozzle at the

inlet

The cases considered in this part are: the continuous supersonic Rayleigh’s
flow and the supersonic Rayleigh’s flow with a straight shock inside the
nozzle.

• Supersonic shock Rayleigh flow. In the case we are introducing
into a L = 1 dm nozzle a subsonic flow with an inlet total pressure
p0 = 100000 Pa an inlet total temperature T 0 = 500 K and
an outlet pressure p2 = 50000 Pa. The length of the duct is
L = 9 dm with a constant circular section equivalent to the exit
one of the nozzle with a D = 1.9618 cm The grid is composed
by N = 1000 elements. The q = 0 and f = 0 for the nozzle.
The q = 300000J/s/cm2 and f = 0 for the duct. The results are
shown in figure (42).

(a) Mach number (b) Pressure ratio

(c) Speed (d) Temperature

Figure 42: De Laval nozzle feeding a Rayleigh duct (straight shock at the
inlet of the duct)
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• Continuous supersonic. All the results about this case are re-
ported in figure (39).

8.7.4 Remarks

From this configuration we can have a better evaluation of the physical
phenomena foregone in the Rayleigh’s theory. Considering the super-

sonic shock case we can clearly see that the only acceptable position
of the shock in inside the nozzle. As we increase the heat flow inside
the duct we move the shock position upside into the nozzle. The con-

tinuous supersonic case enforce our concepts already seen in Rayleigh
theory. The issue, as for the analogous Fanno’s case, is in applying a
proper mesh size to obtain very clear results.
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9 The complete numerical model

In this section we can finally introduce the numerical model for an
unsteady one-dimensional De Laval nozzle with the presence of friction
on the walls and heat exchange with the environment solved with an
High Resolution Godunov scheme. The main structure of the code was
presented in the chapter (7.1).
In the complete model we can add friction and heat exchange on a De
Laval nozzle and evaluate the real impact of all these sources applied
together. The e↵ectiveness of this HR Godunov scheme stays in the
possibility to solve this particular flow, that doesn’t have an analytical
solution, after the validation of simpler models.
We can solve also the cases with the only presence of friction and
area variation by null q heat source term or the cases with only heat
exchange and area variation by null f friction factor.
Another feature is the possibility to change the geometrical dimension
and investigating di↵erent nozzle shapes.

9.1 De laval nozzle with friction

In this part we can investigate the presence of friction for a De Laval
nozzle with an area section of :

A(x) = 2.5(x+ 0.1) +
0.3

x+ 0.1
, (193)

an inlet total pressure p0 = 100000 Pa an inlet total temperature T 0 =
500 K and an outlet pressure p2 = 70000 Pa. The length is L = 1 dm.
The grid is composed by N = 1000 elements. The f = 0.03 and the q
coefficient is null.
We have used a f coefficient ten times higher than the validation cases
to magnify the e↵ects of friction. The results show that the friction
tends to position the straight shock more near to the inlet section in
respect with the case of simple area variation. The results are shown
in figure (43).
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(a) Mach number (b) Pressure ratio

(c) Speed (d) Temperature

Figure 43: HR Godunov scheme for a De Laval nozzle with the presence of
friction.

9.2 De laval nozzle with heat exchange

In this part we can investigate the presence of heat exchange for a De
Laval nozzle with an area section of :

A(x) = 2.5(x+ 0.1) +
0.3

x+ 0.1
, (194)

an inlet total pressure p0 = 100000 Pa an inlet total temperature T 0 =
500 K and an outlet pressure p2 = 70000 Pa. The length is L = 1 dm.
The grid is composed by N = 1000 elements. The f = 0 and the
q = 3000000 J/s/cm2 .
The presence of an heat source tends, as well as the case of friction, to
shift the straight shock to the inlet of the nozzle as shown in figure (44).
A peculiar change in the properties, in respect with the isoentropic
evolution, is given by a great divergence of the T as we approach the
outlet section. The results are showed in figure (44).
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(a) Mach number (b) Pressure ratio

(c) Speed (d) Temperature

Figure 44: HR Godunov scheme for a De Laval nozzle with the presence of
heat exchange.

9.3 De Laval nozzle with friction and heat exchange

In this part we can investigate the presence of friction for a De Laval
nozzle with an area section of :

A(x) = 2.5(x+ 0.1) +
0.3

x+ 0.1
, (195)

an inlet total pressure p0 = 100000 Pa an inlet total temperature T 0 =
500 K and an outlet pressure p2 = 70000 Pa. The length is L = 1 cm.
The grid is composed by N = 1000 elements. The f = 0.03 and the
q = 3000000 J/s/cm2 .
In this case we can observe that the simultaneous presence of friction
an heat exchange tends to shift the straight shock toward the inlet
more than the single cases analyzed before. The results are shown in
figure (45).
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(a) Mach number (b) Pressure ratio

(c) Speed (d) Temperature

Figure 45: HR Godunov scheme for a De Laval nozzle with the presence of
friction and heat exchange.

10 Further implementations

The work done till now in this thesis is the starting point to develop a
more powerful code based on the same numerical model. The possible
implementations can be resumed into four points:

• Application of conservative Boundary conditions.

• Correlation of friction and heat with more complex cases.

• Implementation of the HR Godunov with convergence method to
easily steady state conditions.

• Covolume gasses, liquid and 2D model.

10.1 Application of conservative Boundary conditions

The main issue related to the HR Godunov scheme here presented, as
well as for all the CFD codes, is represented by the boundary conditions
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(BC). The development of the BC in this work has been done using the
Method of characteristics which allowed us to have physical boundary
conditions at inlet and outlet with very good results in most of the
cases. The problem of this type of boundary conditions is that they
are presented in a non conservative form and so they cannot respect
the Rankine-Hugoniot jump condition for shocks at the boundaries.
This can bring numerical discontinuities. The solution to this problem
can be represented by implementing the boundary condition problem
using conservative method such as Lax-Wendro↵ or with a Godunov
scheme as proposed in [4] with a modified Riemann problem in BCs.
The latter method should produce the best results.

10.2 Correlations of friction and heat in more complex cases

To use this code in practical and experimental cases more near to re-
ality, we can enlarge the discussion on the heat flow and the friction
factor. The heat flow in the model could be modeled with a convection
heat exchange

Q = h(Tenv − Tin) , (196)

in which the Tenv can be considered fixed and the Tin varying because
of the x coordinate and the Q itself. It would require an iterative al-
gorithm. However he most difficult thing in this case would be the
introduction of the h convective coefficient that would be found also
with another iteration on the Reynolds’ number and on the Prandlt’s
number. Another issue in this case would be to find the exact solu-
tion using a non-constant heat flow for the Rayleigh’s model for the
validation. It is not immediate. The friction factor can be correlated
with the materials involved in the model using a correlation analysis
with experimental data. A typical setup could be the reproduction of
a duct, with a pressure ratio imposed and the acquisition of all the
properties of the fluid at the outlet. In this case with a curve fitting
we can easily find the friction factor for the specific application.

10.3 Implementation of the HR Godunov with convergence
method to easily steady state conditions.

The main issue of an HR Godunov scheme is in reaching the steady
state conditions.
This issue could be solved building a convergence steady state condition
when we are near the steady state. We must be careful to not convert
our code in a first order one to reach the steady state.
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10.4 Covolume gasses, liquid and 2D model.

We can try make our code working with the liquid. It is a non-explored
field and the applications of this model could be very wide. The inter-
mediate step to reach a Godunov scheme working with liquid should be
the use of the conservative boundary condition to guarantee stability
to our model and the use of fluids that gradually move away from the
perfect gas model. As proposed by Toro in [6], the Covolume gasses
are a more realistic fluids in which the perfect gas model is correlated
with the local compression coefficients.
The 2D model can be a further implementation to catch the 2D phe-
nomena not included in this work and occurring in our De Laval nozzle
for critical conditions.

11 Conclusions

The numerical solution of a 1D compressible diabatic flow with wall
friction has been found using an High resolution Godunov scheme with
friction and heat exchange. The validated numerical code has been ap-
plied to a De Laval nozzle with a perfect gas, heat exchange and wall
friction to analyze the numerical solutions. Since an analytical solution,
in this case, is not disposable the application of a validated numerical
method is the only way to have information about this model.
We have started from the physical description of a one-dimensional
unsteady compressible flow with friction and heat exchange with the
environment using a perfect gas as fluid. The single one-dimensional
models of Fanno, Rayleigh and a flow with an area variation were all
discussed in the first part. The Euler’s homogeneous equations were
introduced to model our study case starting form the integral formu-
lation of the conservation laws. The mathematical properties of the
hyperbolic non-liner system of the Euler equations was discussed and,
also the source terms accounting for friction, heat exchange and area
variation were considered. At this point the complete mathematical
model was introduced as starting point for the Godunov scheme con-
struction.
An overview about the conservative numerical methods and their sta-
bility, consistency and convergence was pointed out. The Godunov first
order scheme and its construction was presented starting from the com-
plete solution of the Riemann’s problem for the Euler equations. The
numerical model was created, with the physical parameters, the geom-
etry and the application of the Riemann’s problem to all the points
inside the domain. The stability condition was explained and applied
as well as the practical development of the boundary conditions with
the Method of characteristics. The extension to an High resolution
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Godunov scheme was the last point for building of our final numerical
scheme. This passage was achieved evolving the Godunov’s first or-
der scheme to the second order and after by applying a slope limiter
to avoid oscillations around the discontinuities. The REA algorithm
summarized all this passages. Our HR Godunov scheme was completed
and ready to be tested. The code has been validated by comparing the
numerical outcomes with the results provided by the analytical solu-
tions for the Fanno flow, the Rayleigh Flow and a flow across a nozzle.
All the numerical solutions perfectly match the analytical flow prop-
erties trends. The validated numerical code has been used to assess
the consistency of the new 1D exact solution pertaining a compressible
flow experiencing heat exchange and wall friction in a constant cross-
section pipe. It resulted that the analytical flow properties patterns are
in perfect agreement with the numerical ones. A comparison between
the performances between the first order and the HR Godunov scheme
was presented. The results about the combination of a De Laval nozzle
and a constant area Duct with friction or heat exchange were outlined.
At the end the final numerical model was tested for di↵erent configu-
rations and the results presented. The further possible developments
for our numerical scheme were, at the end, presented for a future im-
plementation of the HR Godunov scheme.
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