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ABSTRACT 
After the collective take of awareness towards a sustainable human impact on Earth, much of the 

attention has been focused on mobility and transports. Many international organisms, starting from 

European Commission, the American EPA (Environmental Protection Agency) and subsequently 

followed by the new rising economic powers like China and India, have taken actions. The common 

objective is a drastic reduction of noxious emissions from fossil fuel combustion and a lower footprint 

of transport sector on air pollution and greenhouse effect. These intentions have been concretized in 

regulatory laws and stringent limits that have led the OEMs to spend billions on more sophisticated 

technologies to comply with the imposed limits, avoiding hefty fines from the authorities. In parallel 

with the development of the existing conventional combustion engines solutions (downsizing, 

turbocharging, EGR and aftertreatment systems) and synthetic fuels, new frontiers were investigated. 

Electrified hybrid vehicles and full electric vehicles are now perceived by customers as a reality, and 

they are taking shares in the car fleet circulating in the cities around the world. Conversely, hydrogen 

propulsion is still seen as a “technology of the future” and underestimated when alternative green 

solutions are sought. 

“Hydrogen is the future… and always will be” [1] 

The above sentence ironically reflects the common opinion about hydrogen possibilities to open a 

breach on the market, despite looking promising for the premises from which it starts. However, this 

technology has evolved in the past years and thanks to obstinacy and economic efforts of some OEMs 

like Toyota and Hyundai, Fuel Cells are mature for mass production. 

The objective of this thesis is the development of a methodology to determine the sizing of powertrain 

components in a Fuel Cell/Battery vehicle. The analysis will involve the study of the best powertrain 

configuration to optimize costs and performances in different missions and scenarios. For this 

purpose, an optimization procedure called Genetic Algorithm, able to autonomously find the best 

compromise, will be adopted. The GA procedure is coupled with a vehicle model in which Fuel Cell 

system model has been improved using experimental data to better represent the dynamic behavior 

of a real Fuel Cell. The study on the Fuel Cell will be focused on the influence of temperature and 

reagents supply on power generation. In conclusion, an applicative case will be investigate based on 

a generic mid-size Light Commercial Vehicle and an economic analysis on the different 

configurations is given to identify a cost-effective choice among them. 

All the work has been carried out on MATLAB/SIMULINK environment. 
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CHAPTER 1: INTRODUCTION TO THE TOPIC 

1.1 Need for new technologies for sustainable mobility 
Since the effects of the human intervention into the natural ecosystems became more and more visible 

and intense, the cost in terms of loss of human lives and economic damages raised. Thus, the 

international authorities decided to make a common front against climate change. This intent 

culminated with the ratification of the Paris Climate Agreement in 2015 by the member states of 

United Nations Framework Convention on Climate Change (UNFCCC). The 175 Countries that 

signed the agreement on April 22, 2016, undertook to contain the increase in the global average 

temperature well below the 2 °C, threshold above pre-industrial levels, and to limit this increase to 

1.5 °C, as this would substantially reduce the risks and effects of climate changes. The success of this 

could only pass through the reduction of greenhouse gases (GHG) for which the transport sector is 

responsible in large extent. 

 

Figure 1: GHG emissions and transport sector GHG emissions subdivided into vehicle types [2] 

A second factor on which attention has been focused is the emission of NOx from vehicles tailpipes. 

Nitrogen, combining with oxygen, gives rise to various compounds called NOx. Among these, the 

most important for atmospheric pollution are nitrogen oxide NO and nitrogen dioxide NO2. Nitric 

oxide is a colorless and odorless gas. It is formed in any combustion process in which air is used as 

an oxidizer, by reaction between oxygen and nitrogen at high temperatures. About 10% of NO, once 

released into the atmosphere, is transformed into nitrogen dioxide by the action of solar radiation. 
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Furthermore, in conditions of strong irradiation, nitrogen oxides participate in photochemical 

reactions that originate secondary pollutants (ozone, photochemical smog). Nitrogen oxides also 

contribute to the formation of acid rain and favor the accumulation of nitrates in the soil which can, 

in turn, significantly alter the environmental ecological balance. [3] 

 

Figure 2: Sector share of nitrogen oxides emissions (EEA member countries) [4] 

Despite actions have already been taken from 90s in automotive sector (e.g., European emissions 

standards, now with the incoming EURO 7 normative), further steps had to be taken. Given that all 

noxious compounds under indictment are by-products of gasoline or Diesel combustion, it was 

evident that the technological evolution should move in the direction of a combustion-free propulsion. 

This is the reason of the making of the first hybrid and electric vehicles that are now slowly but 

unrelentingly gaining shares on the market. On the other hand, hydrogen powered vehicles have 

always continued to be developed and, even if intended to a niche market, globally commercialized 

by some brands. Since 2015, Toyota Mirai represents a milestone in the sector and, alongside with 

Hyundai NEXO from 2018, intends to lead the way of an innovative mobility. To these BMW and 

Mercedes-Benz have recently been joined with Hydrogen NEXT and GLC F-Cell, respectively. 

At this point it becomes clear that the way we intend transports and mobility is fated to drastically 

change. By 2030, the efforts against climate change will take shape and this will be reflected in first 

instance by road transport. 
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1.2 Fuel Cell/Battery Hybrid Electric Vehicles 
Hydrogen powered vehicles, or more properly called Fuel Cell Electric Vehicles (FCEV), use an e-

motor fed by electricity to propel itself. In contrast with all the other electric vehicles, part of the 

energy is produced on-board even during the motion, rather than being entirely drawn from a battery 

pack previously charged. The task of energy (and power) production is entrusted to the Fuel Cell 

system that can generate electric energy from electrochemical reactions between hydrogen and 

oxygen. That would mean the possibility to cut down to zero the CO2 at pipeline.  

 

Figure 3: FCEV architecture and main powertrain components [5] 

FCEV are quite complex vehicles that possess a multitude of different components. Looking at the 

above picture Figure 3, it is possible to identify: 

• Fuel Cell Stack: assembly of single polymeric electrode membranes (PEM). It uses hydrogen 

from on-board tanks and oxygen from air to produce electricity. Further details will be given 

in a dedicated chapter. 

• Battery Pack: often directly taken by OEMs from already in production Battery or Hybrid 

Electric Vehicles (BEV or HEV), it is an assembly of single battery cells. The battery cells 

are variously connected in series and/or parallel to achieve the desired level of power and 

energy starting from voltage, current and capacity characteristics of the cell. It also enables a 

regenerative braking capability, since it can be recharged with the energy recovered during 

braking maneuvers.  
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The Pack always incorporates a sophisticated Battery Management System (BMS) that 

controls Battery parameters such as overvoltage, overcurrent, and thermal conditions to avoid 

breakdown.  

• DC/DC Converter: it acts as a three-way voltage mediator between two energy sources (Fuel 

Cell and Battery Pack) with different voltage levels and the Inverter/E-Motor system. Battery 

Pack voltage is in the order of several hundreds of Volts, while Fuel Cell voltage is no higher 

than 100-200 V at rest and can drop up to some tenths of Volts at full power. For this reason, 

FC voltage must be boosted to higher levels by the DC/DC Converter to match the Battery 

and Inverter voltage levels. In addition, it can decouple the Fuel Cell during “only battery” 

driving conditions: it can be useful to preserve the membranes from stresses that arise during 

peak power requests. 

• Thermal System (cooling): like conventional combustion vehicles, it is made by radiators, 

pumps, sensors, and pipes. It must guarantee the correct operating temperature for Fuel Cell, 

power electronics, electric motor and all the other components. 

• Battery (auxiliary): standard 12 V lead-acid battery, it provides electricity to vehicle 

accessories. It can also start the vehicle before the traction battery is switched on. 

• Power Electronics Controller: it performs the DC to AC electrical conversion. It manages 

the flow of electrical energy delivered by the FC system and the main traction battery, 

controlling the speed of the electric traction motor and the torque it produces by means of 

voltage and current control techniques. 

• Electric Traction Motor: electric machine that can work as a motor to provide traction to the 

vehicle, or as a generator during regenerative braking phase. It is usually of Synchronous 

Interior Permanent-Magnet type, only exception is the Asynchronous type adopted by Tesla. 

• Transmission: one or two speed automatic transmission. 

• Fuel Tank(s): one or more carbon fiber, high pressure tanks that contain the pressurized 

hydrogen. They must be extremely resistant to be safe in case of collisions or impacts, since 

the hydrogen is stored at about 700 bars so that the on-board quantity could be enough to 

guarantee a reasonable driving range. 

• Fuel Filler. 

• Battery Charger (not shown in Figure 3): electric socket to charge the vehicle battery. It is 

always present in case of high-capacity batteries, while for batteries of few kWh it may even 

not be present. In the latter case, battery charging is done exclusively by regenerative braking 

and/or by the Fuel Cell (if present). 
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1.3 First design phase problem: powertrain components size 
choice 
During the early phases of the vehicle development, well before any technical consideration about 

specific components technical characteristics, OEMs must choose the correct size of the adopted 

powertrain. To create such a complex product and to consider predefined boundary conditions, a 

flexible development and production process is necessary. 

 

Figure 4: Principal stages in a state-of-the-art vehicle development process [6] 

Within the first definition phase, all requirements on the concept are collected. This includes all 

boundary conditions targeting legislative, consumer and, not least, company related factors. 

Additional considerations of production technologies, dimensions, and functional requirements are 

investigated. Since the cost of corrective actions in the definition and concept phases is virtually zero 

(project is still in an embryonic stage and no physical model has been manufactured yet), analysts 

and engineers must lay the foundation of the work.  

Summarizing, the choice must consider: 

• Feasibility of the project. 

• Performance achievement by the vehicle. 

• Cost and price competitivity on the market. 

1.3.1 Project feasibility 

First target to be assessed is the feasibility of vehicle realization. This task is multidisciplinary and 

involves all technical and logistic departments. It must be investigated whether the firm possesses all 

the knowhow necessary to the project, or instead external partners and resources should be recruited. 

The technology used should be mature and reliable to guarantee performance and product quality.       

Furthermore, additional industrial constraints are represented by the impossibility of a totally free 

choice of components properties and dimensions since they are manufactured in predetermined 

characteristics or sizes. For this reason, it results always in the search of the best compromise between 

the optimal solution, on one side, and the most suitable one, on the other side. 
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1.3.2 Performance achievement 

Before being put on the real roads, new vehicles must meet strict standards in terms of performances. 

These targets can be either internal to the company or from legislative regulations. Many of these 

concern proper vehicles performances such as acceleration, full load gradeability, maximum payload 

and towing capability. Others, instead, they are related to fuel consumption and noxious emission 

limits. 

1.3.3 Company’s costs and market competitiveness  

Even if here presented as last parameter to be considered, the cost of the chosen solution is 

undoubtedly of primary interest to the company. The cost paid by the company is not represented 

only by product manufacturing, but also by many other factors such as logistic, marketing and after-

sale costs, since during the warranty period any repair costs are sustained by the manufacturer. Part 

of these costs are fixed and unavoidable, parts are instead variable and linked to the number of units 

sold leading to highly volatile profit margins. For all these reasons, setting the right price is all but 

straightforward: it must be fixed above OEMs product cost and below the customers perceived value, 

resulting at the same time competitive towards other competitor’s products present in the same market 

segment. 

1.4 Thesis objective: development of a discrete variable 
optimization algorithm  

Aim of the thesis investigation will be the development of an algorithm capable of finding, in an 

intelligent way, the optimized sizes of vehicle Fuel Cell system and the Battery Pack. Given that these 

parameters cannot be treated as continuous variables for the above-mentioned problems of 

manufacturability and availability on market, the algorithm must perform the search between sizes 

pre-established by the user. What it is going to be minimized is both the cost of the vehicle production 

for the manufacturer, and the operating cost that will be paid by the final customer for hydrogen and 

electricity purchase. All this will be done keeping in mind performance constraints for the vehicle, 

and specific configurations will be identified for each different mission (urban, rural, highway 

scenarios), using as test case a generic mid-van LCV. Lastly, a configuration for an average and 

mixed scenario will be investigated.  

The computation of the results is based on a FCEV model previously developed by Dott. Michele 

Settembrino for his thesis work. The model will be resumed, improved, and made more flexible to be 

adapted to this type of work.  
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CHAPTER 2: OPTIMIZATION METHODS AND 
GENETIC ALGORITHM 

2.1 Main optimization techniques and their peculiarities 
Made these premises, it is necessary to focus on the main optimization methods that are now part of 

the computer-aided activities. The algorithms, during the project design optimization, have the 

objective to maximize performances and efficiency while minimizing production cost. For this first 

part of the chapter, we will refer to papers [7], [8], [9]. 

In practice, and especially in a manufacturing context, optimization problems that arise are practically 

always so complex that it is not feasible to come up with a solution in an analytical way. In first 

instance, the complexity is determined by the number of variables and constraints, which define the 

“space” dimension of the problem, and then by the possible presence of non-linear functions between 

the relations. The analytic solution is possible only in the case of a few variables, not conflicting 

constraints, and extremely simple functions.  

 

Figure 5: Example of optimization algorithm path during minimum point search [10] 

Anyway, if conditions permit, there are computational methods that offer the guarantee, at least in 

theory, to solve the optimization problem in an “exact” way. However, as said before, the deployment 

of Exact methods is seldom and it is linked to two concomitant factors: the intrinsic complexity of 
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the problem, that must be known very deeply in all its mechanisms, and the computational time. Since 

all Exact methods are based on the development of a mathematical model, the problem to be 

optimized should be accurately formulated, devoid of simplifications and perfectly understood. At 

this point, it becomes clear that the lack of speed is related to this complexity, that could make the 

problem practically impossible to converge at a precise and manageable solution in a reasonable 

amount of time. Moreover, the required execution time grows exponentially with the size of the 

problem resulting to be unapplicable even to simple problems if they involve large number of 

dependent variables.  

Two typologies of Exact methods are present: iterative and enumerative. The former requires only 

one initial guess to start and executes steps in iterations, finding successive approximations in 

sequence to reach a solution.  The latter has in the simplicity itself its basis: to find the optimum value 

in a problem space (which is finite), the algorithm looks at the function values at every point in the 

space. Here the problem is obviously its scarce efficiency. For very large problem spaces, the 

computational task is massive, if not intractably. 

 

Figure 6: Optimization algorithms classification [11] 

When the problem and/or the context of the solution does not make it possible to apply Exact solution 

techniques, it becomes necessary to provide good feasible solutions in reasonable computation times. 

Note that, typically, the determination of good approximate solutions is what is sufficient in real 

applications. These aspects explain why, in real applications, is so widespread the use of methods that 
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allow to find good solutions without guaranteeing their optimality, but a relatively short computation 

time: these methods are called Heuristic methods. The term “heuristic” (from Ancient Greek: 

εὑρίσκω, heurískō, 'I find, discover') refers to a problem-solving approach that does not follow a clear 

path, but that relies on intuition and the temporary state of circumstances in order to generate new 

knowledge and an approximate solution to the problem. Approximative algorithms are said to be 

“performance guaranteed” because is possible to formally demonstrate that the solution found is not 

worse than the optimal one, even if unknown, by a certain percentage. Anyway, the percentage can 

be quite high, and therefore particular attention needs to be paid that the solution is still acceptable in 

practice. These techniques are historically divided in two categories that, thought similar, are 

intrinsically very different: Ad-hoc heuristic and Metaheuristic methods.  

Ad-hoc heuristics: for most combinatorial optimization problems it is possible to design specific 

heuristics that exploit the properties of the problem under investigation and the specific knowledge 

that derives from the experience of it. Obviously, the quality of the solutions obtained depends on the 

level of experience that is transmitted into the algorithm: if this level is high, the solutions will be of 

good quality; if the level is low or, at the limit, null, as it can happen if the algorithm developer has 

no knowledge about the specific problem, the method risks being limited in the quality and even in 

the correctness of the solutions found. They can be further subdivided in “construction methods” and 

“local search techniques”. 

Constructive heuristics are usually the quickest algorithms to return a result. They determine and 

actually “construct” a solution from scratch. Starting only from the input data of the problem under 

examination a complete and mature solution is obtained by iteratively incorporating new components 

and adding new elements. This mechanism takes the name of “expansion criterion” and is at the base 

of method functioning. When the satisfaction criteria are met or maximum computational time is 

reached, the heuristic returns the solution as output. A common feature is the absence (or strong 

limitation) of backtracking: nothing of what is discarded by the algorithm remains in its procedural 

memory and any knowledge of the past is not retained. Finding some Constructive algorithm can be 

not too complex in many cases, but the obtained solutions are often low quality. In fact, designing a 

method that comes up with high quality solutions is a nontrivial task: the results, being strictly linked 

to the problem itself, requires an understanding of it as happens for Ad-hoc methods. Furthermore, in 

problems in which many constraints coexist, it could happen that many partial solutions do not lead 

to a unique feasible solution.              

Among the various types of constructive heuristics, it is worth mentioning the “greedy algorithms”. 

The second subcategory of Ad-hoc methods is the Local Search Algorithms. These heuristics are 

suitable to perform the optimization of generic scalar functions. More details about their peculiarities 
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will be given later, when it will be presented the most known and utilized algorithm among these: the 

“hill-climbing approach”. 

2.1.1 Metaheuristic methods 

In recent years, interest (both academic and applicative) has turned to approaches that embrace more 

general type heuristics. Performances demonstrated on the field by these general methods almost 

always dominates those of specific heuristic techniques. The literature on Metaheuristic methods is 

extensive and expandable, with the only limitation represented by the imagination of researchers. In 

fact, they have been proposed the most varied and suggestive techniques. 

The fundamental properties which characterize the set of Metaheuristic algorithms are the following 

ones [12]: 

• Metaheuristics are higher level strategies that guide the search process. 

• The goal is to efficiently explore the search space to find (quasi-)optimal solutions. 

• Metaheuristic algorithms are approximate and generally non-deterministic. 

• The basic concepts of Metaheuristics permit an abstract level of description. 

• Metaheuristics are not problem specific. 

• Metaheuristics may make use of domain-specific knowledge in the form of heuristics that are 

controlled by the upper-level strategy. 

Recently more advanced metaheuristics are implementing memory features. That would mean that 

previous search experience would be exploited to guide further attempts. 

Metaheuristic algorithms can be categorized into two classes: Trajectory-based and Population-based 

methods that are distinguished by a remarkable difference. The difference lies in the fact that in 

Trajectory-based algorithms a single point tracing out a single path is used and the (quasi-)optimal 

solution is reached through iterations recreating, if represented in the problem space, something 

similar to Figure 5. In Population-based algorithms, instead, multiple points tracing out multiple paths 

in the space are used, and each point represents a solution to the problem. As it can be seen in Figure 

7, multiple points coexist at the same time, hugely increasing the amount of information acquired at 

each iteration and reducing the calculating time. Otherwise, by looking at their search ability, 

algorithms can be categorized in other two classes: -local and Global search algorithms. The former 

lead to local optimum points and often do not have any capability to escape from them and get stuck. 

For this reason, it is necessary to resort to Global search algorithms to get to the global optimum. 

Example of Trajectory-based algorithm is the so-called Simulated Annealing (SA), while the most 
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used Population-based method family of techniques are the Evolutionary Algorithms, of which the 

most known is Genetic Algorithm (GA). 

 

Figure 7: Population-based optimization algorithm [13] 

In the following pages three algorithms are treated, to show pros and cons of them and give a 

motivation of the choice of one among them for the thesis work. The three optimization methods are: 

• Hill Climbing (Ad-hoc Local search method). 

• Simulated Annealing (Metaheuristic Trajectory-based method). 

• Genetic Algorithm (Metaheuristic Population-based method). 

2.1.2 Hill Climbing Algorithm 

The Hill Climbing search is a Local search algorithm based on a search cycle for nodes. The term 

“hill climbing” indicates the ability of the algorithm to "climb" the nodes towards those with higher 

values. 
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Figure 8: Hill Climbing Algorithm representation [14] 

The search space of Hill Climbing algorithm is limited only to nodes close to the current one. When 

a neighboring node is better than the reference node (current node), the latter is replaced with the new 

node. The processing cycle of the Hill Climbing algorithm ends when the node with the highest value 

("peak") is reached, i.e., when no nearby node has a value higher than the reference one. Considering 

the set of "neighboring" states, it is therefore necessary to define a criterion to choose the next state: 

the best, that is, the one that improves the function the most (steepest ascend Hill climbing), one 

randomly chosen among those that improve (Stochastic Hill Climbing), or the first found (Hill 

Climbing with first choice). Finally, to avoid that the algorithm takes too long in the case of large 

spaces, it is necessary to define some stopping criteria: Maximum number of iterations, Minor 

improvements (we end when none of the neighboring states improves the function by a quantity 

greater than a fixed value) or locally optimal solution (No solution in the neighborhood improves the 

current one, so we are in a local maximum). 

The advantages of the algorithm are its intrinsic simplicity (it requires much less conditions than other 

search techniques), the possibility to be used for continuous as well discrete domains (nodes can be 

points of a continuous space or just separated values in a domain) and the fact that always returns a 

solution according to the objective function, even if the algorithm is stopped in advance. 

Disadvantages are instead all linked to the presence of local maxima: local peaks, ridges, alleys, and 

plateau (flat zones in the search space) prevent the HC to reach the optimum, absolute, point getting 

stuck before. 

To avoid these drawbacks, some improvements can be made to the algorithm. Stochastic Hill 

Climbing: does not examine all neighboring nodes before deciding how to move. Rather, it selects a 
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neighbor at random, and decides (based on the amount of improvement in that point) whether to move 

to that node or to examine another. It converges more slowly but sometimes finds better solutions. 

Hill-Climbing with random restart: iterative Hill Climbing algorithm in which several local search 

attempts are made before returning the processing result to the output. At each loop (iteration) the 

algorithm explores the search space starting from a different starting node. The selection of the initial 

node can be determined by a heuristic function or by a stochastic function. 

2.1.3 Simulated Annealing Algorithm 

In order to find global minimum when many local minima are present in the Search space, Simulated 

Annealing is highly suitable for any non-convex optimization problem. Problems solved by SA are 

formulated by an objective function of many variables and it is often used when the Search space is 

discrete. For problems where finding an approximate global optimum is more important than finding 

a precise local optimum in a fixed amount of time, Simulated Annealing may be preferable to Exact 

algorithms.  

 

Figure 9: Simulated Annealing of a one-dimensional objective function [15] 

The name of the algorithm comes from annealing in metallurgy, a technique involving heating and 

controlled cooling of a material to increase the size of its crystals and reduce their defects. Size and 

defects depend on thermodynamic free energy of the system. At high temperatures, the atoms in the 

system are in a highly disordered state and therefore the energy of the system is high. To bring such 
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atoms into an (statistically) ordered crystalline configuration, the temperature of the system must be 

lowered. The analogy with cooling implemented in the SA algorithm is interpreted as a slow decrease 

in the probability of accepting worse solutions, and so “jumping out” local optima as the Solution 

space is explored to find the global optimum solution in general. The temperature is the “dummy” 

parameter used by the algorithm and progressively decreases from an initial positive value to zero.  

Simulated Annealing algorithms work as follows. The method begins with an assigned initial 

configuration with energy E0. Subsequent configurations are then generated with small random 

perturbations of the current configuration. It is decided whether to accept or reject the new 

configuration based on the difference between the energy of the current configuration and that of the 

candidate configuration. The algorithm always accepts a candidate solution whose energy is lower 

than that of the current configuration. On the other hand, if the energy of the candidate configuration 

is greater than that of the current configuration, then the candidate is accepted with a probability 

function of exponential type. At high temperatures, the SA algorithm can traverse almost all the State 

space since bad solutions are easily accepted. Subsequently, by lowering the value of the control 

parameter, the algorithm is confined to narrower regions of the State space since it collapses to 

increasingly lower acceptance probabilities. Therefore, at high temperatures, the algorithm behaves 

like a Random search: the search jumps from one point to another in the Solution space, identifying 

the directions or areas in which it is more likely to find the global optimum. At low temperatures, the 

SA is similar to Steepest-descent methods: solutions are localized in the most promising point in the 

proximity area. [16] 

Said this, Simulated Annealing advantages are easy to be identified: it is flexible, capable to deal with 

many kinds of problems and cost functions; it guarantees (at least in theory) to find optimal solutions 

or quasi-optimal ones in less time than conventional algorithms; it is relatively simple, since it can be 

applied to optimization problems to whom the analyst has no deep knowledge. This makes this 

technique perfect when problem-specific algorithms are not available. 

On the other hand, SA presents some disadvantages: it becomes slow when the cost function is 

complex and computationally heavy; for problems with smooth Search space, or if few local minima 

are present, simpler method like Steepest-descend Local search methods are faster and provide same 

results; the algorithm is not able to tell if the solution found is the optimum, leading to think that 

further improvements can be done even if this is not true. 
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2.2 Genetic Algorithm: description and working principles 
Evolutionary algorithms (EA) are a subset of evolutionary computation (subfield of artificial 

intelligence and soft computing). They are generic Population-based metaheuristic optimization 

methods for solving both constrained and unconstrained problems based on a natural selection process 

that mimics biological evolution [17]. Candidate solutions to the optimization problem play the role 

of individuals in a population, and the fitness function determines the quality of the solutions. An 

initial set of candidate solutions is generated and iteratively updated. Each new generation is produced 

by stochastically removing less desired solutions and introducing small random changes. As a result, 

the population will gradually evolve to increase in fitness, in this case the chosen fitness function of 

the algorithm. 

Evolutionary computation techniques can produce highly optimized solutions in a wide range of 

problem settings, making them popular in computer science. Evolutionary algorithms often perform 

well approximating solutions to all types of problems because they ideally do not make any 

assumption about the underlying fitness landscape. Many variants and extensions exist, suited to more 

specific families of problems and data structures.  

Genetic Algorithm– the most popular type of EA– seeks the solution of a problem in the form of 

strings of numbers, by applying operators such as recombination and mutation. The space of all 

feasible solutions (the set of solutions among which the desired solution resides) is called search space 

and each point in the search space represents one possible solution. Therefore, each possible solution 

can be “marked” by its fitness value, from least to fittest. 

The following paragraphs have been written taking as reference the book “Introduction to Genetic 

Algorithms” by S.N. Sivanandam · S.N. Deepa, edited by Springer. 

2.1.1 Similitude with Nature 

The Genetic Algorithm (GA), developed by John Holland and his collaborators in the 1960s and 

1970s, is a model or abstraction of biological evolution based on Charles Darwin's theory of natural 

selection. The inspiration and motivation of Genetic Algorithms comes from looking at the world 

around us and seeing a staggering diversity of life. Millions of species, each with its own unique 

behavioral patterns and characteristics, abound. Yet, all these plants and creatures have evolved, and 

continue evolving, over millions of years. Each species has developed physical features and normal 

habits that are in a sense optimal in a constantly shifting and changing environment in order to survive. 
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Those weaker members of a species tend to die, leaving the stronger and fitter to mate, create 

offspring and ensure the continuing survival of the species. Their lives are dictated by the laws of 

natural selection and Darwinian evolution. And it is upon these ideas that Genetic Algorithms are 

based. 

In Nature, all the genetic information gets stored in the chromosomes. The chromosomes are divided 

into several parts called genes. A gene encodes a specific feature of the individual and its 

characteristics. The possibilities of the genes for one property are called allele and a gene can take 

different alleles. For example, there is a gene for eye color, and all the different possible alleles are 

black, brown, blue, and green. The set of all possible alleles present in a particular population forms 

a gene pool. This gene pool can determine all the different possible variations for the future 

generations. The size of the gene pool helps in determining the diversity of the individuals in the 

population. For a particular individual, the entire combination of genes is called genotype. The 

phenotype describes the physical aspect of decoding a genotype to produce the phenotype. 

Table 1: Parallelism between natural evolution and genetic algorithm terminology [18] 

Natural Evolution Genetic Algorithm 

Chromosome String 

Gene Feature or character 

Allele Feature or character value 

Genotype Coded structure or string 

Phenotype Decoded structure or string 

2.1.2 Genetic Algorithm introduction 

Genetic Algorithm raises an important feature:  it is a stochastic algorithm, randomness as an essential 

role in genetic algorithms. Both selection and reproduction need random procedures. For this reason, 

a primary distinction that may be made between the various operators is whether they introduce any 

new information into the population. Crossover, for example, does not while mutation does. When 

two individuals mate, both parents pass their chromosomes onto their offspring. So, the chromosomes 

undergo a crossover of genetic material, which leads to a unique new individual with characteristics 

that were previously owned by his parents. In addition, genetic material can undergo mutations, 

resulting from imperfect crossovers or other external stimuli generating a brand-new character. 

Although mutation is rare, it leads to a greater diversification of the gene pool of the population. It 
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must be noted however, that too much of mutation is in fact harmful and can destroy good genetic 

code, so the rate of mutation must be low to prevent severe degradation of the genetic pool. 
 

The Genetic Algorithm iteratively creates new populations from the old by ranking the strings and 

interbreeding the fittest to create new individuals. So, in each generation, the GA creates a set of 

strings from the bits and pieces of the previous strings, occasionally adding random new data to keep 

the population from stagnating. The fitness function takes a string and assigns a relative fitness value 

to the string. The method by which it does this and the nature of the fitness value does not matter. 

The only thing that the fitness function must do is to rank the strings in some way by producing the 

fitness value. These values are then used to select the fittest strings. The concept of a fitness function 

is, in fact, a particular instance of a more general Artificial Intelligence concept, the objective 

function. 

Populations and Fitness 

A population is a collection of individuals being tested with their phenotype The two important 

aspects of population used in Genetic Algorithms are: 

1. The initial population generation. 

2. The population size. 

For each problem, the population size will depend on the complexity of the problem. Often a random 

initialization of the population is carried but there may be instances where it is carried out with some 

knowledge. Sometimes a kind of heuristic can be used to seed the initial population. Thus, the mean 

fitness of the population is already high, and it may help the Genetic Algorithm to find good solutions 

faster. But for doing this one should be sure that the gene pool is still large enough. Ideally, the first 

population should have a gene pool as large as possible in order to be able to explore the whole Search 

space and all the different possible alleles of each should be present in the population.  Otherwise, if 

the population badly lacks diversity, the algorithm will just explore a small part of the Search space 

and never find global optimal solutions. The size of the population raises few problems too. The larger 

the population is, the easier it is to explore the search space. But it has established that it requires 

much more computational cost, memory, and time. We say that the population has converged when 

all the individuals are very much alike and further improvement may only be possibly by mutation. 

GA efficiency to reach global optimum instead of local ones is largely determined by the size of the 

population.  

The fitness of an individual in a Genetic Algorithm is the value of an objective function for its 

phenotype. For calculating fitness, the chromosome must be first decoded and then the objective 
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function must be evaluated. The fitness not only indicates how good the solution is, but also 

corresponds to how close the chromosome is to the optimal one. 

In the case of multicriteria optimization, the fitness function is definitely more difficult to be 

determined. In multicriteria optimization problems, there is often a dilemma as how to determine if 

one solution is better than another. If sometimes a fitness function obtained by a simple combination 

of the different criteria can give good result, it supposes that criterions can be combined in a consistent 

way. 

2.2.3 Genetic Algorithm steps 

  

Figure 10: Flow chart of a Genetic Algorithm operation [19] 

Encoding 
The first step in a GA is to find a suitable encoding of the parameters of the fitness function. This is 

usually done using a population of strings, each representing a possible solution to the problem. 

Coding all the possible solutions into a chromosome is the first part, but certainly not the most 

straightforward one of a Genetic Algorithm. A set of reproduction operators must be determined, too. 

Appropriate representation and reproduction operators are really something determinant, as the 

behavior of the GA is extremely dependent on it. Frequently, it can be extremely difficult to find a 
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representation, which respects the structure of the search space and reproduction operators, which are 

coherent and relevant according to the properties of the problems. 

Simulation, fitness evaluation and stopping criteria 
At this point, the Genetic Algorithm enters the computation loop. Each individual, each with its own 

gene pool, is simulated in its behavioral aspect in order to identify the solution it represents. The 

results are ranked by the fitness function and a decision must be taken whether to stop the cycle. The 

decision is subjected to stopping criteria that can be various: maximum computation time or number 

of generations reached are usual criteria taken into consideration. Otherwise, often the computation 

is stopped when the best individual fitness value falls below an acceptable threshold or the 

improvement between successive generations is no more remarkable. 

Breeding 
The breeding process is the heart of the Genetic Algorithm. It is in this process, the search process 

creates new and hopefully fitter individuals, replacing old individuals in the population with the new 

ones. 

The breeding cycle consists of three steps: 

a. Selecting parents. 

b. Crossing the parents to create new offspring. 

c. Introducing mutation in the population genome. 

 

Figure 11: Representation of selection, crossover, and mutation mechanisms [20] 
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Selection 
Selection is done by using again the fitness function. This selection is done randomly with a 

probability depending on the relative fitness of the individuals: fittest ones have higher shares and so 

the reproduction probabilities of these individuals increase, while weakest ones tend to die and not 

survive to the next generation. 

Crossover 

In the second step, offspring are bred by the selected individuals. Two genotypes are taken and 

produce a new genotype by mixing the genes found in the originals. In biology, the most common 

form of recombination is crossover: two chromosomes are cut at one point and the halves are spliced 

to create new chromosomes. The effect of recombination is very important because it allows 

characteristics from two different parents to be assorted. If the starting individuals possess different 

good qualities, we would expect that all the good qualities will be passed into the child. Thus, the 

offspring, just by combining all the good features from its parents, may surpass its ancestors. The 

same procedure is done to the strings of our solutions, and this is one of the most powerful features 

of Genetic Algorithms. 

Mutation 
Mutation is the other way to get new genomes. Mutation consists in changing the value of genes. In 

natural evolution, mutation mostly engenders non-viable genomes. Actually, mutation is not a very 

frequent operator in natural evolution. Nevertheless, in optimization environment, a few random 

changes can be a good way to explore the Search space quickly. 

2.3 Pros and cons of GA adoption 

2.3.1 Advantages 

GA can be even faster in finding global maxima than conventional methods, in particular when 

derivatives provide misleading information. The enormous potential of GA lies in optimization of 

non-differentiable or even discontinuous functions, so discrete variables optimization. It has been 

claimed that via the operations of selection, crossover, and mutation the GA will converge over 

successive generations towards the global (or near global) optimum. This simple operation should 

produce a fast, useful and robust technique largely because of the fact that GA combine direction and 

chance in the search in an effective and efficient manner. Since population implicitly contain much 

more information than simply the individual fitness scores, GA combines the good information 

hidden in a solution with good information from another solution to produce new solutions with good 
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information inherited from both parents, leading towards optimality. The ability of the algorithm to 

explore and exploit simultaneously huge number of solutions strengthens the conclusion that GAs are 

a powerful, robust optimization technique. A second very important point is that Genetic Algorithms 

always consider a population of solutions. Keeping in memory more than a single solution at each 

iteration offers a lot of advantages. The algorithm can recombine different solutions to get better ones 

and so, it can use the benefits of assortment. A Population-based algorithm is also very amenable for 

parallelization. The robustness of the algorithm should also be mentioned as something essential for 

the algorithm success. Robustness refers to the ability to perform consistently well on a broad range 

of problem types. There is no requirement on the problem before using GAs, so it can be applied to 

resolve any problem. All those features make GA a powerful optimization tool.  

To resume, the advantages of Genetic Algorithm include: 

• Can be employed for a wide variety of optimization problems, performing very well for large-

scale optimization problems. 

• Discontinuities present on the response surface have little effect on overall optimization 

performance. 

• They require no knowledge or gradient information about the Search space, resulting 

particularly suited when the fitness landscape is complex or wide. 

• Only uses function evaluations. 

• The problem has multi-objective function. 

• Handles noisy functions well, robust to difficulties in the evaluation of the objective function 

are resistant to becoming trapped in local optima, easily discovering global optimum. 

• Parallelism capability. 

2.3.2 Disadvantages 

It is also important to mention in this introduction GA limits. Like most stochastic methods, GAs are 

not guaranteed to find the global optimum solution to a problem, they are satisfied with finding 

“acceptably good” solutions to the problem. GAs are extremely general too, and so specific 

techniques for solving particular problems are likely to out-perform GAs. In most cases where 

conventional methods can be applied, GAs are much slower because they do not take auxiliary 

information like derivatives into account, affecting both speed and accuracy of the result. GAs are 

something worth trying when everything else as failed or when we know absolutely nothing of the 

search space. Nevertheless, even when such specialized techniques exist, it often interesting to 

hybridize them with a GA to possibly gain some improvements. 
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To resume, the disadvantages of Genetic Algorithm include: 

• Cannot easily incorporate problem specific information. 

• The problem of identifying fitness function. 

• The problem of choosing the various parameters like the size of the population, mutation 

rate, crossover rate, selection method and stopping criteria. 

• Have trouble finding the exact global optimum 

• Cannot use gradients 

• Premature convergence occurs 

• Require large number of response (fitness) function evaluations. 

2.4 Justification of Genetic Algorithm use for the Thesis 

Seen the characteristics of GA optimization method, the choice of its adoption has been dictated by 

some motivations. First, the simplicity of the algorithm and its capability of providing excellent 

results have been determining. Second, the choice of a vehicle powertrain sizing involves many 

aspects that are interdependent and not fully understandable in their interaction. This was possible to 

be overcome thanks to the GA flexibility and its necessity of a fitness function only. In addition, the 

problem to be solved was based on a constrained and discrete optimization, since for manufacturing 

reasons the investigation cannot be exploited in a continuous domain. 

For these reasons the choice of a Genetic Algorithm has been considered the best and therefore 

employed in the following chapters. 
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CHAPTER 3: MODEL IMPROVEMENT WITH 
EXPERIMENTAL DATA 

3.1 Introduction to the FCEV model and need for improvement 
Since the goal of the job and the way it would be done was now clear, it became necessary to use a 

model of a Fuel Cell/ Battery Electric vehicle to be coupled to the Genetic Algorithm. The model 

taken as reference was developed by Dott. Michele Settembrino, for his previous thesis project 

“Analysis of Fuel Cell System for Automotive and Modelling of a Range Extender FCV based 

on PEMFC”. The modeling concerned a small Class A/B vehicle with a Battery Pack and a Fuel Cell 

with low output power, used as a Range Extender to increase the distance that the car can travel with 

a single charge. 

Table 2: Basic parameters of the starting model [21] 

Parameter Value [unit] 

Kerb weight 1300 kg 

Test load 200 kg 

Battery Max Energy 6.2 kWh 

Fuel Cell Max Power 33 kWh 

E-Motor Power 93 kW 

The model, developed in MATLAB/SIMULINK environment, was composed by 4 main parts: 

• Driver Command, in which the drive-cycle profile is generated, and a driver simulator 

provides brake and accelerator positions to follow the cycle-imposed velocity. The Driver 

basically acts as a controller, using as inputs the desired and actual (given as a feedback) 

velocities. 

• Driveline, that reproduces the vehicle behavior. It includes the entire driveline, modeling the 

gearbox and differential, and the tires.  

• FCV Electrical Subsystem, it’s the main part of the model, and the one on which we will 

focus. Under this subsystem, they are modeled all the parts that compose the powertrain: 

Battery Pack, Fuel Cell system with its auxiliaries, DC-DC Converter, Inverter, E-Motor. 
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Figure 12: FCEV modeling subsystems [21] 

• Energy Management Subsystem, containing the “Logic” that drives the operation of the 

vehicle. Using the information of buses coming from powertrain, driveline, and driver (such 

as power and torque required) choses the best strategy for the vehicle. The Control Logic 

mainly regulates the power flows from the Fuel Cell and from/to the battery, to guarantee 

performances and range, keeping at the same time the working temperature of each part in its 

best operating window. 

The starting model, although excellent for a rough simulation of the vehicle, had limitations that could 

invalidate the accuracy of derived results. Indeed, previous work was focused more on the 

development of the Energy Management and “Driving Modes”, which were very sophisticated and 

brilliantly refined. However, more attention could be paid on the modeling of the Fuel Cell System, 

using experimental data to approach a representation of the phenomena more adherent to reality.  

The performance of a PEMFC can be affected by many factors. Load current, temperature, relative 

humidity, management of water inside the cell, membrane thickness, membrane-active area, electrode 

active area, corrosion, pressure, and concentration of hydrogen fuel, are just some of them. In 

particular, the baseline model did not take into consideration the influence of dynamics on the 

behavior expressed by the Fuel Cell: many parameters were considered as constants or slightly 

changing, leading to a quasi-static representation of the phenomena. This has repercussion on the 

power produced and on reagents consumption. As their effects could not be neglected, a critical 

review of the involved parts was necessary before coupling the model to the Genetic Algorithm for 
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the configuration comparison. In addition, it has been investigated and implemented a more complex 

cooling of the components, which comprises also the DC/DC Converter and the Inverter/E-Motor 

assembly. This part was not faced in the previous work, but it was deemed relevant for vehicle energy 

balances. 

In summary, the identified points for improvement are: 

• Behavior of the Fuel Cell under the influence of its temperature and the environment: 

- Warm-up phase modeling. 

- Influence of temperature on output power, efficiency, and consumption. 

• Powertrain thermal management: 

- FC alternative cooling strategies. 

- DC/DC Converter, Inverter/E-Motor cooling, and implications on energy balance. 

• Refinement of Fuel Cell reagents supply with experimental data: 

- Anode and Cathode pressure modeling. 

- Excess Ratios of reagents. 

 

Figure 13: Comparison between baseline and improved Fuel Cell Stack blocks 

3.2 Warm-Up phase and influence of temperature on FC 
The first thing done was to provide to the Fuel Cell Stack block the value of its temperature. The 

model already had implemented the calculation and control of the FC temperature by the Cooling 

System, but the data were not returned to FC block: the Fuel Cell was supposed to be at a constant 

temperature equal to 75 °C. The phenomena that characterize the production of voltage, and therefore 

of power, by the cell are of electrochemical nature and therefore intimately linked to the temperature 

factor. Electrochemical reactions of hydrogen and oxygen molecules, electronic/ionic transport, and 

heat/mass transfer, govern the operation of the Fuel Cell. Without going into details (for the 
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mathematical expressions of the phenomena it can be referred to [22]), the influence of thermal 

conditions on the polarization curve that defines the relationship between current required and voltage 

across the plates must not to be neglected, as can be seen in Figure 14. 

 

 

Figure 14: Influence of temperature on polarization and power curves 

At lower temperatures not only the generated voltage is lower, but also the maximum current that can 

be required from the Fuel Cell is not the one reported by the manufacturer, but significantly limited. 

The cause can be traced back to oxidation/reduction reactions of the reagents, lower capability of 

platinum catalyst to increase chemicals reactivity and inhibited transportation phenomena at lower 

temperatures. All this has repercussions on the output power produced and that can be used for 

traction and battery charging.  
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3.2.1 Warm-Up phase 

Warm-Up represents an extremely delicate phase during the operation of the Fuel Cell. The cold 

startup is of critical importance for optimal PEMFC performance and durability. This is especially 

true at sub-zero temperatures, when the water produced at the cathode through the electrochemical 

reaction could freeze and lead to ice formation under subfreezing temperatures. The ice that is formed 

can affect the performance leading to an irreversible decay, damage the cell components, block the 

gas passage, coat the catalyst and lead to cold start failure. If the severity of the phenomena increases, 

physical breakdown of the membranes can occur. Alongside this, OEMs had to implement different 

strategies with the aim of satisfying targets of cold start performances set by several countries and 

organizations. This is the case of the United States, where from 2020 the Department of Energy 

(DOE) has established as target a rapid startup of a Fuel Cell to 50% rated power in less than 30 

seconds, to be achieved at a temperature of -20°C. [23] 

Besides studies about purge systems and anti-freezing materials, the research has focused on two 

different Warm-Up solutions: External and Internal. External heating uses heat generated from an 

external heating source and delivers it into the stack through a heat transfer medium, while internal 

heating uses heat generated within the stack to warm itself up. The latter is the one employed in the 

analyzed Fuel Cell, and for this reason it has been the object of the investigation. Fuel Cells are 

designed with more than one internal electrical resistance that can change with temperature. Such 

resistances allow a thermal management and control of the FC, with rapid heat up from low 

temperature to the operating one, which is optimal for water management and power production [24]. 
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Figure 15: Fuel Cell parameters during warm (20°C) and cold (-20°C) start-up 

The original model presented just one, very “rough” Warm-Up procedure. During this, no distinction 

was done about the environment conditions and the status in which the cell could be: the modeling 

did not take care to whether it was at room temperature or below zero, with all the ensuing 

consequences. In addition, at time zero a sudden current step is required from the cell, rising 

instantaneously the current drawn from rest to the nominal one (384 A): a similar operation can cause 

damage if ice prevents a homogeneous distribution of reagents on the membrane, leading to an 

imbalance of electrical charges on its surface. 

First, a distinction between a start-up procedure performed in warm condition, equal to 20°C, and one 

in cold condition, equal to -20°C, has been done. The choice of two such different temperatures was 

made not only to demonstrate the influence of thermal conditions on the refined model under 

operating conditions, but also and above all in the heating phase trend. 

Therefore, to prevent damages linked to a too fast current request, the current demand until the 

nominal value is done in a smoother and slower way. No step rise is present anymore: 6.2 seconds 

are taken at ambient temperature to reach the nominal value, allowing in this way a gradual awakening 

of the Fuel Cell. Secondly, greater attention is paid when temperatures are subzero: as showed in 

Figure 15.1, at temperature below 5°C, the current reaches the nominal value in 13.5 seconds, more 

than twice the time of previous case.  As a result, these facts are mirrored by the total time spent to 

reach the fully warmed condition, in our case set at 340 K, and represented in Figure 15.2: just 29 

second are required to perform a warm start, while 67.8 seconds are spent to bridge the almost 90°C 

of difference when starting from an extremely cold environment. 
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Finally, some words need to be said about the above stated legislative limits. According to our 

improved model, 50% of Fuel Cell nominal power output (12.5 kW) is reached in 26.5 seconds, 

perfectly compliant with the American normative. 

3.2.2 Influence of temperature on FC power, efficiency, and consumption 

Inappropriate thermal energy will decrease the performance of the Proton Exchange Membrane. Since 

several factors are connected to the operating temperature and have vital effects on the performance 

of hydrogen Fuel Cell, in this paper we will discuss the effects of temperature elaborately.  

Table 3: Effects of temperature on FC [25] 

Parameter Value [unit] 

Humidity Optimum temperature maintains the required humidity 

Voltage Increases with the increase in temperature 

Leakage Current Increases with the increase in temperature 

Catalyst tolerance Increases with the increase in temperature 

Mass crossover Decreases with the increase in temperature 

Durability Decreases with the increase in temperature 

Power production and efficiency Increases with the increase in temperature 

Humidity 

The ion exchange permeability of the membrane in both electrodes depends on its humidity: the 

presence of water maintains the optimum humid condition. Wet Proton Exchange Membrane is very 

essential for proton exchange from anode to cathode. The electrochemical reaction would rapidly rise 

with the increase in temperature and would produce enough water. Adequate water is required for the 

membrane to be hydrated and the rest of the water needs to come out of the Fuel Cell for better 

performance. Otherwise, the extra water will create additional complications inside the Fuel Cell. At 

the same time, the temperature rise is one of the reasons for water loss in the membrane. When 

membrane becomes dehydrated less amount of proton can pass through the anode to the cathode side 

which will reduce the electron flow and efficiency of the PEMFC. In high temperature and high 

humidity, membrane crossover of the hydrogen gas rises. After the exchange of protons through the 

membrane with electrochemical reaction, water is produced. Excess water production will make the 
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membrane wet by the diffusion process. Without optimum humid conditions in the membrane, the 

resistance of the membrane to hydrogen ion will rise. As a result, this rise in resistance will increase 

the temperature.  

The performance and durability of the membrane directly depend on the humid condition. If the 

humidity in the proton exchange membrane is too high, it can lead to catalyst flooding. Besides, in 

less humidity, the polymer electrolyte membrane turns into more brittle form and degrades faster, 

particularly the acid group of the membrane degrades, and the catalyst is washed away from the 

surface of the membrane. 

Voltage 

According to the Nernst equation, the temperature is proportional to the output voltage. Higher 

temperature leads to faster kinetics and as a result, the voltage is also increased. However, this 

increase in voltage can be surpassed by the voltage loss from the negative thermodynamic factors. 

Thus, particular attention must be paid to the correlation between the open-circuit voltage and 

temperature. 

Leakage Current 

The membrane of PEMFC cannot be considered as hydrogen impermeable and electrically insulated. 

During the electrochemical reaction in the Fuel Cell hydrogen gas and electrons diffuse through the 

proton exchange membrane. The leakage current is generated by this diffusion process of hydrogen 

gas and electrons through the proton exchange membrane. With the rise in temperature, the leakage 

current also increases with negative effects on power production. 

Catalyst Tolerance 

The efficiency of catalyst decay over time depends on the hydrogen oxidation reaction, oxygen 

reduction reaction and pH environment. Platinum catalyst plays a vital role in the performance of 

Fuel Cells. The oxygen reduction reaction in the cathode is a slow reaction process. To overcome the 

slowness, an effective catalyst can accelerate the oxygen reaction rate in the cathode which will 

improve the PEMFC efficiency rapidly. If the hydrogen is not pure then carbon monoxide will be 

produced and associates with the surface of the catalyst. The tolerance level of the catalyst to the 

contaminants in the membrane will rise significantly with temperature. When PEMFC operates at low 

temperature, CO covers the catalyst layer. As a result, the electrochemical reaction process becomes 

slower. The CO accumulation in the catalyst surface reduces the 50% lifetime of the Fuel Cell. To 



32 

Politecnico di Torino, 2021 

ameliorate the bad effect of CO, a certain type of catalyst should be selected which has no reactive 

mechanism. 

Mass Cross-Over and Concentration Over-Potential  

Mass cross-over and concentration over-potential are also related to the temperature of the PEMFC. 

If the temperature rises, the mass cross-over falls and concentration over-potential rises leading to a 

higher current density on the FC membrane. 

Durability 

Despite the uninterrupted evolution of Proton Exchange Membranes, longevity is still a concern. The 

durability of the catalyst, electrode plates, gas diffusion layers, and gaskets is directly related to the 

longevity of the proton exchange membrane. Electrochemical erosion, component erosion, and 

thermal effects are the leading factors for the longevity of the Proton Exchange Membrane. The 

Proton Exchange Membrane loses its water and becomes dehydrated with the rise of the temperature. 

As a result, the hydrogen gas crossing the dehydrated membrane will reach on the cathode side. 

Hydrogen in the cathode side will then damage the catalyst, bipolar plates, and gaskets. If it continues 

to operate at high temperatures, then the durability of the PEMFC will decrease over time. 

Power production and efficiency 

All the above phenomena affect the power output of the Fuel Cell. As the stack temperature increases, 

an increase of cell power production is associated. In a Proton Exchange Membrane Fuel Cell, the 

density of power production rises up to 20% when operational temperature rises from 50 ℃ to 80 ℃. 

Since the improved model is now capable to show the effects of temperature, a close look can be 

taken on Figure 16. Again, the result is particularly relevant during the Warm-Up phase, when 

temperatures are still far from operating ones. Subsequently, system reaches the thermal stability 

oscillating around the nominal temperature, equal to 75 °C. At this point, the influence becomes less 

pronounced since the oscillation amplitude is limited. 

Same behavior is assumed by the cell efficiency. The value of dissipated power is reduced, and the 

initiated over-potential become less due to the rising temperature which results in increased power 

production efficiency. The overall stack efficiency calculated by the original model was around 60%, 

while considering the temperature effect the value becomes lower. During the heating phase, 

efficiency is below 50% and grows up according to temperature rise. When Fuel Cell thermal 
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condition reaches the optimal value, the efficiency is substantially the same of the original model, 

and oscillates according to temperature oscillations, as in the power production. 

 

Figure 16: Effect of temperature on Fuel Cell power and efficiency 

For better efficiency and consistence output, there must be an air or fluid cooling system to dissipate 

the cell generated heat. As the thermal management is improved, the overall performance like current, 

current density, voltage, electricity production of a proton exchange membrane Fuel Cell improves. 

However, it is worth to highlight the values of efficiency reached by Fuel Cells, roughly twice the 

one of conventional internal combustion engine. Despite the overall efficiency of the system is lower, 

due to auxiliaries inefficiencies (air compressor, above all) and can range between 40-50%, it sounds 

clear how promising it is this technology.  

 Lastly, it is reported the cumulative hydrogen consumption of the cell in the cases that temperature 

effect is taken or not into account by the model. It is evident that, since the efficiency is lower during 

cell warm-up, fuel consumption is significantly higher. 



34 

Politecnico di Torino, 2021 

 

Figure 17: Effect of temperature on hydrogen consumption 

3.3 Powertrain thermal management 

3.3.1 FC alternative cooling strategies 

As stated in the previous paragraph, thermal condition of the Fuel Cell is of primary importance for 

its correct working and durability. Temperature management is performed by a dedicated cooling 

circuit that uses a water and glycol mixture. The fluid is circulated by an electric pump through pipes, 

draws heat by the cell and is cooled by the environment air in a heat exchanger placed in front of the 

vehicle. Fuel Cell temperature is controlled by the pump driving: when the pump is shut off, stack 

temperature rises due to the electrochemical reactions that take place inside it; when it is switched on, 

temperature decreases thanks to the heat taken away from coolant convection. In order to manage this 

thermal status in the correct operating windows, a dedicated Control Logic was developed in the 

original model. Since effects of temperature on the Fuel Cells are so relevant, a strict strategy was 

implemented, able to keep stack temperature in a very narrow range of +/- 1 °C than the optimal 

condition, equal to 75 °C (348 K). The “normal” strategy was really effective in temperature control 

but required a rapid switch on and off of the electric pump. In Figure 18, FC temperature and power 

absorbed by the pump trends are represented during a WLTP cycle simulation. The cooling pump is 

driven tenths of times from rest to a fixed velocity, corresponding to “ON condition” and absorbing 

around 100 W. These rapid and numerous transitions can hamper pump mechanical resistance and 

durability. 
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Figure 18: Comparison between “normal” and “alternative” FC cooling strategies 

For this reason, an alternative strategy was investigated. The primary purpose was to limit the number 

of pump switching cycles, and to lengthen pump life, while keeping still effective the temperature 

control. To realize that an idling power equal to 40 W was set to guarantee a minimum fluid 

circulation in the pipes: this value permitted a smoother FC temperature rise while the pump is 

operated continuously, avoiding harmful ON/OFF operations. Instead, when heat to be dissipated 

becomes higher, pump can reach higher power levels. During the design stage, it was discovered that 

this alternative cooling strategy, to be feasible, required to enlarge the temperature window to 5 °C, 

ranging 73-78 °C, as can be seen in Figure 18.1. The comparison between the two strategies, both 

simulated on a WLTP driving cycle, carried out some interesting results. The “normal” strategy was 

responsible for a total energy expense of 7.34 Wh, while the “alternative” required nearly four times, 

accounting for 29.65 Wh. Anyway, the latter showed a drastic cut down on switching cycles, passing 

from some tenths to only 3. Despite this improvement, the advantage of the alternative strategy was 

not considered relevant enough to choose for his adoption: pump durability can be improved with a 

right sizing and design, also recurring to more advanced materials. The normal strategy, with its more 

precise stack thermal management and lower energy requirement, was deemed better for a vehicle 

which is developed around the concept of Fuel Cell usage and driving range. 

3.3.2 DC/DC Converter, Inverter/E-Motor cooling, and implications on 
energy balance 

The original model was devoid of a cooling circuit for the DC/DC Converter and the Inverter/E-

Motor. These electric machines are affected by inefficiencies and produce heat that leads to an 
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increase of their temperature. Heat must be taken away from them because, even if they are 

components not so sensitive to thermal conditions, can incur in overtemperature that can damage 

them irreparably. For this reason, a second dedicated cooling circuit was developed, to maintain the 

parts at a temperature around 80 °C, and in any case not above 100 °C to avoid overheating.  

 

Figure 19: Representation of DC/DC and E-Motor cooling circuit 

The second cooling system includes: 

• a DC pump whose dynamic is regulated by the Control Logic supplied voltage. 

• pipes connecting the E-Motor and DC/DC Converter. 

• an air/fluid heat exchanger (radiator). 

Additional blocks are used to represent temperature and pressure sensors, heat sources, glycol and 

water refrigerant mixture, and airstream entering and leaving the radiator. The results of a simulation 

of the vehicle, running on a WLTP cycle, are shown in Figure 20. Temperature trends are substantially 

different from those of the Fuel Cell: while stack temperature rises rapidly, the other components take 

longer time due to the higher thermal inertia and mass, and the lower energy dissipated into heat by 

the electrical machines. Power electronics and electric motors have efficiency in the order of 98%, so 

the amount of energy converted into heat is far lower than those of the Fuel Cel, even if not negligible. 

That’s the reason why DC/DC Converter cooling starts just at half the cycle, after 700 seconds, while 

the assembly Inverter/E-Motor does not reach the warning temperature before cycle ending. 

In Figure 20.2 it is possible to see the pumps absorbed power. For the total energy balance, the energy 

spent by the secondary cooling circuit was around 3.65 Wh: this value must be added to the energy 

adsorbed by the auxiliaries. 
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Figure 20: Components temperature trend and power adsorbed by the cooling pumps 

3.4 Refinement of Fuel Cell reagents supply with experimental 
data 
Other parameters besides the temperature affect the Fuel Cell performances. Between these, the way 

reagents are supplied to the stack are fundamental. The hydrogen supply system plays a crucial role 

for the proper operation of the Fuel Cell system, providing fuel to the anode. On the other side, air 

supply system provides oxygen to the cathode thanks to a compressor, one of the most important 

auxiliaries for FC balance of performance. The air supply system is crucial for the stable and efficient 

operation of a Fuel Cell system. Firstly, it influences the humidity level (and humidity removal) of 

the stack. Secondly, the oxygen in the air influences the stack voltage and therefore the efficiency of 

the stack. The air compressor can supply air at different air mass flows and air pressure levels to the 

stack. These operating parameters and the corresponding electric energy consumption influence the 

stack and system efficiency, accounting to greatest extent to the system power consumption. Reagent 

pressure improves the stack produced output: higher pressure is linked to higher Nerst open circuit 

voltages and lower activation losses of the electrochemical reaction. These phenomena lead to a better 

polarization curve, increasing the corresponding voltage for the same current request and a 

consequent higher output power. In addition, higher pressures guarantee a uniform and homogeneous 

reactants distribution on PEM membrane and prevents possible hydrogen and oxygen starvation. The 

results of effect pressure on the model are reported in Figure 21. As can be noticed, effects are lower 

in magnitude if compared to temperature, but not negligible at all. 
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Figure 21: Influence of pressure on polarization and power curves 

A second parameter that is investigated is reagents flow rate. Generally, a higher air mass flow 

increases the stack voltage (and stack efficiency). At lower mass flows, the stable operation of the 

stack cannot be guaranteed due to the higher propensity of water condensation and oxygen starvation. 

High velocity air is needed to remove the produced water at the cathode side of the stack. At high air 

mass flows, the oxygen partial pressure is also higher thus increasing the stack voltage. However, 

after longer operation at high air mass flows the membranes are not humidified enough and drying 

up can occur [26]. Cathode pressure and air flow rate relations are dictated by compressor 

characteristic: maximum air inlet pressure of the stack is limited by the surge line of the air 
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compressor while lowest pressure is limited by the pressure drop of the stack and the choke line of 

the air compressor. 

In the following paragraphs, a more accurate modeling of anode and cathode will be explained. This 

works aims a more correct representation of Fuel Cell behavior, and a calibration of the model was 

also performed using real experimental data.  

3.4.1 Anode pressure modeling 

The hydrogen supply system plays a crucial role for the proper operation of the Fuel Cell system. 

Hydrogen is conserved in high-pressure tanks, and it is delivered to a pressure reducing valve to lower 

the pressure from the high value (700 bar) to the rail one (around 15 bar) and then to the injector. 

When the hydrogen gas enters the anode of the stack, an electric pressure control valve guarantees 

the desired pressure, avoiding overpressure conditions and large pressure differences between anode 

and cathode sides of the membrane, that can cause cracks. A purge valve is periodically opened to 

remove water and gas impurities from the anode chamber, which negatively affect the voltage level 

of the stack. A recirculation pump collects the unused hydrogen and refills the inlet line, since the 

supplied quantity is never the one required by the electrochemical reactions. The pump speed is 

controlled depending on the load point, so that the hydrogen flow over the membranes on the anode 

side guarantees an efficient water removal of the gas diffusion layers. The hydrogen recirculation 

pump has an electric energy consumption level in the range of the coolant pump, and it usually 

consumes less power compared to the air supply side, especially at higher loads when compressor 

provides the maximum flow rate. 

An anode model was developed based on Jay Tawee Pukrushpan’s works, presented in “Modeling 

and Control of Fuel Cell Systems and Fuel Processors” [22]. It is basically a mass conservation law 

for an open system, and is formulated as: 

𝑑𝑝𝐴𝑛𝑜𝑑𝑒

𝑑𝑡
=

𝑅𝐻2𝑇𝐴𝑛𝑜𝑑𝑒

𝑉𝐴𝑛𝑜𝑑𝑒
(𝑊𝐼𝑛 − 𝑊𝑅𝑒𝑎𝑐𝑡 − 𝑊𝑃𝑢𝑚𝑝) 

Where: 

• 𝑝𝐴𝑛𝑜𝑑𝑒, 𝑇𝐴𝑛𝑜𝑑𝑒, 𝑉𝐴𝑛𝑜𝑑𝑒 are anode pressure, temperature, and volume respectively. 

• 𝑅𝐻2 is the hydrogen gas constant, equal to 4125 J/(kg*K). 

• 𝑊𝐼𝑛 is the hydrogen mass flow rate at anode inlet. 
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• 𝑊𝑅𝑒𝑎𝑐𝑡 is the hydrogen mass flow rate spent by the FC for power production. 

• 𝑊𝑃𝑢𝑚𝑝 is the hydrogen recirculated by the pump at anode exit. 

Finally, model has been calibrated using experimental data from a Nuvera 34 kW Fuel Cell previously 

used for [21]. Figure 22.1 shows the Anode pressure from zero to full power, comparing the results 

of the experimental ones and the simulated ones, while Figure 22.2 the pressure trend during a full 

WLTP cycle simulation. 

 

Figure 22: Anode pressure trends for a power ramp and during a WLTP cycle 

The original model set the Anode pressure to constant, assuming a value of 1.6 bar. This 

approximation, even if not completely far from reality, was not correct. As can be seen in the picture 

above, Anode pressure of the real stack is kept at 1.5 bar from rest to around 60% of maximum power. 

Then it ramps up to 1.8 bar at full power, when a higher pressure is needed to increase the available 

and avoid reagents starvation in the membrane. A relief valve was modeled and set to 1.85 bar, in 

order to limit pressure that could lead to cracks. 

It is remarkable the fine tuning of the model, that is very close to the real data, and thus capable of 

producing correct and reliable results. 

3.4.2 Cathode pressure modeling 

Cathode supply system is composed mainly by the air compressor, which provides the required mass 

flow rate to the Cathode. Cathode side modeling requires the knowledge of the behavior of more than 
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one chemical species: while Anode is fed by practically pure hydrogen (99.996%), Cathode receives 

air, mixture of nitrogen, oxygen, and water vapor. The equation proposed by [22] defined cathode 

total pressure as the sum of partial pressures: 

𝑝𝐶𝑎𝑡ℎ𝑜𝑑𝑒 =  𝑝𝑁2 + 𝑝𝑂2 + 𝑝𝑉 

The above equation was quite complex to be known accurately because it was dependent on various 

parameters such as air composition, humidity, thermodynamic state and mass flow rates in and out 

the cathode. Since there was no need of collecting back the excess of air provided to the stack (that 

is dispersed directly in the environment), a different approach was used. Cathode pressure is regulated 

by a control valve, which is governed to match as much as possible the experimental data. 

 

Figure 23: Cathode pressure trends for a power ramp and during a WLTP cycle 

The old model assumed again a constant pressure equal to 1.6, but in this case the assumption was 

further from the experimental evidence: Cathode pressure shows a more flexible behavior along the 

power range, increasing almost linearly from 1.1 bar at rest to 1.8 bar at maximum power, when 

higher flow rates are required. In Figure 23.2, cathode pressure history during a WLTP cycle 

simulation is represented. 

Again, it should be highlighted the correspondence of experimental data with the model ones, result 

of an accurate calibration work. 
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3.4.3 Reagents Excess Ratios 
As previously mentioned, reagents are not provided in the quantities that would be spent by the Fuel 

Cell to produce voltage and power. They are not supplied according to the electrochemical reaction 

laws, but in excess, to be sure that enough reagents are present in the diffusion layer in order that 

reaction could take place. Reactions are quite slow, and mass transportation phenomena even more, 

so that to avoid starvation a simple but effective way to solve the issue is this one. The definition of 

Excess Ratio is: 

𝑋𝐸𝑅 =
𝑊𝑋,𝐼𝑛

𝑊𝑋,𝑅𝑒𝑎𝑐𝑡
 

Where “X” could be hydrogen or air, 𝑊𝑋,𝐼𝑛 is the supplied mass flow rate while 𝑊𝑋,𝑅𝑒𝑎𝑐𝑡 is defined: 

𝑊𝐻2,𝑅𝑒𝑎𝑐𝑡 =  
60 ∗ 𝐼𝑅𝑒𝑞 ∗ 𝑛𝐶𝑒𝑙𝑙 ∗ 𝑀𝑚𝑜𝑙𝐻2

2 ∗ 𝐹 ∗ 𝜌𝐻2
 

𝑊𝐴𝑖𝑟,𝑅𝑒𝑎𝑐𝑡 =  𝑆𝑅 ∗
60 ∗ 𝐼𝑅𝑒𝑞 ∗ 𝑛𝐶𝑒𝑙𝑙 ∗ 𝑀𝑚𝑜𝑙𝐴𝑖𝑟

4 ∗ 𝐹 ∗ 𝜌𝐴𝑖𝑟
 

𝐼𝑅𝑒𝑞 is the requested current to the Cell, 𝑛𝐶𝑒𝑙𝑙 the number of elementary cells, 𝑀𝑚𝑜𝑙 the molar mass 

of the considered specie, 𝐹 the Faraday Constant (96484 C/mol), 𝜌 the density and 𝑆𝑅 the 

stoichiometric ratio, which displays the ratio between the mass flow rate of air and the mass flow rate 

of Hydrogen. To simplify the analysis, the SR is kept constant and in the specific case it is equal to 

1.8. 

 

Figure 24: FC Excess ratios comparison 
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As shown in Figure 24, experimental Excess Ratios are now respected by the improved model. Anode 

supply system respect a constant ratio of 2, meaning that at any required power it is provided to the 

FC twice the hydrogen required. It is evident at this point the need of a recirculation pump to send 

back the reagent in excess. Instead, Air Excess Ratio is not constant, but starts with a value around 

1.6, approaching 1.8 when the power requested is above 70%. 

 

Figure 25: FC Excess Ratios during a WLTP cycle simulation 

In Figure 25, it is reported the trend of Excess Ratios in a WLTP cycle simulation. It is interesting to 

highlight that during the Warm-Up phase the values are higher than the one expected: this fact 

happens because the FC is not capable of using the reagents in the estimated quantity due to the lower 

temperature. In addition, spikes are present because of supply systems dynamics, which are not able 

to instantaneously recover the objective Excess Ratio. 

3.5 Resume of model improvements 

With respect to the starting model, numerous improvements have been made in the Fuel Cell 

characterization and dynamic behavior. The model now dynamically responds in its parameters to 

transitions of the required power level, undergoing the influence of the temperature and pressure of 

the reagents, as well as the quantities in which these are supplied to the Fuel Cell. The calibration has 

required a fine tuning of all Balance of Plant components, from the cooling system to supply systems 

pumps and parts. The importance of the results is given that they were obtained from a calibration 

that used real experimental data. This greater accuracy than the base model reflects more reality. The 
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previous model referred only to average energy values and therefore worked in a transition condition 

between infinite static conditions. 

The new, improved model was the starting base for the following works, being coupled to Genetic 

Algorithm. Their duty was to answer to the question of “best configuration” in different scenarios, 

and it is what is done in the following chapter. 

  



45 

Politecnico di Torino, 2021 

CHAPTER 4: APPLICATION TO A PRACTICAL CASE. 
CONSTRAINED OPTIMIZATION OF COMPONENTS 
SIZE OF AN ELECTRIC POWERTRAIN 

4.1 Test vehicle: mid-van Light Commercial Vehicle  
At this point of the work, both an approach to the optimization solving method, in our case a Genetic 

Algorithm, and a reliable and accurate FCEV model were available. Thus, a vehicle to which applicate 

the methodology was necessary, and for this task it was chosen a generic Light Commercial Duty 

vehicle.  

 

Figure 26: Light Commercial Vehicle [27] 

The mission was to provide freedom of mobility with safe, affordable, and sustainable solutions. Fuel 

Cell showed great promise as zero-emission technology, especially for Light Commercial Duty 

vehicles. This done fulfilling customer range expectations combined with towing and payload 

capability. 

In LDV applications, not all usage profiles can be covered by battery-electric propulsion. Indeed, 

customers are asking for: 

• Long range in zero emission mode, since a large part of these vehicles operate in suburban 

scenarios as well as in city centers, where zero emission is essential. 
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• Short charging times because operational unavailability during recharging cannot be allowed. 

• Same payload capability of conventional vehicles since items transportation remains the 

primary task of LCV. 

In order to meet customers’ requirements, the following objectives have to be achieved: 

• A range of 400 km is assured by combining the advantages of both hydrogen and batteries, in 

combination with brake energy recovery and plug-in. 

• 3 minutes hydrogen refilling time guarantees short stop times. 

• To preserve payload capability powertrain components had to be integrated out of cargo 

space. In addition, the system is integrated to enable a minimum amount of change between 

the full electric and the hydrogen version. 

Different options are possible to define the configuration of a FCEV. The extremes are:  

• A full-power FC system, in which a large FC represents the main propulsion source under all 

operating condition. This requires a large and powerful fuel cell and a small battery. 

• A range extender, which is a battery-electric vehicle with a large battery and an additional 

low-power fuel cell that extends the driving range by providing power to the battery. 

However, when the battery is empty, the FC is not able to provide enough power to propel the 

vehicle.  

Given customer requirements, it was chosen an intermediate solution. First, it enables a smart 

packaging compared to the full power system: the whole system can be integrated under the hood. To 

provide the hydrogen to the Fuel Cell, the traction battery was replaced by a hydrogen storage system 

consisting of three tanks. The solution has no impact on cargo space or payload. Second, compared 

to a range-extender, there is no compromise in term of performances. The FC is able to provide 

enough power for continuous highway speed and, when required, peak power is provided by the 

battery. Third, the battery also covers power requirements during start-up and first mile. This 

improves durability, when compared to full-power systems, since the FC can run at optimum 

operating conditions. 
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Figure 27: Vehicle powertrain [28] 

The main subsystems of the Fuel Cell drivetrain to be integrated into the base vehicle are the Fuel 

Cell system, the hydrogen tank system and the high-voltage battery. The Fuel Cell system is mounted 

entirely in the engine compartment to which it supplies electricity. The additional battery providing 

dynamic peak power and regenerative braking has been adapted from already available plug-in 

electric vehicles. It is placed under the seats of the passenger compartment. The 700 bar hydrogen 

tanks providing hydrogen to the Fuel Cell are placed underneath the vehicle. The tanks can be filled 

with hydrogen via a specific filler neck, located at the fuel door normally reserved for diesel 

applications. Integrating the components of the entire FC propulsion system as described maintains 

the same cargo space as in the internal combustion version. 

Table 4: Starting generic LCV Technical Data 

System Parameter Value [unit] 

Vehicle Lenght 5.3 m 

 Height 2 m 

 Curb weight 1975 kg 

 Payload 1100 kg 

 Towing 1000 kg 

Fuel Tanks Pressure 700 bars 

 Capacity 4.4 kg 

Fuel Cell Power 45 kW 



48 

Politecnico di Torino, 2021 

Battery Pack Power 90 kW 

 Energy content 10.5 kWh 

 Charging power 11 kW 

E-Motor Power 100 kW 

 Torque 260 Nm 

 

4.2 Definition of components to be optimized and constraints 

4.2.1 Components size 

Both Battery Pack and Fuel Cell system are perfect for a size investigation of the components due to 

their intrinsic modularity. This characteristic let us to work in straightforward way, hypothesizing 

simple relations between size and component performance. 

Starting from the battery pack, it can be seen as series and parallel connection of elementary cells, 

each with the same electrical characteristic. 

Table 5: Battery Single Cell characteristics 

Parameter Value [unit] 

Capacity 15.5 Ah 

Max Voltage 2.7 V 

Nominal Voltage 2.3 V 

Voltage Range 1.5-2.7 V 

Max Discharge/Recharge Current @10 sec  
 

240 A 

Internal Resistance 1 mΩ @ SOC= 50% and 25 °C 

Weight/Energy Density 150 Wh/kg 

The elementary single cells are arranged following basic electric laws to achieve the desired capacity. 

Basically, when a higher energy storage capability is asked to the pack, more cells are put in parallel. 

In this way 6 different sizes of the traction battery were obtained from low to high capacity, according 

to different manufacturing and sizing “philosophies”.  
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• The smallest 6.5 kWh Battery Pack is of the same capacity of 1st generation Toyota Mirai one. 

It is not intended to provide a full-electric driving range, but to compensate power leaks of 

the Fuel Cell during acceleration and enable regenerative braking. 

• The 10.5 kWh Battery is the one used in the real case by the vehicle and represents an 

intermediate solution between a power buffer and electric driving. 

• 20-40 kWh Battery Packs are typical values of Hybrid Electric Vehicles. The relevant energy 

inside makes the vehicle capable of driving tenths/hundreds of kilometers in full electric 

mode, or continuously sustaining an ICE/e-motor. 

• The biggest sizes, 60 and 75 kWh, are intended to Battery Electric Vehicle. The 75 kWh pack 

was chosen because is proposed to be representative of full electric vehicles size. In this 

configuration, it should be capable of 330 km of pure electric driving. 

 

Table 6: Battery Pack sizes and characteristics 

Philosophy 
Parallel Cells 

[-] 

Series Cells 

[-] 

Pack Weight 

[kg] 

Capacity 

[kWh] 

Power Buffer 1 155 44 6.5 

Case study 2 125 70 10.5 

Plug-in HEV 3 160 134 20 

Plug-in HEV 6 160 268 40 

BEV 9 160 400 60 

BEV 12 150 500 75 

A similar argument can be made about the Fuel Cell system: the FC stack can be seen as an assembly 

of elementary Fuel Cells put together in series. Each cell produces a voltage across its terminals and 

if a higher total output voltage is desired, it is normally enough to put more and more cells in series. 

This is what is done, even if it is exposed here in a simplified way, by FC manufacturers to obtain 

different power levels for the products that they market. Obviously, a proper re-design of FC 

auxiliaries and cooling circuit components must be done, but the FC stack itself obeys these simple 

linear laws quite accurately.  
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Table 7: FC Single Cell characteristics 

Parameter Value [unit] 

Nominal Voltage 0.674 V 

Nominal Current 364 A 

Nominal Power 245 W 

Minimum Voltage 0.61 V 

Maximum Current 550 A 

Maximum Power 335.5 W 

Power Density 300 W/kg 

 

Thus, several elementary cells are assembled in series to obtain a set of different power levels, from 

20 to 100 kW. The enlisted power levels were chosen to cover a range of different possibilities of 

usage of the FC, so different ‘philosophies’ of Fuel Cell tasks assigned. 

• The smallest, 20 kW FC, is intended to be operated as a range extender. As previously 

mentioned, a range extender is not designed to directly produce power for motion, but to work 

as a generator to provide additional energy for battery sustaining. 

• Intermediate power levels, comprising the original 45 kW FC adopted by vehicle under study, 

are usually called “Load followers”. Thanks to their higher power output, they are capable 

both to work as simple generators, as in the case of range extenders, but also to provide power 

for traction when needed. Their output power is usually designed to be equal to the average 

power requested by a reference driving cycle (ex. WLTP). 

• Lastly, 80 and 100 kW stacks follow “Full performance” sizing philosophy. They are designed 

as principal traction power providers while in this case the Battery Pack should only 

compensate lack of FC dynamic during transient.  

Table 8: FC system sizes and characteristics 

Philosophy 
Series Cells 

[-] 

FC Weight 

[kg] 

Max Power 

[kW] 

Range extender 60 67 20 
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Load follower 120 134 40 

Case study 135 150 45 

Load follower 180 200 60 

Full performance 240 268 80 

Full performance 300 335 100 

4.2.2 Vehicle performance constraints 

Vehicle feasibility passes also through crucial performance requirements. Targets must be met before 

vehicle production starts and checks are done since the first design phases. Performances are crucial 

to make product competitive in its tasks and appealing to the final customers. For this reason, some 

basic performance requirements were set when a configuration was investigated: this was done to 

constrain choices to feasible configurations. Skimming the alternatives is fundamental in the early 

development phases, avoiding wasting time and money on too many options. 

Therefore, 5 basic performance targets were established and set to be investigated by the Genetic 

Algorithm during its simulations. 

• First of all, vehicle was tested to understand if minimum acceleration capabilities are met. 0-

100 km/h is a crucial data for a vehicle: it is fundamental for the driving feeling even for LCV, 

where this kind of performance could not seem of primary interest. Thus, a maximum value 

was set both for empty and full load (1100 kg) conditions: in the former case, snap from 

standstill must be achieved in under 20 seconds, in the latter in less than 25 seconds. 

• Another important feature for a vehicle in real life is gradeability. Our Light Commercial 

Vehicle must be able to climb mountain slopes and other obstacles, such as steep garage 

ramps. About this, gradeability targets were set: the vehicle must be capable of reaching 20 

km/h from standstill on 25% slopes when empty, while 15% at full load. 

• Finally, a last, crucial constraint was set: the daily driving range. As said before, an issue 

linked to pure electric vehicles is the driving range, and it is in greater extent for commercial 

ones, since the time spent for battery charging means unavailability and inoperability. To 

avoid that, checks need to be made, making sure that the vehicle is able to cover at least a 

daily mileage before asking for a recharge. Considering the average LCV mission, 200 km 

were chosen, being more than enough according to customer demand. 
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During the first release of the process, the identification of not suitable configurations in terms of 

performances was performed manually. This was done launching performance simulations of “weak 

configurations” (with low power FC and small batteries), or “heavy” ones (with big and weighty 

Battery Pack) chosen arbitrarily by the operator. The procedure resulted lengthy and not reliable, 

because some problematic configuration could escape from the operator preliminary analysis. 

Therefore, for practicality and effectiveness, it was implemented an automatic performance 

simulation and assessment before the drive cycle and consumption evaluation. 

4.2.3 Model simplifications to speed up simulation 

Both the original FCEV model and the improved version were affected by long simulation time. A 

complete simulation of a WLTP driving cycle required 20-25 minutes to be completed on an Intel 

Core i5-6198DU CPU @ 2.30 GHz, RAM 12 GB. The amount of time was not an issue when one 

simulation had to be done: being less than the 30 minutes of cycle duration, it represented a quasi-

real time simulation. Instead, it becomes an obstacle when tenths of iterations must be performed, as 

in the case of a Genetic Algorithm application. Therefore, a substantial speed up of the simulation 

was necessary, and to achieve this a simplification and streamlining of the model. 

Using the optimization tools implemented on MATLAB/SIMULINK, it was possible to identify that 

most of the slowdown was due to Simscape Library blocks that were used to model some components 

in the Supply Systems and Cooling Circuit. With a view to cut down on the calculation time, actions 

were taken always with the care of not affecting the accuracy of the results. 

• Since the Fuel Cell temperature is kept by the cooling circuit nearly constant within a window 

of +/- 1° C, FC thermal dynamics was simplified, alongside with some Cooling system 

components. The influence on power and H2 consumption is negligible in the considered 

range according to the results derived in Chapter 3, while the impact of auxiliaries and Cooling 

circuit on energy balance was maintained with no changes. 

• The Warm-Up phase was eliminated. This assumption can be considered valid since it takes 

few second, and for this reason can be neglected in a simulation that covers hours of 

consecutive vehicle usage.  

• Some Supply System components, like Hydrogen Injectors and Air compressor, were 

simplified or eliminated, being substituted by more “computation-friendly” Look-Up tables. 

No modifications were done on parameters such as Anode/Cathode Pressure and Excess 

Ratios relations with FC power, that remained as they were calibrated using the experimental 
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data. Again, energy consumed by auxiliaries and its impact on the vehicle energy economy 

was not modified.  

The modifications let to cut the computation time of a WLTP cycle from 20-25 minutes to only 5-6 

minutes. This means a reduction of -60/-80% of time spent for cycle simulation.  

A simulation was performed to verify the simplified model consumption compared to the data made 

available during the press presentation of the vehicle. The simulation was completed with data about 

van frontal area, estimated drag coefficient and applying a test lost, so that it was representative of 

reality. The last parameter was chosen according to the WLTP procedure [30]. Vehicle weight 

without Fuel Cell system and Battery Pack was set in a way that, adding the weight of the missing 

components used in the study case, the complete vehicle matches the 1975 kg. That ensured to 

simulate a modeled vehicle as close as possible to the real one, at least for the main characteristics. 

Table 9: Additional data for simulation 

Parameter Value [-] 

Frontal area 3.3 m2 

Drag coefficient 0.34 

Weight without FC and Battery Pack 1755 kg 

Test Load 265 kg (100 kg + 15% of Max Payload) 
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Figure 28: Distance traveled on a WLTP cycle by the simulated vehicle 

Vehicle autonomy target was set around 400 kilometers on WLTP for the Fuel Cell version. Our 

vehicle simulation demonstrates a satisfying result: 376 km travelled on the same cycle. These results 

are obtained consuming 4.2 of 4.4 kg of on-board hydrogen, while half of the battery energy is still 

available (Figure 28). The choice of not considering the full hydrogen quantity is given to preserve a 

minimum pressure in the tanks, while preserving a small reserve of fuel to cover few tenth of 

kilometers.  

 

Figure 29: SOC and H2 consumption during WLTP simulation of vehicle autonomy 
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The cycle is completed almost 17 times and takes place for about 8.5 hours. During this, hydrogen 

consumption is nearly constant, while SOC trend is different and peculiar. After an initial phase 

during which the FC is shut down, when SOC reaches 75% battery level stops falling and it is 

maintained steadily between 45 and 60% by the power and energy produced by the Fuel Cell system. 

Thus, the Fuel Cell operates to sustain power requested to the battery, providing a fraction of the 

traction power and avoiding that the battery is completely discharged.  
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CHAPTER 5: DEFINITION OF COST FUNCTION AND 
OPTIMIZATION RESULTS. SIMULATION OF 
DIFFERENT MISSIONS AND SCENARIOS 
Now that a reliable and accurate model is in our possession, it must be coupled with the Genetic 

Algorithm to deliver the results we are looking for. Then, to be suitable for our objective, some 

parameters must be appropriately set and, most importantly, a significant Fitness Function must be 

formulated to drive the GA to the optimal solution. Finally, optimization through configuration 

simulations takes place: each Individual is analyzed through a process involving a preliminary 

performance assessment and, for those able to pass it, a subsequent drive cycle simulation. A last 

evaluation is done to understand if the vehicle is capable of fulfilling a minimum daily driving range, 

but more details will be given. 

 

Figure 30: Genetic Algorithm cost evaluation flowchart 

5.1 Genetic Algorithm calibration: Population and Genetic 
Operators definition 
Genetic Algorithm is already implemented in MATLAB environment, as part of Global Optimization 

Toolbox [31]. First step during Genetic Algorithm configuration is represented by the choice of the 

simulated Population and the Genetic Operators that will act on this. Our problem consists in a 2 

variables optimization, in which the parameters to be optimized are: 

• Fuel Cell system power. 

• Battery Pack energy stored. 
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Each of them is characterized by 6 different values that can be assumed, representing the possible 

component sizes. Therefore, it can be classified as a 2 variables discrete problem, in which the state 

space is composed in total by 62 = 36 possible combinations. 

The Population, set of all individuals each one encoding a solution, should be defined according to 

the problem size. After some trials and errors, a Population of 7 Individuals for each Generation was 

chosen, representing a good compromise between solution quality and computation speed. Finding a 

good tradeoff is crucial during Genetic Algorithm design: if few Individuals are considered the 

solution found can lack of reliability, leading to results that are local minima on the problem surface 

or still far from the optimal solution. Instead, if too many points are investigated, the amount of time 

drastically increases, and approaching a Full-space resolution makes the application of the Genetic 

Algorithm useless. Between these 7 Individuals, another trial-and-error campaign identified a 

composition subdivided in: 

• 1 “Elite Child”, setting the “EliteCount” optimization option equal to 1. Elite Individuals are 

the best within the current generation, having the lowest value of the function to be optimized. 

They are not affected by Genetic Operators but pass unaltered to the next Generation. This is 

done to preserve good genetic information, avoiding that it is not passed through Generations 

and improving final solution quality. 

• 5 “Crossover Children”, giving value 0.7 to the “CrossoverFraction” setting. In this way, 70% 

of next Generation Population is composed by crossover of previous Individuals. It is crucial 

in the Genetic Algorithm operation and gives to the optimization method the capability of 

reaching the optimal solution. 

• 1, last, “Mutation Child” to complete the Population set. The mutated Individual has the role 

of adding fresh, random values (within the permissible ones) to the encoded individual. The 

aim of Mutation is to avoid early convergence and local minima. 

To ensure a reasonable and thorough investigation of the Search space, and to allow the Algorithm to 

evolve through time and Generations, 4 Generations were set. The choice was taken after observing 

the Population and the quality of the solution: when 3 or less Generations were used, the Algorithm 

had no chance to evolve enough, experimenting new combinations and crossing the best Individuals’ 

genes to the offspring. Instead, when more Generations are allowed to proliferate, the quality of the 

solution does not improve, since last pools are composed by Individuals very similar to each other, 

making the crossover and GA continuation practically useless and a waste of time. Considering these 

settings, around 14-16 different configurations were tested during a complete algorithm simulation 

between the 7*4= 28 iterations. 
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In addition, to speed up Algorithm computation, the Genetic Algorithm was provided with a sort of 

“memory” of Individuals already tested. The fitness value of a simulated solution is saved after its 

calculation, and when the same Individual is considered again the simulation is not performed, but it 

is returned to the algorithm the fitness value previously saved. This happens, for example, when the 

individual is an elite child, so passes unaltered to the next generation, or when a crossover child has 

the same values of an already computed progenitor). If, as said, between the 28 considered individuals 

on average only 14-16 are “different”, the implementation of this feature allows to save up to 50% of 

computational time. Time that can be reinvested increasing the number of Individuals and 

Generations, if the problem requires it. 

The Figure below represents the evolution of the program: from the initial version which investigated 

just 10 Individuals in 4.5 hours, to the last one, that implementing the simplified model, the memory 

feature, and the automatic performance evaluation, is able to simulate both consumption and 

performance of 28 Individuals in 1.25 hours. 

 

Figure 31: Simulation time and individuals investigated comparison 

5.2 Cost Function definition 
The Fitness function represents the core of Genetic Algorithm optimization, and its importance is 

well described in Chapter 2. Since it represents the discriminant with which the Algorithm labels a 

solution not only as “good” or “bad”, but also ranks them, its formulation is crucial. As sentenced 

before, being the Genetic Algorithm method not specific but capable of embracing different 

applications without a specific knowledge of the problem, the Fitness function must be accurately 

defined. 
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The economic nature of the optimization problem makes the fitness function to be often called “Cost 

Function”, term that is nowadays catching on also in non-monetary contexts. The Cost Function to 

be minimized is composed by 2 parts: 

𝐶𝑂𝑆𝑇𝑇𝑂𝑇𝐴𝐿 = 𝐶𝑂𝑆𝑇𝐶𝑂𝑁𝐹𝐼𝐺 + 𝐶𝑂𝑆𝑇𝑂𝑃𝐸𝑅 

• The cost, from firm point of view, of vehicle’s powertrain production. Costs associated with 

powertrain components are essential for vehicle feasibility. In first instance, they weight on 

Company pockets, that has to sustain parts production or purchase from suppliers. Secondly, 

expensive solutions have repercussion on the final price that it is in charge of the final 

customers. In short, high vehicle price tag becomes an obstacle to product marketability and 

competitivity, even if the vehicle presents attracting and innovative features. 

• The operating cost of the vehicle, to be sustained by the customer. It consists of the expenses 

for hydrogen and electric energy purchase at hydrogen station and charging column. It is 

calculated on 200000 kilometers, so that it represents the cost of refueling during a normal 

vehicle lifetime, and it is totally in charge of the customer. 

5.2.1 Configuration cost 

Configuration cost includes the expense sustained by OEM to produce or acquire from suppliers the 

vehicle powertrain components. It is the sum of several elements, among which the only one not 

considered in our analysis is the e-Motor: the reason is that is the same for all vehicle configurations, 

and it is directly taken from the battery electric version. Since it does not represent a varying 

component neither between different configurations nor with the full electric vehicle, the e-motor 

impact on cost is neglected. Thus, the final equation is: 

𝐶𝑂𝑆𝑇𝐶𝑂𝑁𝐹𝐼𝐺 = 𝐵𝑎𝑡𝑡𝐶𝑜𝑠𝑡 + 𝐹𝐶𝐶𝑜𝑠𝑡 + 𝑇𝑎𝑛𝑘𝑠𝐶𝑜𝑠𝑡 + 𝐶ℎ𝑎𝑟𝑔𝑒𝑟𝐶𝑜𝑠𝑡 + 𝑃𝐸𝐶𝑜𝑠𝑡 

Where: 

• 𝐵𝑎𝑡𝑡𝐶𝑜𝑠𝑡 is the cost associated to Battery Pack production. In our discussion the Battery Pack 

cost was assumed to be directly dependent with the design energy storage capacity. Despite 

being a simplification, it is not far from the real situation. 

• 𝐹𝐶𝐶𝑜𝑠𝑡 is the cost of the Fuel Cell system. It is composed by the cost of PEM Stack and the 

cost for Fuel Cell auxiliaries, comprising supply systems, compressor, and dedicated cooling 

circuit. Thus, it is formulated as: 

𝐹𝐶𝐶𝑜𝑠𝑡 = 𝐹𝐶𝑆𝑡𝑎𝑐𝑘 + 𝐹𝐶𝐴𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑖𝑒𝑠 
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FC cost linearly depends on Fuel Cell desired power level, as it can be supposed to be in 

reality with a reasonable error. 

• 𝑇𝑎𝑛𝑘𝑠𝐶𝑜𝑠𝑡 is linked to the price of Hydrogen storage tanks, an essential and expensive 

component. It does not vary through Fuel Cell sizes, because it is assumed that the vehicle 

always carries a 4.4 kilograms hydrogen storage. 

• 𝐶ℎ𝑎𝑟𝑔𝑒𝑟𝐶𝑜𝑠𝑡 is the cost of battery charger. It must be highlighted that the 6.5 kWh Battery 

Pack is not provided with a charger. The reason is given by the small size and energy stored 

by the pack, that makes unnecessary the adoption of a charger. In this case, the pack is charged 

by the only Fuel Cell and/or the regenerative braking. For all configurations in which it is 

present, the charger is sized for 11 kW recharging power, as specified by vehicle technical 

data. 

• 𝑃𝐸𝐶𝑜𝑠𝑡 represents the cost of on-board Power Electronics, so the DC/DC Converter and the e-

Motor Inverter. Two cost levels were defined for Power Electronics cost, both linearly 

increasing with FC system power: 

▪ For the lowest FC power levels, corresponding to Range Extenders and Load 

Followers (FC Power <= 45 kW), a higher associated cost was imposed. 

▪ For Full Load system (60-80 kW), a lower cost per FC kilowatt was defined. 

Table 10: Configuration costs table 

Component Cost [Unit] 

𝑩𝒂𝒕𝒕𝑪𝒐𝒔𝒕 116 €/kWh [32] 

𝑭𝑪𝑺𝒕𝒂𝒄𝒌 100 €/kW [33] 

𝑭𝑪𝑨𝒖𝒙𝒊𝒍𝒊𝒂𝒓𝒊𝒆𝒔 50 €/kW [33] 

𝑻𝒂𝒏𝒌𝒔𝑪𝒐𝒔𝒕 500 €/kg [33] 

𝑪𝒉𝒂𝒓𝒈𝒆𝒓𝑪𝒐𝒔𝒕 550 €/kW [33] 

𝑷𝑬𝑪𝒐𝒔𝒕 5-10 €/kW [33] 

5.2.2 Operating cost 

Operating costs are linked to vehicle usage and, in our specific case, consist in the money the customer 

must spend to run 200000 kilometers in terms of hydrogen and electric energy. Thus, it is trivial that 

it is formulated as: 
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𝐶𝑂𝑆𝑇𝑂𝑃𝐸𝑅 = 𝐶𝑜𝑠𝑡𝐻2 + 𝐶𝑜𝑠𝑡𝐸𝑙𝑒𝑐𝑡𝑟 

Or, written in a clearer way: 

𝐶𝑂𝑆𝑇𝑂𝑃𝐸𝑅 = 𝐻2_𝑃𝑅𝐼𝐶𝐸 ∗ 𝑚𝐻2_𝐶𝑜𝑛𝑠 + 𝐸𝑙𝑒𝑐𝑡𝑟𝑃𝑅𝐼𝐶𝐸 ∗ 𝑘𝑊ℎ𝐶𝑜𝑛𝑠 

In which the first terms are hydrogen and electric energy price, while the latter are fuel and kWhs 

consumed during a cycle simulation. 

Table 11: Operating costs table 

Component Cost [Unit] 

𝑯𝟐_𝑷𝑹𝑰𝑪𝑬 5.9 €/kg [34] 

𝑬𝒍𝒆𝒄𝒕𝒓𝑷𝑹𝑰𝑪𝑬 0.15 €/kWh [34] 

Before going into details of above equations, a summary of the ways in which the FC is operated is 

needed, so that to understand the decisions taken. The base model [21], of which the Control Logic 

was maintained, disposes of three main operating modes. Vehicle operating modes are dependent on 

battery SOC and lead to different battery usage profiles [35]. Since these three modes have very 

different impacts on consumption, particular care was paid. 

• Charge Depleting (CD), above 90% of battery charge. To avoid running with the battery fully 

charged, fact that prevents efficient regenerative braking energy recovery and FC operation, 

the Fuel Cell is shut off. All power for traction is asked to the battery: SOC  

may fluctuate but on-average decreases while driving. 

• Blended Strategy (BS), up to 40% of SOC. It is a Charge Depleting strategy in which the Fuel 

Cell is used to supplement battery power. This mode avoids that all power is asked to the 

battery alone, which consequently would drain too quickly. When the power produced by the 

FC is higher than the one requested by the vehicle for motion, Battery Pack recharges. 

• Charge Sustaining (CS), below 40% battery SOC and up to 45%. The battery SOC  

may fluctuate but on-average is maintained at a certain level while driving by the Fuel Cell. 

To do this, the Fuel Cell operates continuously at nominal power, in order to maintain the 

energy content around a threshold. The reason behind is to always dispose of some energy in 

the event that the vehicle unexpectedly requires relevant amount of power for prolonged time 

(up-hill or highway driving).  
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To estimate the consumptions associated to a full drive cycle, a first simulation is performed with a 

SOC= 60%, thus in Blended Strategy. At this point, a first differentiation is done always looking at 

the battery SOC at end of cycle simulation: 

• If the battery presents a higher energy level than at the beginning of the cycle, it must be 

considered that there will be a time when the vehicle will enter the Charge Depleting mode as 

the battery is fully charged: the hydrogen previously used to create excess energy in the battery 

is therefore deducted from the total value. To account for this, the formula used to correct the 

amount of hydrogen consumed is: 

𝑚𝐻2_𝐶𝑜𝑟𝑟 = 𝑚𝐻2_𝐸𝑛𝑑 −
𝛥𝑆𝑂𝐶 ∗ 𝐶𝑎𝑝𝑀𝑎𝑥

𝜂𝐷𝐶/𝐷𝐶 ∗ 𝑃𝐹𝐶_𝑁𝑜𝑚
∗ 𝑚̇𝐻2_𝑁𝑜𝑚 

Where: 

▪ 𝑚𝐻2_𝐸𝑛𝑑 is the mass of hydrogen consumed during the cycle. 

▪ 𝛥𝑆𝑂𝐶 is the delta of SOC between beginning and end of simulation. 

▪ 𝐶𝑎𝑝𝑀𝑎𝑥 is the nominal battery energy capacity in kWh. 

▪ 𝜂𝐷𝐶/𝐷𝐶 is the DC/DC Converter efficiency. 

▪ 𝑚̇𝐻2_𝑁𝑜𝑚 is the hydrogen mass flow rate at nominal FC power. 

The above formula comes from [21]. Since vehicle SOC is higher at cycle end with respect to 

the one at the beginning, the 200 km daily range constraint is not an issue, because the vehicle 

has no need to be stopped to be recharged. 

• When the cycle simulation returns a SOC level lower than the initial one (fact that is usual 

when FC size and, consequently, power are lower) more attention is needed. The reason is 

that there is the eventuality that the battery, initially fully charged, cannot cover the daily 

mission without stopping for a recharge. 

In this second case, a more accurate analysis of vehicle consumption was performed. From the results 

of the previous simulation, calculated in Blended Strategy, it was possible to identify if the vehicle is 

able to run 200 km without entering Charge Sustaining. Thus, given that the available SOC during 

Charge Depleting is full SOC minus Charge Sustaining SOC, so 90 - 40 = 50%, and knowing the per 

cycle SOC depletion, it is possible to calculate the distance the vehicle can travel. 

Example 1: on a WLTP cycle (23.25 km), the vehicle shows a ΔSOC = 5.23%, with a certain H2 and 

electric energy total consumption. Therefore, before entering the Charge Sustaining mode the LCDV 

is able to run: 
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50

5.23
∗ 23.25 = 222.28 𝑘𝑚 > 200 𝑘𝑚 

This means that all the distance is statistically covered in Blended Strategy. At this point, 

consumptions are normalized on 200 km and the total cost for 200k kilometers is evaluated, according 

to Eq. 1. 

Example 2: on a WLTP cycle (23.25 km), the vehicle shows a ΔSOC = 11.09% (due to a smaller 

battery pack or Fuel Cell), with a certain H2 and electric energy total consumption. Therefore, before 

entering the Fast-charging mode the LCDV is able to run: 

50

11.09
∗ 23.25 = 104.82 𝑘𝑚 < 200 𝑘𝑚 

So, the vehicle is forced to enter in Charge Sustaining mode to complete the daily mission. The data 

about travelled distance, H2 and electric energy consumed are stored as 𝐷𝑖𝑠𝑡𝐶𝑆,  𝐻2,𝐶𝑆, 𝑘𝑊ℎ𝐶𝑆 . Since 

the consumptions are different during this operation, another simulation is performed with 40% of 

initial SOC. The results obtained can lead to 2 scenarios: 

• The ΔSOC of the second simulation is small enough to let the vehicle cover the remaining 

kilometers of the 200 estimated. The available SOC range is the initial threshold minus the 

lower battery limit, so 40 - 10 = 30%. To be clear of the procedure, lets continue Example 2: 

to complete the daily mission, 200 - 104.82 = 95.18 km remain. The second simulation returns 

a ΔSOC= 6.31%, always considering a WLTP cycle. Thus, 
30

6.31
∗ 23.25 = 110.53 𝑘𝑚 > 95.18 𝑘𝑚 

The vehicle is able to drive the last kilometers in Charge Sustaining mode, without having to 

be stopped for a recharge. At the end fuel and energy consumptions are the sum of 

consumptions during each mode, each weighted for its respective distance travelled. 

𝐻2,200𝐾𝑀 = (|𝐻2,𝐶𝑆|
110.53

+ |𝐻2,𝐹𝐶|
95.18

) ∗ 𝐻2_𝑃𝑅𝐼𝐶𝐸 

𝐸𝑙𝑒𝑐𝑡𝑟200𝐾𝑀 = (|𝑘𝑊ℎ,𝐶𝑆 |110.53 + |𝑘𝑊ℎ,𝐹𝐶|
95.18

) ∗ 𝐸𝑙𝑒𝑐𝑡𝑟𝑃𝑅𝐼𝐶𝐸 

• The ΔSOC of the second simulation is high and the vehicle is not able to cover the remaining 

kilometers without being stopped and plugged to the charging column. As example, lets 

continue where we left Example 2, but in this powertrain configuration the simulation returned 

a value ΔSOC= 13.77%, 
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30

13.77
∗ 23.25 = 50.65 𝑘𝑚 < 95.18 𝑘𝑚 

The vehicle range is not enough for the daily mission. The configuration must be discarded. 

5.2.3 Constraints not achieved 

As said before, during the simulations some performance and driving range constraints are 

investigated. When one or more of these is not met, the corresponding configuration must be 

discarded. To be understandable by the Genetic Algorithm, a proper value must be given to the Fitness 

Function. In this case, the value assigned is infinite so that the probability of the gene to be inherited 

by the next Generation is infinitesimal. 

𝐶𝑂𝑆𝑇𝑇𝑂𝑇𝐴𝐿 = ∞ 

To resume the fundamental and quite complex decisional flow for the Operating costs calculation, it 

is represented in Figure 29. 

 

Figure 32: Decisional flow of consumption calculation 

5.3 ARTEMIS Urban Cycle 
First cycle simulated is the ARTEMIS Urban Cycle, which represents a mission on a city route (for 

more information, look at Appendix). The results obtained with the Genetic Algorithm were 

compared to those of a Full-space investigation. This was done to identify whether of not the GA 

could find the best configuration among all possible. 

Tables report (in Euros) Total Cost, Configuration Cost and Operating Cost. Being the Configuration 

Cost not changing varying the tested cycle, it will not be shown again further in the discussion. 

In black, the configurations tested by the Genetic Algorithm. In red the one not investigated. 
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Table 12: Urban Cycle costs 

Total € FC kW 
20 40 45 60 80 100 

Batt kWh 6,5 11745 18416 19739 23292 28177 32819 

10,5 12716 19509 20915 24752 29800 35006 

20 15131 20821 22264 26415 32066 Inf 

40 18047 23383 24863 Inf Inf Inf 

60 Inf Inf Inf Inf Inf Inf 

75 Inf Inf Inf Inf Inf Inf 

 

Config € FC kW 
20 40 45 60 80 100 

Batt kWh 6,5 6173 9394 10199 12312 15433 18553 

10,5 7185 10405 11210 13324 16444 19564 

20 8301 11522 12327 14441 17561 Inf 

40 10631 13852 14657 Inf Inf Inf 

60 Inf Inf Inf Inf Inf Inf 

75 Inf Inf Inf Inf Inf Inf 

 

Fuel € 
FC kW 
20 40 45 60 80 100 

Batt kWh 6,5 5572 9022 9540 10980 12744 14266 

10,5 5531 9104 9705 11428 13356 15442 

20 6830 9299 9937 11974 14505 Inf 

40 7416 9531 10206 Inf Inf Inf 

60 Inf Inf Inf Inf Inf Inf 

75 Inf Inf Inf Inf Inf Inf 

In first instance, it must be highlighted that the algorithm was able to identify the configuration 

having the global minimum cost. In second instance, much information can be derived from the 

above data: 

• The best configuration for a vehicle with a totally urban mission is the smallest one: 20 kW 

Fuel Cell and 6.5 kWh. It corresponds to the lightest powertrain, and it ensures the daily 

driving range without any issue. The approximative total cost is around 12000 Euros, fairly 

evenly divided between Configuration and Operating Costs. 

• Many configurations are discarded for not having achieved the minimum performance 

objectives. The main problem was connected to gradeability, which becomes unfeasible for 

big and heavy FC systems and Battery Packs. This happens for the 60 and 75 kWh packs, 
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which weight 400 and 500 kg respectively and the situation is aggravated when the most 

powerful FC Stack and the relative auxiliaries.  

• The powertrain sizes having the lowest total and operating costs practically coincide. Thus, 

both OEM and customer interests are respected at the same time. 

Table 13: Resume of Urban Cycle results 

 

5.4 ARTEMIS Rural Cycle 
Second scenario analyzed is the ARTEMIS Rural cycle, scheduling the vehicle to run on an extra 

urban road. Extra urban routes are typical to connect cities or, in our hypothesis, the logistic hub from 

which the delivery van starts in the morning and returns at the end of the day. As can be seen in the 

Appendix, the cycle is characterized by higher average speed and also stops are less frequent. 

Table 14: Rural Cycle costs 

Total € 
FC kW 
20 40 45 60 80 100 

Batt kWh 6,5 Inf 16847 21777 24514 28497 32100 

10,5 Inf 21670 22678 25673 29968 34040 

20 37561 22875 23938 27250 31974 Inf 

40 29580 25440 26534 Inf Inf Inf 

60 Inf Inf Inf Inf Inf Inf 

75 Inf Inf Inf Inf Inf Inf 

 

Fuel € 
FC kW 
20 40 45 60 80 100 

Batt kWh 6,5 Inf 7453 11578 12201 13064 13547 

10,5 Inf 11264 11468 12349 13524 14475 

20 29260 11353 11611 12809 14413 Inf 

40 18948 11588 11877 Inf Inf Inf 

60 Inf Inf Inf Inf Inf Inf 

75 Inf Inf Inf Inf Inf Inf 

Looking at the Tables above, some relevant information can be derived, starting from the fact that 

again the Genetic Algorithm was able to identify the configuration having the lowest Total Cost. In 

addition: 

Solutions FC kW Batt kWh Total Cost € Fuel Cost €

Best 20 6,5 11745 5572

Lowest Fuel Cons 20 10,5 12716 5531
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• The best powertrain sizes were found to be 40 kW Fuel Cell system and 6.5 kWh Battery 

Pack, thus a Load Follower FC in which the Battery is designed just as power buffer given its 

small capacity. This configuration guarantees a low production cost since components are few 

modules and cells, while at the same time being light, they contribute to hydrogen and electric 

energy saving. 

• Total cost increased from 12000 to nearly 17000 € to run the same 200000 kilometers: this is 

linked both to an increase in powertrain cost and energy consumption given the higher average 

speed of the cycle. 

• The configurations showing the “globally” lowest cost and fuel consumption are the same. 

This is good news because design can focus on just one powertrain, without damaging one 

actor between manufacturer and customer. 

Table 15: Resume of Rural Cycle results 

Solutions FC kW 
Batt 
kWh 

Total Cost 
€ 

Fuel Cost 
€ 

Best 40 10,5 16847 7453 

Lowest Fuel Cons 40 10,5 16847 7453 

5.5 ARTEMIS Motorway 130 km/h Cycle 

Last of the ARTEMIS cycles object of our analysis was the Motorway schedule. This scenario is used 

to simulate vehicles facing a Highway route: since our vehicle is electronically limited to 130 km/h, 

the variant under study is the “Motorway 130 km/h”. The considered mission is quite far from real 

vehicle use since LCV are in general not supposed to pass most of their time on the motorway. 

Nevertheless, to see the results and also to prove the goodness of our model and algorithm, a 

simulation of this scenario was performed.  

Table 16: Motorway 130 km/h Cycle costs 

Total € 
FC kW 
20 40 45 60 80 100 

Batt kWh 6,5 Inf Inf Inf 28514 33824 38126 

10,5 Inf Inf Inf 28710 32079 38888 

20 Inf Inf Inf 29874 31674 Inf 

40 Inf Inf 71572 Inf Inf Inf 

60 Inf Inf Inf Inf Inf Inf 

75 Inf Inf Inf Inf Inf Inf 
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Fuel € FC kW 
20 40 45 60 80 100 

Batt kWh 6,5 Inf Inf Inf 16201 18391 19573 

10,5 Inf Inf Inf 15385 15635 19323 

20 Inf Inf Inf 15433 14114 Inf 

40 Inf Inf 56915 Inf Inf Inf 

60 Inf Inf Inf Inf Inf Inf 

75 Inf Inf Inf Inf Inf Inf 

Again, the Genetic Algorithm was able to identify the configuration with the associated lowest cost. 

This time, results were quite different from the previous and need to be explained. 

• First, the components size further increased, especially from the Fuel Cell power point of 

view. The selected size is 60 kW FC aided by a 6.5 (or 10.5 since results are close) kWh 

Battery Pack. Thus, now the Fuel Cell is in charge to provide most of requested tractive power 

while the batteries cover the peaks. The constructive philosophy is moving toward Full Load 

sizing when from urban scenarios we moved gradually to journeys characterized to higher 

average speeds, less frequent stops and “more static” Fuel Cell operation. 

• The difference between cheapest global solution and least fuel consuming is in this case more 

relevant: while costing 3000 € more, a configuration with 80 kW and 20 kWh leads to save 

nearly 2000 € on the operating costs. Therefore, a choice between company and customer 

must be taken. In brief, to save hydrogen and electric energy, in this scenario it is better to 

choose for a Full Load design of the Fuel Cell and becomes more advantageous the more the 

kilometers to be travelled. 

• Some words cold be said about the 45 kW and 40 kWh powertrain, characterized by a huge 

operating cost. Looking at the data provided by the vehicle model, the reason of this result is 

given by the fact that the Fuel Cell is practically always operated in Fast charging mode. That 

leads to a lower efficiency and very high hydrogen consumption which has repercussions on 

travelling costs. 

Table 17: Resume of Motorway 130 km/h Cycle results 

Solutions FC kW 
Batt 
kWh 

Total Cost 
€ 

Fuel Cost 
€ 

Best 60 6,5 28514 16201 

Lowest Fuel Cons 80 20 31674 14114 



69 

Politecnico di Torino, 2021 

5.6 WLTP Cycle 
Until now, cycles used for vehicle simulation were representing very specific scenarios: a full urban 

mission, an extra urban route, and a motorway travel. Thus, the cycles gave information about the 

best configuration and powertrain components size for determinate cases. The fact that sizes, passing 

from a scenario to a totally opposite one, are completely different it is a proof of this. 

It was necessary at this point a cycle representing various scenarios within one simulation in order to 

identify a configuration representing a trade-off between all possible situations. To achieve it, it was 

chosen the WLTP cycle: scheduling a low (urban), a medium, a high (rural) and very high (motorway) 

speed parts it was perfect for our purpose. For more information, look at the Appendix while the 

results of simulations are proposed in the tables below. 

Table 18: WLTP Cycle costs 

Total € 
FC kW 
20 40 45 60 80 100 

Batt kWh 6,5 Inf 25252 20910 25421 28833 31662 

10,5 Inf 21289 20474 26591 30519 33853 

20 Inf 22042 25336 28237 32652 Inf 

40 50654 26903 28035 Inf Inf Inf 

60 Inf Inf Inf Inf Inf Inf 

75 Inf Inf Inf Inf Inf Inf 

 

Fuel € 
FC kW 
20 40 45 60 80 100 

Batt kWh 6,5 Inf 15858 10711 13108 13400 13109 

10,5 Inf 10884 9264 13267 14075 14289 

20 Inf 10520 13009 13796 15091 Inf 

40 40023 13051 13378 Inf Inf Inf 

60 Inf Inf Inf Inf Inf Inf 

75 Inf Inf Inf Inf Inf Inf 

Firstly, it must be highlighted that, for the fourth time out of four, the Genetic Algorithm managed to 

find the global minimum of the Fitness function. Thus, the optimization using this method turned out 

to be reliable and fast. Instead, looking at the raw matrix results: 

• The best powertrain sizing was revealed to be a 45 kW Fuel Cell system coupled with a 10.5 

kW Battery pack. What is astonishing is that these are the same components used by our 

starting generic LCV. 
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• Globally cheapest and least consuming configurations coincide once again. The powertrain 

cost is assessed to be around 11000 €, while cost for hydrogen and electric energy accounts 

for a total Operating Cost of 9200 € to drive 200000 kilometers. As expected, these values are 

in the middle between those of the Urban Cycle, which were lower since the distance is 

travelled at low speed when dissipating forces are lower, and a purely Motorway Cyle. 

• The identified powertrain reflects the “mixed” characteristics of WLTP Cycle too. The 

configuration is halfway between the Range Extender philosophy adopted in urban scenarios 

and the Full Load in the highways: the Fuel Cell is designed to directly provide power at low 

speed, when the magnitude requested is lower. Instead, when cruising at high speed, the Fuel 

Cell is not able to provide the total power asked by the vehicle (thus compensated by the 

Battery Pack) and works more statically to sustain battery SOC. 

Table 19: Resume of WLTP Cycle results 

Solutions FC kW 
Batt 
kWh 

Total 
Cost € 

Fuel Cost 
€ 

Best 45 10,5 20474 9264 

Lowest Fuel Cons 45 10,5 20474 9264 

5.7 Forecast 2030: WLTP cost simulation 
A last analysis was undertaken, considering this time not a different drive cycle, but a forecast of 

2030 economic scenario. The investigation had the purpose of finding (if exist) differences between 

the results obtained with current data with respect to projections of components and energy vectors 

in a decade. The values used for Algorithm computation were modified and substituted by those 

suggested by reliable sources. 

Table 20: Configuration costs table 2030 

Component Cost [Unit] 

𝑩𝒂𝒕𝒕𝑪𝒐𝒔𝒕 49 €/kWh [32] 

𝑭𝑪𝑺𝒕𝒂𝒄𝒌 45 €/kW [33] 

𝑭𝑪𝑨𝒖𝒙𝒊𝒍𝒊𝒂𝒓𝒊𝒆𝒔 40 €/kW [33] 

𝑻𝒂𝒏𝒌𝒔𝑪𝒐𝒔𝒕 300 €/kg [33] 

𝑪𝒉𝒂𝒓𝒈𝒆𝒓𝑪𝒐𝒔𝒕 275 €/kW [33] 
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𝑷𝑬𝑪𝒐𝒔𝒕 2-2.5 €/kW [33] 

It is immediately evident that forecasts hypothesize a drastic decrease in components costs. Starting 

from Battery Pack, its price is intended to fall from more than 110 €/kWh today to less than 50 €/kWh 

in 2030, according to BloombergNEF. The reason is linked to battery technology progress and above 

all to mass production and the economy of scale that will be reached in the next years. In parallel, 

also Power Electronics and other electrical components such as on-board chargers would cut half of 

actual cost. If instead we focus on Fuel Cell system, a similar argument can be done: Fuel Cell 

technology has still large limits of improvement and the sales number far from a relevant share on 

the market. OEMs are thus confident to drop costs for Stack production in a decade by one half, while 

auxiliaries decrease will be lower, because are mainly related to compressor and cooling circuit 

purchase (consolidated technologies). 

Table 21: Operating costs table 2030 

Component Cost [Unit] 

𝑯𝟐_𝑷𝑹𝑰𝑪𝑬 2.4 €/kg [34] 

𝑬𝒍𝒆𝒄𝒕𝒓𝑷𝑹𝑰𝑪𝑬 0.18 €/kWh [36] 

Same was done with the operating costs, considering hydrogen and electric energy price evolution 

through time. Deloitte and Ballard, two of the most important Fuel Cell producers, suggest a relevant 

fall of hydrogen cost at the filling station. The cut will be caused by the decrease of hydrogen 

production cost thanks to Green and Blue Hydrogen production at good price and to the enhanced 

demand. On the other side, electric energy price is probable to have a completely different trend: 

while all other components and fuel are expected to be cheaper, electricity will be more likely slightly 

more expensive than today. Always considering price in Europe, French Environment Ministry 

forecast an electricity price going up in the following decade, due to the increasing demand linked to 

Electric Mobility. 
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Figure 33: 2020 versus 2030 cost comparison 

Then, with the new forecasted data, a simulation of the Genetic Algorithm was performed leading to 

the following results. 

Table 22: WLTP Cycle costs 2030 

Total € 
FC kW 
20 40 45 60 80 100 

Batt kWh 
6,5 Inf 14137 11220 12454 14045 15626 

10,5 Inf 11475 11805 12777 14602 16369 

20 Inf 12419 12740 13323 15220 Inf 

40 47175 13899 13960 Inf Inf Inf 

60 Inf Inf Inf Inf Inf Inf 

75 Inf Inf Inf Inf Inf Inf 

 

Config € 
FC kW 
20 40 45 60 80 100 

Batt kWh 
6,5 3379 5140 5580 6871 8623 10374 

10,5 3849 5610 6050 7341 9092 10844 

20 4320 6082 6522 7813 9564 Inf 

40 5305 7066 7506 Inf Inf Inf 

60 Inf Inf Inf Inf Inf Inf 

75 Inf Inf Inf Inf Inf Inf 
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Fuel € 
FC kW 
20 40 45 60 80 100 

Batt kWh 
6,5 Inf 8996 5638 5583 5422 5251 

10,5 Inf 5864 5734 5436 5509 5525 

20 Inf 6336 6217 5510 5655 Inf 

40 41870 6833 6454 Inf Inf Inf 

60 Inf Inf Inf Inf Inf Inf 

75 Inf Inf Inf Inf Inf Inf 

The Algorithm optimization returned the best configuration between those feasible. The best sizing 

of powertrain components was identified in 45 kW Fuel Cell and 6.5 kWh Battery Pack, practically 

the same of 2020 WLTP case. Beside this, some other considerations can be done: 

• The powertrain costs fall from 11000 € to less than 6000 €. This means that FC/Battery 

powertrain will become more appealing though time when the technologies of both Fuel Cell 

and batteries becomes mature and the market shares grow. 

• Operating costs for hydrogen and electricity purchase decrease from more than 9000 € to 5600 

€ to travel 200000 kilometers. If compared with a diesel vehicle version that would require 

on average of 20000 € for the same distance, the drastic cut of cost of using is evident. 

• Combining the above-mentioned trends, final cost is around 11200 €. In addition, best and 

least consuming configurations coincide with the clear advantage of both OEM and customer. 

Table 23: Resume of WLTP Cycle 2030 results 

Solutions FC kW 
Batt 
kWh 

Total Cost 
€ 

Fuel Cost 
€ 

Best 45 6,5 11220 5638 

Lowest Fuel Cons 45 6,5 11220 5638 
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CHAPTER 6: RESULT OUTCOMES AND 
CONCLUSIONS 

6.1 Final comment on obtained results by Genetic Algorithm 
application on FCEV model 
Thesis objective was to develop a methodology to determine the most suitable sizing of a Fuel 

Cell/Battery vehicle powertrain components. The task required a flexible and powerful optimization 

method able to identify the optimum in a two variables problem with discrete values, represented by 

FC power and Battery Pack energy capacity. The complexity and characteristics of the studied 

situation made necessary the adoption of a non-conventional, metaheuristic optimization technique: 

the Genetic Algorithm. Then, the procedure had to be coupled to a vehicle model. For the purpose, it 

was taken an already developed model and improved in its powertrain and FC model: being a crucial 

element in the simulation, Fuel Cell behavior was calibrated according to experimental data. The 

acquired information let to consider a modeling in which temperature, pressure and reagents supply 

was dependent on FC power generation and dynamics. At that point, the model was made adaptable 

to simulate different powertrain components sizes, while the Control Logic was left unaltered. After 

implementing some features and simplifications to speed simulation time, technical data of a mid-

size LCV were applied. Results on test case vehicle simulations showed a good accuracy and 

prediction of performances and consumption, making it reliable for the analysis. 

Simulations were performed on extremely various driving scenarios and involved both a vehicle 

performance evaluation and a cost analysis. The latter task relied on a powertrain manufacturing cost 

and operating cost study of the configurations. The main consideration derived were: 

• Genetic Algorithm method resulted highly reliable for project optimization. The Algorithm 

managed to find the best configuration according to its Fitness function in all trials. Its 

utilization let to cut simulation time from several hours to a few. 

• Vehicle performances and range are affected mainly by components weight: large and heavy 

Battery Packs, although guaranteeing a reassuring pure electric range, affect performance and 

compel to always bring around hundreds of kilos of batteries. This is even more useless when 

an on-board energy generator (engine or Fuel Cell) is present, and it is the reason why none 

of the suggested configuration had a Battery Pack larger than some kWh. 
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• Fuel Cell system sizing was highly dependent on the imposed mission, as expected. FC output 

power naturally converged to cycle average requested power, thus leading to Range Extender 

in Urban cycle up to Full Performance dimensioning in Motorway driving scenarios. 

• Simulating a mixed-conditions driving cycle like WLTP, the Genetic Algorithm returned a 

mid-power FC sizing similar to the one used by the test case. This fact confirms that the choice 

of powertrain dimensioning should mirror average cycle conditions.  

• Costs analysis evidenced a higher cost of powertrain components with respect to a 

conventional powertrain, while the operating cost for hydrogen and electricity purchase are 

significantly lower than the conventional Diesel version. The competitiveness on this aspect 

is even more evident in 2030 context forecasts, when hydrogen price will probably decrease 

in parallel with Fuel Cell and batteries cost, as consequence of a natural technology evolution 

and market shares gain. 

6.2 Potentialities of the work and possible improvements 
Genetic Algorithm application on this kind of problems was evident. Therefore, the methodology has 

the potentialities to be applied to an optimization involving more variables than the two used for our 

work. The only limit is represented by computational time, but the issue can be easily overcome using 

more PCs in parallel and coupled models simplified by not relevant parts that can slow simulation. In 

addition, the Fitness Function can be formulated according to the desired objectives to be 

investigated: the more accurate the data possessed about costs and other parameters, the more precise 

and reliable the results obtained. 

In light of these considerations, further improvements can be done. More analysis should be done on 

the Fitness Function and the data used for the simulation since they affect the results. Lastly, the 

vehicle model is still far from being perfect, and although being good, can be perfected.  
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APPENDIX: Driving Cycles 

Common Artemis Driving Cycles 
Common Artemis Driving Cycles (CADC) consist in a set of dynamometer procedures designed by 

a European collaboration work called European Artemis (Assessment and Reliability of Transport 

Emission Models and Inventory Systems). Their design is based on statistical extrapolation of wide 

samples of data of European real world driving patterns. The cycles represent three different driving 

scenarios: Urban, Rural and Motorway. The Motorway cycle is further divided in two versions: the 

first characterized by a maximum speed of 130 km/h, the second by a part that reaches 150 km/h. 

Vehicle speed profiles of the three Artemis cycles are represented in the figures below. The procedure 

also defines gear changing profiles during the cycles that must be followed by the vehicle under 

approval test [37]. 

 

Figure 34: ARTEMIS Urban Cycle 
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Figure 35: ARTEMIS Rural Road Cycle 

 

Figure 36: ARTEMIS Motorway Cycle 

 

Figure 37: ARTEMIS Cycles data 
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Worldwide harmonized Light vehicles Test Cycles 

The Worldwide harmonized Light vehicles Test Cycles (WLTC) are chassis dynamometer tests used 

to measure emissions and fuel consumption for light-duty and light-commercial vehicles with the aim 

of being more representative of real driving conditions. The tests have been developed by the United 

Nations Economic Commission for Europe (UNECE) from 1998, and its final version was released 

in 2015. The WLTC cycles are part of the Worldwide harmonized Light vehicles Test Procedures 

(WLTP), published in Addenda 15 of UNECE Global technical regulation. While the acronyms 

WLTP and WLTC are often incorrectly used one instead of the other, the WLTP procedures define 

the whole type-approval procedures, while the WLTC are just the test cycles that are used to type-

approve the vehicle. 

From 1 September 2019, WLTP replaces the European NEDC with all vehicles registered in EU 

countries that must comply to the standard, with the transition from NEDC to WLTP occurring over 

2017-2019. In addition to the European Union, the WLTP is accepted by China, Japan, India, South 

Korea, and the United States. 

The WLTP procedure provides strict regulations regarding the conditions of dynamometer tests and 

motion resistance, gear shifting profiles, car weight also including optional equipment, passengers 

and luggage, environment conditions, and equipped tires. In addition, procedures include several 

WLTC test cycles applied to different vehicle class defined by power-to-mass (PMR) ratio in W/kg. 

The PMR parameter is defined as the ratio of rated power (W) divided by curb mass (kg). The curb 

mass also referred elsewhere as “unladen mass” (not including the driver) is defined in ECE R83.  

Lastly, cycle definitions also consider the maximum speed (v_max) which the vehicle is able to reach, 

as it is declared by the OEM (ECE R68) [38].  

 

Figure 38: WLTP Cycles classes 

Class 3 includes the vehicles with the highest PMR, and it is representative of passenger cars and 

Light Commercial Vehicles driven in Europe and Japan. Class 3 vehicles are subdivided into 2 
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classes: Class 3a with v_max < 120 km/h and Class 3b with v_max ≥ 120 km/h. Characteristics of 

Class 3b cycles are presented in Table 39. 

 

Figure 39: WLTP Class 3b data 

 

Figure 40: WLTP Cycle 
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