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Abstract 
 

The sense of taste in mammals, including humans, is a complex natural mechanism that acts as a 

sentinel system, allowing for a quick recognition of chemicals that enter the oral cavity and the 

discrimination between healthy and nutritious food and substances potentially toxic or dangerous to 

health. This crucial ability is enabled by the key players of the sense of taste, i.e. taste receptors: 

these are highly specialized proteins that play the role of molecular switches for specific cellular 

signalling pathways, ultimately resulting in the perception of the five basic tastes: sweet, bitter, 

umami, salty and sour. Moreover, several studies have shown that the localization of taste receptors 

is not limited to the oral cavity only, but is rather widespread throughout the human body, including 

the gastrointestinal tract and the central nervous system, where a direct sensation of taste is not 

evoked. In fact, in such tissues they are thought to serve a different set of functions revolving 

around nutrition and food absorption. In this context, where the interaction between taste receptors 

and tastants is not exclusive to the gustatory system alone, the present work is focused on a high-

level analysis, starting from the molecular-level characterization of the binding site of the human 

sweet taste receptor, a class-C GPCR, in complex with its tastant agonist sucrose, to perform a 

similarity search to scan for the conserved tastant-binding site residues in the currently solved 

proteome, with the goal of shedding light on the putative function of food molecules within 

domains and pathways that are external to the gustatory system. In order to identify the proteins of 

greatest interest and significance, two successive filtering steps were performed, the first one 

relying on Solvent-Accessible Surface Area (SASA) calculations to extract proteins with an 

exposed-surface binding site with a shape similar to that present in the sweet receptor; the second 

step consisted in Molecular Docking calculations of sweet ligands to the proteins extracted from the 

first step, to restrict the analysis to those with binding affinity values above a fixed threshold. Such 

proteins were analyzed from a proteomic perspective, and it was observed that most of them are 

involved in enzymatic activities, e.g. hydrolases, oxidoreductases, or transferases, as well as in 

various biological processes that range from nucleocytoplasmic transport, biosynthesis of 

nitrogenous bases, up to post-translational modifications that control protein activity. The results 

obtained regarding the conservation of the binding site, the nature and role of the candidate proteins 

discovered, and the methodologies and platforms adopted in the present work can be used as a basis 

for future studies focused on the use of tastants and corresponding receptors as models for the 

engineering of drugs for the treatment of food-related diseases and disorders. 
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1. Introduction 
 

The current chapter is a general introduction to the master's thesis work, framing it within its 

biological background and describing the rationale, objectives and organization of the present 

research. 

Mammals are dependent on food as sources of energy and biochemical building blocks, and two of 

our major senses, taste, and olfaction, are involved in or even specifically devoted to distinguishing 

beneficial food from potentially harmful substances such as toxins 1. Our sense of taste allows us to 

instantly evaluate the nutrional value of food before ingesting it, and it appears entirely reasonable 

that this ability has been crucial for the survival of our species, in a context where nourishing food 

sources were sparse2. However, in present-day society, several aspects revolving around the 

relationship between food and its taste are worth discussing. For instance, those who live in a 

condition of food scarcity or in contexts where food safety cannot be guaranteed must often times 

indeed rely on taste to identify nutritious food to eat and discriminate between safe and unsafe 

substances; conversely, those who live in an environment of abundant, palatable and mostly safe 

food are driven by taste to overconsume calorically dense foods, which may result in overnutrition-

related diseases, such as diabetes and obesity 2,3. For this reason, taste perception continues to play 

an important role in human health even at the present day, for diverse reasons, from avoiding spoilt 

food or toxins all the way to the prevention and treatment of conditions stemming from 

overnutrition 2. An example in today's context, which also underlines the commercial importance of 

the role of taste, can be found in the deliberate addition of bitter substances in toxic products 

normally used in cleaning such as detergents or degreasers. This is done to prevent and discourage 

the ingestion of these substances by children who are more likely to prefer sweet foods than adults. 

The mechanisms of nutrient sensing in the oral cavity have been well characterized and involve 

lingual taste receptors, which are chemosensors capable of detecting chemical stimuli from food 

such as sugars, amino acids, poisons, acids, and minerals and building up to the final taste 

perception. In general, sweet, salty, umami, sour and bitter are basic taste qualities liked to the 

underlying chemical nature of tastants: sweet is generally tied to carbohydrates, salty is a 

characteristic of minerals and ions, bitter is instinctively associated to harmful compounds, sour to 

spoiled food, and umami is the taste of protein and amino acid content. Additionally, there is 

emerging evidence that lipids can be detected by fatty acid receptors on taste cells, leading to the 

development of a sixth taste quality 4,5 . As can be easily understood, taste is the evolutionary 
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adaptation to the need of ingesting substances with specific nutritional qualities, while at the same 

time avoiding dangerous ones. Several studies have revealed that just as the tongue, the 

gastrointestinal system is also equipped with taste receptors and similar signaling pathways that 

give it the ability to sense nutrients and toxins. Furthermore, intestinal chemosensation is important 

as it evokes neuronal and hormonal responses following the ingestion of food that guide food 

metabolism, particularly satiety and energy homeostasis 5. 

For all the aforementioned reasons, given the importance of taste receptors in the ingestion and 

processing of food, this work focuses on investigating the role of taste chemosensors holistically, 

starting from a molecular-level characterization of the binding site of the receptors involved in the 

sense of taste, followed by a similarity search of conserved binding-site residues in the currently 

solved proteome, carried out to elucidate the putative role of tastants across a variety of biochemical 

pathways even beyond the gustatory system. 

With this overarching intent, the main purpose of this work is to investigate the molecular 

characteristics of the binding site of a human sweet taste receptor models and the sweet taste 

molecules that bind to it, as several studies show how sweet taste pathways are also present in the 

intestine and central nervous system (CNS). 

The work is organized as follows: 

Chapter 1 is the present introduction. 

Chapter 2 provides a biological background on taste receptors and their characteristics, with a 

greater focus on the sweet receptor. Then their role in nutrition and metabolism is described and 

discussed. 

Chapter 3 describes the methods used in the present work. An initial description of Molecular 

Modeling is presented followed by a theoretical discussion of Molecular Mechanics. The Solvent 

Accessible Surface Area (SASA) Calculation and the Molecular Docking algorithms are then 

presented and described in detail.  

Chapter 4 describes the proposed pipeline for carrying out the similarity search of the sweet 

receptor binding site across all currently solved protein structures. After discussing the state of the 

art of similarity search algorithms and an overview of their underlying methodologies, the workflow 

implemented in the present work is described. Next, the final results are presented, of which an 

analysis from a proteomic perspective is mentioned, discussing the conservation of the binding site 
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and the nature and role of the discovered candidate proteins. Finally, possible future perspectives of 

the methodology developed and described in the present work are proposed. 

  



 

5 
 

2 Biological Background 
The sense of taste plays a pivotal role in nutrition, as it is a means for humans and other mammals 

to evaluate the quality of food, to promote the consumption of foods of high nutritional content. 

Appetitive and pleasureable taste stimuli increase the consumption of nutrients while stimuli of 

repulsion discourage the ingestion of potential toxins. The five basic taste qualities reflect just this 

role: 

• sweet taste allows for identifying sugary foods that are thought to have been essential for 

human survival 

• umami taste allows to identify of foods containing proteins and therefore promotes the 

intake of amino acids that are important for the whole organism (e.g. essential amino acids) 

• bitter taste allows for limiting the number of toxins consumed because it is an adaptive taste 

and at high intensity gives an aversive response, typically linked to nausea 

• salty taste identifies ions and minerals, mainly sodium, which is involved in numerous 

functions including maintaining blood volume or membrane potential in cells 

• sour taste indicates the presence of acids, and like the bitter taste it produces aversive 

responses at high intensities and appetitive responses at moderate-low intensities. Sour taste 

has been linked throughout evolution to spoiled food 

Taking the nutritional context of today's industrialized nations into consideration, one of the biggest 

challenges is represented by the shift from undernutrition to overnutrition, due to the easy 

accessibility of highly caloric foods. This condition in many cases leads to the development of 

overnutrition-related diseases, such as obesity, type 2 diabetes mellitus, or fatty liver disease. This is 

one of the reasons why sweet taste plays a crucial role in human health3. 

 

2.1 Gustatory system: anatomy and function  
The five basic taste sensations that humans can perceive are divided into sweet, umami, bitter, salty 

and sour. The perception of taste is a consequence of the interaction at the molecular level between 

food-related chemicals and the taste buds, which are sensorial organs dedicated to the sense of taste 

and are found on the tongue. Taste buds contain taste receptor cells (TRCs), also known as 

gustatory cells. 

From an anatomical point of view, the gustatory systems presents a hierarchical structure, with the 

papillae , small protuberances on the upper part of the tongue that can be seen with the naked eye, at 
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the highest level; the papillae in turn contain the taste buds which, at the smaller scale, are 

composed of the Taste Receptor Cells.   

Lingual papillae possess both a sensorial and a mechanical function, as their specific conformation 

maximizes the surface area of the tongue to increment the contact area between food and tongue 

and therefore the friction between the two.  

The papillae are not present in equal numbers on the surface of the tongue and are arranged in a 

specific topological pattern, which is highlighted in Figure 1 . 

 

Figure 1: Localization of lingual papillae. Circumvallate, back of the tongue; foliate, side of the tongue, fungiform, middle and front 
of the tongue, and filiform, front of the tongue. A single taste bud is represented in the lower right corner.6 

From a morphological perspective, the lingual papillae are classified as circumvallate, fungiform, 

foliate and filiform. All types contain taste buds, except for the filiform papillae, which have a more 

mechanical function, acting as grips to increase friction on the tongue. 

Circumvallate papillae (or vallate papillae) are present in the smallest number, which can vary 

between 10 and 14, and are found in the posterior part of the oral tract of the tongue, particularly 

just in front of the terminal sulcus of the tongue, and are arranged in an arch shape. They are larger 

than the other lingual papillae, have a ring-like structure, contain many taste buds located mostly in 

the lateral surface of the papilla, and are innervated by a cranial nerve (Figure 2, C). 
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Foliate papillae are slightly higher in number than the circumvallate papillae, located along the 

lateral edges of the tongue, in the posterior part. They consist of parallel rows of ridges and grooves. 

Although human foliate papillae are less developed than the foliate papillae of other animals, they 

contain a high number of taste buds. The morphology and arrangement of human foliate papillae 

differ from individual to individual and change with age (Figure 2, B). 

Fungiform papillae occupy the anterior part of the tongue and are mainly concentrated in the 

lateral areas and median sulcus. In addition, their distribution varies greatly with age 7, and they 

contain fewer taste buds than the foliate and circumvallate papillae. As the name suggests, they 

have an overall mushroom-like structure, with a narrow base and a bloated top, but can vary in 

appearance. The fungiform papillae can be seen with the naked eye as the typical red dots found on 

the tongue, a characteristic deriving from the fact that they are highly perfused (Figure 2, A). 

Filiform papillae, the most abundant type, have a conical morphology and are distributed over the 

entire dorsal surface of the tongue. They are non-gustatory papillae, not containing any taste buds, 

and have two main functions: one mechanical,  giving roughness to the tongue to enhance the 

retention of food, and the other sensorial, providing information about pain and temperature (Figure 

2 , A). 

 

Figure 2:  Schematic drawings of lingual papillae. (A) Fungiform papilla on the middle and filiform Papilla on the right. (B) Foliate 
papilla, (C) Vallate papilla. In figure B and C the taste buds are in the lateral epithelium wall of the papilla.8 

 

Three of the four papillae, i.e., circumvallate, foliate, and fungiform, are covered by non-keratinized 

stratified squamous epithelium, while the filiform papillae differ in that they have partially 

keratinized stratified squamous epithelium which is what confers the typical rough surface of the 

tongue. 
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The circumvallate papillae receive innervation from the N IX cranial nerve, the glossopharyngeal 

nerve. The remaining anterior two-thirds of the tongue, where the other papillae are located, receive 

innervation from the chorda tympani nerve, a branch of the large facial N VII nerve 9. 

 

2.2 Taste buds: anatomy and physiology  
Inside the papillae, under the keratinous layer, reside the taste buds, neuroepithelial receptor cells 

which initiate taste signaling. In the human oral cavity there are about 5000 taste buds, mainly 

located on the tongue and palate, but also present to a lesser extent on the epiglottis, pharynx, and 

larynx 9.  

The structure of taste buds can be described as garlic-bulb-like shaped, with a taste pore, i.e., a 

small epithelial hole at the end that communicates with the external environment. The basic units in 

this structure are the TRCs which are assembled in groups of about 80-100 cells. They are 

electrically active epithelial cells that can depolarize and release neurotransmitters. The latter are 

the chemical messengers through which taste receptor cells communicate with neighbouring 

neurons 1,5. Each taste bud in adults is innervated by sensory ganglion neurons, from neuronal axons 

that branch and penetrate the taste bud.  

TRCs are classified into four different types: type I, II, III cells, and taste cell precursors 

(sometimes referred to as type IV cells). Each taste bud contains TRCs belonging to the four 

categories regardless of their anatomical location. The different types of cells and the taste bud are 

shown in Figure 3 and Figure 4. 
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Figure 3 : Cell types and synapses in the taste bud. (A) Electron micrograph of a rabbit taste bud where the arrows indicate nerve 
profiles. Asterisks indicate Type II cells. (B), A taste bud from a mouse. The tissue is from a transgenic mouse expressing GFP only 
in Receptor (Type II) cells (green). The red cells represent presynaptic cells (immunostained) (C) Image of taste bud obtained by 

immunostaining, where the Type I cells are visible. 9 

 
Figure 4: Representation of the different types of cells inside the taste buds. A) Shows the roles of the different cell types. B) Shows 

the role of ATP, as neurotransmitter, in the communication between the taste bud cells.10 

TRCs are continuously replaced, on average every 10 days to compensate for mechanical, thermal, 

or toxin-induced damage to the gustatory epithelia10. In addition, the entire gustatory papilla as well 

as the gustatory epithelium, i.e. the taste organ, have the ability of regenerating completely upon 

destruction or removal, making them one of the very few organs in humans with a complete 

regenerative capability. 
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Type I cells are the most abundant type, and are believed to have glial-like functions, such as 

promoting synaptic transmission and limiting the spread of transmitters, mainly ATP and glutamate. 

They have also been suggested to transduce salty tasty through epithelial sodium channels (ENaC), 

although the precise mechanism is still not clear 1. Type I cells have an irregularly shaped nucleus 

and they are usually characterized by cytoplasmatic lamellae that enwrap other taste cells within the 

taste bud. Moreover, they express NTPDase2, a nucleotidase that degrades ATP released by other 

taste cells via hydrolyzation, and GLAST, a transporter for glutamate . They also express ROMK, a 

potassium channel,  capable of eliminating the K+ that accumulates in the extracellular space after 

the propagation of the action potential. Accumulation of K+ can affect the excitability of type II and 

III cells and decrease it 11. 

Type II cells represent more than thirty percent of the gustatory system cells. Compared to type I 

cells, they have a more regular shape and are also called receptor cells, because they express G-

protein coupled receptors (GPCR) that bind sweet, bitter, and umami taste compounds. Each cell 

responds mainly to a single tastants, i.e. they can react to only bitter or only sweet stimuli, not to 

both 12. Type II cells form synapses with afferent sensory fibres: the binding of tastants starts the 

secretion and the release of ATP through pannexin 1 (Panx1) hemichannels and the consequent 

sensing transduction on the afferent fibres. ATP receptors also mediate the communication between 

type II and type III cells. 

Type III cells are the least numerous type compared to the first two subclasses. They are 

presynaptic cells and are the only ones in the taste buds to form conventional neuronal synapses, 

i.e., synaptic junctions, with nerve terminals. The main neurotransmitters produced are serotonin (5-

HT), acetylcholine, γ-aminobutyric acid (GABA), and noradrenaline (NE). When cells are 

depolarized, they release neurotransmitters through vesicles 1. They don’t express GPCRs but are 

involved in the perception of sour taste through the expression of polycystic kidney disease 2-like 1 

protein (PKD2L1) and polycystic kidney disease 1-like 3 protein (PKD1L3) channels 1 and they 

respond also to carbonation 2. 

Taste cell precursors have a spherical or ovoidal shape They constitute a heterogeneous group of 

cells that can be quiescent precursor cells or immature taste cells present at the base of the taste 

buds, and they are not directly involved in taste transduction. 

To summarize, type I cells appear to be supportive glial-like cells. Type II cells play the role of 

sensory cells for sweet, bitter, or umami tastes via GPCRs. The binding to the tastants activates the 

receptor cells that secrete ATP which in turn excites the afferent sensory fibres and adjacent type III 
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cells. The latter can be stimulated either directly by the acid/sour taste molecules or indirectly by 

the sweet, bitter, and umami tastants. Therefore more gustatory stimuli are integrated into the 

papillae, or to be more specific in taste buds. Furthermore, the presynaptic cells release serotonin, 

noradrenaline, and GABA which allow the taste signal to be transmitted to the brain stem along 

cranial nerves VII and IX 1,5,9. Serotonin and GABA transmitters also inhibit type II cells. The ATP 

itself secreted by type II cells exerts autocrine feedback on the cells themselves. The lack of this 

positive feedback was observed in-vivo on mice in which some purinoreceptors were absent, 

leading to a reduction in the taste-evoked secretion of ATP  and cessation of the normal operation 

of taste buds 9. 

 

2.3 Signalling mechanism 
The transduction pathway of sweet, L-glutamate (umami), and bitter stimuli operated through type 

II taste receptor cells are represented schematically in Figure 5. 

 

Figure 5: Signalling pathway on type II cells13 
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First, sweet and umami tastants are detected by GPCRs of the C family (T1Rs) that assemble into 

heterodimeric complexes, i.e., T1R2+T1R3 (sweet) or T1R1+T1R3 (umami), while bitter tastants 

are detected by A-famility GPCRs (T2Rs) 14. The binding to the tastants activates taste GPCRs 

which in turn stimulate a series of downstream enzymes and effectors in receptor cells. In all these 

taste stimuli, sweet, umami or bitter, the starting point of the transduction pathway is the activation 

of a trimeric G protein formed by α-gustducin (Gαgus) and a complex of Gβ3 and Gγ13 (Gβ3/γ13). 

The complex Gβ3/γ13 then activates a membrane-bound enzyme, phospholipase C isoform β2 

(PLCβ2) that catalyzes the digestion of plasma membrane phospholipids into inositol 1,4,5-

trisphosphate (IP3) and diacylglycerol (DAG). IP3 is a second messenger, because by spreading in 

the intracellular space and binding to the IP3 receptors (IP3R), it allows the release of Ca2+ in the 

cytosol, as the IP3Rs are ion channels present in intracellular stores of calcium13,14. This is the 

canonical PLC/IP3 Ca2+ release signalling pathway9.  

The release of intracellular Ca2+ (dashed lines in Figure 5 ) has two consequences: 

• the cell membrane is depolarized because calcium ions bind and activate the 

Transient Receptor Potential Melastatin 5 (TRPM5) ion channels, allowing Na+ ions 

to enter through voltage-gated sodium channels 

• at the same time, the calcium ions bind to the pannexin1 gap junction hemichannels 

and the calcium homeostasis modulator channel (CALHM), formed by CALHM1 

and CALHM3, and activates them (here the depolarization of the membrane also 

comes into play)  

The result is a release of ATP from the cytosol to the extracellular environment. 

As for the Gαgus (left of Figure 5), its activity is linked to the PDE-3 phosphodiesterase whose task 

is to degrade the second messenger cyclic-AMP (cAMP) to AMP. This cyclic nucleotide can inhibit 

the PLCβ2/IP3 pathway, with its degradation therefore this ability is blocked. 

In summary, two pathways coexist in type II cells and are activated simultaneously, which 

ultimately results in the release of ATP in the taste bud. 

 

2.4 Five basic taste qualities 
As mentioned in the previous sub-chapter, sweet, bitter and umami receptors belong to the GPCR 

superfamily, while sour and salty tastants are identified by ion channels.  
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GPCRs share two common features: the first is the presence of seven transmembrane (TM) α-

helices, and the second is the coupling to heterotrimeric G-proteins of the intracellular domain of 

the receptor. The seven α-helices are joined by six loops, three of them are extracellular and the 

remaining three are intracellular. The superfamily is classified into seven classes from A to F based 

on physiological and structural features15. The ones of interest for taste transduction are class A and 

class C as they are respectively the classes to which the sweet and umami receptors and the bitter 

receptor belong:  

• Class A (Rhodopsin-like) is the largest family of GPCRs, including hormone, 

neurotransmitter, and light receptors. Receptors of class A have a small extracellular domain 

and they work as monomers. 

• Class C (Metabotropic glutamate receptors) feature seven transmembrane α-helices with a 

large extracellular N-terminal domain (ATD), where ligands bind. Another important aspect 

of this class is the ability to form constitutive dimers, with homo- and heterodimerization, 

i.e. the association between two identical or non-identical proteins, respectively, depending 

on the members, which is mandatory for functionality. In addition to the sweet 

(T1R2+T1R3) and umami (T1R1+T1R3) receptors, there are eight metabotropic glutamate 

(mGlu) receptors, two heterodimeric-aminobutyric acid (GABAB) receptors, a calcium-

sensing receptor (CaS), a promiscuous L-α-amino acid receptor (GPRC6A), and some 

orphan receptors (Figure 6)16–18. 
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Figure 6: Schematic representation of Class C GPCR family. Their corresponding agonist is shown  at the centre of the image. 
Heterodimers are represented with light grey and  dark grey protomers16 

On the other hand, the signalling mechanism of the ion channels involved in the perception of salty 

and sour taste is still unclear. The perception of sour taste is known to be related to the presence of 

H+ ions. As mentioned before, the perception of sour tastants is thought to be mediated by PKD1L3 

and PKD2L1 ion channels, while the perception of salt tastants is thought to be mediated by the 

ENaC ion channel. 

Figure 7 contains a schematic summary of the receptors for the five basic qualities. 
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Figure 7: Schematic representation of the receptors of the five basic taste senses, from left to right umami, sweet, bitter, sour and 
salty, and pathway of stimulus transduction 19 

 

2.4.1 Sweet 

The receptor that binds sweet tastants belongs to the GPCRs of class C. It is a heterodimer 

composed of T1R2 and T1R3. It is a transmembrane receptor, composed of an intracellular domain, 

a transmembrane part that consists of seven transmembrane helices (TM), and an extracellular N-

terminus domain, consisting of a Venus flytrap (VFT) and cysteine-rich domains (CR) (Figure 8). 

  

Figure 8: Sweet taste receptor schematic structure and orthosteric binding sitess in the Venus flytrap module (VFTM).20 

The main active site of the sweet receptor, referred to as the orthosteric binding site, is found in the 

VFT domain, which can assume an open or closed configuration, depending on whether the ligand 

is unbound or bound, and remains in equilibrium between the two conformations in the absence of 

the ligand.  
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The conformation in which the VFT domain is found affects the functionality of the receptor. Since 

the receptor is made up of two subunits, both VFT domains are considered in defining the 

conformation: in the open/open conformation the receptor is inactive, while in the closed/open 

conformation the receptor is active. The ligand binds mainly in the open VFT and promotes the 

closed-form as the interactions between the two lobes present in the VFT domain stabilize this 

form. The active form of the receptor is also characterized by a rearrangement of the VFT dimer in 

which the relative orientation of the two domains changes16. 

The orthosteric binding site can recognize a series of compounds belonging to different classes and 

with different molecular weights: 

• natural small sugars. such as glucose, sucrose, fructose, and sugar alcohols 

• glycosides, such as stevioside and glycyrrhizin 

• D-amino acids, such as D-tryptophan and D-phenylalanine 

• artificial chemical compounds, such as sucralose, aspartame, neotame, saccharin, and 

cyclamate 

The binding of sweeteners to the VFT domain leads to the subsequent activation of the TM domain 

and the intracellular region, and this leads to the activation of the whole receptor16,17,21. It should be 

noted that in taste receptors, only one subunit (T1R1 or T1R2) in the VFT dimer is responsible for 

binding the sugar compound16. Furthermore, as some studies have shown, some sweeteners such as 

stevioside and aspartame only bind to the VFT domain of the T1R2 subunit, while glucose and 

sucrose bind to the VFT domain of both subunits21. In addition to the orthosteric binding site, in the 

transmembrane region of both receptor subunits, there are allosteric sites to which positive allosteric 

modulators (PAMs) can bind, i.e. taste-free ligands with high binding selectivity to the sites in 

question. Their function is to increase the activity of agonists, i.e. sweet molecules that bind to the 

orthosteric site, by affecting the spatial conformation of the receptor. 

 

2.4.2 Umami 

Umami stands for delicious or savoury taste, it is a Japanese word used to describe the savoury taste 

of amino acids or oligopeptides. It was first used at the beginning of the 1900s by Dr Kikunae 

Ikeda, a Japanese chemist who discovered this taste sensation evoked by glutamic acid22. As the 

name suggests these receptors can enhance the palatability of food, to stimulate in humans the 

ingestion of safe foods, that is, foods containing fundamental nutritional resources. 
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Like sweet receptors, the receptors that can identify umami tastants are heterodimers, composed of 

T1R1 and T1R3 subunits belonging to class C GPCRs. The structure is also the same: large 

extracellular VFT domains and TM domains linked to the previous domains via CR domains 

(Figure 9) 23,24. 

 

Figure 9: Umami taste receptor schematic structure.20 

 

In humans, generally, the umami taste receptor is activated by monosodium L-glutamate (MSG), 

but can also be activated by amino acids like aspartate or even by organic acids like lactic, succinic, 

and propionic acids. The taste sensation can be increased by the binding to the orthosteric binding 

site of esters such as guanosine 5'monophosphate (GMP) and inosine 5'-monophosphate (IMP).  

2.4.3 Bitter 

The receptors that can identify bitter tastants are part of the T2Rs family of GPCRs. They have a 

similar function to that of class-A GPCRs, however, they don’t share any remarkable sequence 

similarity. If compared to the T1Rs, the T2Rs family is quite numerous, containing close to 25 

different receptors in humans, compared to just 3 for the T1Rs25. Interestingly, the number of 

receptors belonging to the T2Rs family varies from species to species, reasonably reflecting the 

differences in taste perception, nutritional needs and hazardous substances in different mammals. 

T2Rs consist of a short extracellular N-terminus and intracellular C-terminus and seven transmembrane 

helices (TM). The binding site is located in the transmembrane part of the receptors (Figure 10) and the 

bitter compounds that can bind to it can be structurally very different, due to the different recognition 

mechanisms exhibited by these receptors. 
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Figure 10: Bitter taste receptor schematic structure20 

2.4.4 Salty 

One of the transduction mechanisms proposed for the perception of salty taste is epithelial sodium 

channels (ENaC), which are highly selective Na+ ion channels. Other mechanisms proposed for 

salty transduction include the transient receptor-potential channel, subfamily V, member 1 (TRPV1) 

and the transient receptor-potential cation channel, mucolipin subfamily, member 3 (TRPML3). 

From a structural point of view, ENaC is made up of three homologous subunits α, β and γ, of 

which the α subunit is involved in the activity of the channel while the β and γ subunits are involved 

in the expression of the channel on the cell surface. There are also extracellular loops, that are 

needed for the channel function, and intracellular N- and C- termini. The C-terminus, in particular, 

is rich in proline. (Figure 11) 

 

Figure 11: Epithelial sodium channel (ENaC) schematic subunits structure: α ENaC (red), β ENaC (green), and γ ENaC26 

In the perception of salty taste, two outcomes may arise based on the concentration of the salty 

tastant. At high concentrations, the response obtained is repulsion, i.e. negative, while at lower 

concentrations, the response obtained is pleasure, i.e. positive. 
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2.4.5 Sour 

The receptors that can recognize sour tastants are thought to be polycystic kidney disease-like 

(PKD) channels, in particular, PKD2L1 and PKD1L3. These are ion channels expressed in type III 

taste receptor cells of all populations of papillae. PKD2s are part of the transient receptor potential 

(TPR) superfamily of ion channels. The proteins belonging to the PKD1 family are composed of a 

long N-terminal extracellular domain and eleven transmembrane domains with another 

transmembrane domain at the C-terminus27. In Figure 12 the taste PDK model is represented. 

.  

Figure 12:Sour taste receptor schematic structure28 

The mechanism has not been fully elucidated yet, but it is has been linked to the presence of H + 

ions entering the cell29. At the same time, the potassium K+ channels, that are at rest, are blocked by 

the proton influx. The joint action of the two channels leads to an accumulation of H + ions in the 

cytoplasm, which causes cellular acidification and the consequent depolarization of the membrane. 

Depolarization leads to the release of neurotransmitters that trigger synaptic transmission, mediated 

by the opening of voltage-gated calcium channels on the cell membrane. 

 

2.5 The other roles of taste receptors 
The hitherto described receptor mechanisms, which are at the roots of the perception of taste, 

certainly play a primary role in the gustatory system, but there is increasing evidence that similar 

mechanisms are present in different systems in which taste transduction has been adopted as a 

chemodetection system, such as in the cells of the airway or the cells of the gastrointestinal (GI) 

tract2,25,30,31. 



 

20 
 

Multiple records have indeed shown that taste-signalling components are expressed in the GI tract. 

The presence of alfa-gustudicn and T2R receptors expressed in the stomach and enteroendocrine 

cell lines suggests that they are similarly coupled as in taste cells and therefore that there is a system 

similar to that of taste. Furthermore, in addition to T2R receptors, sweet and umami receptors (T1R) 

are also present, and in more detail the sweet receptor is involved in maintaining the level of 

glucose in the blood through the secretion of glucagon-like peptide-1 (GLP-1), a hormonal 

response3,30. 

Furthermore, other types of cells linked to taste transduction have been shown to reside in the GI 

tract. One example includes brush cells, which have a different morphology compared to pyramidal 

and elongated enteroendocrine cells, and are thought to have a chemosensory function similar to 

taste cells, particularly type II cells, since they express the alpha-gustducin and TRPM5 ion 

channels necessary for the detection of bitter and sweet flavours. Little is known about their 

function, but they are thought to be involved in the chemosensation of flavour molecules/nutrients. 

This type of cell is also present in the lungs, pancreas, and respiratory tract. The brush cells present 

in the latter specifically express bitter taste receptors whose activation through bitter stimuli 

releases acetylcholine which in turn influences the respiratory rate by lowering it30,32. 

Given the presence of taste receptors in areas of the body other than the oral cavity, in which their 

stimulation by food molecules does not lead to an activation of taste perception but to different 

signals that vary depending on the location and that in general are important in metabolism and 

homeostasis, it is interesting to study these systems at the molecular level to shed light on the 

different role that tastants can play, as well as to carry out research at the proteomic level regarding 

the recognition mechanisms of such tastants. 
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3 Materials and Methods 
Over the years several theoretical and computational methods for the investigation of molecular 

systems at the smaller time and length scales have been introduced, which are broadly grouped 

under the rather general term of Molecular Modeling. Their main aim is to represent and simulate 

the behaviour of molecular structures, such as proteins, lipids and other relevant macromolecules, 

under specific conditions to analyze their physical, chemical, and mechanical properties. Many 

examples exist in literature where computational predictions have effectively shed light on specific 

molecular mechanisms, elucidated unknown structure-to-function relationships, as well as guided 

the design of new in-vitro experiments. Several examples FDA and EMA-approved drugs that have 

been discovered or designed computationally also exist. In addition, most of the Molecular 

Modelling tools share the great advantage of being interactive and allowing the visualization of the 

system of interest with single-atom resolution. Overall, also in the light of the increasing 

computational power and resources available to research facilities as well as the refinement of the 

underlying theoretical foundations, Molecular Modelling nowadays features a broad field of 

application ranging from chemistry to bioinformatics. 

Molecular Modeling includes (i) analytical methods, such as quantum mechanics which is linked to 

theoretical chemistry and allows explicit modelling of subatomic components, i.e. electrons, (ii) 

numerical methods, such as molecular mechanics which allows more simplified modelling of the 

system, and (iii) other computer-based approaches. The choice of the specific method depends on 

the complexity of the system and the time and length scales to be analyzed. For example, even 

simple biological systems, such as the conformational dynamics of a protein, would be too complex 

to be represented at a quantum mechanics level with current hardware resources, due to the large 

number of particles involved (tens to hundreds of thousands of atoms). Instead, using the Molecular 

Mechanics approach, the computational effort is greatly reduced and the system can readily be 

investigated, since the macroscopic properties of the system are predicted by ignoring the behaviour 

of the electrons and other sub-atomic particles31. 

1.1 Molecular Mechanics 

The term Molecular Mechanics (MM) describes the application of classical mechanics in 

determining the equilibrium of molecular structures. This method uses the position information of 

atoms to describe a molecular system, thus facilitating the simulation of systems with a significant 

number of particles: atoms are approximated as particles with a specific mass following Newton's 

classical laws of motion, with the bonds holding them together described as harmonic potentials. 
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For this reason, the MM approach is unable to describe phenomena that occur at the electronic 

scale, such as the formation or breaking of covalent bonds. 

MM extracts the properties, such as the energy, of the investigated system by describing it in the 

form of a potential energy function (V) dependent on atomic positions, which includes a series of 

system-dependent parameters that together form what is known as a force field. A key concept is 

the potential energy surface, which represents the energetic state of the molecule or system as a 

function of its geometry. In MM the potential energy surface is the sum of two terms, i.e. of bond 

and non-bond interactions, describing the contributions of intra- and inter-molecular forces. Both 

are functions of the position r of the N particles in the system. Therefore, the potential energy 

𝑉(𝑟𝑁) can be written as: 

𝑉(𝑟𝑁) = 𝑉𝑏𝑜𝑛𝑑(𝑟𝑁) + 𝑉𝑛𝑜𝑛−𝑏𝑜𝑛𝑑(𝑟𝑁) 

The bond interactions can be of three types: they can derive from (i) bond stretching between two 

particles, (ii) angle bending among three particles, and (iii) bond torsion between four particles. 

Different models have been proposed to describe each of these terms.  

𝒱𝑏𝑜𝑛𝑑(𝑟𝑁) = ∑ 𝒱𝑏𝑜𝑛𝑑𝑠(𝑟𝑁)

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝒱𝑎𝑛𝑔𝑙𝑒𝑠(𝑟𝑁)

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑ 𝒱𝑡𝑜𝑟𝑠𝑖𝑜𝑛(𝑟𝑁)

𝑡𝑜𝑟𝑠𝑖𝑜𝑛

 

Regarding the bond stretching term 𝒱𝑏𝑜𝑛𝑑𝑠 that represents the interaction between two atoms 

connected by a covalent bond, the easiest and most common model used to describe it is Hook’s 

law, where the interaction is modelled as a harmonic potential with the following parameters: 

• ki is the spring stiffness and indicates the resistance of the bond to being stretched,  

• 𝑙0 is the reference bond length, which is assumed when all the other force field terms are 

equal to zero 

• 𝑙𝑖 is the actual bond length  

𝒱𝑏𝑜𝑛𝑑𝑠(𝑙) =
𝑘𝑖

2
(𝑙𝑖 − 𝑙𝑖,0)

2
 

The harmonic model has also been used for the angle bending term 𝒱𝑎𝑛𝑔𝑙𝑒𝑠. It corresponds to the 

triatomic unit, in particular to the angle formed by the three atoms, when two of them are both 

linked to the third atom. The parameters of the formulation are: 

• hi, the angle stiffness, 

• 𝜃𝑖,0, the reference bond angle, 
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• 𝜃𝑖, the actual bond angle 

𝒱𝑎𝑛𝑔𝑙𝑒𝑠(𝜃) =
ℎ𝑖

2
(𝜃𝑖 − 𝜃𝑖,0)

2
 

The torsional term, also called the dihedral term, refers to the rotation of a bond between four 

atoms(A, B, C, D) that are sequentially bonded. The torsional angle is the angle between the A-B 

bond and the plane identified by B-C-D atoms (Figure 13). The formulation is based on a sinusoidal 

law and the parameters are: 

• 𝑉𝑛  is the torsional stiffness, 

• 𝛾, is torsional equilibrium angle, defines the position of the minimum of the function 

• 𝜙, is the dihedral angle when all terms are considered. 

𝒱𝑡𝑜𝑟𝑠𝑖𝑜𝑛(𝜙) =
𝑉𝑛

2
(1 + cos(𝑛𝜙 − 𝛾)) 

 

Figure 13: Representation of bond interactions. From left to right: bond length between atom A and atom B; bond angle between 
atoms A, B, C; and dihedral angle between four atoms A, B, C, D. Source: 

http://www.chem.hope.edu/~polik/doc/webmohelp16/img/blbada.png. 

The non-bond interactions represent the behaviour of non-bonded atoms when they are near enough 

to influence each other without forming covalent bonds. The interactions are usually modelled as 

functions inversely proportional to the power of the distance between the atoms. Non-bond 

interactions consist of two terms: short-range interactions, such as Van der Waals, and long-range 

interactions or electrostatic interactions.  

𝒱𝑛𝑜𝑛−𝑏𝑜𝑛𝑑(𝑟𝑁) = ∑ ∑ 𝒱𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐(𝑟𝑖𝑗)

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

+ ∑ ∑ 𝒱𝑣𝑑𝑊(𝑟𝑖𝑗)

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

 

The Van der Waals interactions 𝒱𝑣𝑑𝑊(𝑟𝑖𝑗) are attractive or repulsive interactions at variable 

distances. For instance, at short distances, they are repulsive and the shorter the distance between 

the atoms, the more the force grows exponentially; at longer distances the interactions become 
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attractive. The repulsive interaction is based on the “Pauli Exclusion Principle”. The principle states 

that two electrons in an atom cannot possess the same quantum numbers. This happens when the 

electronic clouds of two atoms overlap and therefore generating a repulsion effect between the two 

nuclei. The attractive interaction is based on a weak type of intermolecular force, the London 

dispersion force that arises from the formation of temporary dipoles. The most common function to 

model the short-range interactions is the Lennard-Jones 12-6 potential: 

𝒱𝑣𝑑𝑊(𝑟𝑖𝑗) = 4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

] 

The parameters are: 

• 𝑟𝑖𝑗 is the interatomic distance, 

• 𝜎𝑖𝑗, is the collision diameter, 

• 𝜀𝑖𝑗, is the Van der Waals potential minimum. 

The first term in the square bracket models the repulsive interactions and the second models the 

attractive interactions. 

The electrostatic interactions 𝒱𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐(𝑟𝑖𝑗) are usually defined as a Coulomb potential, which 

describes the interaction between two charged particles and is expressed as: 

𝒱𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐(𝑟𝑖𝑗) =
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗
 

The parameters are: 

• 𝑟𝑖𝑗 is the distance between atoms, 

• 𝑞𝑖 𝑞𝑗, are the charges of atoms i and j, 

• 𝜀0, is the dielectric constant. 

Regarding the non-bonded interactions, their calculation can involve large computational costs 

since their number corresponds to the second power of the number of particles N. For this reason, 

different methods have been proposed to decrease the computational cost of non-bonded interaction 

calculations, such as the introduction of a cut-off beyond which not to consider these type of 

interactions or the introduction of potential switches. 

For the calculation of potential energy, boundary conditions are set to avoid artifacts derived from 

long-range interactions. In fact, during a simulation the number of particles that can be considered 
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is finite, so the system is placed inside a box, called a unit cell, that can be of different geometries 

(e.g. cubic or parallelepiped, hexagonal prism, truncated octahedron or rhombic dodecahedron). The 

boundary conditions are crucial in the simulation since they affect the properties of the whole 

system:  depending on the system and the simulated conditions, these must hence be carefully 

defined. To get around edge effects, periodic boundary conditions (PBCs) are usually applied, 

which means that the simulation box is virtually surrounded by copies of itself in all directions of 

space (Figure 14). A crucial consequence of this periodicity is that each particle shall not interact 

with its own replica in neighboring unit cells to avoid physically inconsistent artifacts. Thus, the 

size of the unit cell must be tailored with great care so that the distance of any particle to its 

neighboring copy is above the threshold set for non-bonded interaction. This concept is referred to 

as the minimum image convention and defines the unit cell size. Furthermore, the repetition of the 

box in all directions in space allows the number of atoms inside the simulation box to be kept 

constant because if an atom leaves the unit cell a replica of it replaces it from a neighboring cell. 

 

Figure 14: Schematic representation of the idea of periodic boundary conditions for a cubic box. Source: 
http://isaacs.sourceforge.net/phys/pbc.html 

The potential energy surface in other words is the representation of the potential energy of a system 

on a multidimensional surface of 3N cartesian coordinates (N is the number of particles of the 

system). MM aims to find, through computational methods, the minima on the potential energy 

surface since they represent the lowest energy state accessible to the system, corresponding to a 

stable minimum-energy structure of the system. Therefore, the minimization of potential energy is 

fundamental both when it is part of a set of actions to be performed subsequently and to obtain a 
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system with a stable initial configuration without the presence of collision between the atoms. There 

are different methods to find a local minimum and they can be classified into (i) derivative and (ii) 

non-derivative methods.  

The Simplex is an example of a non-derivative methods. It is based on the construction of a 

geometric figure with N+1 interconnected vertices, with N being the dimensionality of the energy 

function. There is a link between the figure and the movements allowed on the surface to find the 

minimum. However, it is not an efficient method.  

As for the derivative methods, they can be distinguished into (a) first-order methods and (b) second-

order methods. First-order derivative methods are based on the gradient, i.e. the first derivative of 

the potential energy function, since its direction indicates where the minimum lies. The absolute 

value of the gradient, in other words, the intensity, is an indicator of how steep the local slope is. 

Examples of first-order derivative methods are Steepest Descent33 and Conjugate Gradient34, where 

the basic idea in both methods is to change the coordinates of the atoms to move towards lower 

energy states. Second-order derivative methods are based on the information of the second 

derivative that expresses the curvature of the potential energy function. In comparison to the first-

order derivative methods, second-order derivative methods are more accurate but require more 

computational effort. An example of second-order methods is the Newton-Raphson method35. Since 

all methods have their advantages and disadvantages, there is no method to be preferred a priori. 

Rather, the choice depends on the specific goal, the investigated system, the desired accuracy, the 

computational performance available at runtime, etc. Often, multiple methods are combined to 

obtain the best tradeoff between computational efficiency and accuracy. 

1.2 ASA: Accessible Surface Area 
ASA stands for Accessible Surface Area and defines the surface area of a biomolecule that is 

accessible to a solvent. It is often also referred to as solvent-accessible surface area (SASA). The 

concept was introduced by B.K. Lee and Fred Richards, to quantify hydrophobic burial, which is 

the number of hydrophobic side chains that are buried internally during the folding of a protein in 

the presence of an external hydrophilic solvent, and more generally to understand the folding 

mechanism of proteins starting from the sequence of amino acids only36. 

The accessible surface area is commonly calculated using the 'rolling ball' algorithm developed by 

Shrake and Rupley37, which, as the name suggests, consists in 'scanning' the surface of the 

biomolecule under examination with a sphere of solvent, called a probe, having a certain radius. 

The radius of the sphere affects the detail of the surface found. Indeed, with a smaller sphere it is 
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possible to detect more surface details and this results in a larger observed surface. The most 

commonly used value for the radius is the one corresponding to the radius of a water molecule, i.e. 

1.4 angstroms. Another characteristic that influences the measurement of the observed surface is the 

definition of the Van der Waals radius of the atoms constituting the biomolecule, which is used to 

represent the atomic surface of the biomolecule. The ASA is drawn with the centre of the solvent 

sphere as it moves across the surface of the biomolecule ( Figure 15 ). 

 

Figure 15: Representation of the accessible surface of three atoms represented as spheres, i,j,k. The volume enclosed by the 
accessible surface is the excluded volume.38  

ASA is also related to the concept of the solvent-excluded surface, which defines the molecular 

volume from which the sphere of the solvent is excluded. This volume is obtained by putting 

together the Van der Waals volume, therefore the atoms, and the interstitial volume, i.e. the space 

between the atoms (Figure 16). The solvent-excluded surface is also called the Connolly surface as 

it was implemented three-dimensionally by Michael Connolly and Tim Richmond 38,39 . 
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Figure 16:Representation of the Connolly surface or solvent-excluded Surface. Source: https://discourse.mcneel.com/t/2d-metaball-
like-connection-between-distort-forms/58631 

Several software packages, both open-source and commercial, have implemented or otherwise 

include the calculation of SASA, such as VMD40, PyMOL41, GROMACS42, Chimera43, MOE44 and 

ChemAxon45, just to name a few. 

1.3 Molecular Docking 
Molecular docking can be defined as a method that aims to predict the most energetically 

favourable conformation of a small molecule, i.e. ligand, in specific regions present on a 

macromolecule, e.g. a target protein or receptor. In particular, in most docking approaches, after the 

initialization of the small molecule inside the region of interest on the macromolecule, a sort of 

conformational adjustment takes place between ligand and receptor through the sampling of a 

certain extension of the conformational space available to the ligand, to (parts of) the 

macromolecule, or both, to obtain an optimized orientation between the two such that the free 

energy of the system is minimal. This means that the correct parametrization of both molecular 

players is crucial to obtain physically sensible results. In the past, the interaction between ligands 

and their receptors have been often referred to as “lock-and-key”: in this analogy, one can think of 

the ligand as a key that must be suitable for the the receptor (the “lock”). However, since both the 

ligand and the receptor usually show a certain degree of flexibility in real-case scenarios, a more 

suitable analogy would be the hand-in-glove. 

In addition to the free energy of the system and the stability of the bound complex, another output 

data of this process is some form of prediction of the binding affinity or binding energy, which is 
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more correctly referred to as the score of the docking, since affinity usually implies both enthalpic 

and entropic terms which are not always fully included in docking algorithms. 

Before proceeding with the actual docking, the preparation phase of both the ligand and the receptor 

is fundamental, as the molecular process of ligand recognition by a molecule depends on the 

reciprocal three-dimensional orientations and on the nature of the non-covalent interactions that 

develop. Furthermore, if there are tensions, instabilities or clashes in the starting structure of the 

ligand and the protein, these should be solved beforehand, e.g. by simulating both under 

physiological conditions, as such instabilities might then give rise to numerical problems during the 

docking process itself. 

To evaluate the potentially interesting ligand poses all docking methods use a so-called scoring 

function, which returns a numerical estimate of how much the given ligand conformation can 

constitute a favourable binding interaction. The different poses of the ligand are then ranked based 

on this number. Current docking protocols and softwares can be categorized based on different 

characteristics and features: 

• scoring functions can be physics-based molecular mechanics force fields, knowledge-based 

on key protein-ligand interactions, or empirical; 

• the ligand conformational space sampling strategy can be stochastic, i.e make random 

changes up to a user-defined termination policy, or systematic, i.e sample the search space 

in predetermined discrete incremental steps; 

• size of the sampled search space, Two approaches can be distinguished, the global one 

which seeks the minimum energy in the space of all possible conformations, and the local 

one which seeks the minimum energy in a neighbourhood of the starting conformation. 

Figure 17 summarizes the key steps common to all docking protocols. 
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Figure 17: Representation of a docking workflow, with key steps common to all docking protocols. 46 

Given all these methodological differences, depending on the docking software used, 

implementations may vary. For example, the DOCK47 software uses a systemic sampling strategy; 

AutoDock48 uses two local and two global sampled space search methods and a hybrid of the two. 

There are many other implementations each with different characteristics.  

In the present work AutoDock Vina49,50 was used, which is an evolution of the original AutoDock 

software, characterized by an increase in speed of almost two orders of magnitude and an 

improvement in the accuracy of the binding mode predictions. The difference in performance is due 

to improvements in the scoring algorithm and in the search algorithm. 

The scoring algorithm consists of a hybrid scoring function, i.e. empirical and knowledge-based 

function, inspired in the X-Score function51, mainly differing in some terms and in the 

parametrization method, goimg beyond linear regression. This hybrid scoring function makes it 

possible to include the advantages of the two scoring functions on which it is based, that is, the 

empirical and the knowledge-based one. This means that poses are evaluated based on the 

probability, derived from experimental observations, that the pose actually occurs and based on 

measurements of experimental affinity. The search algorithm is a Monte-Carlo (MC) iterated search 
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combined with the Broyden-Fletcher-Goldfarb-Shannon (BFGS) gradient-based local optimizer. 

The algorithm consists of a succession of steps based on a mutation of the ligand conformation 

obtained in a stochastic way and a local optimization, each of which is accepted according to the 

Metropolis criterio 52, i.e. the step is assigned a probability based on the Boltzmann probability 

function. The general form of the Metropolis criterion is: 

P ∝  e
−ΔE
𝑘𝐵𝑇  

where ΔE is the energy difference between two random variations of the ligand conformation, kB is 

the Boltzmann constant and T the absolute temperature. Local optimization is performed via the 

BFGS method, which uses the value of the scoring function and its gradient, i.e the derivatives of 

the scoring function with respect to the position and orientation of the ligand. Evaluating the 

gradient may take longer, but the gain in using the gradient is a significant acceleration of the 

optimization. 

An aspect to underline is that the origin of the structure of both the ligand and the protein greatly 

influences the results obtained. To obtain better results, the structure of the protein should have 

been determined experimentally, therefore by NMR or X-ray crystallography, and obtained from 

the Protein Data Bank. For ligands, there are numerous databases of chemical compounds from 

which the structures of interest can be obtained, two of which, for example, are PubChem or 

DrugBank. Another important aspect affecting the docking results is the correct protonation of the 

ligand and receptor and the correct partial charge state of the ligand, which can be calculated by 

various methods (Gasteiger, AM1-BCC, etc.). It is therefore crucial to opt for the right ligand 

preparation method to obtain sensible results. 

1.4 ASSAM - Amino acid pattern Search for Substructures And Motifs 
ASSAM is a graph theoretical program that was first presented in 1993 and later implemented as a 

free web server available at http://mfrlab.org/grafss/assam/53,54. It was developed to find structural 

similarities of amino acid side-chains patterns between a protein or macromolecule of interest and 

proteins in the Protein Data Bank archive containing the currently solved proteome, enabling a 

proteome-wide scan of residue patterns of interest. 

It is well-known that the function of biological macromolecules is directly determined by their 

three-dimensional structure (tertiary and quaternary structure). Hence, the presence of local 

structural similarities between different proteins might also suggest functional similarity, even 

without the identity of the amino acid sequences. More in detail, the functionality of a protein is 
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often associated not with its entire three-dimensional structure but with one or more restricted areas 

called active sites. The active sites correspond to a set of amino acids arranged in space in a specific 

way or pattern. Another known aspect among biological molecules is the presence of such patterns 

in totally unrelated proteins, which have neither sequence similarity nor global 3D structure 

similarity nor common evolutionary precursors, but are involved in similar chemical activities: this 

represents a case of convergent evolution. This is why three-dimensional amino acid patterns are 

the key concept of ASSAM. 

The basic concept behind the ASSAM workflow is described as follows: 

A. The structure of the pattern is represented through a graph. The nodes or vertices of the 

graph identify the side chains of the individual amino acids. Each node corresponds to a 

vector obtained from two pseudo atoms whose position identifies the functional part of the 

side chain corresponding to the node. The edges or arcs of the graph identify the geometric 

relationships between pairs of nodes, calculated in terms of the distances between the 

corresponding vectors. Figure 18 shows an example of a graph with nodes and edges. 

 

 

Figure 18: Example of a graph with 10 nodes and 11 edges. Source: https://mathinsight.org/definition/graph 

B. The query pattern is then searched against the structures present in the Protein Data Bank for 

any occurrences through the maximal common subgraph approach. In graph theory, 

maximal common subgraph can mean (i) a graph that is an induced subgraph of two initial 

graphs, that is, a graph formed by the largest subset of common nodes or it can mean (ii) a 

graph that is a subgraph of two initial graphs that has as many edges as possible. 

The side chain representation used in ASSAM is shown in Figure 19.  
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Figure 19: The side chain representation used in ASSAM. (A) Represents the 20 amino acid types with the positions of pseudo-atoms 
in yellow and green. (B) Diagram of an aspartate–histidine–serine pattern. The dashed lines represent the distances between pseudo-

atoms.53 

The information of the three-dimensional amino acid pattern of interest, also called the motif, can 

be collected in a formatted PDB file that represents the input data into the program. The motif can 

be formed by 2 to 12 amino acids. The search output consists of a list of protein structures, for 

which there is a match of residues with the residues of the query motif, ranked by the RMSD, i.e. 

root mean square deviation, of the matches53 (Figure 20). 
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Figure 20: Diagram showing the input and output structures of ASSAM 53.  
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4 Sweet Taste Receptor agonist binding site similarity search to 

elucidate the roles of tastants in homeostasis and disease 

4.1 Introduction 
The sense of taste is a sensory modality that plays a fundamental role in discriminating ingestible 

substances, nutrients, from potentially harmful substances that must be avoided, especially in 

omnivorous species given the range of their feeding strategy5. It appears thus entirely reasonable 

that the sense of taste played an important role throughout the evolution of organisms, and it is well 

known that the basic functional mechanisms of the gustatory system have been conserved in both 

vertebrates and invertebrates. Humans, in particular, can perceive five primary taste qualities, i.e. 

sweet, umami, bitter, salty and acid, through the interaction of the molecules contained in food and 

the specialized sensory organs, i.e. the taste receptor cells, present on the papillae of the tongue that 

recognize their chemical properties. 

Interestingly, sweet, umami and bitter taste receptors are also expressed in other areas of the body 

such as in the gastrointestinal tract, respiratory tract and endocrine system, where they are thought 

to be involved in activities such as nutrient detection and regulation of metabolic activity30,55, innate 

immune response and bronchodilatation25,30, and modulation of hormone secretion2,55, respectively. 

This work investigates the sweet taste receptor complexed with one of its taste agonists, sucrose. 

The receptor is a class-C dimeric GPCR composed of the T1R2 and T1R3 monomers, consisting 

each of a large extracellular domain connected via a cysteine-rich domain to a transmembrane 

domain formed by 7 helices. The study focused on the two binding sites present in the T1R2 and 

T1R3 subunits in the extracellular domain. 

A methodology was implemented, using algorithms and software packages belonging to the field of 

molecular modelling, to screen the currently solved proteome for proteins which exhibit a highly 

similar local amino acid pattern to the one lining the sucrose binding site in the T1R2/T1R3 dimer, 

in terms of both type and spatial distribution of residues. The rationale of the work is to explore the 

taste transduction pathway from a proteomic point of view, to elucidate the possible functions of 

tastants beyond the gustatory system, where they evoke the sensations of taste, and to investigate 

whether other classes of proteins have a conserved ability to recognize such ligands, with possible 

implications in nutrition, homeostasis and disease. 



 

36 
 

4.2 Materials and Methods 

4.2.1 Similarity search software: ASSAM 

As a first step in the present work, the state of the art of existing methodologies related to the study 

of protein binding sites was examined, with a special focus on strategies aimed at the comparison of 

different protein binding sites. Over the years, several computational methods quantifying the 

global or local similarity of protein cavities have been developed, and their number is growing to 

this day. Such methods, each with their own peculiarities and distinctive aspects, all share three 

general methodological steps: 

1. Three-dimensional analysis of the structures of interest; 

2. Comparison of such structures; 

3. Quantification of similarity through a metric (e.g. a scoring function). 

Among those, the most crucial step is the comparison, for two main reasons: the first is that an 

incorrect comparison method leads to an underestimation of the similarity score, and the second is 

the high computational cost in the case of multiple comparisons with a large number of structures, 

as can happen for example in a proteome-level search against whole databases such as the Protein 

Data Bank. The strategy for representation also influences the result of the comparison. Indeed, the 

binding site can be represented in various ways, including (a) taking the type of amino acid residues 

that interact with the ligand into consideration; (b) representing the binding site through a surface 

onto which the physical-chemical characteristics are projected; (c) by considering protein-ligand 

interactions. The first two methods listed are structure-based, i.e. they stem from observing the 

structure of the protein. 

Different methods that follow the same representation scheme can follow however different 

comparison strategies. Some of the comparison strategies can be (a) graphical-theoretical 

approaches, where the maximum common subgraph is searched; (b) fingerprint approaches, where 

the shapes involved in the binding site are considered; (c) approaches based on labelled 3D points 

and geometric hashing, i.e. 3D transformations that align pairs of structures, or (d) alternative 

approaches. Furthermore, comparison algorithms may or may not depend on the alignment of the 

structures of interest. Comparison methods that rely on residues can use graphs, fingerprints, or 

alternative approaches. In particular, the comparison reveals the similarity between the residues, the 

type of residues and the atomic composition; also, such methods perform well where the sequence 

and atomic position of the structure of interest are well preserved. Those that rely on surfaces can 

instead use graphs or labelled 3D points for comparison. These methods are particularly used when 

dealing with binding sites in proteins that do not show significant conservation in residues, atomic 
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composition, orientation or folding, but show considerable selectivity towards common ligands. 

Indeed, in these cases, the distribution of the properties on the surface of the binding site and the 

shape of the binding site are determining factors for the selectivity of the ligands. And finally, 

methods that rely on interactions can use graphs or fingerprints for comparison56.  

In the scoring function, the final score applied to a binding site pair match might also include other 

properties beyond just the site comparison metric, e.g. surface similarity. 

Table 1: Summary of the methods analyzed in the present work, and their respective Type of representation of the binding site and 
strategy of comparison between binding-sites 

Method Type of representation Strategy of comparison 

SuMo (2003) 57  Residue-based 3D Points 

PINTS (2003) 58  Residue-based Other 

eF-seek (2004) 59  Surface-based Graphs 

TM-Align (2005) 60  Residue-based Other 

SiteEngine (2005) 61  Surface-based Graphs 

ContactMetricServer (2006) 62  Residue-based Other 

PocketMatch (2008) 63,64  Residue-based Other 

MultiBind MAPPIS (2008) 65  Surface-based 3D Points 

PevoSOAR (2009) 66  Surface-based Other 

fPOP (2009) 67 Surface-based Fingerprint 

PESD-serv (2010) 68 Interaction-based Other 

SeSAW (2010) 69  Residue-based Other 

LabelHash (2010) 70  Residue-based Other 

FuzCav (2010) 71  Residue-based Fingerprint 

Pro-BIS ligand (2012) 72  Surface-based Graphs 

PoSSuM (2012) 73  Residue-based Other 

COFACTOR (2012) 74  Residue-based 3D Points 

SPRITE-ASAAM (2012) 53,54  Residue-based Graphs 

SiteComp lin (2012) 75  Interaction-based Other 

Iso-Cleft Finder (2013) 76  Residue-based Graphs 

CatSId (2013) 77  Residue-based Graphs 

IMAAAGINE (2013) 78  Residue-based Graphs 

Apoc (2013) 79  Residue-based Other 

ASSIST (2014) 80,81 Residue-based 3D Points 

IsoMIF Finder (2015) 82,83  Interaction-based Graphs 

G-LoSA  (2016) 84 Residue-based Graphs 

Geomfinder (2016) 85  Residue-based Other 
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PatchSearch (2019) 86  Residue-based Graphs 

Drugreposer ER (2019)87  Residue-based Graphs 

DeeplyTough (2020) 88  Interaction-based Other 

 

After an extensive analysis of the methods presented in Table 1, ASSAM was chosen as the most 

appropriate for the present work for the following reasons: (i) the simplicity in defining the binding 

site to be searched, i.e. an atomic coordinate file of the residues of interest as a PDB-formatted file, 

(ii) the possibility to screen against the whole Protein Data Bank database, (iii) the comparably fast 

time to solution, and (iv) the fact that the program considers both right-handed and left-handed 

superpositions equally valid and both are reported in two separate result lists. Left or right overlap 

refers to the orientation of the alpha-helices. In particular, the superimposition of a left-handed a-

helical bundle to a right-handed one are not equivalent, but, at the level of side chains, two 

groupings of amino acids can have the same chemical activity even without necessarily being of the 

same handedness, instead, the important terms are the distances between the residues53. 

4.2.2 Workflow 

4.2.2.1 Gathering information from an initial model  

The analyzed structure is the sweet receptor dimer composed of the T1R2 and T1R3 monomers 

complexed with the tastant agonist sucrose in both binding sites in the two protein subunits. The 

T1R2 / T1R3 model was obtained in previous work from the 6N5189 template, which is 

Metabotropic Glutamate Receptor 5 bound to L-quisqualate and Nb43, present in the RCSB Protein 

Data Bank. For all the subsequent analyses, both binding sites were considered to account for their 

difference, despite their ability to bind the same ligand.  

The first analysis that was performed is a visual analysis, using the VMD graphics software40, 

which is a molecular visualization program, to frame the two ligands and consequently, the two 

binding sites, identified by means of a distance threshold on residues with respect to the ligands. 

To produce the ASSAM input files, a list of residues of interest defining the binding site to be 

screened for must be obtained first, and different strategies can be exploited to do so. A first 

strategy consisted in obtaining a list of coordinates of the residues of the receptor located at a 

certain distance from the ligand. From this set of residues different smaller subsets were the 

extracted, composed of an increasing number of residues (from 3 to 12), as indicated in the 

guidelines of ASSAM. In addition, a further subset of residues was extracted, consisting of those 

residues involved in non-covalent interactions with the ligand and also respecting the same 

threshold of maximum distance from the ligand as defined above. These residues were identified 
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using the Protein-Ligand Interaction Profiler or PLIP software90, which takes as an input a structure 

in PDB format, defined by the user or taken from the Protein Data Bank, and subsequently detects 

hydrogen bonds, hydrophobic contacts, pi-stacking, interactions pi-cation, salt bridges, water 

bridges, metal complexes and halogen bonds between ligands and targets. All the subsets of 

residues of interest will be referred to with the term motif in the subsequent descritions. 

The goal of the above-mentioned strategies was to extract different residue motifs to be used as 

input data in the ASSAM similarity search. The motif extraction procedure was automated using the 

Python programming language and the MDAnalysis Python package. However, the described 

strategy showed a major drawback since only one conformation of the receptor-ligand complex was 

considered and the method of selection of sub-motifs with increasing number of residues was not 

optimal. Therefore, the latter step was discarded and only the motif composed of residues involved 

in non-covalent interactions with the ligand was considered, obtained for different conformations of 

the receptor-ligand complex. Such different starting conformations were obtained through a 

clustering procedure performed on the last 100 ns of a Molecular Dynamics trajectory of the sweet 

taste receptor, obtained in previous work. Clustering was performed on the residues lining the 

binding site. Several tests were carried out to optimize the size of this reference group, by tuning 

both the distance from the ligand defining the residues to be considered, and the RMSD cut-off 

value for clustering, gradually decreasing from 0.15 nm (Figure 21).  

 

Figure 21: Tests to optimize the size of the reference group, The values highlighted in blue are the final values chosen. 

cutoff [nm] clusters cutoff [nm] clusters

0,15 1 0,15 1

0,1 2 0,1 1

0,095 22 0,095 1

0,09 177 0,09 1

0,085 624 0,085 3

--- --- 0,08 12

--- --- 0,075 172

--- --- 0,079 26

cutoff [nm] clusters cutoff [nm] clusters

0,15 1 0,15 1

0,1 1 0,1 1

cutoff [nm] clusters cutoff [nm] clusters

0,15 1 0,15 1

0,1 1 0,1 1

Reference Group 3.5A

C Binding site D Binding site

Reference Group 10A

Reference Group 5A
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The final tuned values were a distance to the ligand of maximum 10 Å and a cut-off of 0.95 Å, for 

both binding sites. After identifying the clusters for each binding site representing the dominant 

conformation states, the corresponding centroids were extracted. These were subsequently used as 

the starting conformations from which the residue motifs representing the binding site were created, 

by using PLIP and MDAnalysis as previously described. In detail, for the identification of the 

interacting residues, the input files used in PLIP consisted of residues located within 10 Å from the 

ligand and the ligand itself. MDAnalysis was initially used to create a PDB formatted file 

containing just the binding site and its bound ligand, to be used with PLIP, and again to create a 

PDB formatted file containing only the interacting residues, i.e. to create the motif. Figure 22 

provides a visual representation of this process. 

 

Figure 22: Flow chart of the creation of the motifs 

4.2.2.2 Similarity search 

Subsequently, the similarity search for each extracted motif, that is a local 3D representation of the 

binding site of interest, was carried out using the ASSAM webtool. For successful searches, the 

output results were saved in a separate file, in table format, to allow easier retrieval and 
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management of the data for the following analyses. The output of the ASSAM search is formatted 

as a list, in which each row corresponds to a hit protein found in the Protein Data Bank, along with 

its PDB accession ID, which presents a match with the residues of the input motif, which are also 

referred to as query. The matching residues between the query and the hit are also indicated, as well 

as the root-mean-square deviation (RMSD) value of between query residues and hit residues after 

alignment. For each input, ASSAM retrieves a maximum of 100 hit proteins, sorted by the number 

of matching residues and RMSD value. An example of the ASSAM search output is provided in 

Figure 23. 

 

Figure 23:An example of an ASSAM search output53. 

In the table-formatted file where the ASSAM output results were saved, containing the hit protein 

PDB ID, the matching residues of the query and the hit and the RMSD value, the following pieces 

of information have been subsequently added: the number of the initial conformation from which 

the query motif was created, and further information on the hit protein obtained from the RCSB 

Protein Data Bank site, such as the DOI of the corresponding pubblication, the EC classification, 

and the organism in which the protein is expressed. The process of creating this file has been 

automated as well. 

4.2.2.3 Multi-step filtering 

Given the large number of hit proteins found through the binding site similarity search, further 

filtering steps were implemented to reduce and refine this set, with the goal of extracting those hits 

more relevant with respect to the binding site of the receptor under analysis.  

Since the hit proteins have residues matching those present in various input motifs, it is necessary to 

understand whether these matching residues might indeed constitute a binding site. To achieve this, 

the Solvent-Accesible Surface Area (SASA) was calculated, as implemented in the GROMACS 

software. In detail, for each hit protein, a custom index file was created containing only the 
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matching residues, which was then used for the calculation of the SASA, expressed in nm2, of the 

group of residues. Values equal to zero indicate that the cleft identified by the residues is not 

exposed, but is rather buried in the structure of the protein and therefore cannot be accessible to the 

solvent nor the ligand. Values that are greater than zero, on the other hand, indicate that the cleft 

formed by the hit residues is on the surface of the corresponding protein and therefore might allow 

for binding the ligand. A further filtering step was carried out based on the value of the SASA 

calculation. To do so, the reference SASA values of the two original binding sites present in the 

sweet receptor were calculated in the last 100ns of the MD trajectory, to obtain two distributions of 

these values. From these distributions, two average SASA values were obtained which were used to 

establish two corresponding threshold values. Starting from these threshold values, the hits with a 

lower SASA value were excluded, because the binding site identified by the match residues was 

considered different from the corresponding binding site in the receptor. The threshold was set as 

20% of the mean reference sweet receptor binding site SASA values. 

The last filtering step that was carried out was based on Molecular Docking calculations. The 

original ligand of the receptor-ligand complex, i.e. sucrose, was docked to the site defined by the hit 

residues of each hit protein passing the previously mentioned SASA-based filtering step, using the 

AutoDock Vina docking software49. Among the proteins that resulted in docked sucrose with 

negative binding affinity, indicative of a possibly stable interaction of the latter with the protein, 

only those that had binding affinity values above a certain threshold were considered. 

A further filtering step was lastly employed: as the ensemble of obtained proteins is expected to be 

quite heterogeneous, containing proteins expressed by homo sapiens as well as other organisms (as 

found in the PDB), the aim was to screen for human homologues for the non-human protein hits, 

using the BLAST (Basic Local Alignment Search Tool) program91,92. BLAST screens sequence 

databases for given sequence queries: in this case, the human genome was screened against, 

calculating the statistical significance of matches. In this work, only proteins with an identity 

greater than 80% were considered. Therefore, triple filtering was carried out in this step. 

Finally, for the proteins belonging to the human proteome, excluding those obtained in the BLAST 

search, in particular for the ten hit proteins with the best predicted binding energy, an in-depth 

analysis was carried out in the UniProt bioinformatics database93 by investigating their functional 

characteristics. 

Figure 24 summarizes the above-described workflow using a flow chart. 
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Figure 24: Flowchart of the proposed workflow. The file images indicates the archive files. The boxes in blue refer to the ASSAM 
search, those in orange to the filtering step of SASA, and those in green refer to the filtering step of Molecular Docking.  
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4.3 Results 

4.3.1 Starting conformations and motifs 

Figure 25 shows the renderings of the receptor-ligand complex model created in VMD and visually 

inspected. 

 

Figure 25: The ligand is shown in green. Figure a) shows the T1R2/T1R3 model, where the blue chain, chain A, corresponds to the 
T1R2 subunit and the red chain, chain B, corresponds to the T1R3 subunit. Figure b) shows the complex protein-membrane.  

The binding sites defined by imposing a distance cutoff of 10 Å from the ligand are shown in 

Figure 26. 
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Figure 26: Focus on the ligands, sucrose, shown in green, and the two binding sites, the transparent surfaces, defined within a 
distance of 10 Å from the respective ligand. 

The clustering procedure of the residues forming both binding sites resulted in 22 clusters for the 

binding site in the T1R2 subunit, the blue chain, and 1 cluster for the binding site in the T1R3 

subunit, the red chain. In the description of the results reported herein, we will refer to the binding 

site of the T1R2 subunit as the C binding site and the binding site of the T1R3 subunit as the D 

binding site. Given the numeric difference of clusters of sites C and site D, a verification was 

carried out for site D, i.e. the clustering procedure was checked step by step manually, which 

confirmed the single cluster obtained.  

The centroids were extracted from the clusters and then the motifs were subsequently created, 22 

for the binding site C and 1 for the binding site D. Regarding binding site C, the number of 

interacting residues identified by PLIP and used for the creation of the motifs is on average 5 

(Figure 27), while for binding site D, 6 interacting residues were obtained. 
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Figure 27: The figure shows in pink the interacting residues found with PLIP for the binding site C in the 22 conformations 
corresponding to the 22 centroids. 

 

4.3.2 Similarity search and multi-step filtering 

The initial proteome-level screening for binding sites similar to the T1R2/T1R3 dimer, performed 

using the ASSAM tool, resulted in a total of 2500 hits, 2400 of which for binding site C and 100 for 

binding site D. Out of the total 2500, those belonging to human proteome were 236 considering 

unique PDB IDs, 293 when including redundant PDB entries. 

The SASA filtering step reduced the total number of hit proteins to 2477 by excluding all hits with 

a SASA equal to 0, and subsequently further down to 949 hit proteins when imposing the SASA 

criterion defined by equation (1) below:  

 𝑆𝐴𝑆𝐴𝐻𝐼𝑇 > 𝑆𝐴𝑆𝐴̅̅ ̅̅ ̅̅ ̅
𝑅𝐸𝐹 ∗ 0.2 (1) 

Where SASAHIT corresponds to the calculated SASA value of the given hit motif and 𝑆𝐴𝑆𝐴̅̅ ̅̅ ̅̅ ̅
𝑅𝐸𝐹 is 

the average SASA value of the sucrose binding sites in the T1R2/T1R3 dimer, i.e. the motif shall 

have a SASA value of at least 20% of the original binding site. 
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Among the 949 discovered proteins, 120 belong to the human proteome, 98 excluding redundant 

PDB entries. 

In the subsequent docking step, the 949 input proteins were prepocessed by re-building hydrogen 

atom coordinates, assigning Gasteiger partial charges to both the sucrose ligand and the proteins, 

solving PDB formatting errors, pruning alternate atom locations and comments and fixing any 

missing residues in the protein structures. These preprocessing steps were performed using the 

OpenBabel program94 for alternative location pruning and protonation, and using SWISS-MODEL 

online tool95 to rebuild the 3D coordinates of missing residues in the proteins. Molecular Docking 

filtering resulted in 831 hit proteins with an overall negative predicted binding energy to sucrose. 

By enforcing a binding energy threshold of at least -5 kcal/mol, the number of proteins of interest 

was reduced to 386, of which 338 refer to binding site C and 48 refer to binding site D. Out of these 

386, only 43 (corresponding to 34 non-redundant PDB IDs) belong to the human proteome. When 

also taking human homologues of the (animal) hit proteins into consideration, the final number of 

non-redundant proteins of potential interest is 44. 

A graphical summary, obtained in Excel, of the decrease in the size of the initial set of hit proteins, 

is presented in Figure 28. 
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Figure 28: Reduction of hit protein pool obtained from ASSAM research results. 1) The orange cone graph represents the total hit 
proteins, considering the results for both binding sites; 2) the blue cone graph represent the hit proteins for the C binding site; 3) the 

red cone graph represent the hit proteins for the D binding site. 

To further validate the binding site of the remaining hits, as identified by the residues matching the 

sucrose binding site present on the T1R2/T1R3, the hits were RMSD-aligned to the T1R2/T1R3 

dimer by superposing the matching residues of the binding sites. This step was carried out before 

the search for homologous proteins. The hit proteins with the best predicted binding affinity, i.e. 

more negative, were considered, both among the group of proteins not belonging to the human 

proteome and among those belonging to the human proteome, thus selecting a total of 20 top 

protein hits. A more detailed protein family and classification analysis was carried out for those top 

hits, by inspecting the information extracted from the RCSB PDB and embedded in the ASSAM 

result file for every hit in earlier stages. The distribution of the main protein families of the hits is 

shown in Figure 29, and it can be noted that the majority of hits correspond to proteins associated 

with enzymatic activities. 
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Figure 29: Distribution of the classification of proteins with better binding affinity following molecular docking analyses. The 
proteins in question are divided into 10 belonging to the human proteome and 10 belonging to different organisms. 

The RMSD alignment of the putative binding sites on hit proteins with the corresponding reference 

sucrose binding site on the T1R2/T1R3 dimer was carried out by selecting (a) the binding site of the 

hit protein complexed with the docked ligand in the best pose and (b) the binding site of the sweet 

receptor corresponding to the motif for which the protein under analysis represents a hit. 

The alignments were visually inspected with VMD, confirming the similarity of the two binding 

sites, with a good superposition of matching binding site-lining residues. Figure 30 reports 

examples of this visual superposition for three hits, all belonging to the human proteome. 
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Figure 30:Overlap of the binding site of hit proteins and the corresponding binding site of the sweet receptor, based on the matching 
residues. The hit protein’s residues are presented in green, while the sweet receptor’s residues are in violet. The spheres represent 

the ligands, both sucrose, those in yellow are the docked ligand in the best position at the hit protein site while those in white are the 
sweet receptor ligand. a) Residues of hit protein 1ibr and binding site D; docking affinity = -7,0 kcal/mol; b) Residues of hit protein 
2ast and binding site C; docking affinity = -6,5 kcal/mol; c) Residues of hit protein 3p8c and binding site C; docking affinity = -6,1 

kcal/mol.  

4.4 Discussion 
Given the presence of taste receptors in regions of the human organism external to the gustatory 

system, where their function is not directly associated with the transduction of a taste sensation, the 

overarching goal of the present work is to implement an integrated and automatized methodology to 

perform a structure-based screening in the currently solved proteome for a specific binding site, and 

to deploy said methodology in a pilot investigation on the sweet taste receptor binding site, to shed 

light on the possible role that tastants such as sucrose may play in contexts beyond the gustatory 

system alone, and thus investigate the proteins not belonging to the category of taste receptors, that 

are able to bind such molecules. 

The screening for proteins that have a binding site featuring a strong conservation of the 

arrangement and type of amino acid residues when compared with the sucrose binding sites present 
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in the sweet receptor, consisted of two main steps: first of all, after a comparative analysis of the 

characteristics of the currently existing methods that can perform binding site comparison, the 

ASSAM53 program was selected. The main reasons are the ease with which the user can define the 

characteristics of the site to be searched in terms of the relative spatial position information, in PDB 

format, of the most significant residues, and the possibility of searching among the entire RCSB 

Protein Data Bank database. The term more significant residues herein denotes those residues, 

within the binding site, that are in contact with the ligand, i.e. that are involved in non-covalent 

interactions with the latter, such as hydrogen bonds. The set of these residues is defined as a motif 

and was obtained by analysing the protein-ligand complex with PLIP90. Several motifs were used as 

input files in the ASSAM similarity search, as obtained from different conformations extracted by 

means of clustering on the last 100ns of an MD trajectory of the receptor-ligand complex. Each 

motif is composed of 4 to 5, residues. The results of the ASSAM search are a pool of hit proteins, 

featuring the same residues with a highly homologous spatial arrangement with respect to those of 

corresponding motif. They are ranked by a similarity score given by the RMSD value of the 

superimposition of the matching residues. The presence of a similar spatial arrangement of residues 

of the same type can be indicative of a potentially similar binding site, both in terms of geometry 

and in terms of function. 

The second phase, which consisted in extracting a subset of truly significant proteins from the 

ASSAM output pool composed of 2500 hit proteins, relied on a set of techniques to perform 

consecutive filtering phases. In detail, the SASA calculation is used as a first filter, to extract the 

proteins with the binding sites exposed to the solvent and, among those, to restrict the search field 

to those that have the binding-site shape similar to that of the respective sites present on the 

receptor. This operation allowed for the reduction of the size of the pool of hits by more than 60%. 

Molecular Docking was subsequently employed as a second filtering step, by docking the sucrose 

molecule, representing one natural agonist of the original sweet taste receptor binding site, to the 

putative binding sites found on filtered pool of hits. This analysis further narrowed the batch of 

proteins, as only those with negative binding energy, with a magnitude greater than 5 kcal/mol, 

were considered. Out of the the initial 2500 hits, the set was narrowed down to 386 proteins, 

approximately 15% of the size of the starting data.  

Since the interest is particularly on proteins that are expressed in humans, the final set of proteins 

shall still be pruned by considering only (a) those directly expressed by humans in the PDB and (b) 

human homologues of hit proteins belonging to other animals, as found in the PDB. With these 

criteria, the final set of hits contained 44 non-redundant proteins, corresponding to a reduction of 
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the starting pool of hits by more than 98%. In the filterd set of hits (386 proteins) the analysis of the 

alignment of the binding sites between the hit proteins, with better binding affinity, and the sweet 

receptor, and the subsequent visual inspection, confirmed the actual local similarity of the binding 

site. Furthermore, for the hit proteins with the best predicted binding energy, a more detailed 

analysis of their classification and function was carried out, e.g. in terms of EC classification, 

revealing how most of the hits represent proteins involved in enzymatic activities, such as 

hydrolases, oxidoreductases or transferases. A more in-depth study of their functional 

characteristics, particularly for those hits belonging to the human proteome, reveals the involvement 

of the hit proteins in several biological processes such as cell cycle, cell division, transcription 

regulation, post-translational protein modification, and many others. It can be easily understood that 

the biological processes in which these proteins are involved are fundamental for in the lifecycle of 

a cell. From a more holistic perspective, it should be noted that the hit proteins are involved in 

functions at different hierarchical levels: (i) they play a regulatory role in the progression of the cell 

cycle, in particular in the G1-S and G1-M transition (hit with PDBid 2ast); (ii) they are involved in 

the de-novo biosynthesis of pyrimidine (hit with PDBid 5h2z); (iii) they are involved in the 

intracellular transport of proteins, in particular in the nucleocytoplasmic transport (hit with PDBid 

1ibr), and in the post-translational modification of proteins such as de-ADP-ribosylation (hit with 

PDBid 3hfw); (iv) they are involved in the regulation of actin filament reorganization (hits with 

PDBid 3p8c and 4byf) which is important for processes such as cell migration, phagocytosis and 

intracellular motility of lipid vesicles; (v) they are involved in antiviral defence processes (hits with 

PDBid 2ast and 1ibr). By also considering the biological processes of homologous proteins (H.P), 

the field of action of the proteins involved is expanded. In particular: (vi) they are involved in the 

regulation of neurotransmitter release and in chemical synaptic transmission (H.P of hit with PDBid 

1pk8); (vii) in the catabolic and metabolic process of glycogen (H.P of hit with PDBid 2gj4) and in 

the regulation of cellular metabolic processes of amino acids (H.P of hit with PDBid 4e01); (viii) in 

the active transport across the plasma membrane of various nutrients, in particular sodium and 

potassium ions and therefore maintain the cellular homeostasis of these ions and not only as these 

ions are involved in numerous other processes (HP of the hit with PDBid 2zxe); (ix) they are 

involved in the regulation of inflammatory response, in both the innate and adaptive immunity (H.P 

of hits with PDBid 3wpc and 4eyu); (x) are involved in purine degradation (H.P of the hit with 

PDBid 3nvw). 

Based on these results, it seems of particular interest to further investigate the ability of these 

proteins to bind to sucrose in a more refined way. In particular, the goal should be to understand if 

the binding of sucrose to those putative hits influences to a certain extent the biological pathways in 
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which these proteins are involved. This could further be an innovative starting point in the 

development of dietary-pharmacological therapies, especially in case of involvement of these 

proteins in diseases or, more in general, disruption of homeostasis. 
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4.5 Conclusions 
The present work showed an example application of structure-based ligand binding site similarity 

search, to elucidate the role of taste molecules in pathways beyond the perception of taste, as 

several experimental studies have shown the presence of taste receptors in areas of the body not 

belonging to the gustatory system. Therefore, a rational methodology has been developed to search 

for similar binding sites at the proteomic level, relying on the freely available ASSAM binding site 

similarity search software, followed by multiple filtering steps based on Molecular Mechanics, in 

particular the calculation of the SASA and Molecular Docking, to extract the most relevant proteins 

with respect to the binding site of the protein under investigation. The developed method was 

applied on a pilot investigation to the sweet receptor binding sites after extracting the key sucrose-

binding residues in the receptor dimer. The final results of this study showed that most of the hits 

belong to classes of proteins involved in enzymatic activity (hydrolases and oxidoreductases are the 

most numerous): after analysing the functional characteristics of the proteins belonging to the 

human proteome, it is to be underlined how those are involved in several biological processes (cell 

cycle, cell division, post-translational protein modification, etc.). This information may shed light 

on the role of some tastants in the development of food-related diseases. On a higher level, the 

developed methodology represents an example of targeted screening technique of binding sites at 

the level of the entire Protein Data Bank database, with significant improvements with respect to 

screening procedures based solely on geometric criteria, since the screening is guided by design by 

the presence of specific motifs that are already be known to have a specific function, as in the case 

of the present work, where the function is to bind sweet molecules. Furthermore, this work presents 

an example of application focused on the sweet receptor and on the sucrose molecule, but the 

developed approach can be easily extended to other tastants, and more generally to other ligand 

transduction and recognition mechanisms. 
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6 Supplementary information 
Table 2: Informations about the final pool of proteins obtained after the filtering steps. In particular the corresponding motif 
information, matching residues between motif and hit, RMSD of the overlap and EC classification of the hit proteins belonging to the 
human proteome are shown. 

Motif origin Hit PDBid 
Motif Matching 

Residues 

Hit Matching 

Residues 
RMSD [A] 

EC 

Classification 

C binding site, 

Centroid 1 
4xoi 

A:66:VAL, 

A:103:TYR, 

A:212:SER, 

A:214:THR 

B:174:VAL, 

B:121:TYR, 

B:143:SER, 

B:140:THR 

1,50 CELL-CYCLE 

C binding site, 

Centroid 1 
4nz6 

A:66:VAL, 

A:103:TYR, 

A:212:SER, 

A:214:THR 

A:338:VAL, 

A:201:TYR, 

A:150:SER, 

A:145:THR 

1,38 ISOMERASE 

C binding site, 

Centroid 1 
4j37 

A:66:VAL, 

 A:103:TYR, 

A:212:SER, 

A:214:THR 

A:338:VAL, 

A:201:TYR, 

A:150:SER, 

A:145:THR 

1,51 
RNA-BINDING-

PROTEIN 

C binding site, 

Centroid 1 
4uwh 

A:66:VAL, 

A:103:TYR, 

A:212:SER, 

A:214:THR 

A:549:VAL, 

A:494:TYR, 

A:540:SER, 

A:447:THR 

1,53 TRANSFERASE 

C binding site, 

Centroid 1 
1n6c 

A:66:VAL, 

A:103:TYR, 

A:212:SER, 

A:214:THR 

A:248:VAL, 

A:245:TYR, 

A:268:SER, 

A:266:THR 

1,59 TRANSFERASE 

C binding site, 

Centroid 1 
2a74 

A:66:VAL, 

A:103:TYR, 

A:212:SER, 

A:214:THR 

D:576:VAL, 

D:117:TYR, 

D:170:SER, 

D:112:THR 

1,07 
IMMUNE-

SYSTEM 

C binding site, 

Centroid 13 
3f1s 

A:44:ASN, 

A:66:VAL, 

A:212:SER, 

A:214:THR 

B:220:ASN, 

B:345:VAL, 

B:349:SER, 

B:328:THR 

1,17 

HYDROLASE-

INHIBITOR/HY

DROLASE 

C binding site, 4byf A:44:ASN, A:196:ASN, 1,32 HYDROLASE 
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Centroid 13 A:63:GLU, 

A:65:LYS, 

A:66:VAL 

A:399:GLU, 

A:189:LYS, 

A:192:VAL 

C binding site, 

Centroid 13 
2fd6 

A:44:ASN, 

A:65:LYS, 

A:66:VAL, 

A:214:THR 

U:259:ASN, 

U:198:LYS, 

U:238:VAL, 

U:164:THR 

1,27 

IMMUNE-

SYSTEM/-

HYDROLASE 

C binding site, 

Centroid 14 
3f1s 

A:44:ASN, 

A:66:VAL, 

A:212:SER, 

A:214:THR 

B:220:ASN, 

B:345:VAL, 

B:349:SER, 

B:328:THR 

1,16 

HYDROLASE-

INHIBITOR/HY

DROLASE 

C binding site, 

Centroid 14 
3lpp 

A:44:ASN, 

A:66:VAL, 

A:212:SER, 

A:214:THR 

A:82:ASN, 

A:188:VAL, 

A:102:SER, 

A:104:THR 

1,13 HYDROLASE 

C binding site, 

Centroid 14 
5v44 

A:44:ASN, 

A:66:VAL, 

A:212:SER, 

A:214:THR 

A:195:ASN, 

A:97:VAL, 

A:227:SER, 

A:220:THR 

1,31 CHAPERONE 

C binding site, 

Centroid 14 
5x5o 

A:44:ASN, 

A:66:VAL, 

A:212:SER, 

A:214:THR 

A:21:ASN, 

A:30:VAL, 

A:26:SER, 

A:161:THR 

1,32 TRANSFERASE 

C binding site, 

Centroid 14 
4pxz 

A:44:ASN, 

A:65:LYS, 

A:66:VAL, 

A:214:THR 

A:201:ASN, 

A:237:LYS, 

A:238:VAL, 

A:126:THR 

1,35 
MEMBRANE-

PROTEIN 

C binding site, 

Centroid 14 
2fd6 

A:44:ASN, 

A:65:LYS, 

A:66:VAL, 

A:214:THR 

U:259:ASN, 

U:198:LYS, 

U:238:VAL, 

U:164:THR 

1,30 

IMMUNE-

SYSTEM/-

HYDROLASE 

C binding site, 

Centroid 15 
3f1s 

A:44:ASN, 

A:66:VAL, 

A:212:SER, 

B:220:ASN, 

B:345:VAL, 

B:349:SER, 

1,22 

HYDROLASE-

INHIBITOR/HY

DROLASE 
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A:214:THR B:328:THR 

C binding site, 

Centroid 15 
4may 

A:44:ASN, 

A:63:GLU, 

A:66:VAL, 

A:212:SER 

D:60:ASN, 

D:81:GLU, 

D:17:VAL, 

D:85:SER 

1,29 
IMMUNE-

SYSTEM 

C binding site, 

Centroid 15 
4may 

A:44:ASN, 

A:63:GLU, 

A:66:VAL, 

A:214:THR 

D:60:ASN, 

D:81:GLU, 

D:17:VAL, 

D:105:THR 

1,30 
IMMUNE-

SYSTEM 

C binding site, 

Centroid 15 
3i2n 

A:44:ASN, 

A:63:GLU, 

A:66:VAL, 

A:214:THR 

A:225:ASN, 

A:273:GLU, 

A:311:VAL, 

A:277:THR 

1,31 
TRANSCRIPTIO

N 

C binding site, 

Centroid 15 
2fd6 

A:44:ASN, 

A:65:LYS, 

A:66:VAL, 

A:214:THR 

U:259:ASN, 

U:198:LYS, 

U:238:VAL, 

U:164:THR 

1,28 

IMMUNE-

SYSTEM/-

HYDROLASE 

C binding site, 

Centroid 16 
3f1s 

A:44:ASN, 

A:66:VAL, 

A:212:SER, 

A:214:THR 

B:220:ASN, 

B:345:VAL, 

B:349:SER, 

B:328:THR 

1,27 

HYDROLASE-

INHIBITOR/HY

DROLASE 

C binding site, 

Centroid 16 
2fd6 

A:44:ASN, 

A:65:LYS, 

A:66:VAL, 

A:214:THR 

U:259:ASN, 

U:198:LYS, 

U:238:VAL, 

U:164:THR 

1,28 

IMMUNE-

SYSTEM/-

HYDROLASE 

C binding site, 

Centroid 18 
3e0c 

A:63:GLU, 

A:65:LYS, 

A:212:SER, 

A:213:ASP, 

A:214:THR 

A:312:GLU, 

A:35:LYS, 

A:331:SER, 

A:330:ASP, 

A:354:THR 

1,74 
DNA-BINDING-

PROTEIN 

C binding site, 

Centroid 20 
2ast 

A:44:ASN, 

A:63:GLU, 

A:66:VAL, 

A:212:SER, 

B:2262:ASN, 

B:2214:GLU, 

C:3055:VAL, 

B:2241:SER, 

1,60 
LIGASE/LIGASE

-INHIBITOR 
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A:213:ASP B:2268:ASP 

C binding site, 

Centroid 20 
3f1s 

A:44:ASN, 

A:66:VAL, 

A:212:SER, 

A:214:THR 

B:220:ASN, 

B:345:VAL, 

B:349:SER, 

B:328:THR 

1,13 

HYDROLASE-

INHIBITOR/HY

DROLASE 

C binding site, 

Centroid 20 
1ivh 

A:44:ASN, 

A:63:GLU, 

A:66:VAL, 

A:214:THR 

A:11:ASN, 

A:84:GLU, 

A:82:VAL, 

A:23:THR 

1,24 
OXIDOREDUCT

ASE 

C binding site, 

Centroid 21 
1z70 

A:44:ASN, 

A:66:VAL, 

A:212:SER, 

A:214:THR 

X:1352:ASN, 

X:1157:VAL, 

X:1333:SER, 

X:1278:THR 

1,38 
OXIDOREDUCT

ASE 

C binding site, 

Centroid 21 
2aii 

A:44:ASN, 

A:66:VAL, 

A:212:SER, 

A:214:THR 

X:352:ASN, 

X:157:VAL, 

X:333:SER, 

X:278:THR 

1,38 

HYDROLASE-

ACTIVATOR/PR

OTEIN-

BINDING 

C binding site, 

Centroid 22 
2yxt 

A:44:ASN, 

A:66:VAL, 

A:103:TYR, 

A:214:THR 

A:150:ASN, 

A:128:VAL, 

A:136:TYR, 

A:85:THR 

1,23 TRANSFERASE 

C binding site, 

Centroid 3 
4xos 

A:63:GLU, 

A:211:SER, 

A:214:THR, 

A:242:THR 

A:81:GLU, 

A:77:SER, 

A:55:THR, 

A:105:THR 

1,50 
ANTITUMOR-

PROTEIN 

C binding site, 

Centroid 3 
5mj6 

A:63:GLU, 

A:211:SER, 

A:214:THR, 

A:242:THR 

A:285:GLU, 

A:278:SER, 

A:186:THR, 

A:280:THR 

1,53 HYDROLASE 

C binding site, 

Centroid 4 
4xoi 

A:63:GLU, 

A:103:TYR, 

A:212:SER, 

A:214:THR 

B:47:GLU, 

B:121:TYR, 

B:143:SER, 

B:140:THR 

1,21 CELL-CYCLE 

C binding site, 4rfq A:63:GLU, A:170:GLU, 1,28 TRANSFERASE 
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Centroid 4 A:103:TYR, 

A:211:SER, 

A:212:SER 

A:297:TYR, 

A:84:SER, 

A:83:SER 

C binding site, 

Centroid 4 
3fed 

A:63:GLU, 

A:103:TYR, 

A:211:SER, 

A:212:SER 

A:489:GLU, 

A:527:TYR, 

A:482:SER, 

A:473:SER 

1,34 HYDROLASE 

C binding site, 

Centroid 4 
5h2z 

A:63:GLU, 

A:103:TYR, 

A:211:SER, 

A:212:SER 

A:117:GLU, 

A:195:TYR, 

A:215:SER, 

A:214:SER 

1,34 
OXIDOREDUCT

ASE 

D binding site, 

Centroid 1 
3mdj 

B:67:SER, 

B:169:ALA, 

B:216:ASP, 

B:276:SER, 

B:301:GLU 

A:343:SER, 

A:279:ALA, 

A:335:ASP, 

A:339:SER, 

A:329:GLU 

1,72 

HYDROLASE/H

YDROLASE-

INHIBITOR 

D binding site, 

Centroid 1 
3hfw 

B:67:SER, 

B:169:ALA, 

B:170:SER, 

B:301:GLU 

A:264:SER, 

A:274:ALA, 

A:305:SER, 

A:25:GLU 

1,00 HYDROLASE 

D binding site, 

Centroid 1 
1ibr 

B:67:SER, 

B:169:ALA, 

B:276:SER, 

B:301:GLU 

B:110:SER, 

B:194:ALA, 

B:107:SER, 

B:144:GLU 

1,09 

CELL-

CYCLE/TRANSL

ATION 

D binding site, 

Centroid 1 
2vqm 

B:67:SER, 

B:169:ALA, 

B:170:SER, 

B:216:ASP 

A:346:SER, 

A:306:ALA, 

A:305:SER, 

A:354:ASP 

1,11 HYDROLASE 

D binding site, 

Centroid 1 
3b6h 

B:67:SER, 

B:169:ALA, 

B:276:SER, 

B:301:GLU 

A:118:SER, 

A:98:ALA, 

A:116:SER, 

A:105:GLU 

1,12 ISOMERASE 

D binding site, 

Centroid 1 
3p8c 

B:67:SER, 

B:169:ALA, 

A:211:SER, 

A:191:ALA, 
1,13 

PROTEIN-

BINDING 
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B:276:SER, 

B:301:GLU 

A:207:SER, 

A:116:GLU 

D binding site, 

Centroid 1 
2j6l 

B:67:SER, 

B:169:ALA, 

B:170:SER, 

B:301:GLU 

A:429:SER, 

A:468:ALA, 

A:481:SER, 

A:122:GLU 

1,16 
OXIDOREDUCT

ASE 

D binding site, 

Centroid 1 
1aye 

B:169:ALA, 

B:170:SER, 

B:216:ASP, 

B:276:SER 

A:250:ALA, 

A:251:SER, 

A:142:ASP, 

A:162:SER 

1,14 
SERINE-

PROTEASE 

 

Table 3: Information on the final protein pool obtained after the filtering steps.In particularthe corresponding motif information, 
residues of matching between motif and hit, RMSD of the overlap and EC classification of the hit proteins of which the human 
homolog has been found are shown. 

Motif origin Hit PDBid 
Motif Matching 

Residues 

Hit Matching 

Residues 
RMSD [A] EC Classification 

C binding site, 

Centroid 4 
4c2m 

A:63:GLU, 

A:211:SER, 

A:212:SER, 

A:214:THR 

A:1195:GLU, 

A:1578:SER, 

A:662:SER, 

A:1058:THR 

1,34 TRANSCRIPTION 

C binding site, 

Centroid 4 
3wpc 

A:63:GLU, 

A:103:TYR, 

A:211:SER, 

A:212:SER 

A:464:GLU, 

A:554:TYR, 

A:636:SER, 

A:606:SER 

1,21 
DNA-BINDING-

PROTEIN/DNA 

C binding site, 

Centroid 4 
4ii2 

A:63:GLU, 

A:103:TYR, 

A:211:SER, 

A:212:SER 

A:30:GLU, 

A:20:TYR, 

A:38:SER, 

A:36:SER 

1,34 LIGASE 

C binding site, 

Centroid 13 
4c2m 

A:44:ASN, 

A:63:GLU, 

A:66:VAL, 

A:214:THR 

A:493:ASN, 

A:491:GLU, 

A:809:VAL, 

A:740:THR 

1,2 TRANSCRIPTION 

C binding site, 

Centroid 14 
4eyu 

A:44:ASN, 

A:66:VAL, 

A:212:SER, 

A:1182:ASN, 

A:1455:VAL, 

A:1253:SER, 

1,4 OXIDOREDUCTASE 
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A:214:THR A:1475:THR 

C binding site, 

Centroid 15 
4e01 

A:44:ASN, 

A:63:GLU, 

A:66:VAL, 

A:214:THR 

A:89:ASN, 

A:141:GLU, 

A:136:VAL, 

A:342:THR 

1,22 

TRANSFERASE/TRA

NSFERASE-

INHIBITOR 

C binding site, 

Centroid 18 
2aka 

A:63:GLU, 

A:65:LYS, 

A:66:VAL, 

A:213:ASP 

A:467:GLU, 

A:265:LYS, 

A:268:VAL, 

A:419:ASP 

1,24 
CONTRACTILE-

PROTEIN 

C binding site, 

Centroid 18 
3nvw 

A:63:GLU, 

A:66:VAL, 

A:212:SER, 

A:213:ASP, 

A:214:THR 

C:1261:GLU, 

C:1259:VAL, 

C:1082:SER, 

C:1084:ASP, 

C:1083:THR 

1,54 OXIDOREDUCTASE 

C binding site, 

Centroid 18 
2gj4 

A:63:GLU, 

A:66:VAL, 

A:213:ASP, 

A:214:THR 

A:716:GLU, 

A:718:VAL, 

A:693:ASP, 

A:671:THR 

1,16 TRANSFERASE 

C binding site, 

Centroid 22 
1pk8 

A:44:ASN, 

A:66:VAL, 

A:212:SER, 

A:213:ASP, 

A:214:THR 

A:322:ASN, 

A:372:VAL, 

A:361:SER, 

A:358:ASP, 

A:359:THR 

1,73 
MEMBRANE-

PROTEIN 

C binding site, 

Centroid 22 
2zxe 

A:44:ASN, 

A:66:VAL, 

A:213:ASP, 

A:214:THR 

A:384:ASN, 

A:719:VAL, 

A:214:ASP, 

A:247:THR 

1,22 
HYDROLASE/TRANS

PORT-PROTEIN 
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