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Abstract 
 
 
 
The overall aim of this thesis is a better understanding of the main brain 
mechanisms through different magnetoencephalography (MEG) analysis 
methods, during a task-switching experiment. MEG is a non-invasive 
functional neuroimaging technique that relies on the measurement – outside 
of the head – of the magnetic field produced by neuronal activity. Because of 
its high temporal and spatial resolution yet complex and expensive system, 
MEG is still considered today a cutting-edge technology whose use is still 
mainly for research purposes and not a widely established diagnosis method 
like fMRI or EEG. This work has the objective to localize and investigate in 
space, time and frequency, the origin and propagation of the cortical signal, 
implementing specific functions provided mostly by the MNE-Python 
package. MNE-Python is the most known and up-to-date tool containing a set 
of algorithms that address and solve the mathematical challenges that MEG 
imaging is characterized by. The first part of this work focuses on introducing 
the main concepts of MEG and the linked challenges that need to be tackled 
to accurately estimate patients’ cortical activation. Later in the dissertation, 

the most important concepts about cognitive learning are broadly described 
and a precise illustration of the held task-switching experiment is provided. 
The last two chapters of this thesis gaze on different approaches to investigate 
the dynamics of cortical activations over time by looking directly at the 
spatiotemporal source estimates. Particularly, analyses have been carried on 
exploring different aspects of the signals: from a straightforward cortical 
source estimate to a more advanced machine learning regression. This project 
was done in collaboration with the Athinoula A. Martinos Center for 
Biomedical Imaging (Boston) and the Brain & Vision Research Laboratory 
(Biomedical Engineering Department - Boston University). 
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Chapter 1 
 

 

THEORETICAL OVERVIEW 
 

 

To provide a better understanding of the following thesis, this first chapter gaze on the 

main aspects and phenomena behind magnetoencephalography (MEG), focusing both on 

the biological and functional aspects of the human brain as well as the main software and 

tools to process the collected data. 
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1.1  PRINCIPAL BRAIN STRUCTURES 

1.1.1   An anatomical and functional overview 

The human brain is the most complex structure in the known universe and – along with the spinal 

cord – it is the largest part of our central nervous system (CNS). It is composed of a lower part, 

the brainstem, and an upper part, the prosencephalon – a.k.a. the forebrain –. The brainstem is 

composed by the mesencephalon, the medulla, and the pons, while the forebrain by the 

telencephalon and diencephalon (see Figure1.1). The diencephalon is located in the midline of the 

brain and contains the thalamus and the hypothalamus. The most superior structure, the 

telencephalon – a.k.a. cerebrum – includes the lateral ventricles, the basal ganglia and the cerebral 

cortex. (Figure 1.1) 

 

 

 

 

 

 

 

 

 

 

 
Considering a coronal slice of the telencephalon (see Figure 1.2), we can notice two main 

structures: the white matter and the grey matter. The grey matter is the outer layer and forms the 

cerebral cortex, while the inner part identifies the white matter. The latter one is composed mainly 

by myelinated axons, which are responsible for the different color.  

Cerebral cortex plays a fundamental role in higher-order brain functions by more fully 

evolved animals (such as humans, primates, dolphins etc.) and is divided into a left and a 

right hemisphere. 

Each of them is further divided into 4 lobes as represented in Figure 1.3, roughly related 

with the following functions: 

 

 

Telencephalon 
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Cerebellum 
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Figure 1.1.   Main anatomical structures of the human brain. 
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● Frontal lobe: involved in voluntary muscle movement, memory, thinking, 

decision-making and planning. 

● Parietal lobe: responsible for receiving and processing sensory information, 

orientation, and recognition. 

● Occipital lobe: responsible for receiving and processing visual information from 

the retina. 

● Temporal lobe: organized sensory input and aid in auditory perception, memory 

information, and language and speech production. 

 

 

 

 

 

 

 

 

 

 

Lobes are separated by major fissures that are present in all individuals. This makes the 

identification of the different lobes on a particular subject possible by simple visual 

inspection. For example, the parietal and frontal lobes are separated by the central fissure, 

a.k.a. the central sulcus, and the temporal lobe is separated from the parietal and frontal 

ones by the Sylvian fissure. Fissures are also commonly called sulci. 

The counterpart of the cortical fissures are the gyri. Gyri are the structures between 

fissures. Some of the gyri contain brain regions with known cognitive functions, like the 

post-central gyrus that includes the primary somatosensory cortex (S1). 

 

 

 

 

Figure 1.2.   Coronal slide of the human brain. 
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Such a knowledge on the localization of some brain functions and processing pathways is 

fundamental to achieve validation over brain imaging recordings associated with different 

tasks. 

Structural properties of grey matter vary across different regions of the brain, like the 

number of layers, the cell composition, the thickness and organization. These properties, 

called by neuroanatomists cytoarchitectonic properties, are not the same over the whole 

surface of the cortex. Their differences led, in 1909, the neuroanatomist Korbinian 

Brodmann to divide the cortex into 52 regions called Brodmann areas (see Figure 1.4) 

whose historical characteristics were homogeneous (Brodmann, 1909). Some functions 

were then assigned to some of these areas, however their utility in brain functional imaging 

is usually limited labelling areas like “posterior part of the post-central gyrus” as 

Brodmann area 5 (BA5). 

Looking at a section of the cortex, we can observe six different layers of neurons: from 

layer I at the cortex’s surface to layer VI, close to the white matter. For humans, the cortical 

thickness varies from 3 to 6 mm. It has been observed not only a neuronal laminar 

organization but they also communicate moving perpendicularly to the cortex. Forming a 

cortical column, they respond to precise stimulations with similar activities throughout the 

layers. This columnar organization was discovered by Mountcastle with a pioneering 

experiment in 1957 (Mountcastle, 1957), showing that a similar cortical activities is 

recorded inside column of 300 to 500 µm of diameter. A schematic representation is 

displayed in Figure 1.5. 

Figure 1.3.   Lobes of the human brain.  
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Figure 1.4.   Representation of the Brodmann areas. 

A) Lateral view B) Medial view 

300 – 500 µm  

Different 
activities 
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WHITE MATTER 
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ELECTRODES 

Figure 1.5.   Schematic representation of Mountcastle’s experiment. 
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1.1.2   How neurons generate electromagnetic field 

The human brain contains around 100 billion neurons (1011), linked together reaching up to 10’000 

connections. Every single neuron receives, processes, and transmits a signal. Neuron’s main 

structures are the dendrites - where the signal is received –, the soma – that process the signal – 

and the axon – where the signal is carried along towards other neurons. During this process, 

neurons produce an electromagnetic field that can be detected by various neuroimaging techniques 

(e.g. MEG, EEG, etc.). 

The signals produced can be divided into 2 types: post-synaptic potentials (PSP) and action 

potential (AP).  

Post-synaptic potentials are signals produced in dendrites, and allow communication between 

different neurons through junctions called synapses. It can be a direct electrical junction, but 

synapses are mostly chemical: when an action potential reaches the end of an axon terminal, it 

leads to the release of neurotransmitters, which affect membrane permeability so that Na+ and K+ 

ions migrate inside the membrane increasing the resting state potentials of about 10mV for a 10ms 

period. This is called post-synaptic potentials (PSP). 

If many PSP sum up, soma’s membrane potential can locally reach a threshold which causes a 

neuron’s spike. If that happens, some voltage-sensitive channels open and positive ions are able 

to flow inside the cell, causing a rapid potential increase that lasts 1 ms before coming back to its 

resting state. Due to this peak, also the neighbor regions of the neuron reach the threshold, 

therefore the AP will propagate along the axon, as shown schematically in Figure 1.6. 

Due to the tiny amplitude of the electromagnetic field produced by a single neuron, a lot of them 

need to sum up to be directly measured outside of the head with M/EEG. However, action 

potentials have a temporal duration close to the millisecond, making them hard to synchronize and 

sum up. On the other hand, PSPs have a temporal duration around 10 ms, which makes them more 

likely to produce a signal measurable outside the head. Moreover, electrical current is a vector 

quantity and has both an amplitude and a direction. In order to sum up, the currents produced by 

the neurons must have a common direction and therefore it is necessary to add the contribute of at 

least ten thousand (104) neurons with a common direction to produce a clear and detectable signal 

from outside of the head. 

Indeed, some of the brain cells which have dendrites in many directions (e.g. stellate cells) will 

not produce a consistent and measurable electromagnetic field, while others - like pyramidal 

neurons - thanks to their particular shape and structure will. 

Pyramidal neurons represent 70-80% of the neocortex and have a dense and regular geometric 

organization, with a current that flows through their axons (see Figure 1.7). Nowadays, due to the 

progress of brain imaging devices like MRI, this organization can be observed non-invasively. 

Activity of pyramidal neurons is theoretically detectable over an area of around 1 mm2, however 



 

 
 

18 –  CHAPTER 1: THEORETICAL OVERVIEW. –  

an experimental study involving magnetoencephalography showed that the minimal detectable 

activity spreads over an area of around 100 mm2 (Hämäläinen et al., 1993).  

As we are going to discuss in the following paragraphs, the orientation of pyramidal neurons and 

their current flow have an influence on the magnetic and electric fields measurable by each type 

of sensor. In MEG, for example, radial current flows – considering the human brain roughly as a 

sphere – won’t be detected.  
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Figure 1.7.   Pyramidal neurons. 

Figure 1.6.   Propagation of an action potential. 
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1.2  BRAIN FUNCTIONAL PATHWAYS 

1.2.1  Visual pathways 

The human visual system plays a key role in identifying motion and perception, specifically with 

two distinct pathways: the parvocellular (P-pathway) and the magnocellular (M-pathway). These 

are characterized by two different types of nerve cells, which is the fundamental principle of a 

well-known insight in neuroscience known as the two-stream hypothesis. In 1992 David Milner 

and Melvyn A. Goodale proposed this hypothesis, arguing that humans possess two different 

visual systems. The M-cells carry visual information along the upper, dorsal stream, while the P-

cells carry visual information along ventral areas (see Figure 1.8). 

Concerning motion processing, dorsal stream is proposed to be involved in visually guided 

behavior and recognizing where objects are in space. It is responsible to project the signal from 

the retina to the primary visual cortex (V1), starting exclusively with visual functions in the 

occipital lobe before addressing questions about spatial awareness moving to parietal lobe. Indeed, 

the parietal lobe is essential for the interpretation of spatial relationships, and it is therefore so-

called the “where” stream.  

On the other hand, ventral stream is mainly associated with object recognition and form 

representation. It develops through the medial temporal lobe – responsible for long-term memory 

– and involves the limbic system, responsible for controls of emotions. The main differences 

between the dorsal and ventral pathway rely on the different type of decoding that these streams 

provide: dorsal pathway merely provide an understanding of the spatial characteristics of an object, 

while ventral pathway is seen to be significant in attention, working memory, stimulus salience, 

and providing information about the significance of an object. Indeed, damages concerning the 

main areas of the ventral stream lead to the inability to decode and understand facial characteristics 

or expressions. The ventral stream is therefore also so-called the “what” stream.  

     However, motion perception – which is one of the main aspects in the experiment described in 

this dissertation – has been seen to be clearly dissociated from other visual abilities like object 

recognizing. The area of the brain responsible for motion perception is the middle temporal (MT+) 

cortical area, where neurons are selective for global motion direction and perception of motion.  

Also, it is important to point out that external motion is processed differently than biological 

motion. Indeed, biological motion (with the few exceptions of eye and organs movements that do 

not evoke a motion perception) is processed by superior temporal sulcus (STS) areas, while 

external motion involves the middle temporal (MT+) area. 

A famous example concerning external motion perception is the well-known “patient LM”, a 43-

years old female that in 1978 has been observed suffering from akinetopsia (a.k.a. motion 
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blindness). Akinetopsia is a particular neuropsychological disorder developed after brain lesions, 

strokes, Alzheimer’s disease and transcranial magnetic stimulation (TMS) which is characterized 

by the loss of motion perception. Although the patient could clearly see static objects and had 

perfect memory – due to her bilateral lesions of MT+ area – she couldn’t see car moving or liquids 

flowing. In Figure 1.8 we can observe an approximative position of middle temporal area. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1.2.2  Cognitive functional networks 

The human brain of an adult is intrinsically organized into about twenty independent functional 

networks, involved in cognitive functions and tasks. The most important networks during the 

development are the frontoparietal network (a.k.a. central executive network – CEN), the salience 

network (SN), and the default mode network (DMN). The CEN is anchored in the dorsolateral 

prefrontal cortex and posterior parietal cortex, while the SN in the anterior insula and anterior 

cingulate cortex, and finally the DMN is anchored in the posterior cingulate cortex and medial 

prefrontal cortex. Each one of them plays an important functional role.  

The CEN is involved in the actively maintaining and manipulating of the information in working 

memory, for judgment and decision making (Petrides M. et al., 2005, Koechlin E. et al., 2007), 

the SN is critical in orienting attention to salient stimuli and facilitating goal-directed behavior 

(Sridharan D. et al., 2008), while the DMN has been seen to play an important role in self-

referential mental activity and autobiographical memory (Kim H., 2012). 

The anterior insula is fundamental in saliency detection by switching between other large-scale 

networks to facilitate access to attention and working memory when a salient event occurs. 

Figure 1.8.   Dorsal (green) and ventral (purple) streams. Both pathways 
originate from the occipital lobe (V1, V2). In red is indicated the middle 
temporal area (MT+), strongly involved in motion perception.  
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Moreover, the insula is connected through strong functional connections with the anterior 

cingulate cortex, allowing its access to the motor system. Also, the interaction of the anterior and 

posterior insula facilitates physiological reactivity to salient stimuli. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9   Schematic representation of the Central Executive Network 
(CEN), Salience Network (SN) and Default Mode Network (DMN). 
Source: M. Landry, M. Lifshitz, A. Raz. Brain correlates of hypnosis: A 
systematic review and meta-analytic exploration. Neuroscience and 
Biobehavioral Reviews 81: 75-98 (2017). 
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1.3  MEG: PRINCIPLES AND METHODS 

 
1.3.1   Basics of MEG 

Magnetoencephalography (MEG) is a noninvasive functional technique for recording and 

mapping brain activity from the head surface, detecting directly the magnetic flux associated with 

intracranial electrical currents. The magnetic field associated with this imaging technique is ranged 

between a few hundred femto-tesla (fT, 10-15 T) to few pico-tesla (pT, 10-12 T), providing a very 

high temporal resolution and spatial resolution. Considering that Earth’s magnetic field is between 

10-4 T and 10-5 T, MEG sensors need to be incredibly accurate and sensitive.  

MEG is usually combined with magnetic resonance imaging (MRI) to estimate the sources of 

signals inside the brain. The combination of MEG and MRI is called magnetic source imaging 

(MSI). Although they are referring to different concepts, the terms MEG and MSI are often used 

interchangeably. 

MEG recordings are nowadays used in two different ways. On the one hand, it is used for clinical 

purposes similarly to conventional electroencephalogram (EEG) and evoked potentials (EPs). In 

these cases, the aim is to detect abnormalities in spontaneous brain activity or in evoked-response 

activity. For example, MEG recordings might highlight a cerebral activity associated with epilepsy 

or mental disorders that can lead to low or delayed brain response. On the other hand, MEG is 

used for estimating the locations and time courses of sources of either spontaneous or evoked 

events of interest (MSI). This second use is particularly relevant in neuroscientific research 

because it allows to map the brain activity in pseudo-controlled conditions. 

In principle, the measurement of the magnetic field is straightforward: we can easily observe 

changes in a magnetic field by putting a wire loop into it – so that an electric current will be 

induced to flow within the wire – and, measuring the voltage difference between the two ends of 

it, we will easily assess the magnetic field variation. 

In 1963, for the first time in history, Baule and McFee (Department of Electrical Engineering at 

Syracuse University, New York) achieved to measure the magnetic field fluctuations associated 

with the heart cycle with an induction-coil magnetometer. Their magnetometer contained about 2 

million turns of copper wire rolled up on a ferrite core. Placing two of such solenoids over the 

chest of the subject, they observed the first magnetocardiogram (MCG).  

MEG is considered the magnetic counterpart of EEG but, due to its higher technical complexity, 

the first MEG recording is dated 40 years later than EEG. Indeed, MEG was measured for the first 

time in 1968 by the physicist David Cohen at the University of Illinois, using a copper induction 

coil as detector in a magnetically shielded room. Due to the promising results of his first 
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experiment, he decided to build a much better shielded room (see Figure 1.10) at the 

Massachusetts Institute of Technology, in Boston, using the first SQUID sensor developed by 

James E. Zimmerman. This time the signals were almost as clear as those of EEG (see Figure 

1.11). This discovery broke the ground and stimulated the interest of physicists, neuroscientists, 

and engineers all over the world. Since then, magnetoencephalography became one of the most 

technical challenging neuroimaging techniques in the whole biomedical engineering community. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.3.2   SQUID Sensors 
As already mentioned in the last paragraph, in 1969, after 4 years of studies and perfectioning at 

Ford Motor Co., Zimmerman and colleagues developed the first SQUID sensor, which was used 

for the first time in neuroscience in 1972 by David Cohen.  

Superconductive quantum interference device (SQUID) is the only sensor with enough sensitivity 

for high-quality biomagnetic measurements, because it relies on the conducting tunneling 

principle. This physical principle has been observed for the first time in 1962 by Brian Josephson 

and brought him the Nobel Prize in physics in 1973.  

After Cohen’s first experiment, many questions about possible improvements for SQUIDs arose 

and, in two decades, first led to the development of multichannel devices and finally in 1992 to 

the first helmet-shaped neuromagnetometer covering the whole scalp with 122 channels (Ahonen 

et al., 1993), and soon followed by systems with over 300 sensors. 

Figure 1.11.   First MEG (alpha rhythm) 
measured with SQUID sensors in Dr. Cohen 
room at MIT – Science 1972. 

Figure 1.10.    Dr. Cohen’s shielded room at MIT. 
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Firstly, most of the studies were based on RF-SQUID sensors because they were simpler and 

cheaper, but in the last decades – due to decreasing of the manufacturing price – they have been 

substituted by more precise  and low-noise DC-SQUIDs. 

Currently, the most sensitive MEG sensors are SQUIDs, which are made of superconductive 

material organized in loops containing Josephson junctions: two or more superconductors coupled 

by a weak link that allows current flowing continuously without any voltage applied. 

Figure 1.12 shows a schematic representation of SQUID circuit, in which two different coils are 

noticeable: a pickup coil – a.k.a. flux transformer – where the brain’s magnetic field (Bext) flows 

inducing a current that flows to the input coil, generating another magnetic field (Bcoupled) whose 

intensity is sensed by the SQUID sensor itself due to its Josephson junctions. Thanks to these few-

atoms-width junctions made by superconductive material, the magnetic flux (F) that will thread 

them will be quantized in magnetic-flux quanta (F0): 

F0 = h/(2e) » 2.068x 10-15 Wb 

Where h is Planck’s constant 6.62607004 × 10-34 m2kg/s, and e is the electron charge 1.60217662 

× 10-19 C. Note that Wb stands for weber – the unit for magnetic flux – and Wb = T m2. 

 
 
 
 
 
 
 
 
 
 
 
 
With a proper tuning of construction parameters, the sensitivity of the SQUID system can be 

increased, allowing a tiny brain’s magnetic field to be detected. Indeed, sensitivity can be 

augmented by adding more loops to the input coil – and therefore generating a higher flux coupled 

to the SQUID detector – or by increasing the area of the pickup coil. However, a too wide area 

will decrease spatial resolution of the MEG device. 

SQUID sensors, due to their challenging operating conditions, suffers from low frequency noise 

(usually called 1/f noise or pink noise) generated by biological systems. It is typically lower than 

1 Hz, depending on the properties of the SQUID. The traditional superconducting materials for 

SQUIDs are pure niobium or a lead alloy with 10% of indium or gold. Sensors are maintained at 

a temperature around absolute zero by a cooling system employing liquid helium close to 4 K.  

Figure 1.12.   Schematic representation of SQUID circuit. Source: Hari R, Baillet S, Barnes G, 
et al. IFCN-endorsed practical guidelines for clinical magnetoencephalography (MEG). Clinical 
Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology 
129(8):1720-1747 (2018). 
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Niobium – a.k.a columbium – is a ductile transition metal that becomes superconductive under 9.2 

K, therefore on a working condition of around 4 K the thermal noise is low and the SNR of the 

SQUID is excellent. Indeed, in terms of thermal noise, our body generates about 0.1 fT/ξ𝐻𝑧 which 

corresponds to the lower limit of SQUID sensitivity, but nowadays we can produce SQUIDs with 

a noise between 2 and 4 fT/ξ𝐻𝑧, which is a huge improvement from the 40-50 fT/ξ𝐻𝑧 we were 

able to reach years ago. 

Flux transformers (pickup coils) can be shaped in multiple ways, called magnetometers and 

gradiometers. Magnetometers are simple loops that pick up the magnetic flux both close and far 

from the scalp but are also very sensitive to artifacts. On the other hand, gradiometers are designed 

with multiple loops that make the current flowing in an opposite sense. Therefore, they work as 

differential amplifiers and are sensitive to the difference between the two opposite currents 

flowing to the input coil, which is proportional to the respective magnetic flux flowing through 

the loops. Thus, they are sensitive to the nearby signals and reject the ones coming from deeper 

areas that induce a similar current in both pickup coils. 

In other words, magnetometers would better distinguish between surface or inner brain magnetic 

signals while gradiometers between different signals on the surface.  

There are two types of gradiometers: axial and planar gradiometers. In the axial ones, the coils are 

along the same axis and, according to the number of loops, are classified as “first-order” (two 

coils), “second-order” (three coils), etc. The higher the gradiometer order, the less sensitive to 

distant homogeneous fields (artifacts), but the more it dampens brain signals of interest. 

The distance between gradiometer’s coils is defined as baseline, and it is typically between 4 to 

14 cm. If the baseline is higher, the sensor would act as a magnetometer. 

Planar gradiometers are designed as two loops wound up in the same plane, whose current flows 

in two opposite senses, and pick up the largest signal above the source. 

 

 
  
  
 
 
 
 
 
 
 
 
 
 

Planar gradiometer Axial gradiometer Magnetometer 

Figure 1.13.   Different flux transformers in MEG. At the top of the picture is shown a 
magnetometer (left), a planar (middle) and an axial (right) gradiometer. Respectively, at 
the bottom is represented the signal strength, plotted along a line above the source, 
perpendicularly to the direction of the current dipole. 
Source: Hari R, Baillet S, Barnes G, et al. IFCN-endorsed practical guidelines for 
clinical magnetoencephalography (MEG). Clinical Neurophysiology: Official Journal 
of the International Federation of Clinical Neurophysiology 129(8):1720-1747 (2018). 
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1.3.3   MEG device setup 
During the MEG recording (shown in Figure 1.14), the subject is sitting with the head inside a 

helmet-shaped vacuum flask (“dewar”) that houses from 200 up to 306 sensors, depending on the 

device. The name of this vacuum-insulated flask was named after its inventor, James Dewar (1842-

1923), and it is fundamental to maintain quasi-absolute zero working conditions for SQUID 

sensors.  

Moreover, to eliminate external disturbances and noises, the measurements are performed within 

a magnetically shielded room. These rooms are made of three nested layers, which are composed 

by aluminum and mu-metals (high-permeability ferromagnetic layers), to respectively filter out 

high-frequency and low-frequency noise. Magnetically shielded room (MSR) is carefully 

assembled with insulating washers between the screws and the panel, to electrically isolate each 

layer and eliminate radio frequency radiation that would degrade SQUIDs performances. 

Conductivity of aluminum is also enhanced by electroplating the junctions of the inner layer with 

gold or silver. Moreover, an active shielding system is provided for three-dimensional noise 

cancellation. 

During MEG recordings, eye movement and blinks, which cause major artifacts, are monitored by 

an infrared camera placed in front of the subject or with an electro-oculogram. Although, they can 

also be detected and filtered out in the processing of the data, using frontal MEG channels. 

Performing the experiment, the subject must keep the head as still as possible and moderately 

speak or perform little hands or eye movements. To suppress facial movements artifacts, also facial 

and bodily actions can be recorded with a video and monitored with accelerometers and surface 

electromyogram (sEMG). Everything in the MSR must be compatible and not create unwanted 

noise.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.14.   a) Section of  MEG equipment. Source: M. Haimalainen et al. 
Magnetoencephalography. theory, instrumentation, and applications to noninvasive studies of the 
working human brain. Reviews of Modern Physics 65(2) 413-497 (1993). b) Typical position and 
setup for MEG experiments. Source: Hari R, On brain’s magnetic responses to sensory stimuli, J 
Clin Neurophysiol 8(2): 157-69 (1991). 

a) b) 
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1.3.4   MEG and EEG: characteristics and differences 

MEG and EEG have rather different historical trajectories. EEG has been used for clinical 

diagnoses since early 1930s in patients who were thought to have mental disorders. A real leap in 

EEG occurred in 1960s and 1970s, when the first computers became accessible and allowed to 

average EEG signals, thereby significantly increasing the signal-to-noise ratio (SNR). 

On the contrary, MEG technique underwent an opposite development: the first recordings were 

made in research laboratories by physicist, and they were averaging a very high number of single 

trials to lower the noise. It took several years to develop an MEG equipment able to analyze single 

trials with acceptable SNR. Only with recent technical development, MEG became popular in 

clinical environments, notwithstanding the fact that it is still not widespread in hospitals due to the 

high cost of the system. Moreover, MEG analyzing software are state-of-the-art technologies that 

are considered less reliable than EEG or fMRI ones for some purposes.   

The area covered by a neuron assembly is very small with respect to the distance from the M/EEG 

sensors. Therefore, the electromagnetic field produced by an active neuron assembly at the sensor 

level is similar to the fields produced by a current dipole. 

The summation of the neural currents produced by elementary generators can be approximated by 

an equivalent current dipole (ECD), and the fields produced by this ECD are strong enough to be 

measured outside the head. 

Due to the bivalent electrical and magnetical nature of this signal, EEG and MEG are closely 

related and measure a similar neuron assembly activity. When neuron assembly spikes, they 

generate both a magnetic field and an electric potential that can be sensed by MEG sensors and 

EEG sensors, respectively. There are 3 types of dipoles: current dipole, electric dipole, and 

magnetic dipole (see Figure 1.15).  

 

 

 

 

 

 

  

 

 

 

 

The current dipole represents the intracellular “primary current” due to net flow of ions within 

soma and dendrites of the activated neurons. Since the current loop must be closed, primary current 

+ 
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 + +      + + 
 
 –  –     –  –  
 

Figure 1.15.   A) Current dipole. B) Electric dipole. C) Magnetic dipole 

A) B) C) 
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is always associated with a return current, a.k.a. volume current. Current dipoles are commonly 

used as source models for MEG and EEG signals, as we will describe later in the introduction with 

the forward and inverse problems. 

A magnetic dipole, instead, is a current loop that, in the ideal case, does not produce any electric 

potential but just a magnetic field around it, as shown in Figure 1.15. 

Considering the brain as a sphere, can be assumed that radial primary currents generated inside 

the sphere are symmetrical and therefore do not produce any magnetic fields (Hamalainen et 

al.,1993). However, tangential current dipoles are associated with volume currents that are not 

symmetrical and therefore produce a net magnetic field outside the sphere. Figure 1.16-A shows 

different orientations of current dipoles in a spherical head model.  

The higher sensitivity and selectivity of MEG with respect to EEG to tangential currents result in 

a more precise measurement of MEG activity, recorded in the walls of cortical fissures (Figure 

1.16-B). Considering that about two-thirds of the cerebral cortex is located within fissures 

(including all primary sensory cortices), this MEG characteristic becomes very useful and allows 

recording signals hardly detectable even with intracranial imaging methods (e.g. 

stereoelectroencephalography - sEEG) 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Another important characteristic about magnetic field is that it is detectable even if the sphere is 

composed of concentric shells with different conductivity. Conductivity is in fact a function of the 

radius only, thus MEG sees directly the signal inside the brain without distortion by the spinal 

fluid, the skull etc. Also, the pattern of the magnetic field follows the right-thumb rule. 

Figure 1.16.   A) Dipole orientation in a spherical head model. In the first sphere, three different 
orientation are represented. However, in MEG recordings only radial dipoles are influent in the 
measurements.  B) Current sources in human cortex for EEG and MEG recordings.  

Current 
sources 

Cortex B) A) 
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On the contrary, in EEG measurements all the currents of different orientations and depth 

contribute to the generation of EEG potentials on the surface of the sphere. Moreover, the electric 

inhomogeneities, represented for example by the skull and scalp, dampen and smear potential 

distribution, resulting in a widespread signal source estimation. In Figure 1.17 an example of the 

recorded signal and their projections on the head model is provided, underlining the transparency 

of MEG to radially oriented dipoles. 

Another major difference between MEG and EEG is that EEG recordings measure voltage 

difference between two recording sites, whereas MEG recordings provide information on 

magnetic flux and gradient exactly at the measurement site. 

EEG and MEG are optimal and complementary methods with their own strengths and weaknesses, 

allowing us to see brain activation from different perspectives. A table to sum up all the main 

differences between EEG and MEG is provided below (Table 1). Also, due to the strict correlation 

with functional magnetic resonance imaging to investigate brain activity, in Table 2 is shown a 

comparison between M/EEG and fMRI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.17.   Mapping of neural activity sources in MEG and EEG, based on the 
dipoles orientations. 
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 EEG MEG 

Signal amplitude 10 mV 10 fT 

Measurement Secondary currents Primary currents 

Signal attenuation Skull and scalp attenuation 
Quasi non-attenuation by the 

skull and scalp 

Temporal resolution ~ 1 ms ~ 1 ms 

Spatial resolution ~ 1 cm < 1 cm 

Movement artifacts 
Subjects can move a little 

wearing the helmet. 

Subjects must remain as still as 

possible. 

Dipole orientation Radial and tangential Only tangential 

System complexity Easy, cheap and portable 
Expensive and technically 

challenging 

 
 

 

 M/EEG fMRI 

Measurement 
Primary/secondary currents 

(Direct) 
Blood flow (Indirect) 

Temporal resolution ~ 1 ms ~ 1 s 

Spatial resolution < 1 cm < 1 mm 

Signal reconstruction 
Forward and inverse problems 

(Ill-posed) 
Deconvolution 

Depth ~ 4 cm Whole brain 

Signal orientation detected Tangential (and radial) All 

 

 

Table 1.   EEG and MEG differences. 

Table 2.   M/EEG and fMRI differences. 
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1.4  THE FORWARD AND INVERSE PROBLEMS 

 
1.4.1   The forward problem 

M/EEG captures the electrical activity of structured assemblies of neurons. For the last four 

decades, neuroscientists have built models of neuron assemblies based on the knowledge of 

neuronal dynamics, but these dynamics are far from being fully understood. 

For one assembly, the EEG and MEG measurements reflect its average activity, but usually the 

intrinsic dynamics of the group of neurons is unknown. Recently, scientists struggled to find the 

best model to estimate signal sources inside human brain. To do so, they introduced the “forward 

problem” – which consists in modeling the head in order to compute the electrical potential and 

the magnetic field that is supposed to be produced by a given configuration of generators – and 

the “inverse problem” – represented by the mathematical model that describes how a certain 

distribution of neural generators might have produced the measurements –. 

The solution of the forward problem is the first step in the M/EEG data processing pipeline, and 

to solve this problem we start from Maxwell’s equations, making some realistic assumptions and 

finally derive realistic head models. 

We are denoting by E the electric field, B the magnetic field, J the current density and ρ the charge 

density. Also, bold characters represent vectors. Maxwell equations are a set of four differential 

equations, that relate the electromagnetic field to the current and charge density: 

 
 
 
 
 
 
 
 
 
where 𝜀 and 𝜇 are respectively the electrical permittivity and the magnetic permeability of the 

medium. In physics, medium is defined as a substance that transfer any form of energy from one 

place to another. 

For human tissues, magnetic permeability is the same as in vacuum, therefore 𝜇 = 𝜇0, whereas 

the relative electrical permittivity depends on the considered tissues:  𝜀𝑟 =
𝜀

𝜀0
. For instance, when 

𝛻 ∙ 𝑬 =
𝜌

𝜀
 

𝛻 × 𝑬 = −
𝜕𝑩

𝜕𝑡
 

 
𝛻 ∙ 𝑩 = 0 
 

𝛻 × 𝑩 = 𝜇 ൬𝑱 + 𝜀
𝜕𝑬

𝜕𝑡
൰ 

(1.4.1) 

(1) 

(2) 

(3) 

(4) 
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QUASI-STATIC 
APPROXIMATION ⟹ 0 

the frequency is around 100 Hz, 𝜀𝑟 is 4 × 106 for grey matter, 5 × 105 for fat and 6 × 103 for 

compact bone (Gabriel et al., 1996). 

 

As we already mentioned in the previous paragraphs, post-synaptic potentials last around 10 ms. 

Therefore, it is typically accepted that the frequency of the observed electromagnetic field – 

despite rare exceptions – cannot exceed 100 Hz. Within these conditions, we can accept a quasi-

static approximation, according to which the time derivates of Maxwell’s equations can be 

neglected (Hamalainen et al., 1993). 

Consequently, the curl of electric field in 1.4.1(2) is zero and therefore 𝑬 = −𝛻𝑉.  
In order to derive the electric potential equation, it is important to understand that in a medium 

with current generators, the total current can be decomposed in a primary current flow JP related 

to the generators, and a volume current flow JV – a.k.a. ohmic current flow – related to the electric 

field in the volume. Considering Ohm’s law ( 𝑱𝑉 = 𝜎𝑬 ): 

 

𝑱 = 𝑱𝑃 + 𝑱𝑉 = 𝑱𝑃 + 𝜎𝑬 = 𝑱𝑃 − 𝜎𝛻𝑉. 

 

Considering now 1.4.1(4),  

𝛻 × 𝑩 = 𝜇 ൬𝑱 + 𝜀
𝜕𝑬

𝜕𝑡
൰ 

 

𝛻 × 𝑩 = 𝜇𝑱 
 

𝛻 ∙ ሺ𝛻 × 𝑩ሻ = 𝛻 ∙ ሺ𝜇𝑱ሻ 
 

0 = 𝛻 ∙ ሺ𝜇𝑱ሻ 
 

0 = 𝛻 ∙ 𝑱 
Which leads to 

 

𝛻 ∙ 𝑱 = 𝛻 ∙ ሺ𝑱𝑃 − 𝜎𝛻𝑉ሻ = 0 

 

And finally to the electric potential equation: 

 

𝛻 ∙ ሺ𝜎𝛻𝑉ሻ = 𝛻 ∙ 𝑱𝑃. 

 

 

 

⟹  

⟹  

⟹  

⟹  

(1.4.2) 
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Furthermore, considering Biot-Savart law: 

 

𝑩ሺ𝒓ሻ =
𝜇0

4𝜋
 𝑱ሺ𝒓′ሻ ×

𝒓−𝒓′

ԡ𝒓−𝒓′ԡ3

 

ℝ3 𝑑𝒓′. 

 

Because the current can be written as 𝑱 = 𝑱𝑃 − 𝜎𝛻𝑉, Biot-Savart law becomes: 

 

𝑩ሺ𝒓ሻ = 𝑩0ሺ𝒓ሻ −
𝜇0

4𝜋
 𝜎𝛻𝑉ሺ𝒓′ሻ ×

𝒓−𝒓′

ԡ𝒓−𝒓′ԡ3

 

ℝ3 𝑑𝒓′, 

with 

𝑩0ሺ𝒓ሻ =
𝜇0

4𝜋
 𝑱𝑃ሺ𝒓′ሻ ×

𝒓−𝒓′

ԡ𝒓−𝒓′ԡ
3

 

ℝ3 𝑑𝒓′. 

 

𝑩0ሺ𝒓ሻ is called primary magnetic field, while the second term is called secondary magnetic field. 

It is important to notice that the primary magnetic field does not depend on the medium considered 

– which in our case is represented by the head – and therefore its conductivity. 

Additionally, if we consider a homogeneous conductor in its whole volume, with a constant 

conductivity 𝜎, we can write the general solution of the Poisson equation with the following 

expression: 

 

𝑉ሺ𝒓ሻ =
1

4𝜋𝜎
 𝑱𝑃ሺ𝒓′ሻ ∙

𝒓−𝒓′

ԡ𝒓−𝒓′ԡ3

 

ℝ3 𝑑𝒓′. 

 

Considering 1.4.3 – since 𝜎 is supposed constant and V vanished at infinity due to 1.4.4 – we can 

simplify the integral, obtaining: 

 

𝑩ሺ𝒓ሻ = 𝑩0ሺ𝒓ሻ =
𝜇0

4𝜋
 𝑱𝑃ሺ𝒓′ሻ ×

𝒓−𝒓′

ԡ𝒓−𝒓′ԡ3

 

ℝ3 𝑑𝒓′. 

 

However, human head cannot be considered an infinite homogeneous conductor due to two main 

aspects: there is no electric current flow outside head boundaries (except at the neck) and the 

electrical conductivity 𝜎 is not constant. For instance, skull is 20 to 100 times less conductive than 

the grey and white matter. 

In order to take into consideration these aspects, a more accurate approximation of human head 

can be obtained modeling the head as a series of nested concentric spheres. Considering that the 

average scalp thickness is 6.9  ±3.6 mm, while the average skull thickness is 6.0  ±1.9 mm (G. E. 

Strangman et al., 2014), Figure 1.18 shows a proportional spherical model of the human head. 

Although, to improve forward calculation, anatomical brain data usually derives from MRI scan 

(1.4.3) 

(1.4.4) 
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– which results in a more precise view of soft tissues – or from a CT scan to highlight hard 

structures like the skull (see Figure 1.19).  
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Figure 1.18.   Proportional spherical model of the head with three layers. The inner, 
middle, and outer layers are respectively the brain, the skull, and the scalp. 

Figure 1.19.   Axial view of CT and MRI brain scans. On the left, an axial view of a 
CT brain image. On the middle and right, the same slice obtained with T1 MRI and 
T2 MRI. T1 and T2 refers to different relaxation times of hydrogen atoms during 
MRI scan.  
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Nowadays, different approaches and algorithms are implemented to solve the forward problem, 

but the most famous are the Finite Difference Method (FDM), the Finite Element Method (FEM) 

and the Boundary Element Method (BEM).  

The Boundary Element Method (BEM) is a numerical method aimed to solve linear differential 

equations transformed to integral equations, defining them into separate boundaries (e.g. white 

matter, grey matter, etc.). As we can see in Figure 1.19, from a MRI scan is easy to extract different 

brain structures. In a first approximation, we can consider a homogeneous conductivity within 

each of these structures (see Figure 1.20) in order to apply the boundary element method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Applying this approximation, we will model the head as a domain 𝛺 composed of several regions 

𝛺k separated by surfaces Sk. Each region has a homogeneous conductivity 𝜎k and 𝜎 = 0 outside 

the domain 𝛺.  

Under these premises, Biot-Savart (1.4.3) and electric potential (1.4.2) expressions can be written 

as integral equations: 

 
 
 
 
 
 

𝜎1, 𝛺1 : white matter 

𝜎2, 𝛺2 : grey matter 

𝜎3, 𝛺3 : crerbrospinal fluid 
𝜎4, 𝛺4 : skull 𝜎5, 𝛺5 : scalp 

(S1) 
(S2) 

(S5) (S4) 
(S3) 

Figure 1.20.   Example of a homogeneous division of a head model.  

 
𝑩ሺ𝒓ሻ = 𝑩0ሺ𝒓ሻ −

𝜇0

4𝜋
σ ሺ𝜎𝑙 − 𝜎𝑙+1ሻ  𝑉ሺ𝒓′ሻ

 

𝑆𝑙

𝒓−𝒓′

ԡ𝒓−𝒓′ԡ3 ∙ 𝒏𝑙ሺ𝒓′ሻ𝑑𝑠′⬚
𝑙 , 

 
𝜎𝑘+𝜎𝑘+1

2
𝑉ሺ𝒓ሻ = 𝑉0ሺ𝒓ሻ −

1

4𝜋
σ ሺ𝜎𝑙 − 𝜎𝑙+1ሻ  𝑉ሺ𝒓′ሻ

 

𝑆𝑙

𝒓−𝒓′

ԡ𝒓−𝒓′ԡ3 ∙ 𝒏𝑙ሺ𝒓′ሻ𝑑𝑠′⬚
𝑙 , 

(1.4.5) 

(1) 

(2) 
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where  𝒓 ∈ 𝑆𝑘 , 𝑉0 and 𝑩0 are the electric potential and magnetic field generated by the primary 

current flow 𝑱𝑃 in a homogeneous domain. These formulas are derived from (Geselowitz, 1967; 

Geselowitz, 1970). 

Now, assuming a division of the surfaces Sk as n triangles {Ti | i ∈ [1,…,n]} so that the solution 

will be approximated in a subspace of finite dimension. Indicating with Eh the approximation 

subspace, where h stands for the index of the largest triangle’s size.  

For each triangle, we will find V ∈ Eh such that: 

 

∀𝑖, 𝑇𝑖  ∈  𝑆𝑘 ,   
𝜎𝑘+𝜎𝑘+1

2
 𝑉𝑖 =  𝑉0ሺ𝒓𝑖ሻ − 

1

4𝜋
σ ሺ𝜎𝑙 −  𝜎𝑙+1ሻ σ 𝑉𝑗𝑇𝑗∈𝑆𝑙

 Φ𝑗
 

𝑇𝑗
ሺ𝒓′ሻ

𝒓𝑖−𝒓′

ԡ𝒓𝒊−𝒓′ԡ3 ∙𝑙

𝒏𝑗𝑑𝑠′ , 

 

Where ri is the center of the triangle Ti and nj is the constant normal to triangle Tj. So, this last 

equation can be written as: 

 
𝑉𝑖 =  𝑏𝑖 + σ 𝑎𝑖𝑗𝑉𝑗𝑗  , 

 

Where bi and aij are constant coefficients that can be calculated. In conclusion, the problem will 

become once again a linear system: 

 

𝑨 ሾ𝑉𝑖ሿ = 𝑏 . 

 

All the Vi values of V will be derived by the resolution of this linear system. 

Once we calculated this electric potential, an approximate solution of the magnetic field generated 

by the same source can be drawn using the equation 1.4.5(2) (Ferguson et al., 1994). Doing that, 

the tiny electromagnetic fields produced by the neural activity can be modeled to approximate 

what is measured by MEG device. 
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1.4.2   The inverse problem 

The inverse problem of M/EEG processing is considered the counterpart of the forward problem 

and consists of retrieving the neural generators distribution that produced the observed and 

measured electromagnetic field.  

There are three main approaches to solve the inverse problem: 

▪ The dipole fitting approaches (parametric models); 

▪ The beamforming or scanning techniques; 

▪ The image-based methods with distributed source models. 

The dipole fitting approach is based on the assumption that the measured data have been produced 

by a small number of active regions and each of them can be modeled as a single dipole (equivalent 

current dipole – ECD). Also, the number of dipoles and therefore the active regions are a priori 

fixed. That represents a huge limit to this approach and these models are commonly used when 

one or few dipoles are present. However, when this technique is combined for example with fMRI, 

the position of dipoles can be supposed as known. 

Another important way to approach the inverse solution is represented by the beamforming 

method. It is a scanning technique in which a certain region of interest – typically the gray matter 

in the cortical mantle – is filtered with spatial filtering or using signal classification indices to 

estimate the contribution of each source location. The better the spatial filter is, the better the 

estimation will get. A well-designed spatial filter is one that filters out sources that do not come 

from a small volume around a chosen radius. There are different spatial filters employed in these 

problems. The simplest one is called “matched filter”, but more complex ones have been designed 

to reach a higher precision avoiding crosstalk from other areas. For example, Linearly Constrained 

Minimum Variance (LCMV) beamformer or Synthetic Aperture Magnetometry (SAM) are two of 

the most common spatial filters. 

Beamforming methods do not require any information about the number or nature of the sources, 

though they made the strong assumption that the activations of the different sources are 

uncorrelated.  

The last method is represented by the image-based approaches. In this case, source models are 

distributed over a certain source space. The surface is typically the cortical mantle, modeled as a 

triangular mesh. Therefore, instead of dealing with scalar values over a 2D or 3D complex grid, 

the space is defined with vertices of triangles over a brain surface. Once the dipoles are estimated 

with their orientation, software that implements and handles this image-based method (e.g. 

Freesurfer, BrainVisa, etc.) proceeds to inflate the cortical surface in order to derive a nicer brain 

view with their highlighted active regions. By doing so, oriented activities detected in the gyri are 

represented in an inflated cortical mesh, as shown in Figure 1.21. 
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When orientations of dipoles are fixed and only the amplitude of distributed sources needs to be 

estimated, the problem to solve can be simplified into the following. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.21  Dipolar sources distributed over a brain surface. 

M = MEG data (measurements) 
G = Gain matrix 
X = Source amplitudes (unknown) 
E = Additive noise 

2 
M = GX + E 

 1 3 4 

Times 

# of 
sensors 10 15 20 25 ms 

MEG data matrix (M) 1 

# of 
sources 

# of 
sensors 

Gain matrix (G) 2 

Times 

# of 
sensors 

Noise matrix (E) 4 

Times 

# of 
sources 10 15 20 25 ms 

Source amplitude matrix (X) 3 



 

 
  

39 –  CHAPTER 1: THEORETICAL OVERVIEW. –  

Due to the higher number of sources with respect to the number of MEG measurements (sensors), 

the problem is undetermined and what we do is find the best solution using an optimization 

method. These optimizing methods based on ℓ2 penalization will compute the minimum norm 

solution of: 

 

X* = arg min
 

ԡ𝑀 − 𝐺𝑋ԡ2 + 𝜆ԡ𝑋ԡ2 

 

Some alternative methods are the weighted minimum-norm (WMN), the dynamic statistical 

parametric mapping (dSPM) and the standardized low-resolution brain electromagnetic 

tomography (sLORETA). 

 

 
 

1.5  SOFTWARE AND TOOLS 

1.5.1   MNE-Python 
As we went through the forward and inverse problem in the last paragraphs, it is clear now that 

localizing the neural currents in M/EEG is very complex and requires approximations. Thus, in 

order to achieve a good result, a group of scientists and engineers at the Martinos Center for 

Biomedical Imaging (Massachusetts General Hospital, Boston, MA) have developed the MNE 

software suite. It contains many command line functions written in C and compiled in Linux and 

MacOSX, interactive tools for reviewing the recordings and the source estimates, and the Matlab 

and Python code to interact with a wide variety of other environments (source Biomedical Image 

Group, USC). 

MNE-Python provides a set of algorithms (Gramfort et al., 2014) that allow to plot and analyze 

the data recorded by the MEG device, and it has been used in this dissertation to analyze and plot 

the results (see Chapter 4). MNE-Python is only one of several packages that has been created in 

the last two decades. Other examples are Brainstorm (University of Southern California and MIT, 

2011), FieldTrip (Donders Institute for Brain, Cognition and Behaviour, Radbound University 

Nijmegen, 2011) and NutMeg (University of California San Francisco, 2004). They are all 

implemented in Matlab.  

MNE-Python is currently the state-of-the-art package for the Python community. Nevertheless, 

due to its NeuroMag FIF file format, it interacts with other MNE suite components. MNE-Python 

provides many features to analyze every aspect of the MEG/EEG signals, such as time-frequency 

analysis, brain connectivity, independent component analysis, but also multivariate pattern 
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analysis and machine learning algorithms. With MNE-Python is easy to address every aspect of 

the analysis pipeline: from preprocessing, through source estimation and plotting, to machine 

learning predictions. 

As per its own structure, MNE-Python has been built on a scientific Python environment that 

integrates its main libraries: NumPy, to manage n-dimensional data structures, SciPy which 

contains modules of linear algebra and signal/image processing, Matplotlib, used for 2D graphics, 

PyVista or Mayavi for the 3D graphics, Pandas to handle data frames and Scikit-Learn that  

implements machine learning algorithms. 

In the previous paragraph, we saw that the forward problem refers to the correspondence between 

neural currents and M/EEG sensor measurements, while the inverse problem resolves the cortical 

sources that produce a specific set of M/EEG recordings. In MNE-Python, both problems can be 

solved in different methods, from simple spherical head models to boundary or finite element for 

the forward problem, to depth-weighted minimum L2 norm estimator of cortical current density 

for the inverse one. Furthermore, some normalization techniques can be implemented using MNE-

Python (dSPM, sLORETA, etc.). 

In order to make it run – once a version of Python 3.x is installed on the computer – we need to 

create a virtual environment on the Python integrated development environment (IDE). The whole 

virtual environment that allows 3D plotting capabilities and source analysis is available on GitHub 

and to download it just a few lines of code are required: 

    Linux 
$ curl --remote-name https://raw.githubusercontent.com/mne-

tools/mne-python/main/environment.yml 

$ conda env update --file environment.yml 

    MacOS 
$ conda install --name base nb_conda_kernels "spyder>=4.2.1" 

$ curl --remote-name https://raw.githubusercontent.com/mne-

tools/mne-python/main/environment.yml 

$ conda env update --file environment.yml 

    Windows 
- Download the environment file at:  

https://raw.githubusercontent.com/mne-tools/mne-

python/main/environment.yml 
- Open on Anaconda command prompt 
- Run conda install --name base nb_conda_kernels "spyder>=4.2.1" 

- cd to the directory where you downloaded the file  

- Run conda env update --file environment.yml 
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The virtual environment will be saved by default as ‘mne’ on the machine. Finally, you need to 

start a new project from the Python-IDE and select ‘mne’ as interpreter. 

 
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. B. 

C. 

D. 

E. 

Figure 1.22. A. Example of Python code pipeline to preprocess the data, compute the inverse operator and 
morph the data into another source space (fsaverage);   B. Plot of the independent component analysis (ICA) 
properties;   C. Example of a time-frequency analysis plot;   D. Example of an evoked response EEG plot;   
E. Morphing and normalization of source estimates to another cortical surface.  
Source: [B, C, D] MNE-Python (v0.24.0.dev0) Tutorial – Overview of MEG/EEG analysis with MNE-
Python; [A, E] Gramfort A.,Luessi M.,Larson E.,Engemann D.,Strohmeier D.,Brodbeck C., et 
al.(2013a).MNE software for processing MEG and EEG data 
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1.5.2   BraviShell and Psychtoolbox-3 
Psychtoolbox-3 is a free package of functions and instructions for Matlab and GNU Octave, used 

in vision and neuroscience research. It allows to easy synthesize visual and auditory stimuli, 

interacting with the computer hardware to facilitate the collection of observer responses.  

Even though the experiment relies on Psychtoolbox-3 during its implementation in Matlab, the 

whole code has been written in BraviShell. BraviShell is a software package developed in the 

Brain and Vision Research Laboratory (Biomedical Engineering Department, Boston University, 

Boston, MA, 2005-2014) that provides the main resources to easily design and code new 

experiments using Matlab. Due to its custom and goal-oriented development, it is designed to 

interact with the main brain research infrastructures in Boston: Brain and Vision Laboratory 

(Boston University), Athinoula A. Martinos Center for Biomedical Imaging (Harvard Medical 

School, Massachusetts General Hospital), and McGovern Institute for Brain Research 

(Massachusetts Institute of Technology). 

BraviShell installer is hosted on GitHub and access to the installer is allowed only to trusted 

collaborators. If the installation is completed without any errors, moving to the BraviShell 

directory from the command prompt will allow to call Matlab with the command ‘ptb3-matlab’ 

and successfully access to the experiment folder typing ‘BraviShell + name_of_experiment’ in the 

Matlab command prompt. Figure 1.23 shows a view of the interface just described. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A) 

B) 

Figure 1.23.   A) Call to BraviShell platform from Matlab environment. B) An example 
of the main menu for the ‘SwitchingAttention’ experiment. 
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Chapter 2 
 

 

EXPERIMENTAL BACKGROUND 
 

 

In this chapter, a brief discussion about cognitive science’s main theories is carried along. 

Hence, I am going to review previous studies regarding cognitive learning, task switching 

hypothesis and switching brain asymmetries, inhibition mechanisms, brain pathways, and 

the role of cerebral cortices during goal-oriented tasks.  

In the discussion, several papers will be cited along with the point they tried to make. 

References will be found at the end of the chapter for the reader to deepen. 

 

 

 

Contents   
2.1     Previous studies.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

              2.1.1    A brief discussion on cognitive science. . . . . . . . . . . . . . . . . . .  

              2.1.2    Neural oscillations in cognitive processes. . . . . . . . . . . . . . . .  

        References.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

 

 

 

 

 

47 

47 

51 

55 



 

 
 
 



 47 –  CHAPTER 2: EXPERIMENTAL BACKGROUND. –  

2.1  PREVIOUS STUDIES 

2.1.1   A brief discussion on cognitive science 

Cognitive psychology is defined as the scientific study of mental processes such as attention, 

language use, memory, perception, problem solving, creativity, and reasoning. 

The origin of cognitive psychology occurred in the 1960s, to face the lack of empirical science in 

the understanding of internal brain processes. Along with cognitive psychology, different branches 

that focused on different aspects of the brain developed. One of these is cognitive learning theory 

(CLT), which is a wide topic approached both from a psychological and physiological point of 

view. The first – a.k.a. behaviorists approach – concerns external observable behavior and held as 

the main study approach from the 1920s to 1950s, while psychological studies – a.k.a. cognitive 

approach – investigate internal brain processes that lead to learning. There is a huge literature 

aimed to understand how the brain is capable of actively understanding and learning a particular 

task, defining the role of the different brain cortices and their internal communication pathways. 

We will focus on them later in the dissertation. 

      One of the major research topics in cognitive psychology is task switching, and its study has 

become one of the major research tools to understand the dynamic and flexible control of task sets. 

A task set is typically assumed to include a task goal, a set of task-relevant stimuli, and a set of 

possible responses. A task goal is usually represented by performing a classification between two 

different possibilities (letters, numbers, shapes, colors, etc.), a task-relevant stimulus aims to 

indicate the subject which task to perform between different possibilities, and finally during a task 

set the subject can respond to the task in different ways, such as speaking, moving eyes or pressing 

a key. In typical task-switching studies, participants switch between two tasks. 

The typical phenomenon in task switching is called switch cost (e.g., Rogers & Monsell, 1995) 

and is likely observed with a drop in performance (higher reaction times and error rates) in task 

switching rather than in task repetition (e.g. Allport et al. 1994). In the study of Allport et al. 1994, 

switch cost was explained with a task set inertia (TSI) hypothesis, stating that high switching costs 

were due to persisting activation of the task that was relevant prior to the switch. When subjects 

moved from Task A to Task B – according to the TSI hypothesis – the activation pathways 

associated with Task A remained high for some time after the switch to Task B. Thus, conflicts 

between Task A and Task B pathways resulted in a high switching cost and drop in performances. 

Another valid hypothesis that tried to explain this phenomenon was proposed by Monsell in 1996 

and called the 'task-set reconfiguration hypothesis' (TSR), according to which, switch cost never 

disappears entirely – contrarily at the TSI hypothesis where inertia was present only at the 
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beginning of the task due to sudden switch (Allport et al. 1994, Meiran, Chorev, & Sapir, 2000; 

Milán et al., 2005) – and is sustained by two components: an ‘endogenous’ component under 

subjects’ voluntary control and an involuntary ‘exogenous’ one . Respectively, the first component 

can be actively eliminated before the upcoming new task, but the latter one holds until the stimulus 

was actually presented, and it is often identified as “residual switch cost”.  

In a typical task-switching paradigm, important studies have also demonstrated the existence of 

switch-cost asymmetries related to subjects’ stronger and weaker tasks (Allport et al. 1994). 

Allport et al. (1994) observed a higher switch cost when participants switched to the stronger task 

– the one in which they performed better and were more confident – rather than when they were 

asked to switch to the weaker one. Asymmetries have been observed in many types of tasks, which 

involved different sensory areas. However, the most interesting results have been drawn from 

color-naming task sets (e.g. Arbuthnott, 2008; Koch, Prinz & Allport, 2005; Monsell, Yeung & 

Azuma, 2000) and in language-related paradigm. These latter studies, for example, reported 

greater switch cost when subjects had to move to their first language rather than when they moved 

to their second language (e.g. Campbell, 2005; Costa & Santesetban, 2004, Philipp, Gade & Koch, 

2007). A reason for this asymmetry can be found in the previously discussed TSI hypothesis, 

according to which a strong brain signal persists after our dominant task and its inhibition requires 

a higher cost and therefore a performance drop. 

Although, even if the TSI hypothesis could be a reasonable explanation of this phenomena, 

different hypotheses have been proposed by scientists. 

For example, Monsell et al. (2000) argued that switch-cost asymmetry could be explained without 

taking into consideration inhibitory processes but by introducing a “task priming” concept, which 

relies on the idea that a higher brain activation baseline (related with the dominant task) has a 

greater aftereffect on the other – non-dominant – task. Importantly, task priming is asymmetrical 

because the tasks have different activation baselines that indicate which is the strongest one. 

Furthermore, Yeung & Monsell (2003) modeled the switch-cost asymmetry as a priming-based 

modulation of task-repetition benefits, based on the concept that task interference is higher when 

switching to the weaker task because of strong priming, and this interference is modulated and 

reduced in task repetition.  

However, the aforementioned studies focused only on asymmetrical activation related to switch-

cost and didn’t assess the role of inhibition mechanisms. Hence, Mayr and Keele in a paper 

published in 2000 tried to answer the question of whether or not brain inhibition mechanisms are 

fundamental during a task-switching paradigm. They found inhibition mechanisms triggered by 

“top-down” processes and that cue-encoding processes themselves are not an inhibition target. By 

“top-down” processes they meant the ones based on specific cues that reveal the identity of the 

upcoming task, while with “bottom-up” processes they identify those where the information is 

provided in the actual stimulus display itself (e.g. Hubner, Dreisbach, Haider & Kluwe, 2003; 
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Mayr & Kelee, 2000). However, it is still not clear whether task-unspecific cues do or do not lead 

to task inhibition, and further examinations need to be done before stronger conclusions can be 

drawn. 

      From the neuropsychological perspective, cognitive neuroscience has to address multiple 

challenges related to spatial brain activation during task switching in everyday life. It has been 

already proven the fundamental role of the prefrontal cortex in situations that require flexible 

adjustment to different task demands (Owen et al., 1993; Milner, 1963), but the neuroimaging 

literature is still studying the cognitive control processes involved in such problem. Specifically, 

we refer to cognitive control as the ability to flexibly adjust behaviors and thoughts to reach a 

specific goal (Miller & Cohen, 2001). 

Neuroimaging studies have already shown a sustained activity in the frontal and parietal cortices 

during cognitive control, raising questions about the specific contribution of prefrontal and parietal 

brain regions to achieve an end. Early invasive experiments on monkeys (Miller & Cohen, 2001; 

Tomita, Ohbayashi, Nakahara, Hasegawa & Mijashita, 1999) tried to assess the contribution of 

the prefrontal cortex, finding its role as a bias for the posterior brain processing. Therefore, it is 

likely to consider true what was shown by Brass et al. (2005), who tried to observe a prior 

activation in the prefrontal cortex, which modulates – in a task-switching paradigm – the parietal 

cortex activity. This experiment was conducted considering both fMRI imaging – for its high 

spatial resolution – and ERP data –for their higher temporal resolution –.  

However, within a brain structure as large and complex as the prefrontal cortex, a lot of scientists 

argued about different regional specialization of function, finding out ambiguous behaviors. On 

one hand, some studies have demonstrated specific properties of single neurons in the prefrontal 

cortex during particular tasks, which underline a high specialization. Considering for example a 

specifically-driven task regarding spatial working memory, the region of the principal sulcus is 

shown to be majorly involved in the localization processes (Funahashi et al., 1989). On the other 

hand, some studies suggested that neurons distributed through the lateral frontal cortex might adapt 

their properties and activation depending on the task demand (Rao et al., 1997). 

Even anatomical data of the frontal cortex could be misunderstood because, even though it is true 

that subregions of the frontal cortex have a different function and local structure (Petrides & 

Pandya, 1994), connectivity pathways in these regions are very complex. Indeed, experiments on 

monkeys explained how even a small region of the frontal cortex is connected not only with the 

immediately surrounding areas but also with a widely spread network involving the whole frontal 

lobe (Pucak et al., 1996). One method to address this challenge about brain connectivity is called 

Granger causality – a.k.a “G-causality” –. This concept was first proposed in 1969 by the 

econometrician Sir Clive William John Granger (1934-2009), whose work to determine whether 

one-time series is useful for forecasting another in terms of causality has been used in many 

disciplines in the last decades. Also, it has been proven to represent a consistent statistical analysis 
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method in neuroscience research (Bressler et al., 2011). Despite the long-held belief about high 

task-specificity of brain regions may hold true, in recent years brain connectivity has become a 

flourishing topic because scientists – applying Granger causality concepts – have tried to look at 

the brain in a network-centric approach to describe the information flow inside the brain. 

Brain functions are now thought to be associated with complex neural networks rather than simple 

brain regions. In other terms, scientists are investigating brain functions focusing on the 

information flow between areas rather than the areas themselves (Knight, 2007). The dynamics of 

these networks are governed by stochastic processes evolving through time, which led to the 

conclusion that by giving the brain the same input stimulus multiple times, the output of the brain 

network will be slightly different every time. Granger causality analysis – in neuroscience – is 

based on the idea of how to best predict the future of a neuron or a small group of them considering 

first an entire ensemble of neurons and then the same ensemble without one certain target neuron. 

If the prediction is worse by excluding that neuron, then it will be considered “g-causal” with 

respect to the ensemble. 

Moreover, it is interesting to focus on the imaging literature where different imaging methods have 

been used to establish a more specific overview of the main brain networks.  

For example, functional magnetic resonance imaging (fMRI) studies found sustained activity of 

the cingulo-opercular network (CON) and frontoparietal network (FPN) during the performance 

of many cognitive activities and maintenance of alertness state (Sheffield et al., 2015; Sepideh, 

D’Esposito, 2015). These networks (see Figure 2.1) involve different regions of the frontal and 

parietal cortex. The CON spreads through anterior cingulate, anterior prefrontal, and anterior 

insula/frontal regions, while the FPN includes regions from dorsolateral and ventrolateral 

prefrontal cortices, motor areas, inferior and superior parietal lobes, and intraparietal sulci (Braver 

et al.,2003; Dosenbach et al.,2006; Dosenbach et al., 2007, Dosenbach et al.2008). In task-

switching paradigms, these networks have been observed to increase their activity when the 

subject underwent a switch of tasks (Braver et al.,2003; Dove et al.,2000; Sohn et al.,2000; 

Derrfuss et al.,2005; Crone et al.,2006; Guard et al.,2002; Yeung et al.,2006; Rushworth et 

al.,2002). Moreover, prefrontal and posterior parietal regions have been found to modulate their 

activities accordingly to the behavioral cost associated with task switching: the higher the cost, the 

higher the activation. 

As previously mentioned, several studies reflect frontal-lobe activation to be associated with 

different cognitive demands, such as spatial attention, decision making, and task switching (Dove 

et al., 2000). In general, goal-directed behaviors rely on the prefrontal cortex (Diamond, 2013; 

Miller & Cohen, 2001), which – due to multiple factors – can undergo cognitive fatigue, associated 

with a drop in performance. This is known as cognitive fatigability and affects principal brain 

processes such as information processing, working memory, planning, sustained attention, 

ignoring irrelevant cues, etc. (Kurzban, Duckworth, Kable & Myers, 2013; Boksem & Tops, 
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2008). In recent years, functional imaging studies tried to better understand this phenomenon using 

network analyses on fMRI and EEG data. They suggested a brain response to cognitive fatigability 

consisting in the alteration of the long-range connectivity to a lower-range one, and a right-left 

hemisphere asymmetrical connectivity between the beginning and the end of the task (Sun, Lim, 

Kwok & Bezerianos, 2014; Sun et al., 2017, Verweij et al., 2014). 

Cognitive fatigue related to task switching has been shown to have different effects whether the 

subject had to rely on working memory or on a self-explanatory external cue (Gajewski, 

Kleinsorge & Falkeinstein, 2010; Wolff, Roessner & Beste, 2016). Hence, it is likely to suppose 

that – during a task-switching paradigm involving working memory – fatigue is enhanced by the 

prefrontal cortex's need to maintain multiple processes (Petruo, Mückschel & Beste, 2018). 

      During our everyday life, working memory is one of the most important mnemonic operations 

we are dealing with. It includes online maintenance of information, coming from internal or 

external stimuli, and is extremely important for the performance of a large number of tasks.. 

Remembering addresses, directions, names, or perform a calculation are only a few of them. 

The name ‘working memory’ was coined by Miller, Galanter, and Pribram in 1960 in their book 

called ‘Plans and the Structure of Behaviour’ and – during the ‘60s – became of major interest 

because of its implications with the new era of information processing and digital computers. 

We already mentioned the role of the prefrontal cortex (PFC) during goal-oriented tasks, but 

research in the somatosensory domain provided evidence that neurons in PFC increase or decrease 

their firing rate to encode working memory content (Brody et al., 2003). 

 
 

2.1.2   Neural oscillations in cognitive processes 

Brain activity is characterized by neural oscillations – a.k.a. brainwaves – which are rhythmic 

patterns generated by the central nervous system at different frequencies. Since their discovery in 

1924 by Hans Berger, neural oscillations became one of the main aspects to focus on in 

neuroscience. Nowadays, brain signals throughout different frequencies are still considered 

extremely significant to figure out communication between different areas of the brain and 

between inner and outer parts of the cortex.  

There is a wide literature referring to EEG and fMRI imaging that shows alpha oscillations to be 

related to switching cost. In particular, a strong decrease in the alpha band has been observed for 

switch trials with respect to repeat trials during the preparatory period and reactive period for both 

cued and non-cued task-switching paradigms (Sauseng et al.,2006; Wu et al.,2015; Cunillera et 

al.,2012; Cooper et al.,2016; Foxe et al.,2014; Rapela et al.,2012; Poljac & Yeung, 2014; Murphy 

et al.,2016). Other studies have also found evidence for alpha activity decrease in the frontal and 

parieto-occipital electrodes (Foxe et al.,2014; Murphy et al.,2016; Verstraeten & Cluydts,2002), 
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while beta band decrease has been observed in paradigms that involved task-switching in a certain 

and predictable block, allowing the subject to predict and anticipate the switching. In these 

experiments, a sharp decrease in beta band has been observed anticipating the upcoming task 

switching (Cunillera et al.,2012, Gladwin et al,2006).  

In the last few years, one of the main challenges in neuroscience has been reaching a good 

anatomical specificity, capable of precisely locate brain activity during task-switching paradigms. 

One of the first insightful results – thanks to the advance of technology and better mathematical 

models – has been achieved by Oh et al. in 2014. They assess the alpha-rhythm contribute in the 

right inferior parietal and left superior frontal regions, while found the beta oscillations in the right 

frontal and inferior parietal cortices. Both activities were modulated in magnitude by a task-

switching paradigm between multiple sets of rules. 

Along with a better signal source localization, in the last decade, a technological improvement on 

brain imaging systems (i.e. MEG) led the way to a more meaningful and precise frequency analysis 

of brain signals. Indeed, even frequency components that – due to the low amplitude – were 

thought to carry low information have been analyzed during the task-switching paradigm. For 

example, gamma band – which has always been considered too noisy to be significant and hard to 

handle by common EEG recordings – has been studied thanks to the temporal sensitivity reached 

by MEG. Since – in terms of cognitive processes – gamma-band proved to be very significant 

(Jensen et al.,2007; Wilson et al.,2016), a recent study conducted by Proskovec et al. (2019) linked 

gamma oscillations with task switching, showing an increase of gamma activity in CON and FPN 

related with the switching cost. Also, they showed a strict interaction and modulation between 

alpha and beta decreasing of activity within right prefrontal and inferior parietal cortices that led 

to an increase of gamma activity within the anterior cingulate and right temporoparietal regions 

during switch trials. 

Basing on the task the subjects are asked to perform, alpha oscillations have been seen to be related 

to spatial attention as an inhibitory attentional mechanism. In 2006, Kelly et al. (2006) tried to 

demonstrate this hypothesis by performing a task that required ignoring a specific location. When 

it happened, subjects have shown an enhanced alpha amplitude involved in the suppression of 

distracting inputs. Expanding on the Kelly et al. findings, other studies linked lateralized changes 

in alpha amplitude with spatial attention and saw alpha to modulate attention (Sauseng et al., 2005; 

Thut et al.,2006; Bacigalupo & Luck, 2019) and even anticipating visual distractors, suppressing 

known distractor locations only when they were known in advance (Worden et al., 2000; Noonan 

et al.,2016). Recently, scientists questioned these assumptions due to the presumably weak 

reliability of the correlation between visual distractors and alpha amplitudes. Indeed, most of the 

studies that focused on attention modulation did not filter only alpha activity, and when they did, 

very little neuronal information about distractors was collected. Therefore, assuming a link 

between alpha oscillations and visual distractors suppression has eventually been considered likely 
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to be wrong or – at least – a long shot. With these premises, Antonov et al. (2020) – modifying 

Kelly et al. (2006) paradigm to record both alpha amplitudes and neuronal mechanisms during 

spatial attention – concluded that alpha band effects are too small and delayed to be related with 

an actual active suppression strategy. On the contrary, the alpha rhythm is thought to be a 

consequence of attentional selection rather than preceding it and therefore underlining a 

suppression mechanism. 

More invasive studies have been carried out on monkeys to investigate the directionality of 

different frequency cortical pathways related to major cognitive activities. Recording data directly 

on the brain surface (ECoG), Bastos and colleagues (2015) tested a new hypothesis regarding the 

functions of beta rhythms in the visual cortex, by having monkeys perform tasks that involved 

both bottom-up and top-down processing. By using Granger causality analysis, they identified two 

different flows of information, coded in frequency, through the visual areas: gamma rhythm was 

seen to flow in a feedforward (bottom-up) direction, while beta rhythm proceeds top-down across 

the visual areas (see Figure 2.2). 

Also, low and high gamma frequency – respectively about 30-70 Hz and 70-100 Hz – have been 

reported to carry information in separate channels in the hippocampal network (Colgin et al.,2009) 

(see Figure 2.3).  

Furthermore, an enhanced gamma activity has been shown to indicate active working memory 

processes, whereas prefrontal beta oscillations encode and maintain quantitative information 

(Spitzer et al., 2014). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A) 

ACC 

dACC Thalamus Anterior  insula /operculum 

B) IPL 

DLPFC 

RLPFC 

Figure 2.1.   A) Cingulo-opercular network (CON) is composed of anterior insula/operculum, 
dorsal anterior cingulate cortex (dACC), and thalamus. B) Frontoparietal network (FPN), also 
known as central executive network, it is primarily composed of the rostral lateral and 
dorsolateral prefrontal cortex (RLPFC, DLPFC) and the anterior inferior parietal lobule (IPL). 



 54 –  CHAPTER 2: EXPERIMENTAL BACKGROUND. –  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3   Schematic illustration of the main structures within the hippocampus. The 
hippocampal network is principally uni-directional, with the input from the Entorhinal Cortex 
(EC), flowing to the Dentate Gyrus (DG) and CA3 pyramidal neurons via the Perforant Path 
(PP) (Kesner et al., 2013).  

Figure 2.2.  (Left) Visual brain pathway in a macaque monkey. (Right) Representation of the 
different directions and frequencies in the information flow through visual network. Gamma 
rhythm promotes feedforward processes (from lower to higher visual areas), while beta is related 
to feedback processes.  
Source: Zheng, C., & Colgin, L. L. Beta and gamma rhythms go with the flow. Neuron 85, 236–237 
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Chapter 3 
 

 

EXPERIMENTAL PROCEDURE AND 
METHODS 
 

 

In this chapter, I am going to describe in detail all the aspects concerning the experimental 

procedure, starting from the subjects involved in this research, moving to the description 

of the experimental paradigm, and finally focusing on the data acquisition with MEG and 

MRI. 
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3.1  RESEARCH PARTICIPANTS 

3.1.1   Subjects 

Five healthy volunteers (mean age: 24 years, SD: 2.67, range: 22-29; 3 of them female) 

participated in this study. Subjects were recruited from the Boston University community, and 

they were students or postdoctoral researchers. Exclusion criteria included any medical illness 

affecting central nervous system functions, neurological or psychiatric disorders, history of head 

trauma, current substance abuse, and ferromagnetic implants. None of the subjects were excluded 

from the study and all of them were naïve as to the purpose of the study. Also, they reported to be 

right-handed as confirmed by the Edinburgh Inventory of handedness (Oldfield, 1971) and had 

normal or corrected-to-normal vision. 

Four subjects underwent two different sessions of the experiment (about one week apart from one 

another), maintaining the same experimental procedure. From now on in the dissertation, we will 

refer to ‘N_01’ and ‘N_01b’ respectively for the first and the second session of the first subject, 

and this logic is maintained for all subjects.  

After providing a complete description of the experiment and the measurements we were going to 

record, they underwent a quick training session aimed to shun differences between volunteers. The 

training consisted of performing the experiment until the subject became confident with the 

paradigm. It took around 1-2 minutes per subject. 

Written informed consent was obtained from all participants in accordance with the Declaration 

of Helsinki (World Medical Association, 2013), and all the procedures were approved by the local 

Ethics Committee of Human Resources at Boston University and “Athinoula A. Martinos Center 

for Biomedical Imaging” at Massachusetts General Hospital (MGH). 

 
 

3.2  EXPERIMENTAL PROCEDURE 

3.2.1   Stimuli 

The stimuli presented to the subjects consisted of a cue and an imperative stimulus. The cue was 

a 1000 ms random-dot kinematogram (RDK) within a circular aperture of 15 degrees of visual 

angle as outer diameter. RDK was either an expansion or contraction dot motion. Dots had the 

following characteristics: density = 2 dots/(degree2), speed = 3 deg/s, diameter = 4 mm, and 90% 



 60 –  CHAPTER 3: EXPERIMENTAL PROCEDURE AND METHODS. –  

of radial motion coherence. An example of RDK with different coherence can be seen in Figure 

3.1.  

When the cue was an expansion RDK, subjects were instructed to perform the number task in the 

forthcoming imperative stimulus; vice versa, when the cue was a contraction RDK, they performed 

the letter task. Cues changed pseudo-randomly across trials, but the number of different trials was 

equalized within each experimental block (see Figure 3.2). 

The imperative stimulus (800 ms duration) was a pair of two letters and two numbers (white, 80-

point, Times New Roman, 150 m/cd2 luminance) displayed on a grey background (Red=NaN, 

Green=NaN, Blue=NaN, Grey=247.373). Letters and numbers were presented on opposite sides 

of a screen-centered fixation cross. The side of letters and numbers, with respect to the fixation 

cross, randomly changed across trials. 

Moreover, between the cue and the imperative stimulus, a cue-target interval (CTI) was presented. 

The CTI varied randomly between 300 ms, 800 ms, and 1300 ms. Along with the dissertation, the 

CTI period is often referred to as the ‘delay’ or ‘delay period’. 

In the imperative stimulus, letters and numbers were randomly drawn from a set containing [C, N, 

V, S] as consonants, [A, E, O, U] as vowels, [2, 4, 6, 8] as even numbers and [1, 3, 5, 7] as odd 

numbers. 

After the imperative stimulus, a blank period – similar to the CTI – was displayed for 1700 ms. In 

this period, the screen had a grey background (Red=NaN, Green=NaN, Blue=NaN, 

Grey=247.373) with a centered white fixation cross.  

Subjects were asked to respond to the task during the imperative stimulus or the following blank 

period. If they didn’t answer on time, the trial was considered “out of time” and therefore excluded 

in the data analysis. Figure 3.3 shows a schematic representation of the experiment stimuli just 

described.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1.   Radial random-dot kinematogram (RDK) with different 
coherences. A) RDK with 50% of coherence. B) RDK with 100% of 
coherence. 

A) B) 
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3.2.2   Experimental paradigm 

Subjects were asked to perform the experiment in 3 blocks, and each of them contained 108 cued 

trials. The target to attend – which could be either ‘number’ or ‘letter’ – was not a priori known 

by the subject, therefore participants were forced to remember the rule associated with the cue but 

not a specific pattern between trials’ targets. 

If the subjects were cued to perform a letter task (with a contraction RDK), they had to categorize 

the pair of letters displayed on the screen according to whether they were both consonants, both 

vowels, or one of each. Using a fiber-optic response device provided in the MEG room, 

participants had to press the first button if the letters were both consonants, the second one if they 

were both vowels, and the third otherwise. 

On the contrary, if the cue was an expansion RDK motion, subjects had to perform the ‘number 

task’ and therefore press the first button if the numbers were both odd, the second one if they were 

both even, and the third otherwise. 

Between the end of the cue and the imperative stimulus, subjects were forced to withhold the 

response for a delay period not known in advance. As previously mentioned, it could be either 300 

ms, 800 ms, or 1300 ms, and it is a key point in the experimental paradigm for further analysis. 

Participants were asked to maintain central fixation throughout all the 108 trials and to take short 

breaks between the blocks to prevent fatigue and concentration lapses. 

 
 
 

3.3  RECORDINGS AND DATA ACQUISITION 

3.3.1   MEG Data Acquisition 

The MEG data were acquired at Athinoula A. Martinos Center for Biomedical Imaging, 

Massachusetts General Hospital. The acquisition system was housed in a three-layers 

magnetically-shielded, sound attenuated, and dimly lit room (Imedco AG, Switzerland), and 

participants were seated in a non-magnetic chair performing the task-switching experiment 

described in the previous paragraphs. They were sat in the upright position at a distance of 138 cm 

from a 44” back-projection screen, and the stimuli were projected through an aperture in the MEG 

chamber using a Panasonic LP350 DLP with a resolution of 1024x768 pixels and a 75 Hz refresh 

rate. 
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Data were recorded with a 306-channel Neuromag Vectorview whole-head system (Elekta-

Neuromag, Finland), comprising 102 pairs of planar gradiometers and 102 magnetometers.  

Also, on the day of MEG scanning, a two-minutes empty room recording was acquired for 

computing the noise covariance matrix of the sensors. To avoid any electromagnetic influences, 

participants were asked to not place their heads under the dewar during these recordings.  

MEG sessions were aligned to a common head position through the Maxfilter software, Maxmove. 

Sensor data was spatially filtered via simulated head translation and rotation to represent signal 

measurements onto the realigned space. 

To measure the participants’ head position inside the MEG, five head-position indicator (HPI) 

coils were fixed on the scalp. Then, participants’ head shape and the HPI coil locations were 

digitized with a 3D Fastrak digitizer (Polhemus Inc., Colchester, VT) integrated with the 

VectorView system. HPI coil locations were used to localize the head position and orientation 

with respect to the sensors at the beginning of each trial. 

To align the coordinate systems between MEG recordings and MRI scans, at least 80 points have 

been sampled on the scalp during subjects’ preparation. Also, before entering the MEG room, 

participants were asked to change their clothes and wore a standard surgical gown. 

 
 

3.3.2   MRI Data Acquisition 

A high resolution T1-weighted Magnetic Resonance Imaging (MRI) was acquired on a 3-T MRI 

scanner (Siemens-Trio, Erlagen, Gernamy) with an 8-channel phase array head coil.  

MRI recordings were acquired with the following parameters: distance factor = 50%, slices per 

slab = 128,  FOV = 256 mm, FOV phase = 100 degrees, slice thickness = 1.33 mm, TR = 2530 

ms, TE = 3.39 ms. Then, Freesurfer software was used for cortical reconstruction and volumetric 

segmentation of the T1 weighted whole brain images for each volunteer. The individual brain 

scans were motion corrected, spatially co-registered by morphing into the Freesurfer average brin 

through spherical surface mapping and spatially smoothed with a 5mm FWHM (full width at half 

maximum) kernel. 
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4.1  PREPROCESSING 

After the MEG and MRI recordings – as described in Chapter 3 – Dr. Ahlfors Seppo (Associate 

professor at Harvard Medical School, Massachusetts General Hospital) and its colleagues firstly 

preprocessed the data by identifying EOG and ECG artifacts, removing 60 Hz line noise, and 

creating an event file from the one produced by the MEG trigger. 

Specifically, Dr. Seppo & colleagues created EOG signal space projectors (see paragraph 4.1.2) 

related with eye blinks choosing the data from -500 ms to +500 ms with respect to the peak of 

each blink artefact and selecting the principal component of these data as SSP. Then, they removed 

line noise with a notch filtering centered around 60 Hz and its harmonics, and finally they read the 

event file produced by the MEG trigger, which was steer by the Matlab experimental script. 

Indeed, while the experiment was running, at each trial it was sending coded signals to the MEG 

trigger in order to timing each event inside the trial. Thus, when the cue started a ‘code = 1 ’signal 

was sent to the MEG trigger, and the same for the start of CTI (code = 2) and the start of imperative 

stimulus (code = 4). At the end of the experiment, a file containing all trials timing was written. 

A representation of the files produced during the processing and used afterward for the analyses 

is shown in Figure 4.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1.   (Left) MEG directory of the first subject ‘N01’. Behavioral folder contains 
the results of the three session’s experimental blocks. Coreg folder contains the 
coregistration (transformation file) in order to align MRI and MEG coordinate systems. 
Events folder contains all the events and their timing, retrieved from the trigger file. Proj 
and Raw folders contain respectively the EOG projectors and the MEG data preprocessed 
by Dr. Seppo. (Right) Anatomy directory of the first subject ‘N01’. Most of the data, except 
the bem solutions, have been obtained from Freesurfer software and are standard MRI data. 
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4.1.1   Data pre-inspection  
As one of the first steps in order to understand the quality and organization of data, a data 

inspection is fundamental. Therefore, the first step I did was to represent raw data, observe their 

characteristics, and then apply SSPs to project out the EOG artifacts. 

Also, a frequency-domain check has been held to verify the line noise removal and cut the signal 

between the frequencies we were interested in (~ 0.1 Hz – 110 Hz). 

For instance, looking closely at the MEG raw data for the first block of the first subject ‘N01’, we 

can draw some considerations. In Figure 4.2, in fact, we can notice that in the power spectral 

density of the data, the line noise has been correctly removed. Furthermore, comparing the 

independent component analysis (ICA) of the signals before and after applying the SSPs (Figure 

4.3 and Figure 4.4), we can observe the EOG-related artifacts as the first component (‘ICA000 ’

in Figure 4.3).  

After applying the preprocessing, both ECG and EOG artifacts have been projected out and the 

signal appears cleaner. An example of 5 sensors ’MEG recordings before and after the 

preprocessing is shown in Figure 4.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2.  Example of power spectral density (PSD) computed on one of 
the first subject’s signals (see in Figure 1 ‘swa01_raw.fif’). Red arrows are 
centered in 60 Hz line noise and its harmonics. 
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Figure 4.3.   Independent component analysis (ICA) applied on the subject ‘N01’. An ICA before 
the preprocessing and artifacts removal has been performed on the left, while on the right the 
same analysis has been held after projecting out EOG and ECG-related components. At the 
bottom, the 20 ICA components are shown on the brain as an average over time, and at the top 
the same components are shown as signals over a 20 second window.  

Figure 4.4.  MEG signals before and after preprocessing. In the first plot, red and black lines 
represent the signal before and after artifacts removal.  
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Figure 4.5.  Example of 5 MEG channels before (top) and after (bottom) preprocessing. In 
particular, MEG0142 and MEG0143 are gradiometers placed in proximity of the left 
temporal lobe and MEG0732 is a gradiometer placed next to the central primary 
somatosensory area (BA3). MEG0141 and MEG0731 are magnetometers sensing areas 
respectively around left temporal lobe and central primary somatosensory area. 
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4.1.2   Filtering and signal space projections 

Preprocessing pipeline principally involves filtering and projecting the signal in order to increase 

signal-noise ratio (SNR). As we already mentioned, noises can be both electromagnetic and 

biologically related, therefore different considerations about frequencies and characteristic shapes 

must be kept in mind. 
Nowadays, filtering is quite always addressed by implementing digital filters using calculators, 

and a lot of Python libraries implement filter functions. In this project, MNE-Python filter has 

been used, calling the function mne.io.Raw.filter() and indicating the cutoff frequencies, the 

transition band for both low and high cutoff frequencies, the length of the FIR filter, the phase of 

the FIR filter and the window associated.  

For the further analyses, I have used a filter with different cutoff frequencies but, since the signal 

to be processed was the same, the other parameters didn’t vary. Low and high transition bandwidth 

was set to ‘auto’, which used respectively a multiple of low and high cutoff frequency, selecting 

the result of the following expression: min(max(cutoff_freq * 0.25, 2), cutoff_freq). To obtain the 

best result, all other parameters but the window were set to ‘auto ’because the mne library has 

been developed focusing principally on MEG signals. The filter window chosen was the Hanning, 

which was tested to return good results. 

 

Regarding Signal-Space Projections (SSPs), computing them as one of the first preprocessing 

steps is the most common approach for MEG signals. SSP aim to reject external disturbances, but 

unlike many other noise-cancellation approaches, it does not require external reference sensors to 

record disturbance fields. It is based on the idea that the signal can always be decomposed into 2 

components, one related to the signal bs(t) and another one to the noise bn(t): 

b(t) = bs(t) + bn(t) 

Also, the noise bn(t) should be characterized by a well-known pattern that constitutes an 

orthonormal basis b1 … bm and its angle with the signal vector bs(t) as close as possible to p/2. If 

these requirements are satisfied, then we can calculate a specific operator called signal-space 

projection operator P⊥ so that: 
P⊥bn(t) ≈ 0, 

and therefore          bs(t) ≈ P⊥b(t). 

MNE-Python provides functions to compute the SSP operator and then apply it to remove artifacts. 

In this dissertation, from the preprocessed data received from Dr. Seppo, the SSP related with eye 

movements and blinks have already been implemented and I just needed to apply it with the proper 

Python commands. First, I had to add the projections to the Raw object (containing the signal to 

be processed) writing raw.info[‘projs’] =+ projs_eog, where raw.info is the object’s attribute and 



 72 –  CHAPTER 4: DATA ANALYSIS. –  

projs_eog is the available EOG projectors, previously calculated by Dr. Seppo. Then, the artifaxts 

can be projected out by applying the SSP with the following instruction: mne.io.Raw.apply_proj().  

However, ECG artifacts – even though we observed in the pre-inspection paragraph that they are 

not visible – are still needed to be removed. Hence, instead of reading the projectors, I applied the 

function compute_proj_ecg() and obtained both projector operators and ecg events as output. The 

function follows different steps: filter ECG data channel, find ECG R wave peaks, filter raw data, 

create epochs around R peaks and finally calculate SSP vectors around that data to capture the 

artifacts. Also, it will calculate one SSP operator per MEG sensor, which will result in 3 different 

operators (1 gradiometer and 2 planar magnetometers).  

Projectors can be applied at any stage of the pipeline to the raw signal, but when it is divided in 

epochs the projectors are applied by default the they are present in the signal’s ‘info ’attribute. 

We will talk more about the epoch stage in the following paragraph. 

 

 

4.1.3   Epoching 

In this paragraph, the process to isolate trials from the continuous signal will be examined. To 

represent and analyze equal-duration chunks, the MEG signal must be divided in epochs and that 

has been achieved by implementing a Python script. Epochs objects are data structures in which 

every event – indicated in the ‘event ’file described in the previous paragraphs – allows to select a 

certain time window to cut the continuous signal with. Therefore, the main function to call is 

mne.Epochs(), after defining some useful parameters. Other than the signal itself and the event 

file, the Epochs() function requires the time before and after the event ‘tmin ’and ‘tmax’, a 

dictionary listing all the possible types of events (in this case they were divided by delay length) 

called ‘event_id’, the baseline to consider when applying baseline correction (calculate baseline 

mean signal and subtract it to the entire epoch), and the criteria to satisfy in order to reject the 

epoch. These criteria are saved in a dictionary, are applied to every channel (gradiometer, 

magnetometer, eeg, eog, etc.), and if at least one of the channels exceeds the threshold the epoch 

will be rejected.  

An example of division in epochs is shown in Figure 4.6.  

Once the data are divided in epochs, we can separate the epochs basing on the delay length, task 

type, etc. and represent them in separate plots. 
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tmin, tmax = (-0.2, 3.5)  # from 200 ms before to 3500 ms after the 

event 

event_dict = {'300': 300, '800': 800, '1300': 1300} 

reject_criteria = dict(mag=3000e-15,  # 3000 fT 

                        grad=3000e-13)  # 3000 fT/cm 

baseline = (None, 0)  # baseline period from start of epoch (-200 

ms) to time=0 

events = mne.read_events(event_file) 

epochs = mne.Epochs(raw_signal, events, event_dict, tmin, tmax, 

proj=True, 

                baseline=baseline, reject=reject_criteria, 

preload=True) 

epochs.resample(330.)  # resampling to save memory 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2   BEHAVIORAL ANALYSIS 
 
4.2.1   Reaction time and accuracy 

Behavioral analysis of data is one of the first that are usually made in order to describe how 

subjects performed in terms of accuracy on a certain task. Once the procedure is described and the 

subjects are asked to undergo the experiment, it is important for the success of the current and 

further session to know whether the task was too hard for the subject – and therefore results are 

complex and confused – or too easy, which led to an unreliable and weak result. Hence, verifying 

the balance between correct and incorrect subjects’ responses is fundamental to obtain meaningful 

results and maintain subjects’ focus to the edge. 

During data recording, a first accuracy inspection is made in real time from the output file 

generated by the experiment script, but afterwards a more complete and precise analysis is carried 

on the whole experimental data. Since it is a linear quantity, accuracy is computed by simply 

Figure 4.6.  Example of Python code to create Epoch object.  

tmin, tmax = (-0.2, 3.5)  # from 200 ms before to 3500 ms after the event 

event_dict = {'300': 300, '800': 800, '1300': 1300} 

reject_criteria = dict(mag=3000e-15,  # 3000 fT 

                        grad=3000e-13)  # 3000 fT/cm 

baseline = (None, 0)  # baseline period from start of epoch (-200 ms) to time=0 

events = mne.read_events(event_file) 

epochs = mne.Epochs(raw_signal, events, event_dict, tmin, tmax, proj=True, 

                baseline=baseline, reject=reject_criteria, preload=True) 

epochs.resample(330.)  # resampling to save memory 
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counting the ratio between wrong trials and correct ones for each subject, express it in percentage, 

and then averaging all the results through the subjects. In Figure 4.7 is shown the accuracy for 

every block of the experiment along every subject tested. Looking at these data closely, there is 

not a clear pattern either from subjects ’first and the second visit and also between different blocks 

in the same visit. Sometimes accuracy monotonically increases after each block (e.g. N_01) but 

most of the time decreases (e.g. N_02b, N_03b) or was not monotone (e.g. N_03, N_05b). The 

reason for the first behavior is thought to be a more solid training over the different blocks, but a 

decrease in accuracy can be explained with fatigability and lack of concentration. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Considering the different types of trials inside each block – as described in Chapter 3 – one can 

compute further analyses, in order to retrieve meaningful behavioral results, by calculating the 

mean reaction time related to them. To address that, I considered the behavioral file produced by 

the experiment’s Matlab script and retrieve the reaction time (RT) from it. Therefore, I decided to 

observe the variation of RT with respect to the delay duration – a.k.a. CTI –, the target of the trial 

– which could be either number or letter – and the classification between ‘switch ’or ‘repeat ’trial.  

Let me first consider the delay effect on the RT. In the analysis pipeline, I read the 

behavioral Excel file as pandas.DataFrame, then selected only the interesting data, renamed the 

columns accordingly, select only the correct trials and finally iterate through the data frame rows 

retrieving the reaction time. Hence, in a Python script I wrote as follow: 

 

Figure 4.7.   Accuracy variation over blocks (Mean= 89.413, SD= 5.569). Every 
subject performed three blocks (108 trials/block) during one visit, and their accuracy 
distribution is shown in the picture.   



 75 –  CHAPTER 4: DATA ANALYSIS. –  

# Read Excel file and convert into DataFrame. 

df = pd.DataFrame(pd.read_excel('./dir/behavioral_file.xls')) 

# Sub-select interesting data, renaming columns and index accordingly. 

df.rename(columns=dict(zip(df.columns, df.iloc[161])),  

          index=dict(zip(df.index, df.index + 2)), 

          inplace=True) 

# Select correct trials. 

df = df[df["Evaluation"] == 1] 

# Iterate through rows, retrieve RTs and save them in vectors basing on CTIs. 

for idx,raw in df.iterrows(): 

    if raw['Delay Length (ms)'] == 300: 

        RT_300ms.append(raw['React. Time (sec)']-(raw['Delay Length (ms)']+1000)) 

    elif raw['Delay Length (ms)'] == 800: 

        RT_800ms.append(raw['React. Time (sec)']-(raw['Delay Length (ms)']+1000)) 

    elif raw['Delay Length (ms)'] == 1300: 

        RT_1300ms.append(raw['React. Time (sec)']-(raw['Delay Length (ms)']+1000)) 

 
 

Obtaining three different vectors (RT_300ms, RT_800ms, RT_1300ms) containing the RTs 

associated with a particular CTI. The reaction time has been calculated by subtracting both the 

CTI and the radial motion interval from the time shown in the behavioral file. Proceeding in a 

similar way, RTs associated with different targets has been isolated. Although, for what concern 

the ‘switch ’or ‘repeat ’trials, a slightly different procedure has been used because the feeding of 

the RT array was controlled by several counters and flags to determine whether the subject 

underwent three trials with the same target in a row or not. If that was the case, the third trial – 

and the upcoming ones if the target remained the same – was labeled as ‘repeat’, whilst the first 

trial with a different target which was present after a ‘repeat ’trial was labeled as ‘switch’. Such 

paradigm was used in order to enhance the consistency of the selected trials, because – since 

participants didn’t know the target in advance – they could not predict the upcoming trial and 

therefore anticipating the task as described in Chapter 2. An example of the ‘switch/repeat 

selection ’is shown in Figure 4.8. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.8.   An example of the switch/repeat consistency paradigm. 
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4.2.2   Behavioral results 

Although previous studies conducted by using a task-switching paradigm have shown the born of 

a switching cost, resulting in a higher reaction time during switching of tasks, our results are seen 

to differ. This behavior might have several explanations, which lay in the fact that the paradigm 

was based on a randomization of trials, without any predictable patterns. Experiment conducted 

with the purpose to demonstrate inhibition processes and switching costs rely on anticipation of 

task, performing a stronger and a weaker task, or unbalance the type of trials. On the contrary, 

dealing with balanced tasks presented in a random order, keep the subject self-aware that every 

time there could be an unpredictable switch of task, and therefore inhibition mechanisms related 

to task anticipation were compromised.  

However, several studies showed that inhibition mechanisms are not present during tasks that 

involved a cue – a.k.a. “top-down” tasks – whereas they have been seen in “bottom-up” tasks, 

where the imperative stimulus itself indicates the task for the subject to perform. 

Figure 4.9 shows the results obtained analyzing – with the consistency paradigm described in 

Chapter 3 – switching and repeating trials in terms of reaction time (a.k.a response time). Even 

though they seem to underlie a higher RT during repeat trials, the ANOVA computation have 

shown a p value >0.05 and therefore we can assert that there is no statistically significant evidence 

for this behavior. 

However, we found interesting results focusing on the RTs associated exclusively with different 

CTIs, as shown in Figure 4.10. Indeed, even if from these data would be a too long shot to tell 

why, it is worth noticing that the higher the delay, the lower the reaction time. Also, the ANOVA 

verify the statistical significance of this result, with a P value <0.05. There is therefore a solid 

trend between the delay length and the reaction time of the subject, which will be discussed later 

on the dissertation, looking at the source estimate and the brain activation over time. 

Finally, we wanted to verify whether there was a stronger and a weaker task, or if the subjects 

respond in the same amount of time. It happened to be very important also to because it is a 

possible explanation to the absence of switching cost during the test. Figure 4.11 highlights that 

number and letter tasks have comparable reaction times for each CTI, and that reinforces the 

hypothesis of not observing any switching cost because of the equal effort throughout both tasks. 
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Figure 4.9.   Reaction time between ‘switch ’and ‘repeat ’trials. 

Figure 4.10.   Reaction time and error rate throughout different cue-target intervals (CTI). 

Figure 4.11.   Reaction time over letter and number tasks. 
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4.3   BRAIN SOURCE ESTIMATES 

In Chapter 1 we already mentioned the inverse and forward solutions necessary to address an 

accurate brain source estimate. Moreover, we introduced some of the MNE-Python functions able 

to manage .fif data structures and map the signal on the brain.  

After preprocessing the data (see Chapter 3 – Preprocessing), the main steps are: reading the 

beamforming solution, load subject’s source space – obtained from MRI scans –, computing the 

forward and inverse solutions, and finally apply the inverse solution to estimate the brain sources. 

An example is shown in Figure 4.12. 

Specifically, read_bem_solution()simply read the prior calculated beamforming solution 

from the directory, then the function setup_source_space()creates a brain subspace to plot 

the signals in, and takes as inputs the name of the subject to analyze (e.g. ‘LMV2016_N01’) in 

order to retrive data generated by Freesurfer, the spacing  (e.g. ‘ico# ’for a recursively subdivided 

icosahedron, ‘oct# ’for a recursively subdivided octahedron), indication about whether we want to 

add distance information to the source space, and the whole directory where to find the subject 

name.  

Then, we calculate the forward solution with the function make_forward_solution(). It 

will require the signal information, the transformation file, the source space, the beamforming 

solution, and the indication about what signals to consider as sources (MEG, EEG, etc.). Also, 

since this processing requires a lot of computational power, we can specify the number of parallel 

processes the CPU has to run simultaneously.  

After that, with the function make_inverse_operator()we use the forward solution to 

produce an inverse solution (a.k.a inverse operator), indicating the noise covariance matrix, and a 

series of parameter to weight differently the dipole component generated by tangential neurons 

(“loose” parameter) and the function to normalize the depth with (“depth” parameter).  

Finally, we need to apply the inverse solution with the function apply_inverse(), specifying 

the epochs to take into considerations, the inverse solution itself, the regularization parameter 

(a.k.a. lambda2) and the inverse method to use between MNE (Minimum Norm Estimate), dSPM, 

sLORETA or eLORETA. Once we have the time source estimate variable, we can plot it and see 

a representation of the sources mapped in the 3D reconstruction of subject’s brain.  
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4.3.1   TIME-FREQUENCY ANALYSIS 
The frequency analysis was carried out by dividing the signal into 4 frequency bands: alpha band 

(8 – 13 Hz), beta band (16 – 30 Hz), low gamma band (30 – 55 Hz) and high gamma band (55 – 

100 Hz). This has been obtained applying a simple digital filter in MNE Python, similarly as it has 

been done in the data preprocessing: 

 

filtered_signal = raw.filter(l_freq, 

                             h_frequ, 

                             l_trans_bandwidth = 'auto', 

                             h_trans_bandwidth = 'auto', 

                             filter_length = 'auto', 

                             phase = 'zero', 

                             fir_window = 'hann') 

 
We studied the different pathways of cortical activation to understand the mechanisms and their 

timing during the task. As already mentioned in Chapter 2, experiments based on a task-switching 

paradigm generate signals going either forward and backward.  

Looking at the power spectral density of the data (see Figure 4.2), it is noticeable that alpha band 

around 12 Hz carries the highest signal magnitude. Therefore, visualizing the data in broad 

frequencies – without dividing them into separate bands –, will sometimes result in an alpha 

activity that hides other frequencies.  

In the following analysis I will focus on different frequency bands, in order to underlie interesting 

activations related to a specific time or interval during the trials. The data have been obtained 

meaning all subjects but the “N_01b”, because its data were off-scale and has been considered not 

reliable for the source estimate analysis. 

 
 
 
 

Figure 4.12.   A trivial example of Python code for computing the brain source estimate. 

bem = mne.read_bem_solution(bem_fname) 

src = mne.setup_source_space(subject, spacing='ico5', 

                             add_dist=False, subjects_dir=subjects_mri_dir) 

fwd = mne.make_forward_solution(raw.info, trans=trans_file, src=src,  

                                bem=bem, meg=True, eeg=False, n_jobs=-1)  
inv = mne.minimum_norm.make_inverse_operator(raw.info, fwd, cov,  

                                             loose=0.2, depth=0.8) 

stc_300_mix = mne.minimum_norm.apply_inverse(epochs_mix['300'].average(), 

                                             inv, lambda2, inv_method) 
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4.3.1.1   Activation during RDK 

In the following analysis we will discuss how motion perception is recognized by participants, 

looking at separate bandwidth contributes. RDK is one of the most famous cues in neuroscience 

experiments, and it has been seen that a subject can tell whether is an expansion or a contraction 

in less than 300 ms. Since in our paradigm the RDK is 1000 ms long, it is likely to think that in 

the last 700 ms the subjects were forming the rule associated with the motion.  
In particular, during RDK period there are different behaviors associated with each frequency 

band.   
In the first 300 ms of motion, the signal is found to be – as expected – in the occipital lobe, but 

interestingly only below 60 Hz. In high-gamma band we don’t find any signal centered in the 

occipital lobe. Also, as it is noticeable in the figures below, occipital lobe is involved only in the 

first 300 ms for both alpha and low-gamma rhythms, then the areas involved in the rule association 

become more significantly activated. Instead, beta rhythm maintains a significant occipital 

activation during the whole RDK and decrease in magnitude only in the last 400 ms, which may 

underline a specific visual awareness mechanism. Such mechanism is thought and seen to be 

accomplished by maintaining an occipital baseline activity on beta frequencies during the whole 

dot motion period, while it disappear when - in the following periods - displays in the screen 

change (see paragraph 4.3.1.2).  
After the first 300 ms of motion, the brain activity is supposed to move from occipital to parietal 

and frontal lobes, where the high-level processes are achieved. However, throughout different 

frequency bands it has been seen to spread otherwise and not following the same pattern. 

Specifically, alpha rhythm – which is the strongest one – follows the dorsal pathway reaching the 

parietal lobe in the precuneus (PrCun) and near subparietal sulcus (SbPS), while both low- and 

high-gamma rhythms cover the most cortical frontal areas, in the superior frontal gyrus (F1). 
One of the possible explanations of the distribution of alpha activity relies on the particular role 

of precuneus, which is known to be involved in switching attention between moving objects, but 

most importantly in working memory processes. Precuneus, considered also the medial part of P1, 

plays a fundamental role in visuospatial functions as it is suggested to achieve motor imagery and 

motor coordination while shifting between different targets. Considering both visuospatial and 

memory characteristics of precuneus, it is likely to assume that the subject during the last 600 ms 

of RDK is already visualizing the upcoming finger movement as well as remembering the rule 

associated with the radial direction of dot motion.    
Furthermore, in the interval between 300 and 600 ms, alpha rhythm in dorsal posterior cingulate 

(DPC) area shows an increasing activity. Several studies demonstrated a sustained DPC activity 

in patient suffering from dyslexia (e.g. Stoitsis et al., 2008) but - from our perspective - none of 

the patients were affected by dyslexia and besides there were no letters involved yet. However, 
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being one of the most connected areas in the brain, the posterior cingulate cortex is widely known 

as a central node in the default mode network (DMN). The default mode network quickly 

deactivate during externally-directed tasks but it is active when attention is internally-directed 

(episodic memory retrieval, planning, etc.). Indeed - as previously mentioned - persons with 

impairment in the DMN have poor cognitive functions and attention. 
Hence, since alpha band do not highlight any major frontal activity, it is likely to believe that the 

main processes are linked with motion perception and imagery, planning, locating objects in space 

and motion coordination rather than goal-oriented processes. 
Indeed, frontal activity is noticeable at high frequency, both in low and high gamma band with a 

slight difference between the two. In the lower band of gamma rhythm, the activation is majorly 

located in the occipital lobe during the first hundred milliseconds of RDK. However, above 30 Hz 

the results underline a sustained frontal activity in similar spots, which is thought to be related 

with high-level processing.  
The signal is spread through middle and - mostly - superior frontal gyrus (F1 and F2), and 

transverse frontopolar cortex. Although these regions are wide in human brain, their specific 

functions are poorly understood and changes throughout different experiments and tasks. One of 

the principal functions of the FP-PFC in higher cognition is monitoring and managing subgoals 

while maintaining information in working memory (Braver & Bongiolatti, 2002). In particular, 

Koechlin et al. (1999), concluded that monitoring of internally generated information requires both 

maintenance in working memory (i.e. creating a “mental scratchpad” to hold the information 

produced internally) and a subgoal (i.e. holding the task and the information themselves).  
As an extension to this view, a research carried on by Christoff and Gabrieli (2000) suggested that 

the FP-PFC may subserve the monitoring of internally generated information, while DL-PFC is 

involved when externally generated information is evaluated. 
Though, according to our results it is important to underline that in alpha and beta bands the frontal 

activity is tiny with respect to the occipital and parietal ones, and it is noticeable a major frontal 

activity only at high frequencies (>30 Hz). 
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Figure 4.13.  Alpha band (8-13 Hz) brain source estimations during RDK. 
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Figure 4.14.  Beta band (16-30 Hz) brain source estimations during RDK 
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Figure 4.15.  Low-gamma band (30-55 Hz) brain source estimations during RDK 
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Figure 4.16.  High-gamma band (55-100 Hz) brain source estimations during RDK 

Orbital gyri 

Transverse frontopolar 
gyri and sulci 

Inferior temporal 
sulcus 

Suborbital sulcus 

Orbital gyri 

Suborbital sulcus 

Transverse 
frontopolar gyri 

and sulci 
 

Orbital gyri 

Inferior 
temporal sulcus 

Transverse frontopolar 
gyri and sulci 

 
Transverse frontopolar 

gyri and sulci 
 

Orbital gyri Inferior 
temporal 
sulcus 

Transverse frontopolar 
gyri and sulci 

 

Orbital gyri 
Transverse frontopolar 

gyri and sulci 
 

Transverse frontopolar 
gyri and sulci 

 

Inferior 
temporal 
sulcus 

Suborbital sulcus 

Transverse frontopolar 
gyri and sulci 

 



 84 –  CHAPTER 4: DATA ANALYSIS. –  

4.3.1.2   Activation during CTI 

Cue-target interval (CTI) represents one of the main periods of interest because it underlies 

different brain mechanisms interacting together. Indeed, even though the main goal of the task is 

achieved through working memory, brain source estimates are seen to underline several other 

processes. Interestingly, these processes – represented by the activation of specific brain areas – 

seem to be somehow coded in frequency. Frequencies below 30 Hz are involved in vision and 

low-level computations, whereas above 30 Hz goal-oriented processes become primary. It is 

important to notice that the magnitude across the frequencies vary, thus what is showed in the 

following figures is referred to the main activation, but other areas can be involved if we had 

lowered the threshold. For example, Figure 4.17 represent the source estimate of brain activation 

relative to alpha band in the range [0.5 ; 0.65], but it does not mean that there would not be any 

activity localized in other regions. However, range constraint has been required to obtain a proper 

visualization of the data.  

Considering alpha band activity (Figure 4.17) no significant activity emerges that remains 

constant. Indeed, looking at the first 300 milliseconds of each epoch type, it appears a 

heterogeneous brain activity which cannot lead to any conclusion but the fact that right after the 

RDK the activity in alpha band is unclear. However, by looking separately at the different brain 

images obtained by filtering the signal in alpha band, we can notice that in the epoch with 300 

milliseconds of CTI there is a weak occipital activation and a spike in the angular gyrus (Brodmann 

area 39), which is thought to be associated with body image and therefore can be interpreted in 

this case as the voluntary willingness to press the button, by thinking about the position of the 

fingers and which one to move. 

On the contrary, in the epochs with higher CTI, the occipital lobe activation in V1 and V2 becomes 

more relevant, reaching parietooccipital and parietal regions in the last hundreds of milliseconds. 

Regarding beta rhythm, as anticipated in the previous paragraph, it seems to encode an ‘attention 

mechanism’ because – after the first 300 ms –, since the display is all black during CTI and the 

subject does not see anything, beta activity fades in the occipital lobe. Although, that is not the 

only important region that encode information in beta band. Indeed, a constant activity holds in 

the postcentral gyrus area, which is the primary motor cortex for voluntary movement. It is 

difficult to say why such area maintains its activation in beta band during the whole cue-target 

interval, but the answer may lay in the fact that the subjects are “preparing” themselves to move 

the fingers and complete the task.  

During cue-target interval – as well as in the previous paragraph –, high-level computations are 

achieved in prefrontal cortex, and they are modulated by frequencies above 30 Hz. In Figure 4.19 

and Figure 4.20 both low and high gamma rhythms are represented during CTI. In Figure 4.19, 

we can notice that the activity in completely localized in frontal lobe, and it flows backwards 
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from BA10 to BA9 – through the superior frontal gyrus (F1). This behavior is particularly visible 

in the medial view of the brain during epochs with 1300 milliseconds of delay.  

Even though prefrontal cortex is an extensive region of the human brain, it is still poorly 

understood. In 2007, Koechlin and Hyafil proposed a theory according to which Brodmann area 

10 is involved in defining the hierarchy of the ongoing task with respect to the upcoming one, and 

in maintain some tasks on hold while performing others. Instead, Brodmann area 9 is proven to be 

involved in a lot of functions, such as short term memory and attention. However, functions in this 

area seem to differ between left and right hemisphere. Processing of empathy and emotions are 

achieved in the left hemisphere, whereas working memory and attention involves right 

hemisphere. Indeed, looking at Figure 4.19 for higher CTIs, the most involved hemisphere 

considering frontal activity is the right one.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 4.17.   Brain source estimations in alpha band (8 – 13 Hz) during CTIs. 
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Figure 4.18.   Brain source estimations in beta band (16 – 30 Hz) during CTIs. 
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Figure 4.19.   Brain source estimations in low-gamma band (30 – 55 Hz) during CTIs. 
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Figure 4.20.   Brain source estimations in high-gamma band (55 – 100 Hz) during CTIs. 
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4.3.2   ACTIVITY BEFORE USER’S RESPONSE 
In this paragraph, I am going to briefly discuss the brain activity in the 500 milliseconds before 

the subjects’ responses. This analysis is therefore carried out by looking at the response times in 

the behavioral files (Excel files) for every trial and cut each epoch 500 ms before its respective 

RT. Afterward, the resulting signals have been divided into three groups based on CTIs.  

Figure 4.21 shows the brain activity throughout different delays. For every delay length, as we 

explained in Chapter 3, all the trials were balanced and therefore this will not introduce any 

randomization bias. The obtained results highlight a brain activity that is very similar for every 

CTI, which might lead us to the conclusion that delay time does not affect brain activity before 

the subject’s response. However, considering that the subjects could answer whenever they 

wanted, trying although to be as fast and precise as they could, this result is understandable and 

not surprising. Moreover, looking at the active regions themselves, we can notice that the parieto-

occipital sulcus area – right below the precuneus – is strongly active and that might represent a 

key for the succeeding of the button press. In fact, we know that this region serves as a point of 

convergence between vision and proprioception. Hence, in our experiment – since the subjects are 

asked to press a certain button – this activation is likely to indicate that the subjects are picturing 

the buttons and the fingers in their heads, perceiving the position of the fingers with respect to the 

buttons, and pressing them to answer the task. 

Also, a significant activity can be found in the superior part of the precentral sulcus for every 

delay. Due to the position of this region – just rostral to the primary motor cortex – it is believed 

to play a key role in planning complex and coordinated movements.  

For a general view of the brain activation in the time window considered, Appendix I shows it 

divided by intervals of 100 ms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.21.   Brain activity during the 500 ms before the subjects’ responses, considering epochs 

with 300 ms (left), 800 ms (middle) and 1300 ms (right) of CTI. 
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4.3.3   SWITCH-REPEAT SOURCE ESTIMATES 
In this paragraph, a discussion about switch and repeat evidence in brain activation is carried out. 

First, it is important to point out that the analysis has been made using the random dot 

kinematogram (RDK) as the time interval because it was in that period that the subjects recognize 

the switching or the repeating of the task. However, as previously mentioned during the 

description of the experimental paradigm, subjects didn’t know in advance if the cue was about to 

indicate the ‘number task’ or the ‘letter task’. Therefore, theoretically, they couldn’t prepare in 

advance for the upcoming task, and it wouldn’t matter that much which one they performed in the 

previous trial. For that reason – in this analysis, in order to obtain more solid and reliable results 

– we applied the so-called ‘switch/repeat consistency paradigm’ (paragraph 4.2.1), which 

considers as ‘repeat’ trials only the ones that come after three or more same cues. 
Analyses on switch and repeat trials have been led – during RDK – in two different ways. On the 

one hand, the range of signal’s magnitudes has been fixed and the different brain activities 

compared to each other every 100 milliseconds. Thus, putting this constraint required choosing a 

tradeoff between the signal we wanted to see in the repeat and switch trials. Since they are 

significantly different, that might have concealed or spread some brain activations. Figure 4.22 

shows the results obtained by fixing the magnitude range, for some time intervals during RDK. 

On the other hand, this analysis has been carried out considering for every 100-milliseconds 

interval its own optimal magnitude. It will allow us to focus on the most active brain areas, without 

considering the difference of magnitude. This last analysis has not been described in this thesis.  

Some observations can be made looking at the brain activity showed in Figure 4.22 in detail. One 

of the most noticeable aspects is that for repeating trials the magnitude of the signals is on average 

higher than the one during switching trials. That, in my opinion, could probably underline an 

inertia mechanism that originates adaptation in the subject. Indeed, after 2 times in a row with the 

same cue, the subjects feel more secure and inclined to stick with the previous task, and – when 

the cue confirms the same task again (repeating trial) – they tend to concentrate more on the actual 

random dot motion despite thinking more about the rule. This behavior may be confirmed in the 

last 300 milliseconds of RDK where, in fact, there is no noticeable prefrontal activity during the 

repeating trials but there is during the switching trials instead. Also, in these intervals, two other 

things are important to point out: there is higher activity in the right hemisphere during the 

repeating epochs which is not present in the switching ones, and a sustained and steady occipital 

activity also during the last hundreds of milliseconds only during the repeating epochs. 

Moreover, from the beginning of RDK and for the following 200 ms, the estimated signal is seen 

to be located in the middle temporal visual area (MT+) for both types of epochs analyzed. 
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Although, in switching trials, it is localized on the left hemisphere and decreases rapidly, while 

during repeating epochs it is seen to be in the right hemisphere and decreases slowly.  

Finally, considering two of the intervals in the middle of RDK (see Figure 4.22), brain activity 

during switching trials is restrained only in the occipital lobe, while for the repeating task – perhaps 

because of a lower concentration required – the brain activity is seen also in other regions. For 

example, in the parietal lobe, the signal is seen to activate during the 300-400 ms interval, but then 

it fades away afterward. 

In Appendix II the brain activity is showed in detail.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 ms 1000 ms 

Figure 4.22.   Comparison between ‘Switch’ and ‘Repeat’ trials in several intervals during random 

dot kinematogram. 
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4.3.4   VISUAL FIELD SOURCES 

In this paragraph we will focus on the occipital activation of the brain during the ongoing 

experiment. The main goal of this analysis is to better understand the reaction time of the subjects 

when the image was displayed. Therefore, we are not going to discuss the dynamics of the brain 

and its networks, but only the occipital response to the presentation of the cue and after the CTI. 

The visual source analysis will be carried on by looking at the signal over time, grouping the 

epochs by the length of the delay (CTI).  

In particular, four main occipital regions – derived from Desikian segmentation – have been taken 

into considerations for this study: pericalcarine, lingual, lateral-occipital and cuneus. The four 

areas are highlighted in Figure 4.23. 

The preprocessing the data underwent was the same described in paragraph 4.1, with the only 

difference that this time – in order to show the regions separately – we had to upload the Desikian 

region’s labels in the Python script. They have been added to the Raw object (signal object) to call 

and isolate only the channel we are interested in. It has been plotted in 2D, having the epoch time 

(ms) in the x-axis and the source amplitude (DN) in the y-axis.  

During the processing of the data, first we computed an inspection to determine whether there was 

a similar occipital activity across the subjects, or it was reasonably different, and therefore likely 

to be considered inconsistent. After, we looked at the signals separately for each subject and each 

occipital subregion, finding out that the subjects N_01 and N_01b were off scale and hard to 

reconstruct confidently. Therefore, we didn’t consider both ‘N_01’ and ‘N_01b’ recordings.  

An example of the graphs we looked at is shown in Figure 4.24, where the signal is stable 

throughout all the trials, and it results in a consistent and meaningful average. Furthermore, for 

each occipital subregions, we merged the data retrieved from every subject into a single chart, 

comparing the magnitude and the shape of all subjects’ averaged signals. We did that for each 

occipital subregion and an example is shown in Figure 4.25, where it is noticeable a similar 

activation. Finally, an average of all subjects’ activations has been computed (Figure 4.26) for 

each region.  

 
 
 
 
  
 
 
 
 
 
 
 

Figure 4.23.   Desikian brain segmentation highlighting occipital areas (left hemisphere). 
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Figure 2.24.  Representation of the signals in the lingual region (left 
hemisphere) for the subject ‘N_03’. The graph shows in grey the 
overlapped signals from all epochs and the averaged signal in blue. Data 
have been retrieved from epochs with 300 ms of CTI. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.25.   Representation of the mean lingual activation (left 
hemisphere) during an epoch. All valid subjects have been considered 
and plotted.  

Figure 4.26.   Representation of the mean lingual activation (left 
hemisphere) during one epoch.  
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Considering the epochs where the CTI was equal to 300 ms, the graphs has a peak about 150 ms 

after the cue start and another one about 150 ms after the ending of it. This behavior is consistent 

with the biology of visual system, because the transmission time of the image from the eye to the 

brain is known to be around 100-150 ms. Also, a lower peak after the radial motion is 

understandable, considering that very few areas activates during the blank period. Although, there 

is a sharp peak because the human visual system detects a change in the display.  

Proceeding as previously described for every occipital subregion, an estimate of the main involved 

areas can be drawn (Figure 4.27 and Figure 4.28, respectively for left and right hemisphere).  

Observing the results showed in Figure 4.27 and Figure 4.28, it is noticeable a similar trend for 

both hemispheres. However, even though the signal associated with each region is seen to maintain 

the peaks roughly at the same time for both hemispheres, in the right hemisphere the peaks are 

sharper and higher. That allows also to notice an activation of all occipital regions about 850 ms 

after the peak associated with the display of number and letters (after CTI).  

As we already mentioned in the previous paragraphs, the bandwidth responsible for this peculiar 

behavior is the beta band, which is centered in the occipital lobe and sense a changing in the screen 

displayed. 

However, considering that the subjects’ response time is usually higher than 1 second, seeing a 

sudden activity only 850 ms after the first peak is unusual. If we consider for simplicity 1200 ms 

as a typical response time after CTI, because the screen changes only after the subject’s response, 

we were expecting to observe a peak about 1350 ms after the end of the CTI. More analyses need 

to be done to assess the nature of this behavior, but that exceeds the purposes of this dissertation.  

Another interesting outcome is that – with the only exception of the peak mentioned above – the 

interval between the change of the scene on the screen and the occipital activation is constant, no 

matter what is displayed. Though, the baseline activity and the amplitude of the peaks vary 

depending on the activity required and the scene projected.  
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800 ms 

1300 ms 

Pericalcarine Lingual Cuneus Lateraloccipital 

300 ms 

Figure 4.27   Mean brain activity in occipital lobe (left hemisphere) during the epoch interval. 

300 ms 

800 ms 

1300 ms 

Cuneus Pericalcarine Lingual Lateraloccipital 

Figure 4.28   Mean brain activity in occipital lobe (right hemisphere) during the epoch interval. 
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4.4   MACHINE LEARNING ANALYSIS 

In this analysis, the aim was to understand the behavior of the most common linear classifiers to 

establish whether they can automatically detect a reasonable difference in brain activation during 

letter or number tasks. Moreover, we will identify particular times where these differences become 

relevant. The analysis has been performed during the random dot kinematogram (RDK) because 

in this interval the subject was asked to understand the goal of the upcoming imperative stimulus 

and remember the rule associated with the task. Hence, the brain activity should be different and 

the classifiers able to detect them.  

Afterward, the classifiers have been tested to verify their capability to differentiate between epochs 

with different delays, relying only on the MEG data and the source estimate. The comparison has 

been made between trials with 300/800/1300 milliseconds of CTI, with all their permutations. It 

resulted in three different comparisons because the classifiers could only separate between two 

classes. 

Finally, classifiers have been tested on their ability to classify between epochs with different 

delays, though this time considering not the whole epoch time but only 500 ms before the subject’s 

response. 

The results of these analyses are shown in the following paragraphs. 

This analysis – as well as most of the others – has been implemented in Python language, using 

‘mne’ package. Because mne-python relies on scikit-learn (machine learning library for Python 

developers), we could use many different classifiers by simply calling them and setting some 

parameters. In particular, we applied multi-voxel pattern analysis (MVPA) – which is a well-

known technique in neuroimaging community to compare the distributed pattern of activity – 

using 5 different linear classifiers: logistic regression, linear discriminative analysis (LDA), linear 

support vector machine, Ridge classifier, and SGD classifier. 

These have been called in Python as follow: 

 
 
 
 
 
 
 
 
 
 
 
 
 

clf_01 = make_pipeline(StandardScaler(),  

                 LinearModel(LogisticRegression(solver='lbfgs'))) 

 

clf_02 = make_pipeline(StandardScaler(),  

                 LinearModel(LinearDiscriminantAnalysis(solver='svd'))) 

 

clf_03 = make_pipeline(StandardScaler(),  

                 LinearModel(LinearSVC(loss='squared_hinge')))  

 

clf_04 = make_pipeline(StandardScaler(),  

                 LinearModel(RidgeClassifier(solver='auto')))  

 

clf_05 = make_pipeline(StandardScaler(),  

                 LinearModel(SGDClassifier(loss='hinge',  

                                           learning_rate='optimal')))  

 

Logistic Regression 

 

Linear Discriminative Analysis 

Linear Support Vector Machine 

Ridge Classifier 

SGD Classifier 
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The algorithms used for solvers have been chosen considering the type of data we were dealing 

with and its respective classifiers. For example, with LDA classifier we selected a single value 

decomposition (SVD) solver because it is considered the best when there are high features data. 

However, sometimes the default solver has been used to speed up the computation.  

Once we have defined the structure and logic behind the classifiers, we applied it to the source 

estimate retrieved from MEG data by calling a slide estimator with the function:  

 
 
 
 
 
Finally, we applied 5-fold cross validation to evaluate the performance of the classifier, by 

implementing the following function: 

 
 
 
 
 
 
At the end of the pipeline, a moving average with a 3-samples window length has been applied to 

smooth out the graph and make it more readable (Figure 4.29). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

estim = SlidingEstimator(clf_01,  

                         n_jobs=-1,  

                         scoring='roc_auc',  

                         verbose=True) 

 

scores = cross_val_multiscore(estim, 

                              X_data, 

                              Y_labels, 

                              cv=5, 

                              n_jobs=-1) 

 

Figure 4.29.   3-Samples moving average applied on classification scores graph.  
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4.4.1   MVPA during RDK 

As previously mentioned, during random dot kinematogram the subjects were asked to understand 

whether they had to perform a ‘number task’ or a ‘letter task’. During the cue, even though the 

areas involved in recognizing the dot motion are supposed to activate in the same way for both 

types of tasks, the activity on other areas can be different for one task with respect to the other 

one. Indeed, Figure 4.30 shows an ascending trend from 200 ms to around 700 ms, which can 

explain two different brain activations during the display of an expansion or a contraction dot 

motion. After 700 milliseconds, the score decreases again probably because the subject is 

activating similar brain areas involved in goal-oriented processes. This result is biologically 

relevant, because it may highlight separate brain pathways for ‘number tasks’ and ‘letter tasks’, 

that become similar again at the end of the random dot kinematogram. In the last hundreds of 

milliseconds, the subjects seem to have already understood the direction of the dot motion and 

they are processing the task. From an empirical test conducted at the Brain and Vision Laboratory 

(Boston, MA), we know that 300 milliseconds are enough to understand if the motion is an 

expansion or a contraction. Therefore, the ascending trend in Figure 4.32  may indicate some other 

high-level processes rather than only the understanding about expansion or contraction dot 

movement. 

Also, looking at the graph from a computational point of view, Figure 4.30 shows that the 

performances of the classifiers seem to be very similar, with the only exception of the SGD 

classifier.    

Focusing on the most interesting points of the graph in Figure 4.30, Figures 31-A and 31-B show 

the different brain patterns derived from ‘Logistic regression classifier’ and ‘Linear support vector 

classifier (SVC)’, for both types of sensors.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.30.   Classification scores (5-fold cross validation) for different classifiers during RDK.  
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4.4.2   MVPA across different CTIs 
 

Multi-voxel pattern analysis has been applied also to compare the activity across epochs with 

certain cue-target intervals (CTIs). Because this analysis is thought to be applied only with two 

classes, we applied it firstly between epochs with 300 ms and 800 ms of delay, then 800 ms and 

1300 ms and finally 800 ms, and 1300 ms of delay. That resulted in the graphs showed in Figure 

4.32.  

Although MVPA worked neatly during RDK – as described in the previous paragraph –, in this 

case it showed some flaws and inconsistencies. Particularly, during the interval where both epochs 

show the black screen, we were expecting random classifiers because the subject was seeing the 

same scene, although all graphs in Figure 4.32 indicate a high classification score. On the contrary, 

when the delay for one epoch finishes while the other continues, we were expecting to see a sharp 

increase in the score.  

This is true for Figure 4.32-A where, after the 300 ms CTI, the score increases because the other 

epochs have a 500 ms blank period left, thus the displayed scene is significatively different. When 

the 800 ms delay finishes, the brain activity becomes more similar for both epochs, and hence the 

classification score decreases.  

Figure 4.31.   A) Brain activation patterns decoded with ‘logistic regression classifier’ for 

magnetometers (1) and gradiometers (2). B) Brain activation patterns decoded with ‘Linear support 

vector classifier’ for magnetometers (1) and gradiometers (2).   

A) B) 

(1) 

(2) 

(1) 

(2) 
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Figure 4.32-B and Figure 4.32-C are significantly hard to interpret linking the score to the 

biological brain activity, therefore we cannot draw any other conclusion but the fact that the 

classifiers were not able to fit and manage the data properly.  

 
 
 
4.4.3   MVPA 500 ms before subject’s response 
 
Another question we set out to answer was to observe whether there was a different brain 

activation during the 500 milliseconds preceding the subject’s response and if a classifier would 

be able to discriminate two responses considering that they derived from two different delays. As 

described in the previous paragraph, we applied multi-voxel pattern analysis separately: first 

comparing epochs with 300 and 800 milliseconds of delay, then 800 and 1300 ms, and finally 300 

and 1300 ms. Results are presented in Figure 4.33.  

Considering that – from the behavioral analysis (see section 4.2) – we found a correlation between 

the CTI length and the response time, it was trivial to assume that this behavior would somehow 

be confirmed by a different activation pattern that result in a faster or slower response. Although, 

as we can notice by looking at Figure 4.33, the classifiers exhibit random behavior. That can 

underline either a similar brain activity throughout epochs with different delays or simply a 

slightly diverse pattern between all epochs which results in an impossibility to automatically 

determine whether the CTI was 300, 800, or 1300 milliseconds. 
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Figure 4.32.   Classification scores (5-fold cross validation) for different classifiers across 
the three cue-target intervals. A) Comparison between epochs with 300 ms and 800 ms 
delay. B) Comparison between epochs with 800 ms and 1300 ms delay. C) Comparison 
between epochs with 300 ms and 1300 ms delay. 
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Figure 4.33   Classification scores (5-fold cross validation) for different classifiers 
considering 500 ms before the subjects’ response. A) Comparison between epochs with 
300 ms and 800 ms delay. B) Comparison between epochs with 800 ms and 1300 ms 
delay. C) Comparison between epochs with 300 ms and 1300 ms delay. 
 

A) 
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Chapter 5 
 

 

CONCLUSIONS AND IMPLICATIONS 
 
 

 
 Neuroscientific research over the last decades strongly relied on the advantage ensured by the 

growing computational power and complexity of algorithms to analyze and reconstruct recorded 

brain signals. Nowadays, hundreds of signals can be processed with way more refined techniques 

than in the past.  

It is not only about the rising of artificial intelligence, but whole informatics and electronic 

infrastructure that has been built to carry on a new way of doing research. A new era made of big 

data and complex models handled with brute force ensured by faster electronic components. In 

neuroscience, which has always been a tremendously complex research field due to the nature of 

the brain signal itself, better analyze capabilities along with high computational power could lead 

to discoveries considered unthinkable years ago. Magnetoencephalography is one of the 

techniques that – as precise and yet noisy as it is – takes all the advantages derived from better 

algorithms and technical innovations. Indeed, in my opinion, it is not wrong to think that MEG – 

as well as fMRI – might lead neuroscience research as one of the main imaging techniques in the 

next years. 

In this dissertation, we widely discussed the main aspects of MEG imaging and the processing of 

the measured signals to obtain interpretable results. However, more and more analyses could be 

carried out and more algorithms could be applied with different parameters, focusing on other 

frequencies, regions, or time intervals. Perhaps, each of them would have been led to other results 

and outcomes as well. Considering the nature of our experiment, we decided to search for shred 

of evidence during random-dot kinematogram (RDK) and cue-target interval (CTI), because in 

these periods the subjects recognize whether there was a switch or a repeating trial and they were 

forced to hold on the associated rule for an unknown and varying amount of time. The brain 

regions that have been found to be more active confirmed some of the theories described in 

Chapter 2 concerning working memory and high-level processing. Though, once the source 
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estimate is computed and plotted over the brain surface, they still need to be interpreted knowing 

in advance what the subject was doing in a specific interval. Without any human support – based 

on neuroscientific knowledge – data would still be not directly usable for an automatic system. 

Indeed, performing a machine learning analysis (Chapter 4) to detect automatically pattern 

differences between variations of the task, we noticed that the results were not promising with the 

models and parameters used. Even though multiple classifiers with their own optimizers and 

solvers have been tested, all the results are seen to show some flaws in the model. Hence, the 

problem to overcome could be either the machine learning algorithms or the data we fed them 

with. Since these algorithms have already shown promising results in neuroscience, it is very likely 

to assume that the weaknesses in our analysis are represented mainly by the recorded data and – 

probably – wrong processing for this type of analysis. Focusing only on specific brain areas and 

not on the MEG recordings from all the sensors, as well as apply some fancier filtering and 

cleaning techniques, might have helped the machine learning model to differentiate between 

epochs. 

The importance of knowing the performances of these algorithms is essential nowadays, because 

of the flourishing AI market and the possible application of new techniques. Having a 

computational model to automatically detect and interpret specific brain activity is still a utopia, 

however further promising results in neuroscience might lead to a better understanding of brain 

communications and hence to apply this knowledge in robotics, brain-computer interfaces, and 

brain-inspired technological systems.   

As previously mentioned, results have been interpreted knowing in advance how the 

experiment was structured and what brain activity to expect. For example, occipital activation was 

expected – and found – right after images were displayed. However, in order to prove or make a 

hypothesis on the behavior of the brain in specific situations, other tests with varying experiments 

must be run. For instance, if we find an area that is particularly active, it would be a long shot to 

deduce that in every situation similar to the one we studied, the brain activity would be the same. 

Indeed, in few hundreds of milliseconds, the activity has been seen to rapidly change in every 

frequency band. Hence, one of the main weaknesses of this study – which although can be the 

beginning of a better understanding of brain processes related to task switching and working 

memory capabilities – is represented by the enormous quantity of information that we can retrieve. 

That had led us to make some assumptions and define arbitrary constraints, such as where to 

analyze brain activity, at what frequency, magnitude, or interval, and also fix the parameters of 

the functions used to compute the processing of the forward and inverse problems. 

Despite that, in the time-frequency analysis, we observed neat results: low frequencies were most 

involved in primary processes – like vision and attention – while high frequencies have been seen 

in the prefrontal cortex and are thought to be associated with cognitive processes such as working 

memory and goal-oriented mechanisms.  
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Brain source estimations: 500 ms before subjects’ response. 
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Brain source estimations: ‘Switch’ and ‘Repeat’ during RDK. 

Appendix II 

Trial type 
 Repeat Switch 

0–100 ms 

  

100–200 ms 

  

200–300 ms 

  

300–400 ms 

  

400–500 ms 

  

500–600 ms 

  

600–700 ms 

  

700–800 ms 

  

800–900 ms 

  

900–1000 ms 
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