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ABSTRACT 

 

Shortening product development cycles demand increasingly efficient methods and tools for the 

planning of complex production systems. Recently, augmented reality (AR) technologies have 

been introduced in manufacturing planning functions. Working in augmented environments, 

users usually select virtual objects with hand gestures that are associated with arm fatigue. 

In the first study, a mixed reality (MR) application for inspection and validation of a production 

line has been developed. The application allows to show the virtual environment in Augment-

ed/Mixed Reality, and it allows to import three-dimensional (3D) CAD with information and 

structure in a specific position. The application makes the user interacting with the scene 

through a user-friendly user interface (UI) and changing the position of 3D objects in the space. 

The application also allows taking a measurement between two points in the space. The Meas-

urement Tool has been validated, and the absolute average error for dimensions that are lower 

than 100 cm is 3.59%, while it is 1.30% for dimensions that are higher than 100 cm. 

In the second study, a steady-state visual evoked potentials (SSVEP) brain-computer interface 

(BCI) for “hologram” selection in AR is proposed. The usefulness of the BCI was demonstrated 

with one experiment in dense and dynamic tasks, a NASA TLX test, and a usability test. On the 

one hand, the BCI is 2.5 seconds slower than the hand gestures in the static tasks, while the time 

of selection for the two interfaces is comparable in the dynamic environments. On the other 

hand, the BCI is more precise, with close to 100% accuracy for all tasks. In addition, the BCI 

resulted in having a lower overall workload (38.52) compared to hand gestures (52.40) and final 

usability of 77.8 on the System Usability Scale. The results indicate the potential of a BCI in 

dense and dynamic environments, demonstrating a possible application for AR technologies in 

industrial settings. 
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CHAPTER 1 - INTRODUCTION 

1.1. Background 

Companies are experiencing a dynamic and fast-changing customer demand and a consequent 

reduction of product life cycles, resulting in the need for fast and flexible re-engineering strate-

gies for production lines. Digital-planning tools, such as augmented reality (AR) headsets, help 

reduce the time workers spend completing tasks by superimposing computer-generated infor-

mation onto the real environment. AR applications were initially developed on mobile-based 

AR devices such as smartphones or tablets. The device camera was used as a mobile system 

augmentation mean to show the real world while augmenting the virtual objects in the device 

screen. For example, one of the most popular AR mobile applications is a videogame developed 

by Nintendo: Pokémon GO. It uses a GPS location-based service allowing the user to hunt the 

creatures that can be augmented through touch gestures (Pokémon GO, 2021). IKEA’s catalog 

app is another example of a mobile-based AR application. Early versions used the paper catalog 

as a marker in the space so that, once users want to place furniture in their house, the mobile 

device recognizes the catalog and places the selected object. With the development of computer 

vision technology, new versions of this application can also detect floors and walls so that furni-

ture can be placed in the desired position without markers (IKEA, 2021). From an automotive 

industry point of view, also Volvo Cars is moving towards AR. As the chief technology officer 

Henrik Green said: “Instead of the usual static way of evaluating new products and ideas, we 

can test concepts on the road immediately, as well as identifying priorities and clearing bottle-

necks much earlier in the design and development process.” (Lopez, 2019). Hence, this technol-

ogy results being feasible also in an industrial environment to shorten product and process de-

velopment. 

The most significant limitation of mobile-based AR applications is that the user must continue 

to hold the device to superimpose the virtual object (Ro et al., 2019). Since the first AR mobile 

applications were developed, glasses and head-mounted displays (HMD) have been released. 

Unlike mobile AR, which shows virtual objects with a narrow display screen to be held with 

hands, HMD-based AR can be applied to a wide variety of fields because the latter can be worn. 

Microsoft has further improved the concept of AR with the HoloLens, which provides immer-

sive three-dimensional (3D) screens with high-quality realism.  

In this device, the AR concept is integrated with other tools, including spatial mapping, spatial 

sound, gestures, gaze, or voice interactions to provide visual interface advantages (Bury, 2019). 
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With these additional tools, the AR experience is enhanced and becomes mixed reality (MR). 

MR is a larger class of technologies that includes AR and virtual reality (VR). AR and VR are 

related, and they are concepts that can be considered together (Milgram et al., 1995). On the one 

hand, AR allows the user to be still present in the real world with some virtual information add-

ed. On the other, VR is a technology that allows the user to be immersed in the virtual world. 

However, instead of regarding these two concepts as distinct, it is more appropriate to view 

them as part of the same continuum at two opposite ends (Milgram et al., 1995). The reference 

is to the reality-virtuality (RV) continuum, as shown in Figure 1. An example of spatial map-

ping for the Microsoft HoloLens is then displayed in Figure 2. This functionality is within the 

MR reference and allows to enhance the augmented experience. The device tracks the surround-

ing environment and creates a mesh so that the user can interact with it. (Unity Technologies , 2021)  

 

 

Figure 1: Simplified representation of a RV continuum (Milgram et al., 1995). 

Figure 2: Example of the Spatial Mapping applied to a real-world space (Unity Technologies, 2021) 
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A natural input method must be found to obtain this experience. This input should be the closest 

to already present interfaces like smartphones or mouse buttons (Rönkkö et al., 2009). Different 

possibilities are being explored, such as external controllers, voice recognition, and hand gesture 

recognition (Zeller, 2019). However, industrial environments are not so suited to external con-

trollers or voice recognition because operators cannot work efficiently with a controller in their 

hand, and the voice signals are affected by work environment noises as machine tools or human 

operators (Silaghi et al., 2014). 

The most popular input means present on the market are then hand gestures. With this input, the 

operator can work with free hands, and there is no need for voice inputs. In particular, the Mi-

crosoft HoloLens implements the virtual asset selection with hand gestures by Air Tap. A ray is 

cast from user's head; once the object to be selected is detected, the user keeps the head still 

while performing the Air Tap gesture, as shown in Figure 3. 

 

This input mean is intuitive enough from a usability point of view. The Air Tap technique im-

plemented in the Microsoft HoloLens is similar to the movement of clicking a mouse or tapping 

a touch screen (Vogel & Balakrishnan, 2005). Nevertheless, this interaction technique comes 

with some problems. First, hands must be in the field of view of the device, which is usually 

small. Due to its reduced dimension, users must keep their hands up in the proper position, and 

prolonged use could be tiring. In addition to this, it is hard and tiring to focus by gazing and 

keeping the head still while selecting the virtual object (Yilmaz & Kilinc, 2018). In the litera-

ture, there are many examples of high perceived workloads while using gestures in AR. There is 

the need of another alternative to this and so, the research can go in the direction of selecting 

virtual objects with brain signals by means of a brain-computer interface (BCI). 

Figure 3: Microsoft HoloLens Air Tap technique. 
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Firstly, this research aims to introduce MR technologies in the industrial environment using an 

HMD (i.e., Microsoft HoloLens) for training/support operators in maintenance activities. Sec-

ondly, this research focuses on the feasibility of using a steady-state visual evoked potential 

(SSVEP) BCI for virtual asset selection in an AR environment. The comparison is between a 

BCI and classic hand gestures. The proposed research is based on accessing if it is possible to 

increase the usability of an AR interface and thereby increase the speed and accuracy, thus re-

ducing the workload of a selection task. 

The following paragraphs will cover more in detail the reason why this research has been em-

ployed (Problem Statement), the research idea (Purpose), and the hypotheses behind this idea 

(Hypotheses). After that, the research will continue with the literature review, the two studies' 

assets, the discussion about the found results, and the conclusions. 

1.2. Problem Statement  

Some AR applications have led to a higher than normal workload for users due to their reliance 

on gestures and the near-constant visual attention required to interact with the holographic inter-

face (Looker, 2015; Ro et al., 2019; Yilmaz & Kilinc, 2018). Even the most advanced HMD AR 

device, the HoloLens, lacks an interface that allows users’ easy interactions (Ro et al., 2019). 

Although the precise selection and manipulation of virtual assets are among the most important 

issues in 3D augmented environments (Bellarbi et al., 2017), the gaze-assisted selection inter-

face of the HoloLens is somewhat inaccurate and has poor usability (Chaconas & Höllerer, 

2018). As previously anticipated, the asset selection task with Microsoft HoloLens is done by 

casting a ray from the user's head to the virtual asset object and performing an Air Tap (hand 

gesture) while keeping the head still. Yilmaz and Kilinc (2018) interviewed participants about 

their map zoom/pan/rotate methods. Reported comments include: “Air Tap is hard to learn at 

first […]” and “It is hard and tiring to focus by gaze. Focus point is not stable, and there is a 

precision problem. […]” (Yilmaz & Kilinc, 2018). Looker (2015) assessed the ergonomics of 

Air Tap gestures. After reviewing ergonomics literature, they found that the Air Tap movements 

required by AR interfaces were outside of known anthropometric and biomechanical limits and 

tolerances (Looker, 2015). Selection techniques that use gestures are more likely than others to 

cause arm and wrist strain (Argelaguet & Andujar, 2013). Gestures can be used if the user’s 

hand is positioned in the range of vision of the depth camera. As shown in Figure 4, the funda-

mental limitation of AR is that the field of view of the HMDs is small, and so users must con-

tinuously raise their hands up. This causes fatigue, and even if HMDs’ field of view is getting 

bigger every new release, its dimensions are still not enough.  
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1.3. Purpose 

Solutions like external controllers or voice recognition can be implemented to alleviate the arm 

and wrist strain that results from Air Tap gestures. These solutions would keep the arm in either 

a lower position or a position that would not even use gestures at all. However, these alterna-

tives are not suitable for industrial environments because operators must work with free hands, 

and voice signals are affected by work environment noises such as machine tools or human op-

erators (Silaghi et al., 2014). 

As a universal interaction task in user interfaces (UI) and a basic interaction technique in AR, 

3D virtual object selection has been extensively studied (LaViola et al., 2017). Developers can 

follow multiple guidelines, but research has clearly shown that there is no best selection tech-

nique for all situations. Selection can vary by specific task requirements, work conditions, and 

user preferences and experience (Cashion et al., 2012).  One possible alternative to the classic 

selection interaction in AR is a BCI.  

A BCI is a system that measures the activity of the central nervous system (CNS) and converts 

it into an artificial output. This output could replace, restore, enhance, supplement, or improve 

natural CNS output. Thereby this output changes the ongoing interactions between the CNS and 

its external or internal environment (Wolpaw & Wolpaw, 2012). BCI systems are stable with 

few head movements, and this is a necessary requirement because AR is usually implemented 

through HMD (Si-Mohammed et al., 2020). 

The purpose of the first study (STUDY 1) is the introduction of MR technologies in the indus-

trial environment. Specifically, use an HMD see-through display for training/support operators 

in maintenance activities. The main project phases are developing the MR application, testing 

and optimizing the app in a laboratory environment, and validating it in the industrial environ-

Figure 4: Classic Gestures in AR selection method. The rectangle represents the field of view. 
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ment. The key benefits result in reducing the non-added value activities, knowledge-based assis-

tance, and training of specialists. 

The purpose of the second study (STUDY 2) in this research is to compare AR gestures with an 

active BCI, which is assessed in terms of speed, accuracy, workload, and usability. The pro-

posed research is based on the following question: “Is it possible to use a BCI to increase the 

usability of an AR interface and thereby increase the speed and accuracy, thus reducing the 

workload of a selection task in AR?” After deep research, it could be stated that no previous 

studies have attempted this. For this study, the contribution to the field is expected to be the as-

sessment of an alternative to classic gestures for virtual asset selection in AR. This alternative 

should fit industrial environments and should work in dense and dynamic virtual objects condi-

tions. A user study has been conducted to determine which is the best performing selection 

method. 

1.4. Hypotheses 

Before conducting the study, some hypotheses have been established. The hypotheses are four 

and are listed in the following. 

• H1: BCI will increase the speed associated with the selection task.  

This statement is based on Human Performance Theory. There may be many reasons why one 

interface is faster than another. A model of human information processing can help identify dif-

ferent design solution features by recording mental and motor processes in users (Dix et al., 

2003). The key difference between hand gestures and BCI is in response selection. On the one 

hand, hand gestures involve both brain and muscles in the selection task. On the other hand, 

BCI involves only the brain. Therefore, by removing arm movement, the speed of selection 

should increase. 

• H2: BCI will increase the accuracy associated with the selection task.  

This statement is based on the Error Theory of commission and omission errors. The error of 

commission is a mistake that consists of doing something wrong, thereby committing an action 

erroneously. As hand gestures and raycasting are always associated with movement difficulties, 

the accuracy should increase, and commission error will be eliminated by eliminating the 

movement.  

• H3: BCI will perform worse in the mental demand (i.e., have higher workload), but it will 

perform better in the physical demand (i.e., lower workload).  
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Workload is one of the most widely-invoked concepts in human factors research and practice 

(Wickens et al., 2015). It is constrained by the limited information processing capacity of the 

brain. High workload can lead to worker stress, errors, and performance decline when a user’s 

sense of effort is maximum (high workload) (Wickens et al., 2015).  

• H4: BCI will increase the usability of the selection task. 

Usability is not a one-dimensional property of a UI. Rather, it can be distinguished by five key 

attributes: learnability, efficiency, memorability, errors, and satisfaction (Karwowski et al., 

2003). Based on the previous hypotheses and the key attributes of usability, interface usability is 

expected to increase with BCI. 
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CHAPTER 2 - LITERATURE REVIEW 

2.1. Industry 4.0 

Technological advances have driven dramatic increases in industrial productivity since the be-

ginning of the Industrial Revolution (Rüßmann et al., 2015). In the 19th century, the steam en-

gine power factories started spreading; in the early 20th, the electrification for mass production; 

in the 70s of the same century, the industrial automation. As displayed in Figure 5, industry 

manufacturing advanced from water and steam power machines to electrical and digital auto-

mated production. This last environment made manufacturing processes more complicated, au-

tomatic, and sustainable so that people can operate machines simply, efficiently, and persistent-

ly (Qin et al., 2016). The term “Industry 4.0” stands for the 4th industrial revolution, which is 

defined as a new level of organization and control over the entire value chain of the life cycle of 

products (Rüßmann et al., 2015). (Stilgherrian , 20 18)  

The central objective of Industry 4.0 is fulfilling individual customer needs, which affect areas 

like order management, research and development, manufacturing commissioning, delivery up 

to the utilization, and recycling of products. As displayed in Figure 6, there are nine pillars of 

technological advancement that give form to Industry 4.0: Big Data and Analytics, Autonomous 

Robots, Simulation, Horizontal and Vertical System Integration, Internet of Things, Cybersecu-

rity, Cloud, Additive Manufacturing, AR (EITC, 2021). These tools, from isolated and opti-

mized cells, can be used together as a fully integrated, automated, and optimized production 

flow, leading to greater efficiencies and changing traditional production relationships among 

suppliers, producers, customers, as well as between human and machine (Rüßmann et al., 2015). 

Figure 5: Four Industrial Revolutions (Stilgherrian, 2018). 
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Big Data and Analytics: this block includes all the collection and comprehensive evaluation of 

data from many different sources. The data could come from both production equipment and 

system or the customer management system. 

Autonomous Robots: these types of robots can interact with each other, and they can also be col-

laborative and work side by side with humans. 

Simulation: simulations mirror the physical world and are extensively used in plant operations 

and prototyping. These models allow operators to test and optimize several variations, increas-

ing quality, and reducing development time. 

Horizontal and Vertical System Integration: company departments and functions can become 

more cohesive, creating universal data-integration networks.  

Industrial Internet of Things: this process allows devices to communicate and interact with each 

other and with more centralized controllers. 

Figure 6: The 9 Pillars of Technological Advancement in Industry 4.0 (Rüßmann et al., 2015). 
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Cybersecurity: this block aims to protect critical industrial systems and manufacturing lines 

from cyber attacks. It is essential to have secure and reliable systems. 

Cloud: all the information must be available in real-time. Companies continuously deploy ma-

chine data and analytics to the cloud, enabling more and more data-driven services. 

Additive Manufacturing: one of the typical examples of this is 3D printing. Companies can pro-

duce small batches of customized products that are fast to be manufactured and lightweight. 

2.2. Augmented Reality 

AR is a technology that generates and superimposes virtual information on a user’s view of the 

real world, and it supports a variety of services. This technology is key for enabling industry 4.0 

concepts and driving the development of industrial environment concepts. AR allows the em-

ployees to link the existing gap between the physical world and more important digital envi-

ronments. The annual growth rate of the industrial AR market is constantly rising, and it is fore-

casting to grow more within 2025 (Egger & Masood, 2020). This important growth is likely to 

be enhanced because AR technology is becoming more reliable, and more applications are be-

ing developed. While the general importance of AR is widely recognized, recent research has 

shown that the implementation for the industry is challenging (Egger & Masood, 2020).  

Nevertheless, AR technology has many potential applications (De Pace et al., 2018; Kim et al., 

2017). Wang et al., 2019 analyze the use of AR in computer-aided surgery. In this paper, a 

marker-less image registration method is presented. In particular, AR is used to align the virtual 

scene with reality in guided maxillofacial surgery. The virtual scene is created and coupled with 

reality to guide surgical operations or provide the surgery outcome without any marker. A 3D 

scanner is used to acquire the patient’s teeth shape model to obtain the augmented environment. 

This model is then registered with a stereo camera system using an algorithm. By using together 

all these elements, the surrounding anatomical models and virtual implants can be superimposed 

on the camera’s viewpoint to navigate in the AR environment (Wang et al., 2019). Some exper-

iments were employed to understand the error of the system. The average error was less than 

0.50 mm, and clinical feasibility has been shown with a volunteer. This application allows over-

coming the misalignment difficulty caused by the patient’s movement because no markers are 

involved, and therefore it is non-invasive and practical (Wang et al., 2019).  

Computer-assisted instruction (Deshpande & Kim, 2018; Tang et al., 2003) is another interest-

ing application where AR assists the user in an assembly task. Tang et al. (2003) tested the rela-

tive effectiveness of AR instructions in an assembly task. They compared a printed manual with 



12 

 

computer-assisted instructions (using a monitor-based display) and an AR system. In compari-

son to the other methods, results indicate that superimposing 3D instructions on the actual work 

pieces reduced the error rate of the assembly task by 82%. What is reduced is especially cumu-

lative errors, the ones that are due to previous assembly mistakes. It is worth noting that the re-

searchers also measured the mental workload which decreased in the AR condition, implying 

that some mental activities are offloaded by the system. 

Another application for AR can be interior design modeling. Chang et al. (2020) presented a 

mobile AR application that supports teaching activities in interior design. The aim is to support 

students in learning interior layout design, interior design symbols, and the effects of different 

layout decisions. Using this application, users can place 3D models of virtual objects on their 

mobile devices. The test has been employed by comparing an experimental group with a sample 

of candidates in a control group. The comparison has been made under the points of view of 

learning interest, confidence, satisfaction, and motivation of the students. The results have been 

determined with a t-test and significance has been found. Therefore, it can be concluded that 

this technology does enhance students’ learning ability for interior design. 

Laboratory experiments, in general, indicate that AR-supported tasks are more efficient in task 

completion time and error rates (Sanna et al., 2015). It has been found that the increase in per-

formance through AR depends on the complexity and nature of the task (Henderson & Feiner, 

2011). Different tasks give different performances, which are influenced by the experience of 

the workers (Funk et al., 2017). 

AR technology has some limitations coming when talking about input means. The classic AR 

interactions are obtained with hand gestures that usually lead to a higher than normal workload 

(Ro et al., 2019). Hand gestures, together with the near-constant visual attention required to in-

teract with the virtual assets, cause fatigue (Looker, 2015; Ro et al., 2019; Yilmaz & Kilinc, 

2018). Yilmaz & Kilinc (2018) reported feedbacks from the participants of their experiment. 

They pointed out how difficult was the use of the Air Tap (hand gesture) and the focus by gaze 

on the virtual objects for selection purposes. Also, Looker (2015) assessed the ergonomics of 

Air Tap gestures. After reviewing ergonomics literature, they found that the Air Tap movements 

were outside the known anthropometric parameters.  

2.2.1. Universal Tasks in AR 

Selection, positioning, rotation, and scaling are common manipulation tasks in 3D interfaces. 

Selection is the task of getting or identifying a particular asset or subset of assets from the entire 

set of assets available; positioning is the task of changing the 3D position of an object; rotation 
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is the task of changing its orientation; scaling is the task of changing its size (LaViola et al., 

2017). For each of these tasks, there are many possible interaction techniques like different 

combinations of input devices and UI software. Universal tasks may be based on real-world ac-

tions or virtual interactions that enhance capability (LaViola et al., 2017). How these basic tasks 

are usually implemented is relevant for the quality of the entire 3D UI. The human hand is a 

considerable tool because it allows to select and manipulate virtual objects with precision and 

speed. Therefore, the research for new interaction techniques is an important driver for 3D UIs 

(LaViola et al., 2017). The goal is to develop new techniques or reuse the existing ones, trying 

to enhance user-manipulation performance and comfort (Knight, 1987).  

2.2.1.1. Selection 

One of the fundamental tasks in 3D interfaces is virtual asset selection (LaViola et al., 2017). 

This is also the initial task for the most common user interactions in a Virtual Environment. 

Manipulation tasks often depend on, and are preceded by, selection tasks. Therefore, poorly de-

signed selection techniques often have a significant negative impact on the overall user perfor-

mance. For each canonical task, many variables significantly affect user performance and usa-

bility (Foley et al., 1984). Each task defines a “task space” that includes multiple variations of 

the same task. Some variables influence user performance like the distance and direction to tar-

get, the target size, the density of objects around the target, the number of targets to be selected, 

or the target occlusion (Poupyrev et al., 1997). Different selection techniques allow obtaining 

different results in different environments. 

Many studies have attempted to classify and improve the selection of virtual assets in 3D envi-

ronments (Argelaguet & Andujar, 2013). In the literature, the first research group tackling this 

topic is Bowman et al. (1999), who proposed a classification schema for 3D selection tech-

niques. In particular, 3D selection techniques for mobile AR HMD can be done by visual 

raycasting or by hand-controlled 3D cursor (Özacar et al., 2016). In the first case, a ray is cast 

from the point of origin with a direction. These two values can be found by tracking the position 

and orientation of a controller (Feiner, 2003), the user’s hand (Bowman et al., 2001), or the us-

er’s head (Tanriverdi & Jacob, 2000). In the second case, the user’s hand is the focus for the 

selection task. Using quick hand gestures is another approach to confirm the selection. Gross-

man & Balakrishnan (2006) proposed a thumb trigger gesture where the thumb finger moves in 

and out toward the index. A similar approach is the one adopted by Vogel & Balakrishnan 

(2005) that developed the Air Tap technique. This selection method is conceptually close to the 

previous, but the trigger is the index that closes on the thumb for the selection, as displayed in 
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Figure 7. This selection technique is adopted in the Microsoft HoloLens, and it will be the hand 

gesture that will be compared with the BCI in this study. 

 

In addition to these selection techniques, other methods can be implemented. These are the se-

lection by voice recognition (Silaghi et al., 2014), gaze-assisted selection technique (Sidenmark 

et al., 2020), mobile phone selection technique (Ro et al., 2019), or external controllers selection 

techniques (Grossman & Balakrishnan, 2006). All of them have some benefits, but they cannot 

be used in an industrial environment. For example, to alleviate the arm and wrist strain that re-

sults from hand gestures, these selection techniques would keep the arm in either a lower posi-

tion or in a position that would not use gestures at all. However, these alternatives are not suita-

ble for industrial environments because operators must work with free hands, and voice signals 

are affected by work environment noises such as machine tools or human operators (Silaghi et 

al., 2014). 

In this context, Bowman et al. (1999) study was particularly important because it suggested sev-

eral taxonomies to classify existing 3D selection techniques. This research study classified dif-

ferent interaction techniques and decomposed them into subtasks. This classification is done 

according to Figure 8. A selection technique must provide a way to indicate an object (object 

indication), a mechanism to confirm its selection (confirmation of selection), and visual, haptic, 

or/and audio feedback to guide the user during the selection task (feedback). The taxonomy pro-

vides a broad view of selection techniques, even if it considers a relatively small number of de-

sign variables. 

Figure 7: Air Tap gesture implemented in the Microsoft HoloLens (Zeller, 2019). 
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The employed experiment was a selection and manipulation testbed. It consists of users select-

ing the correct object within a group of them and manipulate it with different selection tech-

niques. The variables were the distance from the user, the size of the objects, and the density of 

objects. These factors are important in determining speed, accuracy, ease of use, and comfort 

for selection techniques (Bowman et al., 1999). The comparison has been made among nine 

different selection/manipulation techniques composition: one is the Go-Go technique while the 

other eight compositions are made up with two selection techniques raycasting and occlusion; 

two attachment techniques move hand and scale hand; and two manipulation techniques, linear 

mapping, and buttons. Raycasting was the fastest technique staying within the selection field of 

investigation (Bowman et al., 1999). In this research (STUDY 2), the comparison is between 

hand gestures (Microsoft HoloLens) and an SSVEP BCI (NextMind). In the first case, the indi-

cation is done by casting the ray from the head to the virtual asset, and the confirmation is done 

by gesture (Air Tap). This selection technique is in line with the experiment of Bowman et al. 

(1999), in which the raycasting method was the fastest. In the second case, the indication is 

done by gazing at the virtual asset, while the confirmation is done by no explicit command be-

cause the BCI is triggered, and it depends on the users’ visual focus on the asset. According to 

the literature review, most previous studies are based on hand gestures and Air Tap assessment. 

STUDY 2 will broaden the selection channels in an augmented environment, adding an alterna-

tive to the classic hand gestures with a BCI. 

2.2.2. Human Performance 

Human performance can be explained under three main measures: speed, accuracy, and atten-

tional demand (Wickens et al., 2015). Generally, for a certain task, the higher the speed, the bet-

ter, the higher the accuracy, the better, and the lower the attentional demand, the better. Thus, it 

Figure 8: Classification of selection techniques by task decomposition proposed by Bowman et al. (1999). 
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could be thought that the perfect engineering principle allows obtaining the higher speed and 

accuracy, and the lower attentional demand. But, of course, these measures are always a trade-

off, and in some applications, one measure is better to be optimized with respect to the others 

(Wickens et al., 2015). 

The different dimensions of performance, namely speed, accuracy, and attentional demand, as-

sist the understanding of how much the performance is changed in the different design condi-

tions. In our case, the difference is between hand gestures and a BCI. There could be more rea-

sons why an interface is faster than another or why it is less accurate. Mental and motor pro-

cesses can help to identify different design solution features. What is needed is a model of hu-

man information processing, as depicted in Figure 9.  

 

This model provides a useful structure to analyze the different mental and motor processes that 

typically characterize the flow of information. The difference between hand gestures and the 

BCI is in the “Response Selection” and “Response Execution” blocks. On the one hand, hand 

gestures involve both brain and muscles in the selection task for both response selection and 

execution. On the other hand, BCI involves just the brain, so the selection speed should increase 

as anticipated in the first hypothesis (H1).  

The errors that users make in this circumstance are errors of commission. As stated by the 

American Psychological Association, an error of commission is a category of human error in 

which an operator performs an incorrect or additional action, such as pressing a control button 

twice, leading to inappropriate or duplicate performance of a function (APA, 2021). Hand ges-

Figure 9: Model of human information processing (Wickens et al., 2015). 
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tures are always associated with difficulties in movement (Ro et al., 2019). Hence, errors should 

decrease by eliminating the hand movement, as stated in the second hypothesis (H2). 

2.2.3. Advantages of AR in Industrial Environment 

Product life cycles are shrinking due to a market that requires product launches and updates rap-

idly. Therefore, production lines must become flexible and fast to be re-engineered. The 3rd in-

dustrial revolution brought computers in the development stages and, with it, electronic plan-

ning tools help decrease the re-engineering time of plants and plant equipment. Different tools 

are used to plan plants and manufacturing processes. Examples of this are computer-aided de-

sign (CAD) systems or simulation systems to simulate material flow and plant layout design 

systems. In this phase, there is the need for a high-quality representation of the plant layout. 

Every detail must be considered, obtaining the best reproduction of the real factory, and so suc-

ceeding in planning activities like material-flow simulation. Frequently, the layouts used in the 

CAD and simulation tools do not perfectly fit the real industrial environment, which leads to 

defects within the planning process and, therefore, to costly replanning activities. Validation 

tools can tell how close the layout is to the real factory, but this is a time-consuming operation 

(Doil et al., 2003). 

The market-driven rapid product changes oblige manufacturers to find new solutions to shorten 

the product development and reduce as much as possible time-consuming activities. One solu-

tion to have faster processes is AR. The areas of use of AR in the industrial environment range 

from a higher accuracy in the assembly procedures and flexibility in training with a live guid-

ance system (Egger & Masood, 2020). The use of AR makes it easier for the workforce to ob-

tain real-time data, and the use of all the validation tools to access the factory layout accuracy 

can be avoided. When working with AR, the real environment is still visible, and it can be used 

as a direct reference, as displayed in Figure 10.  

Currently, numerous companies are seeing AR as a very important tool to provide new services 

(Zubizarreta et al., 2019) and, in fact, this technology can have multiple applications (Egger & 

Masood, 2020). For example, AR can be used for assembly operations in intelligent manufac-

turing, either in training (Sorko & Brunnhofer, 2019) or as a guidance system for operators 

(Reyes et al., 2020). The industrial planning process can benefit from AR, thanks to the reliable 

representation of the surrounding industrial space (Doil et al., 2003). Another area where AR 

can be used is for in-house logistics (Wang et al., 2020) or also in quality assurance (Segovia et 

al., 2015). As soon as operators depend on or can profit from real-time information, AR can be 

used to intuitively display this information on site. 
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From this perspective, the most relevant study is the one conducted by Doil et al. (2003), who 

proposed an AR system to improve the industrial planning process that would allow planning 

tasks to be validated without modeling the surrounding environment of the production site. 

Their AR model improved factory interfaces by superimposing virtual planning objects on the 

work environment (Doil et al., 2003). This led to significant advantages in the visualization of 

the final production line. Planning tasks can thus be validated without modeling the surrounding 

environment of the production site. 

The Major Automotive Company provided some information for this study about the ad-

vantages of using AR in an industrial environment. In defining a new production line or modify-

ing an already existent production line, AR technology brings many advantages in resources 

optimization. The major benefits are the reduction of time and cost of the line, as well as in-

creased safety. AR-systems allow anticipating as much as possible the criticalities associated 

with the project realization. It is possible to make verifications of the project plan directly on the 

production site and verify the equipment's correct positioning and overall dimensions relative to 

the factory layout. In this way, it is possible to highlight technological issues with respect to the 

initial project idea: details that were not considered. These details may be space taken for 

equipment handling, possible interferences with machines that are already present on the line, or 

dimension enslavements. Modifications can be done in advance with respect to the actual reali-

Figure 10: Visualization of virtual robots and machinery in a plant-environment (Doil et al., 2003) 
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zation, reducing the number of in-person inspections, late modifications that would be time and 

money-consuming, and increasing the safety on the worksite, limiting the time spent on the line 

by operators (De Pace et al., 2018). 

2.3. Brain-Computer Interface 

In 1924, Hans Berger, Professor of Psychiatry at the University of Jena in Germany, discovered 

that electrical signals of the brain could be recorded from the scalp. Berger published in 1929 an 

article that established electroencephalography (EEG) as a basic tool for clinical diagnosis and 

brain research. The possibility of individuals acting through brain signals rather than muscles 

has fascinated people for many years. Almost a century after Berger’s discovery, BCIs have 

become a reality. 

The central nervous system (CNS) function is the starting point to explain what a BCI is. Its 

purpose is to respond to events in the outside world of the body by producing outputs that serve 

the organism's needs (Wolpaw & Wolpaw, 2012). All the outputs of the CNS are neuromuscular 

or hormonal. A BCI allows the CNS to have additional outputs rather than the previous two. A 

BCI is a system that processes the activity of the CNS and converts it into an artificial output. 

This output could replace, restore, enhance, supplement, or improve natural CNS output. There-

by this output changes the ongoing interactions between the CNS and its external or internal 

environment (Wolpaw & Wolpaw, 2012). BCI interfaces collect brain signals, understand them 

and interact with an external device or machine (Placido, 2021).  

As displayed in Figure 11, BCIs can replace the natural output of the CNS that could not be 

used anymore; for example, a person who can no longer speak might use a BCI to type words 

that are then spoken by a speech synthesizer. This system could also restore a lost natural out-

put; for example, when person's limbs are paralyzed, the BCI could stimulate the muscles with 

implanted electrodes so that the limbs can move. A BCI can enhance natural CNS output by 

warning a driver to stay focused over a prolonged period. This system can then supplement us-

ers by allowing them to control a robot arm to reach far spots or lift heavyweights. Finally, a 

BCI can improve natural CNS output, for example, in a person with impaired arm movements 

who uses the system to measure brain signals which stimulate muscles or control an orthotic 

device to improve arm movements. 

BCI research started back in the 1970s when Vidal (1973) made the first systematic attempt to 

implement an EEG-based BCI to record the evoked electrical activity of the cerebral cortex 

from the intact skull. The research applications of BCI technology evolved significantly over 

the years (Saha et al., 2021), including detecting drowsiness for improving human working per-
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formances (Wei et al., 2018), access the selection of a virtual object (Felton et al., 2012), esti-

mating reaction time (Wu et al., 2017), controlling VR (Vourvopoulos et al., 2019), videogames 

(Singh et al., 2020), or driving humanoid robots (Spataro et al., 2017). Figure 12 shows the ex-

ponential trend of BCI-related publications over the years (Saha et al., 2021). 

 
Figure 12: Number of BCI-related publications over the years (Saha et al., 2021). 

Figure 11: Basic design and operation of a BCI system (Wolpaw & Wolpaw, 2012). 
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It is of particular relevance the study conducted by Felton et al. (2012). They proposed a study 

to access people's perception in performing BCI tasks, which is the mental workload aspect con-

tributing the most, and if there is a perception difference in perceived workload between able 

and disabled participants. They have also done this by comparing the brain and manual control-

lers such as mouse or joystick. The employed BCI was an electrode cap that recorded EEG sig-

nals, whereas the tool used to assess mental workload was the NASA TLX. The results con-

cluded that able and disable participants have the same perception with similar NASA TLX 

scores. From the point of view of the comparison between BCI and manual controllers, the ma-

jor contribution in the NASA TLX scores was the mental demand for the BCI, while it was the 

physical demand for the joystick. This result is correlated with the third hypothesis (H3), accord-

ing to which the BCI will have a higher mental workload but lower physical workload with re-

spect to hand gestures. 

2.3.1. Type of BCI 

According to Placido (2021), a BCI can generally be divided into three classes: invasive, semi-

invasive, and non-invasive interface. The invasive interfaces are electrodes positioned into the 

grey matter, which can measure the activities of the neurons. The quality of the signal is the 

highest, but there is a risk connected to the surgery. In a semi-invasive BCI, the electrodes are 

implanted inside the skull, but they are kept outside the brain. The non-invasive interfaces are 

instead easy-to-wear devices that do not require surgery and are placed on the scalp. According 

to Putze et al. (2020), BCIs can also be classified as passive and active. Passive BCIs focus on 

two aspects which are often tackled for adaptive technology: attention and workload. For exam-

ple, when drivers become distracted or inattentive, the BCI measuring their neural activity can 

warn about focusing on the task again. Active BCIs are instead interfaces used for active control 

and used to trigger an action like moving a robotic arm or controlling a virtual environment.  

For what concern the non-invasive BCIs, there are several types of these techniques as magne-

toencephalography (MEG), positron emission tomography (PET), functional magnetic reso-

nance imaging (fMRI), near-infrared spectroscopy (fNIRS), and EEG. The last one is the most 

commonly used because of cost and hardware portability. EEG provides the recording of the 

brain's electrical activity from the surface of the scalp, and it is possible to use it in many appli-

cations. The first example is BCIs which use P300 event-related potentials (ERP). ERPs are 

manifestations of neural activity that are triggered by specific events. The P300 is a positive 

deflection that occurs in the EEG recorded in the scalp after a stimulus. This often occurs at a 

latency of about 300 msec. Current P300-based BCIs allow users to select items displayed on a 

screen and the selection method is similar to a standard computer keyboard. Another example is 
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BCIs that use sensorimotor rhythms, which are the evidence that the execution or imagination of 

limb movement changes the potential recorded in the sensorimotor cortex. These signals are 

extracted and translated, and the resulting output is then used for moving robotic arms in one, 

two, or three dimensions. The last example is BCIs that use SSVEP that are distinctive patterns 

of positive and negative voltage deflections. The most prominent deflections include N70 and 

P100, which occur about 70 and 100 msec after the visual stimulus, respectively. With this kind 

of interface, the user typically selects by gazing at the stimulus that represents the desired BCI 

output. The BCI evaluates the signal's frequency spectrum, and the latter usually matches the 

rate of stimulus on which the user is fixating. In this way, users can select objects or buttons 

which give them a specific visual stimulus. The BCI device used in the second study (STUDY 

2) will be of this last kind, and it will rely on machine learning (Protalinski, 2020). 

2.3.2. Coupling of AR and BCI 

BCIs have enabled individuals to control devices such as robotic arms, drones, or wheelchairs. 

With the advent of AR systems, these technologies can be coupled to offer immersive scenarios 

through induced illusions of an artificially perceived reality. The two systems together can pro-

vide additional communication channels by increasing the possibilities of interaction of the hu-

man with AR. According to Putze et al. (2020), regarding passive BCI, research concentrates on 

two aspects that are always touched for adaptive technologies: attention and workload of the 

user. On the other side, active BCI research is less about the potential improvement of the AR 

interface. However, it focuses on the enhancement of the BCI paradigm in different applications 

like rehabilitation. The second study (STUDY 2) of this thesis deepens the possible benefits of 

using an active BCI to select objects in an AR environment. Many other potential applications 

of this coupling have yet to be explored. 

Research on the combination between AR and BCIs has focused on different aspects. Angrisani 

et al. (2020) and Coogan and He (2018) analyzed Internet of Things applications of the coupling 

between AR and BCI. For example, the study conducted by Angrisani et al. (2020) reported a 

measurement instrument for a wearable BCI. This AR-BCI system is employable in industrial 

inspection, where users can communicate with smart transducers without using hands or voice. 

In this paper, the researchers assessed the minimum stimulation and acquisition time for the 

SSVEP in a single-channel BCI. Even if the paper proposes a BCI to replace the classical input 

interface of AR platforms, the focus is more on the interaction with the real plant equipped with 

smart sensors. Furthermore, they do not analyze and compare the performances of hand gestures 

and BCI. The experimental results demonstrate that the minimum stimulation and acquisition 

time for the SSVEP signals in a single-channel BCI can be as low as 2.0 s with accuracies up to 
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90.0% and 100.0% for some subjects. This paper suggests that SSVEP BCIs can have a decent 

selection speed even if they can lead to some delays. 

The coupling between AR and BCI could also be used to interact with superimposed virtual as-

sets to trigger an action with brain signals, as presented by Putze et al. (2019). This paper pro-

posed HoloSSVEP, a smart home control system that uses the Microsoft HoloLens camera to 

position controllable elements within the environment, marked by visual identifiers automatical-

ly detected as displayed in Figure 13. The BCI records users' EEG signals while another system 

tracks their eye gaze. The comparison between the performances of hand gestures and BCI is 

not present. This hybrid interface with AR, BCI, and eye-tracking, ended up having high accu-

racy in the selection stage. The accuracy of the BCI is on average 76.1%, the one of eye track-

ing is 82.1%, while the accuracy of the two systems combined is 89.3%. 

 

Coupling a BCI to AR can also improve user attention while performing a task, as suggested by 

Vortmann and Putze (2020). They follow the idea that HMD has a distraction problem caused 

by an unavoidable display of control elements even when focused on internal thoughts. In this 

paper, they tried to reduce the distraction by including information about the current attentional 

state. They divided the attentional state into internal and external and adapted an application by 

making it respond just in case the attention state would have been classified as “external.” They 

concluded that systems would benefit from this attention division because the application re-

sponds just if the user is “active.” 

Figure 13: Window Blinds control via AR using the SSVEP-BCI paradigm in a room (Putze et al., 2019). 
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Most previous studies focus on accessing the positive influence that a BCI can have on the user 

while working in an AR environment. Nevertheless, after deep research, it could be stated that 

no previous studies have attempted to compare hand gestures and BCI selection in an augment-

ed or virtual environment. STUDY 2 will contribute to assessing the feasibility of using a BCI 

in dense and dynamic conditions, focusing on increasing the speed and accuracy, thus reducing 

the workload of a selection task in AR. Together with the increasing popularity of AR in the 

industry, longer tasks in augmented environments will have to be completed. Therefore, this 

study is needed to access an alternative to classical hand gestures to reduce the effort while op-

erating. 
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CHAPTER 3 - STUDY 1 

3.1. Technology 

3.1.1. Microsoft HoloLens 

The Microsoft HoloLens (Microsoft Corporation, United States) is the first HMD running the 

Windows Mixed Reality platform under Windows 10, which supports Universal Windows Plat-

form (UWP) apps. It is worn like a helmet, and with it, it is possible to project onto the real en-

vironment holograms which enhance the experience. The Microsoft HoloLens has been selected 

for this study because it represents the highest standard for the AR technology. An example of 

this device is displayed in Figure 14.  

The Microsoft HoloLens is more than just an AR HMD. Its technology is called “Mixed Reali-

ty", which utilizes multiple sensors and holographic processing optimized with its environment. 

The virtual assets can display information, represent the real world with a mesh, or even simu-

late the virtual world. This device is based on an Intel 32-bit architecture with TPM 2.0 support. 

It is equipped with 64 GB of flash memory and 2 GB of RAM; the network connectivity fea-

tures Wi-Fi 802.11ac and Bluetooth 4.1 LE. The mounted sensors are 1 inertial measurement 

unit, 4 environment understanding cameras, 1 depth camera, and a 2MP photo/HD video cam-

era. The display has a holographic resolution producing 2.3M total light points and a holograph-

ic density greater than 2.5k radiants. The device capabilities are Gaze Tracking, Gesture Input, 

and Voice Support (Zeller, 2019). 

3.1.2. Unity 

Unity is a game engine (Unity Technologies, United States) that allows cross-platform integra-

tion. It utilizes what is called game objects, components, and scenes. A game object can be of 

any form like shape, model, and UI element, or it can be empty to contain just a component that 

Figure 14: Microsoft HoloLens (1st Generation) (Zeller, 2019). 
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has a specific function. In addition, components can be added to game objects to provide func-

tionality, such as C# scripts, position/rotation values, or standard Unity pre-build components. 

A scene, in the end, is a collection of game objects with which the user can interact. An example 

of the Unity environment is displayed in Figure 15. 

Unity can be integrated with assets that can be downloaded from the Asset Store or the official 

websites of the provider. These assets are called Software Development Kit (SDK), and they 

facilitate developers' development speed and creation time. For the application development, 

Unity Version 2019.4.20f1 has been employed. 

3.1.2.1. Mixed Reality Toolkit (MRTK) 

From the official Microsoft website (Semple, 2021): MRTK-Unity is a Microsoft-driven project 

that provides a set of components and features used to accelerate cross-platform MR app devel-

opment in Unity. The kit provides a cross-platform input system and building blocks for spatial 

interactions and UI. Having at hand many standard game objects, this enables rapid prototyping 

via in-editor simulation that allows to see changes and swap out core components quickly. 

3.1.2.2. Vuforia 

Vuforia Engine is a popular AR development platform (Vuforia, 2021), and it allows the crea-

tion of AR applications. This engine, coupled with Unity, allows developers to easily add ad-

vanced computer vision to UWP apps and create AR experiences that realistically interact with 

objects and the environment. This engine uses computer vision to acquire and track planar 

Figure 15: Unity game engine interface. 
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markers, called image targets, and 3D objects in real-time. This feature allows developers to 

position and orient virtual 3D holograms in relation to real-world objects using the camera of 

the used device. In this application, Vuforia is used to place the robot's holograms in the scene 

in a specific position using the image targets, as shown in Figure 16. From that initial point, the 

virtual robot is then tracked by the HoloLens coordinate system, and it is possible to select and 

manipulate it.  

 

3.2. Application Layout 

The main task of the AR system is the reception of the information about the marker and the 

derivation of different 3D positions of virtual objects from this basis. This task must be per-

formed very fast and without any manual assistance. The Vuforia engine and its capabilities 

have been employed to obtain this, as displayed in Figure 16. 

The application is structured such that all the controls derive from a hand-menu. This menu can 

be used to enable or disable the Vuforia capabilities and robot manipulation. Through it, the 

Figure 16: Marker recognition with Vuforia engine. In particular, the robot that appears is a full-scale 

collaborative robot UR10. (A) The marker just before it is recognized by the Microsoft HoloLens, (B) The 

robot appears when the HMD recognizes the marker. 
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robot can also be removed, and the measurement tool can be activated. The application layout is 

schematized in Figure 17. 

 

The main menu is activated by hand, and the movement is similar to extracting the phone from 

a pocket and use it. If the Microsoft HoloLens detects your flat hand, this hand-menu made up 

of buttons to control the scene will appear. A Unity simulation in Figure 18 can make under-

stand this movement better. 

 

The “Vuforia ON” button allows to switch on and off the Vuforia capability. This operation is 

done to save some processing time when the application is running. Vuforia uses the HoloLens 

Figure 17: Study 1 Application Layout. 

Figure 18: Application Main Menu with 4 buttons: 1. Vuforia ON, 2. Manipulate Robots, 3. Remove 

Robots, 4. Measurement Tool. 
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cameras to track the markers in the surrounding environment. By disabling Vuforia, it is possi-

ble to reduce the CPU overload. 

The “Manipulate Robots” button allows to activate a bounding box around the robots in the sce-

ne and give them the possibility to be manipulated. A button of this kind is necessary to avoid 

unwanted hologram manipulation in the scene. 

The “Remove Robots” button is used to cancel the robot from the scene. This button could be 

needed when users make a mistake or want to replace the robot with respect to the marker. Us-

ers can select the correspondent “Remove Robots” button and Air Tap on the robot to be re-

moved. 

Last is the “Measurement Tool” button, which allows users to enter and use the correspondent 

tool. This function will be explained in detail in the following paragraph (Measurement Tool). 

Due to the COVID-19 pandemic, it was impossible to access the facilities and to have a Mi-

crosoft HoloLens available. In the following, some figures help to describe the application flow. 

Figure 19 displays an operator in front of a box conveyor. It has been decided that a collabora-

tive robot should be installed in the line to load the boxes on the conveyor, reducing the opera-

tor's effort. First, there is the need to understand where to place the robot in order to obtain an 

efficient solution. A printed QR Code has been put on the floor, and this is the marker that the 

application should search for. No robots are displayed because the HMD still has to detect the 

marker. 

 

The virtual robot appears in the scene once the HMD detects the marker with its cameras, as 

shown in Figure 20. The operator can now use the application functionalities to move or rotate 

the virtual robot. 

Figure 19: Example of scene for collaborative robot virtual visualization (the robot is not visible). 



30 

 

 

When the robot first appears in the scene, it is not possible to manipulate it. However, the hand-

menu button enables the manipulation, and a “wireframe box” appears around the virtual robot, 

as displayed in Figure 21.  

 

Grabbing the virtual robot in the center of one of the “wireframe box” faces makes it possible to 

move it around. This operation allows understanding which is the best robot position to obtain 

an efficient and feasible solution. As displayed in Figure 22, the robot is grabbed and moved 

behind the boxes. The latter is not the best solution, but it allows to appreciate the occlusion of 

the virtual robot behind the real boxes, thanks to the Microsoft HoloLens MR capabilities. 

Figure 20: Example of scene for collaborative robot virtual visualization (the robot is visible). 

Figure 21: First person scene. Hand-menu to enable the virtual robot manipulation. 
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Grabbing one of the little balls on the “wireframe box” edges makes it possible to rotate the vir-

tual robot, as shown in Figure 23. 

 

Once the position and orientation of the virtual robot are the right ones, the operator can click 

the manipulation toggle button again on the hand-menu and disable the manipulation. As dis-

played in Figure 24, the virtual asset is now fixed in the scene, and it is possible to use other 

application capabilities. 

Figure 22: First person scene. Virtual robot positioning. 

Figure 23: First person scene. Virtual robot rotation. 
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Suppose the analysis terminates or the operator wants to place the virtual robot on the marker at 

its initial position. In that case, the latter can be removed with the correspondent hand-menu 

button, as displayed in Figure 25. 

 

3.2.1. Provided Equipment 

The Major Automotive Company provided some CAD files of robots and equipment to be used 

for application testing. In this report, just the 2 robots that are public and available online will be 

presented: the UR10 and the Comau NJ-220-2.7. A clamping station used to keep attached met-

al parts in car body assembly was provided as well, but it will not be included in this report for 

confidential reasons. The first robot is the UR10 (Universal Robots, Denmark) that is displayed 

Figure 24: First person scene. Hand-menu to disable the virtual robot manipulation. 

Figure 25: First person scene. Hand menu to remove the virtual robot from the scene. 
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in Figure 26. This robot is a 6-axis articulated arm that can perform different tasks as pick-and-

place, machine tending, palletizing, and packaging (Universal Robots, 2021). Being a collabora-

tive robot, the UR10 can work in close collaboration with human workers and so there is no 

need to restrict it in a cage. The robot can be programmed by simply grab it, move it around, 

and tap on a touchscreen to record the desired positions and actions (Guizzo, 2015). The UR10 

has a reach of 1.3 m, a supported payload up to 12.5 kg, a footprint of 19 cm, and a weight of 

33.5 kg. 

 

The second robot is the Comau NJ-220-2.7 (Comau, Italy) that is displayed in Figure 27. This 

robot is slightly different from the previous one because it cannot work in close contact with 

humans. It is a 6-axis robot arm that offers 220 kg of wrist payload and 2.7 m reach. Its func-

tions are assembly, processing machining, spot welding, handling/packaging, and much more 

(Comau, 2021). 

 

Figure 26: UR10 Collaborative Robot. 

Figure 27: Comau NJ-220-2.7 Robot. 
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3.2.2. Measurement Tool 

The measurement tool is one of the core features of the application. It allows measuring the dis-

tance between 2 points on the X, Y, and Z directions, and it also calculates the absolute value. 

The implementation in Unity is a standard prefab file made up of two little red spheres and a 

panel containing the information about the measure. The game objects that can be detected by 

the measurement tool are the ones that integrate the “Mesh Collider” component. 

The measurement tool is integrated with the HoloLens capabilities and gestures. First of all, an 

hand-menu allows selecting what to do, as displayed in Figure 28. 

 

Users can decide, for example, to create a new measure. After clicking this button, users might 

select two consecutive points in the space and obtain the measure, as displayed in Figure 29.  

 

Figure 28: Application Measurement Tool Menu: 1. Create New, 2. Delete Last, 3. Delete All, 4. Exit. 

Figure 29: Example of two measures on random shape objects. 
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In this figure, two measures are displayed: one from the capsule to the cube and one from the 

first capsule to the second capsule. After creating the first measure, users can also decide to de-

lete the last-done measure or delete all the measures again. The measure information panel is 

not displayed at first, and the user must point the head Raycast towards one of the two red balls 

of the measure, as shown in Figure 30. Then, the panel appears for 5 seconds in front of the us-

ers, and it turns with respect to their orientation and position.  

 

3.2.3. Integration Issues 

In the application development, some issues have been faced. Vuforia is an AR platform that 

can be coupled with Unity and can run on a wide range of devices, not just the Microsoft Ho-

loLens. For this reason, several integration issues between the MRTK and the Vuforia Engine 

have been found. For example, certain scripts of the Vuforia Engine override some HoloLens 

capabilities, and developers do not have the freedom to write scripts easily. Vuforia is a useful 

tool because it provides AR behavior to the HMD, but, at the same time, it reduces development 

flexibility. One example of this is the Microsoft HoloLens Spatial Awareness. This device can 

track the surrounding environment by its cameras and sensors to obtain the MR experience. By 

adding Vuforia to the application, the Spatial Awareness capability cannot be used. So, the hol-

ograms do not appear to be occluded, or the Measurement Tool cannot be used to measure from 

the external walls to the actual holograms. This issue has been attempted to be solved by doing 

online research, contacting the Vuforia support multiple times, writing some questions on the 

Figure 30: Measurement information along the 3 reference axes and the absolute value. 
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Vuforia Developer Portal (Vuforia, 2021), or writing on the Stack Overflow website (Stack 

Overflow, 2021), but with no success. 

The application should have worked with different virtual robots CAD files. However, import-

ing these files in Unity was a complex procedure because the Major Automotive Company pro-

vided .STEP and .jt files. These file extensions cannot be directly imported in Unity which ac-

cepts only .fbx files. Moreover, the .fbx files cannot be generated by the CAD software. There-

fore, the procedure has been to open the .STEP and .jt files with the CAD software, convert 

them into .stl files, open the .stl files with a computer-animation software and convert them into 

.fbx files. In the whole process, the virtual robot should be scaled and oriented to obtain the 

proper dimension and position in the left-handed reference system of the Unity environment. 

Once the application was built on the Microsoft HoloLens, some low-performance issues have 

arisen. For example, when the three CAD models were all present in the scene simultaneously, 

the application started lagging. This issue is caused by many game objects, details, and Vuforia 

capabilities that the device must process. The issue can be partially solved by disabling the 

Vuforia tracking with the menu displayed in Figure 18. 
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CHAPTER 4 - STUDY 2 

4.1. Methodology 

4.1.1. Participants 

Twenty participants volunteered to participate in the study for a compensation of 20 CAD each. 

Participants were undergraduate and graduate students at the University of Windsor, with some 

external exceptions. Participants were, on average, 25 years old (6 years standard deviation), 

175 (8) centimeters tall, and 74 (18) kilograms. Five (25%) participants were female, and 15 

(75%) were male. Forty percent of them had previous experience with AR or VR, but none had 

ever tried a Microsoft HoloLens. Fifteen percent of them had previous experience with BCIs, 

but none had ever tried the NextMind device. None of the participants had upper limbs discom-

fort. The protocol for the experiment was reviewed and approved by the University of Windsor 

Office of Research Ethics (REB Number: 38917). Due to the COVID-19 pandemic, this study 

was also evaluated and approved by the Research Safety Committee (RSC 2021-304-001-P3). 

4.1.2. Hardware and Software – Brief Recall 

The different tasks were implemented using the Microsoft HoloLens (Microsoft Corporation, 

United States) as the AR HMD and NextMind (NextMind SAS, France) as BCI. The software 

employed was the Unity game engine, coupled with Microsoft Visual Studio. Unity is the most 

popular cross-platform game engine. It is used primarily to create video games for numerous 

platforms, including mobile devices, Internet browsers, PCs, and VR and AR devices. There-

fore, the application for this research was developed with the two dedicated SDKs for Microsoft 

HoloLens and NextMind. These packages were, respectively, the MRTK and the NextMind 

Unity SDK. 

4.1.2.1. NextMind 

NextMind is a brain-sensing wearable that goes in contact with the scalp on the back of the 

head. It is in close contact with the brain's visual cortex, where the images we see are projected. 

What the user focuses on is identified by the sensor in real-time. This sensor is an EEG that 

measures brain activity, translates it into digital commands, and triggers a correspondent action 

in the augmented environment (Protalinski, 2020). This device has been selected for the study 

because it is the only available SSVEP BCI commercially market available. NextMind is an 

SSVEP BCI, and this means that it can detect stable oscillations in voltage evoked by repetitive 

stimulations such as a strobe light presented on a monitor. This device has a dimension of 

135x66x55mm and a weight of 60 grams, implementing nine high-quality electrodes. The min-

imal software requirements are Bluetooth LE support (4.0), Intel i5-4590/ CPU, and 8 GB 
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RAM. It is tested and approved for the Microsoft HoloLens 1st Generation for form factor and 

software. 

4.1.3. Application Layout 

The NextMind application can be found on a GitHub repository at the following link: silvio-

dacol/NextMind (github.com). It is organized into the main menu screen, tasks screens, a tutori-

al screen, and a calibration screen for the NextMind device, as shown in Figure 31. 

The main menu screen, displayed in Figure 32, allows the user to easily navigate through the 

other screens. 

 

In the tutorial screen, displayed in Figure 33, the user may practice moving their head as well as 

their hands and focusing on objects for brain selection. For each selection technique, partici-

pants were given an indefinite amount of time to remain in a tutorial session and test the selec-

Figure 31: Study 2 application layout. 

Figure 32: Example of main menu screen. 

https://github.com/silvio-dacol/NextMind
https://github.com/silvio-dacol/NextMind
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tion techniques until they felt comfortable and became accustomed to the movements needed to 

complete the upcoming tasks. 

 

In the BCI calibration screen, shown in Figure 34, the user can calibrate the NextMind device 

based on the signals coming from their brain. To accomplish this, the user concentrates on a 

gray circle where a blinking texture is displayed. A score from 1 to 5 is displayed at the end of 

the calibration, indicating its accuracy. 

 

4.1.4. Task Description 

Participants were asked to test the two selection techniques in four different scenarios. Both the 

order of selection techniques and the scenarios were randomized. The experiment was designed 

such that every observed difference would be attributable to the independent variable. The pro-

Figure 33: Example of tutorial screen. 

Figure 34: Example of calibration screen. 



40 

 

vided interface was identical in every way for each participant except for the selection method. 

In each task, there were a series of virtual objects of different shapes: cubes, cylinders, spheres, 

and capsules. These objects were scaled at 0.6 with respect to the standard dimension of the 

Unity environment and were placed at a distance between 5 and 9 meters from the user. The 

design choices for these experiments come from my literature review. Dense and dynamic envi-

ronments can be found in Cashion et al. (2012) and Schröder-Kroll et al. (2008), while basic 

design choices, as the dimension of the virtual objects or their distance from the user, have been 

found in LaViola et al. (2017). 

After the completion of the practice, participants were able to start the actual tasks. For each 

task, the target object on the screen was uniquely colored violet twenty times. Upon selecting an 

object, that object would start blinking, and audio feedback would indicate when a selection was 

made. The tasks are displayed in Figure 35, Figure 36, Figure 37, and Figure 38 and described 

below: 

Task 1, static objects, non-crowded environment: the area in front of the user features 28 float-

ing objects. These are static and do not overlap. Therefore, every object is easily visible to the 

participants. 

 

Task 2, static objects, crowded environment: the area in front of the user features 97 floating 

objects. These are static, and overlaps exist, so that participants may experience greater difficul-

ties in selecting objects that are partially hidden from others. 

Figure 35: Application task 1 screen. 
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Task 3, moving objects, slow speed: the area in front of the user features 28 floating objects. 

These move randomly with periodically changing directions. The speed is relatively low (0.5 

m/s), but object movement is unpredictable, and the user is verbally encouraged to focus care-

fully. 

 

Task 4, moving objects, high speed: the area in front of the user features 28 floating objects. 

These move randomly with periodically changing directions. In this case, the speed is high (1 

m/s), and the user is again encouraged to focus carefully. 

Figure 36: Application task 2 screen. 

Figure 37: Application task 3 screen. 
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4.1.5. Experimental Design 

Participants were welcomed upon arrival and seated at a desk. They were then asked to sign a 

consent form and complete a biometrics questionnaire. After this first phase, they were intro-

duced to the experiment and the purpose of the study. Once they were ready, they were asked to 

wear the Microsoft HoloLens and the NextMind device. Participants were then introduced to the 

AR interface so they could adjust comfortably to the Microsoft HoloLens. When participants 

were in the application's main menu, they were told about the selection method to be used first, 

hand gestures or BCI, which was based on the randomization process. When the NextMind de-

vice was used for BCI, participants were invited to enter the calibration screen and calibrate the 

device. They were then asked to enter the tutorial screen and gain familiarity with the selection 

method. Once participants felt comfortable with the selection technique, they were asked to en-

ter the tasks screen and start the experiment. All trials were conducted based on random order. 

Once all 4 tasks were completed, participants were given the NASA TLX and the System Usa-

bility Scale (SUS) questionnaire to fill out, focusing on the method they had used. Upon com-

pleting the questionnaires, each participant was given a break and, once ready, replicated the 

same process for the second selection method. 

Figure 39 displays the position of the Microsoft HoloLens on the head of the user. The HMD is 

fixed with the internal support, and it can be consequently adjusted on the nose of each user. In 

Figure 40, it is shown the NextMind device position on the head of the user. The electrodes go 

in contact with the scalp on the back of the user’s head, where the visual cortex is. 

 

Figure 38: Application task 4 screen. 
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4.1.6. Measurement 

A 2x4 within-subject factorial design was used in which the independent variables were the se-

lection techniques of hand gestures and brain signals. The dependent variables were selection 

time and accuracy, mental workload as measured by the NASA TLX, and usability as measured 

with the SUS. Selection time was measured by the time it took to move from the previous target 

onto selecting the subsequent target. With regards to the accuracy, target objects that were not 

Figure 39: Apparatus to carry out the final experiment: Microsoft HoloLens. 

Figure 40: Apparatus to carry out the final experiment: NextMind. 
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selected on the first attempt were considered errors, as was the selection of different objects 

other than the target object. This feature was implemented to prevent users from continuously 

air-tapping haphazardly (Vogel & Balakrishnan, 2005). The NASA TLX asks the user to pro-

vide a separate and subjective rating based on the following subscales: Mental Demand, Physi-

cal Demand, Temporal Demand, Performance, Effort, and Frustration. For each subscale, the 

participant provides a numerical rating and a weight; the overall workload is obtained by multi-

plying the two values (Hart & Staveland, 1988). The System Usability Scale (SUS) is used with 

an absolute grade scale (Bangor et al., 2009), allowing immediate comparison of two systems. 

The SUS contains generic usability items and allows the assessment of a large range of interac-

tive systems (Putze et al., 2019). 

4.1.6.1. Experimental Design Methods 

There are two main experimental design methods: between-subjects and within-subjects. In a 

between-subjects design, each participant is assigned to a different condition. The advantage of 

a between-subjects design is that any learning effect resulting from the user performing in one 

condition and the other is controlled. In fact, each user performs just under one condition. In this 

case, a greater number of participants is required, and a variation between the groups can negate 

any results (Dix et al., 2003). Due to the pandemic, it was difficult to find many participants, 

and a within-subject design was used. With this method, each user performs under each differ-

ent condition. We randomized the order of tasks and devices to remove the learning effect. 

Thus, a lower chance of variation between participants can be obtained (Dix et al., 2003). 

4.1.6.2. NASA TLX 

The NASA TLX has been widely used in many research projects involving human-computer 

interaction (Felton et al., 2012). The Human Performance Group developed this tool at the 

NASA Ames Research Center to measure the workload (Hart & Staveland, 1988). It asks the 

user to provide a separate and subjective rating based on six subscales: the first three relate to 

demands on the participant, namely Mental Demand, Physical Demand, Temporal Demand; the 

second three relate to how the participant deal with the task, namely Performance, Effort, and 

Frustration (Choi et al., 2017). Since it is unlikely that individuals keep in mind specific cases of 

load, absolute conclusions or comparisons across different type of tasks are generally not mean-

ingful (Hart & Staveland, 1988). This is the reason why, between more modi operandi to be 

compared, one must be the reference. Two methods can be compared if their final target is the 

same (Hart & Staveland, 1988). For each subscale, the participant marks a line divided into 20 

equal intervals, converted to a rating on a 0 to 100 scale. The line is anchored on each side with 

bipolar descriptors as low and high. This procedure allows to give a numerical rating for each 
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subscale and to obtain a raw workload score. The overall workload score is then calculated on a 

weighted average on the subscales. Fifteen comparisons between the subscales are made to ob-

tain the weight. The participant should select the most relevant subscale between the presented 

two. An overall workload score is evaluated with the product of each subscale rating with its 

correspondent weight (Hart & Staveland, 1988). The weighted rating is then obtained, summing 

the overall scores of all the subscales, and dividing everything by 15 as explained in Equation 

4.1. 

Equation 4.1: 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑
𝑅𝑎𝑡𝑖𝑛𝑔

=

 𝑀𝑒𝑛𝑡𝑎𝑙
𝐷𝑒𝑚𝑎𝑛𝑑

+
𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙
𝐷𝑒𝑚𝑎𝑛𝑑

+
𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙
𝐷𝑒𝑚𝑎𝑛𝑑

+ 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 + 𝐸𝑓𝑓𝑜𝑟𝑡 + 𝐹𝑟𝑢𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛

15
 

Thanks to its subscales, the NASA TLX evaluation is useful for obtaining more detailed data 

than a unidimensional scale. The mental workload is a complex concept that is better analyzed 

by splitting its elements.  

4.1.6.3. System Usability Scale 

The SUS allows measuring reliably the usability of computer systems on which the users are 

working (Affairs, 2013). John Brooke invented it in 1986, and it gives the possibility of evaluat-

ing products and services, including software, hardware, mobile devices, websites, and applica-

tions (Affairs, 2013). It consists of 10 questions at which the respondent can decide between 5 

options: from strongly agree (5) to strongly disagree (1). Thus, the final score can be from 0 to 

100, and it is calculated in Equation 4.2. 

Equation 4.2: 

𝑆𝑈𝑆 = {[(𝑄1 + 𝑄3+𝑄5 + 𝑄7 + 𝑄9) − 5] + [25 − (𝑄2 + 𝑄4+𝑄6 + 𝑄8 + 𝑄10)]} ∗ 2.5 

Where Qn is the score associated with each question (from 1 to 5).  

In this research, the SUS has been used to evaluate the selection methods for the virtual objects 

in AR. Therefore, when filling out the SUS, users are asked to focus on the actual selection 

method rather than the application or the devices themselves.  

As usability is defined by the context in any given instance, it follows that, in general, how you 

measure usability will also be defined by that context (Brooke, 2013). ISO 9241-11 explains 

SUS, dividing it into three components: effectiveness, efficiency, and satisfaction (Brooke, 

2013). All these refer to users and respectively: how successfully can users achieve their objec-
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tives? How much effort and resources are used to reach those objectives? How satisfied are us-

ers with the experience?  

The benefits of using the SUS after an experiment are that the least skilled participant can well 

administer the tool. This tool gives reliable results with a small sample, and it can easily differ-

entiate between usable and unusable systems. 

4.1.7. Data Analysis 

Statistical data for time and accuracy of selection, NASA TLX, and SUS were analyzed using 

Minitab software version 19 (Minitab, LLC, United States). The Wilcoxon signed-rank test was 

performed to compare the time, accuracy, NASA TLX, and SUS score between hand gestures 

and BCI. The confidence level was set at α = 0.05 to control for the chance of Type I errors. 

4.1.7.1. Wilcoxon Signed-Rank Test 

The Wilcoxon Signed-Rank Test is a non-parametric statistics hypothesis test. It is used to com-

pare two related samples and as an alternative to the paired Student’s t-test when the distribution 

of the difference cannot be assumed to be normal. As the t-test, the Wilcoxon test is used as a 

hypothesis testing tool, allowing testing an assumption applicable to a population. A limitation 

of this tool is that when the difference between the groups is zero, the observations are discard-

ed (Derrick & White, 2017). 

4.2. Results 

4.2.1. Time of Selection 

Time of selection descriptive-statistics is summarized in Table 1. The first hypothesis (H1) was 

not confirmed because BCI was slower than hand gestures in every situation. The static tasks, 

Task 1 and Task 2 revealed the biggest differences. In particular, Task 1 showed a mean value 

of 6.25 seconds for BCI and 3.54 seconds for hand gestures, while Task 2 showed a mean of 

6.97 seconds for BCI and 4.64 seconds for hand gestures. In the dynamic tasks, Task 3 and Task 

Table 1: Selection Time (in seconds) for each task. 
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4, BCI was still slower than hand gestures, but the difference between them was smaller than in 

the static tasks. For Task 3, the mean was 7.70 seconds for BCI and 7.30 seconds for hand ges-

tures, while for Task 4, the mean was 8.31 seconds and 8.16 seconds for BCI and hand gestures, 

respectively. As described in Figure 41, the Wilcoxon test revealed a significant effect for Task 

1 (p < 0.001, r = -0.790), Task 2 (p < 0.001, r = -0.636), Task 3 (p < 0.001, r = -0.210) and Task 

4 (p = 0.016, r = -0.121). With these results, significant differences in selection time were 

shown for all tasks. 

 

4.2.2. Accuracy of Selection 

Table 2 presents the descriptive statistics of the percentage of right selections for each task. The 

BCI has higher performances than hand gestures for all the tasks. The dynamic tasks are the 

ones in which the difference between BCI and hand gesture is the highest. In particular, the BCI 

has a mean of 97% of right selections in Task 3 and 96% of right selections in Task 4 against a 

mean of 73% and 64% for hand gestures, respectively. The results confirm the second hypothe-

sis (H2), for which the accuracy of selection is higher in the BCI case. 

 

Figure 41: Selection time in each task for both interfaces (*: P < 0.05). 

Table 2: Percentage of right selections for each task. 
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As displayed in Figure 42, significant differences have been found for Task 1 (p = 0.016, r = -

0.560), Task 3 (p < 0.001, r = -0.856) and Task 4 (p < 0.001, r = -0.856), while there was no 

significant difference for Task 2 (p = 0.570). 

 

4.2.3. NASA TLX 

For the NASA TLX, absolute values are usually not considered a viable way of describing the 

workload, and a comparison, between two different devices, for example, is normally preferred. 

The descriptive statistics summary of the NASA TLX is shown in Table 3.  

 

The results showed that the overall workload was significantly lower (p = 0.007, r = -0.610) for 

BCI (mean = 38.52) than for hand gestures (mean = 52.40). While BCI performed worse than 

Figure 42: Selection accuracy in each task for both interfaces (*: P < 0.05). 

Table 3: NASA TLX questionnaire survey results. 
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hand gestures with respect to Mental Demand (BCI mean = 190, hand gestures mean = 60) and 

Temporal Demand (BCI mean = 133, hand gestures mean = 107), it nevertheless fared better 

with respect to Physical Demand (BCI mean = 28, hand gestures mean = 252), Performance 

(BCI mean = 37, hand gestures mean = 77), Effort (BCI mean = 128, hand gestures mean = 

180) and Frustration (BCI mean = 63, hand gestures mean = 110). These results confirm the 

third hypothesis (H3) in which we predicted a better performance of BCI in Physical Demand 

and worse performance in Mental Demand. 

As shown in Figure 43, significant differences have been found for Mental Demand (p = 0.001, 

r = -0.720), Physical Demand (p < 0.001, r = -0.856), Performance (p = 0.040, r = -0.464) and 

Weighted Rating (p = 0.007, r = -0.610). However, there was no significant difference for Tem-

poral Demand (p = 0.360), Effort (p = 0.117) or Frustration (p = 0.098). 

 

4.2.4. SUS Score 

The outcomes of the SUS score are summarized in Table 4 and Figure 44. This test included 

both positive and negative questions. Therefore, when calculating the total score, the low score 

of the negative questions were reverse scored and appear as high scores in the total. The maxi-

mum possible final score was 100 points. Table 4 lists the overall SUS scores for both selection 

techniques. The mean SUS score for the BCI was 77.8, and for hand gestures was 66.5. 

Figure 43: NASA TLX Scores for each subscale and for both interfaces (*: P < 0.05). 
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As displayed in Figure 44, BCI performed better than hand gestures, but the result of SUS 

scores did not indicate significance (p = 0.076). 

 

Table 4: SUS Score results. 

Figure 44: SUS Scores for both interfaces. 
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CHAPTER 5 - DISCUSSION 

In the first study (STUDY 1), a manufacturing planning system has been presented. This first 

part aims to develop an application to introduce MR technologies in the industrial environment. 

The application allows the visualization of full-scale holograms to allow operators to see a new 

workstation while walking through the plant. The operator could inspect the new workstation 

virtually and quickly, identify discrepancies between the designed workstation and the envi-

ronment. Possible collisions spotted in advance could save money and resources addressing the 

problem in advance (De Pace et al., 2018). 

Furthermore, the application allows importing in the augmented environment the wanted robot 

using physical markers. Once in the scene, the robot can be selected and manipulated so that it 

is possible to change its position and orientation. The application also allows measuring the dis-

tance between two points in the space so that it is possible to better understand where the robots 

can be most efficiently placed. 

In the development phase, the Measurement Tool has been validated using a coarse mesh of the 

environment. All the measured objects had a regular shape and could be well approximated by a 

coarse mesh. As it is possible to see from Table 5, the Measurement tool works well for big di-

mensions (> 100 cm), while it has a bigger error for smaller dimensions (< 100 cm). The overall 

absolute average error is 2.45%. The absolute average error for dimensions lower than 100 cm 

is 3.59%, while it is 1.30% for dimensions higher than 100 cm.  

 

In the second study (STUDY 2), an exploratory study was conducted to compare two input 

means for AR, the classic hand gesture and the novel BCI, with the goals of increasing the 

Table 5: Measurement Tool validation. 
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speed and accuracy of object selection and the usability of the system while reducing workload. 

The comparison between these interfaces has shown that BCI is more accurate than hand ges-

tures and has a lower workload and greater usability. On the other hand, BCI has a lower selec-

tion speed. This study demonstrates the advantage of using BCI as a communication device in 

AR, and findings corroborate those of other studies (Putze et al., 2020, 2019; Si-Mohammed et 

al., 2017). Combining AR and BCI can, therefore, be used in scenarios favoring hands-free in-

teraction and should be further developed. The coupling of these two technologies also favors 

the technological process of combining them together in the same device. In fact, a weakness of 

these technologies is that, being currently integrated on difference devices, there must be a 

compatibility between them. 

BCI did, however, have a slower selection speed than hand gestures, with an average time dif-

ference of about 2.5 seconds for static tasks, Task 1 and Task 2. This result refutes the first hy-

pothesis (H1). An additional investigation of this difference was done by analyzing the selection 

of a single object on the screen using BCI to figure out the delay between the user’s decision to 

select an object and the BCI device’s selection of that object based on the signal from the user’s 

brain. As displayed in Table 6 below, the delay was around 2.5 seconds. Being an SSVEP BCI, 

NextMind is triggered by signals from stimulation of the eyes. BCI requires time to process 

these signals. If this delay were eliminated, BCI object selection time could perfectly align with 

that of hand gestures. The NextMind device is based on machine learning and is continuously 

being optimized by the device development team. The more a machine learning algorithm is 

optimized, the faster the device response will be. The resulting reduction in delayed response 

time depends on the amount of data collected (Protalinski, 2020). The difference between BCI 

and hand gesture object selection times was not present in dynamic environments, Task 3 and 

Task 4, likely due to BCI’s delay in selection and user difficulty selecting moving objects with 

their hands. 

 

Concerning the accuracy, BCI exceeds hand gestures in environments with low object density, 

like Task 1, Task 3, and Task 4, as predicted in H2. However, in Task 2, which is a static and 

high-density environment, BCI surpassed hand gesture accuracy by a smaller percentage (hand 

gestures: 83%, BCI: 86%) than in the low object density tasks. A possible justification for this 

Table 6: BCI delay results on a single object selection. 
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finding may be that, as eye signals trigger BCI, when two virtual objects are very close to each 

other, the selection of an unwanted object can be triggered instead of the target object. For ex-

ample, as displayed in Figure 45, the violet target object is in the background and is covered by 

other objects. Therefore, this proximity of triggering signals has led to lower accuracy. Consid-

ering that this research focuses on the feasibility of the application of BCI in industrial envi-

ronments, this task presented an extreme scenario with virtual objects in close proximity that 

would be unlikely to occur in a real-life task. Nevertheless, this solution is feasible in a dense 

environment because the accuracy of the BCI is still higher than the one involving hand ges-

tures. 

 

The NASA TLX gives many insights about the relative difference between BCI and hand ges-

tures. Mental demand was higher for BCI than for hand gestures, as predicted in the third hy-

pothesis (H3). The mean was 190 for BCI and 60 for hand gestures. However, since the overall 

score of BCI NASA TLX is lower than the hand gestures’ one, the level of mental demand 

when using BCI should be accepted (Grier, 2015). 

Physical demand is, by contrast, lower for BCI when compared to hand gestures. The mean was 

28 for BCI and 252 for hand gestures. With BCI, the selection method does not include any up-

per limb movements in the selection process. This method can prevent the user from keeping 

their hand up, causing arm and wrist strain (Argelaguet & Andujar, 2013). BCI, together with 

AR, offers the possibility for immersive scenarios (Putze et al., 2020) controlled just with brain 

signals.   

Figure 45: Example of target object in the background covered by other objects. 
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Temporal demand showed no significant difference, likely because the application used for the 

experiment had no time pressure for the user while performing the tasks. However, when com-

paring mean values between BCI and hand gestures, a higher mean value is obtained for the 

former (BCI: 133, hand gestures: 107). This could be due to participants' perception of a longer 

selection time, which is especially relevant in static environments. As already mentioned, a de-

lay of 2.5 seconds (Table 6) was recorded for a single object selection. From this, the conclusion 

might be that the device requires some time to process the brain signals. A better machine learn-

ing algorithm should improve the BCI response rate in future updates. 

With regard to performance, BCI exceeded hand gestures with a result of 37 against 77. This 

outcome is consistent with BCI’s greater accuracy than hand gestures for all tasks. The partici-

pant likely felt more satisfaction while performing the task with BCI rather than with hand ges-

tures because there were fewer errors in the first case. Within dynamic environments, in particu-

lar, BCI scored much better than hand gestures with respect to the accuracy of selection. 

The effort was not significant, but the BCI score (128) was still lower than that of hand gestures 

(180). The effort is defined as how much the user had to work mentally and physically to 

achieve the results. As the BCI is better from a physical standpoint and the hand gestures are 

better from a mental standpoint, the effort is insignificant. This outcome confirms (again) that 

even if BCI has a higher mental demand, this does not impact user perception. 

The frustration level is also not significant, but BCI once again performed better than hand ges-

tures (BCI: 63, hand gestures: 110). The users were likely more familiar with hand gestures than 

BCI. The Air Tap technique implemented in the Microsoft HoloLens is similar to the movement 

of clicking a mouse or tapping a touch screen (Vogel & Balakrishnan, 2005). This non-

significance led to the conclusion that participants felt to be familiar with both selection meth-

ods.  

Finally, the Weighted Rating is significant and lower for BCI than that of hand gestures, with 

values of 38.52 and 52.40, respectively. Metanalysis of the cumulative frequency distributions 

of NASA TLX Global Workload Scores (Grier, 2015) has identified the following typical val-

ues for a Computer Activity: minimum of 7.46, first percentile of 20.99, mean of 54.00, third 

percentile of 60.00, and a maximum of 78.00. BCI led to a weighted rating of 38.52, which is 

just between the 1st percentile value and the mean. This value is not harmful because it lies be-

tween 25% and 30% of the Deciles and Quartiles of the Global NASA-TLX Analysis Table of 

Grier (2015). For the Microsoft HoloLens hand gestures, the weighted rating is 52.40, a result 

that is very close to what Ro et al. (2019) found in their study (56.50). The main issue with the 
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existing HoloLens interface is that it causes user fatigue. Since the proposed solution was aimed 

to solve the problem, the NASA TLX confirmed the better performance of the BCI over hand 

gestures. 

The SUS usability test for both interfaces is displayed in Figure 44. Usability showed a higher 

mean value for BCI than hand gestures, but the SUS Score did not show significance. The p-

value was, however, very close to significance (p = 0.076). A slightly larger number of partici-

pants may lead to a significant difference between BCI and hand gesture usability. Furthermore, 

in relation to the average SUS score of 68 established in a previous study, BCI scored higher 

than average while hand gestures scored lower. The major problem with existing hand gestures 

is user fatigue. Since the proposal was a BCI to solve this problem, the obtained usability test 

result has been encouraging. 

This study has several limitations. First, the total number of study participants was limited due 

to multiple factors, including the study being performed during the COVID-19 pandemic. In 

addition, the recruitment of participants during this phase was difficult due to the lockdown in 

the province of Ontario. Even though the number of participants in this study is relatively low, 

20 participants are still enough to achieve significant results. The second limitation is that gen-

der was not considered in the selection of participants. Researchers in psychological and social 

sciences widely acknowledge that males and females differ in spatial ability (Halpern & Col-

laer, 2005; Kimura, 1999). However, since only five females participated in this study, the gen-

der difference cannot be analyzed. Furthermore, due to COVID-19, participants were found 

through University’s channels only because it was not allowed to recruit participants from out-

side of campus. For this reason, the average age was 25 and an age effect could not be consid-

ered. The lifting of pandemic restrictions will eliminate this limitation, as greater numbers of 

participants will be recruited more easily, thereby allowing for equal numbers of male and fe-

male participants to be selected for the study. The third limitation is related to the limited field 

of view of the HMD. The screen that users see inside the device is reduced in such a way their 

head must turn more to see all the virtual assets in the scene. This is the fundamental weakness 

of AR devices and a better solution is found every hardware update. The last limitation comes 

from the simplicity of the selection task. Selection is a universal interaction task (LaViola et al., 

2017), as position and orientation are. In this study, the selection was the only interaction ana-

lyzed, which is accomplished in less time than position and orientation. Limiting the study to 

object selection could have led users to spend less time with their hands up than they otherwise 

would have when interacting with the virtual objects, thereby requiring less effort than position-
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ing and orienting. This problem was solved by making participants select immediately succes-

sive virtual objects to approximate the position and orient interaction techniques. 

Despite its limitations, this study has shown that the NASA TLX scores can improve the design 

of BCI applications because it provides data on both overall and individual contributors to 

workload (Felton et al., 2012). In addition, these scores can compare different contributions to 

the overall workload for both hand gestures and BCI. 
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CHAPTER 6 - CONCLUSIONS 

This study focuses on the development of an MR application for training/support operators in 

maintenance activities. This application can show the virtual environment in AR, and the user 

can interact with the scene through a user-friendly UI. With an appropriate menu, the user can 

import 3D CAD in a specific position using markers. The robot can be manipulated once in the 

scene, and the application also allows to measure between two points. This last tool is used to 

understand the best position for the robot in the augmented scene. The Measurement Tool has 

been validated, and it has been found that its error is around 1.30% for dimensions higher than 

100 cm. This result can be considered acceptable because, in industrial environments, measure-

ments are usually larger than 100 cm.  

Furthermore, the feasibility of an alternative to the classic interaction techniques in AR has been 

analyzed. This alternative is an SSVEP BCI, which was implemented using a device to detect 

stable oscillations in voltage evoked by repetitive stimulations. Hand gestures are the conven-

tional technique to interact with the virtual assets in an AR screen. Hand gestures, however, 

usually lead to a high perceived workload in users, who require effort to keep the hand in the 

correct position to be recognized by the HMD. Therefore, an experiment was performed to 

demonstrate the high performance and usability of the BCI. This experiment was based on dif-

ferent virtual object densities as low and high and object speeds as static, low, and high. First, 

the time of single selection for the virtual objects in the screen was measured, and the BCI re-

sults were found to be slower than those of hand gestures for all tasks. The difference in speed 

was larger for static environments and very small for dynamic environments. Secondly, the ac-

curacy of selection was measured and, BCI performed better than hand gestures, especially in 

dynamic tasks. This result confirmed that with hand gestures, the selection is more difficult for 

small and moving objects. Thirdly, a NASA TLX questionnaire was provided to the participants 

and, an overall workload of 38.52 for the BCI and 52.40 for the hand gestures were obtained. 

Thanks to its subscales, the NASA TLX effectively described the workload associated with the 

two interfaces. Lastly, a SUS questionnaire was provided to each participant to assess and com-

pare the usability of both systems. BCI performed better with respect to usability than hand ges-

tures, with a score of 77.8 versus 66.5, respectively. The result, while not significant, is still rel-

evant. Future studies shall improve the BCI interface and implement a way to position and ori-

ent the virtual assets in the space, not just select them. Further improvement can be employing 

the experiment with more participants and more female individuals to consider the gender dif-

ference. 
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Nevertheless, the BCI shows good results in object selection accuracy, workload, and usability. 

There is still some delay for BCI in the selection procedure, and this could be solved in the fu-

ture with a larger amount of data collected and with an upgrade of the machine-learning algo-

rithm. Therefore, it has been demonstrated that this system can be used in dense and dynamic 

environments with good performances. The expectation is that there will be future analyses to 

pursue this research further. 
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APPENDICES 

Appendix A – Consent Form 

Title of Study: “HUMAN PERFORMANCE AND MENTAL WORKLOAD IN AUGMENTED REALITY: BRAIN COMPUTER 

INTERFACE ADVANTAGES OVER GESTURES” 

 

You are asked to participate in a research study conducted by Mr. Silvio Da Col (Student), Dr. Eunsik Kim (Research Coordina-

tor), from the Mechanical, Automotive & Materials Engineering at the University of Windsor. The results will be contributed to 

a graduate thesis project. 

 

If you have any questions or concerns about the research, please feel to contact: 

• Mr. Silvio Da Col: dacol@uwindsor.ca 

• Dr. Eunsik Kim: eunsik.kim@uwindsor.ca 

 

 

PURPOSE OF THE STUDY 
The research is based on building a Brain Computer Interface (BCI) for hologram selection in Augmented Reality (AR). A BCI is 

an interface which uses the brain signals to trigger some actions in a virtual environment. For example, if you are focusing on a 

button in the virtual environment, the interface will acquire your brain signals and will press that button without the need of moving 

other body parts. To acquire those signals, the NextMind device is used; this is a new mass market device that reads the image pro-

jected onto the visual cortex of the user and triggers an action. 

Let us go back to the button example. Instead of clicking that button with your brain signals, you can use the actual hand-gestures 

already implemented in the Microsoft HoloLens. Nevertheless, these hand-gestures are typically not precise and lead to high per-

ceived workloads and low accuracy. The purpose of the research is demonstrating that the new way of selection by brain signals can 

perform better than the hand-gestures currently working on HoloLens under speed, accuracy, and workload point of view. 

 

PROCEDURES 

 

The building and room number for the study are: Centre for Engineering Innovation (CEI), Room 1220. The following diagram 

shows where the lab is situated in CEI, entry and exit to the buildings: 

 

 
 

All lab members conform with health and safety protocols (https://www.uwindsor.ca/returntocampus/) and they have access to 

personal protective equipment (PPE). Masks must be worn in all common areas (including hallways, washrooms, etc.). Masks must 

also be worn in the lab when other personnel are present. The “COVID-19 Mandatory Non-medical Mask Policy” can be found at 

this link: 

https://lawlibrary.uwindsor.ca/Presto/content/Detail.aspx?ctID=OTdhY2QzODgtNjhlYi00ZWY0LTg2OTUtNmU5NjEzY2JkMWY

x&rID=MjQw&qrs=RmFsc2U=&q=KFVuaXZlcnNpdHlfb2ZfV2luZHNvcl9DZW50cmFsX1BvbGljaWVzLkFsbFRleHQ6KENPV

klEKSk=&ph=VHJ1ZQ==&bckToL=VHJ1ZQ==&rrtc=VHJ1ZQ== 

 

If you volunteer to participate in this study, this is the general followed procedure: 

 

1. Upon arrival, each participant will be welcomed and will receive a brief introduction of the experimental procedure.  

2. Participant will be asked about his/her experience in Brain Computer Interfaces and Augmented Reality. 

3. Participant will be asked to wear the HoloLens device. 

4. The session will be recorded to check if the acquired time and accuracy data are correct. Participant faces will not be in-

cluded.  

5. Participant will be asked to complete a training session on the HoloLens. 

6. There will be a break if needed. 

7. Whenever the participant will be comfortable, he/she will be asked to complete the assigned tasks on the HoloLens. 

mailto:dacol@uwindsor.ca
mailto:eunsik.kim@uwindsor.ca
https://www.uwindsor.ca/returntocampus/
https://lawlibrary.uwindsor.ca/Presto/content/Detail.aspx?ctID=OTdhY2QzODgtNjhlYi00ZWY0LTg2OTUtNmU5NjEzY2JkMWYx&rID=MjQw&qrs=RmFsc2U=&q=KFVuaXZlcnNpdHlfb2ZfV2luZHNvcl9DZW50cmFsX1BvbGljaWVzLkFsbFRleHQ6KENPVklEKSk=&ph=VHJ1ZQ==&bckToL=VHJ1ZQ==&rrtc=VHJ1ZQ==
https://lawlibrary.uwindsor.ca/Presto/content/Detail.aspx?ctID=OTdhY2QzODgtNjhlYi00ZWY0LTg2OTUtNmU5NjEzY2JkMWYx&rID=MjQw&qrs=RmFsc2U=&q=KFVuaXZlcnNpdHlfb2ZfV2luZHNvcl9DZW50cmFsX1BvbGljaWVzLkFsbFRleHQ6KENPVklEKSk=&ph=VHJ1ZQ==&bckToL=VHJ1ZQ==&rrtc=VHJ1ZQ==
https://lawlibrary.uwindsor.ca/Presto/content/Detail.aspx?ctID=OTdhY2QzODgtNjhlYi00ZWY0LTg2OTUtNmU5NjEzY2JkMWYx&rID=MjQw&qrs=RmFsc2U=&q=KFVuaXZlcnNpdHlfb2ZfV2luZHNvcl9DZW50cmFsX1BvbGljaWVzLkFsbFRleHQ6KENPVklEKSk=&ph=VHJ1ZQ==&bckToL=VHJ1ZQ==&rrtc=VHJ1ZQ==
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8. Participant will be asked to complete the NASA TLX and the SUS about the HoloLens device (NASA TLX: 

https://en.wikipedia.org/wiki/NASA-TLX and SUS: https://en.wikipedia.org/wiki/System_usability_scale) 

9. Participant will be informed of the obtained results and there will be a break. 

10. Whenever the participant will be comfortable, he/she will be asked to wear the HoloLens device and the NextMind de-

vice. 

11. Participant will be asked to complete a training session on the NextMind device. 

12. There will be a break if needed. 

13. Whenever the participant will be comfortable, he/she will be asked to complete the assigned tasks on the NextMind de-

vice. 

14. Participant will be asked to complete the NASA TLX and the SUS about the NextMind device. 

15. Participant will be informed of the obtained results and there will be a break. 

16. The experiment is now completed. 

 

There will be only one session each participant. It is expected that the session will last 2 hours.  

 

 

POTENTIAL RISKS AND DISCOMFORTS 

 

The risk is always low because the environment is controlled, and the used devices (HoloLens and NextMind) are safe. Physical 

risks could happen for improper movements during data collection or dizziness because of the devices use. Investigators will show 

which are the proper movements to be followed. If participant feel discomfort or pain, at any point they can immediately stop the 

experiment. They will be helped by me (Silvio Da Col) and by the Supervisor (Dr. Eunsik Kim) to solve their problem. The research 

team will be responsible for what happens to participants. 

Session will be recorded and so psychological/emotional risks could happen. Participants could feel uncomfortable or pressed but 

we will reassure participants to performs as far as physically and mentally possible. The purpose of the research is to access the real 

performance of participants.  

Social risks can be again associated to the recordings because participants could think that this could increase the chances of being 

recognised. The face will not be visible in the video and moreover, videos will be accessible just to Mr. Silvio Da Col and Dr. Eun-

sik Kim. 

 

After each session, all the devices, equipment and door handles will be properly sanitised and cleaned before the other participants 

use/touch them. Each participant will be asked to sanitise his/her hands properly before entering into the lab and participants are 

required to wear the masks and keep proper social distance of 2 meters.  

Possible discomforts could derive from the coupling between the experiments and the respect of all COVID-19 rules. To reduce this 

risk, participants will be guided in respecting all the procedures. 

 

 

POTENTIAL BENEFITS TO PARTICIPANTS AND/OR TO SOCIETY 

 

Participants who are not familiar with Augmented Reality or with Brain Computer Interfaces can gain some skills in these environ-

ments. These devices will be more and more popular in the future and so participants will have a general overview of them. 

This research is innovative from the point of view of the holograms selection in Augmented Reality environments. More and more 

Companies now are going in the direction of designing and validating production lines in Augmented Reality and this research will 

try to find an interface to reduce user workload and increase virtual objects selection accuracy and speed. 

 

 

COMPENSATION FOR PARTICIPATION 

 

Participants will be paid $20 for the session. Source of funding is from Supervisor Dr. Eunsik Kim. There will not be any financial 

support for transportation to come to campus. 

 

 

CONFIDENTIALITY 
 

Any information that is obtained in connection with this study and that can be identified with you will remain confidential and will 

be disclosed only with your permission. 

We will store the raw data (recordings and measured data) by number only. We will store them in our personal University of Wind-

sor OneDrive protected cloud. Only the faculty Supervisor (Dr. Eunsik Kim) and me (Silvio Da Col) can access the data. Data will 

be stored on an Excel spreadsheet and be used for the duration of the study (until August 2021). Names will be removed to ensure 

confidentiality within participants. 

 

The activity will be videotaped and participants have the right to review the tapes associated to their experiment session. If partici-

pants want to delete the recording associated to their experiment session, they have the right to do this. All the recordings will be 

accessible by Mr. Silvio Da Col and Dr. Eunsik Kim until the end of the study (August 31 st, 2021). 

 

 

 

PARTICIPATION AND WITHDRAWAL 

 

Participants, who will want to withdraw their data from the study, can stop the session at any point without any penalty. Participants, 

who want to withdraw their already collected data, need to contact the Supervisor (Dr. Eunsik Kim) and notify that they would  like 

to withdraw the collected data. This procedure shall be done within 2 weeks after completing the experiment. Participants will not 

https://en.wikipedia.org/wiki/NASA-TLX
https://en.wikipedia.org/wiki/System_usability_scale
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be allowed to withdraw their data after two weeks participating in the study because this could have an impact on the completion of 

the thesis. In fact, data must be post-processed. 

If the participant wants to stop before the first trial (corresponding to the 50% of the experiment session), they can do it but there 

will not be any compensation. Participants who want to withdraw after the first trial will receive a portion of compensation based on 

how long they have participated in the study. Data will not be collected for the participants that has withdrawn from study. 

 

FEEDBACK OF THE RESULTS OF THIS STUDY TO THE PARTICIPANTS 

 

Participants will be informed of the overall results of the study via publications from the study or research result summaries on the 

University of Windsor website. 

 

Web address: https://scholar.uwindsor.ca/research-result-summaries/ 

Date when results are available: August 31st, 2021 

 

SUBSEQUENT USE OF DATA 
 

These data may be used in subsequent studies, in publications and in presentations.  

 

RIGHTS OF RESEARCH PARTICIPANTS 
 

If you have questions regarding your rights as a research participant, contact: Office of Research Ethics, University of Windsor, 

Windsor, Ontario, N9B 3P4; Telephone: 519-253-3000, ext. 3948; e-mail:  ethics@uwindsor.ca 

 

SIGNATURE OF RESEARCH PARTICIPANT/LEGAL REPRESENTATIVE 

 

I understand the information provided for the study “HUMAN PERFORMANCE AND MENTAL WORKLOAD IN AUGMENT-

ED REALITY: BRAIN COMPUTER INTERFACE ADVANTAGES OVER GESTURES” as described herein. My questions have 

been answered to my satisfaction, and I agree to participate in this study. I have been given a copy of this form. 

 

______________________________________ 

Name of Participant 

 

______________________________________   ___________________ 

Signature of Participant       Date 

 

 

SIGNATURE OF INVESTIGATOR 
 

These are the terms under which I will conduct research. 

 

 

_____________________________________   ____________________ 

Signature of Investigator      Date 

  

https://scholar.uwindsor.ca/research-result-summaries/
mailto:ethics@uwindsor.ca
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Appendix B – Biometrics Data Form 

Name: 

Date of Birth: 

Gender: 

Stature (approximately): 

Weight (approximately): 

 

Please answer these questions: 

Question 1: Are you familiar with Virtual Reality or Augmented Reality? 

Yes     No 

 

Question 2: If you have answered Yes in Question 1, please answer this question: have you ever used a Microsoft 

HoloLens device? 

Yes     No 

 

Question 3: Are you familiar with Brain-Computer Interfaces? 

Yes     No 

 

Question 4: If you have answered Yes in Question 3, please answer this question: have you ever used the NextMind 

device? 

Yes     No 

 

Question 5: Do you have any discomfort in using your upper limbs? 

Yes     No 

 

Question 6: Which is your dominant hand? 

Right     Left 

 

Question 7: Do you have any vision problem in normal conditions? 

Yes     No  
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Appendix C – REB Approval 

Today's Date: March 02, 2021 

Principal Investigator: Mr. Silvio Da Col 
REB Number: 38917 
Research Project Title: REB# 21-015: "A Brain Computer Interface to Reduce the Workload Involved in AR Holo-
grams Selection"  
Clearance Date: March 2, 2021 
Project End Date: August 31, 2021  
__________________________________________________________________________ 

This is to inform you that the University of Windsor Research Ethics Board (REB), which is organized and operated 
according to the Tri-Council Policy Statement and the University of Windsor Guidelines for Research Involving Hu-
man Participants, has granted approval to your research project. This approval is valid for one year after the clearance 
date noted above. 

An annual Progress Report must be submitted for renewal of the project. The REB may ask for monitoring infor-
mation at some time during the project’s approval period. A Final Report must be submitted at the end of the project 
to close the file. 

During the course of the research, no deviations from, or changes to, the protocol or consent form may be initiated 
without prior written approval from the REB. Approval for modifications to an ongoing study can be requested using 

a Request to Revise Form. 

Investigators must also report promptly to the REB:  
a) changes increasing the risk to the participant(s) and/or affecting the conduct of the study;  
b) all adverse and unexpected events that occur to participants;  
c) new information that may affect the risks to the participants or the conduct of the study. 

Forms for submissions, notifications, or changes are available on the REB website: www.uwindsor.ca/reb. If your 
data are going to be used for another project, it is necessary to submit a secondary use of data application to the REB. 

Sincerely, 

  

http://links.researchservicesoffice.com/ls/click?upn=Z-2BUrn3qYYscd-2Fz9LGLQdY0xn5kU1Ic6ZduH4p-2BbOlIEbdBmuAUElFQ-2BjeM-2BY-2BcvyKVZ5_r1sW70VaIq3zqwdJ86CBtxwJ-2FSJ1oTQdGO-2FYV2GKmVFXdAwtHMzRgHQEw7BBdOeO5ofdDKgIspwms-2BesqHm9HeR5nY19-2FvxWeLMlttGkPfsQEdbQTi8oi1yKq73l3foe-2FEJk3nEQu5s6JtcRrkLGI75MKjGQfGkXX-2Fa-2FUgU75AD-2BaAgOAKPbnaLx4gyianaB7XKq01NdleGXMhk7E3mQlop-2BGV9Trn-2F3iwXI-2BBdJR-2Bo-3D
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Appendix D – RSC Approval 
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Appendix E – System Usability Scale 

I think that I would like to use this system frequently. 

 

I found the system unnecessarily complex. 

 

I thought the system was easy to use. 

 

I think that I would need the support of a technical person to use this system. 

 

I found the various functions in this system were well integrated. 

 

I thought there was too much inconsistency in this system. 

 

I would imagine that most people would learn to use this system very quickly. 

 

I found the system very awkward to use. 
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I felt very confident using this system. 

 

I needed to learn a lot of things before I could get going with this system. 
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Appendix F – Post-Experiment Questionnaire 

How would you rate the Air Tap technique in speed? 

 

How would you rate the NextMind technique in speed? 

 

How would you rate the Air Tap technique in accuracy? 

 

How would you rate the NextMind technique in accuracy? 

 

How adequate do you feel the 3D interface was? 

 

How adequate do you feel the time allotted for practice was? 

 

How comfortable were you using the HoloLens device? 

 

When determining how much you like using a selection technique, how much influence does ease-of-use have on 

your decision? 

 

When determining how much you like using a selection technique, how much influence does speed have on your 

decision? 

 

Which was your preferred selection technique between Air Tap and NextMind? 

Air Tap NextMind 

 

  



76 

 

VITA AUCTORIS  

 

 

NAME:  Silvio Da Col 

PLACE OF BIRTH: Pieve di Cadore, BL, Italy 

YEAR OF BIRTH: 1998 

EDUCATION: 

 

 

 

Liceo Scientifico E. Fermi, Pieve di Cadore, BL, Italy, 2011-2016 

Politecnico di Torino, B.Sc., Turin, TO, Italy, 2016-2019 

Politecnico di Torino, M.Sc., Turin, TO, Italy, 2019-2021 

University of Windsor, M.Sc., Windsor, ON, 2020-2021 

 

 


